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Abstract. A key idea in cryptography is using hard functions in order to obtain
secure schemes. The theory of hard functions (e.g. one-way functions) has been
a great success story, and the community has developed a fairly strong under-
standing of what types of cryptographic primitives can be achieved under which
assumption.
We explore the idea of usingmoderatelyhard functions in order to achieve many
tasks for which a perfect solution is impossible, for instance, denial-of-service.
We survey some of the applications of such functions and in particular describe
the properties moderately hard functions need for fighting unsolicited electronic
mail. We suggest several research directions and (re)call for the development of
a theory of such functions.

1 Introduction

Cryptography deals with methods for protecting the privacy, integrity and functional-
ity of computer and communication systems. One of the key ideas of Cryptography is
using intractable problems, i.e. problems that cannot be solved effectively by any fea-
sible machine, in order to construct secure protocols. There are very tight connections
between Complexity Theory and Cryptography (which was called “a match made in
heaven” [34]). Over the last 20 years the theory of hard functions (e.g. one-way func-
tions) has been a great success story and we have a pretty good understanding of which
tasks require which computational assumptions (see Goldreich’s book(s) [31] for a re-
cent survey).

However, as we will see later, many tasks, ranging from very concrete ones such
as combatting spam mail to fairly abstract such as few-round zero-knowledge require
a finer notion of intractability, which we callmoderate hardness. In general one can
say that while there are many applications where moderate intractability is needed, the
study of moderate hardness has been neglected, compared with strict intractability.

Today, the Internet makes cryptographic protection more necessary than ever. It
also provides better opportunities than ever for performing distributed tasks. But many
of these applications are either impossible without the use of moderately hard functions
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(e.g. fair contract signing without trusted third parties [12], see below) or prone to abuse
(various denial of service attacks, free-loading etc.).

We survey some of the applications where moderate hardness was used in an es-
sential way in Section 3, starting with an emphasis on spam fighting in Section 2. In
Section 4 we outline future research direction in the area.

2 Pricing via Processing or Combatting Junk Mail

Unsolicited commercial e-mail, or spam, is a problem that requires no introduction,
as most of us are reminded of it daily. It is more than just an annoyance: it incurs huge
infrastructure costs (storage, network connectivity etc.). There are several (not mutually
exclusive) approaches for combatting spam mail, but the one that interests us is the
computational approach to fighting spam, and, more generally, to combatting denial of
service attacks. This approach was initiated by Dwork and Naor [24]:

“If I don’t know you and you want to send me a message, then you must prove
you spent, say, ten seconds of CPU time, just for me and just for this message.”

The “proof of effort” is cryptographic in flavor; as explained below, it is a moderately
hard to compute (but very easy to check) function of the message, the recipient, and
a few other parameters. The system would work automatically and in the background,
so that the typical user experience is unchanged. Note that filtering and computational
spam fighting are complementary, and the techniques reinforce each other.

The Computational Approach:In order to send a messagem, the sender is required to
compute a tag

z = f(m, sender, receiver, time)

for a moderately hard to compute “pricing” functionf . The messagem is transmitted
together withz, the result of the computation. Software operating on behalf of the re-
ceiver checks thatz is properly computedprior to makingm visible to the receiver. It is
helpful to think of the tagz as aproof of computational effort. The functionf is chosen
so that:

1. The functionf is not amenable to amortization or mass production; in particu-
lar, computing the valuef(m, sender, Alice, time) does not help in computing the
valuef(m, sender, Bob, time). This is key to fighting spam: the function must be
recomputed for each recipient (and for any other change of parameters, including
time).

2. There is a “hardness” parameter to vary the cost of computingf , allowing it to
grow as necessary to accommodate the increased computing power, as predicted
by Moore’s Law.

3. There is an important difference in the costs of computingf and of checkingf :
the cost of sending a message should grow much more quickly as a function of the
hardness parameter than the cost of checking that a tag has been correctly com-
puted. For the functions described in [24] and [5], the cost of computing the tag
grows exponentially in the hardness parameter; the cost of checking a tag grows



only linearly. This difference allows the technique to accommodate great increases
in sender processor speeds, with negligible additional burden on the receiver.

We want the cost of checking a computation to be very low so that the ability to wage
a denial of service attack against a receiver is essentially unchanged. In other words,
we don’t want the spam-fighting tools to aid in denial of service attacks. In fact, the
pricing via processing approach has been suggested also as a mechanism for preventing
distributed denial of service attacks [36] and for metering access to web pages [30]

Dwork and Naor [24] called such a function apricing functionbecause the proposal
is fundamentally an economic one: machines that currently send hundreds of thousands
of spam messages each day, could, at the 10-second price, send only eight thousand.

