
Cryptographic and Physical Zero-Knowledge Proof Systems for
Solutions of Sudoku Puzzles

Ronen Gradwohl∗ Moni Naor† Benny Pinkas‡

Abstract

We consider various cryptographic and physical zero-knowledge proof schemes for Sudoku, a
popular combinatorial puzzle. The cryptographic protocols are direct and efficient, and the phys-
ical protocols are meant to be understood by “lay-people” and implementable without the use of
computers.

1 Introduction

Sudoku is the name of a combinatorial puzzle that has swept the world in 2005(especially via newspa-
pers, where it appears next to crossword puzzles), following the leadof Japan (see the Wikipedia entry
[15] or the American Scientist article [8]). In a Sudoku puzzle the challenge is a9×9 grid subdivided
into nine3×3 subgrids. Some of the cells are already set with values in the range1 through9 and the
goal is to fill the remaining cells with numbers1 through9 so that each number appears exactly once
in each row, column and subgrid. Part of the charm and appeal of Sudoku appears to be the ease of
description of the problems, as compared to the time and effort it takes a humanindividual to solve
them.

A natural issue, at least for cryptographers, is how to convince someone that you have solved a
Sudoku puzzle without revealing the solution. In other words, the questions of interest here are: how
can a prover show (i) that there is a solution to the given puzzle, and (ii) that he knows the solution,
while not giving away any information about the solution? In this paper we consider several types of
methods for doing just that. Broadly speaking, the methods are eithercryptographicor physical. By
a cryptographicprotocol we mean one in the usual model found in the foundations of cryptography
literature. In this model, two machines exchange messages and the security ofthe protocol relies on
computational hardness (see Goldreich [5] for an accessible accountand [6] for a detailed one). By a
physicalprotocol we mean one that is implementable by humans using common objects, and preferably
without the aid of computers. In particular, our protocols utilize scratch-off cards, similar to those used
in lotteries.

∗Department of Computer Science and Applied Math, The Weizmann Instituteof Science, Rehovot 76100, Israel; email:
ronen.gradwohl@weizmann.ac.il . Research supported by US-Israel Binational Science Foundation Grant 2002246.

†Incumbent of the Judith Kleeman Professorial Chair, Department of Computer Science and Applied Math, The Weizmann
Institute of Science, Rehovot 76100, Israel; email:moni.naor@weizmann.ac.il . Research supported in part by a grant
from the Israel Science Foundation.

‡Department of Computer Science, University of Haifa, Haifa, Israel;email: benny@pinkas.net,
benny@cs.haifa.ac.il .

1



This Work: The general problem of Sudoku (on ann×n grid) is in the complexity class NP, which
means that given a solution it is easy toverify that it is correct. (In fact, Sudoku is known to be NP-
Complete [16], but we are not going to use this fact, at least not explicitly.) Since there are cryptographic
zero-knowledge proofs for all problems in NP [7], there exists one forSudoku, via a reduction to 3-
Colorability or some other NP-Complete problem with a known zero-knowledgeproof. In this work,
however, we are interested in more than the mere existence of such a proof, but rather its efficiency,
understandability, and practicality, which we now explain.

First, the benefits of a direct zero-knowledge proof (rather than via a reduction) are clear, as the
overhead of the reduction is avoided. Thus, the size of the proof can besmaller, and the computation
time shorter. In addition, we wish our proofs to be easy to understand by “non-experts”. This is related to
the practicality of the proof: the goal is to make the interaction implementable in the real world, perhaps
even without the use of a computer. One of the important aspects of this implementability is that the
participants have an intuitive understanding of the correctness of the proof, and thus are convinced by it,
rather then relying blindly “on the computer”. For another example in which thisintuitive understanding
is important, see the work of Moran and Naor [10] on methods for polling people on issues for which
their answers may be embarrassing.

The contributions of this paper are efficient cryptographic protocols for showing knowledge of a
solution of a Sudoku puzzle which do not reveal any other useful information (these are known as
zero-knowledge proofs of knowledge) and several transparent physical protocols that achieve the task.

Organization: The rest of the paper is organized as follows: in Section 2 we give some definitions,
and then in Section 3 we describe two cryptographic zero-knowledge proofs. The first is very simple
and direct, and the second is slightly more involved, but has a lower probability of error. Finally, in
Section 4 we describe several physical protocols, using envelopes and scratch-off cards.

