Know thy Neighbor’s Neighbor: Better Routing for Skip-Graphs
and Small Worlds

Moni Naort* Udi Wieder*

Abstract that as long as the ring edges exist, greedy routing
would eventually succeed.

We investigate an approach for routing in p2p network;s_oca"ty in the key space Messages do not ‘wander’
called neighbor-of-neighbor greedyWe show that this in the key space. If the source and the target are
approach may reduce significantly the number of hops  ¢jose to each other in the key space, then during the
used, when routing in skip graphs and small worlds. Fur-  youting, the message would stay between the source
thermore we show that a simple variation of Chord is de-  an( the target, in a small portion of the key space.
gree optimal. Our algorithm is implemented on top of  |f the key of a resource is associated with its loca-
the conventional greedy algorithms, thus it maintains the  tjon in the physical world then greedy routing might
good properties of greedy routing. Implementing it may  have proximity preserving properties; i.e. it might

only improve the performance of the system. minimize the physical distance a message travels.
. If keys havesemantiameaning, such as file names
1 Introduction and sizes, then greedy routing would supply prefix

search (as in skip graphs, see Secfidl).
Our aim in this paper is to propose an approach for rout-

ing in DHT’s which is better than greedy routing. Greedy f greedy routing is so good then why use something
routing is a common approach in many DHT constru€lse? Greedy routing has one major disadvantage - it re-
tions. Typically some metric is imposed on the key spa@ires a large number of hops, at least larger than what
and then routing is performed by moving the messalgedictated by the degree. In the previous examples, the
to the closest neighbor to the target. Examples inclugiggree is logarithmic in the network size, while the num-
Chord [L5], Skip Graphs or Skip Net&[,[6], Pastry [L4], DPer of hops used by greedy routing@logn). Loga-
Tapestry L.6] and more. We discuss constructions whicithmic degree may permit theoretically path lengths of
do not employ greedy routing towards the end of this se@{log n/ loglog n), thus greedy routing isotdegree op-
tion. The greedy routing approach has many advantagtgggl. Furthermore, there are lower bounds that show
among which are the following: that under some general conditions, greedy routing uses
Simplicity -greedy routing is easy to understand and ig(108 ) hops, when the degree is logarithmic, sHeL1].
plement. The routing is oblivious in the sense thgthe latter bounds any routing algorithm which uses the

the link used depends only on the destination of tff@mediate neighbor only. .
message. Recently constructions with optimal path length were

Fault Tolerance - In greedy routing closer is better. Sosuggested. De-Bruijn based DHT'$J,[8],[4] offer an

when nodes or links fail, as long as each node h gtimal t_radeoff between Qegrge and path Iength for-eve_ry
some edge towards the target, it is guaranteed t gree, in particular logarithmic deg_ree perm_|ts routing in
the message would reach its destination. In mafgy.8 7/ loglogn) hops. These routing algorithms how-

constructions (such as Chord and Tapestry) it is ﬁ_er, arenot greedy and rely on some arithmetic manip-
0

sumed that a ring like structure exists. It is cle ation of the keys. Thus routing in these graphs is not
cal in the key space. Furthermore these algorithms as-
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greedy algorithm called ‘neighbor-of-neighbor (NoN) greeagtruction 10] which is based upon small world graphs.
enjoys the advantages of greedy routing while being d&%e assume that each node holds its own routing table, and
gree optimal in a large family of constructions. We showan top of that it holds its neighbors routing tables. Thus
that our algorithm reduces substantially the latency of skéach node has knowledge of a neighborhood of raglius
graphs and of small worlds. Furthermore while itis knowaround it. The NoN algorithm is presented in Figdre

that Chord is not degree optimd][ we show that a vari-

ation of Chord is indeed degree optimal. Algorithm for routing to node ¢.

