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Abstract

A collision resistant hash (CRH) function is one that compresses its input, yet it is hard
to find a collision, i.e. a x1 6= x2 s.t. h(x1) = h(x2). Collision resistant hash functions are one
of the more useful cryptographic primitives both in theory and in practice and two prominent
applications are in signature schemes and succinct zero-knowledge arguments.

In this work we consider a relaxation of the above requirement that we call Multi-CRH: a
function where it is hard to find x1, x2, . . . , xk which are all distinct, yet h(x1) = h(x2) = · · · =
h(xk). We show that for some of the major applications of CRH functions it is possible to replace
them by the weaker notion of a Multi-CRH, albeit at the price of adding interaction: we show a
constant-round statistically-hiding commitment scheme with succinct interaction (committing
to poly(n) bits requires exchanging Õ(n) bits) that can be opened locally (without revealing the
full string). This in turn can be used to provide succinct arguments for any NP statement.

We formulate four possible worlds of hashing-related assumptions (in the spirit of Impagli-
azzo’s worlds). They are (1) Nocrypt, where no one-way functions exist, (2) Unihash, where
one-way functions exist, and hence also UOWHFs and signature schemes, but no Multi-CRH
functions exist, (3) Minihash, where Multi-CRH functions exist but no CRH functions exist, and
(4) Hashomaia, where CRH functions exist. We show that these four worlds are distinct in a
black-box model: we show a separation of CRH from Multi-CRH and a separation of Multi-CRH
from one-way functions.
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1 Introduction

The task we must set for ourselves is not to
feel secure, but to be able to tolerate insecurity.

Erich Fromm

In any function that compresses its input, say from 2n bits to n bits, there are many collisions,
that is, pairs of distinct inputs whose image is the same. But what is the complexity of finding such
a collision? Families of functions where this collision finding task is hard are known as collision
resistant hash (CRH) functions.1 CRH functions have many appealing properties, such as preser-
vation under composition and concatenation. The presumed hardness of finding collisions in such
functions is the basis for increased efficiency of many useful cryptographic schemes, in particular
signature schemes and succinct (zero-knowledge) arguments, i.e., methods for demonstrating the
correctness of a statement that are much shorter than the proof or even the statement itself (see
Kilian [Kil92] and Barak and Goldreich [BG08]). The latter is achieved via a hash tree commit-
ment2 scheme whose opening is local i.e., opening a bit does not require revealing the full string
(known as a “Merkle tree”). Results of this sort enable the construction of efficient delegation of
computation where the goal is to offload significant computation to some server but also to verify
the computation.

Such a task (“breaking a collision resistant hash function”) is indeed hard based on a variety
of assumptions such as the hardness of factoring integers, finding discrete logs in finite groups or
learning with errors (LWE). There are popular functions (standards) with presumed hardness of
collision finding such as SHA-2 and SHA-3 (adopted by NIST3 in 2015). These functions can be
evaluated very quickly; however, their hardness is based on more ad hoc assumptions and some
former standards have been shown to be insecure (such as MD4, MD5, SHA-1). On the other hand
there is no known construction of CRHs based solely on the existence of one-way functions or even
one-way permutations and, furthermore, they were shown to be separated in a black-box model
(see Simon [Sim98]).

But a sufficiently compressing function also assures us that there are multiple collisions, i.e.,
k distinct values whose image under the function is equal. What about the problem of finding
a k-collision? Assuming such hardness is a weaker computational assumption than hardness of
finding a single pair of colliding inputs and the question is whether it yields a useful primitive.

In this paper we deal with multiple collision resistant hash (MCRH) functions and systemati-
cally investigate their properties and applications. We show that for some of the major applications
of CRH functions it is possible to replace them by an MCRH, albeit at the price of adding some
rounds of interaction: a constant-round4 commitment scheme with succinct communi-
cation that can be opened locally (without revealing the full string) (see Theorem 2). This

1The function h ∈ H can be sampled efficiently, it is easy to compute h(x) given h and x, however, given h it is
hard to find x1 6= x2 s.t. h(x1) = h(x2).

2A commitment scheme is a protocol where a sender commits to a string x in the “commit” phase and that later
can be revealed at the opening phase. The two properties are binding and hiding: in what sense is the sender bound
to the string x (computationally or information theoretically) and in what sense is x hidden from the receiver before
the opening - statistically or computationally.

3NIST is the National Institute of Standards and Technology, a US agency.
4By “constant-round” we mean that for a c ∈ N to commit to a string of length nc using a compression function

from 2n to n bits the number of rounds is a constant that depends on c.
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implies that it is possible to effectively verify the correctness of computation much more efficiently
than repeating it. As an application we get universal arguments [BG08] (and public-coin zero-
knowledge argument systems for NP [Bar01]) with an arbitrary super-constant number of rounds
based on MCRH functions. We also provide a constant-round statistically-hiding scheme and thus
we can get constant-round statistical zero-knowledge arguments [BCC88].5

On the other hand, we show various black-box separation results concerning MCRH. First,
we separate them from one-way permutations. This follows from the lower bound of Haitner
et al. [HHRS15] on the number of rounds needed to build a statistically-hiding commitment from
one-way permutations. Furthermore, we show a black-box separation from standard CRH: there is
no fully black-box construction of a k-MCRH from a (k+1)-MCRH for all k with polynomial security
loss (see Theorem 4). These results yield an infinite hierarchy of natural cryptographic primitives,
each two being separated by a fully black-box construction, between one-way function/permutations
and collision-resistant hash function.6

One motivation for investigating MCRH functions is the progress in finding collisions in the
hash function SHA-1 (that has long been considered insecure [WYY05]) and recently an actual
meaningful collision has been found [SBK+17]. In general, finding a collision with arbitrary Ini-
tialization Vector (IV) allows finding multiple collisions in an iteration of the function (say in
a Merkle-Damg̊ard lopsided tree), as shown by Joux [Jou04] (see also Coppersmith and Girault
et al. [Cop85, GCC88] for older attacks). However, for the compression function of SHA-1 (or
other such functions) there is no non-trivial algorithm for finding multi-collisions.7 Also, multi-
collision resistance is sometimes useful for optimizing concrete parameters, as shown by Girault and
Stern [GS94] for reducing the communication in identification schemes. So the question is what can
we do if all we assume about a given hash function is that multi-collision are hard to find, rather
than plain collisions.

Our interest in MCRH functions originated in the work of Komargodski et al. [KNY17], where
MCRHs were first defined in the context of the bipartite Ramsey problem. They showed that
finding cliques or independent sets in succinctly-represented bipartite graphs (whose existence is
assured by Ramsey Theory) is equivalent to breaking an MCRH: a hard distribution for finding
these objects implies the existence of an MCRH and vice-versa (with slightly different parameters).8

Families of CRHs compose very nicely, and hence domain extension is relatively simple, that is
once we have a CRH that compresses by a single bit we can get any polynomial compression (i.e.,
from poly(n) to n bits). In contrast, we do not know how to construct a k′-MCRH on very large
domains from a fixed k-MCRH, where k′ is not much larger than k. Nevertheless, in Section 6, we
show how to get such a construction with k′ = kO(logn).

A well-known relaxation of CRHs are Universal One-way Hash Functions (UOWHF) or second
pre-image resistance: first the target x is chosen (perhaps adversarially), then a function h ∈R H
is sampled and the challenge is to find x′ 6= x s.t. h(X) = h(x′). Such families are good enough for

5For constant values of k, we give a 4-round computationally-binding commitment scheme with succinct commu-
nication (see Theorem 3).

6This hierarchy translates to an infinite hierarchy of natural subclasses in TFNP. See Appendix B for details.
7Beyond the “birthday-like” algorithm that will take time 2n·

k−1
k [Jou04], where 2n is the size of the range. See

[HSX17] for very recent work in the quantum case.
8In the bipartite Ramsey problem, the goal is to find a bi-clique or bi-independent set of size n/4 × n/4 in a

bipartite graph of size 2n × 2n. The work of [KNY17] showed that if this problem is hard, then there exists an
(n/4)-MCRH from n bits to n/2 bits. Conversely, If a

√
n-MCRH mapping n bits to

√
n/8 bits exists, then this

problem is hard.
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signatures (at least existentially) and can be used for the hash-and-sign paradigm, if one chooses h
per message (see Naor and Yung [NY89] and Mironov [Mir06]). It is known how to get such family
of functions from one-way functions, but the construction is rather involved and inefficient (and
there are some inherent reasons for that, see [GGKT05]). We show how to go from any interactive
commitment protocol where the communication is shorter than the string committed to (a succinct
commitment) to a UOWHF (see Theorem 5). Together with our commitment schemes, this gives
new constructions of UOWHFs on long inputs based on MCRHs with a shorter description than
the ones known starting from a UOWHF on fixed input length.

The four worlds of hashing. Impagliazzo’s five worlds [Imp95] are a way to characterize the
strength of a cryptographic assumption. The worlds he defined are: Algorithmica (where P = NP),
Heuristica (where NP is hard in the worst case but easy on average, i.e., one simply does not
encounter hard problems in NP), Pessiland (where hard-on-the-average problems in NP exist, but
one-way functions do not exist), Minicrypt (where one-way functions exist), and Cryptomania
(where Oblivious Transfer exists). (Nowadays, it is possible to add a sixth world, Obfustopia,
where indistinguishability obfuscation for all programs exists.)

In the spirit of Impagliazzo’s five worlds of cryptographic assumptions, we define four worlds of
hashing-related primitives:

Nocrypt: A world where there are no one-way functions. There are no cryptographic commitments
of any kind in this world [IL89].

Unihash: A world where one-way functions exist (and so do UOWHFs), but there are no MCRH
functions. Therefore, signatures exist and hashing applications such as the hash-and-sign
paradigm [NY89]. Also, statistically-hiding commitments exist (albeit with a linear number
of rounds) [NOVY98, HHK+09, HNO+09, HHRS15]. There are no known short commitment
(where the communication is much shorter than the string committed to).

Minihash: A world where MCRH exists but there is no CRH: that is, for some polynomial k(n)
there exists a k-MCRH that compresses 2n to n bits. In this work we give a protocol for short
and statistically-hiding commitments with a constant number of rounds. Furthermore the
string can be opened locally, with little communication and computation, without requiring
the full opening of the string.

Hashomania: A world where CRH exists. There is a short commitment protocol that requires
only two rounds (i.e., two messages) with local opening. This is the famed Merkle-tree.

Note that our separation results imply that these four worlds have black-box separations. Uni-
hash and Minihash are separated by the separation of MCRH from one-way permutations, and
Minihash and Hashomania are separated by the separation of CRH from MCRH. Moreover, the
separation in Section 7 actually implies that the world Minihash can be split further into sub-worlds
parameterized by k, the number of collisions it is hard to find.

Multi-pair collision resistance. A different way to relax the standard notion of collision re-
sistance is what we call multi-pair-collision-resistance, where the challenge is to find arbitrary k
distinct pairs of inputs that collide (possibly to different values). One may wonder what is the
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difference between these two notions and why we focus on the hardness of finding a k-wise colli-
sion rather than hardness of finding k distinct colliding pairs. The answer is that the notion of
k-pair-collision-resistance is existentially equivalent to the standard notion of collision resistance
(see Appendix A).

Concurrent work

In parallel to this work, MCRH functions were studied by two other groups that obtained various
related results [BDRV17, BKP17] with different motivation and perspective.

Berman et al. [BDRV17] showed how to obtain MCRH functions from a specific assumption.
Concretely, they construct an n2-MCRH function compressing inputs of length n to outputs of
length n−

√
n from the average-case hardness of the min-max variant of the entropy approximation

problem. This variant is a promise problem where the YES inputs are circuits whose output
distribution has min-entropy at least κ, whereas NO inputs are circuits whose output distribution
has max -entropy less than κ.9 Berman et al. also show how to get a constant-round statistically-
hiding (computationally-binding) commitment scheme from any k-MCRH that compresses n bits
into n − log k bits (which implies a black-box separation of MCRH from one-way permutations).
However, their commitment scheme is not short and does not support local opening10.

Bitansky et al. [BKP17] replace the CRH assumption with a k-MCRH in several applications
related to zero-knowledge and arguments of knowledge for NP with few rounds. They rely on
either MCRH that compresses by a polynomial factor (say n2 bits into n), or alternatively on
an MCRH that compresses by a linear factor but lose a quasi-polynomial factor in security. Their
main technical component is a two-round (i.e., two-message) short commitments with local opening
but with weak computational-binding. The latter means that the sender may be able to open
the commitment to more than one value, but not to too many values. Their construction of the
commitment scheme is related to our construction presented in Theorem 3 but they design a specific
code that allows them to get local opening.

Summary of results & paper organization

Our main results are:

1. Any k-MCRH can be used to get a constant round short commitment scheme which is
computationally-binding, statistically-hiding and support local opening (à la Merkle com-
mitments). This result in Section 5.

2. Any k-MCRH, where k is constant, can be used to get a 4 round short commitment scheme
which is computationally-binding and statistically-hiding opening. This appears in Section 6.

3. We prove a fully black-box separation between standard collision resistant hash functions and
multi-collision resistant ones. This appears in Section 7.

4. We present a generic and direct construction of UOWHFs from any short commitment schemes
(and thereby from any multi-collision resistant functions). See Section 8.

9The original entropy approximation problem is the one obtained by replacing the min- and max-entropy with
the Shannon entropy. It is known to be complete for the class of languages that have non-interactive statistical
zero-knowledge proofs (NISZK) [GSV99].

10Starting out with such a weak primitive our methods will not yield a succinct commitment either.
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In Section 2 we provide an overview of our main ideas and techniques. In Sections 3 and 4 we
provide preliminary standard definitions used throughout the paper and the definition of MCRH
functions, respectively.

In Appendices A and B we discuss the related notion of multi-pair collision resistance, and the
implication of our infinite hierarchy of assumptions to TFNP, respectively.

2 Our Techniques

In this section we present some of our main ideas and techniques used in the construction of the
commitment scheme and in the black-box separation result.

2.1 The main commitment scheme

A commitment scheme is a two stage interactive protocol between a sender and a receiver such
that after the first stage the sender is bound to at most one value (this is called “binding”). In
the second stage the sender can open his committed value to the sender. There are a few security
properties one can ask from such a protocol: have statistical/computational binding, and have the
committed value of the sender be statistically/computationally hidden given the commitment (this
is called “hiding”). Our commitment scheme satisfies computational binding and statistical hiding.
In this overview we will mostly focus on obtaining computational binding and briefly discuss how
we obtain hiding towards the end.

There is a trivial commitment protocol that is (perfectly) binding: let the sender send its value
to the receiver. Perhaps the most natural non-trivial property one can ask is that the commitment
is shorter than the committed string. There are additional useful properties one can require such
as local-opening which allows the sender to open a small fraction of its input without sending the
whole string (local opening is very important in applications of such commitment schemes, e.g., to
proof systems and delegation protocols). In our protocol the commitment is short and it supports
local-opening; we will focus here on the former and shortly discuss the latter towards the end.