2 Definitions

Sudoku: An instance of Sudoku is defined by the sizen = k2 of then×n grid, where the subgrids
are of sizek×k. The indices, values in the filled-in cells and the values to be filled out are all are in the
range{1 . . . n}. Note that in general the size of an instance isO(n2 log n) bits and this is the size of the
solution (or witness) as well.

Cryptographic Functionalities: We only give rough descriptions of zero-knowledge and commit-
ments. For more details see the books by Goldreich [5] and [6], Chapter 4 or the writeup by Vadhan
[14]. In general, a zero-knowledge proof is an interactive-proof between two parties, aprover and a
verifier. They both know an instance of a problem (e.g. a Sudoku puzzle) and theprover knows a
solution or a witness. The two parties exchange messages and at the end ofthe protocol the verifier
‘accepts’ or ‘ rejects’ the execution. Thecompletenessof the protocol is the probability that an honest
verifier accepts a correct proof, i.e. one done by a prover holding a legitimate solution and following
the protocol. All our protocols will have perfect completeness, in which theprobability of accepting a
correct proof is 1. Thesoundnessof the protocol is the (upper bound on the) probability that a verifier
accepts an incorrect proof, i.e. a proof to a fallacious statement; in our case this is the statement that the
prover knows a solution to the given Sudoku puzzle, even though it doesnot know such a solution. In
addition, the verifier should not gain any new knowledge from the interaction (i.e.zero-knowledge); this

2



means that there is an efficientsimulatorthat could have generated the conversation (or an indistinguish-
able one) without the interaction. Our protocols should also beproofs-of-knowledge: if the prover (or
anyone impersonating him) can succeed in making the verifier accept, then there is anextractorthat can
communicate with the prover and actually come up with the solution itself (this may involve running the
prover several times using the same randomness, which is not possible under normal circumstances).

The only cryptographic tool used by our proofs is a commitment protocol. A commitment protocol
allows one party, the sender, to commit to a value to another party, the receiver, with the former not
learning anything meaningful about the value. Such a protocol consists of two phases. Thecommit
phase, following which the sender is bound to some valuev, while the receiver cannot determine any-
thing useful aboutv and in particular cannot distinguish between the casev = b andv = b′. Later
on, the two parties may perform adecommitor revealphase, after which the receiver obtainsv and is
assured that it is the original value; in other words, once thecommitphase has ended, there is a unique
value that the receiver will accept in therevealphase.

Note that in this setting we think of the adversary as being malicious in his actions and the guarantees
we make (both against a cheating prover trying to sneak in a fallacious proof and against a cheating
verifier trying to learn more than it should) are with respect to any behavior.

Physical Protocols: While the cryptographic setting is pretty standard, when discussing ‘physical’
protocols there are many different options, ranging from a deck of cards [3, 13] to a PEZ dispenser [1],
a newspaper [12], and more (see [9] for a short survey). In our setting we will be using tamper-evident
sealed envelopes, as defined by Moran and Naor [9]. It is simplest to think of these as scratch-off cards:
each card has a number on it from{1, . . . , n}, but that number cannot be determined unless the card
is scratched (or the envelope is opened and the seal is broken). We would like our physical protocols
to enjoy zero-knowledge properties as well. For this to be meaningful we have to define the power
of the physical objects that the protocol assumes as well as the assumptionson the behavior of the
humans performing it. In general, the adversarial behavior we combat is more benign than the one in
the cryptographic setting. See details in Section 4.

3 Cryptographic Protocols

We provide two cryptographic protocols for Sudoku. The setting is that wehave a prover and a verifier
who both know an instance of ann×n Sudoku puzzle, i.e. a bunch of cells with values. The prover
knows a solution to the instance and the verifier wants to make sure that (i) a solution exists and (ii) the
prover knows the solution.

