
Privacy Preserving Auctions and Mechanism Design

�

Moni Naor Benny Pinkas Reuben Sumner

Abstract

We suggest an architecture for executing protocols for auc-

tions and, more generally, mechanism design. Our goal is to

preserve the privacy of the inputs of the participants (so that

no nonessential information about them is divulged, even a

posteriori) while maintaining communication and computa-

tional e�ciency. We achieve this goal by adding another

party - the auction issuer - that generates the programs for

computing the auctions but does not take an active part

in the protocol. The auction issuer is not a trusted party,

but is assumed not to collude with the auctioneer. In the

case of auctions, barring collusion between the auctioneer

and the auction issuer, neither party gains any information

about the bids, even after the auction is over. Moreover,

bidders can verify that the auction was performed correctly.

The protocols do not require any communication between

the bidders and the auction issuer and the computational

e�ciency is very reasonable. This architecture can be used

to implement any mechanism design where the important

factor is the complexity of the decision procedure.

1 Introduction

Imagine participating in an online auction run by the auc-

tioneer eSleaze.com. The auction is a sealed bid second price

auction (also known as Vickrey auction [36]). In this type

of auction the highest bidder wins, and the clearing price,

the price that the winner has to pay, is equal to the second

highest bid. An important property of second price auc-

tions is that the optimal strategy of bidders is simply to bid

their true valuation of the goods for sale. That being the

case, assume that you value the goods at $1000, and this is

the bid you submit. At the end of the auction, eSleaze.com

congratulates you on winning, and announces that the sec-

ond highest bid was $999... Would you be convinced that

eSleaze.com did not manipulate the second highest bid to

maximize pro�ts?

It would seem that the above problem could be solved if

the value of the bids could be hidden until bidding closes,

thus preventing a corrupt auctioneer from manipulating auc-

tion results. However, consider the following scenario: you

bid $1000 and the second highest bid is only $600. As the

auctioneer does not place fake bids, you win and are re-

�

The authors are with the Dept. of Computer Science and Applied

Math, Weizmann Institute of Science, Rehovot 76100, Israel. Email:

fnaor,bennyp,rasumnerg@wisdom.weizmann.ac.il.

quired to pay $600. The following day eSleaze.com put a

second unit of the same product up for auction, and you're

again interested. This time, however, it sets a reservation

price of $999, meaning that the clearing price would be the

maximum of the second highest price and $999. (Alterna-

tively you might �nd that this time the second highest bid

is $999.) You might suspect that eSleaze.com learned from

your previous bid that you highly value the product, and set

the reservation price accordingly.

Your concern might be justi�ed. It is common to use

sealed-bid second-price auctions as a replacement for the

open-cry English auction. In English auctions bidding is

interactive and the winner is the bidder who outbids all other

bidders. Winners are required to pay their last and highest

bid, which is essentially only slightly higher than the �nal

bid of the second highest bidder. The sealed-bid second-

price auction requires less interaction and is therefore easier

to run, but its main disadvantage is that unlike the English

auction, the bid (i.e. the valuation) of the highest bidder is

revealed to the auctioneer [11]. A corrupt auctioneer may

take advantage of this information, either in future auctions

or by reneging on the sale. (In fact, a corrupt auctioneer

can also take advantage of learning the bids of the other

(non-winning) bidders. The scheme that we introduce hides

even that information from the auctioneer).

This problem was stated by Varian [35] as follows: \Even

if current information can be safeguarded, records of past

behavior can be extremely valuable, since historical data can

be used to estimate the willingness to pay. What should be

the appropriate technological and social safeguards to deal

with this problem?"

This paper aims to provide a solution to this problem.

We present results which are of interest from di�erent as-

pects:

Game Theory: The analysis of auctions and of mechanism

design almost always assumes the trustworthiness of the auc-

tioneer (or of the center which computes the output of the

mechanism); this assumption, unfortunately, might not be

justi�ed in real life. Most auctions currently run on the

Internet are open cry auctions [6]. One reason for this phe-

nomenon is the mistrust of auctioneers that handle sealed

bid auctions. We introduce a simple architecture which en-

sures that the auctioneer never gains access to more infor-

mation than a legitimate and honest auctioneer. This archi-

tecture justi�es the assumption of a trustworthy auctioneer.

Cryptography: Although how to securely compute any func-

tion is known in principle [18, 40], it was believed that

these results were theoretical and ine�cient in practice. We

present an e�cient example of a secure evaluation protocol

for very useful applications, namely for auctions and mech-

anism design. The protocol requires very little interaction.

We are currently experimenting with the implementation of

this protocol for auctions with hundreds of bidders.

Business: The market for online auctions and procurement

is large. There are many security and privacy issues that

make users suspicious of online auctions, in particular for

business-to-business applications involving large sums of money.

Our protocols use an established auction issuer which gen-

erates `programs' that compute the auctions but is not re-

quired to take an active part in the auction itself. Bidders

are assured that as long as the auction issuer and the auc-

tioneer do not collude then the auction is computed cor-

rectly. There seems to be a very promising business op-

portunity for implementing and running the auction issuer.

Auctions run by an auctioneer and backed by the auction

issuer can be trusted even if the auctioneer is of a somewhat

dubious character (say, from an unfamiliar country). The

use of new protocols might, therefore, develop new markets

for online auctions.

The rest of this section discusses trust issues, presents

the suggested architecture, and reviews related work. Sec-

tion 2 discusses the protocol for computing auctions, while

Section 3 suggests its use in general mechanism design. Fur-

ther work and open questions are discussed in Section 4.

1.1 Managing Trust

We aim to minimize the level of trust that bidders must place

in the auctioneer both in sealed bid auctions and in more

general mechanisms. This goal is especially important in

online auctions where long-term relationships between bid-

ders and auctioneers often do not exist, and where auctions

may be run by many small scale parties.

Mechanism design deals with the design of protocols for

sel�sh parties. The goal of a protocol is to aggregate the

preferences of the parties to reach some \social choice" (e.g.

decide whether a community should build a bridge, how to

route packets in a network, or who wins an auction). Each

party has a utility function expressing its valuation of each

possible outcome of the protocol. The party sends informa-

tion about its utility function to a center (of course, it might

choose to report according to an untrue utility function, if

it believes bene�t will be derived). The center determines

the outcome of the protocol based on the reports received.

The goal is to develop mechanism designs in which parties

have no incentive to report a false utility function. The Rev-

elation Principle states that for any mechanism there is a

direct, incentive-compatible mechanism with the same result

(see [31] Chapter 10). That is to say, there is an equivalent

mechanism in which the optimal strategy for each party is

to report its true utility function. It is often assumed that

the parties can trust the center , however this may not al-

ways be the case, particularly in an Internet setting. The

revelation principle might not be applicable if the center is

corrupt and misuses the truthful bids it receives. Privacy is

therefore essential to ensure the credibility of the center.

The method we present controls the amount of informa-

tion revealed to the auctioneer, and, in fact, o�ers bidders

more privacy than in the physical realm, such as in sealed

bid auctions using (physical) envelopes, paper, etc. With

our scheme the outcome of the auction will be the only in-

formation that the auctioneer gains. For example, in the

case of second price auctions, the auctioneer should learn

the identity of the highest bidder (but not the bid!) and

the clearing price which is the second highest bid. The auc-

tioneer (and all other parties) should not learn the identity

of the second highest bidder or any information about the

Bidder nBidder 1 Bidder 2

Auctioneer mAuctioneer 1 Auctioneer 2

Auction Issuer

Figure 1: The di�erent entities: A single auction issuer,

multiple auctioneers, and numerous bidders.

other bids. Still, all parties should be able to verify that the

auction was run properly, that the highest bidder won, and

that the clearing price is correct.