Our goal now is to construct a commitment scheme which is computationally binding and the
commitment is shorter than the value of the sender. If we had a standard collision resistant hash
function mapping strings of length 2n to strings of length n, this task would be easy to achieve:
the receiver will sample a hash function h and send it to the sender which will reply with h(x∗),
where x∗ ∈ {0, 1}2n is its value. The commitment thus consists of (h, h(x∗)) and its size is n bits.11

It is easy to verify that for a sender to cheat during the opening phase it actually has to break the
collision resistance of h (i.e., come up with a value x 6= x∗ such that h(x) = h(x∗)).

When h is only a k-MCRH for k > 2, the above protocol is clearly insecure: the sender
can potentially find two inputs that collide to the same value and cheat when asked to open its
commitment. The first observation we make is that even though the sender is not bound to a single
value after sending h(x∗), it is bound to a set of values of size at most k − 1. Otherwise, at least
intuitively, he might be able to find k inputs that map to the same output relative to h, which
contradicts the security of the k-MCRH. Our first idea is to take advantage of this fact by adding
an additional round of communication whose goal is to “eliminate” all but one possible value for

11For simplicity of presentation here, we ignore the cost of the description of h, so it will not significantly affect
the size of the commitment.
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the sender. Specifically, after the receiver got h(x∗), it samples a random universal hash12 function,
g, mapping strings of length 2n to strings of length m. and sends it to the sender. The sender then
responds with g(x). The commitment thus consists of (h, h(x∗), g, g(x∗)). To open the commitment
the sender just sends x∗ (just as before).

One can show that this protocol is binding: Out of the k − 1 possible values the sender knows
that are consistent with h(x∗), with probability roughly k2 · 2−m there will be no two that agree
on g(x∗). Conditioning on this happening, the sender cannot submit x 6= x∗ that is consistent with
both h(x∗) and g(x∗). To formally show that the protocol is binding we need to show how to find
a k-wise collision using a malicious sender. We simulate the protocol between the malicious sender
and the receiver multiple times (roughly k times) with the same h but with freshly sampled g, by
partially rewinding the malicious sender. We show that with good probability, every iteration will
result with a new collision.

The protocol consists now of 4 rounds, but is the commitment short? Well, it depends on m and
on the description size of g. The description size of a universal function is proportional to the input
size (2n in our case), which totally ruins the shortness of the protocol. We fix this by sampling g
from an almost universal family and apply the above protocol. We obtain a 4-round protocol in
which the commitment size is of the order roughly n+m+ log(1/δ), where δ is related to the error
probability of the almost universal function. Choosing m and δ appropriately we obtain a protocol
with short (< 2n) commitments.

Handling longer inputs. How would we commit on a longer string, say of 10n bits or even n10

bits? (Recall that all we have is a hash function mapping 2n bits into n bits.) One well-known
solution is based on a standard collision resistant hash function, and what is known as a Merkle tree
(the tree structure will be useful later for a local opening). The input x ∈ {0, 1}2dn (for simplicity
think of d as either a large constant or even O(log n)) is partitioned into 2d blocks each of size n.
These blocks are partitioned into pairs and the hash function is applied to each pair resulting in
2d−1 blocks. Then, the remaining blocks are partitioned into pairs and the hash function is applied
on each pair. This is repeated d times resulting in a binary tree of hash values of depth d. The
value associated with the root of the tree is called the root-hash.

If h is a standard CRH sent by the receiver, then it is known that sending the root-hash by
the sender is actually a commitment on the input x∗ [Mer89a, Kil92]. Can we apply the same
trick from before to make this a commitment protocol even when h is only a k-MCRH? That
is, after sending the root-hash, let the sender sample a good-enough combinatorial hash function
g : {0, 1}2dn → {0, 1}m and send it to the sender that will reply with g(x∗). Is this protocol binding?
The answer is “no”, even for large values of m. Observe that for every node in the Merkle tree, the
sender can potentially provide k− 1 valid inputs (that hash to the same value). Since the tree is of
depth d, one can observe that by a mix-and-match method of different colliding values on different
nodes of the tree the sender might be able to come up with as many as (k − 1)2d valid inputs x
whose corresponding root-hash is h(x∗). Thus, to satisfy that no two have the same value under g,
we have to choose m ≈ 2d · log(k− 1), in which case the almost uniform hash function has a pretty
long description. Nevertheless, it is less than 2dn (the input length) so we might hope that some
progress has been made. Is this protocol computationally-binding? Not quite. Using the proof
technique from above (of partially rewinding and “collecting” collisions) would require running the

12A universal hash function is a function of families G = {g : {0, 1}n → {0, 1}m} such that for any x, y ∈ {0, 1}n
such that x 6= y it holds that Prg←G [g(x) = g(y)] ≤ 2−m.
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malicious sender more than (k − 1)2d times until it has to present more than k − 1 collisions for
some value. This is, of course, way too expensive.

The bottom line of the above paragraph is that “mix-and-match” attacks are very powerful for
a malicious sender in the context of tree hashing by allowing him to leverage the ability of finding
few collisions into an ability to find exponentially many collisions. The reason why this happens
is that we compose hash functions but apply the universal hash function on the whole input as a
single string. Our next idea is to apply a “small” hash function g : {0, 1}2n → {0, 1}n per node
in the Merkle tree. That is, after the sender sends the root-hash h(x∗), the receiver samples g
and sends it to the sender. The sender computes g(·, ·) for every pair of siblings along the Merkle
tree, concatenates them all and sends this long string back to the receiver. This protocol is more
promising since, in some sense, we have a small consistency check per node in the tree which should
rule out simple “mix-and-match” attacks. This is our construction and the proof of security works
by partially rewinding a malicious sender and “collecting” collisions until we get k collisions with
respect to some internal node in the tree (we need to collect roughly 2dk collisions overall so that
such a node exists, by the pigeonhole principle). How efficient is the protocol? Details follow.

The protocol still consists of 4 rounds. A commitment consists of the hash function h, the root
hash h(x∗), a universal hash function g : {0, 1}2n → {0, 1}m and the value of g on every internal
node of the tree. The overall size is thus of order n+ 2dm. Notice that n+ 2dm� 2dn whenever
d is not too small, so we have made progress! We reduced the size of the commitment by a factor
of m/n. The final step is to really get down to a commitment of size roughly n. To achieve this,
we apply our protocol recursively : Instead of sending the hashes (with respect to g) of all internal
nodes, we run our commit protocol recursively on this string. Notice that this string is shorter
(2dm compared to 2dn) so the recursion does progress. The base of the recursion is when the string
length is roughly n bits, then the sender can simply send it to the receiver.

Choosing the parameters carefully, we get various trade-offs between the number of rounds, the
commitment size, and the security of the resulting protocol. For example, setting m = n0.99, results
with a O(1)-round protocol in which the commitment size is O(n) (here the big “O” hides constants
that depend on logn(|x∗|) which is constant for a polynomially long x∗), and whose security is worse
than the security of the k-MCRH by an additive factor of exp(−n0.99).

Local opening. Due to the tree structure of our commitment protocol, it can be slightly modified
to support local opening. Recall that the goal here is to allow the receiver to send an index i of a
block to the sender, who can reply with the opening of the block, with communication proportional
to n but not to the number of blocks 2d. The idea here is, given an index i of a block, to open
the hash values along the path corresponding to the i-block along with the tree sibling of every
node in the path. Then, i′ is defined to be the index of the block in the shorter string (the string
committed to in the next step of the recursion) which containing all the g(·, ·) values of the nodes
on the path (we make sure that such a block exists). Then, we add the hash values of the path for
block i′ and continue in a recursive manner.

Statistical hiding. We show how to transform any short commitment scheme that is computa-
tionally binding (but perhaps not hiding) to a new scheme that is short, computationally binding
and statistically hiding. Moreover, if the original scheme admits a local-opening, then the new
scheme admits a local-opening as well. Our transformation is information theoretic, adds no addi-
tional assumptions and preserves the security, the number of rounds and communication complexity
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of the original scheme (up to a small constant factor). The transformation is partially based on ideas
originating in the work of Naor and Yung [NY89, Section 5.2] and the follow-up works of Damg̊ard,
Pedersen, and Pfitzmann [DPP97, DPP98] giving constructions of statistical-hiding commitments
from (standard) collision resistant hash function.

The idea of our transformation is to leverage the fact that the basic commitment protocol is
short: when committing to a long string x∗, the communication is very short. Thus, a large portion
of x∗ is not revealed to the receiver by the protocol so this part of x∗ is statistically hidden. The
task that remains is to make sure that all of x∗ is hidden. Thus, instead of committing to x∗

directly, we commit to a random string r that is independent of x∗ and slightly longer. Then, we
extract from r the remaining randomness r′ given the communication of the protocol using a strong
extractor. Finally, we commit on the string x∗ ⊕ r′. It is not hard to show that if the original
scheme was computationally binding, then the new one is as well. The fact that the scheme is
statistically-hiding follows from the use of the strong extractor and the fact that the commitment
is short.

One problem with the recipe above, is that the protocol (as describe) no longer admits a local-
opening. This is because to open an index i, we need the i-th output bit of the extractor, but
computing this bit might require reading a large portion of the input of r. Our solution is to break
the input to sufficiently small parts such that each part is small enough to fit in a local-opening
but is long enough to have enough entropy (given the communication of the protocol) so that we
can apply the extractor on it.

2.2 Separating Multi-CRH from standard CRH

We show barriers of constructing a collision-resistant hash function from a 3-multi-collision-resistant
hash function. We rule out fully black-box constructions (see Definition 9). Our proof technique is
inspired by the works of Asharov and Segev [AS16] and Haitner et al. [HHRS15], that are based in
turn on ideas originating in the works of Simon [Sim98], Gennaro et al. [GGKT05] and Wee [Wee07].
However, when trying to adapt their proof to the setting of multi collisions one encounters several
obstacles and we explain how to overcome them.

The high-level overview of the proof is to show that there exists an oracle Γ such that relative
to Γ there exists a 3-MCRH, however there exist no standard CRH. Our oracle will contain a truly
random function f that maps 2n bits to n bits. Relative to this oracle, it is clear that 3-MCRH
exists, however, also standard CRH exist. We add an oracle ColFinder that will be used to break
any CRH construction. The main difficulty of the proof is to show that this oracle cannot be used
to break the 3-MCRH.

The oracle ColFinder is essentially the same as in Simon [Sim98]. It gets as an input a circuit
C, possibly with f gates and it outputs two random elements w,w′ such that C(w) = C(w′). It
is easy to see that no family of hash functions can be collision resistant in the presence of such an
oracle. A single call to ColFinder with the query C (where C(x) = f(x)) will find a collision with
high probability. The main question is whether this oracle be used to find multiple collisions?

Originally, Simon showed that this oracle cannot be used to invert a one-way function (or even
a permutation). Let A be an adversary that uses ColFinder to invert f on a random challenge
y = f(x). Clearly, if A make no calls to ColFinder then his chances in inverting y are negligible.
Assume, for simplicity, that A performs only a single query to ColFinder. In order for A to gain
some advantage, it must make an “interesting” query to ColFinder. That is, a query which results
in w,w′ and the computation of either C(w) or C(w′) makes a direct query to some x ∈ f−1(y).
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This event is called a hit. An important point is that for any circuit C the marginal distribution
of w and of w′ is uniform. Therefore, the probability of the event “hit” in the ColFinder query
is at most twice that probability when evaluating C(z) for a random z. Thus, we can construct
a simulator that replaces A’s query to ColFinder with the evaluation of C(z) and hits an inverse
of y with roughly the same probability as A (while making no queries to ColFinder). The task of
inverting y without ColFinder can be shown to be hard, ruling out the existence of such a simulator
and in turn of such an adversary A.

Our goal is to extend this proof and show that ColFinder cannot be used to find 3-wise collisions.
The above approach above simply does not work: specifically, in our case the event “hit” corre-
sponds to query C to ColFinder that results in w,w′ and the computation of C(w) and C(w′) together
make direct queries three elements x1, x2, x3 that collide under f (i.e., f(x1) = f(x2) = f(x3)). It
might be the case that these three elements are hit by C(w) and C(w′) combined, but never by
one of them alone. Thus, when simulating the C(z) for a random z we will hit only part of the trio
x1, x2, x3 and might never hit all three.

Our main observation is that since A finds a 3-wise collision, but ColFinder finds only a 2-wise
collision (namely w,w′), by the pigeonhole principle, either w or w′ will hit two of the three elements
of the 3-wise collision. Again, since the marginals of w and w′ each are uniform, we can construct
a simulator that runs A and on the query to ColFinder samples a uniform z and compute C(z) and
will get a colliding x1 and x2 without performing any queries to ColFinder. Then, one can show
that such a simulator cannot exist.

Several problems arise with this approach. First, notice that this does not extend to an adversary
A that makes more than one query. In such a case, the resulting simulator finds a 2-wise collision
x1, x2 without the “hit” event occurring (i.e., finding a 3-wise collision) but while performing several
ColFinder queries. Such a simulator (that finds a collision), of course, trivially exists, and we do
not get the desired contradiction. Nevertheless, we show that the collision found by our simulator
is somewhat special, and using ColFinder one can only find “non-special” collisions, ruling out the
existence of A in this case. Second, the event “hit” itself might be spread out within several
ColFinder queries, where, for example, one queries finds x1 and then another query finds x2, x3. We
tailor a simulator for each case, and show that for each case the resulting simulating cannot exist,
completely ruling out the possibility of A to exist.

3 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For an integer n ∈ N we denote
by [n] the set {1, . . . , n}. We denote by Un the uniform distribution over n-bit strings. For a
distribution D we denote by x← D an element chosen from D uniformly at random. We denote by
◦ the string concatenation operation. A function negl : N → R+ is negligible if for every constant
c > 0, there exists an integer Nc such that negl(n) < n−c for all n > Nc.

Definition 1 (Statistical Distance). The statistical distance between two random variables X,Y is
defined by

∆(X,Y ) ,
1

2
·
∑
x

|Pr[X = x]− Pr[Y = x]|

We say that X and Y are δ-close (resp. -far) if ∆(X,Y ) ≤ δ (resp. ∆(X,Y ) ≥ δ).
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3.1 Limited independence

Definition 2 (k-wise independence). Fix n,m, k ∈ N. A function family G = {g : {0, 1}n →
{0, 1}m} is k-wise independent if for every distinct x1, . . . , xk ∈ {0, 1}n and every y1, . . . , yk ∈
{0, 1}m it holds that

Pr
g←G

[∀i ∈ [k] : g(xi) = yi] =
1

2km
.

It is known that for every m ≤ n, there exists a k-wise independent family of functions, where
each function is described by k · n bits. One well-known construction which is optimal in terms of
size is by letting each g ∈ {0, 1}k·n describe a degree k− 1 polynomial over GF[2n]. The description
of the polynomial requires k field elements so k · n bits are enough. Evaluation of such a function
is merely an evaluation of the polynomial.

In some applications (including some of ours) the input size n is very large and we prefer that
the description size of the hash function to be much shorter. To circumvent this, it is sometimes
enough to use almost k-wise independent functions.

Definition 3 (Almost k-wise independence). Fix n,m, k ∈ N and δ ∈ R. A function family
G = {g : {0, 1}n → {0, 1}m} is (k, δ)-wise independent if for every distinct x1, . . . , xk ∈ {0, 1}n the
distribution of (g(x1), . . . , g(xk)) is δ-close to the distribution (u1, . . . , uk), where g ← G and each
ui ← {0, 1}m are chosen uniformly at random.

