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Abstract

“Perfect zero-knowledge arguments” is a cryptographic primitive which allows one polynomial-time
player to convince another polynomial-time player of the validity of an NP statement, without revealing
any additional information (in the information-theoretic sense). Here the security achi@redng in
order to cheat and validate a false theorem, the prover must break a cryptographic assumption on-line
during the conversatigrwhile the verifier cannot find (ever) any information unconditionally. Despite
their practical and theoretical importance, it was only known how to implement zero-knowledge argu-
ments based on specific algebraic assumptions.

In this paper, we show a general construction, which can be bassayame-way permutation. The
result is obtained by a construction of an information-theoretic secure bit-commitment protocol. The
protocol is efficient (both parties are polynomial time) and can be based on any one-way permutation.
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1 Introduction

Reducing complexity assumptions for basic cryptographic primitives is a major current research program in
cryptography. Characterizing the necessary and sufficient complexity conditions needed for primitives helps
us develop the theoretical foundations of cryptography. Further, reducing requirements for a primitive may
imply more concrete underlying functions for its practical implementations.

From this perspective, we study here the requirements for the existence of zero-knowledge (ZK) argu-
ments for proving the “validity of an NP assertion”. Informally, proving some fact in zero-knowledge (a
notion introduced in [19]), is a way for one player (called “prover”) to convince another player (called “veri-
fier”) that certain fact is true, while not revealing any additional information. In our setting, both players are
polynomially bounded and the prover is presumed to have the witness for the proof §fRrstatement.

This has a large variety of applications in cryptography and distributed computing (see [19, 18]). In such
applications, the prover may choose the NP-instance in such a way so that the witness is known (e.g. by eval-
uating a one-way function on some input) or possess some secret information that constitutes the witness.
We must rely on complexity assumptions, since protocols for implementing the above task with polynomial
time players imply the existence of one-way functions (see [22] and [35]). The assumptions could be used
in two different ways:

1. Zero-knowledgeproofs[19, 18]: The prover, even with infinite computational power, cannot con-
vince the verifier to accept a false theorem. But, the proof itself is cofgputationally securd.e.,
if the verifier (or anyone overhearing the execution of the protocol) ever breaks the cryptographic
assumption, say after 100 years;atn extract additional knowledge about the proof.

2. Perfect zero-knowledgagumentg6]: The verifier cannot extract additional information even if it is
given infinite time (i.e., security igerfector information theoretic); however, the prover (assumed to
be polynomial-time) can cheat in its proof only if it manages to break the assungptitine during
the execution of the protocorhis is the reason to call it an “argument” rather than a “proof”.

In many settings, ZK-arguments, which were introduced by Brassard, Chaum apda@r[6], may
be preferable to ZK- proofs: the verifier must only be sure that the prover did not break the assumption
during their interaction(which lasted, say, ten seconds or ten minutes). Notice that while assuring that
the assumption cameverbe broken may be unreasonable, the assumption that something cannot be broken
during the next ten minutesan be based on the current state of the art. On the other hand, the prover
has absolute (i.e. information-theoretic) guarantee that no additional information is released, even if the
verifier spends as much time as it desires trying (off-line) to extract it. Thus, the notion of zero-knowledge
arguments is useful if there is a need to maintain the secrecy for very long time independent of the possible
future advance of cryptanalysis.

So far the complexity assumptions needed for constructing perfect-zero-knowledge arguments were not
general — they required specific algebraic assumptions. This is in contrast with zero-knowledge interac-
tive proofs, which can be based on any one-way function. In this work we dispose of specific algebraic
assumptions for zero-knowledge arguments:

Main result: If one-way permutations exist, then there exist perfect zero-knowledge arguments for
any in N'P

We obtain this result by constructing an information-theoretically secure bit-commitment scheme which
can be based on any one-way permutation. The scheme is efficient arslrttulatableby an expected
polynomial time algorithm. We can then apply the known reduction of “perfectly-secure computationally-
binding bit commitment” to “perfect ZK-argument”. Most of the paper is devoted to the description of the
bit-commitment scheme and its correctness and security proof.



1.1 Background

Past successes in establishing basic cryptographic primitives on general assumptions (initiated in [37]) have
shown that various primitives, which were originally based on specific algebraic functions, can be based
on the existence of general one-way functions or permutations. For example, Naor [30] showed that com-
putationally secure bit commitments (i.e., bit commitments wltigh bebroken off-line given sufficient
resources) can be constructed from a pseudo-random generator. Such generators [1, 37] were first imple-
mented based on a discrete logarithm assumption in [1] and following a sequence of papers [37, 26, 16, 17]
it was shown thatiny one-way function suffices [20, 21]. Similarly, digital-signatures can now be based

on any one-way function [31, 36]. Furthermore, these primitives (and primitives derived from them, e.g.
identification) were shown to imply a one-way function (thus they are equivalent) [22].

Concerning secure proofs, Goldreich, Micali and Wigderson [18] showed that zero-knovpledds
for NP can be done using computationally secure bit commitment protocols which, as indicated above, can
be obtained from any one-way function. This applies to ger#EPaproofs as well [24]. On the other hand,
zero-knowledge proofs for non-trivial languages imply the existence of one-way functions [35].

In contrast to computational zero-knowledgmofs the only known constructions for perfect zero-
knowledgeargumentsfor NP was under specific algebraic assumptions [6, 4, 24, 7, 3, 23] or under the
assumption thatollision intractable hash functionaxists (first shown in [31]; see [11] for more informa-
tion), which in turn is only known to be constructed under specific algebraic assumptions [5, 8, 9]. Our
result gives the first general reduction: zero-knowledge NP-arguments can be constructeahgivee-
way permutation, by first constructing an information theoretically secure bit commitment.

1.2 Organization of the paper

In section 2, we give the model, the formal definitions of the problem, and the assumptions. Specifically,
we present the model of interactive machines, the notion of commitment and of one-way functions and
permutations and the definition of perfect zero-knowledge arguments. In Section 3 we present the new
method for basing a perfectly-secure bit commitment on a one-way permutation and prove its security. In
Section 4 we discuss possible extensions of our techniques. For completeness, we provide in Appendix A a
comparison between this work and other recent work on commitments.