Auctioneers can use the bids to gather useful and legiti-

mate information. There might be tension between bidders

who prefer that auctioneers not gain any information other

than the �nal outcome of the auction, and auctioneers who

strive to gather as much information as possible. The ar-

chitecture we present enables precise control of the informa-

tion the auctioneer receives. For example, the auctioneer

might be allowed to learn some aggregate statistics of the

bids (e.g., the average bid, the number of bids in a certain

range), but not the identity of the bidders associated with a

given bid. All these variants can be easily incorporated into

our schemes.

1.2 Architecture and Entities

The architecture we present introduces a new entity { the

Auction Issuer (AI). This entity runs in the background and

ensures that the auctions are executed properly. The archi-

tecture contains the following types of entities, which are

depicted in Figure 1:

Bidders In the simplest case one or several bidders wish

to sell items, and the remaining bidders are interested in

buying the items. In the general case the bidders are par-

ties who should allocate some resources using a prede�ned

mechanism. The bidders send a message describing (in an

\encrypted" manner) their utility function, to the auction-

eer, and at the end of the protocol they receive an allocation

and can verify that it was computed correctly.

Auctioneer The auctioneer runs the show: it advertises

the auction, receives the bids from the bidders, communi-

cates with the auction issuer and computes the output of

the protocol. The auctioneer might be a party that merely

organizes the auction or the mechanism. It can also be one

of the bidders (for example selling an item which all other

bidders are interested in buying). The protocol ensures that

the auctioneer cannot uncover any information about the

bids that it receives, except for computing the desired out-

come of the protocol (unless it colludes with the auction

issuer).

Auction issuer The auction issuer (AI) is responsible for

\coding the program" that computes the output of the pro-

tocol so as to preserve privacy, and supplying this program

to the auctioneer. Preparation of the program can be com-

pleted ahead of time and is not dependent on the identities

of the auctioneer or the bidders. The AI is not required to

interact with bidders, but only performs a single, one-round

interaction with the auctioneer after the auctioneer receives

the bids. The AI is, therefore, a service provider that can

provide programs for many auctions carried out by many

auctioneers.

The scheme is very e�cient. The communication pattern

used is identical to that of an insecure auction { each bidder

is only required to send a single message to the auctioneer.

The running time of the procedure which determines the

outcome of the auction is just a few seconds on a modern

computer.

In the remainder of the paper we concentrate on a so-

lution for second price sealed bid auctions. This solution,

however, can be used to privately implement other mech-

anisms such as �rst price or kth price auctions, auctions

with reservation prices, double auctions, Generalized Vick-

rey auctions, Groves-Clarke mechanisms, etc. This is demon-

strated in Section 3. Furthermore, it is possible to use this

architecture for tasks such as stable matching (e.g. for resi-

dents and hospitals [20, 33]), or decision making.

1.3 Trust

In our architecture the auction is secure providing the auc-

tioneer and the auction issuer do not collude. Note that the

AI is not required to be a trusted third party, but rather se-

curity is guaranteed as long as the auctioneer and the AI do

not collude. That is, the architecture ensures that neither

the auctioneer nor the AI can uncover alone any information

about the bids.

More precisely, consider an ideal model where there is a

special party which is fully trusted by all other parties. An

auction in this model can be conducted in a trivial man-

ner : all parties submit bids to the trusted party who then

computes and outputs the results. Note that even in this

model some information is leaked about the bids

1

, but this

is inevitable.

The protocol we suggest ensures that no party gains more

information than in the ideal model. Likewise the auctioneer

and auction issuer are also blocked from learning more than

in the ideal model

2

.

Only an act of collusion by both the auctioneer and auc-

tion issuer enables the privacy of the bidders to be breached.

Therefore, bidders need only trust that the AI and the auc-

tioneer are not in collusion, and are assured that neither the

AI nor the auctioneer alone learn anything more than in the

ideal model. In a sense, the bids are locked in a double lock

vault, where one key is in the hands of the auctioneer and

the other in the hands of the AI.

More generally, a coalition of at most one of the the auc-

tioneer or auction issuer with several bidders is at most as

powerful as in the ideal model, for the bids submitted by

other bidders cannot be learned. Consequently, the extent

to which the bidders should trust the auctioneer or the auc-

tion issuer is less than that they usually put in their banks,

credit card companies, or software vendors. The auctioneer

can be any party wanting to organize an auction, while the

1

There are many possible variations regarding the information

learned by di�erent parties. For example, the highest bidder and

the clearing price might be publicly announced. On the other ex-

treme this information might be revealed only to the highest bidder

and to the seller. Even here, winner learn that they met the winning

criteria, which itself reveals limited information about the other bids.

2

The protocol di�ers from one in the ideal model in that it enables

the auction issuer to learn the number of bidders. By placing an

upper bound on the number of bidders, it is simple to prevent this

information from being revealed to the auction issuer.

auction issuer is typically an established party such as a �-

nancial institution or large company, which supplies services

to numerous auctioneers. The auction issuer does not need

to communicate directly with bidders and does not even

need to know their identities (thus eliminating the danger

of it \stealing" customers from the auctioneers). Bidders

are assured that their privacy is preserved provided they

participate in an auction in which the auctioneer uses the

AI's \programs".

Another appealing property of our schemes is that they

prevent disputes regarding the operation of the auctioneer.

At the end of the protocol, all parties can verify that the

auctioneer computed the desired auction or mechanism cor-

rectly.

We assume throughout the paper that the Public Key of

the auction issuer is known to the bidders. Beyond this, we

do not require any Public Key Infrastructure (PKI).

1.4 Related work

Internet auctions are the topic of major commercial and re-

search e�orts. Kumar and Feldman [25] describe several

issues concerning Internet auctions as well as an application

for auctioning goods over the Internet. Chui and Zwick [6]

present a thorough survey of commercial Internet auctions.

There are also several academic auction servers on the Inter-

net, which enable experimentation with more complex auc-

tions than those o�ered by commercial sites. For example,

the AuctioBot server of the University of Michigan [1, 38]

supports Mth and (M + 1)th price double auctions with

multiple sellers. A recent design of an academic auction

server, eAuctionHouse [22], supports combinatorial auctions

and bidding by automated agents.

An exciting topic of cryptographic research is secure func-

tion evaluation (see e.g. [18, 40] and [16] for an up-to-date

and erudite discussion). For any function f(x

1

; x

2

; : : : ; x

n

)

it is possible in principle to construct a protocol that allows

a group of n parties, where party i has as its private in-

put �

i

, to jointly evaluate f(�

1

; �

2

; : : : ; �

n

). Following the

protocol, the parties learn f(�

1

; �

2

; : : : ; �

n

) but no party i

can learn about the other inputs f�

j

g

j 6=i

more than can be

computed from �

i

and f(�

1

; �

2

; : : : �

n

). Since an auction

can be considered an evaluation of a function of the bids,

it is tempting to try to use such a protocol to conduct an

auction. The drawback, however, is that these protocols are

rather complex and require signi�cant interaction between

the parties. They are secure as long as less than a certain

number of the parties collude maliciously. (Such protocols

are the basis for the auction protocols of [21], see below.)

There are suggestions for distributing the operation of an

auctioneer among multiple servers in a manner that is secure

as long as not too many of these servers operate maliciously.

