
The Family Holiday Gathering Problem
or

Fair and Periodic Scheduling of Independent Sets

Amihood Amir
Bar Ilan University, Israel
Johns Hopkins University,

USA
amir@cs.biu.ac.il

Oren Kapah
Bar Ilan University, Israel

orenkapah.ac@gmail.com

Tsvi Kopelowitz
University of Michigan, USA

kopelot@gmail.com

Moni Naor
∗

Weizmann Institute of
Science, Israel

moni.naor@weizmann.ac.il

Ely Porat
Bar Ilan University, Israel

porat@cs.biu.ac.il

ABSTRACT
We introduce the Holiday Gathering Problem which mod-
els the difficulty in scheduling non-interfering transmissions
in (wireless) networks. Our goal is to schedule transmis-
sion rounds so that the antennas that transmit in a given
round will not interfere with each other, i.e. all of the other
antennas that can interfere will not transmit in that round,
while minimizing the number of consecutive rounds in which
antennas do not transmit.

Following a long tradition in Computer Science, we intro-
duce the problem by an intuitive story. Assume we live in
a perfect world where families enjoy being together. Con-
sequently, parents, whose children are in a monogamous re-
lation, would like to have all their children at home for the
holiday meal (i.e. there is a special pleasure gained by host-
ing all the children simultaneously and they wish to have this
event occur as frequently as possible). However, the conflict
is that the in-laws would also be happiest if all their children
come to them. Our goal can be described as scheduling an
infinite sequence of “guest lists” in a distributed setting so
that each child knows where it will spend the holiday. The
holiday gathering problem is closely related to several classi-
cal problems in computer science, such as the dining philoso-
phers problem on a general graph and periodic scheduling.

The process of the scheduling should be done with no
further communication after initialization, by using a small
amount of local data. The result should minimize the num-
ber of consecutive holidays where the family is not together.
In a good sequence this number depends on local properties

∗Incumbent of the Judith Kleeman Professorial Chair.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11 - 13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935788

of the parents (e.g., their number of children). Furthermore,
solutions that are periodic, i.e. a gathering occurs every fixed
number of rounds, are useful for maintaining a small amount
of information at each node and reducing the amount of on-
going communication and computation.

Our algorithmic techniques show interesting connections
between periodic scheduling, coloring, and universal prefix
free encodings. We develop a coloring-based construction
where the period of each node colored with the c is at most

21+log∗ c ·
∏log∗ c
i=0 log(i) c (where log(i) means iterating the

log function i times). This is achieved via a connection with
prefix-free encodings. We prove that this is the best possible
for coloring-based solutions. We also show a construction
with period at most 2d for a node of degree d.

1. INTRODUCTION
We examine the problem of scheduling an infinite sequence

of independent sets in a given graph G in a distributed man-
ner, with the following three objectives:

• Periodicity. For every node v, if v appears in the ith
independent set then the next independent set con-
taining v is the (i+πv)th independent set, where πv is
a fixed positive integer. We say that πv is the period
of v. Periodicity is useful since it allows each node v
to maintain a small amount of information in order
to determine the subsequence of independent sets in
which it participates. In particular, a periodic sched-
ule guarantees that once the period is set the amount
of communication and computation is minimized, sav-
ing both bandwidth and energy.

• Locality. πv depends only on local properties of v (such
as its degree), and not global properties of the graph
(such as the maximum degree or the diameter). Lo-
cality provides a sense of fairness since for every node
the length of its period only depends on properties of
that node.

• Minimize Starvation. The periods should collectively
be as small as possible.

367

This problem has direct applications in the realm of com-
mon resource scheduling. Suppose that in a world with many
agents, each agent requires some shared resources in order
to perform some job. For example, it would be beneficial
if wireless radios could guarantee that when they broadcast
on a particular frequency, none of the other radios interfere.
In this application the shared resource is the air which is
within transmission radius of more than one radio. We can
model this as radios being vertices and two radios which
share some air are modelled as an edge.

In the Computer Science tradition of defining systems
problems as “social” problems, e.g. the dining philosophers
problem, we view the wireless radios model as a “holiday
gathering” problem. One of the anxiety-causing problems
before the holidays is where to go for the holiday dinner?
Parents, whose children are in a monogamous relationship,
would obviously (?!) like to have all their children at home
for the holiday meal (i.e. there is a special pleasure gained
by the festive experience of hosting all the children simulta-
neously and intuitively the goal is to have this event occur
as frequently as possible). We say that such parents wish to
be happy during the holiday. However, the conflict is that
the in-laws would also be happy if all their children come to
them.

This problem is closely related to the classic dining philoso-
phers problem, which we discuss later. Furthermore, schedul-
ing problems are part of our mainstay, and these problems
are indeed scheduling problems. To this end, we focus on al-
gorithms whose goal is to schedule which parents are happy
during any given holiday in a distributed manner with the
objective of minimizing the number of consecutive holidays
in which a parent is not happy1.

Connection to coloring.
As in many problems in computer science, for some special

inputs the holiday gathering problem is simple. For exam-
ple, if G is bipartite with two sets of nodes A and B, then
there is a very good sequence: during odd rounds the inde-
pendent set will be all of A and during the even rounds the
independent set will be all of B. The reason this example
works out so well is because it is based on covering all of the
nodes using as few independent sets as possible - a coloring
problem. In the bipartite case, two colors suffice. In the set-
ting of wireless networks the topology of the network may
also lead to a low chromatic number.