2 Model and Definitions

We now review the model and definitions of bit commitment, one-way permutations and perfect zero-
knowledge arguments (a.k.a. computationally-sound proofs). In general we follow Goldreich [13]. The
parties in the protocols are modeledlateracting Turing machineas defined by [19] which share an ac-
cess to a security parametera common input and communication tapes. In addition each has an output
tape, a private random tape (or string, a.k.a. as its coin-flips) and an auxiliary private input tape. When we
say that a machine is polynomial-time it is polynomial in the security parameter (given in unary) and in
general all other inputs (including the auxiliary) should be polynomial in the security parameter. We call a
functionp(n) negligible if for all polynomialsp(n), p(n) = o(1/p(n)). Thatis, itis asymptotically smaller

than all inverse polynomials.

Before we continue we should clarify a few issues regarding uniformity. Most cryptographic primitives
come in two flavors: (i) uniform, where the adversary is assumed to be a probabilistic polynomial-time ma-
chine and (ii) non-uniform, where the adversary’s computational power is modeled by polynomial sized cir-
cuit. (See [12, 13] for an extensive treatment of the subject.) A construction of one cryptographic primitive
from another may beniformity preservingneaning that the new primitive is secure against probabilistic



polynomial-time adversaries if the original primitive is secure against such adversaries. Alternatively, it
may be onlynon-uniformy meaning that the new primitive is secure only if the original primitive is secure
against polynomial-sized circuits. (In all cases we are aware of, if the construction is uniformity preserving
then it is also non-uniformity preserving, hence the usage of “only”; furthermore, this can be formalized
to cover most cases.) Our construction of perfectly secure computationally binding bit-commitments from
one-way permutation is uniformity preserving. However, when using such bit-commitments to construct
zero-knowledge arguments for language®Vilr some delicate issues that are beyond the scope of this pa-
per arise. Therefore we provide only the non-uniform version of the zero-knowledge arguments and refer to
[12] as the source for making the uniform case.

2.1 Commitment

A bit commitment protocol involves two interacting parties, the Sender and the Receiver. It can be thought
of the Sender giving the Receiver a locked box with a secret bit inside. The receiver doesn'’t learn anything
about the bit, but at a later stage, when the box is opened, it is sure that the contents of the box were not
altered. More formally, &it commitment protocol consists of two stages:

e The commitstage: the Sende® has a bith on its input tape, to which she wishes to commit to the
ReceiverR. The sender and the receiver exchange messages. At the end of thiRdtagesome
information that “representd’written on its output tape.

e Thereveal (opening) stageS andR exchange messages (where their output tapes from the commit
stage are serving as input tapes for this stage). At the end of the excRamgtes on its output tape
either “OK for bits” or “NOT OK”.

We should take care in defining what we mean by cheating in the context of information-theoretic com-
mitment. Consider the following experiment: after the commit stéde “split” into Sy andS; and par-
ticipates in two executions of the reveal protocol with two identical copieB @fhose state is initialed to
be that ofR after the commit stage. If both executions end up VRthwriting “OK” on the tape, but the
two bits written are not the same, théris considered to have successfully cheated. More precisely, at any
point in time the state of an interactive machine is determined by its random stend the messages it
receivedmn. The sender is specified by two machiqé, S;} so that when given the same random string
Sy andS; haveidenticalbehavior during the commit. 1,e when sent the same input messages, they respond
back with the same message (this is what it means thaf theplit after the commit phase). If we have two
interacting machines and we fix their random strings, then the outcome of their interaction is deterministic.
We denote it by R(r), S(s)) wherer is the random string oR ands the random string of.

Definition 1 We say that a sende¥ = {Sy, S1} cheats a receiverR with probability at most if the
following holds: the probability that the executiofiR(r), So(s)) and (R(r), Si(s)) end up following the
reveal stage with "OK” but with two different bits, is at mgstvhere the probability is over the choicerof
ands.

By a protocol we actually mean a family of protocols, indexed by the security paramedaris usual
in computational based Cryptography, the security is a function dfote that in the definition below only
the probability of cheating depends ar{but the security is independent of.

Definition 2 To beperfectly-secure computationally binding commitment the protocol must obey the
following for some negligible(n):



1. (Viability) If both players are honest (i.e. follow the protocol as specified), then for any input bit
b € {0,1} the sendesS gets, the receiver outputs at the end of the reveal stage the “OK faf bit
with probability one.

2. (Security property:) For anyR’ the distributions of the conversation between an (hongsthd R’
in caseb = 0 andb = 1 are identical. Note that the computational resource®Rofire not bounded.

3. (Binding property:) The probability that any probabilistic polynomial tin® = {S;, S7} can suc-
cessfully cheat is at mogtn) where the probability is over the random tapesS6ndR.

4. (Efficiency) S andR’s algorithms can be executed in polynomial in the security parametiene by
a probabilistic Turing Machine.

Remark 1 Suppose that in property 1 above instead of requiring that the distributions inbcasé and
in caseb = 1 be identical we require that they will be close to each other to wittiin) under, say, thd;
norm. Then we get statistically secure computationally binding commitment This is good enough for
many applications.

2.2 One-way functions and permutations

We now define the underlying cryptographic primitive we assume. fUe¢ a length preserving function
f:40,1}* — {0,1}* computable in polynomial time. By €z A we mean that the elemedis randomly
chosen from the set.

Definition 3 f is one-wayif for every probabilistic polynomial time algorithd, for all polynomialsp and
all sufficiently largen,

o 1
Prif(e) = FAGF@)) = €r (0.1 < o

where the probability is over the random choices:@nd the random tape oA.

The above definition is of strong one-way functionts existence is equivalent to the existencevefk
one-way functiorusing Yao's amplification technique [37] or the more security preserving method of [15]
which is applicable only to permutations or regular functions. (A weak one-way function has the same
definition as above, but the hardness of inversion is smaller, i.e. its probability is inverse polynomially away
from 1.)

