Cryptographic and Physical Zero-Knowledge Proof Systems for
Solutions of Sudoku Puzzles

Ronen Gradwokil Moni Naor' Benny Pinkas

Abstract

We consider various cryptographic and physical zero-kedgé proof schemes for Sudoku, a
popular combinatorial puzzle. The cryptographic proteae direct and efficient, and the phys-
ical protocols are meant to be understood by “lay-peoplal iamplementable without the use of
computers.

1 Introduction

Sudoku is the name of a combinatorial puzzle that has swept the world in(@8pé&cially via newspa-
pers, where it appears next to crossword puzzles), following thedkdaban (see the Wikipedia entry
[15] or the American Scientist article [8]). In a Sudoku puzzle the chadléa@9 x 9 grid subdivided
into nine3 x 3 subgrids. Some of the cells are already set with values in the ratigeugh9 and the
goal is to fill the remaining cells with numbetsthrough9 so that each number appears exactly once
in each row, column and subgrid. Part of the charm and appeal ofkBuafupears to be the ease of
description of the problems, as compared to the time and effort it takes a Hodigidual to solve
them.

A natural issue, at least for cryptographers, is how to convince soend#at you have solved a
Sudoku puzzle without revealing the solution. In other words, the quastibimterest here are: how
can a prover show (i) that there is a solution to the given puzzle, and (tihth&nows the solution,
while not giving away any information about the solution? In this paper wesider several types of
methods for doing just that. Broadly speaking, the methods are @ithptographicor physical By
a cryptographicprotocol we mean one in the usual model found in the foundations of grgyby
literature. In this model, two machines exchange messages and the sectnigypobtocol relies on
computational hardness (see Goldreich [5] for an accessible acandri6] for a detailed one). By a
physicalprotocol we mean one that is implementable by humans using common objectseardipy
without the aid of computers. In particular, our protocols utilize scrattleaotls, similar to those used
in lotteries.

*Department of Computer Science and Applied Math, The Weizmann Instif@eience, Rehovot 76100, Israel; email:
ronen.gradwohl@weizmann.ac.il . Research supported by US-Israel Binational Science Foundatamt @002246.

fIncumbent of the Judith Kleeman Professorial Chair, Departmenoofiliter Science and Applied Math, The Weizmann
Institute of Science, Rehovot 76100, Israel; em@itini.naor@weizmann.ac.il . Research supported in part by a grant
from the Israel Science Foundation.

iDepartment of Computer Science, University of Haifa, Haifa, Isragmail: benny@pinkas.net,
benny@cs.haifa.ac.il

This Work: The general problem of Sudoku (on arxn grid) is in the complexity class NP, which
means that given a solution it is easyuverify that it is correct. (In fact, Sudoku is known to be NP-
Complete [16], but we are not going to use this fact, at least not expliciilydeShere are cryptographic
zero-knowledge proofs for all problems in NP [7], there exists oneStaitoku, via a reduction to 3-
Colorability or some other NP-Complete problem with a known zero-knowlgdgef. In this work,
however, we are interested in more than the mere existence of such almbaddther its efficiency,
understandability, and practicality, which we now explain.

First, the benefits of a direct zero-knowledge proof (rather than vedaction) are clear, as the
overhead of the reduction is avoided. Thus, the size of the proof camb#er, and the computation
time shorter. In addition, we wish our proofs to be easy to understanddoyérperts”. This is related to
the practicality of the proof: the goal is to make the interaction implementable inaheoed, perhaps
even without the use of a computer. One of the important aspects of this impidaitign is that the
participants have an intuitive understanding of the correctness of tb& pral thus are convinced by it,
rather then relying blindly “on the computer”. For another example in whichinhigtive understanding
is important, see the work of Moran and Naor [10] on methods for pollingleeon issues for which
their answers may be embarrassing.

The contributions of this paper are efficient cryptographic protocalstiowing knowledge of a
solution of a Sudoku puzzle which do not reveal any other useful imdtion (these are known as
zero-knowledge proofs of knowledge) and several transpabssigal protocols that achieve the task.

Organization: The rest of the paper is organized as follows: in Section 2 we give sofimgtioas,
and then in Section 3 we describe two cryptographic zero-knowledgdsprahe first is very simple
and direct, and the second is slightly more involved, but has a lower glibpalb error. Finally, in
Section 4 we describe several physical protocols, using envelopgesceatch-off cards.