It is known that for every m ≤ n, there exists a (k, δ)-wise independent function with each
function g ∈ G being described by O(mk + log(n/δ)) bits [NN93, AGHP92] (see also [Ta-17]).

3.2 Randomness extractors

We consider random variables supported on n-bit strings. A random variable X is said to have
min-entropy H∞(X) = k if for every x ∈ Supp(X) it holds that Pr[X = x] ≤ 2−k.

We say that a function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded extractor if for every
distribution X over {0, 1}n with min-entropy k, it holds that

∆(Ext(X,Ud), Um) ≤ ε.

The extractor Ext is said to be strong if Ext′(x, s) = Ext(x, s) ◦ s is a (k, ε)-seeded extractor. That
is, if

∆((Ext(X,Ud) ◦ Ud), (Um ◦ Ud)) ≤ ε.

The famous leftover hash lemma [ILL89, HILL99] says that a pairwise independent function
family is a strong extractor.

Proposition 1. Let G = {g : {0, 1}n → {0, 1}m} be a pairwise independent family of hash functions
where m = k − 2 log(1/ε). Then, Ext(x, h) = h(x) is a strong (k, ε)-seeded extractor.

Note that the seed length in this extractor equals the number of bits required to sample g ← G
which is 2n bits.

We will also need the following standard proposition that says that conditioning does not reduce
entropy by more than the information given by the condition.

Proposition 2. Let X and Y be random variables. Then, if Y is supported on strings of length k,
then H∞(X | Y ) ≥ H∞(X)− k.
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3.3 List-recoverable codes

The classical notion of error correcting codes ensures that for a code C ⊆ Fn, where F is a finite
field, given a somewhat corrupted version of c ∈ C, it is possible to recover c. The model of allowed
corruptions is that some fraction of the symbols in the codeword might be adversarially changed.
List recoverable codes were introduced to handle a different model of corruptions: they allow an
adversary to submit, for every coordinate i ∈ [n] a small list Si ⊆ F of possible symbols. In this
model, it is impossible to completely recover a codeword given the lists, but these codes guarantee
that there is only a small list of codewords that are consistent with all the lists.

More precisely, a mapping C : Fk → Fn from length k messages to length n codewords, is called
(α, `, L)-list-recoverable if there is a procedure that is given a sequence of lists S1, . . . , Sn ⊆ F each
of size `, and is able to output all messages x ∈ Fk such that C(x)i /∈ Si for at most an α fraction
of the coordinates i ∈ [n]. The code guarantees that there are at most L such messages.

Definition 4 (List-recoverable codes). Let α ∈ [0, 1]. We say that a tuple x ∈ ({0, 1}k)n is
α-consistent with sets S1, . . . , Sn ⊆ {0, 1}k, if |{i : xi ∈ Si|} ≥ αn.

A function C : {0, 1}v → ({0, 1}k)n is (α, `, L)-list recoverable, if for every set S1, . . . , Sn ⊆
{0, 1}k each of size at most `, there are at most L strings x ∈ {0, 1}v such that C(x) is α-consistent
with S1, . . . , Sn. For α = 1, we omit α in the above notation and call C (`, L)-list recoverable. The
strings in the image of C are referred to as codewords.

These code were initially studied in the context of list-decoding (and indeed the latter is just
a special case of the former with ` = 1) by [GS99, GI02, GI03, GI04]. More recently, they were
proven useful in other areas such as compressed sensing [NPR12], non-adaptive domain extension
for hashing [HIOS15], domain extension for public random functions and MACs [MT07, DS11], and
more (see Section 6, and for example, [HW15] and references therein).

A natural relaxation of the above codes is to require that S1 = . . . = Sn. This variant is called
weakly list-recoverable codes. A list-recoverable code is immediately weakly list-recoverable and
the converse also holds albeit with a minor loss in parameters: An (`, L)-weakly list-recoverable
code is an (`, nL)-list-recoverable code. Looking ahead, this loss will not make much of a difference
for us since our L will be polynomial in n.

For our purposes, we will need a list-recoverable code with α = 1. It is well-known (see e.g.,
[HIOS15]) that the notion of weakly list-recoverable codes is equivalent to unbalanced expanders
with a certain expansion property. The left set of vertices in the graph is {0, 1}v, the right set of
vertices is {0, 1}k and the left degree is n. This graph naturally induces a mapping C : {0, 1}v →
({0, 1}k)n which on input x ∈ {0, 1}v (left vertex) outputs n neighbors (right vertices). The mapping
C is (`, L)-list-recoverable iff for every set S ⊆ {0, 1}k of size larger than L of nodes on the right,
the set of left neighbors of S is of size larger than `.

The following instantiation of locally-recoverable codes based on the explicit construction of
unbalanced expanders of [GUV09] is taken (with minor modifications) from [HIOS15].

Theorem 1 ([GUV09, HIOS15]). For every α ≥ 1/2, and k < v, there exists a poly(n)-time com-
putable function C : {0, 1}v →

(
{0, 1}k

)n
for n = O(v ·k)2 which defines an (α, `, L)-list recoverable

code for every L ≤ 2k/2 and ` = Ω(L). The list-recovery algorithm runs in time poly(v, `).
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3.4 Cryptographic primitives

A function f , with input length m1(n) and outputs length m2(n), specifies for every n ∈ N a
function fn : {0, 1}m1(n) → {0, 1}m2(n). We only consider functions with polynomial input lengths
(in n) and occasionally abuse notation and write f(x) rather than fn(x) for simplicity. The function
f is computable in polynomial time (efficiently computable) if there exists an algorithm that for
any x ∈ {0, 1}m1(n) outputs fn(x) and runs in time polynomial in n.

A function family ensemble is an infinite set of function families, whose elements (families) are
indexed by the set of integers. Let F = {Fn : Dn → Rn}n∈N stand for an ensemble of function
families, where each f ∈ Fn has domain Dn and range Rn. An efficient function family ensemble
is one that has an efficient sampling and evaluation algorithms.

Definition 5 (Efficient function family ensemble). A function family ensemble F = {Fn : Dn →
Rn}n∈N is efficient if:

• F is samplable in polynomial time: there exists a probabilistic polynomial-time machine that
given 1n, outputs (the description of) a uniform element in Fn.

• There exists a deterministic algorithm that given x ∈ Dn and (a description of) f ∈ Fn, runs
in time poly(n, |x|) and outputs f(x).

Universal one-wayness. A one-way function is an efficiently computable function which is hard
to invert on a random output for any probabilistic polynomial-time machine. A universal one-way
hash function (UOWHF) is a family of compressing functions H for which any PPT adversary has
a negligible chance of winning in the following game: the adversary submits an x and gets back a
uniformly chosen h← H. The adversary wins if it finds an x′ 6= x such that h(x) = h(x′). UOWHF
were introduced by Naor and Yung [NY89] and were shown to imply secure digital signature
schemes. Rompel [Rom90] (see also [KK05]) showed how to construct UOWHF based on the
minimal assumption that one-way functions exist.

Definition 6 (Universal one-way hash functions (UOWHF)). An efficient function family ensemble
F = {Fn : {0, 1}m1(n) → {0, 1}m2(n)}n∈N is a universal one-way hash function family if the proba-
bility of every probabilistic polynomial-time adversary A to win in the following game is negligible
in n:

1. A, given 1n, submits x ∈ {0, 1}m1(n).

2. Challenger responds with a uniformly random f ← Fn.

3. A (given f) outputs x′ ∈ {0, 1}m1(n).

4. A wins iff x 6= x′ and f(x) = f(x′).

3.5 Commitment schemes

A commitment scheme is a two-stage interactive protocol between a sender S and a receiver R.
The goal of such a scheme is that after the first stage of the protocol, called the commit protocol,
the sender is bound to at most one value. In the second stage, called the opening protocol, the
sender opens its committed value to the receiver. We also require that the opening protocol allows
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to open only a single bit of the committed string. More precisely, a commitment scheme for a
domain of strings {0, 1}` is defined via a pair of probabilistic polynomial-time algorithms (S,R,V)
such that:

• The commit protocol: S receives as input the security parameter 1n and a string s ∈
{0, 1}`. R receives as input the security parameter 1n. At the end of this stage, S out-
puts decom1 . . . , decom` (the local decommitments) and R outputs com (the commitment).

• The local-opening procedure: V receives as input the security parameter 1n, a commitment
com, an index i ∈ [`], a local-decommitment decomi, and outputs either a bit b or ⊥.

A commitment scheme is public coin if all messages sent by the receiver are independent random
coins.

Denote by (decom1, . . . , decom`, com) ← 〈S(1n, s),R〉 the experiment in which S and R in-
teract with the given inputs and uniformly random coins, and eventually S outputs a list of `
decommitment strings and R outputs a commitment. The completeness of the protocol says that
for all n ∈ N, every string s ∈ {0, 1}`, every tuple (decom1, . . . , decom`, com) in the support of
〈S(1n, s),R〉, and every i ∈ [`], it holds that V(i, decomi, com) = si.

Below we define two security properties one can require from a commitment scheme. The
properties we list are statistical-hiding and computational-binding. These roughly say that after
the commit stage, the sender is bound to a specific value which remains statistically hidden for the
receiver.

Definition 7 (ε-binding). A commitment scheme (S,R,V) is (t(n), ε(n))-binding if for every prob-
abilistic adversary S∗ that runs in time at most t(n), it holds that

Pr

[
(i, decomi, decom

′
i, com)← 〈S∗(1n),R〉 and

⊥ 6= V(i, decomi, com) 6= V(i, decom′i, com) 6= ⊥

]
≤ ε(n)

for all sufficiently large n, where the probability is taken over the random coins of both S∗ and R.

Given a commitment scheme (S,R,V) and an adversary R∗, we denote by view〈S(s),R∗〉(n) the
distribution on the view of R∗ when interacting with S(1n, s). The view consists of R∗’s random
coins and the sequence of messages it received from S. The distribution is take over the random
coins of both S and R. Without loss of generality, whenever R∗ has no computational restrictions,
we can assume it is deterministic.

Definition 8 (ρ-hiding). A commitment scheme (S,R,V) is ρ(n)-hiding if for every (deterministic)
adversary R∗ and every distinct s0, s1 ∈ {0, 1}`, it holds that

∆
(
{view〈S(s0),R∗〉(n)}, {view〈S(s1),R∗〉(n)}

)
≤ ρ(n)

for all sufficiently large n ∈ N.

Complexity measures. The parameters of interest are (1) the number of rounds the commit
protocol requires, (2) the size of a commitment, and (3) the size of a local opening.

The size of a commitment is the size (in bits) of the output of S denoted above by com. A short
commitment is such that the size of com is much smaller than `. Preferably, the size of a short
commitment depends solely on n, but poly-logarithmic dependence on ` is also okay. The size of a
local opening is the maximum size of decomi (in bits). A protocol is said to support local opening
if this size depends only on n and at most poly-logarithmically on `.
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3.6 Fully black-box constructions

We give a definition of a fully black-box reduction from an MCRH to standard CRH. For this, we
generalize the definition of an MCRH to the setting of oracle-aided computation: The generation
and evaluation algorithms of an MCRH are given access to an oracle Γ relative to which they can
generate a description of a hash function and evaluate an index at a point. The adversary is also
given oracle access to Γ in the security game and has to find multiple collisions relative to it.

We focus here on k-MCRH functions with k = 3. The following definition of a “black-box
construction” is directly inspired by those of [AS16, HHRS15].

Definition 9. A fully black-box construction of a collision-resistant function family H′ from a
3-MCRH function family H mapping 2n bits to n bits consists of a pair of probabilistic polynomial-
time algorithms (H.G,H.E) and an oracle-aided polynomial-time algorithm M such that:

• Completeness: For any n ∈ N, for any 3-MCRH function family H and any function h
produced by h← H′H(1n), it holds that hH : {0, 1}2n → {0, 1}n.

• Black-box proof of security: For any collision resistant hash H′, any probabilistic polynomial-
time oracle-aided algorithm A, every polynomial p(·), if

Pr

[
x1 6= x2

hH(x1) = hH(x2)

∣∣∣∣ h← hH(1n)

(x1, x2)← AH(1n, h)

]
≥ 1

p(n)

for infinitely many values of n, then there exists a polynomial p′(·) such that

Pr

[
x1, x2, x3 are distinct and

h(x1) = h(x2) = h(x3)

∣∣∣∣ h← H(1n)

(x1, x2, x3)←MA,H(1n, h)

]
≥ 1

p′(n)

for infinitely many values of n.

4 Multi-Collision-Resistant Function Families

A a multi-collision-resistant hash function is a relaxation of standard collision-resistant hash func-
tion in which it is hard to find multiple collisions on the same value.

Definition 10 (Multi-Collision-Resistant Hashing). Let k = k(n) be a polynomial function. An
efficient function family ensemble H = {Hn : {0, 1}2n → {0, 1}n}n∈N is a (t, ε)-secure k-multi-
collision-resistant hash (MCRH) function family if for any probabilistic algorithm A that runs in
time at most t(n), for large enough n ∈ N:

Pr

[
x1, . . . , xk are distinct and

h(x1) = · · · = h(xk)

∣∣∣∣ h← Hn
(x1, . . . , xk)← A(h)

]
≤ ε(n).

We call such x1, . . . , xk that map to the same value under h a k-wise collision. Lastly, we say that
H is a secure k-MCRH if it is (p, 1/p)-secure for every polynomial p(·).
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The compression ratio. In the definition above we assume that the hash function compresses
its input from 2n bits into n, where the choice of the constant 2 is somewhat arbitrary. Our choice
of linear compression rate (in contrast to, say, a polynomial compression rate) models the basic
building blocks in most standards of cryptographic hash functions, such as the ones published by
NIST (e.g., most of the SHA-x family).

When considering k-MCRH functions, a compression that eliminates less than log k bits is not
of interest, since such a function exists unconditionally, say by chopping (there simply will be no
k-wise collision).

The factor two compression is somewhat arbitrary as any k-MCRH that compresses (1 + ε)n
bits into n bits can be translated into a (k1/ε)-MCRH that compresses 2n bits into n (e.g. via the
Merkle-Damg̊ard iterated construction [Mer89b, Dam89]). It is possible to assume an even stronger
hash function that compresses by a polynomial factor, say n2 bits into n bits (and this is sometimes
useful; see the paragraph in the end of Section 6 for an example), but this is a strong assumption
that we prefer to avoid.

For standard collision resistant hash function (with k = 2), it is known that composition allows
to translate hash functions that compress by one bit into hash functions that compress by any
polynomial factor (from n bits into nδ bits for any constant δ > 0). Obtaining a similar result
for k-MCRH functions (with k > 2) without significantly compromising on the value of k in the
resulting family is an open problem. In Section 6 we give a transformation in which the resulting
family is (kO(logn))-MCRH.

Public vs. private coins. Our definition above is of a private-coin MCRH, namely, the coins
used by the key-generation procedure are not given to the collision finder, but are rather kept
secret. One can define the stronger public-coin variant in which the aforementioned coins are given
to the attacker. The weaker notion is enough for our applications. There are (other) cases where
this distinction matters, see Hsiao and Reyzin [HR04].