If in addition f is 1-1 and length preserving then we say jhées aone-way permutation. For the
construction of Section 3 we require a one-way permutafioNote that the construction there assumes a
one-way permutatiori on {0, 1}". Suppose that instead we have a one-way permutgtioly — S where
S < {0,1}™ is an easily recognizable and large set (non-negligible fractiofpof}™), e.g. all numbers
smaller thanP where2"~! < P < 27, as is the case in the number theoretic constructions. Then we can
construct from it a weak one-way permutatipn {0,1}" — {0,1}" by taking f(z) = f'(z) if z € S and
f(x) = z otherwise. Using the amplification techniques of [37, 15] we can then obtstiorg one-way
permutation on a domaif0, 1}" for »’ linear inn.

The goal of this paper is to present a construction of perfectly-secure computationally binding commit-
ment from any one-way permutation.



2.3 Perfect Zero-Knowledge Arguments

We now briefly discuss perfect zero-knowledge arguments (a.k.a computationally sound proof systems).
The reason we are brief is that the paper does not deal with them directly, but their existence is a known
consequence of the construction of the perfectly-secure computationally binding commitment protocol. For
a more thorough discussion see [13].

In a proof system there are two interacting machines commonly called the grcved the verifiel/.
The two parties share access to a security parametaed a common input which the prover “claims” is
in a languageC. The prover should have in its auxiliary input tape a witness for this fact. In addition each
party has an output tape, a private random tape and perhaps more information on their auxiliary private input
tape. The three properties the proof system should have are (i) Completeness, meaningahatlifen the
interaction should cause the verifier to write “ACCEPT” on its output tape (which we déddi€’ EPT €
(P,V)(x)). (i) Soundness which in this case is only computational, i.e. for any “bad” prover who is
polynomially bounded, the probability that it makes the verifier write “ACCEPT” wheh L is small and
(iii) Zero-knowledge, which here we require it to be perfect, i.e. for every “bad” verifier it is possible to
simulate precisely its output and message distribution.

Definition 4 (perfect zero-knowledge arguments) A pair of interactive machineéP, V') is a perfect
zero-knowledge arguments system for a languagfeboth machines are polynomial-time and

1. (Completeness) For everyx € L there is a witnesg such that

Pr[“ACCEPT” € (P(y),V)(z)] >

[SURIN )

We say that the completenesgesfectif for everyx € L there is a withesg such that

Pr[“ACCEPT” € (P(y),V)(z)] = 1.

2. (Computational soundness) For every polynomial time interactive machif and for sufficiently
large security parameter, for every sufficiently long ¢ £ and all auxiliary inputsy

Pr[“ACCEPT” € (P(y),V)(z)] <

Wl

3. (Perfect zero-knowledge) For every verified/’ (with no bound on its computational resources) there
is a simulator which is a probabilistic expected polynomial-time machifpe, such that on any posi-
tive instancer € £ and auxiliary inputy for the prover and: for the verifier, the output/y» produces
givenz andh, the random variableS 1My (z, h), is distributed identically td P(y), V'(h)) (z).

As is the case in general, tti¢/3,2/3) gap can be made arbitrary large $gquentiallyrepeating the
protocol. The major result we are interested in is that it is possible to obtain perfect zero-knowledge
arguments given an information-theoretic secure bit commitments. We state the non-uniform version of the
result. As mentioned in the beginning of Section 2, obtaining a uniform result can be done following [12].

Theorem 1 ([6, 18]) If non-uniform perfectly-secure computationally binding commitment exist, then every
languagel € N P has a perfect zero-knowledge argument with perfect completeness.

!t was recently shown that when an argument is repeatpdriallel the gap does not necessary decrease [2].



3 Perfectly-Secure Simulatable Bit Commitment

We present a perfectly-secure bit commitment scheme and a proof of its security. To get the intuition,
consider the following protocol:

e The sende§ selects a random € {0, 1}" and computeg = f(x).

e The receiverR chooses &-to-1 hash functior, : {0,1}" — {0,1}"~! and sends its description to
S.

e Ssendsw = h(y).

e At this point, from the receiver’s point of view there are exactly two possible valueg fitenotedy,
andy; (i.e.h(yo) = h(y1) = wandyy < y1). Lety = y.. To commit tob, the sender sends= b S c.

e Toreveah, R sendsr = f~1(y).

As long ash is guaranteed to bgto-1, then it is equally likely thayy = yo andy = y; So the security
of S is maintained. l.e. even iR chooses: adverserialy, for any: which is 2-to-1, givenw = h(y) the
probability thaty = yo or y = y; is the same ove§ coin-flips. Therefore the distribution div, d) is
independent of the value &f If & is “random” enough (pair-wise independence is sufficient), thén
paired with a randomy’ and hence the chances tifamay find f~!(y') are low. However, ifS chooses,
only afterit learns ofk, then it may be feasible to finey andxzy such that(f(z¢)) = h(f(x1)). Indeed,
this is the case, unlegso f is acollision intractablehash function, which we do not know how to construct
under the assumption that one-way permutations?xist

In order to take care of “late choosers”, the above protocol is refined and the hash function is disclosed
gradually, in return for bits of information regarding The hash function is defined by &n — 1) x n
binary matrixH of rankn — 1 overGF[2] andh(xz) = Hz. The rows ofH are revealed step by step, and in
response for each ro® sends the inner product gfand the row. The rest of the protocol is as above. We
call this technique “interactive hashing”. We note that a similar idea was proposed independently in a full
information setting by Goldreich, Goldwasser and Linial [14].

Though a devious cannot be forced to choogeat the beginning of the protocol, what we show is that
there is enough freedom R’s movements thas can be forced (with non-negligible probability) to pair
with an arbitraryy’.

3.1 The Scheme

Let f be a strong one-way permutation ¢, 1}". Let S denote the sender arfdl the receiver. In the
beginning of the protocol§ is given a secret input bit B(x,y) denotes the dot-product madf = andy.

Commit Stage.

Commit to a bith.