The protocols presented are in the standard cryptographic setting. The structure of the proof is the
usual:

1. Prover commits to a bunch of values. They are a function of the instance,the solution and some
randomization.

2. Verifier asks to open some of them – this is called the challenge.

3. Prover opens the required values.

4. Verifier makes some consistency checks with the given instance and accepts or rejects accordingly.

3



The only cryptographic primitive we use in both protocols is bit or stringcommitmentas described
above. Bit commitments can be based on any one-way function [11] and arefairly efficient to imple-
ment. To prove zero-knowledge of a protocol we use the ‘standard’ argument, due to [7]: for this we
need that the distribution of the values opened in Step 3 be easy to describe as a function of the instance
and the challenge of Step 2 (for example that it will be a random permutation of{1 . . . n}). If the num-
ber of possible challenges is not large (polynomial in the instance size), then this property together with
the indistinguishably property of the commitment protocol imply the existence of anefficient simulator.
(The simulator operates in the following way: it picks at random a challenge that the verifier might
send in Step 2, and computes commitments for Step 1 which agree with this challenge. It sends these
commitments to the receiver and is given the challenge of Step 2. If this is the challenge it prepared to
it can continue with the protocol, and otherwise it resets the simulation and startsit all over again. If the
number of possible challenges is polynomial in the instance size, this processis expected to succeed in
a polynomial number of tries.)

The communication complexity and computation time of both protocols is similar, and isO(n2 log n).
However, the first protocol has a relatively high soundness (the prover can cheat with probability
(1 − 1/(3n + 1))), while the second protocol has constant probability of catching a cheater. In both
cases the soundness can be decreased by repeating the protocols several times, either sequentially or
in parallel (for parallel repetition more involved protocols have to be applied(see [6]) to preserve the
zero-knowledge property). Therefore, to reduce the cheating probability to ε, the first protocol has to be
repeatedO(n log(1/ε) times and the resulting communication complexity isO(n3 log n log 1/ε) bits,
while the second protocol should be repeated onlyO(log 1/ε) times, and the resulting communication
complexity isO(n2 log n log 1/ε) bits.

3.1 A protocol based on coloring

The following protocol is an adaptation of the well-known GMW zero-knowledge proof of 3-Colorability
of a graph [7] (see [6]) for Sudoku puzzles. Recall that the idea there was for the prover to randomly
permute the colors and then commit to the color of each vertex. The verifier picks a random edge and
checks that its two end points are colored differently. To apply this idea in thecontext of Sudoku it
helps to think of the graph as being partially colored to begin with. So the protocol consists of the
prover randomly permuting the numbers and committing to the resulting solution. What the verifier
checks is either the correctness of the values of one of the rows, columnsor subgrids, or consistency
with the filled-in values.

The protocol operates in the following way:
Prover:

1. Prover chooses a random permutationσ : {1, . . . , n} 7→ {1, . . . , n}.

2. For each cell(i, j) with valuev, prover sends to verifier a commitment for the valueσ(v).

Verifier: Chooses at random one of the following3n + 1 possibilities: a row, column or subgrid (3n
possibilities), or ‘filled-in cells’, and asks the prover to open the corresponding commitments. After the
prover responds, in case the verifier chose a row, column or subgrid,he verifies that all values are indeed
different. In case the verifier chose the filled-in cells option, it checks that cells that originally had the
same value still have the same value (although the value may be different), andthat cells with different
values are still different, i.e. thatσ is indeed a permutation.

4



Proof sketch:The perfect completeness of the protocol is straightforward. Soundness follows from
the fact that any cheating prover must cheat either in his commitments for a row, column, subgrid, or the
filled-in cells (namely, there is at least one question of the verifier for whichthe prover cannot provide
a correct answer). Thus, the verifier catches a cheating prover with probability at least1/(3n + 1).
Note also that the protocol is a proof of knowledge, since ifall the 3n + 1 queries can be answered
properly, then it is possible to find a solution to the original puzzle (simply find areverse permutation
σ−1 mapping the filled-in values). The distribution on the values of the answer when the challenge
is a row, column or subgrid is simply a random permutation of{1 . . . n}. The distribution in case
the challenge is filled-in cells is a random injection of the values appearing in those cells to{1 . . . n}.
Therefore the zero-knowledge of the protocol follows the standard arguments. The witness/solution
size, as well as the number of bits committed, are bothO(n2 log n) bits.

3.2 An efficient cryptographic protocol with constant soundness

Below is a more efficient zero-knowledge protocol for the solution of a Sudoku puzzle. It is closest
in nature to the Hamiltonian Paths protocol of Blum [2]. The protocol described has constant (2/3)
soundness for ann×n Sudoku problem, and its complexity in terms of the number of bits committed to
is O(n2 log n), which is also the witness/solution size.