) 1. Assume the message is currently at nade- .
1.1 Small Worlds and Skip Graphs Letws,ws, . . ., wy, be the neighbors af.
The notion of ‘small worlds’ originated as a term to dg- 2. For eachi, letz;,, z;,, ..., z;, be the neighbors of

Wj.

scribe the high connectivity of social networks. Klein
berg ] modelled social networks by taking a two dif 3. Among thesé:* nodes, assume is the one clos;
mensional grid and connecting each nad¢o ¢ edges est tot.

when edge(u, v) exists with probability proportional to 4. Route the message fromvia w; t0 z; .

llu — v||~2. For simplicity, we remove the parametgr
and assume that each edgev) is connected with prob- Figure 1: The NoN-Greedy Algorithm. It is assumed for
ability ||u — v||~2, thus creating a graph with averagsimplicity that the degree of each nodekis
degree©(logn). For any dimensionl > 1, the small
world graph of dimensiod hasn? nodes associated with
the points of al—dimensional mesh, where edge, v)

The NoN algorithm could be thought of as greedy
in two hops instead of just one. One might think that
practically the NoN algorithm uses a routing table of size

) ) . ” "
is occupied with probability|u — v[[~. Small world ()42 n). This however is not the case. In order to apply
graphs serve as a motivation for p2p networks. Indegghn thememoryallocated to hold the routing tables of

they were analyzed in this context by Aspeeal[1] who e neighbors i) (log? n) instead 00 (log n). The main
proved that the one dimensional small world graph p&fst of an entry in the routing table lies in itmintenance
mits greedy routing of)(logn) even if nodes and links inging periodically etc.). The cost in terms of memory

failindependently. _ _ of simply holding the entry is marginal.
Skip-Graphs or Skip-Nets is a dynamic data structure Step(2) of the algorithm is implemented internally by

meant to serve as a tool for locating resources in a Qysiting all thez in a search tree. Thus the time it takes
namic setting. It was proposed independently by ASpn@siing the next link is the time it takes to find the correct
and Shah in%] and by Harveyet alin [6]. The main ad- |iny is the search time of the tree which @(log(k?)).
vantage of skip graphs is that they supply prefix Searﬁgsuming thak = O(logn), Step(2) takesO (log log )
and proximity search. In a skip graph each nodes choo§ﬁ§a’ which is the same as in greedy routing.

randomly a string of bits called thmembership vectors NoN is not greedy since; might not be the closest

The links are determined by the membership vectors, gighe to¢ among the neighbors af. While not being
Fherefore the keys could be arbitrary. In other words, thegf?eedy per se it is clear that NoN enjoys the advantages of
is no need for the keys to be randomized and they edy. The following theorem is taken from a companion
maintainsemantianeaning. It is therefore essential th aper [L1], and shows that asymptotically the NoN algo-

routing algorithms remain local in the key space. This & is optimal both for skip graphs and for small world
achieved without compromising the complexity of the "braphs.

sert and Delete operations, thus skip graphs(nets) are an ) )

especially attractive p2p construction. It is shown2h [ Theorem 2.1. When using the NoN algorithm:

[6] that greedy routing take®(logn) hops. It is shown (a) The av_erage_number .Of hops it takes to route a mes-
in [11] that greedy routing takeQ(log n) hops. sage in a skip graph i©(log n/ loglogn).

(b) Using the NoN algorithm, the number of hops it takes
to route a message in a small world graph of any
dimension isO(log n/ loglogn) with high proba-
bility.

2 The NoN-Greedy algorithm

The NoN approach originates from a work by Copper-
smithet al[ 3], which used it to prove bounds on the diam- )
eter of the small world graph, though notin an algorithmi&-1 ~ An Interesting Phenomena

perspective. It was also used by Man&ual (under the » common approach when constructing p2p systems is
name ‘lookahead’) as a heuristic for the ‘Symphony’ P3f 4 and ‘emulate’ dynamically a good static network.



Thus Chord, Pastry and Tapestry are ‘inspired’ by the h
percube. A perfect skip graph has a topology similar

that of Chord. A deterministic protocol that achieves |i

is presented by Harvey and Munro i]] The work of

Ganesan and Mankdb] implies that the average diamet

ter of a perfect skip graph Q(log n), thus we conclude
that the randomization of edgesduceghe expected path
length. Seeq1]] for a discussion of this phenomena.