2 Definitions

Sudoku: An instance of Sudoku is defined by the size= k2 of the n x n grid, where the subgrids
are of sizek x k. The indices, values in the filled-in cells and the values to be filled out areedlh she
range{1...n}. Note that in general the size of an instanc®{% log n) bits and this is the size of the
solution (or witness) as well.

Cryptographic Functionalities: We only give rough descriptions of zero-knowledge and commit-
ments. For more details see the books by Goldreich [5] and [6], Chaptethd avriteup by Vadhan
[14]. In general, a zero-knowledge proof is an interactive-praaiMeen two parties, proverand a
verifier. They both know an instance of a problem (e.g. a Sudoku puzzle) angrdlier knows a
solution or a witness. The two parties exchange messages and at the teedoobtocol the verifier
‘acceptsor ‘rejects the execution. Theompletenessf the protocol is the probability that an honest
verifier accepts a correct proof, i.e. one done by a prover holdingitinhate solution and following
the protocol. All our protocols will have perfect completeness, in whictptis®ability of accepting a
correct proof is 1. Theoundnessf the protocol is the (upper bound on the) probability that a verifier
accepts an incorrect proof, i.e. a proof to a fallacious statement; in earths is the statement that the
prover knows a solution to the given Sudoku puzzle, even though itmmtdanow such a solution. In
addition, the verifier should not gain any new knowledge from the interagte.zero-knowledge this

means that there is an efficiesimulatorthat could have generated the conversation (or an indistinguish-
able one) without the interaction. Our protocols should alsprbefs-of-knowledgeif the prover (or
anyone impersonating him) can succeed in making the verifier accept, tmemstaeextractorthat can
communicate with the prover and actually come up with the solution itself (this may ewahning the
prover several times using the same randomness, which is not possiklenamohal circumstances).

The only cryptographic tool used by our proofs is a commitment protocobrmgitment protocol
allows one party, the sender, to commit to a value to another party, theaeasith the former not
learning anything meaningful about the value. Such a protocol condistogphases. Theommit
phase, following which the sender is bound to some valughile the receiver cannot determine any-
thing useful about and in particular cannot distinguish between the ease b andv = v/. Later
on, the two parties may performdcommitor revealphase, after which the receiver obtainand is
assured that it is the original value; in other words, oncectiramitphase has ended, there is a unique
value that the receiver will accept in thevealphase.

Note that in this setting we think of the adversary as being malicious in his actidrib@aguarantees
we make (both against a cheating prover trying to sneak in a fallaciou$ @ndoagainst a cheating
verifier trying to learn more than it should) are with respect to any behavior

Physical Protocols: While the cryptographic setting is pretty standard, when discussing ‘@iysic
protocols there are many different options, ranging from a deck afkd&; 13] to a PEZ dispenser [1],

a newspaper [12], and more (see [9] for a short survey). Inetting we will be using tamper-evident
sealed envelopes, as defined by Moran and Naor [9]. It is simplest todhthese as scratch-off cards:
each card has a number on it frofh, ..., n}, but that number cannot be determined unless the card
is scratched (or the envelope is opened and the seal is broken). W M«ewour physical protocols

to enjoy zero-knowledge properties as well. For this to be meaningful we teadefine the power

of the physical objects that the protocol assumes as well as the assungatiding behavior of the
humans performing it. In general, the adversarial behavior we combat & lmeoign than the one in
the cryptographic setting. See details in Section 4.

3 Cryptographic Protocols

We provide two cryptographic protocols for Sudoku. The setting is thdtave a prover and a verifier
who both know an instance of anx n Sudoku puzzle, i.e. a bunch of cells with values. The prover
knows a solution to the instance and the verifier wants to make sure that (it@s@xists and (ii) the
prover knows the solution.