Franklin and Reiter [14] developed a distributed system for

sealed-bid auctions which ensures the con�dentiality of the

bids until end of the bidding period. Their system further

enables the bids to be backed by escrowing �nancial com-

mitments of the bidders. Harkavy, Tygar, and Kikuchi [21]

present systems for secure �rst price and second price sealed

bid auctions that preserve the privacy of the bids even af-

ter the winning bid is chosen (this variant was also briey

mentioned in [14], Section 5.2.5). Both systems distribute

the operation of the auctioneer among several servers, and

privacy is guaranteed as long as not too many of the servers

collude (most of the protocols require that less than a third

of the servers collude, and therefore need a minimum of four

servers). A di�erent auction scheme was suggested very re-

cently by Cachin [5], involving two auction servers, but re-

quiring users to contact just a single server. After receiving

the bids, the auction servers engage in several rounds of

communication, at the end of which they have a list of the

bidders sorted by their bids, but not the bids themselves.

The systems of [14, 21] require bidders to communi-

cate directly with all the servers. Furthermore, the sys-

tems of [21, 5] require high interactivity between the servers

which exchange numerous rounds of interaction. These re-

quirements impose bandwidth and latency problems on all

the auction servers. There is no motivation for a global

party such as the auction issuer to participate as a server

in many auctions, as a considerable amount of resources

must be invested in each auction. The implication might

be that all auction servers would essentially be managed by

the same organization { the auctioneer. Note the distinc-

tion between this architecture and the architecture that we

suggest. In the former, privacy is guaranteed only if the

auctioneer is trusted not to combine the information held

by the di�erent servers it controls. This assumption is not

enforceable and cannot be veri�ed by an outsider. Conse-

quently, the only protection is against external break-ins to

the auctioneer's servers (under the presumption that thresh-

old of servers break-ins is not exceeded). This architecture

therefore requires complete trust in the auctioneer, which,

in the case of small Internet auctioneers, might not justi�ed

(see [25]).

Compared to these solutions our architecture provides

bid privacy after the auction is over and does not require

distribution of the auctioneer between several noncollusive

servers. It uses a single round of communication between

the auctioneer and auction issuer and can, therefore, use a

separate organization as the auction issuer. In addition, our

scheme can be used to implement general mechanisms.

The work of [34] considers online English auctions with a

single auctioneer (which might be corrupt) and secures them

against selective blocking of bids based on their amount,

and selective early termination of the auction. Our schemes

obtain similar properties for sealed bid auctions.

Our work employs several techniques developed for two-

party secure function evaluation and obtains communica-

tion e�cient multi-party protocols for computing auctions.

In particular, we employ the garbled circuit technique at-

tributed to Yao [40, 18]. We are able to obtain rather ef-

�cient protocols, as we assign di�erent roles to the players,

i.e., the bidders, the auctioneer, and the auction issuer. (See

a similar phenomenon in [13].)

2 The Protocol

In Section 2.1 we provide a high-level description of the pro-

tocol for running secure auctions. The protocol rests on

a number of cryptographic tools described in Sections 2.2

and 2.3. Section 2.4 describes the complete protocol, Sec-

tion 2.5 discusses its overhead and possible optimizations,

and Section 2.6 describes a prototype implementation.

2.1 High-level Description of the Protocol

The protocol comprises the following steps (as depicted in

Figure 2):

1. The auctioneer publishes the details of the auction it is

organizing. These should include the rules for selection

of winning bids are chosen, closing time and auction

issuer (AI) supporting the auction.

Bidder 2

Bidder n

Bidder 1

(4)

(2)

(1)
(3)

Auctioneer

Auction Issuer

Figure 2: High-level description of the protocol with a single

auction issuer: (1) The auctioneer publishes the auction. (2)

Bidders place their bids. (3) The auctioneer sends a message

to the auction issuer, and receives garbled circuit inputs. (4)

The auctioneer computes the result of the auction.

2. Bidders submit encrypted bids to the auctioneer. (The

AI can decrypt part of the encryption, but even it

cannot discover the actual bids).

3. The AI generates a program to compute the output

of the auction. More precisely, it generates a circuit

(composed of Boolean gates such as AND, OR and

NOT) that performs this task and then \garbles" the

circuit (this step can be performed in advance, prior

to the submission of the bids). The auctioneer for-

wards portions of the bids to the AI, which decrypts

the bids and uses them to compute \garbled inputs" to

the circuit. It sends the circuit and the inputs to the

auctioneer, along with a signed translation table that

\decrypts" the output of the circuit (alternatively, the

AI can send the garbled program, which is the bulk of

the communication, in advance).

4. The auctioneer uses the garbled inputs and the en-

crypted circuit to compute the output of the circuit.

It publishes the result and the signed translation table

received from the AI.

Most previous designs of multi-party protocols (e.g. [18,

16]) require all parties to interact with each other, and fur-

thermore to exchange many rounds of communication. The

novelty of our approach is the design of a secure multi-party

protocol which preserves the communication pattern of an

auction protocol, in which a bidder is only required to ex-

change a limited number of messages with a single auction-

eer. Notice that the only new communication channel re-

quired by our protocol (compared to a protocol with no se-

curity at all) is a single back and forth communication round

between the auctioneer and AI after bids are received.

We examine the overhead of the protocol in Section 2.5.

Circuits which compute the output of auctions are of rea-

sonable size. For example, if there are N bidders and bids

are in a range of L = 2

`

possible values, then the number

of gates in a circuit which computes a second price auction

is O(N logL) = O(N`) with a small constant (see details in

Section 2.5). The AI and auctioneer should perform several

applications of a pseudo-random function per gate and sev-

eral applications of a public key operation per input wire.

On a modern processor it is possible to perform hundreds of

thousands of applications of a pseudo-random function and

dozens of public-key operations in a single second. Thus,

the computational overhead of the protocol is of the order

of less than one second per bidder.

OT Sender Chooser

Input m

0

;m

1

� 2 f0; 1g

Output | m

�

Table 1: 1-out-of-2 Oblivious Transfer

2.2 Cryptographic Tools

The protocol uses two types of cryptographic tools: pseudo-

random functions and oblivious transfer.

2.2.1 Pseudo-random functions

A pseudo-random function is a function that cannot be dis-

tinguished from a truly random one by an observer granted

access to the function in a black-box manner. Assume, for

example, a function F

K

, speci�ed by a short key K which

can only be accessed by the observer by adaptively specify-

ing inputs and obtaining the value of the function on these

inputs. (See [17, 26] for precise de�nition and various con-

structions). Our working assumption is that block ciphers

(such as DES, or triple DES) or keyed one-way hash func-

tions (such as HMAC), can be modeled as a pseudo-random

function. Therefore, the function F

K

(x) can be implemented

by keying a block cipher with the key K and encrypting x,

or keying a hash function with K and applying it to x. The

evaluation of a pseudo-random function is therefore consid-

erably cheaper than a typical public-key operation.

2.2.2 Oblivious Transfer and Proxy-Oblivious Transfer

The following two-party protocol is known as 1-out-of-2 obliv-

ious transfer (1-out-of-2 OT). The protocol involves two par-

ties, a sender that knows two secret values hm

0

;m

1

i, and a

chooser whose input is � 2 f0; 1g. At the end of the pro-

tocol, the chooser learns m

�

, while learning nothing about

m

1��

, and the sender learns nothing about �. This is sum-

marized in Table 1.

The notion of 1-out-2 oblivious transfer was suggested by

Even, Goldreich and Lempel [12] as a generalization of Ra-

bin's \oblivious transfer" [32]. For an up-to-date discussion

of OT, see Goldreich [16].

Oblivious transfer protocols are rather e�cient, and the

noninteractive OT protocols of Bellare and Micali [4] are

particularly attractive. The combination of their protocols

with the proof techniques of [8] yields an e�cient 1-out-of-2

OT protocol that is based on the Decision Di�e-Hellman

assumption. We describe this protocol in Appendix A. The

main computational overhead of the protocol is two public

key encryptions conducted by the sender, and one public

key decryption conducted by the chooser

3

.