1. The sende§ selectsr € {0,1}" at random and computes— f(x). S keeps bothr andy secret
fromR.

2. The receiveRR selectshy, ho, ... h,—1 € {0,1}" such that each; is a random vector over F'[2] of
the form0i=11{0,1}"~ (i.e.i—1 O's followed by a 1 followed by an arbitrary choice for the last i
positions). Note thaki, ho, ... h,_1 are linearly independent ové¥F'[2]. We callhy, ha, ... h,—1
R’s queries.

2If f is indeed collision intractable, the resulting scheme is very close to the one proposed in [31] or [11].



3. Forjfromlton—1

e R sendsh;toS.
e Ssends;j < B(hj,y) toR.

4. At this point there are exactly two vectogs, y; € {0,1}" such that for both € {0,1}, ¢; =
B(y;, h;) forall1 < j < n — 1. Definey, to be the lexicographically smaller of the two vectors.
Both S andR computey, andy; by solving the linear systetn Letc € {0, 1} be such thay = .
(only S knowsc).

5. § computes! = b @ c and sends it tdz.
Reveal Stage.
The receiver'sk’s input from the commit stage ig, co, . . . ¢,_1 andd, as well ask’s querieshy, ha, ... hy 1
1. Ssendd andz to R.
2. R verifies thaty = f(x) obeysc; = B(hj,y) forall1 < j < n — 1 and verifies thay = y. where
c=d®b.
3.2 Proof of security

Theorem 2 If f is a one-way permutation, then the scheme presented in Section 3.1 is a perfectly-
secure computationally-binding bit commitment scheme.

Theorem 2 follows from the lemmata below, the Security Lemma and the Binding Lemma, respectively
(the viability and efficiency of the scheme can be verified easily). The proof of the Security Lemma is
relatively straightforward, but the Binding Lemma turned out to be trickier and required a delicate proof.

Lemma 1 (Security) For any receiverR’, the distribution of the conversations at tkemmit stage is
independent of the value of the bit

Proof : We show inductively ory, that for any choice oh, ho, ... h; the conditional distribution of,
givenhy, ha,...hj c1,c2,...c; is uniform in the subspace defined by, o, ... h; andcy, co,...cj. The

inductive step holds, since the linear independendg o, . .., h; implies that
1
PI“[B(hj, y) == O’hl, hg, e hjfl,cl, C2y. .. 7Cj71] = 5

Thus, at Step 4 the probability that= 0 (i.e. y = yo) IS exactly%, asy is distributed uniformly in{yo, y1 }.
Therefore, for any method of choosing the queries the distribution of

(hi,ho, ... hp_1,c1,C2,...,cn—1,d)

is the same whebh= 0 andb =1. O

Recall that we consider a cheating sender to be successful if following the commit stage it can make
the receiver accept two different values as the bit committed. In our protocol that means that the cheating
sender can findg, z; € {0,1}" such thatzy # x; butyy = f(x¢) andy; = f(z;) are both consistent
with hy,...,hy_1 andes, ..., c,—1. The “Binding” Lemma below states that if there exists a sender that
can cheat with non-negligible probability, then it can be used to invert the presumed one-way pernjutation
on a non-negligible fraction of the inputs, contradicting our assumption.

3The way the queries are chosen implies that solving the system can be ddteintime

8



Lemma 2 (Binding) Assume there exists a probabilistic polynomial tifien) that following the commit
stage can reveal to a honest receiver two different value$ foith non-negligible probability: = ¢(n)
where the probability is ove$’ and the ReceiveR coin flips. Then there exists a probabilistic polynomial
time algorithmA that invertsf on non-negligible fraction of thg’s in {0, 1}".

Proof : We describe how to construct an algoritbdrfor inverting f whose run time is larger thas(’s by
at most ap(n, é) multiplicative factor and its probability of success in computfitd (y) for y € {0,1}"
is at leastl /p(n, 1) wherep is some (fixed) polynomial.

We begin by makingS’ deterministic which can be done using standard techniques. Suppose that we
choose an assignment to the random tap&’@nd count the number of queries®f(i.e. hy,...h,_1) ON
which &’ succeeds in cheating. By assumption, if the assignment is random, then the expected fraction of
such queries is at least Let Q) be the set of assignments on whighis successful on at least2 of R’s
queries. By a simple counting argument we can concludeSthainsists of at leas} of the possible as-
signments. The algorithod described below require® to be deterministic. Therefore we choose= 2?”
random assignments, , ws, . . . ,w,, and runm times the algorithnd with the random tape &’ initialized
with wy,ws, ..., wp,. With probabilityl — (1 — 5)™ > 1 — e™" somew; € 2. Therefore from now on we
assume thas’ is deterministic and its probability of success oRs queries is at leas].

Let T be the rooted tree of depth — 1 defined by the queries sent 9. A node U; at theith
level is defined by querieB, ho,...,h;—; where for alll < k < ¢ — 1 the queryhy is of the form
0=11{0,1}"*. Each ofU;’s 2"~ outgoing edges corresponds to a quRrynay send in théth round of
the form0°~11{0,1}"~* and leads to a different node at the+ 1)th level. The behavior of’ specifies
a labeling of the edges daf with {0,1}. For a nodelU; defined by querie&, ho, ..., h;_1 the label of
an edgen; is the response; of S’ to the queryh; in the ith round, given that the previous queries were
hi,ha,...,hi—1. We denote it byLs/ (U;, h;). Given thatS’ is deterministic and tha#l has complete
control over it, it is possible to compute this labeling.