In a general graph where ∆ is the largest degree, it is
immediate that one can color the graph in ∆ + 1 colors.
Such a coloring can be obtained in a distributed manner
by applying, for example, the recent randomized algorithm
of Barenboim, Elkin, Pettie, and Schneider [5] (denoted
by the BEPS algorithm for short) running in O(log ∆ +

2O(
√
log logn)) rounds. The coloring leads to a scheduling

of independent sets where the period of each node is exactly
∆ + 1. This scheduling is obtained by partitioning the se-
quence into phases of ∆ + 1 independent sets, and in each
phase the ith round corresponds to all of the nodes colored
i. However, such a sequence is not local as the length of any
period depends on a global graph parameter (the maximum
degree), and so this approach requires some refinement.

1One may consider the problem of maximizing happiness
for a given year, but this problem is NP-hard. One may also
consider an objective function relating to the satisfaction of
parents. Details for both can be seen in the Appendix.

What is the fair share of parents? Defining fairness
is the subject of much debate in philosophy, game theory
and theology. Much of cooperative game theory deals with
fair allocation of resources. In our case the problem seems
hard: given the tight relationship with coloring and maxi-
mum independent set, we cannot even determine efficiently
the ‘value’ of the full coalition (see Appendix B.2). On the
other hand, consider the following simple ‘chaotic’ process
called “first come first grab”: parents wake up at a ran-
dom time and grab their available (those who have not been
grabbed) children. The probability that a node p manages
to grab all its children is 1/(deg(p) + 1), where deg(p) is
the degree of p. So the expected time until hosting all the
children is deg(p) and this is the landmark we will try to ob-
tain, i.e. we would like every parent to host a holiday with
all their children every O(deg(p)) years. It is also clear that
in general we cannot hope to get a better than deg(p) + 1
result, if the conflict graph is a clique. Nevertheless, when
the input graph has a small chromatic number, as discussed
above, we can do better.

1.1 Our Results and Techniques
The main contributions of this paper are, thus:

1. A Color-bound solution for the holiday gathering
problem which is based on any given coloring of the
graph. The length of a period for a node v with color c

is at most πv ≤ 21+log∗ c ·
∏log∗ c
i=0 log(i) c where log(i) c

is the iterative log function of c taken i times. This
is achieved by introducing an interesting new tech-
nique that utilizes a connection with prefix-free encod-
ing. We also show that, for color-based techniques,
our algorithm is close to optimal. This is done by
proving a lower bound on the length of a period of

πv ≥
∏log∗ c
i=0 log(i) c for any scheduling algorithm based

on graph coloring. This lower bound makes use of the
Cauchy condensation test.

2. A Degree-bound solution for the holiday gathering
problem where πv for a node v with degree d children
is exactly 2dlog de ≤ 2d.

We emphasize that it is always possible to color the graph
where the color of a node of degree d is at most d + 1 (for
example using the BEPS algorithm, see [6] for a more recent
version). If, in a given coloring, all of the colors are much
smaller than the respective degrees (like a 2-coloring of a
bipartite graph) then clearly the first algorithm is preferable.
However, in terms of worst-case dependence on the degree
of a node, the second algorithm is preferable.

We are mainly interested in periodic scheduling, but we
also discuss some non-periodic solutions in Appendix A that
serve as a sanity check and help us understand what is the
best one could hope for without any constraints.

1.2 Related Work
As mentioned, the holiday gathering problem is related

to several lines of investigation in computer science (not to
mention other scholastic activities). Issues related to calen-
drical calculations have attracted the best minds since an-
tiquity (see Dershowitz and Reingold [11]). No lesser than
al-Khwarizmi (after whom the term ‘algorithm’ is named)
wrote a treatise on the Hebrew Calendar (“Risala fi istikhraj
ta’arikh al-yahud”), see Knuth [21]. Some calendars are fixed

368

in the sense the that it is known in advance when each hol-
iday will occur, as is the case with the Western (Gregorian)
calendar and the Hebrew calendar, while others, like the
Muslim Calendar or the Old Hebrew Calendar are deter-
mined on-the-fly, e.g. based on lunar observations. This is
reminiscent of some of the issues that arise in our algorithms
(the one in Appendix A vs. those of Sections 3 and 4).

The dining philosophers problem is the famous resource
allocation problem introduced by Dijkstra [12], see Lynch [25].
In this problem, there is a given conflict graph where each
node represents a processor and each edge represents a re-
source (a“fork”in the story where the processors are philoso-
phers who would like to eat) which is shared by the two
endpoint processors. At any time, a fork can be “owned” by
at most one of the processors that share it. Each processor
can be in one of three states: resting, hungry, or eating. A
resting processor can become hungry at any time. In order
to eat, a processor must obtain all the forks on its adjacent
edges. A processor eats for at most a bounded time, af-
ter which it returns to the resting state. The problem, and
its many variations, have played a major role in concurrent
programming and distributed computation. For this prob-
lem there are solutions that minimize the wait chain, based
on coloring of the edge or the nodes (see [24, 33, 10, 29,
26]). The main difference between the focus of this work
and most work on the dining philosophers problem is that
we assume that the philosophers want to eat all the time
(i.e. they become hungry right after they finish eating)2 and
that the meal takes a fixed amount of time and the main is-
sue is how can we provide an efficient and high throughput
solution while guaranteeing some reasonably fair allocation.