Proxy Oblivious Transfer: We extend the notion of OT to

1-out-of-2 proxy oblivious transfer. This protocol involves

three parties: A sender (that knows two inputs m

0

and m

1

),

and a chooser (with an input � 2 f0; 1g), as well as a a

third party, the proxy, which has no input and serves as

the chooser's proxy for learning the output. At the end

of the protocol, the proxy learns m

�

, while the two other

3

This overhead is achieved if the protocol uses a random oracle

function H, i.e., a concrete function assumed to behave as a random

function. If it is not assumed that such functions exist, then the

protocol should use the proof techniques of [8] which require several

additional exponentiations.

proxy-OT Sender Chooser Proxy

Input m

0

;m

1

� 2 f0; 1g |

Output | | m

�

Table 2: 1-out-of-2 Proxy-Oblivious Transfer

parties learn nothing. Note that the proxy does not learn

�. The de�nition is summarized in Table 2. In Appendix A

we describe a protocol that implements 1-out-of-2 proxy OT,

with an overhead identical to the protocol for 1-out-of-2 OT.

In our protocol for computing auctions, the auction is-

suer is the sender, the bidders are the choosers, and the

auctioneer is the proxy.

2.3 Secure Function Evaluation for Two Parties

We describe a secure function evaluation protocol for two

parties, which is a variant of the protocol of Yao [40] (see

also [18]). The protocol is run between two parties, the Input

Owner A and the Program Owner B. The input of A is a

value x, and the input of B is a description of a function

f . At the end of the protocol, A should learn f(x) (and

no other information about f), and B should learn nothing

about x. We will apply this protocol as a key component

in our auction protocol, where the Program owner B is the

auction issuer, and the input owner A corresponds to the

auctioneer. The program computes the result of an auction.

The protocol is based on expressing f as a combinatorial

circuit with gates de�ned over some �xed base B (e.g. B

can include all the functions g : f0; 1g � f0; 1g 7! f0; 1g).

The bits of the input are entered into input wires and are

propagated through the gates.

Protocol for two-party secure function evaluation

Input: A's input is a value x, B's input is a combinatorial

circuit which computes f .

Output: A's output should be f(x).

The Protocol:

� Encrypting the circuit: B assigns to each wire i of

the circuit two random values (W

0

i

;W

1

i

) corresponding

to 0 and 1 values of the wire (the random values should

be long enough to be used as keys to a pseudo-random

function, say 80 bits long). Denote the value of the

wire by b

i

2 f0; 1g, B also assigns to the wire a random

permutation over f0; 1g, �

i

: b

i

7! c

i

. Denote hW

b

i

i

; c

i

i

as the `garbled value' of wire i.

Consider a gate g which computes the value of the

wire k as a function of wires i and j, b

k

= g(b

i

; b

j

). B

prepares a table T

g

which enables computation of the

garbled output of g, hW

b

k

k

; c

k

i, from the garbled inputs

to g, namely the values hW

b

i

i

; c

i

i; hW

b

j

j

; c

j

i. Given the

two garbled inputs to g, the table does not disclose

information about the output of g for any other inputs,

nor does it not reveal the values of the bits b

i

; b

j

; b

k

of

the inputs and output of g.

The construction of T

g

uses a pseudo-random function

F whose output length is jW

b

k

k

j+1. Assume �rst that

the fan out of each gate is one. The table contains four

entries of the form

c

i

; c

j

: h(W

g(b

i

;b

j

)

k

; c

k

)� F

W

b

i

i

(c

j

)� F

W

b

j

j

(c

i

)i

for 0 � i; j � 1, where c

i

= �(b

i

); c

j

= �(b

j

), and c

k

=

�

k

(b

k

) = �

k

(g(b

i

; b

j

)). (The entry does not include its

index c

i

; c

j

explicitly, as it can be deduced from the

location.) The table masks the garbled value of the

output wire using the output of the pseudo-random

function F keyed by the garbled values of the input

wires.

To verify that the table enables computation of the

garbled output value given the garbled input values,

assume that A knows hW

b

i

i

; c

i

i; hW

b

j

j

; c

j

i. A should

�nd the entry (c

i

; c

j

) in the table T

k

, and compute its

exclusive-or with (F

W

b

i

i

(c

j

)�F

W

b

j

j

(c

i

)). The result is

hW

b

k

k

=W

g(b

i

;b

j

)

k

; c

k

i.

� Coding the input: The tables described above en-

able to compute the garbled output of every gate from

its garbled inputs. Therefore given these tables and

the garbled values hW

b

i

i

; c

i

i of the input wires of the

circuit, it is possible to compute the garbled values of

its output wires. Party A should therefore obtain the

garbled values of the input wires.

For each input wire, B and A engage in a 1-out-of-2

oblivious transfer protocol in which B is the sender

whose inputs are the two garbled values of this wire,

and A is the chooser whose input is the input bit. As

a result of the oblivious transfer protocol A learns the

garbled value of its input bit (and nothing about the

garbled value of the other bit), and B learns nothing.

B sends to A the tables that encode the circuit gates

and a translation table from the garbled values of the

output wires to output bits.

� Computing the circuit: At the end of the oblivious

transfer stages party A has su�cient information to

compute the output of the circuit for the input x by

its own.

To show that the protocol is secure it should be proved that

no party can gain more information than in the ideal model,

in which there is a trusted third party which receives x from

A and f from B, and sends f(x) to A.

The main observation regarding the security of each gate,

is that every masking value (e.g. F

W

b

i

i

(c

j

)) is used only

once, and that the pseudo-randomness of F ensures that

without knowledge of the correct key these values look ran-

dom. Therefore knowledge of one garbled value of each of

the input wires discloses only a single garbled output value

of the gate; the other output values are indistinguishable

from random to A.

As for the security of the complete circuit, the oblivi-

ous transfer protocol ensures that the A learns just a single

garbled value for each input wire, and B does not learn

which value it was. Inductively, A can compute just a single

garbled output value of each gate, and in particular of the

circuit. The use of permuted bit values c

k

, hides the values

of intermediate results (i.e. of gates inside the circuit).

Observe that the tables must use the output of a pseudo-

random function F to mask the garbled output values of the

gate. If this masking were accomplished by simply xoring

the garbled input values to the corresponding garbled output

values, then one could just xor the table entries, cancel out

the masking elements, and discover the relations between

garbled values. The pseudo-random function is therefore

essential to hide relations between the di�erent masking el-

ements. If the fan out of a gate is greater than 1 then a

di�erent input to the pseudo-random function must be used

at each gate where the wire is used. A simple method for

achieving this is to assign to each gate a unique identi�er

I

g

, and use F

W

b

i

i

(c

j

; I

g

)� F

W

b

j

j

(c

i

; I

g

) for masking.

It is also possible to adapt the protocol for circuits in

which gates have more than two inputs, and even for wires

with more than two possible values. The size of the table

for a gate with ` inputs which each can have d values is d

`

.

Overhead

Note that the communication between the two parties can

be done in a single back and forth round, and B can prepare

the circuit in advance, before the input is known to A.

Consider a circuit with n inputs and m gates. The pro-

tocol requires B to prepare m tables and send them to A.

This is the major communication overhead of the protocol

and can be performed o�ine, prior to disclosure of the in-

put to A. In the case of binary gates, the communication

overhead is 4m times the length of the output of the pseudo-

random function (typically 8 to 16 bytes long).

The main computational overhead of the protocol is the

computation of the n oblivious transfers. They require each

of the two parties to perform a total of O(n) exponentiations.