The idea of the protocol is to triplicate each cell, creating a version of the cellfor the row, column
and subgrid in which it participates. The triplicated cells are then randomly permuted and the prover’s
job is to demonstrate:

• That the cells corresponding to the rows, columns and subgrids have all possible values.

• That the three copies of each cell have the same value.

• That the cells corresponding to the predetermined values indeed contain them.

The following protocol implements these idea:
Prover:

1. Commit to3n2 valuesv1, v2 . . . v3n2 where each cell of the grid corresponds to three randomly
located indices(i1, i2, i3). The values ofvi1 , vi2 andvi3 should be the valuev of the cell in the
solution.

2. Commit ton2 triples of locations in the range{1 . . . 3n2}, where each triple(i1, i2, i3) corre-
sponds to the locations of a cell of the grid in the list of commitments of Item 1.

3. Commit to the names of the grid cells of each triple from Item 2.

4. Commit to3n sets of locations from Item 1, corresponding to the rows, columns and subgrids,
where each set is of sizen and no two cells intersect.

Verifier: Ask one of the following three options at random:

a. Open all3n2 commitments of Item 1 and the commitments of Item 4. When the answer is re-
ceived, verify that each set containsn different numbers.

b. Open all3n2 commitments of Item 1 and the commitments of Item 2. When the answer is re-
ceived, verify that each triple contains the same numbers.

5



c. Open the commitments of Items 2, 3 and 4 as well as the commitments of Item 1 corresponding
to filled-in cells in the Sudoku puzzle. When the answer is received, verifythe consistency of the
commitments with (i) the predetermined values, (ii) the set partitions of 4 and (iii) the naming of
the triples.

Option (a) takes care of the constraint that all values should appear in each row, column and and
subgrid. Option (b) makes sure that the value of the cell is consistent in its three appearances. Option
(c) makes sure that the filled-in cells have the correct value and that the partitioning of the cells to rows,
columns and subgrids is as it should be. Therefore, if all three challenges (a,b and c) are met, then
we have a solution to the given Sudoku puzzle, and this is a proof-of-knowledge as well. If the prover
does not know a solution to the puzzle, then with probability at least1/3 the verifier rejects, and the
probability of cheating is at most2/3. As before, perfect completeness of the protocol is straightforward.
Note that for each challenge it is easy to describe the distribution on the desired response, and so the
zero-knowledge of the protocol follows the standard arguments.

4 Physical Protocols

The protocols described in Section 3 can have a physical analog, givensome physical way to implement
the commitments. The problematic point is that tests such as checking that the set partitions and the
naming of the triples are consistent (needed in challenge (c) of the protocol in Section 3.2) are not easy
for humans to perform. In this section we describe protocols that are designed with human execution in
mind, taking into account the strengths and weaknesses of such beings.

A locked box is a common metaphoric description of bit (or string) commitment, where the com-
miter puts the hidden secret inside the box, locks it, keeps the key but givesthe box to the receiver. At the
revealstage he gives the key to the receiver who opens it. The problem with this description is that the
assumption is that the receiver canneveropen the box without the key. It is difficult to imagine a phys-
ical box with such a guarantee that is also readily available, and its operationtransparent to humans1.
A different physical metaphor was proposed by Moran and Naor [9],who suggested concentrating on
the tamper-evidentproperties of sealed envelopes and scratch-off cards. That is, anyone holding the
envelope can open them and see the value inside, but this act is not reversible and it will be transparent
to anyone examining the envelope in the future. Another property we require from our envelopes is that
they be indistinguishable, i.e. it should be impossible to tell two envelopes apart,at least by the party
that did not create them (this is a little weaker than the indistinguishable envelopemodel formalized in
[9]).

Another distinction between our physical model and the cryptographic onehas to do with the way
in which we regard the adversary. Specifically, the adversary we combat in the physical model is more
benign than the one considered in the cryptographic setting or the one in [9,10]. We can think of
our parties as not wanting to be labelled ‘cheaters’, and so the assurance we provide is that either the
protocol achieves its goal or the (cheating) party is labelled a cheater.

Furthermore, we use the envelopes in a different manner from that described in [9, 10]. We think of
the prover and verifier as being present in the same room, and in particularthe protocols we describe are
not appropriate for execution over the postal system (while the protocols of [9, 10] are). The presence
of the two parties in the same room is required since the protocols use such operations as shuffling a

1Perhaps quantum cryptography can yield an approximation to such a box, but not a perfect one.