3 Simulation Results

We ran simulations in which we compared the perfq
mance of the greedy algorithm and the performance of {
NoN greedy algorithm. We constructed a skip graph of
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to 2'7 nodes and a small world graph of up2¥* nodes.

In a small world graph it is not necessary to create the full

graph in advance. Each time the message reached a n
we randomly created the neighborhood of radiasound
the node. This is a negligible compromise over the d

q Figure 2: The number of hops in skip graphs.
ode,

i

nition of the model, since the edge in which the node w
entered might not be sampled. This technique allowed
to run simulations on much larger graphs. For each gr3
size we ranl50 executions. A substantial improvemern
could be seen. Figurés3 demonstrate an improvemen
of about48% for skip graphs of size'” and an improve-
ment of34% for small world graphs of size?*. Figure
2 also depicts the average shortest path in the graph.
see that the shortest paths may30&: shorter than the
paths found by NoN, yet even for moderate network siz¢
the NoN algorithm performs substantially better than ti
Greedy one.

An even more impressive improvement could be se
when the size of the graph is fixed and the average
gree changes. We fixed a small world graph of 9%&
After that we deleted each edge with a fixed probabili
which varied from0 (the usual small world graph) @9
(a graph with roughly one tenth of the edges). Figdire
depicts the results of these simulations. It shows that
reduction in the number of hops is more or less indepe
dent from the number of edges. The latency achieved
the Greedy algorithm when the degreisis achieved
by the NoN algorithm when the degree is mergly In
the case of skip graphs we ran the simulation for a gra
of size2!” and varied the size of the alphabet of the mer
bership vectors. When the alphabet size the average
degree i$)(log, n). We can see in Figurthat NoN with
alphabet siz0 is better than Greedy with alphabet siz
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Figure 3: The number of hops in a small world of dimen-
sionsl, 2.
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Figure 4: The tradeoff between average degree and latency in a small worl@®itlodes (left) and skip graphs of
217 nodes (right).

3.1 Adifferent Implementation hops

. I . 8 r
The algorithm presented in Figudeis somewhat unnat- Small World
ural. Each NoN step has two phases. In the first phaser - one dimension

the message is sent to a neighbor whose neighbor is close
to the target. In the second phase a greedy step is takefi [
(i.e. the message moves to the neighbor of neighbor),| Ag |
1—phase implementation would let each node initiatel a
NoN step again, i.e. each node upon receiving a mes-4 -
sage, finds the closest neighbor of neighbor, and pagses
the message on. This variant is harder to analyze, indee
Theorem?.1 holds for the2—phase version only. Yet, ag 2 S B S—
Figure5 shows, in practice the two variants have basically 4 ¢ 8 10 12 14 16 18 20

the same performance. ~m-8— 1-phase NoN log n
—H3— 2 - phase NoN

3.2 Fault Tolerance h:PS

The previous simulations assumed that the list of neig h—7 | Skip Graphs o

bor’s neighbors each node holds is always correct. In re- o

ality this might not be the case. We examine two scenarjos;
which capture the two extremes of this problem.

Optimistic Scenario: In this case we assume that a node
knows whether its neighbors of neighbors lists are up-10-4 i D/D
date or not. Whenever a node has a stale list is performs g
greedy step. If a node cannot perform the NoN step from
any other reason, it performs the greedy step instead. \Wé 4 5 é 7 é é 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7
ran simulations in which each node performs with proba- g & 1-phase NoN log n
bility 3 a NoN step, and with probability a greedy step.| —5-5— 2-phase NoN

Whenever a NoN step is performed, both phases of it are

performed correctly. Figure36 show that the total per- Figure 5: Comparison between the two variants of NoN
formance is hardly compromised. A small world of size

222 suffered a relative delay of less than one hop, A skip
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graph of size2!” suffers a relative delay df.2 hops. But 2. Whenever a node encounters a change in its neigh-
why is the optimistic scenario justified? Our suggestion  bor list (due to the entrance or exit of a node), it
is that each node would calculate a hash of its neighbors  should update its neighbors.

