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Abstract. We introduce a model of computation based on the use of 
write-once memory. Write-once memory has the property that bits may be 
set but not reset. Our model consists of a RAM with a small amount of regular 
memory (such as logarithmic or n = for ~ < 1, where n is the size of the problem) 
and a polynomial amount of write-once memory. Bounds are given on the 
time required to simulate on write-once memory algorithms which originally 
run on a RAM with a polynomial amount of regular memory. We attempt 
to characterize algorithms that can be simulated on our write-once memory 
model with very little slow-down. A persistent computation is one in which, 
at all times, the memory state of the computation at any previous point in 
time can be reconstructed. We show that any data structure or computation 
implemented on this write-once memory model can be made persistent 
without sacrificing much in the way of running time or space. The space 
requirements of algorithms running on the write-once model are studied. We 
show that general simulations of algorithms originally running on a RAM 
with regular memory by algorithms running on our write-once memory model 
require space proportional to the number of steps simulated. In order to study 
the space complexity further, we define an analogue of the pebbling game, 
called the pebble-sticker game. A sticker is different from a pebble in that it 
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cannot be removed once placed on a node of the computation graph. As 
placing pebbles correspond to writes to regular memory, placing stickers 
correspond to writes to the write-once memory. Bounds are shown on 
pebble-sticker tradeoffs required to evaluate trees and planar graphs. Finally, 
we define the complexity class WO-PSPACE as the class of problems which 
can be solved with a polynomial amount of write-once memory, and show 
that it is equal to P. 

1. Introduction 

Write-once memory is memory where bits may only be "used" once, in that they 
can be set but not reset. This is the same difficulty we encounter when using pen 
rather than pencil and eraser. The write-once property is interesting for several 
reasons: 

1. It occurs naturally in more and more sophisticated technologies from stone 
tablets to punch cards and paper tapes to optical disks. 

2. It may be a good way to view memory where the time required to erase 
is much greater than the read/write time so that we would not want to 
erase during the computation. This property occurs in the optical disk of 
the NEXT computer. 

3. It models the restriction in P R O L O G  that allows variables to be bound 
only once [PMN-I. 

4. Implementations of parallel operations on data structures are made difficult 
by synchronization issues. I-structures, which use write-once restrictions, 
have been introduced as a simple and elegant way to enforce synchroniza- 
tion [ANP].  

We investigate the implications that the write-once property has on both the 
time and space requirements of computation and we show that, in fact, write-once 
memory can be used very effectively, though not always without some loss in time 
and space. 

Previous work in this area has been done by Vitter with the emphasis on the 
use of optical disks in databases IVi2-1. Rivest and Shamir give codes which allow 
making updates to a variable using asymptotically less storage than the size of 
the variable times the number of updates made to the variable [RS]. We are 
interested in the more general question of the complexity of computation using 
write-once memory. Though the questions that are addressed in this paper are 
not unrelated to previous work, the differences suggest a different model and 
approach. 

In the write-once model of computation presented here, there are a small 
number of regular memory registers, each of which can store log n bits, where n 
is the problem size. The number of registers is given by some predetermined 
function of n, i.e., f ( n ) . =  c, f ( n )  = log n, f ( n )  = n ~'. The amount of write-once 
memory available is polynomial in the problem size. We assume that O(log n) 
consecutive bits can be read from or written to in one time step. This is a natural 
assumption, because it allows us to read polynomially bounded numbers in 
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constant time. In particular, this allows addressing to be performed in constant 
time. In addition, it is natural to assume that when executing a graph algorithm 
we can access a label of a node in constant time, or that in sorting elements, we 
can access the value of an element in constant time. The models in [Vi2] are 
different in that they assume that only a constant number of bits can be read from 
or written to in one time step. Their assumption is appropriate when looking at 
database problems, because there is no natural notion of problem size, i.e., address 
size and register size are considered to be a hardware-dependent constant. An 
additional difference in [Vi2] is that they do not allow the regular memory registers 
to be used as intermediate storage. In our model this would be equivalent to the 
assumption that an adversary may clear the regular memory registers between 
updates to the write-once memory machine. We call this version of our model the 
register-restricted version. 