The protocols presented are in the standard cryptographic settingtriibige of the proof is the
usual:

1. Prover commits to a bunch of values. They are a function of the instdreceplution and some
randomization.

2. Verifier asks to open some of them — this is called the challenge.
3. Prover opens the required values.

4. Verifier makes some consistency checks with the given instance agutgaoc rejects accordingly.

The only cryptographic primitive we use in both protocols is bit or statagmitmenas described
above. Bit commitments can be based on any one-way function [11] arfdidyeefficient to imple-
ment. To prove zero-knowledge of a protocol we use the ‘standagdnaent, due to [7]: for this we
need that the distribution of the values opened in Step 3 be easy to descailhenation of the instance
and the challenge of Step 2 (for example that it will be a random permutatiph.of n}). If the num-
ber of possible challenges is not large (polynomial in the instance siza)tttsgoroperty together with
the indistinguishably property of the commitment protocol imply the existence effarent simulator.
(The simulator operates in the following way: it picks at random a challerafetiie verifier might
send in Step 2, and computes commitments for Step 1 which agree with this chalesgeds these
commitments to the receiver and is given the challenge of Step 2. If this is therg®it prepared to
it can continue with the protocol, and otherwise it resets the simulation andistdrts/er again. If the
number of possible challenges is polynomial in the instance size, this plieagsected to succeed in
a polynomial number of tries.)

The communication complexity and computation time of both protocols is similar, &nghislog n).
However, the first protocol has a relatively high soundness (theeproan cheat with probability
(1 — 1/(3n + 1))), while the second protocol has constant probability of catching atehelm both
cases the soundness can be decreased by repeating the protoeds tees, either sequentially or
in parallel (for parallel repetition more involved protocols have to be apiftied [6]) to preserve the
zero-knowledge property). Therefore, to reduce the cheatingpilitly to , the first protocol has to be
repeated)(n log(1/¢) times and the resulting communication complexityig:® log nlog 1/¢) bits,
while the second protocol should be repeated @nflpg 1/<) times, and the resulting communication
complexity isO(n?lognlog 1/¢) bits.

3.1 A protocol based on coloring

The following protocol is an adaptation of the well-known GMW zero-knalgkeproof of 3-Colorability
of a graph [7] (see [6]) for Sudoku puzzles. Recall that the ideathais for the prover to randomly
permute the colors and then commit to the color of each vertex. The verifles @iandom edge and
checks that its two end points are colored differently. To apply this idea ilcdh&ext of Sudoku it
helps to think of the graph as being partially colored to begin with. So the mlotonsists of the
prover randomly permuting the numbers and committing to the resulting solutiont Méaerifier
checks is either the correctness of the values of one of the rows, colmsubgrids, or consistency
with the filled-in values.

The protocol operates in the following way:
Prover:

1. Prover chooses a random permutation{1,...,n} — {1,...,n}.
2. For each celli, j) with valuew, prover sends to verifier a commitment for the vadie).

Verifier: Chooses at random one of the followiig + 1 possibilities: a row, column or subgri@s
possibilities), or ‘filled-in cells’, and asks the prover to open the cooerding commitments. After the
prover responds, in case the verifier chose a row, column or subgnigrifies that all values are indeed
different. In case the verifier chose the filled-in cells option, it checkisadigs that originally had the
same value still have the same value (although the value may be differenthadrells with different
values are still different, i.e. thatis indeed a permutation.

4

Proof sketch:The perfect completeness of the protocol is straightforward. Sogsdolows from
the fact that any cheating prover must cheat either in his commitments for aglumnn, subgrid, or the
filled-in cells (namely, there is at least one question of the verifier for wiielprover cannot provide
a correct answer). Thus, the verifier catches a cheating prover vatiapility at leastl /(3n + 1).
Note also that the protocol is a proof of knowledge, sincallithe 3n + 1 queries can be answered
properly, then it is possible to find a solution to the original puzzle (simply finevarse permutation
o~! mapping the filled-in values). The distribution on the values of the answen Wiechallenge
is a row, column or subgrid is simply a random permutatio bf..n}. The distribution in case
the challenge is filled-in cells is a random injection of the values appearing $e tells to{1...n}.
Therefore the zero-knowledge of the protocol follows the standaydnaents. The withess/solution
size, as well as the number of bits committed, are l6dth? log n) bits.

3.2 An efficient cryptographic protocol with constant soundhess

Below is a more efficient zero-knowledge protocol for the solution of doBu puzzle. It is closest
in nature to the Hamiltonian Paths protocol of Blum [2]. The protocol desdrias constan®(3)
soundness for anxn Sudoku problem, and its complexity in terms of the number of bits committed to
is O(n?logn), which is also the witness/solution size.