6



given set of envelopes - one party wants to make sure that the shuffle is appropriate, while the other
party wants to make sure that the original set of envelopes is indeed the onebeing shuffled.

Other than the different view of the adversary, in our protocols we also need a couple of additional
functionalities that are not included in the model of [9, 10]:shuffleandtriplicate. Theshufflefunction-
ality is essentially an indistinguishable shuffle of a set of seals. Suppose some party has a sequence of
sealsL1, . . . , Li in his possession. Invoking theshufflefunctionality on this sequence is equivalent to
picking σ ∈R Si, i.e. a random permutation oni elements, to yield the sequenceLσ(1), . . . , Lσ(i). The
triplicate functionality is used only in our last protocol, so we defer its description to Section 4.3.

In the physical setting described above, the definition of zero-knowledge can be made rigorous. As
in the cryptographic case, we need to come up with a simulator that can emulate theinteraction between
the prover and verifier. We will describe the simulators in Sections 4.1 and 4.3.

Finally, since we wish our protocols to also be proofs-of-knowledge, wewill describeextractors
that interact with honest provers in the physical setting and extract a correct solution for the Sudoku
instance.

4.1 A physical zero-knowledge protocol with constant soundness

In the following protocol, the probability that a cheating prover will be caught is at least8/9. The main
idea is that each cell should have three (identical) cards; instead of running a subprotocol to check that
the values of each triple are indeed identical we let the verifier make the assignment of the three cards
to the corresponding row, column and subgrid at random.

The protocol operates in the following way:

• The prover places three scratch-off cards on each cell. On filled-in cells, he places three cards
with the correct value, which are already open (scratched).

• For each row/column/subgrid, the verifier chooses (at random) one of the three cards of each cell
in the corresponding row/column/subgrid.

• The prover makes packets of the verifier’s requested cards (i.e. for every row/column/subgrid,
he assembles the requested cards). He then shuffles each of the3n packets separately (using the
shufflefunctionality), and hands the shuffled packets to the verifier.

• The verifier scratches all the cards in each packet, and verifies that in each one, all numbers appear.

Perfect completeness is straightforward.

Soundness: We claim that the soundness of the protocol is1/9. We first describe a simple argument
that the soundness is1/3 and then provide a more involved analysis showing that it is indeed1/9. The
only way a cheating prover can cheat is by placing three cards that are not all of the same value on a cell,
say cella. This means that in this cell at least one valuey must be different from all others. Suppose
that for all other cells the verifier has already assigned the cards to the rows, columns and subgrids. A
necessary condition for the (cheating) prover to succeed is that giventhe assignments of all cells except
a there is exactly one row, column or subgrid that needsy to complete the values in{1 . . . n}. The
probability that for cella the verifier assignsy to the row, column or subgrid that needs it is1/3.

We now provide a more involved argument that shows that the soundness isactually1/9. We know
that there is a cell where not all three values are the same. Also, the total number of cards of each value

7



must be correct, otherwise the prover will be caught with probability1. Thus, there must be at least two
cells on which the prover cheats, saya andb. We now consider different ways in which a prover can
cheat on these cells, and show that his success probability is bounded above by1/9.

First suppose the prover cheats on exactly two cells, saya andb, and suppose the values are(x, x, y)
for cell a and(y, y, x) for cell b. Note that this is the only way he can cheat on exactly two cells without
being caught with probability 1. There are three possibilities for the location of cells a andb, and we
analyze the probability of being caught for each.

We will often assume the verifier has assigned all values to packets exceptthose of cellsa andb,
and then analyze the probability that he makes the correct assignments of those cells. Before assigning
these two cells, however, we have some incomplete packets. We will say that apacket that has all values
except some valuex “needs”x.

(i) The simplest case, cellsa andb are not in the same row, column, or subgrid, and are thus “inde-
pendent” in some sense. Suppose the verifier already assigned every card to a row/column/subgrid
except the cards of cellsa andb. Then there are six packets that are not yet complete – 2 each for
a row, column, and subgrid. But each one of these packets can have only 1 value that will yield a
complete set, since it cannot be missing both anx and ay (if it does, then the final card will not
complete the packet regardless, and the cheating prover will be caught).Thus, the only way the
prover will not be caught is if the verifier assignsx to the rows/columns/subgrids that needx, and
y to the ones that needy. But this happens with probability at most1/9, and so the probability of
being caught is at least8/9.