For a leafU,, defined by querieB, hs, ... h, 1, letUy, Us, ... U,_1 be the nodes on the path from the
roottoU,, and let{yy(U,), y1(U,)} be the set of images consistent with the labelin§'of.e. Ls/ (U;, h;) =
B(yp, h;) forall1 < i <n—1andb € {0,1}. We say that the ledy,, is good if given thatR'’s queries
hi,hs,...h,_1, thenS’ succeeds in opening the bit committed in two different ways:S’@nverts both
yO(Un) andyl(Un)'

In general, givery, A’s strategy is to try to find a good leéaf,, such that the labelgs on the edges
leading to it are consistentwith i.e.y € {yo(Un), y1(Uy,)}. If U, isindeed good, then it yields the inverses
of yo(U,) andy; (U,,) and hence of. Such a leaf is found by developing the path node by node. Intuitively,
for any labeling ofl" at any nodé/; and for ay that is consistent with the labels leadind fpthe probability
that B(h;,y) = Ls/ (Ui, h;) for a random query; is 1/2 (the intuition is that an inner product of random
vector with two different vectors yields independent results). Therefore to find alhgdeonsistent with
y should take on the average two inspections of randigm However, an important thing to note is that
sinceS’ may be cheating, its answers need not be consistent and that on the samg;ghergendets’
may give different answers depending on the previous queries. Therefore the above intuition is not accurate
and this is the source of the difficulty in constructing and analyzing the invgrtdRoughly speaking, we
must use the randomnessgpitself to argue that the label of a randdnhas a fair chance of agreeing with
B(h,y). We should also not “waste” this randomness too quickly, before getting close enough to a leaf.

Description of the inverting algorithm A:

Recall our notation:B(h,y) denotes the inner product &f andy, U; is a node of level defined by
querieshy, hy, ... h;—1 and Ls/(U;, h;) is the answer ofS’ on h;, given that the previous queries were
hl, hg, PN hifl-



A gets as an input a random imagé {0, 1} and it attempts to inverf. In order to computg ! (y),

A tries to find a good leai such thaty € {yo(u),y1(u)}. Obviously, if it finds such a leaf it can succeed in
invertingy. Starting at the rootd develops node by node a path consistent witRix j to ben —8(log 2 +
2). The algorithmA consists ofj — 1 rounds.

The state of4 at the beginning of théth round ( < ¢ < j) can be described by a nodg of theith
level of the tre€l” defined by querieéy, hs, ... h;_1. LetUy, Us, ... U;_1 be the path from the root tO;.
The property thatd maintains is that the and the labelscs, . . . ¢;_; along the path are consistent wigh
ie. foralll <k <i—1we havecy, = Ls/(Ug, hi) = B(hg,y).

At the ith round.A performs the following: a random quetyc {h|h = 0°-11{0,1}"~%} is chosen.

If the outgoing edgé is labeled properly, i.eLs/ (U;, h) = B(h,y), thenh; < h and the path is expanded

to the new nodé/; led by h;. Otherwise S’ is reset to the state before its reply, and a new candidate for

is chosen. This is repeated until either a success or until there are no more candidates left, in whith case
aborts.

If A reaches thgth level, it guesses the remaining- j queriesh;, hj1, ..., h,—1 by choosing them
uniformly at random from the proper sets of querigsthen checks whether the path to the leaf is labeled
consistently withB(y, hy) for k = j,...,n — 1. If this is the case and the leaf reached is good, thdras
succeeded in inverting. Otherwise abort.

Analysis of the inverting algorithm A

The rest of this proof is devoted to showing thétas defined above has probability at Iegbse% for
invertingy. Note thatA as described above does not necessarily halt after a polynomial number of steps.
However, as we shall see following Claim 7, we can limit tb&al number of unsuccessful attempts at
finding consistent’s to 8n without decreasing significantly the probability théssucceeds in inverting.
Notation: since we are dealing with several types of vectors of lemgtver GF'[2] we will distinguish
them by referring to those vectors that are senfdbgsqueries, and to those vectors which may be the
image thatA attempts to invert asnages. Let U; be a node at théth level of the treel” defined by
hi,ha,...hi—1 and letey, ca, ... c;—1 be the labeld s, assigned to the path 1¢;. We say thay € {0,1}"
is animage in U; if B(hg,y) = ¢ forall 1 < k < i. We denote the set of images©fby Z (U;); we know
that|Z(U;)| = 27~**1. We say thah € {0, 1}" is aquery of U; if it is of the form 0°=11{0, 1}"~%. There
are2"~! queries at a nodg; of theith level.

Let A(U,y) = |{h : hisaquery o/ andB(h,y) = Ls/(U,h)}|. Animagey is balanced in U;, a

node of theth level if . . AU
<1—)§ (i’.y)§1<1+1>
2 n 2n—t 2 n

Hence for an image that is balanced i&/;, roughly half of the answers to the queries at nbgagree with
y. An image y isfully balanced in U, a node of thgth level, if it is balanced in all the ancestorsof Let
F(U) be the set ofy € Z(U) that are fully balanced i/. The motivation for considering fully balanced
images is that the probability that reaches a certain nodéwith an imagey € F(U) is close to what it
would be in cas&’ was honest. For a set of queriBsat a nodd/ and an imagey of U thediscrepancy
ofyatH is

|H]

2
i.e. the difference between the “expected” number of agreeing queries and the actual number of queries in
H that agree withy. Finally, recall thatj = n — 8(log  + 2) and sety = n2 5 ("),
Roadmap Our main problem in analyzing algorithiis in showing that no labelings: can bias the walk
towards a set of leaves containing a small subset of the images. Claims 1 and 2 show that for any labeling

‘{h €H: LS’(U7 h) - B(y7 h)}‘ -
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Lg, for any nodelU almost all the images d¥ are fully balanced. The motivation for considering fully
balanced images is expressed in Claim 3 by showing that the probabilidyrefiching a certain nodg
with an imagey € F(U) is close to what it would be in cas¥ was honest. This is also the reasdrstops
testing queries at level and continues further by guessing the rest of the sequence: otherwise the nodes
may be unbalanced and the probabilities too biased.

Though initially a non-negligible fraction of the leaves are good, there is a dangeS'theads.A
to those directions that have only few good leaves. Claims 4 and 5 say that this is not the case and that
with reasonable probability whed reaches thgth level it has many good leaves whose images are fully
balanced. Claim 6 implies that the probability that our random guess is correct is not far from being inversely
proportional to the number of leaves of a subtree rooted at leghich is polynomial). Finally, Claim 7
combines all the above to show that the probability of success is non-negligible.