The idea of the protocol is to triplicate each cell, creating a version of théordte row, column
and subgrid in which it participates. The triplicated cells are then randomigyyied and the prover's
job is to demonstrate:

e That the cells corresponding to the rows, columns and subgrids hawesalbfe values.
e That the three copies of each cell have the same value.
e That the cells corresponding to the predetermined values indeed contain the

The following protocol implements these idea:
Prover:

1. Commit to3n? valuesuvy, vs . . . v,,2 Where each cell of the grid corresponds to three randomly
located indicegi, i2,3). The values of, , v;, andv;, should be the value of the cell in the
solution.

2. Commit ton? triples of locationsin the range{1...3n?}, where each tripldi, iz, i3) corre-
sponds to the locations of a cell of the grid in the list of commitments of Item 1.

3. Commit to the names of the grid cells of each triple from Item 2.

4. Commit to3n sets of locations from Item 1, corresponding to the rows, columns argtidab
where each set is of sizeand no two cells intersect.

Verifier: Ask one of the following three options at random:

a. Open all3n? commitments of Item 1 and the commitments of Item 4. When the answer is re-
ceived, verify that each set containglifferent numbers.

b. Open all3n? commitments of Item 1 and the commitments of Item 2. When the answer is re-
ceived, verify that each triple contains the same numbers.

5

c. Open the commitments of Items 2, 3 and 4 as well as the commitments of Item Ipoodes
to filled-in cells in the Sudoku puzzle. When the answer is received, vibgfgonsistency of the
commitments with (i) the predetermined values, (ii) the set partitions of 4 and (jii)ahnény of
the triples.

Option (a) takes care of the constraint that all values should appeachnrea, column and and
subgrid. Option (b) makes sure that the value of the cell is consistent inéis #ppearances. Option
(c) makes sure that the filled-in cells have the correct value and thattitgopang of the cells to rows,
columns and subgrids is as it should be. Therefore, if all three chaliefagle and c) are met, then
we have a solution to the given Sudoku puzzle, and this is a proof-aflkdge as well. If the prover
does not know a solution to the puzzle, then with probability at I¢A3tthe verifier rejects, and the
probability of cheating is at mo2y/3. As before, perfect completeness of the protocol is straightforward.
Note that for each challenge it is easy to describe the distribution on thedessponse, and so the
zero-knowledge of the protocol follows the standard arguments.

4 Physical Protocols

The protocols described in Section 3 can have a physical analog,spves physical way to implement
the commitments. The problematic point is that tests such as checking that tretgtns and the
naming of the triples are consistent (needed in challenge (c) of the pfatdgection 3.2) are not easy
for humans to perform. In this section we describe protocols that arendekigith human execution in
mind, taking into account the strengths and weaknesses of such beings.

A locked box is a common metaphoric description of bit (or string) commitment, evifner com-
miter puts the hidden secret inside the box, locks it, keeps the key butlyé/bex to the receiver. At the
revealstage he gives the key to the receiver who opens it. The problem with tdsijgkéon is that the
assumption is that the receiver aagveropen the box without the key. It is difficult to imagine a phys-
ical box with such a guarantee that is also readily available, and its opetatimsparent to humahs
A different physical metaphor was proposed by Moran and NaomfAf suggested concentrating on
the tamper-evidenproperties of sealed envelopes and scratch-off cards. That isparholding the
envelope can open them and see the value inside, but this act is nallvevand it will be transparent
to anyone examining the envelope in the future. Another property we eefijain our envelopes is that
they be indistinguishable, i.e. it should be impossible to tell two envelopes ap#gst by the party
that did not create them (this is a little weaker than the indistinguishable envelogel formalized in
[9D).

Another distinction between our physical model and the cryptographithvas¢o do with the way
in which we regard the adversary. Specifically, the adversary we dambige physical model is more
benign than the one considered in the cryptographic setting or the one 19][9,We can think of
our parties as not wanting to be labelled ‘cheaters’, and so the assus@ngrovide is that either the
protocol achieves its goal or the (cheating) party is labelled a cheater.

Furthermore, we use the envelopes in a different manner from thailega [9, 10]. We think of
the prover and verifier as being present in the same room, and in partloelfarotocols we describe are
not appropriate for execution over the postal system (while the protocol 4] are). The presence
of the two parties in the same room is required since the protocols use secdtiops as shuffling a

!Perhaps quantum cryptography can yield an approximation to such alttaot a perfect one.

given set of envelopes - one party wants to make sure that the shuffiprispaiate, while the other
party wants to make sure that the original set of envelopes is indeed tlemgeshuffled.