Techniques in [Vi2] give a method for converting any algorithm written for 
the conventional model of computation into an algorithm for the write-once model 
of computation which increase the running time by a factor of O(log n). (Their 
techniques are optimal on their model.) We show that the order of the running 
time need only be increased by a multiplicative factor of O(log n/log log n) on our 
model. There is an online problem in [Vi2] which requires f~(n log n/log log n) 
steps on the register-restricted write-once memory model, but only n steps on a 
regular memory model. 

A slowdown of O(log n/log log n) is not required for all problems, and, in fact, 
standard algorithms for many well-known problems can be converted to algo- 
rithms that run on the write-once memory model of computation with no loss in 
speed, e.g., matrix multiplication, sorting, and shortest path computation. What 
are the properties which allow some algorithms to be converted with no loss in 
speed? One such property is obliviousness. An algorithm is oblivious if its 
read/write access pattern is the same for all inputs of the same length, and therefore 
depends only on the input size. We show that if there exists an oblivious algorithm 
for a problem running in time t on a regular memory machine, then there exists 
a nonuniform algorithm for the problem running in time O(t) on the write-once 
memory model. The write-once algorithm can be found by preprocessing for a 
specific input size in O(t) steps on a regular memory model or in O(t "log t/log log n) 
steps on the write-once memory model. The preprocessing need only be done once 
for every input size, and therefore could be of practical use if the algorithm were 
to be run on many inputs of the same or similar size. In general, though, our 
feeling is that nonoblivious algorithms which involve complex data structures, 
especially ones in which elements may be pointed to from more than one other 
location, are likely to require some blowup in running time when simulated on 
write-once memory. 

We show that any algorithm on regular memory using s space can be 
simulated with a multiplicative factor of O(log s) increase in the running time on 
write-once memory. When the value of s is small enough, this is an improvement 
over other techniques. We do not know if any multiplicative increase in running 
time is actually required for any problem on the general write-once memory model. 

A persistent computation is one in which, at all times, the memory state of 
the computation at any previous point in time can be reconstructed. In [Vi2] 



144 S. Irani, M. Naor, and R. Rubinfeld 

Vitter suggests the use of write-once memory in applications that require persistent 
data-structures. We show that any data-structure or computation on our write- 
once memory model can be made persistent with only an O(log log n) multi- 
plicative increase in time and an O(log n) multiplicative increase in space. Queries 
about the contents of memory location i at time j in the original (nonpersistent) 
computation can be answered in O(log log n) time. 

We consider a closely related but more restrictive model, where the write-once 
memory is replaced by memory in which a word may only be written to once. 
This model is interesting for two reasons: error detection can be done easily at 
the word level (i.e., parity check) and P R O L O G  is more accurately modeled. The 
proof  of the previously described result also shows that any computation on the 
original write-once memory model can be simulated on the more restrictive model 
with only an O(log log n) multiplicative increase in time and an O(log n) multi- 
plicative increase in space. 

The space requirements affect the cost-effectiveness of computing on write- 
once memory because it is not reusable. Rivest and Shamir investigate codes which 
allow making updates to a variable using asymptotically less storage than the size 
of the variable times the number of updates made to the variable [RS]. We examine 
the space requirements on write-once memory and consider the question of how 
to design algorithms so that the available regular memory can be used to conserve 
write-once memory space. On our model, many problems seem to require space 
proportional to the time required to solve them on a regular memory machine. 
It is easy to prove that on the register-restricted write-once memory model, the 
problem of maintaining variables through t on-line updates requires f2(t) space. 
In fact, the results in [RS] show that maintaining a v-bit variable through t on-line 
updates on the register-restricted write-once memory model requires at least t + v 
bits. We show that ~(t) space is required on the general write-once memory model 
to maintain several variables. This implies that no general simulation technique 
exists which uses significantly less space than the number of steps being simulated. 
However, on the general write-once memory model, there are problems for which 
less space is needed because the regular memory can be used very effectively. In 
the pebble-sticker game there are pebbles and strickers. Pebbles correspond to the 
regular memory words, and stickers correspond to write-once memory words. We 
discuss the relationship between the number of stickers and pebbles required for 
trees and planar graphs. 