(ii) In this case, cellsa andb are in the same row, column or subgrid (exactly one of them). Without
loss of generality, assume they are in the same row, and again that the verifier already assigned
every card to a row/column/subgrid except the cards of cellsa and b. Here there are several
options:

– If the column and subgrid of cella both needx, and the column and subgrid of cellb both
needy, then the verifier makes the correct assignment with probability1/9. This is because
in order to accept, the verifier needs to assignx to the row ofa andy to the row ofb, and
each occurs independently with probability1/3.

– If the column of cella needsx and the subgrid needsy (or vice verse), and the column of cell
b needsx and its subgrid needsy (or vice versa), then again the verifier makes the correct
assignment with probability1/9: He choosesx for cell a’s row andy for cell b’s row with
probability4/9, since each assignment is made independently with probability2/3. He then
makes the remaining assignments correctly with probability1/4, since each assignment is
made independently with probability1/2.

– Any other situation results in the prover losing with probability 1, as there is no way to select
the cards to satisfy all constraints.

(iii) In the final case, cellsa andb are in the same row (or column) and the same subgrid. Without loss
of generality, assume they are in the same row and subgrid. Consider the following situations:

– Suppose cella’s column needsy and cellb’s column needsx. In this case, the verifier makes
the correct assignment with probability1/9, since each assignment is made with probability
1/3.

8



– Now suppose the column of cella needsx and the column of cellb needsy. In this situation,
however, the prover did not really need to cheat: he could have placed(x, x, x) on cella,
and(y, y, y) on cellb, and the constraints on rows, columns, and subgrids would have been
satisfied. However, since we are assuming the prover does not know a correct solution to the
Sudoku problem, there must be some other cells on which he is cheating.

Thus, either the correct assignment is made with probability1/9, or some additional cells have
multiple-valued cards on them (in which case we can repeat the analysis forthose cells). In either
case, if the prover does not lose with probability 1, he is caught with probability at least1/9.

Thus, if the prover cheats on exactly two cells, he is caught with probability at least8/9. We now
argue that this is also true if he cheats on three or more of the cells. Leta andb be two of the cheating
cells. The values may be(x, x, y) and(y, y, x) as above, they may be(x, x, y) and(y, y, z), or one
or both of the cells may have three distinct values. In any case, we can do the same analysis as above
regarding the location of the two cells. A similar type of proof goes through, insome cases with even
lower probabilities of success for the cheating prover.

In all the above possibilities, the prover is caught with probability at least8/9 and hence the sound-
ness is1/9.

Zero-Knowledge: In order to show that the protocol above is zero-knowledge, we now describe a
simulator. The simulator interacts with a cheating verifier, runs in probabilistic polynomial time, and
produces an interaction that is indistinguishable from the verifier’s interaction with the prover. The
simulator does not have a correct solution to the Sudoku instance, but he does have an advantage over the
prover: before handing the shuffled packets to the verifier, he is allowed to swap the packets for different
ones. This advantage is similar to the ability of simulators to “rewind” the verifier incryptographic zero-
knowledge protocols. Such a simulator suffices in order to prove the zero-knowledge property of the
protocol because of the following: since the simulator produces an indistinguishable interaction (except
for the swap) from that of the prover, whatever the cheating verifier could have potentially learned from
the prover, he could also have learned from the simulator: The verifier could have run the simulator
himself, and so he learns nothing from the prover that he could not have learned on his own. We now
describe the simulator.

• The simulator places threearbitrary scratch-off cards on each cell.

• After the verifier chooses the cards for the corresponding packets, the simulator takes them and
shuffles them (just as the prover does).

• Before handing the packets to the verifier, the simulator swaps each packet with a randomly
shuffled packet of scratch-off cards, in which each card appearsonce. If there is a scratched card
in the original packet, there is one in the new packet as well.

Note that the final packets, and therefore the entire execution, are indistinguishable from those
provided by an honest prover, since theshufflefunctionality guarantees that the packets each contain a
randomly shuffled set of scratch-off cards.

9



Knowledge extraction: To show that the protocol constitutes a proof of knowledge, we describethe
extractor for this protocol, which interacts with the prover to extract a solution to the Sudoku instance.
After the prover places the cards on the cells, the extractor simply scratches all the cards. If the prover
is honest, then the scratched-cards give a solution. Otherwise, there willbe some cell with three cards
that are not all the same number.