Other than the different view of the adversary, in our protocols we agsd i couple of additional
functionalities that are not included in the model of [9, 1§Huffleandtriplicate. Theshufflefunction-
ality is essentially an indistinguishable shuffle of a set of seals. SupposeEarty has a sequence of
sealsLq, ..., L; in his possession. Invoking ttehufflefunctionality on this sequence is equivalent to
pickingo €r S;, i.e. a random permutation arelements, to yield the sequentg,), ..., Ly(;). The
triplicate functionality is used only in our last protocol, so we defer its description thi@&e4.3.

In the physical setting described above, the definition of zero-knowledg be made rigorous. As
in the cryptographic case, we need to come up with a simulator that can emuletiethetion between
the prover and verifier. We will describe the simulators in Sections 4.1 and 4.3

Finally, since we wish our protocols to also be proofs-of-knowledgeywlledescribe extractors
that interact with honest provers in the physical setting and extractraat@olution for the Sudoku
instance.

4.1 A physical zero-knowledge protocol with constant sountess

In the following protocol, the probability that a cheating prover will be caugiat leas8/9. The main
idea is that each cell should have three (identical) cards; instead ahguarsubprotocol to check that
the values of each triple are indeed identical we let the verifier make thenassig of the three cards
to the corresponding row, column and subgrid at random.

The protocol operates in the following way:

e The prover places three scratch-off cards on each cell. On filledHs be places three cards
with the correct value, which are already open (scratched).

e For each row/column/subgrid, the verifier chooses (at random) one dfitee cards of each cell
in the corresponding row/column/subgrid.

e The prover makes packets of the verifier's requested cards (i.e.véoy eow/column/subgrid,
he assembles the requested cards). He then shuffles each3ef plaekets separately (using the
shufflefunctionality), and hands the shuffled packets to the verifier.

e The verifier scratches all the cards in each packet, and verifies trathiroae, all numbers appear.

Perfect completeness is straightforward.

Soundness: We claim that the soundness of the protocal i§. We first describe a simple argument
that the soundness 193 and then provide a more involved analysis showing that it is ind¢edThe
only way a cheating prover can cheat is by placing three cards thabtaé af the same value on a cell,
say cella. This means that in this cell at least one valumust be different from all others. Suppose
that for all other cells the verifier has already assigned the cards tovlse columns and subgrids. A
necessary condition for the (cheating) prover to succeed is that tieeassignments of all cells except
a there is exactly one row, column or subgrid that negde complete the values ifil...n}. The
probability that for cell: the verifier assigng to the row, column or subgrid that needs it j&3.

We now provide a more involved argument that shows that the soundreegsaly1/9. We know
that there is a cell where not all three values are the same. Also, the totaknwof cards of each value

must be correct, otherwise the prover will be caught with probalilityhus, there must be at least two
cells on which the prover cheats, sayandb. We now consider different ways in which a prover can
cheat on these cells, and show that his success probability is bounolesiat /9.

First suppose the prover cheats on exactly two cellsqsaydb, and suppose the values dre x, y)
for cella and(y, y,) for cell b. Note that this is the only way he can cheat on exactly two cells without
being caught with probability 1. There are three possibilities for the locafiaelts « andb, and we
analyze the probability of being caught for each.

We will often assume the verifier has assigned all values to packets @kosptof cells: andb,
and then analyze the probability that he makes the correct assignmentsettils. Before assigning
these two cells, however, we have some incomplete packets. We will saypheltet that has all values
except some value “needs”z.

() The simplest case, cellsandb are not in the same row, column, or subgrid, and are thus “inde-
pendent” in some sense. Suppose the verifier already assigned axty a row/column/subgrid
except the cards of celtsandb. Then there are six packets that are not yet complete — 2 each for
a row, column, and subgrid. But each one of these packets can higve aalue that will yield a
complete set, since it cannot be missing bothramnd ay (if it does, then the final card will not
complete the packet regardless, and the cheating prover will be caligi, the only way the
prover will not be caught is if the verifier assignso the rows/columns/subgrids that negdnd
y to the ones that nead But this happens with probability at maist9, and so the probability of
being caught is at leasy/9.