5 Tree Commitments from Multi-CRH

We show how to build a commitment scheme which is computationally-binding, statistically-hiding,
round-efficient, has short commitments, and supports local opening. We refer to Section 3.5 for the
definition of a commitment scheme, computational-binding, statistical-hiding, and the efficiency
measures of commitments we consider below.

Theorem 2. Assume that there exists a (t, ε)-secure k-MCRH H for a polynomial k = k(n) in
which every function can be described using ` = `(n) bits. For any parameters d = d(n) and
1 < z ≤ n/2d, there is commitment protocol for strings of length 2d ·n with the following properties:

1. (t′, ε′)-computationally-binding for ε′ = O
(

2
d

log(n/(zd)) ·
(

k2

2z−d
+ ε
))

and t′ = O
(

ε′2·t
nk2d·p(n)

)
,

where p(·) is some fixed polynomial function.

2. 2−n-statistically-hiding.

3. takes O
(

d
log(n/(zd))

)
rounds.

4. the commitment has length O (d`+ dn).
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5. supports local opening of size O
(
d2n
)
.

There are various ways to instantiate z compared to n and d, offering various trade-offs between
security and efficiency. We focus here on the case in which we wish to commit on a polynomially-
long string, that is, d = c log n for a constant c ∈ N. In the following the big “O” notation hides
constants that depend on c. Setting z = n1−δ for a small constant δ > 0, the parameters of our
commitment scheme are:

1. ε′ = O
(

k2

2n1−δ
+ ε
)

and t′ = ε′2·t
poly(n) .

2. 2−n-statistically-hiding.

3. takes O(1) rounds.

4. the commitment has length O(`+ n log n).

5. supports local opening of size O(n log2 n).

This setting is very efficient in terms of rounds (it is a constant that depends solely on c) but

suffers in security loss (the resulting scheme is at most 2−n
1−δ

-secure). In the regime where the
MCRH is (p, 1/p)-secure for every polynomial p, our resulting scheme is as secure (i.e., (p, 1/p)-
computationally-binding for every polynomial p).

In case ε is very small to begin with (e.g., much smaller than 2−n
1−δ

), we can use set z to be
z = n/(2c log n) for a small constant δ > 0. The resulting commitment scheme satisfies:

1. ε′ = O
(
nc−1 ·

(
k2

2n/ logn + ε
))

and t′ = t·ε′2
poly(n) .

2. 2−n-statistically-hiding.

3. takes O(log n) rounds.

4. the commitment has length O(` log n+ n log n).

5. supports local opening of size O(n log2 n).

This setting has a logarithmic number of rounds, but the security loss is much smaller than before
(only of order 2−n/ logn).

Roadmap. Our protocol is constructed in two main steps. In the first step (given in Section 5.1)
we construct a protocol with the above properties (i.e., Theorem 2) except that it is not statistically
hiding (but is computationally-binding, takes few rounds, has short commitment, and supports
local opening). In the second step (given in Section 5.2), we show how to generically bootstrap our
commitment scheme, into one that is also statistically-hiding. This reduction is both efficient and
security preserving with respect to all parameters.
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5.1 A computationally-binding scheme

The main ingredients in our first protocol are an MCRH (Definition 10) and a limited-independent
family (Definition 2):

• A (t, ε)-secure k-MCRH for a polynomial k = k(n):

H = {h : {0, 1}2n → {0, 1}n}.

We assume that every h ∈ H can be described using ` = `(n) bits.

• A family of pairwise-independent functions mapping strings of length 2n to strings of length
z:

G = {g : {0, 1}2n → {0, 1}z}.

Recall that every g ∈ G can be described using 4n bits.

Description of the protocol. Our protocol relies on the notion of a Merkle hash tree. This is
a method to hash a long string into a short one using a hash function with fixed input length. Let
x ∈ {0, 1}` be a string. A Merkle hash tree is a binary tree T , associated with a string x ∈ {0, 1}`
and a hash function h : {0, 1}2n → {0, 1}n. Let x = x1, . . . , x2d be the decomposition of x into 2d

blocks, each of length n. Every node v in the tree has a sibling denoted by N(v) (we assume that
the sibling of the root is ⊥). Every node v in the tree is labeled with a string πv ∈ {0, 1}n. The
tree has 2d leaves v1, . . . , v2d and the label of vi are set to πvi = xi. The labels of the rest of the
nodes are computed iteratively from the leaves to the root. Given a node v whose both children
u1, u2 are labeled with πu1 , πv2 , we set the label of v to be πv = h(πu1 , πv2). The node root has
label y and we call it the root-hash.

Given a Merkle hash tree for a string x = x1 . . . x2d ∈ {0, 1}2
d·n, let pathi be a set of nodes in

the tree including the nodes on the path from xi to the root of the tree and all their siblings along
this path. We further let Pi = {πv | v ∈ pathi} be the set of all the labels of the nodes in the set
pathi (the labels of the nodes on the path from xi to the root of the tree and the labels of their
siblings). Each set pathi contains 2d nodes and thus the description size of each Pi is 2dn bits.

The commitment protocol (S,R,V) specifies how to commit to a string of length 2dn. Our
protocol uses a Merkle hash tree with a function h supplied by the receiver and a root hash replied
by the sender. In the next round, the receiver chooses a limited-independence function g with z
bits of output (z is a tunable parameter) and sends it to the sender. The sender then computes
g on the hash values of every pair of sibling nodes in the Merkle hash tree (i.e., g(πv ◦ πN(v))).
Then it concatenates all of these values into one long string s′. Then, the protocol continues in a
recursive manner on this string s′. The length of s′ is roughly z2d bits (there are 2d internal nodes
in the tree and each requires z bits) which is still too long to send as is, however is smaller than the
original string s. This allows us to apply the same ideas recursively with the base case, committing
on a string of length n, being the trivial protocol of sending the string as is. Choosing parameters
carefully, we balance between the efficiency and security of our resulting commitment.

The commitment protocol for strings of length 2dn for d ≥ 1 is described in Figure 1.
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The commit protocol between S and R

The sender S has string s = s1 . . . s2d where si ∈ {0, 1}n for all i ∈ [2d].

1. R ⇒ S: Sample h← H and send h.

2. S ⇒ R: Compute a Merkle hash-tree T of s using h and send the root-hash y. Let πv be
the hash value in the tree for node v ∈ T , and let Pi =

{
πv ◦ πN(v)

}
v∈pathi

for all i ∈ [d].

3. R ⇒ S: Sample g ← G and send g.

4. S ⇔ R: Recursively interact to commit on the string s′ = u1 ◦ . . . ◦ u2d , where ui ={
g(πv ◦ πN(v))

}
v∈pathi

. Notice that |s′| = 2d ·dz = 2d
′
n, where d′ = d− (log n− log z− log d).

Denote the outputs of the sender and receiver by

((D1, . . . , D2d′n), C)← 〈S(1n, s′),R〉.

The output of each party

• R’s output: The receiver R outputs com = (h, y, g, C).

• S’s output: The sender S outputs (decom1, . . . , decom2d), where decomi is defined as follows:
Let i′ be the index in s′ of the block containing ui. Set decomi = (si, Pi, Di′).

a

The local-opening procedure V

The verifier V has an index i ∈ [2d], a decommitment decomi, and a commitment com.

1. Verify that si appears in Pi in the right location.

2. Verify that the values in Pi are consistent with respect to h and y.

3. Compute ui =
{
g(πv ◦ πN(v))

}
v∈pathi

, where Pi =
{
πv ◦ πN(v)

}
v∈pathi

. Recursively compute

u′i ← V(i′, Di′ , C) and verify that u′i = ui.

4. If all tests pass, output si. Otherwise, output ⊥.

aWe assume without loss of generality that each ui is contained in a single block (otherwise, we pad the string).

Figure 1: Our commitment protocol for strings of length 2d · n.

Rounds and communication analysis. Denote by Size(2dn), Rounds(2dn), and Decom(2dn),
the total size of the commitment, the number of rounds of the commit stage, and the size of a local
opening on a string of length 2dn, respectively. The commitment consists of a description of a hash
function h ∈ H (whose size is denoted by `(n)), the root-hash value of a Merkle hash-tree (which
is of size n), a function g ∈ G (which is of size 4n), and the recursive commitment. The opening
for an index i ∈ [2d] consists of a block (of size n), the full i-th path (which consists of 2dn bits),
and the recursive opening.
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Recall that the protocol for committing on strings of length 2dn uses (recursively) a protocol
for committing on strings of length 2d

′
n, where

d′ = d− (log n− log z − log d) = d− log(n/(zd)).

Moreover, the commitment protocol on strings of length n has communication complexity n, consists
of a single round and the opening is n bits. Thus, the total number of recursive call will be⌈

d

log(n/(zd))

⌉
.

We get that the total number of communication rounds is bounded by

Rounds(2dn) ≤ 3 + Rounds(2d
′
n) ≤ · · · ≤

⌈
3d

log(n/(zd))

⌉
+O(1)

Actually, since each recursive call consists of three messages (except the base of the recursion), we
can join the last round of every iteration with the first round in the next one. Therefore, we can
get the improved bound

Rounds(2dn) ≤ 2d

log(n/(zd))
+O(1)

The size of a commitment is bounded by

Size(2dn) ≤ `(n) + 5n+ Size(2d
′
n)

≤
⌈
d · (`(n) + 5n)

log(n/(zd))

⌉
≤ d · (`(n) + 5n).

The size of a local opening is bounded by

Decom(2dn) ≤ n+ 2dn+ Decom(2d
′
n)

≤
⌈

3d2n

log(n/(zd))

⌉
≤ 3d2n.

Computational-binding. We show that our protocol is (td, εd)-computationally-binding for
strings of length 2d · n. We assume that the k-MCRH is (t, ε)-secure and that the internal protocol
for strings of length 2d

′
n is (td′ , εd′)-computationally-binding. We set εd to satisfy the following

recursive relation:

εd =
4k2

2z−d
+ 4ε+ 4εd′ .

Plugging in the number of rounds our recursion takes, we get that

εd ≤ 2
6d

logn−log z−log d ·
(

4k2

2z−d
+ 4ε

)
.

Let S∗ be a (cheating) adversary that runs in time td and breaks the binding of the protocol,
namely, with probability εd, S∗ is able to (locally) open the commitment in two ways without
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getting caught. That is, after the commitment stage, there is an index i ∈ [2d] for which the
adversary S∗ is able to open the corresponding block in two different ways with probability εd:

Pr
S∗,R

[
(i, decom0

i , decom
1
i , com)← 〈S∗(1n),R〉 and

⊥ 6= V(i, decom0
i , com) 6= V(i, decom1

i , com) 6= ⊥

]
≥ εd, (1)

where the probability is taken over the random coins of both S∗ and R. The randomness of R
consists of uniformly chosen functions h← H and a function g ← G, so we can rewrite Equation (1)
as

Pr
S∗,h←H,
g←G

[
(i, decom0

i , decom
1
i , com)← 〈S∗(1n), (h, g)〉

and ⊥ 6= V(i, decom0
i , com) 6= V(i, decom1

i , com) 6= ⊥

]
≥ εd. (2)

We will show how to construct an adversary A that runs in time at most t and finds a k-wise
collision relative to a randomly chosen hash function h← H. The procedure A will run the protocol
〈S∗(1n), (h, g)〉 with the given h and a function g chosen uniformly at random and get (with good
probability) two valid and different openings for some index i. Then, A will partially rewind the
adversary S∗ to the stage after he received the hash function h and replied with the root hash y
(of s), and execute it again but with a fresh function g ← G. With noticeable probability, this will
again result with two valid openings for some (possibly different) index i. Repeating this process
enough times, A will translate a large number of different (yet valid) decommitments into a large
number of collisions relative to h. The fact that these collisions are distinct (with good probability)
will follow from the fact that the g’s are sampled independently in every repetition.

We introduce some useful notation. Recall that S∗ is the sender that is able to locally open its
commitment in two different ways. We slightly abuse notation and also think of S∗ as a distribution
over senders (this is without loss of generality since we can assume it chooses all of its randomness
ahead of time). For an index i∗ ∈ [R], string y ∈ {0, 1}n, we denote by S∗|h,y a distribution over
all senders S∗ in which the first message received is h and the reply is the root-hash y. For a string
y that is sampled by choosing h ← H and running S∗ for one round to obtain y, the adversary
S∗|h,y is uniformly chosen from all possible continuations of the adversary S∗ given these first
two messages. Given this notation, we can write the adversary S∗ as a pair of two distributions
(Yh,S∗|h,Yh), where Yh is the distribution of the first message S∗ sends in response to h, and S∗|h,Yh
is the distribution over the rest of the protocol.

In a high-level, our algorithm A maintains a binary tree of depth d and 2d leaves, in which each
node v is associated with a set of labels Sv. At the beginning, each such set Sv is initialized to be
empty. The algorithm A uses S∗ to get many valid pairs of openings decom0

i and decom1
i for an

index i:

decom0
i = (s0

i , P
0
i , D

0
i′) and decom1

i = (s1
i , P

1
i , D

1
i′)

that are consistent with a commitment:

com = (h, y, g, C).

Since both openings are valid and si 6= s′i, it must be that (1) s0
i (resp., s1

i ) appears in P 0
i (resp.,

P 1
i ) and (2) P 0

i and P 1
i are consistent with the root-hash y. Thus, it must be that P 0

i 6= P 1
i and

there is a node v on the path pathi that is the first (going from the root to the leaves) non-trivial
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collision between P 0
i and P 1

i . Now, by the induction hypothesis, the probability that S∗ cheats in
the internal decommitment is small, and since g is sampled uniformly at every iteration, we show
that it must be a new collision that did not appear before. We will identify the location of the
collision at a node v and add this collision to the set Sv. See Figure 2 for a precise description of
A.

The adversary A(1n, h):

1. For all nodes v, set Sv = ∅ to be the empty set.

2. Send to S∗ the function h and receive a root-hash y ∈ {0, 1}n.

3. Do the following T = 50nk2d/ε2d times:

(a) Sample g ← G.

(b) Obtain (i, decom0
i , decom

1
i , com)← 〈S∗|h,y(1n), g〉.

(c) Parse decom0
i =

(
s0
i , P

0
i , D

0
i′
)

and decom1
i =

(
s1
i , P

1
i , D

1
i′
)
. Parse com = (h, y, g, C).

(d) If any of the following occurs, continue to the next iteration:

i. ⊥ 6= V(i, decom0
i , com) 6= V(i, decom1

i , com) 6= ⊥.

ii. ⊥ 6= V(i′, D0
i′ , C) 6= V(i′, D1

i′ , C) 6= ⊥.

(e) Let v the node of the first (from the root to the leaves) non-trivial collision between
P 0
i and P 1

i . Let X = π0
v , π

0
N(v) and Y = π1

v , π
1
N(v) be the values of the collision for P 0

i

and P 1
i , respectively. Add X and Y to Sv.

(f) If there exists a node v for which |Sv| ≥ k, then output Sv and halt.

4. Output ⊥.

Figure 2: The algorithm A to find a k-wise collision in H.