Finally, the complexity class WO-PSPACE is defined to be the class of 
problems that can be solved in polynomial space on our model of a write-once 
memory machine with a constant number of regular registers. We show that it is 
equal to P. 

The next section contains a description of the model. In Section 3 we discuss 
the time complexity of computing using write-once memory, and in Section 4 we 
discuss the space complexity. In Section 5 we define the complexity class WO- 
PSPACE and show that it is equal to P. We present our conclusions and open 
questions in Section 6. 
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2. The Model 

Definition of Write-Once Memory. A bit of write-once memory may be set 
(changed from 0 to 1) but never reset (changed from 1 to 0). We assume that the 
hardware ignores commands that violate this restiction, and that initially all 
memory  is set to 0. 

Definition of Word-Write-Once Memory. A word in word-write-once memory 
may be written to only once. We assume that the hardware ignores commands 
that violate this restriction, and that initially all memory  is set to 0. 

Description of Model for Random Access Write-Once Memory Machine (WOMM).  
The model we use is a RAM with a small amount  of regular memory and a 
polynomial amount  of write-once memory. A memory  word is defined to be 
1 + d- log n bits where d is a constant and n is the problem size. (The first bit is 
used to decided whether to index into write-once memory or regular memory.) 
There are C(n) regular memory words and n d write-once memory words. C(n) is 
a function which may vary. For  example, we might choose either C ( n ) =  c or 
C(n) = n ~, depending on the amount of regular memory available. As long as the 
amount  of regular memory is smaller than the amount  of write-once memory,  one 
memory word is large enough to address any word in the write-once or regular 
memory. We assume that all bits of write-once memory are initialized to 0 (except 
where the input data is stored). The space used by an algorithm is defined to be 
the number of memory words used by the algorithm. W O M M  denotes the 
Write-Once Memory Model, w o r d - W O M M  denotes this same model with n ~ 
words of word-write-once memory, and R M M  denotes this same model with n d 
words of regular memory instead of write-once memory. 

We assume the normal constant time RAM operations on memory words 
such as copy, write, arithmetic operations, bit operations, jump, and two-way 
branches. 

Disk Model. Current technology makes write-once memory available in disk 
form, thus it is appropriate to look at the effects of seek time on the computat ion 
time. We adopt the assumptions of I'Vi2] with respect to seek time. In [Vi2] the 
seek time is considered to be the time required to access a single fixed length B-bit 
block different from the previously accessed block. The seek time is counted as a 
constant regardless of where the blocks are located in memory. There are various 
more complicated ways to model seek time, but since the effects of seek time are 
not well understood, even in the case of computing on regular memory,  we adopt 
a relatively simple model as a first step. Clearly, whatever the assumptions, an 
upper bound on the number of steps is an upper bound on the number  of seeks. 
The lower bound in [Vi2] yields a lower bound on the number of seeks on a 
model closely related to ours that has the same assumptions on seek time. 
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3. The Time Complexity of Computing on Write-Once Memory 

3.1. Simulating Common Data Structures 

We begin by showing how to maintain some simple common data structures in 
write-once memory. It is easy to see that on both the W O M M  and word-WOMM 
we can perform n queue operations (enqueue and dequeue) in O(n) time and n 
space using only two regular memory words to point to the head and the tail of 
the queue. We can also perform n stack operations (push and pop) in O(n) time 
using only two regular memory registers on both the W O M M  and word-WOMM. 
The write-once memory space required is 2- n. The regular memory locations point 
to the top of the stack and to the first unused write-once memory location. When 
a push is done, the value of the push and the previous top of stack is written down 
at the first unused memory location. The regular memory locations are then 
updated accordingly. 

In the next subsection we show that every data structure can be simulated 
with an extra O(log n/log log n) multiplicative time factor on the W O M M  and an 
extra O(log n) multiplicative time factor on the word-WOMM. The question of 
what operations on various data structures can be simulated in less time is an 
important one. Unfortunately, it seems that very few of them can be simulated in 
the same order of time as on a regular machine. 