Finally, in terms of the complexity of the protocol, we utilize3n2 scratch-off cards, and3n shuffles
by the prover. However, recall that we are interested in making the protocols accessible to humans. For
a standard9×9 Sudoku grid, this protocol requires 27 shuffles by the prover, which seems a bit much.
Thus, we now give a variant of this protocol that reduces the number ofshuffles to one.

4.2 Reducing the number of shuffles

We now describe a variant of the previous protocol, where the number ofrequired shuffles is only one,
at the expense of it using a larger set of envelopes (expected size1.5n2) and with a higher soundness
(5/9). The idea is to run the protocol as above, but then pick a random subset of the rows, columns and
subgrids and perform the shuffle on all of them simultaneously.

• The prover places three scratch-off cards on each cell. On filled-in cells, he places three scratched
cards with the correct value.

• For each row/column/subgrid, the verifier chooses (at random) one of the three cards for each cell
in the corresponding row/column/subgrid.

• The prover makes packets of the verifier’s requested cards (i.e. for every row/column/subgrid, he
assembles the requested cards).

• The verifier marks each packet with probability1/2.

• The prover takes the marked packets, shuffles them all together, and hands them to the verifier.

• The verifier scratches all the cards and verifies that each number appears the correct number of
times (namely, ifc packets were marked, each number must appearc times).

As before, the protocol is perfectly complete, since an honest prover will always succeed. For
analyzing the soundness, note that if the prover is cheating, then with probability 8/9 (as above) there
is at least one packet which is unbalanced. If this packet is marked, andno other unbalanced is marked,
then the final count of values is unbalanced and the prover fails. However, we have to be a bit careful
here, since there may be two or more unbalanced packets that, when markedtogether, balance each
other out.

A more careful analysis shows that the cheating probability is at most4/9: With probability8/9,
some packet, saya, is unbalanced. Now suppose the verifier has already gone through allother packets,
and either marked them or not. Thus far, the marked packets are either balanced or unbalanced. If
they are balanced, then with probability1/2 the verifier will mark packeta, and the final mix will be
unbalanced. If the marked packets are unbalanced, then with probability1/2 the verifier will not mark
the packeta, and again the final mix will be unbalanced. Thus, with probability1/2, the final mix will
be unbalanced, and the verifier will be caught. Note that this was conditioned on the fact that some
packet is unbalanced, so overall, the probability that a cheating prover will be caught is8/9 ·1/2 = 4/9.

10



4.3 A physical zero-knowledge protocol with zero soundness

We now describe another physical zero-knowledge protocol, this time with the optimal soundness of0.
This comes at the expense of a slightly stronger model, as we also make use ofthetriplicate functionality
of the tamper-evident seals, which we now describe.

Triplicate using a trusted setup: It is simplest to view this functionality as using some supplementary
“material” that a trusted party provides to the parties. For instance, if the Sudoku puzzles are published
in a newspaper, the newspaper could provide this material to its readers. The material consists of a
bunch of scratch-off cards with the numbers{1 . . . n} (3n of each value). The cards come in triples that
are connected together with an open title card on top that announces the value. The title card can be torn
off (see figure below). It is crucial that the three unscratched cardshide the same value, and that it is
impossible to forge such triples in which the hidden numbers vary.

5
5

5

5

Figure 1: A scratch-off card with triplicate functionality.

Triplicate without trusted setup: Another way to achieve this functionality in the absence of a trusted
party preparing the cards in advance is as follows. Suppose we have scratch-off cards as before, where
underlying numbers are replaced by colors. (For example, the number ’1’ is represented by a circular
scratch card, whose color, below the peel-off layer, is, say, yellow.) When the prover wishes to triplicate
a card, he asks the the verifier to cut the card into three equally shaped parts. The point is that the
partitioning should berandom. Whenever a part is scratched off (as the protocol suggests) the verifier
will reject if it does not see a uniformly colored part.

If this task is performed by humans (which is the objective of this procedure), then slight variations
in shapes will most likely go unnoticed by the human eye. A cheating prover maycheat by coloring
some third a different color from the rest. However, assuming the cards are circles, there are (infinitely)
many places in which the verifier can cut the cards. Thus, the probability that he cuts along the border
separating two different colors (which is the only way the prover will not be caught) is nearly zero.