Afterwards party A computes the output of the circuit, and

this stage involves m applications of a pseudo-random func-

tion. The overhead of this stage is typically negligible com-

pared to the oblivious transfer stage.

2.4 Secure Function Evaluation for Auctions

The computation of auctions involves three types of par-

ties: Bidders who know the inputs, an auction issuer that

prepares the circuit and and auctioneer that learns the out-

put of the circuit. The secure protocol we present preserves

the original communication pattern of auctions in which a

bidder only interacts with the auctioneer. It uses a single

additional round of communication between the auctioneer

and the auction issuer.

The protocol evaluates a function f which computes the

result of the auction. For a second price auction, where

the bids are (x

1

; : : : ; x

n

), this function is f(x

1

; : : : ; x

n

) =

hi; pi, where i is the identity of the highest bidder (x

i

=

max(x

1;

: : : ; x

n

)) and p = max(x

1

; : : : ; x

i�1

; x

i+1

; : : : x

n

) is

the second highest bid. (The speci�cation of the function

should also de�ne how ties are broken.)

Consider the protocol of Section 2.3 for two-party secure

function evaluation. A key observation about this proto-

col is that if there are multiple inputs x

1

; : : : ; x

n

(known

to di�erent parties) and somehow, party A who was given

the garbled version of a circuit that evaluates f is given the

garbled values for each of the bits of the x

i

's, then A can

evaluate f(x

1

; : : : ; x

n

) without learning anything else about

the x

i

's themselves. This observation shows how to trans-

form the two-party protocol into a multi-party protocol for

computing auctions: the auctioneer is party A, the inputs

are known to the bidders, and the auction issuer is party

B. The only step missing is allowing the auctioneer to learn

the garbled values of the bidders' inputs. This is done using

proxy oblivious transfer.

Protocol for secure evaluation of an auction

Input: Bidder i'a input is a bid x

i

. The auction issuer

has a description of a function f that computes the auction.

Output: The auctioneer should compute f(x

1

; : : : ; x

n

).

Protocol:

� Encrypting the circuit: The AI constructs a cir-

cuit that computes the auction. It garbles the circuit

identically in the manner in which party B garbled the

circuit in the two-party protocol.

� The auctioneer advertises the auction, its terms and

the public-key of the AI and invites bids.

� Coding the input: Each bidder i engages in a a 1-

out-of-2 proxy oblivious transfer protocol for each of

the bits of x

i

. In this protocol, the AI is the sender,

and its two inputs are the garbled values for the input

bit. The bidder is the chooser, and its input is its input

bit, and the auctioneer is the proxy. At the end of the

protocol, the auctioneer learns the garbled value of the

input bit (i.e. W

x

i

i

), but not the value of x

i

.

� Computing the circuit: At the end of the proxy

oblivious transfer stage, the auctioneer possesses suf-

�cient information to compute the circuit indepen-

dently, exactly as in the two-party protocol.

To complete the speci�cation of the protocol we should

discuss several issues.

Communication pattern: Bidders communicate only with

the auctioneer and not with the auction issuer or with other

bidders. The naive communication pattern of the proxy OT

protocol consists of a �rst stage in which each bidder sends

a message to the auctioneer and a message to the AI, and a

second stage in which the AI sends a message to the auction-

eer. This structure requires direct communication between

the bidder and the AI, which we are trying to avoid. How-

ever, the bidders can use the auctioneer as a communication

channel to the AI. Each bidder takes the message that should

be sent to the AI and encrypts it with the AI's public key

(using a non-malleable encryption scheme, see below) and

sends it to the auctioneer. When all bidders have completed

this phase, the auctioneer can send the messages to the AI.

Encryption scheme security: It is crucial to encrypt the

messages from the bidders using a non-malleable encryption

scheme (de�ned and introduced in [10]). Such a scheme

prevents the auctioneer from causing meaningful changes in

the cleartext by changing the ciphertext (in fact auctions

are the example given in [10] for the need for non-malleable

encryption: Suppose, for example, that the encryption was

simply xoring the bid with a one-time pad. Then it is easy to

reverse some bits of the bid by reversing the corresponding

bits of the ciphertext). If the public-key of the AI is to be

used for several auctions that it should be secure against

chosen ciphertext attacks in the post-processing mode (see

[10, 9, 3] for an up-to-date discussion of the issues).

Care should also be taken to prevent a replay attack that

repeats a bid from an old auction in a new one. This can

simply be handled by adding names to the auctions (say auc-

tioneer name and date). The bidders add this name to their

plaintext messages and then encrypt. The non-malleability

property assures that the name cannot be modi�ed. The AI

should make sure it does not engage in an auction with the

same name twice, and that it uses a fresh garbled circuit for

every auction.

Verifying the output: Bidders should verify that the auc-

tioneer has computed the circuit constructed by the AI, and

that the auctioneer indeed sent the bids to the AI (if not,

the bids were not considered in computing the outcome).

A naive veri�cation procedure is to require the auction-

eer to publish the tables and garbled input values of the

circuit (signed by the AI), and allow suspecting bidders to

simulate its computation. However, a more e�cient veri�ca-

tion method is to use a signed `translation' table that the AI

generates for the output wires of the circuit. For each out-

put wire, i, the table should contain the entries h0; G(W

0

i

)i

and h1; G(W

1

i

)i, where G is a one-way function

4

. The auc-

tioneer displays the values hb

i

;W

b

i

i

i for each output wire.

Each bidder can verify that hb

i

; G(W

b

i

i

)i appears in the ta-

ble. Since G is one-way, the only way that the auctioneer

can generate W

b

i

i

is by computing the circuit.

A simple method for verifying that all bids were consid-

ered in the auction requires the AI to sign a list of hash

values of each of the messages it received from the bidders.

These hash values are displayed by the auctioneer. Bidders

can check that the AI signed the hash of their messages.

A corrupt auction issuer: A di�erent type of attack in-

volves a corrupt auction issuer. If the AI colludes with a

bidder (or subset of bidders), it can, for example, provide a

program that always declares a certain bidder the winner.

Alternatively, it can disrupt the computation by sending in-

correct values to the input wires. These types of attacks

can be detected using a \cut-and-choose" technique: the AI

is required to provide m copies of the program (including

commitments to the garbled input wires). The auctioneer

then asks it to remove the garbling and provide the inputs

for half of the copies, examines that they compute the de-

sired function, and runs the protocol with the remaining

copies, verifying that they all yield the same output. The

probability that a corrupt AI is not caught is exponentially

small in m. It seems that even using m = 2 copies and

opening one of them is su�cient, as an AI caught cheating

even once would (at least) lose its credibility, and so the

risk-to-bene�t ratio of such collusion is quite small (in fact,

it might be su�cient for the auctioneer to decide at random

whether to require more than a single copy of the program,

setting the probability according to the risk that it is willing

to take.).

Denial of service attack by bidder: A corrupt bidder might

disrupt the computation of the auction by preventing the

auctioneer from receiving correct garbled input values in the

proxy-OT stage (see Appendix A). The solution to this at-

tack should enable the auctioneer to prove to the AI that

this event took place, and receive the garbled values corre-

sponding to a `0' bid of that bidder. However, care must be

taken to prevent a corrupt auctioneer from using this mech-

anism to complain against innocent bidders and learn their

bids. See Appendix A for the details of this solution.

4

G(x) can be de�ned, for example, as F

x

(0), where F is the

pseudo-random function used for garbling the circuit.

2.5 Computational and Communication Overhead

The di�erent parties of the above protocol incur di�erent

computational and communication loads. We will survey

them now. Each bidder engages as a chooser in a proxy

oblivious transfer protocol a number of times proportional

to the number of bits in its input. Under the implemen-

tation we propose this implies a number of exponentiations

proportional to its input length. For an application like an

auction this yields a modest load. Note that the encryp-

tion with the AI public-key can be done as one message for

all the inputs bits of each bidder, and hence does not add

signi�cantly to the load.