Problems related to ours have appeared frequently in the
scheduling literature, starting perhaps from the Chairman
Assignment Problem of Tijdeman [34]. The assumption is
that there is one resource and all users are interested in
using it. Each user or task has a weight and the goal is
to schedule the users so that they obtain the resource pro-
portionally to their weight. Sometime there are multiple
identical resources, but each task can be assigned to one
resource concurrently [7, 23]. This is similar to our setting
when the graph is a clique (or composed of components that
are cliques) and all the weights are the same. In a ‘perfectly
periodic scheduling’ the goal is to schedule the users in a
periodic way (every user i gets the resource every τi rounds)
where each user gets its weight (see [3]). The algorithms of
Sections 3 and 4 are perfectly periodic. In the chromatic
sum problem (see [2]) one tries to find a coloring that mini-
mizes the the total sum of the colors (where the assumption
is that the colors are in N). The motivation is, again, from
scheduling with the goal of minimizing average waiting time,
rather than the maximum waiting time as a function of the
degree, as is our goal.

Fairness in online scheduling has received some attention
as well, for instance the carpool problem [14, 1, 28], that can
also be viewed as a generalization of the Chairman Assign-
ment Problem of Tijdeman [34].

The LOCAL model of computation in distributed com-
puting was first considered by Linial [22] and much devel-
oped since then, see Peleg [31]. The problems of interest are
especially those of coloring and maximal independent set.
For both of these problem good randomized algorithms are

2So one may call the problem “The Fressing Philosophers
Problem”, as suggested by Cynthia Dwork.

known, see the monograph by Barenboim and Elkin for a
survey of recent results [4]. Coming up with deterministic
polylog in n algorithms for these problems is a major open
problem in the area.

Minimizing interference in wireless networks.
There has been a lot of research focusing on scheduling

devices in wireless networks so as to minimize interference.
This work has focused on determining which nodes may
transmit on which time-frequency slot, while optimizing fair-
ness and throughput [17]. This line of work leverages the
specific topology of wireless networks. For example, some
research has looked at conflict graphs that represent geo-
metric intersection graphs such as the unit disk graph [15].
However, many believe that such graphs do not do a good
job of representing the reality of wireless graphs (see [27]).
Thus, a lot of recent work has focused on the SINR model
where signals decays as it travels. In this model the success
of a transition depends on its strength at the receiver rel-
ative to the strength of other interfering transmissions [18,
16].

In light of the above, we emphasize that our color-based
schemes allow to implicitly account for special topologies
that have a conflict graph with a low chromatic number, as
one may expect from a wireless network. Moreover, the pre-
vious line of work has focused on scheduling transmissions in
several channels in order to minimize interference, while our
focus is on one channel that does not allow any interference.

2. PRELIMINARIES
Our universe is a graph G = (V,E) where |V | = n. Let

deg(v) be the degree of a node v ∈ V . Most of this work as-
sumes that the G is fixed, but we also consider the dynamic
case and briefly discuss it in Section 5.

Definition 2.1. For a given independent set h we say
that node v ∈ V is happy in h if v participates in h.

Definition 2.2. Let H = hi, i = 1, . . . ,∞ be a sequence
of independent sets and denote the subsequence hi, ..., hj by
h[i : j]. If v ∈ V is not happy at any h ∈ h[i : j] then we call
the interval h[i : j] an unhappiness interval for v and call
the longest such interval a maximum unhappiness interval
of v and denote its length by muiH(v) (or mui(v) when H is
clear from the context). If all (locally) maximal unhappiness
intervals of v are of the same length πv (except for possibly
the first interval which may be shorter) then we say that H
is periodic for v and πv is the length of the period of v. We
say that H is periodic-for-all if it is periodic for all of the
nodes in V .

The combinatorial definition of the Holiday Gathering
Problem is: given a graph G, find an infinite sequence H
of independent-sets of G. The objective function is to min-
imize, for every node v, the maximal gap between two ap-
pearances of v. Intuitively, our goal is to devise a sequenceH
of independent sets that is periodic-for-all, while minimizing
πv for each v ∈ V .

369

Algorithm Scheme

1. Color G.

2. At holiday i, if decode(i) = col(p) then make p happy.

end Algorithm

Figure 1: Generic coloring based scheme for the Hol-
iday Gathering problem.

3. A PERIODIC COLOR-BOUND
ALGORITHM

We are now interested in providing a mechanism whereby
the decision of when a node is happy is dependent on lo-
cal properties of that node. We present a general scheme
for such a mechanism that depends on the color nodes re-
ceive during an initial coloring algorithm. To obtain such a
coloring we begin by distributively coloring the graph (for
example using the BEPS algorithm). However, we do not
make any assumptions on the coloring algorithm, and so
this algorithm works for any graph coloring, including the
(possibly difficult to obtain) optimal one.

We consider a mapping of the independent set numbers
to colors. The mapping needs to satisfy two conditions: (1)
Every independent set number is mapped to at most one
color, and (2) The resulting sequence guarantees that nodes
do not have very large periods.

The basic idea is captured by the following algorithm (see
Figure 1). We first color the G with some coloring algorithm,
and then we use a decoding scheme so that at round i if
the decoding of i is the color of v then v is part of the ith
independent set.
Examples:
Trivial: Consider the trivial example where the nodes are
colored sequentially from 1 to n. At independent set i, make
v = i mod n happy. No two adjacent nodes are encoded to
the same number, but ∀v ∈ V we have πv = n, which means
that it depends on global properties of G.

Prefix Free Color Code: Apply on G the BEPS distributed
graph coloring algorithm that colors each graph node v by a
color not exceeding deg(v) + 1. Now encode the colors using
some prefix-free binary code. On independent set i, consider
the binary representation of i from right to left (with an
infinite sequence of 0’s padded to it). Any node v is made
happy if the prefix-free encoding of col(v) is a prefix of i. The
solution is appropriate, since no two adjacent nodes will be
made happy concurrently at any given independent set i:
they will be assigned different colors and the two different
colors are encoded in a prefix-free code and hence the binary
representation of i cannot encode both of them. For every
v ∈ V , we have that πv of this procedure is dependent on
the length of the prefix-free encoding of v’s color.

