
The Minimum Reservation Rate Problem in Digital

Audio/Video Systems

�

Dave Anderson

y

Nimrod Megiddo

z

Moni Naor

x

Abstract

The \Minimum Reservation Rate Problem" arises in distributed systems for handling

digital audio and video data. The problem is to �nd the minimum rate at which data must

be reserved on a shared storage system in order to provide continuous bu�ered playback of

a variable-rate output schedule. The problem is equivalent to the minimum output rate:

given input rates during various time periods, �nd the minimum output rate under which

the bu�er never over
ows.

We present for these problems an O(n logn) expected time probabilistic algorithm and

a deterministic one with complexity O(n logn log log n). The algorithms are obtained by

applying a parametric search method due to Megiddo [6] that utilizes a parallel algorithm

for evaluating a function in order to obtain an e�cient sequential algorithm for solving an

parametric equation of the function.

�

Preliminary version appeared in Proc. 2nd Israeli Symp. on Theory of Computing and Systems, 1993,

pp. 268{278.

y

Sonic Solutions, 1891 East Fransc. Blvd., San Rafael CA 94901 USA. Work done while at the Interna-

tional Computer Science Institute, Berkeley.

z

IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA and

School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel. Research supported in part by ONR

contract N00014-91-C-0026. E-mail: megiddo@almaden.ibm.com.

x

Incumbent of the Morris and Rose Goldman Career Development Chair, Dept. of Applied Mathematics

and Computer Science, Weizmann Institute, Rehovot 76100, Israel. E-mail: naor@wisdom.weizmann.ac.il.

Part of this work was done while at the IBM Almaden Research Center. Research supported by an Alon

Fellowship and by a grant from the Israel Science Foundation administered by the Israel Academy of Sciences.



1 Introduction

In this paper we consider the minimum reservation rate problem which arises in distributed

systems for handling digital audio and video data. This problem is formulated as follows.

Given are consecutive time intervals T

1

; T

2

; : : : ; T

n

and output rates O

1

; O

2

; : : : ; O

n

(where

O

i

is the output rate during the ith time interval, i = 1; : : : ; n). Find the minimum rate

R

�

at which input can be reserved on a shared storage system such that the output 
ows

continuously (with no \starvation").

The minimum output rate problem is very similar. Given are consecutive time intervals

T

1

; T

2

; : : : ; T

n

and input rates I

1

; I

2

; : : : ; I

n

(where I

i

is the input rate during the ith time

interval, i = 1; : : : ; n), and a bu�er size B. Find the minimum output rate R

�

required to

assure that the bu�er never over
ows.

We postpone explaining how the problem arises in digital audio/video systems to Section

6. Section 2 contains a precise de�nition of the problem and shows that the problem is

equivalent to �nding the minimum of some O(n

2

) values (thus providing a simple O(n

2

)

algorithm). In Sections 3 and 4 we develop an O(n logn) randomized algorithm and an

O(n logn log logn) deterministic one. These algorithms are based on the parametric search

method of Megiddo [6]. Using this method, we apply a parallel algorithm for one problem

(in this case, the \evaluation" problem) to obtain a fast sequential algorithm for another

\parametric" problem. In Section 3 we describe an expected constant-time randomized

parallel algorithm for the feasibility problem. In Section 4 we explain how to use this

algorithm together with a sequential linear-time algorithm for feasibility, so as to solve the

minimum rate problem e�ciently. In Section 5 we describe an extension to the minimum

rate problem where the input is cyclic. In Section 6 we discuss the background from digital

audio/video systems of the minimum reservation rate problem. Finally, Section 7 proposes

further research.

In order to make the paper more self-contained we now outline the essential steps of the

parametric search method used in order to solve an optimization problem:

1. Find a monotone function F so that you can express the optimization problem as

\�nd � such that F (�) = 0".

2. Provide a fast parallel algorithm A for evaluating F (�). The algorithm should be

comparison based. Let P be the number of processors and T

A

the run time of A.