One data structure which can be handled in on the WOMM and word- 
W O M M  as quickly as it can be handled in regular memory is a binary tree in 
which the only pointers are from parents to children. 

Claim. We can perform n instert and delete operations on a binary tree of  height 
h in O(h) steps per operation, and O(n) additional write-once memory space. Only 
two regular memory words are required. 

Proof. The tree operations can be done using the persistent search trees in [ST] 
in O(n) space. We outline a simpler method that requires O(n. h) space. The pointer 
to the root of the tree is kept in a dedicated regular memory word. The internal 
nodes of the tree are kept in the write-once memory and contain pointers to the 
children of the node. Whenever node i is changed, all of  the nodes along the path 
from the root to node i are copied to new locations in the write-once memory, 
updating the pointers appropriately and writing in the new value for node i. [] 

Surprisingly, the union-find data structure can also be implemented as quickly 
on a W O M M  as on an RMM. To do this we first make the following observation: 

Observation. We can implement a log n bit unary counter, using O(n) additional 
space and O(log n) preprocessing time, such that increments and reads can be 
made in constant time. 

The implementation uses a table that maps binary to unary and unary to 
binary. An entry in the table can be accessed in constant time. 
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Claim. We can implement the set union algorithm with path compression and union 
by rank in O(mt(m, n)) time on a W O M M ,  where n is the number of set-union 
operations and m is the number of elements in the set. 

Proof We assume familiarity with the set union operations given in [Ta]. We 
say that an element is involved in a path compression step if the path compression 
step changes the pointer of the element. We say that an element is affected by a 
set union operation if, previous to the union operation, the element points to the 
root node, and the element is in the set with smaller rank (thus after the union 
operation, the element is no longer pointing to the root node). It is easy to see 
that in the time period between being affected by two union operations an element 
may be involved in at most one path compression step. Notice that when we 
implement the set union algorithm using union by rank, no element will be affected 
by more than log n + 1 union operations because each time an element is affected, 
the size of the set that it is a member of must at least double. Thus, no element 
will be involved in more than log n + 1 path compression steps. Since the pointer 
of the element changes only during a path compression step, or, in the case of the 
root element, during a union step, no element's pointer will be changed more than 
O(log n) times. Instead of allocating one pointer location to each element as is 
done on regular memory, O(log n) pointer locations are allocated to each element. 
Each time a pointer is changed, the new value of the pointer is written in the next 
consecutive location. In order to determine in constant time the location of the 
current value of the pointer, an O(log n) bit unary counter is kept, to which access 
(increment and read) can be made in constant time. []  

It is interesting to note that in general it is not known how to maintain trees 
where the children point to the parent (such as the linking and cutting trees in 
[Ta]) as efficiently on write-once memory as on regular memory. 

3.2. Simulating an R M M  by a W O M M  and w o r d - W O M M  

We discuss three upper bounds for simulating an RMM with a WOMM, which 
bound the simulation time by different quantities. None of the simulation upper 
bounds are better than the others in all cases, but the third is most general. All 
but the third also work on the word-WOMM. In each of the following we assume 
that the running times of the simulated algorithms are polynomial in n, where n 
is the size of the input. 

Theorem 3.1. I ra  program runs in time t and space s on an R M M ,  then it can be 
simulated on the W O M M / w o r d - W O M M  in O(t-log s) steps and using a constant 
number of  regular memory words and O(t + s) write-once memory space. 

Proof The values of the memory locations in the RMM are organized into a 
balanced binary search tree ordered by memory address. The pointer to the root 
of the tree is kept in a dedicated regular memory register. The values of the s 
memory locations are kept at the leaves of the tree. Whenever a memory location 
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in the simulated algorithm is changed, the value of the leaf associated with it is 
also changed. As explained in the previous section, each tree operation can be 
performed in O(h) time where h is the height of the tree. The height of the tree is 
log s. []  

The following theorem follows from some elegant methods discussed in [Vi2] 
involving allocation trees. The proof  presented here uses a different approach, but 
it is useful because it is simple and requires the storage of very few pointers. 