The AI has to prepare the garbled circuit (which can

be done o�ine) and send it to the auctioneer, and it has to

engage as the sender in the proxy oblivious transfer protocol

a number of times proportional to the total number of input

bits. This last part may be signi�cant, so we have attempted

to reduce it (see below).

The auctioneer has to participate as proxy in the proxy

oblivious transfer protocol a number of times proportional

to the total number of input bits. It has to evaluate the

garbled circuit, which means a number of pseudo-random

function evaluations proportional to the circuit size. Since

the circuit size a�ects both the communication between the

AI and the auctioneer (in total table size) and the work

the auctioneer must perform, it makes sense to put e�ort in

optimizing it (see below).

Optimizing the proxy OT: The computation of the expo-

nentiations in the proxy oblivious transfer stage the main

computational overhead of the protocol (unless the circuit

is extremely large, which is not the case for auctions). The

proxy oblivious transfer protocol uses El Gamal encryptions

which are of the form (g

r

; (g

x

)

r

�m), where r is chosen by the

AI and x by the bidder (see App. A). It is therefore tempt-

ing to minimize the work and the communication by reusing

the same r for several encryptions. Care should be taken not

to hamper the security by such an optimization. Given that

the total length of these encryptions may be the bulk of the

communication (and these messages cannot be sent o�ine)

it makes sense perhaps to employ El Gamal encryptions over

elliptic curves which have more succinct representation than

GF [P].

Optimizing the circuit size: Consider an auction with N

bidders, where a bid is an integer in the range [1; L] (i.e.

it can be represented by ` = logL bits). Our best circuit

design for second price auctions uses approximately 30N`

table entries. In order to optimize the size of the tables

that describe this circuit, it uses some wires which are not

binary but can rather have one of three values. Assuming

that each entry is of 10 bytes, the table size is about 300

bytes per input bit. Note that even for N = 1000 users, and

bids with one million possible values, the size of the circuit is

moderate, 30 �1000 �20 = 600; 000 table entries, or 6Mbytes.

A circuit for �rst price auctions is about half as large.

It is possible to further reduce the size of the tables by a

factor of 25%. For the case of gates with two binary input

wires the saving is achieved by setting one garbled output

value to be a function of the corresponding garbled input

values (and then the table does not have to contain an entry

for this output value).

2.6 Implementation of the Protocol

We are developing a prototype of the architecture for the

case of second price auctions with hundreds of bidders. The

implementation is done in the Python scripting language.

The entire implementation takes about 1500 lines of python

code, together with about 800 lines of C code for the com-

putation of the pseudo-random function and the encryption.

It uses El Gamal public key encryption and DSA signatures,

which use exponentiations over a 768-bit modulos. The ex-

ponentiations are coded in assembler.

The proxy oblivious transfer protocol incurs most of the

communication and computation overhead. As for the com-

munication overhead, the tables that code the circuit can

be sent from the AI to the auctioneer in advance, before

the auction begins ,possibly on a CD-ROM or DVD. (The

structure of the circuit does not have to be sent, since the

auctioneer can compute it by itself, given the number of

bidders and the size of the bids.) Most of the online com-

munication between the AI and the auctioneer is for the

proxy OT protocol in which for each bit the AI receives one

public key and sends two encryptions.

The proxy OT stage incurs also most of the computation

overhead. A straightforward implementation requires the AI

to compute, for every input bit, two online exponentiations

(for encryption), and requires the auctioneer to compute

one exponentiation (for decryption). It is possible to use

a variant of oblivious transfer with low amortized overhead

to reduce this overhead to one exponentiation per several

input bits. The circuit itself contains about four gates per

input bit, and its evaluation is less computation intensive.

To evaluate each gate the auctioneer computes two values of

a pseudo-random function. The throughput of the pseudo-

random function is hundreds of thousands of operations per

second and thus the total overhead is marginal.

3 Other Auctions and Mechanisms

The overhead of the protocol depends only on the size of the

combinatorial circuit that evaluates the function deciding

the outcome of the auction. It is, therefore, possible to

use the same protocol for computing various other types

of auctions and mechanisms which can be expressed as a

circuit of moderate size.

3.1 Auctions

The di�erence between a protocol for a �rst-price auction

and a protocol for a second-price auction is only that they

use di�erent circuits to compute the result of the auction

(the circuit for �rst-price auctions being simpler). Similar

circuits can be used to express k-th price auctions, where

the winner is the highest bidder and the clearing price is

the k-th highest bid. Note that unlike �rst or second price

auctions, k-th price auctions do not have an interactive im-

plementation (similar to the English or the Dutch auction)

which guarantees that the auctioneer does not misuse the

submitted sealed bids. The size of the circuit for a k-th

price auction is not k times the size of a circuit for �rst

price auction, but is rather just O(N` + k`). (This can be

done via a binary search on the value of the k largest bid)

The number of inputs, determining the number of oblivious

transfers and thus of public key operations, is the same as

for �rst price auctions. k-th price auctions where proposed

as suitable for risk seeking bidders [28, 29].

Wurman, Walsh, and Wellman [39] discuss the design

of double auctions supported by the AuctionBot [1]. In

particular they consider the case where there are M sell

o�ers and N buy o�ers, and analyze the Mth-price and

(M + 1)st-price rules. These rules can be easily expressed

as circuits similar to those for k-th price auctions, and can,

consequently, be implemented by our protocol.

MacKie-Mason and Varian [27, 35] present an exposition

of the Generalized Vickrey Auction (GVA) as a power-

ful mechanism capable of solving many complex problems.

In this mechanism each party reports a utility function, and

the center calculates the allocation that maximizes the sum

of the reported utilities subject to the resource constraints.

The payment of party i depends on the di�erence between

the sum of the utilities of the other parties in the chosen al-

location and the sum of their utilities in the allocation which

does not take party i into account. This mechanism can be

used to sell multiple units of the same goods to consumers

who have a utility function which depends on the number

of units they receive The GVA can be expressed as a small

circuit, if the consumer utility functions are not overly com-

plex. For example, in the problem of selling M units of the

same goods, each consumer utility function can be a mere

list of the values for the 1st, 2nd, and up to the Mth unit of

the goods. Therefore, each consumer's input is composed of

M values, and the circuit that decides the outcome of the

mechanism is relatively simple.

Finally note that auctions are sometimes implemented by

several rounds where in each round the bidders may get to

add some inputs (e.g. the notable FCC spectrum auctions).

Such auctions can also be handled in our framework, though

it may be the case that in some instances the need for several

rounds is to reduce leaking information, which is taken care

of directly by our architecture.

3.2 Other Mechanisms

There are e�orts to design algorithms based on mechanism

design, which involve many sel�sh agents where the goal is to

solve a `global' problem. (e.g. routing, or some cooperation

between the agents). See for example Walsh et al [37], or

Nisan and Ronen [30]. Our protocols can be used to compute

these algorithms without requiring trust in the center

5

. The

plausibility of using our protocols for this task depends on

the complexity of expressing the utility functions and the

decision procedure as circuits.

A particular case of interest is Groves-Clarke mecha-

nisms [19, 7], where a public good is produced if the sum

of reported values is higher than a given threshold. The

circuit that computes this function is quite simple, as is a

circuit that computes the sum of the reported values for sev-

eral options and decides on the option with the highest sum.

It is, therefore, simple to provide a private protocol which

computes these mechanisms.