Using the tamper-evident seals with the additionalshuffleandtriplicate functionalities, we now have
the following protocol:

• The prover lays out the seals corresponding to the solution in the appropriate place. The seals

11



that are placed on the filled-in squares are scratched, and must be the correct value (otherwise the
verifier rejects).

• The verifier then triplicates the seals (using thetriplicate functionality).

• For each seal, each third is taken to be in its corresponding row/column/subgrid packet, and the
packets are shuffled by the prover (using theshufflefunctionality). The prover hands the packets
to the verifier.

• The verifier scratches off the cards of each packet, and verifies thatin each packet all numbers in
{1 . . . n} appear.

Note that thetriplicate functionality solves the problem of the first physical protocol, by preventing
the prover from assigning different values to the same cell. Therefore the prover has no way of cheating.
Thus, the soundness of the protocol is0.

The simulator for this protocol is nearly identical to that of the protocol in Section 4.1, with the
exception that the cards in the swapped packets are also formed using thetriplicate functionality. Since
we are assuming that triplicated cards are indistinguishable by the verifier, the packets swapped by the
simulator will look the same to the verifier as the original packets.

Acknowledgments. We are grateful to Tal Moran and Guy Rothblum for helpful discussionsand
comments. We also thank Tobial Barthel and Yoni Halpern for providing theinitial motivation for this
work.

References

[1] József Balogh, J́anos A. Csirik, Yuval Ishai and Eyal Kushilevitz:Private computation using a PEZ
dispenser, Theoretical Computer Science 306(1-3): 69-84 (2003)

[2] M. Blum, How to Prove a Theorem So No One Else Can Claim It, Proc. of the International Congress
of Mathematicians, Berkeley, California, USA, 1986, pp. 1444–1451.

[3] Claude Cŕepeau, Joe Kilian,Discreet Solitary Games, Advances in Cryptology - CRYPTO’93,
Lecture Notes in Computer Science 773, Springer, 1994, pp. 319–330.

[4] R. Fagin, M. Naor and P. Winkler,Comparing Information Without Leaking It, C. of the ACM, vol
39, May 1996, pp. 77–85.

[5] O. Goldreich,Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Springer,
Algorithms and Combinatorics, Vol 17, 1998.

[6] O. Goldreich,Foundations of Cryptography Volume 1 - Basic Tools, Cambridge U. Press, 2001.

[7] O. Goldreich, S. Micali and A. Wigderson,Proofs that Yield Nothing But their Validity, and a
Methodology of Cryptographic Protocol Design, J. of the ACM 38, 1991, pp. 691–729.

[8] Brian Hayes, Unwed Numbers. American Scientist, January-February 2006.
http://www.americanscientist.org/template/AssetDetail/assetid/48550

12



[9] Tal Moran, Moni Naor,Basing Cryptographic Protocols on Tamper-Evident Seals, Proceedings
of the 32nd International Colloquium on Automata, Languages and Programming (ICALP) 2005,
Lecture Notes in Computer Science 3580, Springer, pp. 285–297.

[10] Tal Moran, Moni Naor,Polling With Physical Envelopes: A Rigorous Analysis of a Human Centric
Protocol, submitted.

[11] M. Naor, Bit Commitment Using Pseudo-Randomness, Journal of Cryptology, vol 4, 1991, pp.
151–158.

[12] Moni Naor, Yael Naor, and Omer Reingold.Applied kid cryptography or how to convince your
children you are not cheating, March 1999.
http://www.wisdom.weizmann.ac.il/˜naor/PAPERS/waldo .ps

[13] Bruce Schneier. The solitaire encryption algorithm, 1999. http://www.schneier.com/solitaire.html.

[14] Salil P. Vadhan, Interactive Proofs & Zero-Knowledge Proofs,
http://www.eecs.harvard.edu/˜salil/papers/pcmi-abs. html

[15] Sudoku,Wikipedia, the free encyclopedia, (based on Oct 19th 2005 version), available
http://en.wikipedia.org/wiki/Sudoku

[16] Takayuki Yato,Complexity and Completeness of Finding Another Solution and its Application
to Puzzles, Masters thesis, Univ. of Tokyo, Dept. of Information Science, Jan 2003. Available:
http://www-imai.is.s.u-tokyo.ac.jp/˜yato/data2/Mast erThesis.ps

13