3. Provide a fast sequential algorithm B that enables determining whether a given �

0

is smaller or larger than �

�

(where �

�

is the solution to F (�) = 0). Let T

B

be its

run-time.

4. Show a way of simulating algorithm A's operations when executed on the optimal

�

�

: at every round A makes several comparisons depending on the outcome of the

previous rounds. Each such comparison (W

i

;W

j

) should have a critical value (or

breakpoint) �

ij

so that �

�

< �

ij

implies W

i

< W

j

way and �

�

> �

ij

implies W

i

> W

j

.

A simulation of a round consists therefore of:

(a) Find all the critical values of the comparisons of the round.

(b) Find �

m

, the median of the critical values.

1



(c) Determine using algorithm B whether �

m

is smaller or larger than �

�

. You can

now deduce for half the critical values their relationship with �

�

.

(d) Repeat steps 4b and 4c until A's decisions on all the comparisons at �

�

are

known.

5. The result of the simulation is a segment [�

1

; �

2

] such that for any � 2 [�

1

; �

2

]

algorithm A behaves as on �

�

. Find a way to extract �

�

from �

1

and �

2

(often

�

1

= �

2

= �

�

).

The complexity of an algorithm designed by such a method is O(T

A

(P + T

B

logP ))

(assuming the bookkeeping can be done e�ciently).

2 Preliminaries

Henceforth we consider the following problem:

Problem 2.1 (\ Minimum Rate"): Given consecutive time intervals T

1

; T

2

; : : : ; T

n

and

input rates I

1

; I

2

; : : : ; I

n

(where I

i

is the input rate during the ith time interval, i = 1; : : : ; n),

and a bu�er size B. Find the minimum output rate R

�

required to assure that the bu�er

does not over
ow.

Lemma 2.2 Let a

i

� T

i

I

i

denote the total amount of data received during the ith interval

(i = 1; : : : ; n). Then,

R

�

= max

1�i�j�n

a

i

+ � � �+ a

j

�B

T

i

+ � � �+ T

j

: (1)

Proof: Let R be any feasible output rate, i.e., the bu�er never over
ows when the output

rate is R. For any pair (i; j) (1 � i � j � n), the total amount of data received during

the intervals T

i

; : : : ; T

j

is a

i

+ � � � + a

j

, whereas the total amount output during these

intervals does not exceed (T

i

+ � � �+ T

j

)R. It follows that

(a

i

+ � � �+ a

j

)� (T

i

+ � � �+ T

j

)R � B

or, equivalently,

R � r

ij

�

a

i

+ � � �+ a

j

�B

T

i

+ � � �+ T

j

:

Obviously, when the output rate is the minimum feasible one, R

�

, the bu�er must

be full at least once. Moreover, during any interval, the amount in the bu�er reaches its

maximum level at one of the end points of the interval. It follows that the bu�er must

be full at the end of some interval T

j

. Now, since the bu�er is empty at the beginning of

T

1

, there exists a last time before the end of T

j

when the bu�er is empty. It is easy to

see that the bu�er is empty during closed time intervals, where the right end point of any

such interval must coincide with an end point of one of the intervals T

k

(k = 1; : : : ; n). It

follows that the last time before the end of T

j

such that the bu�er is empty must coincide

with the starting point of an interval T

i

(1 � i � j). During the intervals T

i

: : : ; T

j

, the

bu�er is not empty, the output rate is R

�

, and hence

(a

i

+ � � �+ a

j

)� (T

i

+ � � �+ T

j

)R

�

= B :

This implies our claim.

2



Corollary 2.3 The minimum output rate R

�

(see Problem 2.1) can be computed in O(n

2

)

time.

3 Feasibility of output rate

In this section we present algorithms for deciding feasibility of a given output rate. These

algorithms turn out to be useful in the design of algorithms for the output rate minimization

problem.