The success probability of A. We say that h ∈ H and y ∈ supp(Yh) are “good” if it holds that

Pr
S∗|h,y ,g←G

[
(i, decom0

i , decom
1
i , com)← 〈S∗|h,y(1n), g〉 and

⊥ 6= V(i, decomi, com) 6= V(i, decom′i, com) 6= ⊥

]
≥ εd

2
. (3)

By an averaging argument, Equation (2) implies that there are many such “good” (h, y) pairs,
namely:

Pr
h←H,y←Yh

[
Pr

S∗|h,y ,g←G

[
(i, decom0

i , decom
1
i , com)← 〈S∗|h,y(1n), g〉 and

⊥ 6= V(i, decomi, com) 6= V(i, decom′i, com) 6= ⊥

]
≥ εd

2

]
≥ εd

2
. (4)

For the rest of the proof we condition on the event that A sampled an h and got back a y such
that (h, y) are good.

We say that iteration j of A is successful A passes step 3d and reaches step 3e: if S∗h,y outputs

(at Item 3b) a valid pair of openings (i, decom0
i , decom

1
i , com) that pass the tests. We denote this
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event by SUCi. Recall that in every successful iteration, A adds X and Y to the set Sv for some
node v. Notice that Sv is a set so it does not contain duplicate elements. Since we condition on
(h, y) being good and cheating in the internal commitment is possible with probability at most εd′ ,
we have that

Pr
A

[SUCj ] ≥
εd
2
− εd′ . (5)

We say that iteration j is effective if for the chosen g ∈ G (at Item 3a) it holds that ∀v,∀X 6=
Y ∈ Sv : g(X) 6= g(Y ). We denote this event by EFFi. Since g is pairwise independent, there are
2d internal nodes in the tree, and at most k2 pairs in each node (since |Sv| ≤ k), it holds that

Pr
A

[EFFi] = 1− Pr
A

[∃v,∃X 6= Y ∈ Sv : g(X) = g(Y )] ≥ 1− 2d · k2

2z
. (6)

Combining Equations (5) and (6) together with the inequality that εd ≥ 4k2/2z−d + 4εd′ , we
get that an iteration i is both successful and effective with probability at least

Pr
A

[SUCi and EFFi] ≥ 1− Pr
A

[¬SUCi]− Pr
A

[¬EFFi] ≥
εd
2
− εd′ −

k2

2z−d
≥ εd

4
. (7)

We observe that every iteration which is both successful and effective, increases the size of the
set Sv for some node v. Indeed, let X∗ and Y ∗ be the pair added to some set Sv in this iteration.
Since the iteration is successful it holds that X∗ 6= Y ∗ and furthermore these values are consistent
with the commitment, namely, g(X∗) = g(Y ∗) for the g that was chosen in this iteration. However,
since the iteration is effective, there are no other two values X,Y ∈ Sv that map to the same value
relative to g. This means that either X∗ or Y ∗ were not in the set Sv before.

To complete the proof we have to show that (with high probability) there are at least k · 2d
iterations that are both successful and effective. If this happens, there is a node v such that |Sv| ≥ k
and this means that we found a k-wise collision. Denote by Xi the event that the i-th iteration
is both successful and effective. Denote by Yn =

∑n
i=1(Xi − E[Xi | Y0, . . . , Yi−1]) and Y0 = 0. We

observe that the sequence Y0, Y1, . . . is a martingale with a bounded difference. By linearity of
expectation and the law of total expectation:

E[Yn | Y0, . . . , Yn−1] = E[Yn−1 +Xn −E[Xn | Y0, . . . , Yn−1] | Y0, . . . , Yn−1] = Yn−1

and |Yi − Yi−1| ≤ 1 for every i ∈ [n]. By Equation (7):

T∑
i=1

E[Xi | Y0, . . . , Yi−1] ≥ T · εd
4
.

Since T = 50nk2d/ε2d, then both Tε2d/50 ≥ n and Tεd/n ≥ k2d. Thus, by the Azuma bound
(see e.g., [AS08, Theorem 7.2.1]):

Pr
A

[
T∑
i=1

Xi < k2d

]
= Pr
A

[
T∑
i=1

Xi −
T∑
i=1

E[Xi | Y0, . . . , Yi−1] < k2d −
T∑
i=1

E[Xi | Y0, . . . , Yi−1]

]
≤ Pr
A

[YT < −(Tεd/4− Tεd/n)]

≤ Pr
A

[YT < −Tεd/5] = Pr
A

[
YT < −(

√
Tεd/5) ·

√
T
]

≤ 2−Tε
2
d/50 ≤ 2−n.

22



Summarizing the proof, since εd > 4ε, we get that A finds a collision in h← H with probability

Pr
h,A

[A(1n, h) outputs a k-wise collision] = Pr
h,A

[∃v : |Sv| ≥ k]

≥ Pr
h,A

[
(h, y) are good ∧ k · 2d successful and effective iterations

]
≥ εd

2
·
(

1− 1

2n

)
≥ εd

4
> ε,

The running time of A is bounded by T executions of S∗ and a fixed polynomial factor p(n)
(that bounds the time it takes to sample g ∈ G and the additional simple operations A makes
including the evaluation of h inside V). In total, since S∗ runs in time t′, then A’s running time is
at most

T · t′ · p(n) =
50nk2d · p(n)

ε2d
· t′ ≤ t.

Remark 1 (Optimization I: recycling h). In the recursive step of our protocol, we can use the same
hash function h as in the first step of the recursion. This saves sending its description (which is of
size `(n) at every iteration and the resulting size of a commitment is (O(`(n) + d2n).

Remark 2 (Optimization II: almost-universal hashing). In our protocol we used a pairwise in-
dependent hash function whose description size is proportional to their input size. This costs us
in communication. We could save communication by using almost-universal hash functions whose
description size is proportional to their output size.

5.2 Getting statistical-hiding generically

We show how to transform any short commitment scheme Π that is computationally binding (but
perhaps not hiding) to a new scheme Π′ that is short, computationally binding and statistically
hiding. Moreover, if Π admits a local-opening, then Π′ admits a local-opening as well. Our trans-
formation is information theoretic, adds no additional assumptions and preserves the security, the
number of rounds and communication complexity of the original scheme (up to a small constant
factor).

High-level idea. The underlying idea of our transformation is to leverage the fact that the
commitment protocol Π is short. Specifically, when committing to a long string s ∈ {0, 1}nc for
some large c ∈ N, the communication is very short: Λ(n) bits for a fixed polynomial function.13

Thus, when we commit to s, a large portion of s is not revealed to the receiver by the protocol so
this part of s is statistically hidden. The question is how to make sure that all of s is hidden.

Our solution takes advantage of the fact that some fraction of s remains hidden. We commit on a
random string r that is independent of s and slightly longer. Then, we extract from r the remaining
randomness r′ given the communication of the protocol using a strong extractor (see Section 3.2).
Finally, we commit on the string s ⊕ r′. We need to show that this scheme is computationally-
binding and statistically-hiding. The former follows from the computational-binding of the original

13Our protocol from Section 5.1 has an additional linear dependence on c, but we will ignore this in this section to
simplify notation.
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scheme. The latter follows from the fact that r′ is completely hidden to the receiver and it masks
the value of s.

The commitment protocol (S,R,V) that we describe uses the underlying commitment protocol
(Ŝ, R̂, V̂) (which is not statistically-hiding) and a family of pairwise-independent functions

G = {g : {0, 1}8Λ(n) → {0, 1}}.

Recall that each function g ∈ G can be represented with 8Λ(n) bits.
In Section 5.1, we presented a commitment scheme that has also linear dependence on c. Specif-

ically, the length of a commitment there is at most

(c− 1) log n · (`(n) + 5n),

where `(n) is the size of the descriptions of a hash function. For simplicity of presentation in this
section we suppress this linear term in c and assume that Λ(n) is independent of c. The precise
description of the protocol is given in Figure 3.

Computational-binding. Assume that after the commitment stage, there is an index i ∈ [N ]
for which a malicious sender S∗ is able to open the corresponding bit in two different ways with
probability ε = ε(n):

Pr
S∗,R

[
(i, decomi, decom

′
i, com)← 〈S∗(1n),R〉 and

⊥ 6= V(i, decomi, com) 6= V(i, decom′i, com) 6= ⊥

]
≥ ε,

where the probability is taken over the random coins of both S∗ and R. We sketch how to use
this malicious sender to design a malicious sender Ŝ∗ that breaks the computational binding of the
basic protocol with R̂.

Recall that decomi = (r̂∗i , ĝ
∗
i , û
∗
i ) and decom′i = (r̂∗i

′
, ĝ∗i
′
, û∗i
′
) and the fact that V succeeds and

outputs non-⊥ and different values, implies that

ĝ∗i (r̂
∗
i )⊕ û∗i 6= ĝ∗i

′(r̂∗i
′)⊕ û∗i

′.

Thus, either ĝ∗i (r̂
∗
i ) 6= ĝ∗i

′(r̂∗i
′) or û∗i 6= û∗i

′. This means that one of the following three must occur:

(1) r̂∗i 6= r̂∗i
′, (2) ĝ∗i 6= ĝ∗i

′, or (3) û∗i 6= û∗i
′. Let us assume that the first event occurs and the rest

of the cases are handled analogously. In this case, our malicious sender Ŝ∗ will simply simulate
the first step of S∗ (namely, the part in which it commits on a random string r1). The rest of
the protocol will be executed with a simulation of R, without real interaction. As a result, with
probability ε, the output of 〈Ŝ∗(1n+N ), R̂〉 results with a single commitment and two openings
which V̂ will accept as valid. This is a contradiction to the computational binding of the basic
protocol which implies that ε cannot be noticeable.

In conclusion, if the original protocol is (t, ε)-secure, our new protocol is (t, ε/3)-secure.

Statistical-hiding. We will show that for every (deterministic) adversary R∗ and every distinct
s0, s1 ∈ {0, 1}N , the ensembles {view〈S(s0),R∗〉(n)} and {view〈S(s1),R∗〉(n)} have statistical distance
at most ρ(n) = 2−n for all sufficiently large n ∈ N.

Recall that the view of R∗ consists of three parts where the first two parts are independent
of the message and the last part depends on it. For a message s, denote the (distribution of) the
view of R∗ by a triple of random variables (Rview, Gview, Eview

s ). We further denote by (R,G,Es)
the distribution over (r1, r2, r3). Using this notation, we have that
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The statistically-hiding commit protocol between S and R

The sender S has string s ∈ {0, 1}N .

1. S ⇔ R: Interact according to (Ŝ, R̂) to obtain a commitment on a random string r1 =
r1 ◦ . . . ◦ rN ← {0, 1}8Λ(n)N . Denote the outputs of the sender and receiver by

((decom1
1, . . . , decom

1
N ), com1)← 〈S(1n, r1),R〉,

where decom1
i corresponds to the opening of the whole string ri.

2. S ⇔ R: Interact according to (Ŝ, R̂) to obtain a commitment on a string r2 = g1 ◦ . . .◦gN ∈
{0, 1}8Λ(n)N , where gi ← G is sampled at random. Denote the outputs of the sender and
receiver by

((decom2
1, . . . , decom

2
N ), com2)← 〈S(1n, r2),R〉,

where decom2
i corresponds to the opening of the whole string gi.

3. S ⇔ R: Interact according to (Ŝ, R̂) to obtain a commitment on the string r3 = s⊕(g1(r1)◦
. . . ◦ gN (rN )). Denote the outputs of the sender and receiver by

((decom3
1, . . . , decom

3
N ), com3)← 〈S(1n, r3),R〉,

where decom3
i corresponds to the opening of the bit si ⊕ gi(ri).

The output of each party

• S: The sender S outputs (decom1, . . . , decomN ), where

decomi =
(
decom1

i , decom
2
i , decom

3
i

)
• R: The receiver R outputs com =

(
com1, com2, com3

)
.

The local-opening procedure V

The verifier V has an index i ∈ [N ], a decommitment decomi, and a commitment com.

1. Execute r̂∗i ← V̂(i, decom1
i , com

1).

2. Execute ĝ∗i ← V̂(i, decom2
i , com

2).

3. Execute û∗i ← V̂(i, decom3
i , com

3).

4. If all executions succeed (output non-⊥), output ĝ∗i (r̂
∗
i ) ⊕ û∗i , where ĝ∗i is treated as a

description of a hash function in G. Otherwise, output ⊥.

Figure 3: A statistically-hiding commitment protocol.
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1. R = R1, . . . , RN , where each Ri is the uniform distribution over 8Λ(n) strings.

2. G = G1, . . . , GN , where each Gi is the uniform distribution over pairwise independent func-
tions samples from G. Each such Gi is supported on strings of length 8Λ(n).

3. Es = G1(R1)⊕ s, . . . , GN (RN )⊕ s.

Since each Ri is essentially the uniform distribution over strings of length 8Λ(n), it holds that
H∞(R) = 8Λ(n). Moreover, since the whole communication of the protocol is bounded by 3Λ(n),
by Proposition 2, we have that for every i ∈ [N ]:

H∞(Ri | (Rview, Gview, Eview
s )) = 8Λ(n)− |(Rview, Gview, Eview

s )|
≥ 8Λ(n)− 3Λ(n) = 5Λ(n).

Thus, by the leftover hash lemma (see Proposition 1), for every i ∈ [N ]:

∆((Rview, Gi, Gi(Ri)), (R
view, Gi, U)) ≤ 2−2n,

where U is the uniform distribution on a single bit. Moreover, for every s ∈ {0, 1}N :

∆((Rview, Gi, U), (Rview, Gi, U ⊕ s)) = 0.

Therefore, by a triangle inequality, for every two different messages s0, s1 ∈ {0, 1}N ,

∆((Rview, Gi, Gi(Ri)⊕ s0), (Rview, Gi, Gi(Ri)⊕ s1)) ≤ 2 · 2−2n.

Taking a union bound over the different i’s, we get that

∆({view〈S(s0),R∗〉(n)}, {view〈S(s1),R∗〉(n)})
= ∆((Rview, Gview, Eview

s ), (Rview, Gview, Eview
s ))

≤ N ·∆((Rview, Gi, Gi(Ri)⊕ s0), (Rview, Gi, Gi(Ri)⊕ s1))

≤ 2N · 2−2n ≤ 2−n.

Efficiency. The (1) size of a commitment, (2) of a decommitment, or (3) or the number of rounds
in (S,R,V) are all the same as that of (Ŝ, R̂, V̂) up to a multiplicative factor of 3, respectively.

6 Four-Round Short Commitments from Multi-CRH

We show how to construct a 4-round short commitment protocol based on a family of k-MCRH
functions. Compared to the protocol from Section 5, this protocol has no local opening and is
secure only for constant values of k. However, it consists only of 4 rounds. Furthermore, using
techniques similar to Section 5.2 the protocol can be made also statistically-hiding which suffices
for some applications such as statistical zero-knowledge arguments [BCC88].

We discuss methods that allow us to prove security even for polynomial values of k towards the
end of the section.

Theorem 3. Assume that there exists a (t, ε)-secure k-MCRH H for a constant k in which every
function can be described using ` = `(n) bits. For any c ∈ N, there is a commitment protocol for
strings of length nc with the following properties:

26



1. (t′, ε′)-computationally-binding for ε′ = 4ε + O(kc logn)
2n and t′ = t·ε′2

O(kc logn)·p(n)
, where p(·) is

some fixed polynomial function.

2. takes 4 rounds (i.e., 4 messages).

3. the commitment has length `+O (n).