Another relevant application is the design of mechanisms

to elicit opinions of a group of independent experts. Glazer

and Rubinstein [15] observe that in a \culture" in which ex-

perts care that their recommendations are accepted, there

is a mechanism with a single equilibrium which achieves the

public target (and such a mechanism does not exist if ex-

perts only care about the public good). The mechanism they

suggest can be computed very e�ciently by our architecture

(essentially the mechanism requires that one expert choose

a subset of the experts whose opinions are considered, learn

their opinions, and then add his/her own opinion. The deci-

5

However, this task might be computationally di�cult regardless

of privacy requirements. The work of [24] shows that occasionally the

procedures that compute the outcome are NP-hard

sion is the majority opinion. Note that this process requires

privacy { the expert choosing the subset must do so before

learning their opinions. A privacy preserving implementa-

tion of this application might be useful in organizations that

want to poll the opinions of their members, but realize that

individuals might bias their reported opinion if they believe

it will be revealed.

Stable matching [20, 33] is yet another example of a

global decision which depends on the private preferences of

many parties. In many scenarios it is quite plausible that

parties would be hesitant to reveal their matching prefer-

ences, even to the center computing the matching (consider

for example matching couples for a prom...). Our archi-

tecture enables the parties to reveal their true preferences

without fearing that the center will learn them. The over-

head of implementing our architecture for this application

depends on the complexity of expressing the matching al-

gorithm as a combinatorial circuit. Finding a reasonably

small circuit for this problem is an interesting problem, as

the classical Gale-Shapley algorithm requires the power of

indirect addressing of a RAM, and hence its translation into

a circuit is rather cumbersome.

4 Further Research

There are many issues for further research, both in inves-

tigating how to improve the properties of the architecture

and in making the protocol more e�cient.

It is possible to further reduce the trust that bidders

should put in the architecture, by distributing the task of the

auction issuer between several parties. Ideally, these could

be di�erent companies, with none of them knowing all the

information currently known to the AI. A more modest goal

(for which we have promising preliminary results) is to have

a single party generate the garbled circuit (o�ine) and then

distribute each garbled gate between several AI servers. The

system should have a threshold k, such that the auctioneer

should have to contact k servers in order to compute the

auction, and collusion between the auctioneer and any k�1

servers reveals nothing about the bids (note that a naive

use of secret sharing does not achieve this property). As for

distributing the garbling part, one can use the techniques of

[2], but they seem to incur a signi�cant overhead.

The problem of backing the bids with �nancial commit-

ments is somewhat orthogonal to the main issues we con-

sider. The solutions of [14] for this problem should be adapt-

able to our architecture.

Our current techniques implement second price auctions

for hundreds or even thousands of users with very reason-

able overhead. A great deal of research remains to be done

in improving the e�ciency of the protocol. One direction

is designing e�cient circuits for auctions and other mech-

anisms, while another direction is improving the e�ciency

of the cryptographic tools we use, mostly of the extensive

application of oblivious transfer.

5 Acknowledgments

We thank Noam Nisan and Uri Zwick for useful discussions

and the anonymous referees for their comments.

References

[1] http://auction.eecs.umich.edu

[2] D. Beaver, S. Micali and P. Rogaway, \The round com-

plexity of secure protocols", Proc. 22nd ACM Symp. on

Theory of Computing, 1990, 503{513.

[3] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway,

\Relations among notions of security for public-key en-

cryption schemes", Advances in Cryptology - Crypto

'98, Springer-Verlag LNCS 1462 (1998), 26{45.

[4] M. Bellare and S. Micali, \Non-interactive oblivious

transfer and applications", Proc. Adv. in Cryptology -

Crypto '89, Springer-Verlag LNCS 435 (1990), 547-557.

[5] C. Cachin, \E�cient private bidding and auctions

with an oblivious third party", to appear, Proc. 6th

ACM Conf. on Computer and Communications Secu-

rity, 1999.

[6] K. Chui and R. Zwick, \Auction on the Internet {

A preliminary study", manuscript, 1999. Available at

http://home.ust.hk/~mkzwick/Internet_Auction.html

[7] E. Clarke, \Multiparty pricing of public goods", Public

Choice, 11:17-23, 1971.

[8] R. Cramer, I. Damgard and B. Schoenmakers, \Proofs

of partial knowledge and simpli�ed design of wit-

ness hiding protocols", Proc. Advances in Cryptology

{ Crypto '94, Springer-Verlag LNCS 839 (1994), 174{

187.

[9] R. Cramer and V. Shoup, \A practical public key

cryptosystem provably secure against adaptive chosen

ciphertext attacks", Proc. Advances in Cryptology -

Crypto '98, Springer-Verlag LNCS 1462 (1998), 13{25.

[10] D. Dolev, C. Dwork and M. Naor, \Non-malleable cryp-

tography", Proc. 23th ACM Symp. on Theory of Com-

puting, 1991. Full version: to appear Siam J. on Com-

puting. Available at

http://www.wisdom.weizmann.ac.il/~naor/onpub.html

[11] R. Engelbrecht-Wiggans and C. M. Kahn, \Protecting

the winner: second price vs. ascending bid auctions",

Economic Letters, Vol. 35, 1991, 243{248.

[12] S. Even, O. Goldreich and A. Lempel, \A Random-

ized Protocol for Signing Contracts", Communications

of the ACM 28, 1985, pp. 637{647.

[13] U. Feige, J. Kilian and M. Naor, \On minimal models

for secure computation", Proc. 26th ACM Symp. on

Theory of Computing, 1994, pp. 554{563.

[14] M. K. Franklin and M. K. Reiter, \The design and im-

plementation of a secure auction server", IEEE Tran.

on Software Engineering, 22(5), pp. 302{312, 1996.

[15] J. Glazer and A. Rubinstein, \Motives and implemen-

tation: on the design of mechanisms to elicit opinions",

J. of Economic Theory 79, 157{173, 1998.

[16] O. Goldreich, Secure Multi-Party Compu-

tation (working draft) Version 1.1, 1998. Available at

http://philby.ucsd.edu/books.html

[17] O. Goldreich, S. Goldwasser and S. Micali, \How to

construct random functions", J. of the ACM., vol. 33,

1986, 792{807.

[18] O. Goldreich, M. Micali and A. Wigderson, \How to

play any mental game", Proc. 19th ACM Symp. on The-

ory of Computing, 1987, pp. 218{229.

[19] T. Groves, \Incentives in teams", Econometrica,

41:617{631, 1973.

[20] D. Gus�eld and R. Irving, The Stable Marriage

Problem : Structure and Algorithms, MIT Press,

1989.

[21] M. Harkavy, J. D. Tygar and H. Kikuchi, \Electronic

auctions with private bids", 3rd USENIX Workshop on

Electronic Commerce, pp. 61{73, 1999.

[22] Q. Huai and T. Sandholm, \Mobile Agents in an Elec-

tronic Auction House", Mobile Agents in the Context of

Competition and Cooperation (MAC3-workshop), 1999.

[23] R. Impagliazzo and S. Rudich, \Limits on the Provable

Consequences of One-Way Permutations", 20th ACM

Symp. on the Theory of Computing, 1989, 44{61.

[24] N. K�r-Dahav, D. Monderer and M. Tennenholtz,

\Mechanism design for resource bounded agents", 1998.

[25] M. Kumar and S. I. Feldman, \Internet auctions", 3rd

USENIX Workshop on Electronic Commerce, 1999.

[26] Luby M., Pseudorandomness and Cryptographic

Applications, Princeton University Press, 1996.

[27] J. K. MacKie-Mason and H. R. Varian, \Generalized

Vickrey auctions", 1994.