Denote

F (�) = max

1�i�j�n

(a

i

+ � � �+ a

j

)� (T

i

+ � � �+ T

j

)� :

Obviously, F (�) is strictly monotone decreasing, piecewise linear, and convex. Thus, there

exists a unique �

�

such that F (�

�

) = B. It is easy to see that �

�

= R

�

(see Megiddo [4]).

In order to compute �

�

, we will follow the parametric search method with the use of

parallel algorithms as proposed in Megiddo [6] and described in the Introduction above. To

this end, we develop two algorithms for computing the value of F (�) at any given �:

1. A sequential linear-time algorithm (this corresponds to B above).

2. A parallel constant-time randomized algorithm employing n logn processors under the

comparisons model of Valiant [9] (this corresponds to A above). The algorithm should

be such that deciding at every round which comparison should be made can be done in

O(n logn) (sequential) time. A deterministic O(log logn) algorithm employing n logn

processors will also be suggested.

The problem of evaluating F (�) can rephrased as follows. Given �, let W

0

= 0 and

W

i

=

i

X

k=1

(a

k

� T

k

�) 1 � i � n :

Problem 3.1 Given n real numbers W

1

; : : : ;W

n

, �nd a pair (i; j) (0 � i < j � n) so as to

maximize W

j

�W

i

.

Proposition 3.2 Problem 3.1 can be solved in linear time.

Proof: This can be done using a simple dynamic programming algorithm: For k =

1; : : : ; n, denote

V

k

= maxfW

j

�W

i

j 0 � i < j � kg

m

k

= minfW

i

j 0 � i � kg :

Obviously, V

1

= W

1

and m

1

= minf0;W

1

g. Furthermore, for k = 1; : : : ; n� 1,

V

k+1

= max fV

k

;W

k+1

�m

k

g

m

k+1

= min fm

k

;W

k+1

g :

Thus, the quantity we are interested in, V

n

, can be found in O(n) time.

3



Proposition 3.3 Problem 3.1 has a probabilistic expected constant time algorithm using

n logn processors in parallel and an O(log logn) deterministic algorithm using n log n pro-

cessors in parallel (both under the comparison model). Deciding which comparisons to make

can be done in O(n logn) (sequential) time.

Proof: We assume, without loss of generality, that n + 1 is a power of 2. For every

(1 � k � log

2

(n+ 1)� 1) and 1 � ` �

n+1

2

�k

� 1, let

M

k`

= maxfW

i

j `2

k

� i < (`+ 1)2

k

g

m

k`

= minfW

i

j (`� 1)2

k

< i � `2

k

g :

It is easy to verify that

max

0�i<j�n

fW

j

�W

i

g

= maxfM

k`

�m

k`

j k = 1; : : : ; log

2

(n+ 1)� 1; ` = 1; : : : ; (n+ 1)2

�k

� 1g :

We �rst describe the probabilistic algorithm. It is now well known that the maximum

(or minimum) of m elements can be found by m processors in expected constant time

1

.

Furthermore, there is a constant time m processor parallel algorithm such that the prob-

ability of failure, i.e., that the maximum is not found, is at most

1

m

(it can actually be

made to be smaller than e

�m

c

for some c > 0). For every k and ` as above, we allocate 2

k

processors to the problem of computing M

k`

and m

k`

using the constant time and linear

number of processors maximum �nding algorithm.The total number of processors is

log(n+1)�1

X

k=1

2

k

((n+ 1)2

�k

� 1) = O(n logn) :

After running the maximum �nding algorithm in parallel on all these problems, some

of the M

k`

's and m

k`

's may still not be known. We repeat this procedure (only for the

unknown M

k`

's and m

k`

's) until

log(n+1)

X

k=1

2

2k

� jf` j such that either M

k`

or m

k`

is unknowngj � n logn:

When the latter is satis�ed, we can allocate 2

2k

processors to each unknown M

k`

or

m

k`

, a number that su�ces to �nd them in one step (by allocating 2

2k

processors to the

respective problem). We argue that the expected number of times we have to repeat

running the maximum �nding algorithm is constant. To see this, note that since the

probability of failure on M

k`

(or m

k`

) is less than 2

�k

, it follows that the expected value

E = E [

log(n+1)