We will indeed use prefix-free binary codes in our algo-
rithm. Notice that if a node is given a color c which uses xc
bits in its prefix-free code, then the schedule of when that
node is happy is periodic with period 2xc . In other words,
every 2xc independent sets the node will be happy

3.1 Upper Bound - Elias Code
We recursively define the function φ : N → R. For i ≤ 1

we have φ(i) = 1. Otherwise, φ(i) = i · φ(log i). Explic-

Elias omega code Algorithm

1. Color G.

2. At holiday i, if LSB(B(i)) = ω(p)R then make p happy.

end Algorithm

Figure 2: Scheduling for the Holiday Gathering
problem based on the Elias omega code.

itly, φ(i) = i · log i · log log i · log log log i · · · 1, or φ(i) =∏log∗ c
i=0 log(i) c, where log(i) means iterating the log function

i times.
In this section we present an algorithm that will guarantee

that no two nodes with different colors are made happy dur-
ing the same independent set, and that πv = φ(c)2log∗ c+1,
where c is the color of v. This algorithm is based on the
Elias omega code. The Elias omega code is a universal code
for the natural numbers developed by Peter Elias [13]. It is
one of the prefix-free codes that represents the integers by a
number of bits relative to their size. While the omega code
is not the most practical code, it is theoretically the most
efficient Elias code. Our algorithm in Figure 2 is correct for
all Elias codes, but we chose the omega code for its almost
optimal complexity.

Details of the Elias omega code are given in Appendix C.
The important properties that we need from the code are
that it is a prefix free code, and that the length of the coding
of i is given by:

ρ(i) =1 + dlog(i)e+ dlog(dlog(i)e − 1)e
+ dlog(dlog(dlog(i)e − 1)e − 1)e+ · · · .

Our algorithm will use the Elias omega code of the colors
in reverse. Denote by SR the string S reversed. For example,
(abcdef)R = fedcba. Denote by LSB(S, k) the suffix of S
of length k, or the k least significant bits of S. Denote by
B(x) the binary representation of x, i.e. B(x) is a string
over alphabet {0, 1} which is the representation of n in base
2 with no leading zeros.

Theorem 3.1. The Elias omega code algorithm guaran-
tees happiness for node v ∈ V in every cycle of length bounded
above by φ(c)2log∗ c+1, where c is the color of v.

Proof. The time between happy independent sets for v

is 2ρ(c). Notice that ρ(c) ≤ 1+
∑log∗ c
i=1 dlog(i) ce ≤ 1+log∗ c+∑log∗ c

i=1 log(i) c. The log∗ c term is a result of the rounding
up of the log at every recursion of ρ(n), since the number of
bits cannot be a fraction. For some colors this term may be
less than log∗ c, or even a constant, but it will never exceed
log∗ c. Now, the time between happy independent sets is

2ρ(c) ≤ 21+log∗ c ·
∏log∗ c−1
i=0 log(i) c = 21+log∗ cφ(c).

3.2 Lower Bounds
The coloring-based algorithm scheme of Theorem 3.1 starts

by assigning colors to the nodes in G. We would like every
node to use its color in order to compute a period π such that
every π years that node is happy. In this section we com-
pute lower bounds on that period as a function of the color.
This defines the best period one can hope to achieve by the
coloring-based scheme. Our lower bound almost matches
the algorithm of Theorem 3.1.

370

Theorem 3.2. Let G be legally colored and every node
v ∈ V has a color cv. Let sequence H = hi, i = 1, ...,∞
of independent sets be such that there is no independent set
hi0 in which the nodes of two different colors, c1 6= c2 are
happy. If there exists a function f : N → N such that for
every v ∈ V we have πv = f(cv), then f(c) ∈ Ω(φ(c)).

Proof. Consider a subsequence h[i0 : j0] of length m.
We require that at any independent set in the sequence,
there is at most one color c which is happy. The conclu-
sion is that there are at least d m

f(c)
e occurrences in the

sequence where nodes of color c are happy. This is true
for all colors c that get mapped to the subsequence. Let
C = {c|c is a color mapped to h[i0 : j0]}. Then we have∑
c∈Cd

m
f(c)
e ≤ m ⇒

∑
c∈C

1
f(c)

≤ 1. Taking into account

all possible sets C as the size of G goes to infinity, we have∑∞
c=1

1
f(c)
≤ 1. Clearly this will not hold if we have f(c) = c.

It holds when f(c) = 2c and even when f(c) = c1+ε for
any constant ε > 0. According to Cauchy’s condensation
test [9] the smallest function for which this inequality holds

is f(c) = φ(c), i.e. f(c) =
∏log∗ c
i=0 log(i) c.

4. A PERIODIC DEGREE-BOUND ALGO-
RITHM

While many graphs have a low chromatic number that
may be obtainable3, other graphs do not. Furthermore,
while some classes of graphs may have a low chromatic num-
ber, it is not clear how to obtain algorithms that achieve
o(∆) colors for some of these classes. In such cases a color-
bound algorithm may not suffice considering the inherent
lower-bound. We could use the bound of c ≤ d+1 for a node
v with color c and degree d, to obtain a guaranteed degree-
bound of πv ≤ φ(d+ 1)2log∗(d+1)+1 using Theorem 3.1, but
we can do better.