(i) Inthis case, cells andb are in the same row, column or subgrid (exactly one of them). Without
loss of generality, assume they are in the same row, and again that therarifay assigned
every card to a row/column/subgrid except the cards of eeblsmidb. Here there are several
options:

— If the column and subgrid of cefl both needr, and the column and subgrid of célboth
needy, then the verifier makes the correct assignment with probahily This is because
in order to accept, the verifier needs to assigio the row ofa andy to the row ofb, and
each occurs independently with probability3.

— Ifthe column of cells needst and the subgrid neegdor vice verse), and the column of cell
b needsr and its subgrid needg (or vice versa), then again the verifier makes the correct
assignment with probability/9: He chooses: for cell a’s row andy for cell b’s row with
probability4/9, since each assignment is made independently with probabjiityHe then
makes the remaining assignments correctly with probabhility; since each assignment is
made independently with probability'2.

— Any other situation results in the prover losing with probability 1, as there isayatavselect
the cards to satisfy all constraints.

(i) Inthe final case, cella andb are in the same row (or column) and the same subgrid. Without loss
of generality, assume they are in the same row and subgrid. Considelthérig situations:

— Suppose cell’s column needg and cellb’'s column needs. In this case, the verifier makes
the correct assignment with probability9, since each assignment is made with probability
1/3.

— Now suppose the column of celiheedsc and the column of cell needsy. In this situation,
however, the prover did not really need to cheat: he could have placedz) on cella,
and(y, y,y) on cellb, and the constraints on rows, columns, and subgrids would have been
satisfied. However, since we are assuming the prover does not knmweatcsolution to the
Sudoku problem, there must be some other cells on which he is cheating.

Thus, either the correct assignment is made with probaHijify or some additional cells have
multiple-valued cards on them (in which case we can repeat the analydies$ercells). In either
case, if the prover does not lose with probability 1, he is caught with pilityaat least1 /9.

Thus, if the prover cheats on exactly two cells, he is caught with probabillgeats /9. We now
argue that this is also true if he cheats on three or more of the cells. aredb be two of the cheating
cells. The values may ber, x,y) and (y,y, z) as above, they may be, z,y) and(y, y, z), or one
or both of the cells may have three distinct values. In any case, we carm darte analysis as above
regarding the location of the two cells. A similar type of proof goes throughpime cases with even
lower probabilities of success for the cheating prover.

In all the above possibilities, the prover is caught with probability at Ig&sand hence the sound-
ness isl /9.

Zero-Knowledge: In order to show that the protocol above is zero-knowledge, we naerite a
simulator. The simulator interacts with a cheating verifier, runs in probabilisti;pmial time, and
produces an interaction that is indistinguishable from the verifier’s irtieragvith the prover. The
simulator does not have a correct solution to the Sudoku instance, boébédve an advantage over the
prover: before handing the shuffled packets to the verifier, he is alltm&vap the packets for different
ones. This advantage is similar to the ability of simulators to “rewind” the verifienjiptographic zero-
knowledge protocols. Such a simulator suffices in order to prove theknensledge property of the
protocol because of the following: since the simulator produces an indissimaple interaction (except
for the swap) from that of the prover, whatever the cheating verifielddoave potentially learned from
the prover, he could also have learned from the simulator: The verifidd ¢d@mve run the simulator
himself, and so he learns nothing from the prover that he could not haxeeld on his own. We now
describe the simulator.

e The simulator places thrembitrary scratch-off cards on each cell.

e After the verifier chooses the cards for the corresponding packetsijrtiulator takes them and
shuffles them (just as the prover does).

e Before handing the packets to the verifier, the simulator swaps eachtpeithea randomly
shuffled packet of scratch-off cards, in which each card appeenes. If there is a scratched card
in the original packet, there is one in the new packet as well.

Note that the final packets, and therefore the entire execution, are igdistiable from those
provided by an honest prover, since staufflefunctionality guarantees that the packets each contain a
randomly shuffled set of scratch-off cards.

Knowledge extraction: To show that the protocol constitutes a proof of knowledge, we desitrébe
extractor for this protocol, which interacts with the prover to extract a selutdhe Sudoku instance.
After the prover places the cards on the cells, the extractor simply scsedtifibe cards. If the prover
is honest, then the scratched-cards give a solution. Otherwise, thetewgitime cell with three cards
that are not all the same number.