X

k=1

2

2k

� jf` j such that either M

k`

or m

k`

is unknowngj]

1

The algorithm proceeds roughly as follows: a random samples of

p

m elements is chosen; the maximum

of the sample is found exhaustively; this maximum is compared to the remaining elements and only those

larger are kept. With high probability the number of elements larger than the sample's maximum is not much

greater than

p

m. Repeat this procedure until you have a set of

p

m candidates, from which a maximum

can be found exhaustively. See Reischuk [8] and Megiddo [5] for more details.

4



satis�es

E �

X

k;`

2

�k

2

2k

�

log(n+1)

X

k=1

n+ 1

2

k

� 2

�k

2

2k

=

log(n+1)

X

k=1

(n+ 1)

which is O(n logn). This implies our claim. Finally, we compute the maximum of the

di�erences M

k`

�m

k`

in expected constant time.

The deterministic algorithm is similar, except that the for computing M

k`

and m

k`

we

use Valiant's [9] m processor log logm time algorithm for maximum �nding in the compar-

ison model.

Note that in both the randomized and the deterministic algorithms deciding which com-

parison to make is straightforward and can be done in linear (in the number of comparisons)

time.

We note that by Valiant's lower bound, there is no constant time deterministic algorithm

for evaluating F (�) which employs substantially fewer than n

2

processors.

4 Finding the minimum rate

As outline in the Introduction, the algorithm for �nding �

�

proceeds by simulating the

parallel algorithm for evaluating F (�) at � = �

�

(without knowing �

�

in advance).

Proposition 4.1 The minimum rate problem can be solved by a randomized algorithm in

expected O(n logn) time and by a deterministic algorithm in O(n logn log logn) time.

Proof: The parallel algorithm makes comparisons of the form: given i < j, is W

i

< W

j

?

Here, W

i

and W

j

are linear functions of �. Thus, there is a breakpoint �

ij

such that

�

�

> �

ij

if and only if W

i

< W

j

, namely,

�

ij

=

P

j

k=i+1

a

k

P

j

k=i+1

T

k

:

Note that once we have computed (in linear time) all the pre�x sum

P

i

k=1

a

k

and

P

i

k=1

T

k

,

we can compute �

ij

for any given i and j in constant time.

In order to simulate one step of the parallel algorithm for evaluating F (�

�

), we need to

recognize for each of the n logn breakpoints �

ij

whether it is less than or greater than �

�

;

these O(n logn) breakpoints are produced by the processors as they attempt to perform

the comparisons they are responsible for in the simulated parallel algorithm. This task

can be accomplished in O(n logn) time as follows. We �rst �nd the median �

0

of the set

of these breakpoints using the linear-time median-�nding algorithm [2]

2

. Next, we check

(using the algorithm of Proposition 3.2) whether �

0

< �

�

(i.e., whether F (�

0

) > B). Now

we know for half the breakpoints their positions relative to �

�

. We continue by �nding

the median of the other half of the set of breakpoints, and so on. Altogether, there will

be O(logn) calls to the algorithm for evaluating F (�), so the total time is O(n logn).

The expected number of steps of the probabilistic parallel algorithm is constant. After

2

In fact an approximate one would do. and in any case we can use the probabilistic algorithm of Floyd

and Rivest [3].

5



simulating these steps at a cost of O(n logn), we know a pair i; j that maximizes W

j

�W

i

at �

�

. It follows that

�

�

=

P

j

k=i+1

a

k

�B

P

j

k=i+1

T

k

:

In the deterministic case we need to simulate O(log logn) steps (corresponding to

the steps in the deterministic maximum �nding algorithm of Valiant [9]), and the rest is

essentially the same. The result is an O(n logn log logn) algorithm.