Proof. We describe a commitment protocol for a string s = s1 . . . s2d of length 2d · n for d =
(c− 1) · log n. We show that our protocol is computationally-binding and getting statistical-hiding
can be done using the generic transformation from Section 5.2. Our protocol uses a Merkle hash-
tree as described in Section 5. The main observation made in this construction is that before
using the Merkle hash-tree we can use a special type of encodings, called list-recoverable codes

(see Definition 4) to get meaningful security. Let C : {0, 1}2dn → ({0, 1}2n)2d
′

be an (`, L)-list-
recoverable code for ` = kd, L = O(kd), and d′ = O(log n) with some large enough hidden constants.
Such a code exists by Theorem 1 (with efficient encoding and list-recovery). Let G be a family of
(2−n)-almost pairwise-independent functions mapping strings of length 2dn to strings of length n
(see Definition 3):

G = {g : {0, 1}2dn → {0, 1}n}.

Recall that every g ∈ G can be described using at most 2n+ log(2dn) + log(2n) ≤ 4n bits.
The commitment protocol for a string s = s1 . . . s2d of length 2d · n for d = (c− 1) · log n works

as follows. The receiver first sends a description of an h ← H which is a k-MCRH to the sender.
The sender then computes the encoding C(s) of s and computes the Merkle hash tree of s′ = C(s)
(and not of s). The sender sends the root of the hash tree y to the receiver. The receiver replies
with a hash function g ← G and finally the sender replies with u = g(s). The opening is done is
the natural way by letting the sender reveal s to the receiver who then simulates the computation
and makes sure that the messages y and u are consistent. See Figure 4 for the precise description.

The commit protocol between S and R

The sender S has string s = s1 . . . s2d where si ∈ {0, 1}n for all i ∈ [2d].

1. R ⇒ S: Samples h← H and sends h.

2. S ⇒ R: Compute s′ = C(s) and a Merkle hash-tree T of s′ using h and send the root-hash
y.

3. R ⇒ S: Sample g ← G and send g.

4. S ⇔ R: Send u = g(s) to the receiver

The output of the receive is com = (h, y, g, u).

The verifier V gets the input s simulates the sender to verify y and u.

Figure 4: Our four-round commitment protocol for strings of length 2d · n.
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By the description of the protocol, it is easy to see that the protocol consists of 4-rounds and
has communication complexity of `+ n+ 4n+ n = `+ 6n bits. Also, it is easy to see that for the
honest sender the verification succeeds with probability 1. We proceed with the proof of security.

Assume that there is a malicious sender S∗ that runs in time t′ = t · ε′2/(L · p(n)) (for some
polynomial p(·)) and is able open a commitment in two different ways with probability ε′ = ε′(n) ≥
4ε+ 10L/2n:

Pr
S∗,R

[
(x, x′, com)← 〈S∗(1n),R〉 and

⊥ 6= V(x, com) 6= V(x′, com) 6= ⊥

]
≥ ε′,

where the probability is taken over the random coins of both S∗ and R. We sketch how to use this
malicious sender to come up with more than k values that collide relative to the MCRH h. The
randomness of R consists of uniformly chosen functions h ← H and a function g ← G, so we can
rewrite the above equation as

Pr
S∗,h←H,
g←G

[
(x, x′, com)← 〈S∗(1n), (h, g)〉

and ⊥ 6= V(x, com) 6= V(x′, com) 6= ⊥

]
≥ ε′. (8)

The high-level idea is that an adversary that succeeds in the task above must succeed in the task
for a random h and a bunch of different g’s. Simulating S∗ on sufficiently many g’s (but the same
h) we obtain a list of different x’s that map to the same value under h(·). Then, one of two must
happen: (1) either the adversary is able to create many different consistent codewords using few
options per coordinate, or (2) there is one entry with many different values. Using the properties
of the list-recoverable code we rule-out option (1). We are then left with option (2) which means
that there must be a location where the adversary uses many openings which translates to a k-wise
collision relative to h for some node on the path between the location and the root.

We formalize this intuition next by defining an algorithm A that gets as input 1n and h ← H
and finds a k-wise collision. We say that h ∈ H is Good if

Pr
S∗,g←G

[
(x, x′, com)← 〈S∗(1n), (h, g)〉

and ⊥ 6= V(x, com) 6= V(x′, com) 6= ⊥

]
≥ ε′

2
.

Thus, by averaging,

Pr
h←H

[h is Good] ≥ ε′

2
.

Our procedure A simulates the receiver in the protocol and then iteratively partially rewinds
the sender with different choices of g.
The algorithm A(1n, h):

1. Run S∗’s first part with the hash function h to obtain a root hash y.

2. Initialize a set X = ∅.

3. Do the following T = 100n · L/ε′2 times:

(a) Sample a fresh g ← G.

(b) Run S∗’s second part (by rewinding) given the new hash function g to obtain a value u.
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(c) Open the commitment to get a values x and x′ and add them to the set X.

(d) If the set X contains more than L values, quit the loop.

4. Find a coordinate for which there are ` different values in the codewords of messages in X .
In this coordinate, traverse the path to the root of the hash tree and find a location that has
more than k values that has to the same value. Output these values.

The running time of A is polynomial in n, L = O(kd), and 1/ε′. Altogether, since k is constant,
d = O(log n), and 1/ε′ is a fixed polynomials in n, the running time of A is a fixed polynomial in
n. We show that the algorithm A succeeds in finding a k-wise collision with noticeable probability.
In the following claim we show that with noticeable probability the execution of the loop in the
description of the adversary A terminates with a large set X (which will then translate into a large
enough collision). The proof of this claim is similar to the proof in Theorem 2.

Claim 1. PrA[|X | > L | h is Good] ≥ 1− 2−n.

Proof. Since h is Good, with probability ε′/2, in any iteration we obtain x and x′ for which verifi-
cation succeeds yet outputs two different values (x and x′ in our case). We say that iteration i is
successful, denoted by SUCi if this iteration satisfies the above (it outputs two different x and x′

that pass verification). Thus, it holds that

Pr
A

[SUCi] ≥
ε′

2
. (9)

We further say that iteration j is effective, denoted by EFFi, if for the chosen g ∈ G, the outputted x
and x′, and every x′′ ∈ X , it holds that g(x) 6= g(x′′). Since g is (2−n)-almost pairwise independent
and the set X is of size at most L, it holds that

Pr
A

[EFFi] ≥ 1− Pr
A

[
∃x′′ ∈ X : g(x) = g(x′′)

]
≥ 1− L

2n
− 1

2n
≥ 1− L+ 1

2n
. (10)

Combining the inequalities in Equation (9) and in Eq. (10) with the assumption that ε′ ≥ 10L/2n,
we get that

Pr
A

[SUCi and EFFi] ≥ 1− Pr
A

[¬SUCi]− Pr
A

[¬EFFi] ≥
ε′

2
− L+ 1

2n
≥ ε′

4
. (11)

Observe that every iteration which is both successful and effective increases the size of the set
X by at least one. To see this, fix a pair x and x′ that the malicious sender S∗ outputs in a fixed
iteration (which is both successful and effective). Since the iteration is successful it holds that
x 6= x′ and furthermore these values are consistent with the g chosen in that iteration, namely,
g(x) = g(x′). Since the iteration is effective, there is no other value x′′ ∈ X that maps to the same
value relative to g. This means that either x or x′ were not in the set X before the current iteration.

To complete the proof we need to show that there are many successful and effective iterations.
Denote by Xi the event that the i-th iteration is both successful and effective. Define Yn =∑n

i=1(Xi−E[Xi | Y0, . . . , Yi−1]) and Y0 = 0. The sequence Y0, Y1, . . . has bounded difference (|Yi−
Yi−1| ≤ 1 for all i) and is a martingale by the law of total expectation:

E[Yn | Y0, . . . , Yn−1] = E[Yn−1 +Xn −E[Xn | Y0, . . . , Yi−1] | Y0, . . . , Yn−1] = Yn−1.
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Furthermore, by Equation (11)

T∑
i=1

E[Xi | Y0, . . . , Yi−1] ≥ T · ε
′

4
.

Thus, by the Azuma bound (see e.g., [AS08, Theorem 7.2.1]):

Pr
A

[
|X | < nkd

]
= Pr
A

[
T∑
i=1

Xi < 4kd

]

= Pr
A

[
T∑
i=1

Xi −
T∑
i=1

E[Xi | Y0, . . . , Yi−1] < 4kd −
T∑
i=1

E[Xi | Y0, . . . , Yi−1]

]
≤ Pr
A

[
YT < −(Tε′/4− Tε′/n)

]
≤ Pr
A

[
YT < −Tε′/5

]
= Pr
A

[
YT < −(

√
Tε′/5) ·

√
T
]

≤ 2−Tε
′2/50 ≤ 2−n.

This completes the proof of the claim.

We now condition on an execution of A terminating with |X | > L. This event implies that
the malicious sender S∗ came up with at least |X | different messages x all of which correspond to
codewords of C that are consistent with the root hash. Each such x implies a different codeword
C(x) for our (`, L)-list-recoverable code. By the definition of list-recoverability and since we have
|X | > L different codewords, there must be a coordinate i ∈ [2d

′
] in the code that has more than

` different values. Since ` = kd and the depth of the Merkle hash tree is d, by the pigeonhole
principle, there is a coordinate (in which symbols are composed of 2n bits) in which there must be
a location on the path from this coordinate to the root hash that has at least k different values
that hash to the same value and thus give us a k-wise collision relative to h.

To conclude the proof, we observe that the algorithm A runs in time poly(n) · t′ ·L/ε′2 ≤ t and
finds a k-wise collision in h← H with probability

Pr
h,A

[A(1n, h) outputs a k-wise collision] = Pr
h,A

[|X | > L]

≥ Pr
h,A

[|X | > L | h is Good] · Pr
h←H

[h is Good]

≥
(

1− 1

2n

)
· ε
′

2
> ε,

which is a contradiction to the security of the MCRH H.

Supporting arbitrary larger k. The reason why we could prove security only for constant
values of k stems from the fact that our adversary A for the MCRH runs in time proportional to
kd. The source of this term in the running time is that our Merkle hash tree in the construction is
of depth d = O(log n) and when counting the number of possible openings per coordinate in a leaf,
we get kd possibilities. Our adversary A basically “collects” this number of different openings for

30



some coordinate and thereby finds a k-wise collision. If k is super-constant the running time of A
becomes super-polynomial.

There are two paths we can take to bypass this. One is to assume super-polynomial security
of the MCRH and allow our adversary to run in super-polynomial time. The second assumption is
to assume that we start with a stronger MCRH that compresses by a polynomial factor (i.e., from
n1+Ω(1) to n) rather than by a factor of 2. This will cause the Merkle hash tree to be of constant
depth. Under either of the assumptions, we can support polynomial values of k (in n). However,
both assumptions are rather strong on the underlying MCRH and we thus prefer to avoid them;
see Section 4 for a discussion.

Domain extension of MCRH functions. The construction we gave in the proof of Theorem 3
can be viewed as a domain extension method for MCRH functions. Specifically, given a k-MCRH
f that maps 2n bits into n bits, we constructed a function g that maps m = m(n) bits into n bits
for any polynomial m(·) such that g is a ((k − 1)logm + 1)-MCRH.

Other uses of list-recoverable codes for domain-extension. List-recoverable codes have
been proven useful in various applications in cryptography. The work of Maurer and Tessaro [MT07]
considers the problem of a extending the domain of a public random function. They show how to
use a length-preserving random function f on n input bits, to get a variable-input-length function
g that maps arbitrary polynomial-size inputs into arbitrary polynomial-size outputs such that g is
indistinguishable from a random function for adversaries making up to 2(1−ε)n queries to g. One
of their main components in the construction is a list-recoverable code (there referred to as an
input-restricting function family).

Building on ideas and techniques of [MT07], Dodis and Steinberger [DS11] showed that list-
recoverable codes are also useful for security preserving domain extension of message-authentication
codes (with “beyond-birthday” security).

More recently, Haitner et al. [HIOS15] studied the possibility of a fully parallel (i.e., non-
adaptive) domain-extension scheme that realizes a collision-resistant hash function. Starting with
a random function f that maps n bits into n bits, they construct a function g that maps m(n)
bits into n bits for any polynomial m(·), makes only parallel calls to f , and requiring an attacker
to make at least 2n/2 queries to g to find a collision with high probability. Their construction uses
list-recoverable codes and they show that such codes are actually necessary for this task.

7 Separating Multi-CRH from CRH

In this section we rule out fully black-box constructions (see Definition 9) of CRH functions from
k-MCRH functions for k > 2. Our proof technique is inspired by the works of Asharov and
Segev [AS16] and Haitner et al. [HHRS15], that are based in turn on ideas originating in the works
of Simon [Sim98] Gennaro et al. [GGKT05]) and Wee [Wee07].

We present an oracle Γ relative to which there exists a 3-multi-collision-resistant hash function,
but any collision-resistant hash function can be easily broken. The theorem below is stated and
proved only for the case of standard CRH and 3-MCRH. The ideas in this proof naturally extend
to a separation of k-MCRH from (k + 1)-MCRH for all fixed values of k.

Theorem 4. There is no fully black-box construction of a collision-resistant hash function family
from a 3-multi-collision-resistant hash function family mapping 2n bits to n bits.
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We describe the oracle Γ next. It is in fact a distribution over pairs of oracles (f,ColFinderf ) in
which f is a uniformly chosen function and ColFinder is an oracle that finds pair-wise collisions.

The oracle Γ. The oracle Γ consists of a pair of oracles (f,ColFinderf ):

• The function f = {fn}n∈N: For every n, the function fn is a uniformly chosen function
from 2n bits to n bits.

• The function ColFinderf : This function consists of an infinite collection of permutations,
where for every n ∈ N and every circuit Cf : {0, 1}2n → {0, 1}n, there are two uniformly and
independently chosen permutations π1

C , π
2
C over {0, 1}2n. When ColFinderf is given Cf as

input, it sets x1 = π1
C(02n) and then computes x2 = π2

C(t) for the lexicographically smallest
t ∈ {0, 1}2n such that C(x1) = C(x2) for every. Finally, ColFinderf outputs x1, x2.

Using ColFinderf it is easy to break any collision-resistant hash function.

Lemma 1. There exists a probabilistic polynomial-time algorithm A such that for any function f ,
any n ∈ N and any oracle-aided circuit Cf mapping strings of length 2n to strings of length n, it
holds that

Pr
ColFinder

[
x1, x2 are distinct and

Cf (σ, x1) = Cf (σ, x2)

∣∣∣(x1, x2)← Af,ColFinder(1n, C)

]
≥ 3

4
.

Proof. Fix n and f . The algorithm A, on input C, sends it to the oracle ColFinderf , and receives
back a pair (x1, x2). By the definition of ColFinderf , it holds that C(x1) = C(x2).

Since C maps strings of length 2n to strings of length n, there are at most n · 2n values of
x ∈ {0, 1}2n for which |f−1(f(x))| ≤ n. Therefore, for at least 22n − n · 2n values of x it holds that
|f−1(f(x))| > n. Namely,

Pr
x←{0,1}n

[
|f−1(f(x))| > 1

]
≥ 1− n

2n
.

So, with probability 1− n
2n the first x1 chosen by ColFinderf is one such that |f−1(f(x))| > n.