list. This hash would be sent to all its neighbors on top of S ]
the maintenance messages. Thus with a minuscule oygt€ €xtra communication imposed by these updates is not

head in communication each node would know whethdg@vy due to the two following reasons. First, assume

its lists are up-to-date. We discuss specific hash functidiRiesu; v are neighbors. Node periodically checks that
in Section4. v is alive (for instance by pinging it). Checking whether

v's neighbor list has changed could be added to the main-
tenance protocol by letting send a hash of its neighbor

Pessimistic Scenario: In this scenario we assume that Ast on top of the maintenance protocol. A possible hash

node is unaware that its neighbor’s neighbors lists are '?8;& : X .
ction may beMD5(though the cryptographic proper-

up-to-date. So when nodepasses a message to nade I y (thoug yptographic prop

o . A ties of this hash function are not needed). Another possi-
expecting It to move on to noas with probab|l|ty_§ the. bility is simply to treat the id of neighbors as coefficients
edge_(w, %) no longer exISts. we tested_ two variants: g a polynomial, and evaluate this polynomial at a random
the first one, whenever this occurs the intermediate ng St Either way the actual cost in communication is very

w performs a greedy step. In the second variant the int Mall. When an actual update occurs there is no reason for

mediate nodev initiates another NoN step. The results . . : ;
i . N to send its entire neighbor list. It may only send the part
of the simulations appear in Figui®e It could be seen Y 9 y only b

. Lo . f it which » misses. If it does not know which part it is
that in the pessimistic scenario, the performance of N(% L, v may participate in a very fast and communica-
is approximately the same as the Greedy algorithm. ;

lude th i hat th ah tion efficient protocol that reconciles the two sets, see e.qg.
|istsV\fr é:oer:(rzol# F()er (t) naet es\{[cie”|'1t|h ;NE Saessol:r?:et Nacglil Zlgglrgi]th%%ﬁ] for details. The second reason the communication
may be beneficial ' erhead is small |s.that the the ac_tugl l_deates are not ur-
’ gent (as the simulations of the optimistic scenario show)

. and may be done when the system is not busy.
4 Implementatlon Issues It is important to notice that the implementation of the

. _ oN algorithm does not affect the Insert/Delete opera-
Th_e execu_tlon of a NON hop requires a nqde to store (E ns. Once a node enters, the needed updates should oc-
neighbor lists of its neighbors. This implies that nod% r. We conclude that implementing NoN has very lit-
should update each other rega}rding their own lists of neig ‘cost both in communication complexity and in internal
bors. Such an update occurs in two scenarllos:. _running time. It is almost a free tweak that may be imple-

1. Each node upon entrance, must send its list of neighsnted on top of the previous constructions.
bors to its neighbors.



5 Other Constructions - NoN-Chord

(6]

Does NoN-Greedy improve more p2p systems? In this

section we show that a variation of Chorth] is degree
optimal. In Chord the key space is a rif@ 1,...,n].
A node whose i.d. ig is connected (more or less) 10+

Lz+2,2+4,...,2+% mod n. ltwas shown by Manku [7]

[5] that theaveragediameter of Chord i®(logn), thus
no algorithm may significantly reduce the path leng
We show a slight variation of Chord, (in search of a b

th.
et-

ter name lets call it NoN-Chord). The idea is to makeg
Chord resemble the Small-World graph. Now each node

x is connected tdog n nodesyy, y1, y2, . . . Such thaty;
is arandompoint in the segmentr + 2¢, x + 2°+1]. An
easy adaptation of the proofs ih1],[3] shows that w.h.p
the path length used by NoN 3(log n/loglogn). The
Insert operation now, would takeg? n/loglogn opera-

9]

tions, inlogn/loglogn parallel time. So we have an in-
teresting tradeoff of parameters. An increase in the com-

munication complexity of the Insert operation (though

n
in the time complexity) reduces the latency of the pathsfio]
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