To this end, we present a second local algorithm which is
degree-bound, i.e. πv is bounded by a function of d = deg(v).
In particular, our algorithm guarantees that this bound is at
most 2d, which is very close to the bound d+ 1 obtained by
the non-periodic algorithm of Appendix A. We first describe
a sequential version of our algorithm, and later show how to
convert it to the distributed setting.

A Sequential Algorithm.
The periodic scheduling is obtained using a greedy algo-

rithm, where nodes are arranged in a non-increasing order
of their degrees and each node v in its turn chooses a non-
negative integer. Thus, when v with degree d has to chose
an integer, none of its smaller than degree d neighbors has
chosen an integer. Let j = dlog(d+ 1)e. When it is v’s turn
to pick an integer, there must be at least one integer x in
the range [0, 2j − 1] such that no neighbor of v has chosen
a number x′ where x = x′ mod 2j . So v picks x to be its
integer.

The independent set i now is determined by checking
whether i ≡ x mod 2j . If ’yes’ then v is happy in inde-
pendent set i, otherwise it is not. We can immediately see
that v is happy once every 2j = 2dlog(d+1)e ≤ 2d independent
sets. We will now show that there are no conflicts.

3For instance, for triangle-free graphs Pettie and Su [32] very
recently gave an O(∆/ log ∆) distributed coloring.

Algorithm – Distributed degree-bound algorithm

1. For i = dlog(∆ + 1)e to 0

(a) Let Pi = {p ∈ P such that
dlog(deg(p) + 1)e = i}

(b) For each p ∈ Pi restrict the palette of p to inte-
gers that are not equal modulo 2i with any integer
already picked by a neighbor of p.

(c) Run the BEPS algorithm on Pi with the restricted
palettes.

end Algorithm

Figure 3: A degree based scheme for the Holiday
Gathering problem.

Lemma 4.1. Let v1 and v2 be two adjacent nodes in G
sharing an edge with degrees d1 and d2 respectively. Let
j1 = dlog(d1 + 1)e and j2 = dlog(d2 + 1)e, and let x1 and
x2 be the integers picked by v1 and v2 respectively using the
above algorithm. Then v1 and v2 will never be in the same
independent set.

Proof. Without loss of generality let d1 ≤ d2. Assume,
for the sake of contradiction, that at independent set i both
v1 and v2 try to host. This implies that i = x1 + a12j1 =
x2 + a22j2 . But this also means that x1 ≡ x2 mod 2j1 , and
so when it was the turn of v1 to pick its integer the algorithm
could not pick x1 for v1, giving a contradiction.

The Distributed Algorithm.
For the distributed setting we run dlog(∆ + 1)e phases of

the BEPS algorithm with the following modification. Start-
ing with i = dlog(∆ + 1)e and going to i = 0, during phase i
all of the nodes with degree d such that dlog(d+ 1)e = i will
participate in the coloring algorithm for that phase. How-
ever, we must restrict the palette of colors for each node
v to be comprised only of integers that do not collide (un-
der modulo 2i) with integers of neighbors of v that already
participated in early phases. We emphasize that Barenboim
et.al. [6] show that the analysis of the BEPS algorithm does
not change with this restriction. The algorithm appears in
detail in Figure 3.

Each phase takes O(log ∆ + 2O(
√
log logn)) rounds, and

we have O(log ∆) phases, for a total of O(log2 ∆ + log ∆ ·
2O(
√
log logn)) rounds. In a manner similar to Lemma 4.1 we

can show that a conflict can never arise.

Theorem 4.2. The distributed degree-bound algorithm
guarantees happiness for node v ∈ V in every cycle of length
bounded above by 2d, where d is the degree of v.

5. THE DYNAMIC SETTING AND
OPEN PROBLEMS

So far we have assumed that the conflict graph is fixed
and does not change throughout the lifetime of the system.
However, as we know, relationships are not fixed and new
connections may be created or old connections may dissolve.
How do our algorithms fare under such conditions? Clearly
two nodes that become adjacent and were scheduled to host

371

the same upcoming independent set need to recolor them-
selves.

In the algorithm of Section 3 all we needed is a valid color-
ing. So if two nodes v and u that have the same color become
connected, one of them, say v, needs to find a new color. But
this is relatively simple since v’s palette should grow by one
more color, since d=deg(v) was increased by 1. So given the
new color, the new periodic schedule for v is derived from
the prefix-free encoding of the new color. This means that
after at most φ(d)2log∗ d+1 rounds after quiescence v will get
to host. Note that in this algorithm, if there are w events of
adding new neighbors, then the time a node hosts a indepen-
dent set may be postponed up to w ·φ(d)2log∗ d+1 rounds. In
the event of deletion of edges, presumably there is nothing
to be done. However, if this happens too frequently, then
the rate of hosting becomes disproportional to the current
degree and we will need to recolor the node (again simple
even give the smaller palette).

Our Algorithm of Section 4 does not fare so well in a
dynamic graphs. It is very important in that algorithm to
let the higher degree nodes color themselves before the lower
degree ones (since the latter’s frequency is much higher and
they will occupy available slots if colored before the higher
degree).

So a main open problem this work presents is whether it
is possible to have a degree bound algorithm that works in
a dynamic graph. Another issue is whether it is possible
to get to the bound of Appendix A of frequency d + 1 in a
periodic or at least succinctly defined manner.

A lower bound conjecture for periodic scheduling.
In Section 4 we showed an algorithm that achieves a 2d

upper bound on the period of a node with degree d. This is
in contrast to the non periodic scheduling obtained in Ap-
pendix A where we can obtain a d+1 guarantee. We conjec-
ture that there is a separation between what is obtainable
when one requires periodicity versus the general case, and
we leave as an open problem to prove that if one requires
a periodic schedule then the best guarantee obtainable is
d+ ω(1).