Claim 1 LetU be node of theth level and letd C {h|h = 0~11{0,1}"~*} be a subset of the queries of
U of size at mose™ 7. For anyh € H let a; be a random variable over € Z(U) such thata;, = 1 if
B(h,z) = Ls/(U, h) and0 otherwise. Then,

Pr[

Proof : First note that any pair of queries differelit "/ € H has the property that” is linearly inde-
pendent oft’, hy, ha, ... h;—1. For anyh € H we have thaPr[a;, = 1] = % and Vafay] = % For every
n' # h” the eventsi,r anday,» are pairwise independent (this follows from the linear independengéé of
andh”) and hence

> 98(n=i) | < 9=3(n—),

1
Zah—§|ﬂ|

heH

1 i
Var[z ap| = 1 |H| < 27772,
heH
We are essentially interested in

pr{

sinceE[Y", ap] = 3|H|. By Chebyschev’s inequality

Taking A = 2 ("=4) we get that (1) is at mog 1("=9), O

Z ah—E[Z ap)

heH heH

> 27/8(n—j)] (1)

Z ah—E[Z ap)

heH heH

Claim 2 For any nodeU; of level j and randomz € Z(U;) we havePr[z € F(U;)] > 1 —~ fory =
5 .
n2—s(n—7)

Proof : Let Uy, Us,...U;—1 be the nodes on the path @, We should show that for any/; along
the path most € Z(U;) are balanced. We cannot apply Claim 1 directly, since a rangomZ(U;)

is not random inZ(U;). To apply the Claim, we first take care of the queried/pfthat arenot linearly
independent ofy;, ... hj_1. There are at most’— (out of 2"~%) such queries and we (pessimistically)
count them as contributing to the discrepancy. Hétbe the remaining queries &f;. We partition them
into 2/~ subsets according to the values of bits 1 throughj. For eacty € {0,1}7~ let H, = {h|h =
0=11¢{0,1}"7} N H'. EachH, is of size at mos2”~7 and has the following the important property.

11



Fact 1 For every different’, h” € H, we have thah;,...h;_i, k', h” are linearly independent.

Proof : In any subset ofy;,...hj_1, ', h” that sums td) an even number of elements out/af 7/, h”

must participate. Sincg’ andh” are linearly independent df;, ..., h;_1, it is the case that; does not
participate in the sum. However, singé h” € H, and have the same bits in locatiérthrough j, no

member ofh;;1,...,hj_1 can participate in the sum. Sinéé # h” no vector fromh,, ... hj_1, b/, h"

participates and we get the desired linear independénce

Given this property we have that féf, h” € H, and a random € Z(U;) the random variables;,s
anday,~ are independent. Therefore, as in the proof of Claim 1 we have that far arf, 1}/

pr(

Let b, be the indicator for the eveﬁmEheH[ an — E[Y hen, ah]‘ > 25(=) From (2) we knowPr([b,] <
9-3(n=3), By Markov’s inequality we can conclude that

Z ah—E[Z ah]

< 9§ (n—j) < 9—3(n—j) 2)
heH, heH,

Jj—1% )
Pr[ S b 2] < 9 3(n=d),

1 .
e{0,1}5— 2§(nf])

That is, the probability that for more than a fractidn'/®(»—J) of the ¢’s, the setH, has a discrepancy larger
than2s ("9 is at mos2~3 ("7, Thus with probability at least — 2~ 3 (=9 the total discrepancy at node
U; is at most

9i=i 4 9=1/8(n=j)gn—igi=i (1 _ 9= 1/8(n=0))9f(n—ilgi=i < 9. gR+h—i — gn—i . 9=5(n—j)+1

where the first summand is an upper bound on the contribution of the queries Aot the second the
contribution of theH,’s whereb, = 1 and ghe third the contribution of thE,’s whereb, = 0. Hence for
z €p Z(U;) with probability at least — 275("~7) we have

gn—i=1 _ gn—i Qfé(nfj)Jrl < A(U;, 2) < gn—i—1 4 on—i 2fé(nfj)+1
and sincej = n — 8(log % + 2)

%(1 _ l) < 1 _ 2—1/8(n—j)+1 < A(Ui7z)

n’ 2 - on—i

< %+2—1/8(n—j)+1 <

The probability that is balanced in all the levels is therefore at lelast n2-3(n=3) =1 — ~v. O
Claim 3 For any nodel; of levelj and anyz € F(U;)

10 1 e’y 1
1= 1=

where the probability is uniform over the choicegyand the coin-flips ofd
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Proof : To get the first inequality,

1 =
Pr[Areached/; andy = z] = Zn'ifl AT 2)
1 = 1
= o (1+41/n)-2n—i-1
=1
1 =
>

2n<1 + 1/?1)” 1:1_[1 Qn—i—l

—1

Vv
|

Similarly, for the second inequality

Pr[Areached/; andy = 2] = —-

S
|
—_

A
2|
3
=

Al gy ot

J

e 1

< on ]._.E on—i—1" =
1=

I s
=l

Recall that a leat/,, is goodif given that R's queries lead td/,,, thenS’ succeeds in opening the bit

committed in two different ways: i.eS’ inverts on bothyy(U,,) andy; (U,,). Since we stom — j levels

above the leaves we are interested in nodes that have many good leaves in the subtree below them. The
reason we need many and not just one is that a single good node may not have any of its images in the set
of fully balanced images at the root of the subtree. Call an internal bogeod if at leastf of the leaves

at the subtree rooted &t are good. By assumption, the fraction of good leaves is at fgabherefore, the

fraction of good nodes among those of any fixed level and in particulgthhevel is at leas§, since all of

them have the same number of leaves.

Claim 4 The probability thatA reaches some good nodg of the jth level andy € F(U;) is at least

% where the probability is over the choicemp{the imageA attempts to invert) and the coin-flips 4f

Proof : LetU; be a good node of theth level. Then,

Pr[ Areached/; andy € F(U;)] = Z Prly = z and A reaches Uj]
ZG]‘—(UJ')
1 =1
Z @ ’ H on—i—1
ZE.'F(UJ') =1
2n—j+1(1 —) -ty

e2n gib==

=1

ICETIE =
- Hznfi

€ =1

v

v
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Where the first inequality follows from Claim 3 and the second from Claim 2. Since theﬁ{@f@”—i
nodes at thgth level and at least a fractignof them are good, the probability that the image chosen is fully

balanced at a good node of thia level is at leasf =2, O

Claim 5 In any good nodé/; of levelj the fraction of the good leaves at the subtree rootedjithat have
at least one image itF (Uj) is at leastg.