2.1 Memory-bound Functions

The pricing functions proposed in [24] and other works such as [5] are all CPU-bound.
The CPU-bound approach might suffer from a possible mismatch in processing among
different types of machines (PDAs versus servers), and in particular between old ma-
chines and the (presumed new, top of the line) machines that could be used by a high-
tech spam service. A variant on the pricing via processing approach outlined above is to
exploit the fact that memory with small latency (caches) is small in computers. In order
to address these disparities, Abadi et al [1] proposed an alternative computational ap-
proach based on memory latency: design a pricing function requiring a moderately large
number of scattered memory accesses. The ratios of memory latencies of machines built
in the last five years is less than four; a comparable number for desktop CPU speeds is
over 10. The CPU speed gap is even greater if one includes low-power devices as PDAs,
which are also used for e-mail. Thus, functions whose cost is principally due to memory
latency may be more equitable as pricing functions than CPU-bound functions.

This raises an interesting question: which functions require many random accesses
to a large memory? More specifically, can we suggest functions satisfying the above
requirements from a pricing function and where the memory access dominates CPU
work for all “reasonable” settings. Dwork, Goldberg and Naor [23] have explored this
direction and proposed functions based on random walks in a large shared random table.
For an abstract version of their proposal they managed to give a tight lower bound on
the amortized number of memory access when computing an acceptable proof of effort,
based on idealized hash functions (random oracles). They suggested a very efficient
concrete implementation of the abstract function, inspired by the RC4 stream cipher.

In addition to their application for spam fighting, the memory-bound functions of
[23] have been proposed to prevent Sybil Attacks [44], where an adversary pretends to
be many different processors (which is very relevant in peer-to-peer applications [21]).

3 Other Applications of Moderate Hardness

We now list a few other areas where applying moderately hard functions proved useful.
As one can see the range is quite large.



Time-Locks: Is it possible to “ice-lock” a piece of information so that it will only be
available in the far future but not in the near future? This is one of the more intuitive
applications of moderately hard functions, i.e. the data is encrypted with a weak key
so that finding it must take time. Several researchers have considered this case, since
the early days of Cryptography. However most of them ignored the issue of parallel
attacks, i.e. simply taking a DES key and revealing a few bits is not a real time-lock
since the adversary may utilize a parallel machine for the exhaustive search, thus
speeding up the lock significantly. The first scheme taking into account the parallel
power of the attacker is the one by Rivest, Shamir and Wagner [42]. They suggested

using the “power function”, i.e. computingf(x) = g22x

(mod N) whereN is
a product of two large primes1. Without knowing the factorization ofN the best
that is known is repeated squaring - a very sequential computation in nature. The
scheme has been used to create a time capsule called LCS35 at MIT [41]. In general
the power function is very useful and was used to create many other construction
(see below).

Timed Commitments: A string commitment protocol allows a sender to commit, to
a receiver, to some value. The protocol has two phases. At the end of thecommit
phase the receiver has gained no information about the committed value, while af-
ter thereveal phase the receiver is assured that the revealed value is indeed the
one to which the sender originally committed. Timed commitments, defined and
constructed by Boneh and Naor [12], are an extension of the standard notion of
commitments in which there is a potential forced opening phase permitting the re-
ceiver, by computation of some moderately hard function, to recover the committed
value without the help of the committer. Furthermore, the future recoverability of
the committed value is verifiable: if the commit phase ends successfully, then the
receiver is correctly convinced that forced opening will yield the value. In [12] such
commitments based on the power function were constructed.

Fair Contract Signing: An important application as well as motivation for the timed-
commitment of [12] was fair contract signing: two mutually suspicious parties wish
to exchange signatures on a contract. How can one party assure that once it has
provided its signature on the contract it will also receive the other parties signature
(on the same or other message). The problem of fair contract signing was the im-
petus of much of the early research on cryptographic protocols. Protocols where
no third party (judge, referee) is involved are based on thegradual release of sig-
natures/secrets.Examples include [10, 28, 17, 20, 38, 12]. In such cases it can be
shown that timing considerations are essential for fairness.

Collective Coin Flipping: Another application of timed commitments is to the prob-
lem of collective coin flipping. Suppose that two partiesA andB wish to flip a coin
in such a matter that (i) the value of the coin is unbiased and well defined even if
one of the parties does not follow the protocol (if both of them don’t follow, then
it is a lost case) (ii) if both parties follow the protocol, then they agree on the same
value for the coin. The results of Cleve and Impagliazzo [16, 18] imply that with
out timing consideration it is impossible to achieve this goal. One the other hand,

1 This is related to the random access property of the Blum-Blum-Shub generator [11].



in [12] timed commitments are used to construct such protocols, by making weak
assumption on the clocks of the two parties.

Key Escrow: Suppose that a central authority wishes to escrow the keys of the users in
order to facilitate wiretapping. This is of course very controversial and one would
like to limit the power this central authority has. Bellare and Goldwasser [7, 8]
suggested “time capsules” for key escrowing in order to deter widespread wiretap-
ping. A major issue there is to verify at escrow-time that the right key is escrowed.
Similar issues arise in the timed commitment work, where the receiver should make
sure that at the end of the commit phase the value is recoverable. Other applications
include Goldschlag and Stubblebine [33] and Syverson [45].