6. ACKNOWLEDGMENTS
This work is partially supported by ISF grants 571/14 and

4/11, BSF grants 2014028 and 2012348, NSF grants CCF-
1217338, CNS-1318294, and CCF-1514383, and the I-CORE
Program of the Planning and Budgeting Committee.

We thank Amotz Bar-Noy for helpful comments.

7. REFERENCES
[1] Miklós Ajtai, James Aspnes, Moni Naor, Yuval

Rabani, Leonard J. Schulman, and Orli Waarts.
Fairness in scheduling. J. Algorithms, 29(2):306–357,
1998.

[2] Amotz Bar-Noy, Mihir Bellare, Magnús M.
Halldórsson, Hadas Shachnai, and Tami Tamir. On
chromatic sums and distributed resource allocation.
Inf. Comput., 140(2):183–202, 1998.

[3] Amotz Bar-Noy, Aviv Nisgav, and Boaz Patt-Shamir.
Nearly optimal perfectly periodic schedules.
Distributed Computing, 15(4):207–220, 2002.

[4] Leonid Barenboim and Michael Elkin. Distributed
Graph Coloring. http://www.cs.bgu.ac.il/~elkinm/

BarenboimElkin-monograph.pdf, 2013.

[5] Leonid Barenboim, Michael Elkin, Seth Pettie, and
Johannes Schneider. The locality of distributed
symmetry breaking. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, (FOCS), pages
321–330, 2012.

[6] Leonid Barenboim, Michael Elkin, Seth Pettie, and
Johannes Schneider. The locality of distributed
symmetry breaking. CoRR, abs/1202.1983, 2015.

[7] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate progress: a notion of fairness in
resource allocation. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing,
STOC ’93, pages 345–354, New York, NY, USA, 1993.
ACM.

[8] P. Berman and T. Fujito. On approximation
properties of the independent set problem for degree 3
graphs. In Workshop on Algorithms and Data
Structures (WADS), volume 955 of LNCS, pages
449–460. Springer, 1995.

[9] D. D. Bonar, Jr. M. J. Khoury, and M. Khoury. Real
Infinite Series. The Mathematical Association of
America, 2006.

[10] Manhoi Choy and Ambuj K. Singh. Efficient
fault-tolerant algorithms for distributed resource
allocation. ACM Trans. Program. Lang. Syst.,
17(3):535–559, 1995.

[11] Nachum Dershowitz and Edward M. Reingold.
Calendrical Calculations. Cambridge University Press,
New York, NY, USA, 3rd edition, 2007.

[12] Edsger W. Dijkstra. Hierarchical ordering of
sequential processes. Acta Inf., 1:115–138, 1971.

[13] P. Elias. Universal codeword sets and representations
of the integers. Information Theory, IEEE
Transactions on, 21(2):194–203, Mar 1975.

[14] Ronald Fagin and John H. Williams. A fair carpool
scheduling algorithm. IBM Journal of Research and
Development, 27(2):133–139, 1983.

[15] Piyush Gupta and P. R. Kumar. The capacity of
wireless networks. IEEE Transactions on Information
Theory, 46(2):388–404, 2000.

[16] Magnús M. Halldórsson, Stephan Holzer, Pradipta
Mitra, and Roger Wattenhofer. The power of
non-uniform wireless power. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1595–1606, 2013.

[17] Magnús M. Halldórsson and Pradipta Mitra. Nearly
optimal bounds for distributed wireless scheduling in
the SINR model. In Automata, Languages and
Programming - 38th International Colloquium,
ICALP, Part II, pages 625–636, 2011.

[18] Magnús M. Halldórsson and Tigran Tonoyan. How
well can graphs represent wireless interference? In
Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC, pages
635–644, 2015.

[19] Johan H̊astad. Clique is hard to approximate within
n1−ε. Acta Mathematica, 182(1):105–142, 1999.

[20] J. Hopcroft and R. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM J.
Computing, 2(4):225–231, 1973.

372

[21] Donald E. Knuth. Algorithms in modern mathematics
and computer science. In Andrei P. Ershov and
Donald E. Knuth, editors, Algorithms in Modern
Mathematics and Computer Science, volume 122 of
Lecture Notes in Computer Science, pages 82–99.
Springer, 1979.

[22] Nathan Linial. Locality in distributed graph
algorithms. SIAM J. Comput., 21(1):193–201, 1992.

[23] Ami Litman and Shiri Moran-Schein. On centralized
smooth scheduling. Algorithmica, 60(2):464–480, 2011.

[24] Nancy A. Lynch. Upper bounds for static resource
allocation in a distributed system. J. Comput. Syst.
Sci., 23(2):254–278, 1981.

[25] Nancy A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers

”
San Mateo, CA, USA, 1996.

[26] Alain J. Mayer, Moni Naor, and Larry J. Stockmeyer.
Local computations on static and dynamic graphs. In
ISTCS, pages 268–278, 1995.

[27] Thomas Moscibroda, Roger Wattenhofer, and Aaron
Zollinger. Topology control meets SINR: the
scheduling complexity of arbitrary topologies. In
Proceedings of the 7th ACM Interational Symposium
on Mobile Ad Hoc Networking and Computing,
(MobiHoc).

[28] Moni Naor. On fairness in the carpool problem.
Journal of Algorithms, 55(1):93 – 98, 2005.

[29] Moni Naor and Larry J. Stockmeyer. What can be
computed locally? SIAM J. Comput.,
24(6):1259–1277, 1995.