Theorem 3.2. Let A be an algorithm running on the RMM,  whose running time is 
bounded by t, whose space requirement is bounded by s, and such that the number 
of updates to each location is bounded by b. Then A can be simulated in O(t log b) 
steps, a constant number of regular memory locations, and O(t + s) write-once 
memory space on a WOMM/word.WOMM. 

Proof. In order to clarify the discussion, we refer to each memory location on 
the R M M  as a variable. A k-block for a variable is a sequence of 2 k + 1 consecutive 
locations, initially all 0. 2 k locations will be used to store 2 k updated versions of 
the variable, and the last location will be used as a pointer. The idea is to allocate 
initially to each variable a 0-block in write-once memory.  When a k-block for a 
variable is filled up, a (k + 1)-block is allocated to the variable and the k-block is 
made to point to the (k + 1)-block. In order to find the value of the variable, a 
search is made for the most recently allocated block by following the address 
pointers until a block is reached.that has no pointer filled in yet (this means the 
last one has been reached). Then a binary search is done on the block to find the 
last place in which a value was written. To change the value of the variable, the 
new value of the variable is written to the next location in the block. If at most 
b changes are made to a variable, then at most log b blocks are allocated to it. 
Therefore, following the addresses to the newest block takes at most O(log b) steps. 
The size of the block is O(b) words, so the binary search to find the current value 
of the variable also takes at most O(log b) steps. 

As stated, this scheme does not allow us to assign the value 0 to a variable. 
To fix this, another bit string can be used to represent the value 0. However, this 
still decreases the number of values that can be represented in a word by one. 
Another alternative is to keep a unary counter of 2 k bits with every block. The 
value of the counter indicates where the current value of the variable is stored in 
the block. This requires only o(2k/log n) extra words. The binary search for the 
location of the current value is then done on the counter instead of the block 
itself. []  

This last simulation is desirable, because it uses space efficiently. However, 
we can reduce the number of steps required if we are willing to use some extra 
space. 

Theorem 3.3. Let A be an algorithm whose running time is bounded by t, whose 
space requirements are bounded by s, and such that the number of updates to each 
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location is bounded by b, on an R M M .  Then A can be simulated on a W O M M  usin9 
O(t" (log b/log log n)) steps and O(t + s ' log  n log b/tog log n) space. 

Corollary 3.I. An algorithm that runs in O(t) time on an R M M  can be simulated 
in O((t'log t)/log log n) steps on a W O M M .  

Proof. We describe a method which requires more space, but it is easy to 
see that it can be modified to run in the claimed space bound. We again refer to 
each memory location on the RMM as a variable. We show how to keep track 
of the current value of each variable in the program being simulated with 
O(log b/log log n) steps per access (read, write) to the variable, thus giving a method 
of simulating t steps of an algorithm in O(t. log b)/log log n). The idea is to maintain 
for each variable a tree with log n degree at each node and b leaves. The jth leaf 
corresponds to the jth value that the variable takes on during the execution of 
the program. At any point in the computation, if the variable has changed fewer 
than j times, then the kth leaf is all O's for all k > j. The internal nodes of the tree 
contain an address which is the address of the child that is on the path that leads 
to the leaf with the current value of the variable. It is not necessary for each 
internal node to contain pointers to all of its children, only the child which leads 
to the leaf with the current value of the variable. Therefore it is only necessary to 
store the children in log n addresses which are compatible in the sense that the 
address of the ith child can be changed into the address of the (i + 1)st child by 
only setting bits. This can be done by letting the first child be an address in which 
the last log n bits of the addresses are 0 and the ith address differs from the (i - 1)st 
address only in that the ith bit from the last is changed to 1. 

By assumption, each variable can be changed at most b times during the 
execution of the algorithm. The depth of the tree, which is O(log b/log log n), is a 
bound on the time to access the corresponding variable. []  

The proof of this theorem also shows that if B is the number of bits in a block, 
there is an O(log n/log B) upper bound on the number of disk accesses required 
on write-once memory per disk access on regular memory. A lower bound in [Vi2] 
shows that this is tight on the register-restricted model. 