5 Extensions

We now describe two extensions of the problem discussed above. The �rst is when the

bu�er is not empty initially, but has an amount of a

0

� B. Based on our previous analysis,

it is easy to see that the value of the optimal rate is obtained by substituting in (1) a

0

+ a

1

for a

1

.

The second extension is when the problem is cyclic, i.e., we have the time intervals and

T

1

; T

2

; : : : ; T

n

and the input rates I

1

; I

2

; : : : I

n

repeating ad in�nitum. In this case, for any

feasible R we have

R �

a

1

+ a

2

+ � � �+ a

n

T

1

+ � � �+ T

n

(2)

since, otherwise, the bu�er over
ows eventually. Also, from Lemma 2.2 we have that for

any feasible R, for all (i; j) (1 � i; j � n), and any k � 0,

R �

a

i

+ � � �+ a

n

+ k(a

1

+ � � �+ a

n

) + a

1

+ � � �+ a

j

� B

T

i

+ � � �+ T

n

+ k(T

1

+ � � �+ T

n

) + T

1

+ � � �+ T

j

:

However, this inequality is implied by

R �

a

i

+ � � �+ a

n

+ a

1

+ � � �+ a

j

�B

T

i

+ � � �+ T

n

+ T

1

+ � � �+ T

j

:

and (2). Therefore, the optimal R

�

for the cyclic problem is the maximum between (2) and

the solution to the (non-cyclic) problem with time intervals T

1

; : : :T

n

; T

1

; : : :T

n

, and input

rates I

1

; : : : I

n

; I

1

; : : : I

n

.

6 Background

A \digital audio editing system" allows users to record sound (music, dialog, special e�ects,

etc.) on magnetic disks (see [7]). The audio encoding has a constant data rate, typically

88,200 bytes per second for each audio channel. Users can then assemble segments of these

sound �les into an \Edit Decision List" (EDL). An EDL has one or more \output channels,"

each consisting of sound segments arranged according to time. The segments in an output

channel may overlap arbitrarily. The EDL can also specify \fade" functions that attenuate

the volume of sound segments near their end points, so that they blend together smoothly.

The characteristics of EDL's vary over di�erent types of usage, such as music production

and dialogue editing. The number of segments in an output channel may vary from one to

6



several thousands. The segments may be disjoint or overlapping. For example, the EDL for

a movie soundtrack might have six output channels, with each channel containing a mixture

of music, speech, and ambient sound.

Sound editing (i.e., creating and modifying EDLs) is \non-destructive" in the sense that

no sound �les are created or modi�ed during editing. To play an EDL, the system must

read audio data from a disk in real time, \mix" overlapping segments together, apply the

fade functions as needed, and send the result of each output channel to a di�erent physical

output device. This task typically requires the use of one or more digital signal processing

(DSP) chips. Audio data is read from the disk in blocks (typically 64K bytes) and stored in

memory bu�ers near the DSP's. Each DSP executes a loop during which it reads a sample

for each active segment, performs the necessary scaling and mixing, and sends the results to

the output interface. From there the sound goes to its �nal destination, e.g., a compact-disk

writer, a loudspeaker, or a radio transmitter.

Advances in technology allow streams of digital audio data to be sent through networks

in real time. These advances have led to the development of distributed digital audio editing

systems. In the most common con�guration many users share common disks which they

access through the network.

The hardware components of an editing system (e.g., disks, networks, DSP's) have

bounded performance. If the workload (e.g., the number of overlapping segments in an

EDL) is too high, then \dropouts" (i.e., missing or incorrect output values) will occur.

Dropouts must be avoided at all cost. Hence the system must use a scheme in which

EDL's can be played only after the needed capacity on each hardware component has been

\reserved." In a multi-user (distributed) system, this scheme may prevent one user from

playing an EDL while another user is playing one. In a single-user system, the problem

reduces to the question of whether or not an EDL can be played using all available hardware

resources.