Then, x2 is chosen uniformly at random from the set of x’s in f−1(f(x)). The probability of choosing
x2 6= x1 is at least (n− 1)/n. Altogether, the probability of choosing two distinct (colliding) values
x1, x2 is at least (1− n/2n) · (n− 1)/n ≥ 3/4.

Next, we show that f is a 3-MCRH hash function family even in the presence of ColFinder.

Lemma 2. For every probabilistic oracle-aided algorithm A that makes polynomially-many queries,
there exists a negligible function negl(·) such that

Pr
f,ColFinder

[
x1, x2, x3 are distinct and

f(x1) = f(x2) = f(x3)

∣∣(x1, x2, x3)← AΓ(1n)

]
≤ negl(n).

We show how Theorem 4 follows from Lemmas 1 and 2 and then in Section 7.1 prove Lemma 2.

Proof of Theorem 4. Assume there exists a black-box construction (see Definition 9) of a 3-MCRH
function from a CRH function H′ specified by (H.G,H.E,M).
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By Lemma 1, there exists an oracle-aided algorithm A and a polynomial p(·), such that for
every f , it holds that

Pr

[
x1, x2 are distinct and

H′.Ef (σ, x1) = H′.Ef (σ, x2)

∣∣∣∣∣ σ ← H′.Gf (1n)

(x1, x2)← Af,ColFinder(1n, σ)

]
≥ 1

p(n)
.

Definition 9 says that we can use A to get an algorithms that finds a 3-wise collision relative to
f . Specifically, there exists a probabilistic polynomial-time algorithm M that has oracle access to
A, and a polynomial p′(·) such that

Pr
ColFinder

[
x1, x2x3 are distinct and

f(x1) = f(x2) = f(x3)

∣∣∣(x1, x2, x3)←MA,f (1n)

]
≥ 1

p′(n)
.

Viewing MA as a single procedure, its total running time is bounded by some fixed polynomial.
This is because every operation of M can be an oracle query to A with a security parameter
polynomial in n and the running time of A is polynomial. This is a contradiction to Lemma 2.

7.1 Proof of Lemma 2

We prove a slightly stronger lemma, namely, we show that for every algorithm A that performs
polynomially many queries, and every fixing of the oracle f for all inputs except n, it holds that

Pr
fn,ColFinder

[
x1, x2, x3 are distinct and

f(x1) = f(x2) = f(x3)

∣∣∣(x1, x2, x3)← Af,ColFinder(1n)

]
≤ negl(n).

Denote by y the value of f(x1) (which is equal to the value of f(x2) and f(x3)). Consider an
algorithm A that has oracle access to f and ColFinder. It can gain information about x’s that map
to y under fn either through direct queries to fn or via indirect queries made by ColFinder to fn.

We formalize the latter by defining an event 3-multi-hit that occurs when one of the fn gates
during the computation of ColFinder hits a value y that closes a 3-wise collision under fn.

Consider a query Cf to ColFinder with output (w1, w2). Without loss of generality, we assume
that A directly queries fn on all elements in the computation of Cf (w1) and Cf (w2). Moreover,
we assume that A never performs the same query twice.

Definition 11 (3-multi-hit). Let Cf be a query to ColFinder, and let x1, . . . , xq be all the previous fn
queries performed by A with responses y1, . . . , yq. The query of Cf to ColFinder outputs (w1, w2). Let
xq+1, . . . , xq′ be the queries performed by the computation of Cf (w1) and Cf (w2) and let yq+1, . . . , yq′

be the responses.
We say that the query C produced a 3-multi-hit if there exist 1 ≤ i1 < i2 < i3 ≤ q′ and q < ik

such that yi1 = yi2 = yi3.

Moreover, we define the event A-3-wins that occurs when the adversary A is successful in finding
a 3-wise collision relative to fn.

Definition 12 (A-3-wins). We say that the event A-3-wins occurred if x1, x2, x3 are distinct and
fn(x1) = fx(x2) = fn(x3) where (x1, x2, x3)← Af,ColFinder(1n).

33



Using the above definitions, we can write

Pr
fn,ColFinder

[A-3-wins] = Pr
fn,ColFinder

[A-3-wins ∧ 3-multi-hit] + Pr
fn,ColFinder

[
A-3-wins ∧ 3-multi-hit

]
The proof proceeds by bounding both of these terms. Bounding the second term is done by a

compression argument. We show that if 3-multi-hit does not occur and nevertheless A successfully
finds a 3-wise collision (with noticeable probability), then fn can be succinctly represented given
A. This is a contradiction to the fact that fn is a random function that does not admit such
short representation. To bound the first term, we reduce it to the second one by showing that
any occurrence of a 3-multi-hit can be simulated. That is, we show that if A succeeds in finding
a 3-wise collision with probability ε(n), then there exists a machine M that succeeds in finding a
3-wise collision (with about the same probability as A and with proportional query complexity)
but without producing any 3-multi-hit. This is summarized in the following two claims:

Claim 2. For every q-query algorithm Af,ColFinder, where q(n) is a polynomial, it holds that

Pr
fn,ColFinder

[
A-3-wins ∧ 3-multi-hit

]
≤ negl(n).

Claim 3. Fix the oracle f and a poly-query algorithm Af,ColFinder, There exists a poly-query oracle-
aided machine M procedure such that if for a polynomial q(·) such that

Pr
fn,ColFinder

[A-3-wins ∧ 3-multi-hit] ≥ 1

q(n)

for infinitely many n’s, then for some polynomial q′(·)

Pr
fn,ColFinder

[
M -3-wins ∧ 3-multi-hit

]
≥ 1

q′(n)

for infinitely many n’s.

From Claims 2 and 3 we can complete the proof of Theorem 4. Assume that there exists a poly-
query algorithm A, and a fixing of the oracle f for all inputs except n, such that for a polynomial
q(·) it holds that

Pr
fn,ColFinder

[A-3-wins] > 1/q(n)

for infinitely many n’s. This means that

1/q(n) < Pr
fn,ColFinder

[A-3-wins ∧ 3-multi-hit] + Pr
fn,ColFinder

[A-3-wins ∧ 3-multi-hit].

By Claim 2, the second term is bounded by some negligible term negl(n). This implies that

1

q(n)
− negl(n) < Pr

fn,ColFinder
[A-3-wins ∧ 3-multi-hit].

By averaging,

Pr
fn

[
Pr

ColFinder
[A-3-wins ∧ 3-multi-hit] ≥ 1

8q(n)

]
≥ 1

8q(n)
.
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Let us call fn good if the inner event happens. By Claim 3, we get a poly-query oracle-aided
machine M such that for every good fn it holds that M finds a 3-wise collision without making
3-multi-hit occurring. Thus, we get that for some polynomial q′(·),

Pr
fn,ColFinder

[A-3-wins ∧ 3-multi-hit]

≥ Pr
fn

[fn is good] · Pr
ColFinder

[M -3-wins ∧ 3-multi-hit | fn is good]

≥ 1

8q(n)
· 1

q′(n)

which is a contradiction to Claim 2 since this is not a negligible function.
The proofs of Claims 2 and 3 appear in Sections 7.2 and 7.3, respectively.

7.2 Proof of Claim 2

Fix ColFinder, an inverse-polynomial ε and recall that f is fixed at all input lengths except n. For
any prefix s of size n/2 let fn|s(x) = f(s ◦ x). We show that for every fn if

Pr
s←{0,1}n/2

[Afn|s-3-wins ∧ 3-multi-hit] ≥ ε,

then fn has a succinct description.14

Succinct description of fn. The description of fn consists of a truth-table Z a set of prefixes
S, a set of images Y . We will be running A on fn|s for many different prefixes s. Notice that
if fn|s(x) = fn|s(x′), then fn(s ◦ x) = fn(s ◦ x′). Denote by S the set of prefixes s for which A
successfully finds a collision for fn|s.

For every s ∈ S, we follow the computation of Afn|s,ColFinder and define Fs = {x1, . . . , x`} to be
the set of all inputs of fn|s-gates during this computation. Finally, Afn|s,ColFinder outputs a 3-wise
collision {x1, x2, x3}. Assume without loss of generality, that A directly queried x1, x2 and x3, and
never queries the same input twice. Let Is = {i1, i2, i3} be the indices of the queries performed by
A to x1, x2, x3, respectively. Assume that i1 < i2 < i3. Let Xs = {s ◦ x3}. Continue to the next
iteration which is defined analogously.

Let X = ∪s∈SXs. Notice that |X| = |S|, and that since ` is polynomial in n we can write each
of the indexes using c log n bits for some constant c ∈ N. Moreover, by the assumption we have
that |S| ≥ ε2n/2.

We write fn as follows: first we write the set S, then for each s ∈ S we write Is, and finally we
write the truth-table of Z = {0, 1}2n \X. The total size (in bits) is at most

|fn| ≤ log

(
2n/2

|S|

)
+ |S|3c log n+ (22n − |X|)n

≤ (n/2)|S|+ 2|S| − |S| log |S|+ |S|3c log n+ n22n − n|S|
= n22n − |S|(log |S| − 3c log n+ n/2− 2)

≤ n22n − n.
14More accurately, what happens is that we succinctly describe fn given that A successfully find collisions in fn/2.

Since A works for infinitely many n’s this is without loss of generality as the n/2 can be replaced with any other
fraction. Alternatively, we could succinctly represent f2n given that A finds collisions in fn.
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We next show that this representation is sufficient to answer fn and ColFinder queries. Given x
as input, either we know it explicitly (via the table Z), or we reconstructed it before, or we “hit”
it by one of the indices i1, i2, i3. For each s ∈ S, taken in lexicographical increasing order, the
simulator reads Is and runs Afn|s,ColFinder. The latter requires answering fn|s-queries and ColFinder
queries. Finally, A outputs x1, x2, x3, where x1 has its value in the truth-table Z, and thus we can
reconstruct the values for x2 and x3.

Answering fn|s queries. We show how to simulate a direct fn|s query made by A. Assume that
A makes such a query on input x. If it is already known (either because s ◦x is in Z or because we
already reconstructed it), then the simulator can return it. If it is i3-th query, then the simulator
takes the answer of the i1-th query and answers with the same value.

Answering ColFinder-queries. On input oracle-aided circuit C = C
fn|s
i , the simulator computes

wi = πC1 (0) and begins with evaluating C(wi). Then, it enumerates over all t ∈ {0, 1}2n in
lexicographically increasing order, and stops with the first w′i = πC2 (t) for which C(wi) can be
computed (i.e., it is able to answer all fn|s-queries as discussed above) and that C(wi) = C(w′i).
It then answers to A with the pair (wi, w

′
i).

We now show that the simulator can evaluate C(wi), C(w′i) and answer the queries to fn|s. On
a query x to fn|s-gate, we have:

1. If s ◦ x /∈ X then the value fn|s(x) is given by Z.

2. If s ◦ x ∈ X \Xs, then this cannot happen as A works on a different oracle fn|s for different
s’s.

3. If s ◦ x ∈ Xs, then this is impossible, as we condition on the event that 3-multi-hit does not
occur.

Concluding the proof. Assume that

Pr
fn,ColFinder

[
A-3-wins ∧ 3-multi-hit

]
≥ 2ε,

for some inverse-polynomial ε. Then, by averaging we get that

Pr
fn

[ Pr
s←{0,1}n/2

[Afn|s-3-wins ∧ 3-multi-hit] ≥ ε] ≥ ε.

We have shown that using A we can represent many of the possible 2n·2
2n

functions. Thus, the
fraction of functions fn for which

Pr
s←{0,1}n/2

[Afn|s-3-wins ∧ 3-multi-hit] ≥ ε,

holds is at most

2n·2
2n−n

2n·22n
= 2−n.

This implies that any algorithm A that makes polynomially many queries to f and ColFinder,
where its oracle queries to ColFinder are bounded to circuits of polynomial size, it holds that

Pr
fn,ColFinder

[A-3-wins ∧ 3-multi-hit] ≤ negl(n) + 2 · 2−n ≤ negl(n).
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7.3 Proof of Claim 3

The algorithm M simulates the execution of A except for one change: whenever A makes a
ColFinder-query with some circuit Cf , the algorithm M first tries to simulate the query and make
a 3-multi-hit by itself as follows: It evaluates Cf (z) and Cf (z′) on random z and z′ and without
submitting the queries to ColFinder. If during the computation there three inputs x1, x2, x3 (from
the computation of Cf (z) and Cf (z′) together with queries already performed in the past) that
have the same output y, then M halts and outputs this collision. Otherwise, if a 3-multi-hit does
not occur, M passes the circuit Cf to ColFinder and outputs whatever it returns.

The algorithm M makes at most as many calls to ColFinder as A. Moreover, M may perform
at most poly(n) queries to f as direct queries of A to f , and additional poly(n) many queries as a
result of the simulation of ColFinder.

We split the proof into several cases related to how A-3-wins happen. Recall that A makes
queries to ColFinder and direct queries to f and finally outputs (with good probability) a triple of
items x1, x2, x3 that map under f to the same value. This collision happens due to some query to
ColFinder which completes a 3-wise collision.

1. The first case is that the three values x1, x2, x3 all happened during a single ColFinder query.
Namely, A submitted a circuit C to ColFinder and during the computation of ColFinder these
three queries were made.

We show that this event has very low probability of happening so we can ignore it.

2. The second case is that the two values x2, x3 were queried during a single ColFinder query
and joined (in the sense that they all have the same f(·) value) with a single x1 that was
queried sometime before.

We show that if this event happens, then we can simulate the execution and make sure that
we find the same triple but without making the last ColFinder query.

3. The second case is that one value x3 was queried during a ColFinder query and joined with a
pair x1, x2 that was queried sometime before.

As in the second case, we show that if this event happens, then we can simulate the execution
and make sure that we find the same triple but without making the last ColFinder query.

We write

Pr
fn,ColFinder

[A-3-wins ∧ 3-multi-hit] =
3∑
i=1

Pr
fn,ColFinder

[A-3-wins ∧ 3-multi-hit ∧ case i happens]

and prove the claim for each i separately. For i = 1, we obtain an algorithm M that is able to
output 2 colliding values such that non of them were ever in the output of any f or ColFinder
query. Following similar lines to our compression lemma (see Section 7.2), one can show that such
an adversary exists with only negligible probability. So, we ignore this event for the rest of the
proof and assume that one of two happens: case 2 or case 3. This means that in the triple that
A outputs (that collide), at least one input was queried on before the last query. The last query
completes this triple by querying on either a colliding pair (case 2) or a single element (case 3).

Fix f , and denote by C1, . . . , Cq, where q = q(n) is some polynomial, the random variables
corresponding to the circuits with which A queries ColFinder. Denote by (x1

1, x
1
2), . . . , (xq1, x

q
2) the
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corresponding replies of ColFinder. For every i ∈ [q], denote by αi the probability that xi1 produces
a 3-multi-hit. That is

αi = Pr[xi1 produces a 3-multi-hit].

Recall that for every i ∈ [q] the marginal distributions of xi1 and xi2 are uniform. Thus,

∀i ∈ [q] : Pr[xi1 produces a 3-multi-hit] = Pr[xi2 produces a 3-multi-hit].

For every i ∈ [q], denote by JUMPi the event that αi > 1/(20q2) and let JUMP =
⋃q
i=1 JUMPi.