Benchmarking: Cai et al [13] were interested in coming up withuncheatable bench-
marks, i.e. methods that allow a system owner to demonstrate the computational
power of its system. They suggested using the power function for these purposes.
Note that here no measures are taken or needed in order to ensure the correctness
of the values.

Zero-knowledge Protocols: Using moderately hard functions enables us to construct
zero-knowledge protocols in various settings where either it is not known how to
do it without timing considerations or even provably impossible. This includes con-
current zero-knowledge [26, 37, 43, 15], Resettable Zero-Knowledge [14, 25] and
three-round zero-knowledge [32, 25]. Furthermore Dwork and Stockmeyer [27]
investigated the possibility of constructing nontrivial zero-knowledge interactive
proofs under the assumption that the prover is computationally bounded during the
execution of the protocol.

4 Open Problems in Moderately Hard Functions

We view the focus on moderate hardness as an adjustment of the theoretical models of
computation to the constraints – and the benefits – of the real world. In the real world,
we have clocks, processors have cycle speeds and memory latencies behave in certain
ways. Why should the theory ignore them? We would like to see a comprehensive the-
ory of moderately hard functions. Ideally, given such a theory we would be able to
characterize and know for most tasks (both those described above and unforseen ones)
the assumptions needed, and offer good schemes to obtain them.

There are many interesting research questions that are largely unexplored in this
area. Some of the questions mirror the hard functions world and some are unique to
this area. Also some questions are relevant to all or most applications described above,
whereas others are more specialized. We now propose several research directions. This
list is the outcome of joint work with Dan Boneh and Cynthia Dwork.

Unifying Assumption: In the intractable world we have the notion of a one-way func-
tion which is both necessary for almost any interesting task2 and sufficient for many
of them. Is there such a unifying assumption in the moderately hard world? Alter-
natively, is there evidence for a lack of such assumption (e.g. in the style of oracle
separation, a la Impagliazzo and Rudich [35]).

2 Threshold secret sharing and encryption using a very long shared key (one-time pad) are an
exception.



Precise Modelling: Unlike the tractable vs. Intractable case the exact machine model
(Turing Machines, RAMS) is not very significant, here given that exact time esti-
mate may be important it may matter. For each application we have in mind we
have to describe the exact power of the adversary as well as a model of compu-
tation. Such modelling was carried out in the work on memory-bound functions
[23]. Given the diversity of applications of moderately hard functions the issue of
a unifying model comes up.

Hardness Amplification: Suppose that we have a problem that is somewhat hard and
we would like to come up with one that is harder. How should we proceed. For
example, can we amplify a problem by iterating it on itself?

Hardness vs. Randomness:A question that is relevant to some applications is the con-
nection between (moderate) hardness and (moderate) pseudorandomness. This is
particularly important for applications such as timed commitment, where the pro-
tection to the data has to ensure (temporary) indistinguishability from randomness.
Note that following the existing reductions of the intractable world, going from
one-way functions (or, for simplicity, permutations) to pseudo-random generators,
is too heavy given the iterative nature of the construction.

Evidence for non-amortization: Suppose that there is an adversary that attempts to
solve many problems simultaneously and manages to obtain amarginalwork fac-
tor which is smaller than that of individual instances. For some applications, such
as timed commitment, this is not significant, but for the pricing-via-processing ap-
proach this is devastating. Therefore the question is what evidence do we have for
the infeasibility of mass production. For instance, is it possible to demonstrate that
if a certain problem is not resilient to amortization, then a single instance of it can
be solved much more quickly?

The possibility of assumption free memory-bound functions:For the memory-bound
functions an intriguing possibility is to apply recent results from complexity theory
in order to be able to make unconditional (not relying on any assumptions) state-
ments about proposed schemes. One of the more promising directions in recent
years is the work on lower bounds for branching program and the RAM model by
Ajtai [3, 4] and Beame et al [6]. It is not clear how to directly apply such results.

Immunity to Parallel Attacks For timed commitment and time-locking, it is impor-
tant to come up with moderately hard functions that are immune to parallel attacks,
i.e., solving the challenge when there are many processors available takes essen-
tially the same time as when a single one is at hand. In [42, 12] and other works
the power function was used, but there is no good argument to show immunity
against parallel attacks. An intriguing possibility is to reduce worst-case to average
case, i.e., find a random self reduction. While in the intractable world it is known
that there are many limitations on random self reductions (see [29]), in this setting
it is not clear that one cannot use them to demonstrate average-case hardness. In
particular, is it possible to randomly reduce a P-Complete problem to itself. Such
a reduction would yield a distribution on problems that at least hassomeinherent
sequentiality. More specifically is it possible to use linear programming or lattice
basis reduction for such purposes?

New Candidates for Moderately Hard Functions We need more proposals for mod-
erately hard functions with various conjectured (or provable) properties, for in-



stance on the amount of memory required to compute them. Areas such as Alge-
braic Geometry, Lattices and Linear Programming are promising.
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