Some algorithms can be solved on a W O M M  in the same amount of time as 
on an RMM, even though only a small amount  of information can be stored in 
the regular memory of a WOMM. In fact standard algorithms for determinants, 
matrix multiplication, and sorting work as quickly on a W O M M  as they do on 
an RMM. We would like to characterize those properties of algorithms that allow 
this to be true. One such property, though by no means the only one, is the 
following: 

Definition. An algorithm is oblivious if the read/write access pattern depends only 
on the size of the input, and not on its value. 

Theorem 3.4. I f  there is an oblivious aloorithm for  a problem that runs in time t 
on an R M M  for  input size n, then there exists a nonuniform (oblivious) aloorithm 
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which produces the same output and runs in time O(t) on a W O M M / w o r d - W O M M  
and uses O(t) space. The preprocessing necessary to find the corresponding algorithm 
for a particular input size takes O(t) time on an R M M ,  O(t-(log t/log log n)) time 
on a W O M M  and O(t log t) time on a word-WOMM. 

Proof. All of the operations defined in Section 2 can be decomposed into a 
constant number of read and/or write operations on at most a constant number 
of words, and arithmetic and logical operations on regular memory registers. 
Therefore we only need to show how to simulate t reads and writes in a total of 
O(t) steps. A table is kept with an entry for each time step. When simulating a 
read at step i, the algorithm reads the ith entry in the table. We now show how 
to simulate a write of ~ to location j at step i. Suppose the next write after time 
i to location j is at time step i'. We write ~ to all entries in the table which 
correspond to the time steps in the original algorithm in which location j is read 
between steps i and i'. Because the algorithm is oblivious, the read/write accesses 
and therefore the information telling where to write in the table is the same for 
any input of size n. A total of t reads are made and, since the total number of 
writes in the simulation is bounded by the total number of reads, the nonuniform 
algorithm runs in time O(t). 

Finding the W O M M  algorithm for a particular input size takes only 
O(t- (log t/log log n)) steps of preprocessing. It is done in two passes. In the first pass 
the algorithm is simulated on any input of size n. For each location, a list is kept 
of the time-steps in which reads and writes are made to that location. The lists 
can be constructed in O(t.(log t/log log n)) steps by keeping a counter for each 
variable indicating the number of times the variable has been accessed, t consecu- 
tive memory slots are alloted to contain descriptions of the accesses. The descrip- 
tion consists of the type of access (read or write) and the time at which it occurs. 
The counter points to the next free slot in which to write the description of the 
next access to that variable. 

In the second pass a table is made that has an entry for each time step. Each 
entry points to a linked list containing the locations which the simulation must 
write to at each time step. This table can be made in O(t) time by running through 
the information gathered in the first phase and filling it into the table. If no write 
is made at that time step, the list is empty. []  

The simulation can be of practical use in cases when the same program is 
used many times on data sets of similar sizes. 

There is a lower bound implied by a proof in [Vi2] on the simulation time 
for a problem on the register-restricted version of our model. The problem is that 
of maintaining a variable through n updates, such that, at any point in time, the 
value of the variable can be correctly determined. The problem can be solved 
trivially in n total steps on an RMM. The problem requires f~(n-log n/log log n) 
steps on the register-restricted W O M M  and f2(n-log n) steps on the register- 
restricted word-WOMM. This proof does not apply to the general write-once 
memory models. 

In light of Theorem 3.4, showing that a problem in P requires asymptotically 
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more time on a WOMM than an RMM is a hard task: it would imply the problem 
cannot be solved by a linear-sized circuit, a major open problem in computational 
complexity. This is so because a circuit is an oblivious algorithm. (Actually, if only 
a uniform separation exists, then it shows that there are no (logspace, linear 
time)-uniform linear-size circuits, which is open as well). 