[30] Martin J. Osborne and Ariel Rubinstein. A Course in
Game Theory. MIT Press, Cambridge, MA, USA,
1994.

[31] David Peleg. Distributed computing: a
locality-sensitive approach. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

[32] Seth Pettie and Hsin-Hao Su. Fast distributed coloring
algorithms for triangle-free graphs. In Fedor V. Fomin,
Rusins Freivalds, Marta Z. Kwiatkowska, and David
Peleg, editors, ICALP (2), volume 7966 of Lecture
Notes in Computer Science, pages 681–693. Springer,
2013.

[33] Eugene Styer and Gary L. Peterson. Improved
algorithms for distributed resource allocation. In
Danny Dolev, editor, PODC, pages 105–116. ACM,
1988.

[34] R. Tijdeman. The chairman assignment problem.
Discrete Mathematics, 32(3):323 – 330, 1980.

APPENDIX
Appendix
A. THE NON-PERIODIC DEGREE-BOUND

ALGORITHM
Our goal here is to guarantee happiness to every node

within a reasonable number of independent sets, but not
necessarily in a periodic sequence. We present4 an algorithm

4We remark here that while this algorithm is less interest-
ing from a technical perspective, it is useful for set up, and
gives us a benchmark for comparison when attempting to
understand the strengths of the lightweight algorithms.

Algorithm – Phased Greedy Coloring

1. Initialization: Assign every node p a color.

2. For i = 1 to ∞
(a) For every node p ∈ P : if col(p) = i then make p

happy and recolor p:

i. Let p1, ..., p` be the nodes adjacent to p in P .

A. Let s = min{t|i < t ≤ i+ `+ 1,
t 6∈ {col(p1), ..., c(p`)}}.

B. col(p)← s.

end Algorithm

Figure 4: The phased greedy coloring algorithm.

guaranteeing that a node of degree d has to wait at most d+1
steps till it is happy. However, the node does not know in
advance all the times in which it will host the independent
set, just the next time it will do so.

The algorithm we consider starts with a distributed graph
coloring algorithm. As mentioned in Section 1, there is a
simple mechanism using a ∆+1 coloring to obtain a sequence
H such that for every node v ∈ V we have muiH(p) = ∆+1.
Such a coloring can be obtained in a distributed manner
by applying, for example, the recent randomized algorithm
of Barenboim, Elkin, Pettie, and Schneider [5] (denoted
by the BEPS algorithm for short) running in O(log ∆ +

2O(
√
log logn)) rounds. The BEPS algorithm also has the

property that the color c picked for a node with degree d
will always be bound by c ≤ d + 1 (see [6] for details).
So at first the smaller degree nodes will be happy pretty
quickly. However, for their next turn they will have to wait
time proportional to ∆. As mentioned, we seek an efficient
mechanism for constructing a sequence H where muiH(p)
depends on local properties of v.

To solve this problem we will use a phased algorithm
where colors are reassigned every phase (independent set),
providing a sequence of independent sets. The initial color-
ing is the one obtained by the BEPS algorithm.

At independent set i, greedily, recolor the nodes whose
current color is i: color each such node v with the smallest
number j > i such that none of v’s neighbors has color j.
At independent set i the nodes colored i are happy.

The algorithm appears in detail in Figure 4. We denote
by col(p) ∈ N the current color of node v.

For every phase i we perform O(1) rounds of communica-
tion, This is true since every node needs to only communi-
cate with its neighbors and choose the smallest number that
is both greater than i and different from the color of all its
neighbors.

Theorem A.1. There is a independent set scheduling al-

gorithm, whose initialization takes O(log ∆ + 2O(
√
log logn))

rounds, and executing each independent set takes another
O(1) rounds, which guarantees that for all v ∈ V we have
muiS(v) ≤ deg(v) + 1. In words, for every node v, within
every sequence of deg(v) + 1 independent sets v is happy at
least once.

Proof. Apply the Phased Greedy Coloring algorithm.

The number of rounds is O(log ∆ + 2O(
√
log logn)) for the

initialization and another O(1) for every phase. For every
node v ∈ V , if it is made happy at phase i then in phase
i+ 1 it is re-colored. The number it chooses is the smallest

373

number that exceeds i and is not equal to the number of
any of its neighbors. However, since it has deg(v) neighbors
then the color it gets can not exceed i+ deg(v) + 1.

Recall that if we think of the “first come first grab” where
nodes wake up at random at grab all there available neigh-
bors the probability of happiness of a node is 1/(d + 1), so
the expected time till happiness is d+1. This algorithm can
be seen as providing a guarantee for the waiting time.

Notice that this algorithm generally does not give a pe-
riodic schedule. Also, it requires communication to take
place at every phase, which implies the need to invest a lot
of energy if we are considering an application such as cel-
lular communication. An alternative solution would be to
have each node know and remember all of the conflict graph
locally (and then simulate the algorithm locally to obtain
determine when it should host). But such an approach re-
quires a lot of local memory, may be unfeasible, and may
cause privacy issues.

B. THE COMPLEXITY OF HAPPINESS AND
SATISFACTION

In this section we consider the problems of maximizing
happiness (all children are hosted) or satisfaction (at least
one child is hosted) at a given round with no thought of the
other rounds.

B.1 Achieving Maximum Happiness in Hard
Maximizing happiness at a given year means finding the

largest set of nodes that can each host all their children. It is
hard to maximize happiness and this follows from the tight
relationship with the maximum independent set.

Observation B.1. Maximizing Happiness isMAXSNP-
hard.