Finally, in terms of the complexity of the protocol, we utilize? scratch-off cards, angh shuffles
by the prover. However, recall that we are interested in making the mistaccessible to humans. For
a standard x 9 Sudoku grid, this protocol requires 27 shuffles by the prover, whéelms a bit much.
Thus, we now give a variant of this protocol that reduces the numtsrudfies to one.

4.2 Reducing the number of shuffles

We now describe a variant of the previous protocol, where the numbregaired shuffles is only one,

at the expense of it using a larger set of envelopes (expected.5iz® and with a higher soundness
(5/9). The idea is to run the protocol as above, but then pick a randomtsaftibe rows, columns and

subgrids and perform the shuffle on all of them simultaneously.

e The prover places three scratch-off cards on each cell. On filledis) be places three scratched
cards with the correct value.

e For each row/column/subgrid, the verifier chooses (at random) one dftbe cards for each cell
in the corresponding row/column/subgrid.

e The prover makes packets of the verifier's requested cards (i.evdoy ow/column/subgrid, he
assembles the requested cards).

e The verifier marks each packet with probability?.
e The prover takes the marked packets, shuffles them all together, add them to the verifier.

e The verifier scratches all the cards and verifies that each numbearapgpe correct number of
times (namely, it packets were marked, each number must appgares).

As before, the protocol is perfectly complete, since an honest proikealways succeed. For
analyzing the soundness, note that if the prover is cheating, then withlgliop8/9 (as above) there
is at least one packet which is unbalanced. If this packet is markedhaother unbalanced is marked,
then the final count of values is unbalanced and the prover fails. Hoywee have to be a bit careful
here, since there may be two or more unbalanced packets that, when rt@gk#ter, balance each
other out.

A more careful analysis shows that the cheating probability is at Ay@stWith probability 8 /9,
some packet, say, is unbalanced. Now suppose the verifier has already gone througthetlpackets,
and either marked them or not. Thus far, the marked packets are eithacddlar unbalanced. If
they are balanced, then with probability2 the verifier will mark packet, and the final mix will be
unbalanced. If the marked packets are unbalanced, then with probapilithe verifier will not mark
the packet:;, and again the final mix will be unbalanced. Thus, with probabiljtg, the final mix will
be unbalanced, and the verifier will be caught. Note that this was conditiomehe fact that some
packet is unbalanced, so overall, the probability that a cheating pravéeveaught it /9-1/2 = 4/9.

10

4.3 A physical zero-knowledge protocol with zero soundness

We now describe another physical zero-knowledge protocol, this time vatbgtimal soundness 6f
This comes at the expense of a slightly stronger model, as we also makehstipficate functionality
of the tamper-evident seals, which we now describe.

Triplicate using a trusted setup: Itis simplest to view this functionality as using some supplementary
“material” that a trusted party provides to the parties. For instance, if thekeyalizzles are published

in a newspaper, the newspaper could provide this material to its readeesmaterial consists of a
bunch of scratch-off cards with the numbéis .. n} (3n of each value). The cards come in triples that
are connected together with an open title card on top that announces teeMadititle card can be torn
off (see figure below). It is crucial that the three unscratched daictisthe same value, and that it is
impossible to forge such triples in which the hidden numbers vary.

Figure 1: A scratch-off card with triplicate functionality.

Triplicate without trusted setup: Another way to achieve this functionality in the absence of a trusted
party preparing the cards in advance is as follows. Suppose we ha¥elsoff cards as before, where
underlying numbers are replaced by colors. (For example, the numberr&presented by a circular
scratch card, whose color, below the peel-off layer, is, say, yelloi¢W¢he prover wishes to triplicate
a card, he asks the the verifier to cut the card into three equally shapsd pae point is that the
partitioning should beandom Whenever a part is scratched off (as the protocol suggests) tifiever
will reject if it does not see a uniformly colored part.

If this task is performed by humans (which is the objective of this procégdilmen slight variations
in shapes will most likely go unnoticed by the human eye. A cheating provercimegt by coloring
some third a different color from the rest. However, assuming the caedsrales, there are (infinitely)
many places in which the verifier can cut the cards. Thus, the probabilith¢heuts along the border
separating two different colors (which is the only way the prover will reotaught) is nearly zero.