Using the above notation, we have that

Pr
ColFinder

[JUMP] ≥ Pr
ColFinder

[3-multi-hit]− Pr
ColFinder

[3-multi-hit | JUMP]

≥ 1

q
− 1

10q
≥ 1

2q
,

where the second inequality follows from the assumption and from the following claim.

Claim 4. PrColFinder[3-multi-hit | JUMP] ≤ 1
10q .

Proof. We divide into several cases depending on how many collisions we obtained in the last query.

Pr
ColFinder

[3-multi-hit | JUMP] = Pr
ColFinder

[3-multi-hit ∧ case 2 | JUMP]+

Pr
ColFinder

[3-multi-hit ∧ case 3 | JUMP].

We analyze each term separately conditioned on JUMP. Observe that when 3-multi-hit ∧ case 3
occurs, then it must be that our simulator will be able to simulate this query and obtain the collision
by itself:

Pr
ColFinder

[3-multi-hit ∧ case 3] ≤
q∑
i=1

Pr[One of xi1, x
i
2 produces a 3-multi-hit]

≤2 · q · 1

30q2
=

1

20q
.

The case 3-multi-hit ∧ case 3 is similar and we have that

Pr
ColFinder

[3-multi-hit ∧ case 2] ≤
q∑
i=1

Pr[One of xi1, x
i
2 produces a 3-multi-hit]

≤2 · q · 1

30q2
=

1

20q
.

Summing up, we get that

Pr
ColFinder

[3-multi-hit | JUMP] ≤ 1

10q
.
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Assume for now that the event JUMP occurs and denote by i∗ the minimal i ∈ [q] for which
JUMPi occurs. Consider the following two events:

1. None of the C1, . . . , Ci∗−1 produced a 3-multi-hit. Recall that the events JUMP1, . . . , JUMPi∗−1

did not happen since i∗ is minimal. The probability of this event happening is at least
1− 1/(10q) (similarly to the computation in Claim 4).

2. Given Ci∗ , the algorithmM produces a 3-multi-hit (without submitting the query to ColFinder).
This event happens with probability at least (αi∗)

2/2 > (1/(20q2))2/2. In case 2, this hap-
pens with probability αi∗ > 1/(20q2), but in case 3, we need to succeed in both simulation
steps of M and to output different values.

Notice that these two events are independent since ColFinder uses an independent permutation per
circuit. Thus we get that

Pr
ColFinder

[Mf,ColFinder(1n) finds a 3-wise collision ∧ 3-multi-hit]

≥ Pr
ColFinder

[Mf,ColFinder(1n) finds a 3-wise collision ∧ 3-multi-hit | JUMP] · Pr
ColFinder

[JUMP]

≥
(

1− 1

10q

)
· 1

2(20q2)2
· 1

2q
≥ 1

q7
.

8 UOWHFs, MCRHs and Short Commitments

We explore the relationship between short commitments, MCRHs and universal one-way hash
functions (see Definition 6). Our main message is that short commitment protocols (with some
requirements listed below) directly imply UOWHFs. The transformation is efficient in the sense that
a description of a hash function corresponds to the messages sent by the receiver and evaluation
of the function is done by executing the protocol. In some cases this gives a way to construct
a UOWHF which is more efficient than the direct construction based on one-way functions or
permutations [NY89, Rom90] (see comparison below). In Remark 4 we sketch how to get an
efficient construction of a UOWHF that operates on inputs of fixed length directly from an MCRH.

Theorem 5. Any short commitment protocol in which the receiver is public-coin yields a universal
one-way hash function with the following properties:

1. The key size is the total number of (public) coins sent by the receiver.

2. The length of inputs that the UOWHF supports is the length of messages the commitment
protocol commits to and the length of the output is the amount of bits sent from the sender
to the receiver.

3. The evaluation of a hash function amounts to a single execution of the commitment protocol.

Plugging in our construction of short commitments from MCRH functions from Theorem 2, we
obtain a new construction of a UOWHF for messages of length n2d starting with a k-MCRH for
a polynomial k = k(n). The key size in the resulting family is proportional to the number of bits
sent from the receiver to the sender: `+O(d · n/ log n) bits, where ` is the size of an MCRH key.15

15The overhead in the key size can be improved if the pairwise hash function is replaced by an almost uniform hash
function as described in Remark 2.
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Using our construction of short commitments from MCRH functions from Theorem 3, we get a
new construction of a UOWHF for messages of length n2d starting from a k-MCRH for any constant
k. The key size in the resulting family is `+ O(n) bits. Notice that this term is independent of d
and the hidden constant in the big “O” is pretty small.16

Comparison with previous constructions. Starting with a standard collision resistant hash
function on short inputs, it is known how a collision resistant hash function on long inputs (based
on the so called Merkle-Damg̊ard iterated construction) [Mer89b, Dam89]. This directly implies a
UOWHF. The key size in the resulting construction is optimal: it is just a key for a single collision
resistant hash. However, when starting with weaker building blocks the key size grows.

Naor and Yung [NY89] suggested a solution based on a tree hash (similar to a construction of
Wegman and Carter for universal hash functions [WC81]). In their scheme, hashing a message of
length n2d is done by a balanced tree such that in the i-th level n2d−i bits are hashed into n2d−i−1

bits by applying the same basic compression function 2d−i−1 times. Each level in the tree requires
its own basic compression function which results with a total of d keys for the basic UOWHF. Thus,
the total size of a key in the resulting function is d` bits, where ` is the bit size of a key in the basic
UOWHF.

In case that the keys of the basic scheme (` above) are rather long, Shoup [Sho00], following on
the XOR tree hash of Bellare and Rogaway [BR97], offered the following elegant scheme to transform
a fixed-input UOWHF into a UOWHF that supports arbitrary long inputs. Given an input of 2d

blocks each of size n, for i = 1, . . . , 2d we compute ci = h((ci−1 ⊕ sκ(i)) ◦mi), where s0, . . . , sd are
uniformly random “chaining variables”, and κ(i) chooses one of the elements s0, . . . , sd.

17 Thus,
the total size of a key in the resulting function is `+ (d+ 1)n bits.

Remark 3 (Two-round short commitments). If the short commitment protocol consists of two
rounds (a message from the receiver to the sender and then a message back), then we actually
get a collision resistant hash. The description of the hash is the message sent by the receiver and
evaluation is done by simulating the (single) message sent by the sender.

Proof of Theorem 5. Assume the existence of a short commitment protocol (S,R,V) in which the
receiver is public-coin and the sender is deterministic. The latter is without loss of generality due
to the perfect completeness of the protocol. Assume that the protocol allows to commit on strings
of length `in = `in(n). Denote the length of the randomness used by the receiver by `r = `r(n).
Denote the length of the transcript by `trns (this is an upper bound on the maximum length of the
transcript over all possible inputs and messages from the receiver). Assume that the opening of
the sender opening is just sending the committed input x. The verifier then decides whether the
opening is valid or not based on the input of the sender and on the (public) randomness of the
verifier.

We construct a universal one-way hash function family H = {Hn}n∈N, where each function
h in the family Hn gets as input strings of length `in and outputs a string of length `trns. This
results with a compressing function since the length of a commitment is shorter than the length
of the input (i.e., `in < `trns). The description of a hash function h ∈ Hn is a string of length `r
that contains the randomness used by the receiver. Evaluation of h on input x ∈ {0, 1}`in is the

16The concrete constant in our scheme is roughly 6 but we did not try to optimize it further.
17The function κ(i) counts the number of times 2 divides i, that is, for i ≥ 1, κ(i) is the largest integer κ such that

2κ divides i.
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transcript of an execution of the commitment protocol between the sender and the receiver (where
the receiver uses randomness coming from the description of the hash function):

h(x) = 〈S(1n, x),R〉.

We prove that this function family is a universal one-way hash function. In the latter, an
adversary first submits a challenge x∗, then gets to see a description of a random hash function h
from the family and finally needs to output (with noticeable probability) an x 6= x∗ such h(x) =
h(x∗). Let us assume that such an adversary A exists and it succeeds in finding such an x with
noticeable probability ε > 0. We design a sender S∗ that breaks the computational-binding of the
short commitment protocol.

The sender chooses x∗ by simulating the choice of the latter by A. Then, S∗ simulates the
execution of S when interacting with R and committing on the string x∗. Now, given the ran-
domness of the receiver (here we use the fact that the receiver is public coin), we use it as a
description of a hash function in H and simulate the execution of A with this function and output
the pair of openings (x, x∗). With probability ε, the adversary A will output an x 6= x∗ for which
h(x) = h(x∗). In other words, A will output (with probability ε) an x with which the transcript of
the commitment protocol would have been the same. Due to perfect completeness, the verifier of
the commitment protocol must accept this value as a valid opening, as well. This is a contradiction
to the computational-binding of the protocol.

Remark 4 (UOWHF on fixed-length inputs). We can get a very efficient construction of a
UOWHF family that operates on inputs of fixed length, say 2n and outputs < 2n bits. For this
we can use the construction of short commitments described in Section 2 which allows to commit
to a string of length 2n using < 2n bits. The construction is fairly efficient as it requires merely
an evaluation of an almost-universal hash function (see Definition 3) in addition to the MCRH.

Let H = {Hn : {0, 1}2n → {0, 1}n}n∈N be a k-MCRH for a polynomial k = k(n). Assume that
every family member of H is of length ` bits. Let G = {g : {0, 1}2n → {0, 1}0.3n} be a δ-almost
universal function family, where δ = 2−0.3n and each member is described by O(log n) bits. We
define a function family ensemble F = {Fn : {0, 1}2n → {0, 1}1.6n}n∈N as follows:

1. Each member f ∈ Fn consists of a pair: an h ∈ Hn and a g ∈ G.

2. For a member f = (h, g) ∈ Fn, and an input x ∈ {0, 1}2n, we define f(x) = h(x) ◦ g(x).

Using our technique of partial rewinding of the adversary to collect multiple collisions, we can
show that if H is a k-MCRH for a polynomial k = k(n), then F is a UOWHF, where each member
of Fn can be described by a member h of Hn and additional O(n) bits, and evaluation of a member
of Fn consists of a single evaluation of a member in H.
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A Multi-Pair Collision Resistance

We have considered so far a weakening of the security definition of a standard CRH called multi -
collision-resistance, where the challenge is to find a k-wise collision. In this section, we consider a
different relaxation of collision resistance we call multi-pair-collision-resistance, where the challenge
is to find arbitrary k distinct pairs of inputs that collide. More precisely, an efficient function
family ensembles H = {Hn : {0, 1}3n → {0, 1}n}n∈N is a secure k-multi-pair-collision-resistant hash
(MPCRH) if it is computationally hard to find k = k(n) distinct pairs (x1, y1), . . . , (xk, yk) such
that h(x1) = h(y1), . . . , h(xk) = h(yk).

It is immediate that a standard CRH is also an MPCRH, and we prove the other direction next.
Let H be a secure k-MPCRH for a polynomial k = k(n). Define the family

H′ = {h′ = (h, s)}h∈H,s∈{0,1}n/2

to be a family of function mapping 2n bits to n bits, where for h′ = (h, s) we define h′(x) = h(s◦x).

Lemma 3. H′ is a secure CRH.

Proof. Assume that there exist an adversary A that can break the security of H′. That is, there
exits a polynomial p(·) such that

Pr

[
(x1, y1), . . . , (xk, yk) are distinct and

h(x1) = h(y1), . . . , h(xk) = h(yk)

∣∣∣∣ h← Hn
((x1, y1), . . . , (xk, yk))← A(h)

]
≥ 1/p(n).

We construct A′ that breaks the security of the MPCRH. The algorithm A′ acts as follows:
A′(h):

1. Let L = ∅ be an empty list.

2. Repeat T = (nkp(n))2 times:

(a) Sample s← {0, 1}n at random.

(b) Run A(h′), where h′ = (s, h) to get a pair (x, y).

(c) If h(s ◦ x) = h(s ◦ y), then add (x, y) to L.

3. Output L.

Since A succeeds with probability ε = 1/p(n), a standard Chernoff bound (see e.g., [AS08, §A.1])
gives that A′ will collect k colliding pairs from A with all but exponentially small probability.
Notice that if s 6= s′ then the collisions that A outputs on (h, s) must be distinct from the collisions
that it outputs on (h, s′). Thus, A′ will find k distinct pairs of collisions with high probability.
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B On TFNP and Multi-CRH

The class TFNP, defined by Megiddo and Papadimitriou [MP91], is the class of all search problems
for which a solution is guaranteed to exist for every instance and verifying a solution can be done
efficiently. TFNP has attracted extensive attention due to its important syntactic subclasses. The
common way of defining such subclasses is via various non-constructive arguments used for proving
totality of search problems. Some of the most known subclasses are PPAD (for Polynomial Parity
Argument on Directed graphs [Pap94]), PPP (for Polynomial Pigeonhole Principle [Pap94]) and
PLS (for Polynomial Local Search [JPY88]).

For many of the subclasses of TFNP we either can show containment of one class in the other,
or an oracle separation ruling out the possibility of a black-box reduction from one to the other.
Using our separation results from Section 7 we get an infinite hierarchy of subclass of TFNP, each
one is contained in the next, but separated (relative to an oracle) from the previous one18. We
define this hierarchy below.

The formal definition of TFNP is given by:

Definition 13 (TFNP). A total NP search problem is a relation S(x, y) such that it is (i) com-
putable in polynomial (in |x| and |y|) time (ii) total, i.e. there is a polynomial q such that for every
x there exists a y such that S(x, y) and |y| ≤ q(|x|). The set of all total NP search problems is
denoted by TFNP.

The weak pigeon class (PWPP) is a subclass in TFNP defined by the collision finding problem
for circuits that compress their input.

Definition 14 (PWPPnn−1 complete problem). Given a circuit C : {0, 1}n → {0, 1}n−1, find x 6= y
such that C(x) = C(y). Moreover, we define PWPP = PWPPnn−1.

Any hard distribution for PWPPnk naturally gives rise for a collision resistant hash function,
and vice-versa. Using our notion of MCRH, we define a new class of total problems that we call
Multi Pigeonhole Principle with a parameter k, or k-PMPP for short.

Definition 15 (k-PMPP complete problem). Given a circuit C : {0, 1}n → {0, 1}n/2, find k distinct
elements x1, . . . , xk such that C(x1) = · · · = C(xk).

The first thing to notice is that k-PMPP is a subclass of TFNP for any constant k ∈ N . Suppose
that C : {0, 1}n → {0, 1}n/2. If there is no k-wise collision then each output has at most k−1 inputs.
Thus, the total number of element in the domain is at most 2n/2 · (k− 1) < 2n. This is of course a
contradiction since the number of elements in the domain is exactly 2n.

Notice that 2-PMPP ⊂ 3-PMPP ⊂ 4-PMPP . . .. Moreover, using the separation results from
Section 7 we get that (under black-box reductions) all of these classes are separated.19 That is,
3-PMPP 6⊆ 2-PMPP, 4-PMPP 6⊆ 3-PMPP, 5-PMPP 6⊆ 4-PMPP and so on. This concludes the
hierarchy.

18We thank Bobby Kleinberg for asking us whether such an infinite hierarchy exists inside TFNP.
19The results in Section 7 are stated for k = 3 but naturally generalize to any k.
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