Proof : Any pair of images; # y» in Z(U;) can be together in at most2"~/ of the leaves of the subtree
rooted atl;: in any nodeU’ along the way fronT to the leaves and for random quétyof U’ we have
Pr[B(h,y1) = B(h,y2)] = 1/2. By Claim 2 there are at mos2™~7/*! images inZ(U;) that are not fully
balanced inU;. Therefore the fraction of the leaves of the subtree rootdd, iwhere both of their images

are fromZ(U;) \ F(U;) is bounded by
,YanjJrl 1
2 S onj

(i.e. the number of pairs of images frafiU; ) \ F (U;) times the fraction of leaves they can appear together).
Since

_i11 2
YUY Ly 2o 2k p2g-2logn/ei2in < €
2 )oni 8

we have that at leagt — % > ¢/8 of the leaves are both good and have at least one imagélip). O

Claim 6 For any good nodé/; of levelj and anyz € F(U;), given that4 reachedJ; andy € F(U;), the
probability thaty = z is at Ieastw where the probability is over the choigeand the coin-flips ofd.

Proof : For fixedU; andz € F(U;) we would like to bound from below the value:

Pr[A reached/; andy = 2]
Pr[Areached/; andy € F(U;)|

(3)
We know from the first inequality of Claim 3 that

Pr[Areached/; andy € F(Uj;)] = Z Pr[A reached/; andy = ¢/]
y'eF(Uj)

e 21
< Ne—T[ ——
< Ol 5 T e

e =11
< |Z(U;)] - o HW

=1

- e- 2n—j+1 Jj—1 1
— an ’ gn—i—1"
=1

On the other hand, from the second inequality of Claim 3, foramyF(U) we have that

1
Pr[Areached/; andy = z] > —on H on—i 1
=1

Therefore (3) is at leastyryer. U
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Claim 7 The probability thatA is successful is at Iea%g% where the probability is over the choice of
the imagey and.A coin-flips.

Proof : Define the events: (ajl reaches a good nodg at level j and thaty € F(U) and (b) that
hj,hji1,...hy—1 define a path to a good leaf that has at least one imag&ln. Call this image: (select
arbitrarily if both images are itF(U)). If y = z then A is successful. By Claim 6 we know that the
probability thaty = z is at Ieastﬁ. The probability that (a) occurs is at Ieéé%” by Claim 4 and
that (b) occurs given (a) is at leagby Claim 5. Therefore the probability thalt succeeds is at least

e(l—ny) e L 2 (-y e
4e 8 e22n—itl 7 32.¢3. 200+l T G5e3(4n)8
where the last inequality follows from the fact thyat= n — 8(log 2 + 2). O

Note that we have consideredl successful whepy was fully balanced at level, without taking into
account the time it took fad to arrive at this position. However, given thais fully balanced at level, the
probability thatA had many unsuccessful candidates until it reachedtth&evel is small: we know thaj
is balanced at/; for all 1 < i < j and therefored(U, y)/2" ¢ > %. Therefore the probability thad had
to try more (in total) thadn candidates for thé;’s until reaching leve} is exponentially small im. If we
bound the run time ofd by 8»? (including the query time), then the probability of success is still at least
m —exp(—n). If € is non-negligible, then this is non-negligible as well. This concludes the Proof of
Lemma 2 and Theorem 2 . O

3.3 Obtaining perfect ZK arguments

We have shown a uniform reduction from the existence of a one-way permutation to the existence of
perfectly-secure computationally binding bit commitment protocols. The result holds in the non-uniform
setting as well. Therefore, applying Theorems 1 and 2 we get

Corollary 1 If any non-uniformly secure one-way permutation exists, then there exist perfect zero-
knowledge arguments for proving membership for all languages in NP.

4 Concluding remarks and possible extensions

We now review some technical and general issues arising from this work.
Probability of success:In the proof of the Binding Lemma we did not attempt to optimize the probability
of success as a function efand the resulting polynomial is of rather high degree. However it seems that
our method of designing algorithtd does not yield success probability that is lineaeinlt is interest-
ing whether we can get the dependency tdibear in ¢ times some polynomial im. This would make
the reductionlinear preservingin Luby’'s [28] terminology, whereas the current one is optlynomial
preserving
One-way permutations vs. functions: Where is the assumption thgtis a permutation used? First it
is needed for the Secrecy Lemma, in order to argue ¢hab, ..., c,_1 Yield no information abou.
Consider the case wheyeis analmostpermutation, that is all but a negligible fraction of the strings in
{0, 1}" have exactly one pre-image.

Call a leafu securdf both yo(u) andy; (u) have exactly one pre-image.” andS reach a secure leaf,
thenR cannot guess with probability better thar%. Initially most leaves are secure, afidthe fraction
of insecure leaves is negligible. However, a devious recéd/emay bias the fraction of insecure leaves
by its queries. Let = 41, 09,...,d,_1 be the fractions of insecure leaves at an execution of the commit
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protocol. Suppose that is random. Then for any strategy &' the expected value of;,; is §; and
thereforeE[0,,—1] = 6. From Markov’s inequality it follows thaPr[d,,—1] # 0 is negligible. Note however
that thec;’s are not quite random. Nevertheless, we can define a property simidatadncedhat assures us
thatc; is not far from being uniform i{0, 1} and thus obtain the desired security property.

As for the binding requirement, the difference between the case vhera permutation and an almost
permutation is thay is not necessarily uniform i@ (U), given thatA reached/. However, by a similar
argument to the balanced property, with high probability the conditional distributigniohot far from
uniform inZ(U).