Using the tamper-evident seals with the additiatalffleandtriplicate functionalities, we now have
the following protocol:

e The prover lays out the seals corresponding to the solution in the ajpgieoptace. The seals

11

that are placed on the filled-in squares are scratched, and must berdw galue (otherwise the
verifier rejects).

e The verifier then triplicates the seals (using ttiglicate functionality).

e For each seal, each third is taken to be in its corresponding row/columnitsplagket, and the
packets are shuffled by the prover (using shefflefunctionality). The prover hands the packets
to the verifier.

e The verifier scratches off the cards of each packet, and verifiegthath packet all numbers in
{1...n} appear.

Note that theriplicate functionality solves the problem of the first physical protocol, by préagn
the prover from assigning different values to the same cell. Therefengrtver has no way of cheating.
Thus, the soundness of the protocabis

The simulator for this protocol is nearly identical to that of the protocol intiSect.1, with the
exception that the cards in the swapped packets are also formed ustrigltbate functionality. Since
we are assuming that triplicated cards are indistinguishable by the veriGgrattkets swapped by the
simulator will look the same to the verifier as the original packets.

Acknowledgments. We are grateful to Tal Moran and Guy Rothblum for helpful discussims
comments. We also thank Tobial Barthel and Yoni Halpern for providingnitial motivation for this
work.

References

[1] Jozsef Balogh,dnos A. Csirik, Yuval Ishai and Eyal KushilevitPrivate computation using a PEZ
dispenserTheoretical Computer Science 306(1-3): 69-84 (2003)

[2] M. Blum, How to Prove a Theorem So No One Else Can Clajiardbc. of the International Congress
of Mathematicians, Berkeley, California, USA, 1986, pp. 1444-1451.

[3] Claude Cépeau, Joe KilianDiscreet Solitary GamesAdvances in Cryptology - CRYPTO’93,
Lecture Notes in Computer Science 773, Springer, 1994, pp. 319-330.

[4] R. Fagin, M. Naor and P. WinkleComparing Information Without Leaking I€. of the ACM, vol
39, May 1996, pp. 77-85.

[5] O. Goldreich,Modern Cryptography, Probabilistic Proofs and Pseudorandomnes Springer,
Algorithms and Combinatorics, Vol 17, 1998.

[6] O. Goldreich,Foundations of Cryptography Volume 1 - Basic ToolsCambridge U. Press, 2001.

[7] O. Goldreich, S. Micali and A. WigdersorRroofs that Yield Nothing But their Validity, and a
Methodology of Cryptographic Protocol Desigh of the ACM 38, 1991, pp. 691-729.

[8] Brian Hayes, Unwed Numbers American Scientist, January-February 2006.
http://www.americanscientist.org/template/AssetDetail/assetid/48550

12

[9] Tal Moran, Moni Naor,Basing Cryptographic Protocols on Tamper-Evident SeRi®oceedings
of the 32nd International Colloquium on Automata, Languages and Rmogirsg (ICALP) 2005,
Lecture Notes in Computer Science 3580, Springer, pp. 285-297.

[10] Tal Moran, Moni NaorPolling With Physical Envelopes: A Rigorous Analysis of a Human Centric
Protocol submitted.

[11] M. Naor, Bit Commitment Using Pseudo-Randomnekairnal of Cryptology, vol 4, 1991, pp.
151-158.

[12] Moni Naor, Yael Naor, and Omer Reingoldpplied kid cryptography or how to convince your
children you are not cheatindlarch 1999.
http://www.wisdom.weizmann.ac.il/"naor/PAPERS/waldo .ps

[13] Bruce Schneier. The solitaire encryption algorithm, 1999. http://wvwwmasier.com/solitaire.html.

[14] salil P. Vadhan, Interactive Proofs & Zero-Knowledge Proofs
http://www.eecs.harvard.edu/"salil/papers/pcmi-abs. html

[15] SudokuWikipedia, the free encyclopedia, (based on Oct 19th 2005 versivai)able
http://en.wikipedia.org/wiki/Sudoku

[16] Takayuki Yato,Complexity and Completeness of Finding Another Solution and its Application
to Puzzles Masters thesis, Univ. of Tokyo, Dept. of Information Science, Jad32@vailable:
http://www-imai.is.s.u-tokyo.ac.jp/"yato/data2/Mast erThesis.ps

13