Short of a major breakthrough in computational complexity, this gives hope 
only for showing lower bounds on on-line simulations of an RMM by a WOMM. 
By on-line simulations, we mean a simulation that keeps track of the value of each 
memory cell of the RMM. Our success in this task has not been better. However, 
we can identify a problem that is "complete" for the on-line simulation problem. 
The problem is the counter-maintenance problem: there are n counters initial- 
ized to 0, and we are given a series of t requests to either increment counter 
i or to report its value. The best-known algorithm on a W O M M  requires 
O(t-log t/log log n) steps. On the RMM, this problem can be done in O(t) time, 
regardless of the number of times a counter is incremented. This problem is 
complete in the sense that if this problem can be solved in O(u) total time on a 
WOMM,  then any program requiring t steps and polynomial space can be 
simulated in O(u) total time. 

3.3. Making a Computation Persistent 

Definition. A computation is called persistent if at any point in the computation, 
the state of the memory at any previous time of the computation can be 
reconstructed. 

Theorem 3.5. Any computation on a W O M M  requiring t steps and s space can be 
made into a persistent computation running in O(t log log n) steps and t 'C(n) + 
s log n space (where C(n) is the number of regular memory words). Determining the 
contents of location i at time j can be done in O(log log n) steps. 

Proof For general C(n), the state of the regular memory words at each point in 
time is kept in priority queues which allow accesses and predecessor computations 
in O(log log n) time [EKZ]. There will be one priority queue for each regular 
memory word in the simulated computation. If the regular memory word in the 
simulated computation is updated to i at t imej,  j .  (n + 1) + i will be inserted into 
the priority queue associated with that regular memory word. The value of regular 
memory word i at time j can be retrieved by asking for the predecessor of 
(j + 1)'(n + 1) and taking the value to be the value of the predecessor mod n. 
O(C(n)) of these data structures can be implemented using O(C(n)) registers of 
regular memory and the write-once memory. 

In order to keep the state of the write-once memory words at each point in 
time, we first observe that a write-once memory word can only be changed 
i + d log n times because each change sets at least one bit and each bit can be 
set at most once. Thus we can simulate each location i in the original computation 
using 2(1 + d log n) + 1 consecutive locations in the persistent computation (where 
1 + d log n is the number of bits in a memory word) in the following way: Initially 
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blank, the first 2(1 + d log n) consecutive locations will contain a "his tory" of 
location i in the original computation. The history will be of the form of 
(1 + d log n) ordered pairs (time stamp, value). If the j th  change of location i in 
the original computation was made at time u by writing v, then the j th  ordered 
pair will be (u, v). When location i is changed in the original computation, a new 
ordered pair can be inserted in the next consecutive blank locations. Letting the 
last location act as a unary counter, the next blank location can be found in 
constant time. The value of location i at time u in the original computation can 
be found by binary search on the time stamps. []  

This proof also shows that any computation on the W O M M  can be simulated 
on the word-WOMM with only an O(log log n) multiplicative increase in time and 
an O(log n) multiplicative increase in space. 

4. The Space Complexity of Computing on Write-Once Memory 

In this section we investigate how efficiently space can be used in write-once 
memory. In the situation where we would like to keep track of a variable through 
several changes without using any regular memory, I-RS] shows how to conserve 
the number of write-once memory bits required. However, if t changes are to be 
made to the variable, t write-once bits are necessary. Our  emphasis is different 
because a W O M M  has a certain amount  of regular memory which can be used. 
We are interested in modifying algorithms in order to use the regular memory to 
conserve space. 

It seems that many algorithms on the W O M M  require space proportional to 
the running time. The following theorem shows that space proportional to the 
number of simulated steps is required for any general simulation of a program 
originally running on an RMM. 

Theorem 4.1. l f k  > c.d + 1, where c is the number o fd ' log  n bit regular memory 
words available, then maintaining k variables given n on-line updates requires ~(n) 
bits of write-once memory. Each update changes exactly one variable to any value 
in [1 . . . . .  n]. 