In casef is a general one-way function the above arguments may fail miserably. For starters, most
leaves will have the property that the number of pre-imagesndy; are different. Then there is the danger
that a deviousk’ will skew the probability even further, making the gues$ ektremely easy (so that even
splittingb intob = b1 @® by @ . .. b, would be futile).

Dynamic adversaries: We point out another advantage of perfectly-secure computationally-binding bit
commitments (over computationally secure ones). Consider the following scenario which is a variant of one
proposed by Oded Goldreich (personal communication) in order to model dynamic adversaries. There are
senders and receivers who perform a bit commitment protocol. The input bits given to the senders are drawn
according to some joint distribution on which there is some auxiliary information. The commitments are
performed separately and independently, but following the commit stage an adversary may decide (based
on the communication exchanged) to “corrupy’2 of the senders who provide him with all their internal
information, including the random string used in the protocol. The question is whether the remsiing

bits are still protected as they before. Since the bits may be related, the proper comparison should be with
an weaker adversary that does not get to see the messages exchanged during the commit stage, but can ask
to get thevalueof n/2 bits. Whatever the strong adversary can compute on thies should be computable

by the weaker adversary (the computational power of both adversaries should be similar).

Intuitively, this should be the case, since thearties act independently. However, attempts to prove
this have been futile in case the bit commitmentdsnputationally securethe problem is in running a
simulation, since the adversary gets to see the commitnbefidseit decides which parties to corrupt, and
the simulation is polynomially bounded. On the other hand, for perfectly-secure bit commitment it is the
case that the remaining/2 bits are protected information theoretically. The reason is that the messages sent
during the commit stage are independent of the actual value of the bits, so a computationally powerful simu-
lator may use the strong adversary to create a weak one (which in this case both of them are computationally
unbounded).

Other applications of interactive hashing: The technique of interactive hashing presented here were use-
ful in constructing fail-stop signatures [11] by replacing a collision-free one-way hash functions, and in
designing zero-knowledge proofs from honest-verifier zero-knowledge proofs [34, 10]. It would be interest-
ing to know if further applications of the techniques to reduction of computational complexity assumptions
are possible.

One plausible scenario is replacing collision intractable hash functions used in the work of Kilian [25]
and Micali [29] in order to reduce the communication complexity of NP arguments. Essentially, what is
needed there is a commitment to a large string whose communication complexity is much smaller than the
length of the string. Our protocol requires$ bits of communication in order to commit to a single bit, so it
may seem not applicable to this problem. Note however that in case we use our protocol to commit to many
bits, the querie®R sends may be shared among the bit commitments giving us amortized complexity close
ton — 1, still far from the desired(1).

Suppose that we give up the information-theoretic security ahd go for computational bindirgnd
security (i.e. both parties are protected “only” computationally). In this case, consider the following pro-
tocol: the sender commits to a seed of a pseudo-random sequence using a computationally secure scheme
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such as [30]. The bit-wise Xor of the pseudo-random sequence and the string is still pseudo-random and
computationally protects the string. This Xored sequence is then partitioned into blocks ef dtaeh
of these blocks is then used as this in our protocol of Section 3.1. l.e. the commiter compuf¢s)
and replies to» — 1 successive querigs, ha, . .., hy,—1 With B(f(x), h;). Steps 4 and 5 are not executed,
since the commitment is really toitself. As suggested above, the receiver’'s queries are shared between
the blocks. To open the commitment the seed is revealed along with all the blockssfthd& his yields
amortized communication complexity for the commit phase of roughly% per bit of theoriginal string.
Reducing the amortized communication complexityd) seems to be challenging.

Finally, an interesting question is whether the highly interactive nature of our protocell(rounds)
essential?
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A Relation to recent work on hit-commitment

Bit-commitment (BC) protocols allow a Sender (Commiter) to be bound to a bit which is kept secret from
the Receiver. Later, the Sender can “open” that bit in a unique way (i.e. like a sealed envelope). Recently,
several models in which some parties agquiredto have computational power beyond polynomial-time
were investigated. It is worth while pointing out the differences between those models and the current work.

By “From Strong to Weak BC”, we call BC protocols, in which the binding is perfect, i.e. even an
infinitely-powerful Sender cannot cheat, except with negligible probability, but where the security is com-
putational, i.e. the Receiver is assumed to be polynomial-time and no such Receiver can figure out the
bit committed with non-negligible advantage (if a complexity assumption holds). The combined results of
[20, 21, 30] imply that if one-way functions exist, then there is a (Strong-to-Weak) BC whichndbes-
quire the Sender (and of course the receiver) to do non-polynomial work, that is, it is an efficient protocol
and the underlying assumption in this case is optimal [22].

The work in [33] investigated commitments between strong and polynomial-time players where the
strong player actually needs to use its super-polynomial time power. Thus, the main issue in that paper is how
the hardness assumptions change and can be relaxed when there is a large difference in computational power
of players (rather than being polynomial-time for both players, as needed in cryptographic applications). It
is shown that unless Distributional-NP=RP, a possibly weaker assumption than the existence of one-way
functions, there is a (Strong-to-Weak) BC from a Sender with"aR (J co — N P) power to a polynomial-
time Receiver; the Sender actually spends exponential-time in order to execute the protocol. (See [27]
for definitions of hard-on-the average problems). Thus, when the Sender uses non-polynomial power this
theoretical result relaxes the assumptions in [30].

By “from Weak to Strong BC” we denote BC in which the secrecy is information-theoretic, but the
binding is computational, i.e. with high probability a polynomial-time commiter cannot change the value
of the commitment (if a complexity assumption holds). In [33] it is also shown that given any one-way
function, there is a (Weak-to-Strong) BC from a polynomial-time Sender faSS{AC E) Receiver which
actually spends exponential-time in order to execute the protocol. The result is based on an oblivious transfer
protocols among unequal-power players from [32],

In contrast, in this paper, the protocols of both parties require only (low order) polynomial-time to exe-
cute. This is the appropriate model for cryptographic applications. We made no use of trapdoor properties,
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as BC’s and secure interactive proofs do not need decryptions of arbitrary messages, but rather being able to
display the pre-images of pre-specified messages.
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