[28] D. Monderer and M. Tennenholtz, \K-Price auctions",

Working Paper, 1998.

[29] D. Monderer and M. Tennenholtz, "Internet auctions",

Working Paper, 1998.

[30] N. Nisan and A. Ronen, \Algorithmic mechanism de-

sign", Proc. 31st ACM Symp. on Theory of Computing,

1999, 129-140.

[31] A. J. Osborne and A. Rubinstein, A Course in Game

Theory, MIT Press, 1994.

[32] M. O. Rabin, \How to exchange secrets by oblivi-

ous transfer", Tech. Memo TR-81, Aiken Computation

Laboratory, 1981.

[33] A. E. Roth and M. A. Sotomayor, Two-Sided Match-

ing : A Study in Game-Theoretic Modeling and

Analysis, Cambridge Univ Press, 1990.

[34] S. G. Stubblebine and P. F. Syverson, \Fair on-line auc-

tions without special trusted parties", Proc. of Finan-

cial Cryptography '99, 1999.

[35] H. R. Varian, \Economic mechanism design for comput-

erized agents", First USENIX Workshop on Electronic

Commerce, 1995.

[36] D. Vickrey,\Counter speculation, auctions, and com-

petitive sealed tenders", Journal of Finance, March

1961, pp. 9{37.

[37] W. Walsh, M. Wellman, P. Wurman and J.K. MacKie-

Mason, \Auction protocols for decentralized schedul-

ing", 18th Int. Conf. on Distributed Computing Sys.,

1998.

[38] M. Wellman and P. Wurman, \Real time issues for In-

ternet auctions", First IEEE Workshop on Dependable

and Real-Time E-commerce Systems, 1998.

[39] P. Wurman, W. Walsh and M. Wellman, \Flexible dou-

ble auctions for electronic commerce: theory and imple-

mentation", Decision Support Systems 24:17-27, 1998.

[40] A.C. Yao, \How to generate and exchange secrets",

Proc. of the 27th IEEE Symp. on Foundations of Com-

puter Science, 1986, pp. 162{167.

A Oblivious Transfer

Essentially every known suggestion of public-key cryptog-

raphy also allows implementation of oblivious transfer, (but

there is no general theorem that implies this state of a�airs).

OT can be based on the existence of trapdoor permutations,

factoring, the Di�e-Hellman assumption (both the search

and the decision problems, the latter yielding more e�cient

constructions) and the hardness of �nding short vectors in

a lattice (the Ajtai-Dwork cryptosystem). In contrast it

seems to be highly unlikely that OT can be based on one-

way functions (the reason being that given an OT protocol,

it is simple to implement secret-key exchange using it. It

therefore follows from the work of Impagliazzo and Rudich

[23] that there is no black-box reduction of OT from one-way

functions).

Following we describe a protocol which is based on the

protocols of Bellare and Micali [4]. The inputs and the re-

quired outputs of the protocol were described in section 2.2.2.

Initialization: The sender S and the chooser C agree

on a large cyclic group G

g

generated by g, in which the

discrete log problem is believed to be hard. In addition,

they agree on a value c 2 G

g

whose discrete log is unknown

to C.

Preparing the query: C chooses a random value 0 <

r < jG

g

j, calculates PK

�

= g

r

and PK

1��

= c=PK

�

and

sends PK

0

to S. In the El Gamal public key encryption

system these PK

i

's are public keys, and r is the private key

corresponding to PK

�

.

Sending the values: S calculates PK

1

= c=PK

0

. Us-

ing El Gamal encryption, S then sends to C the encryptions

E

PK

0

(m

0

); E

PK

1

(m

1

).

Receiving the desired value: Knowing the private

key corresponding to PK

�

, C decryptsE

PK

�

(m

�

) to recover

m

�

.

Assuming that C knows the private key for PK

�

it can-

not possibly know the private key for PK

1��

since if it did,

it could calculate the discrete log of c = PK

�

� PK

1��

. It

would therefore appear that C can only decrypt one of the

messages it receives from S. Note though that while it is

impossible for C to know both private keys, the protocol

does not rule out the possibility that C possesses partial

information about each of the keys (although there seems

to be no obvious way in which C can obtain such informa-

tion). This problem can be solved if we require C to prove

to S that it knows the discrete log of one of the public keys

(without disclosing to S of which one). This proof can be

e�ciently done using the techniques of Cramer et al [8], at

the cost of a few more exponentiations. The resulting pro-

tocol is, therefore, as secure as the Decision Di�e-Hellman

assumption, which is believed to be secure.

Alternatively, if one postulates the existence of random

oracles (i.e., of a function H which behaves as a random

function), it is possible to run the protocol without the

proofs of [8]. To send the values the sender should select

a random value k, and send the message

hg

k

; H(PK

k

0

)�m

0

; H(PK

k

1

)�m

1

i

to the chooser. The chooser can only decrypt m

�

by com-

puting PK

k

�

= (g

k

)

r

.

1-out-of-2 Proxy OT

The protocol for proxy OT involves a third party P which

is C's proxy. The roles of the parties were de�ned in Sec-

tion 2.2.2. The protocol is as follows:

Initialization: The parties agree on a large cyclic group

G

g

and a generator g, as in the 1-out-of-2 OT protocol.

Preparing the query: C chooses a random 0 < r <

jG

g

j, calculates PK

�

= g

r

and PK

1��

= c=PK

�

. It sends

PK

0

to S, and sends the private key r to P . S computes

PK

1

= c=PK

0

. Using El Gamal encryption, it then sends

to P the following pair, in random order,

hE

PK

0

(C(m

0

)); E

PK

1

(C(m

1

))i;

where C is a good error detecting code.

Receiving the desired value: P knows the private

key corresponding to PK

�

. It tries to decrypt both values

and uses the error detecting code C to determine which one

was decrypted correctly.

Note that P does not learn the value of �, C's choice. In

order to achieve security which depends only on the De-

cisional Di�e-Hellman assumption C must prove that it

knows the discrete log of one of the keys, as in the pro-

tocol for 1-out-of-2 OT. Alternatively, one can use a \ran-

dom oracle" H as in the 1-out-of-2 OT protocol described

above. This is the method currently used by our prototype

implementation.

Preventing a denial of service attack: The denial of ser-

vice attack described in section 2.4 involves a bidder which

prevents the auctioneer from retrieving correct garbled val-

ues in the proxy OT stage. In more details, the bidder (the

chooser C) sends to the auctioneer (the proxy P) a private

key which does not correspond to any of the public keys

sent to the auction issuer (the sender S). The auctioneer,

therefore, cannot decrypt any of the messages received from

the auction issuer.

A straightforward solution is to require the bidder to

prove to the auctioneer that it sent it a correct private key.

Such a proof is, however, quite ine�cient.

A di�erent approach is to enable the auctioneer to prove

to the AI that the auctioneer received an incorrect private

key from the bidder. Care must be taken to prevent a cor-

rupt auctioneer from accusing an innocent bidder. A con-

crete solution is as follows: (1) The AI chooses a key K

b

for

every bidder b, and uses it to encrypt all the garbled values

corresponding to the input bits of this bidder. (2) The proxy

OT protocol is used to transfer these encrypted values. (3)

The auctioneer checks whether it received legitimate values

(using the error detection code C). (4) If all the values of in-

put wires of bidder b were received correctly, the auctioneer

asks to receive the key K

b

from the AI. It uses the key to

decrypt the received values and retrieve the garbled values

of the input wires. Otherwise the auctioneer asks to receive

the garbled inputs corresponding to a `0' input of this bid-

der. Note that this solution adds a communication round

between the auctioneer and the AI, but it typically consists

of a message containing a single key for every bidder, and

its length is quite short.