Proof. Consider the conflict graph G as defined in Sec-
tion 2, It is easy to see that maximizing happiness means
finding the maximum independent set which isMAXSNP-
hard even for degree 3 graphs [8].

B.2 On the Hardness of Being Fair
The observation on the hardness of maximizing happiness

also implies that any sort of fairness based on maximum hap-
piness will be hard to compute (and hence hard to achieve).
For instance, consider the coalitional game defined by the
conflict graph G = (V,E) where for each subset S ⊆ V of
nodes the value v(S) is the size of the maximum independent
set (MIS) of the subgraph induced by S (which represents
the maximum happiness the parents in S can collectively
obtain even if all the other nodes give up). Then clearly it
is hard to compute v(S). Moreover, we claim that solution
concepts such as the Shapley Value5 of this game are hard
to compute: take an arbitrary order of the nodes and con-
sider the total (i.e. sum of) marginal contributions of the
nodes according to this order. It is always equal to the size
of the MIS of the graph, since the number of times MIS(S)
can grow as S goes from the empty set to the full set is ex-
actly the size of the MIS on the full set of nodes. Therefore
5The Shapley Value of a player is based on the expected
marginal contribution of a player to the value of the game
when the players are ordered at random; see more details in
Osborne and Rubinstein [30] and [28] for its application in
the carpool problem.

any system that approximates the shares according to this
definition can also be used to approximate the size of the
MIS on the full graph: take the total happiness over a long
enough period of time and it should approximate the MIS
size. The inapproximability of the MIS problem to a factor
of n1−ε (see [19]) implies a large difference between the av-
erage rate of hosting for a random node (which should be
close to the fair share) and the size of the MIS divided by
n. Thus, we left without a more sophisticated choice than
competing with the ‘chaotic’ “first-come-first-grab” scheme
described in the Introduction.

B.3 Maximum Satisfaction is Linear-Time com-
putable

We say that parents are satisfied if at least one of their
children comes home for the holiday.

In contrast to maximizing happiness, the problem of max-
imizing satisfaction is computationally easy.

Theorem B.2. Maximum satisfaction can be achieved in
linear time.

Proof. Maximizing satisfaction means finding the max-
imum bipartite matching of the bipartite graph G′ = (V +
C,E′) where the set of nodes corresponds to the vertices V
and edges C = E from G and there is an edge between nodes
corresponding to a node from V and the nodes correspond-
ing to its edges in E. This can be done in time O(

√
n|E′|)

by the Hopcroft-Karp algorithm [20].
However, a general algorithm for maximum matching in

bipartite graphs is an overkill for this problem given that
every node in C has exactly two edges: it is possible to find a
maximum matching by starting from the nodes in V parents
that have just neighbor in G′; each such node is matched
with its child (if two such nodes are share the same edge in
G, then the satisfied one is decided arbitrarily). Nodes who
became nodes with degree one since their other neighbors in
G′ have been matched are treated similarly. This continues
until there are no degree one nodes in V . Then all the
remaining nodes can be satisfied: pick an arbitrary neighbor
and match it to a the node. At any point there can be
at most one node with degree one. Match it to its only
neighbor.

Note that this solution cannot be found in a distributed
manner quickly, given that maximum matching requires Ω(n)
distance communication in some graphs, such as the cycle
of length n.

While achieving maximum satisfaction is fast, the solution
is not socially acceptable, since the same nodes will be happy
every round while others will never be happy. Note that if
we want a scheme whereby all nodes are guaranteed to be
happy within some cycle of time, then we can guarantee that
a node will not be unsatisfied for more than one round: each
edge simply alternates between its vertices.

C. DETAILS FOR THE ELIAS OMEGA CODE

Definition C.1. Let i ∈ N. Denote by B(i) the binary
representation of i, i.e. B(i) is a string over {0, 1} which
is the representation of i in base 2 with no leading zeros.
Denote the number of bits in B(i) (the highest power of 2,
b such that 2b ≤ i) by |B(i)|. Let S be a binary number.

374

Denote by LSB(S, k) the suffix of S of length k, or the k
least significant bits of S.

Let i be a positive integer. Denote the empty string by λ.
Given two strings u and v, denote by u ◦ v the concatena-
tion of u and v. Recursively define a binary string re(i) as
follows:

re(i) =

{
λ if i=1,

re(|B(i)| − 1) ◦B(i) if i > 1.

The Elias omega encoding of i, is re(i) ◦ 0 and is denoted
by ω(i).

Example: Consider the Elias omega code of the following
numbers:

1. i = 1: re(1) = λ. Elias omega code: 0.

2. i = 9: B(9) = 1001. |B(9)| − 1 = 3. B(3) = 11.
|B(3)| − 1 = 1. Therefore re(9) = re(1)B(3)B(9) =
λ 11 1001
Elias omega code: 11 1001 0.

3. The Elias omega codes of the numbers 1 to 15 are:
0, 10 0, 11 0, 10 100 0, 10 101 0, 10 110 0, 10 111 0,
11 1000 0, 11 1001 0, 11 1010 0, 11 1011 0, 11 1100 0,
11 1101 0, 11 1110 0, 11 1111 0.

Properties 1.

1. The Elias omega code is a prefix-free code.

2. The Elias omega code uses ρ(i) = 1 + rb(i) bits to rep-
resent the number i, where rb(i) is recursively defined
as follows:

rb(i) =

{
0 if i=1,

dlog(i)e+ rb(dlog(i)e − 1) if i > 1.
.

Explicitly, ρ(i) = 1 + dlog(i)e + dlog(dlog(i)e − 1)e +
dlog(dlog(dlog(i)e − 1)e − 1)e+ · · · .

375