We now list our assumptions regarding the system:

1. Denote by b(t) the amount of \data" held in the bu�er at time t. Assuming the bu�er

size is B, the amount b(t) varies continuously between 0 and B.

2. The data storage system (disk plus network) provides constant-rate data streams.

Clients of the system can make reservation requests for �xed rates R; if a request is

granted, the system �lls the bu�er at rate R, except when the bu�er is full.

3. A given EDL de�nes a piecewise-constant \output rate function" f(t) (i.e., the rate

at which the bu�er is drained at time t) whose value is the number of audio segments

active at time t times the audio data rate.

It follows that the function b(t) is piecewise with right derivative b

0

such that b

0

(t) = 0 if

b(t) = B and R > f(t), and b

0

(t) = R� f(t) otherwise.

We say that under
ow occurs if b(t) < 0 for some t. We say that a rate R is admissible

if under
ow never occurs. The following problems present themselves:

1. Minimum Reservation Rate: Assuming b(0) = B (i.e., the bu�er is initially full), �nd

the least admissible rate R

�

.

7



2. Minimum Bu�er Pre-Load: Given a value R that is admissible with b(0) = B, �nd

the smallest value b

�

such that R is admissible with b(0) = b

�

.

The minimum-rate problem is interesting because with a solution to it we can maximize

the number of EDL's that can be played concurrently. The minimum pre-load problem is

interesting because the response time for EDL plays (i.e., the time from the user clicking

a \play" button to the beginning of audio output) should be minimized during interactive

editing. For more details on these issues, see [1].

It is easy to see that a solution to Problem 2.1 is also a solution to the minimum

reservation rate problem described above.

7 Conclusion and further research

The Minimum Reservation Rate problem and the Minimum Bu�er Pre-Load problem are

practical and important ones in the design of distributed systems for digital audio and

video. We do not know whether O(n logn) is the optimal time. In particular, is it possible

to prove an 
(n logn) lower bound in the comparison tree model? Alternatively, is it

possible to improve the running time. Using the approach we took here, this requires (i)

an n processors constant time algorithm for evaluating F (�) (ii) a way to amortize the

sequential computation of F (�), so that logn calls would still require only linear time.

A di�erent approach is to treat the problem as a linear program with n variables and

O(n) constraints: Let x

i

be a variable corresponding to the amount output at interval T

i

.

Then R

�

is the solution to the following:

minR

s.t. 81 � k � n

0 � a

1

+ � � �a

k

� x

1

� � � �x

k

� B and x

k

� T

i

�R

Can a linear program of this form be solved more quickly than O(n logn)?

Acknowledgments

We thank Ed Reiss for bringing us together and Oded Goldreich for useful suggestions.

References

[1] D. P. Anderson, \Meta-scheduling for continuous media," ACM Transactions on Com-

puting Systems 11, (1993), 226{252.

[2] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, \Time bounds for

selection," J. Computer and System Sciences 7 (1972) 451{455.

[3] R. W. Floyd and R. Rivest, \Expected Time Bounds for Selection", C. ACM, (1975).

8



[4] N. Megiddo, \Combinatorial optimization with rational objective functions," Mathe-

matics of Operations Research 4 (1979) 414{424.

[5] N. Megiddo, \Parallel algorithms for �nding the maximum and the median almost surely

in constant-time," Technical Report, Graduate School of Industrial Administration,

Carnegie-Mellon University, October 1982.

[6] N. Megiddo, \Applying parallel computation algorithms in the design of serial algo-

rithms," J. ACM 30 (1983) 852{865.

[7] J. A. Moorer, \Hard-disk recording and editing of digital audio," in: Proceedings of the

89th Convention of the Audio Engineering Society, Los Angeles, 1990.

[8] R. Reischuk, \A fast probabilistic parallel sorting algorithm," in: Proceedings of the

22nd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer

Society Press, Los Angeles, 1981, pp. 212{219.

[9] L. G. Valiant, \Parallelism in comparison problems," SIAM J. Comput. 4 (1975) 348{

355.

9