Proof. We prove the theorem for the case k = cd + 1. The general theorem 
follows trivially from this. We show that an adversary can force a write to a 
write-once memory location after every k steps. Define a register configuration to 
be a snapshot of the registers, and a memory configuration to be a snapshot of the 
registers and the write-once memory. Note that there are only ncd possible register 
configurations. Define a state of the k variables to be a k-tuple (x~ . . . . .  Xk) where 
x~ ~ [1 . . . . .  n] is the current value of the ith variable. Since the algorithm is 
maintaining the variables, it must be able to find out the value of each variable 
at all times. As the information about the variables can be assumed to be contained 
solely in the memory, we know that no two states of the k variables can have the 
same memory configuration. (On the other hand, it is possible that more than one 
memory configuration could indicate the same state since the memory configura- 
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tion may be dependent on the order of the updates.) Starting from any state, any 
one of at least n k different states can be reached after k steps. Since n k > n c~, there 
is at least one pair of states that have the same register configuration. Since the 
memory configurations must be different for different states, there must have been 
a write to the write-once memory for at least one of these two states. Therefore, 
there is a way of updating the variables in order to force a write to the write-once 
memory every k = cd + 1 steps. [] 

A similar proof shows that for large enough k the lower bound holds even 
when the variablcs are counters that may only be incremented by one at each 
update. 

Theorem 4.2. Maintaining n I -~ counters given n on-line updates requires F2(n) 

write-once bits. 

There are, however, algorithms that require significantly less write-once space 
than their running time on an RAM. For example, the "high school" method for 
Gaussian elimination takes time O(n3). At each phase, the new matrix that is 
calculated after doing the row operations is written down. This method takes O(n 3) 
space. However, a factor of n can be saved in the space without affecting the 
running time by saving the row operations rather than the current values of each 
row. Therefore, the space required is only O(n2). In order to study space require- 
ments further, we define a variant of the pebbling game, called the pebble-sticker 
game. 

Pebbling graphs is a common tool used in examining the space requirements 
and the time-space tradeoffs in oblivious computation (see [P] for a survey). The 
idea is to model an algorithm by a directed acyclic graph. The nodes with zero 
indegree correspond to the inputs and the nodes with zero outdegree correspond 
to the outputs. The interior nodes correspond to operations. There is a directed 
edge from a node u to a node v if the output of node u is an operand for v. We 
say that u is a direct predecessor of v. The object of the pebbling game is to cover 
each vertex of a graph with a pebble, subject to the condition that before a pebble 
can be placed on a vertex v, all direct predecessors of v must be covered by pebbles. 
A pebble can be removed from a vertex at any time. The number of pebbles 
required to pebble a graph represents the space requirements of the computation 
and the number of steps corresponds to the computation time. The problem is to 
find the minimum number of pebbles needed to cover the graph or to find tradeoffs 
between the number of pebbles and the number of steps. 

The analogous problem with write-once memory uses stickers in addition to 
pebbles. A sticker is different from a pebble in that once a sticker has been placed 
on a node, it cannot be removed. As placing pebbles correspond to writes to the 
regular memory, placing stickers correspond to writes to write-once memory. The 
problem is to find the minimum number of stickers required to cover a graph, 
given only a limited number of pebbles. Bounded degree planar graphs can be 

covered with O(x/~) pebbles [LT],  and there exist bounded degree planar graphs 

which require f2(x/~) pebbles [M]. Bounded degree trees can be covered with 
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O(log n) pebbles, and balanced binary trees require log n + 1 pebbles [PH] .  The 
following four theorems show tight bounds on the number of stickers required to 
pebble directed acyclic planar graphs and trees, given a limited number of pebbles. 

Theorem 4.3. Directed acyclic planar graphs of indegree less than p/(4 log p) can 
be covered with O(n/p) stickers, where n is the size of the graph and p is the number 
of pebbles. 

Proof The method in [LT] for pebbling planar graphs uses the fact that, for any 
planar graph G = (V, E), the vertices of G can be partitioned into three sets, A, B, 

C, where n/3 < I al  < 2n/3 and I C I -  2 2 x / ~ ,  such that there is no edge in G 
between a vertex of A and a vertex of B. We use this fact to define a tree structure, 
T(G), on the graph such that each node in the tree is associated with a "small" 
subset of the nodes in the graph G. We say that a node in the tree contains the 
set of nodes in G that it is associated with. For  a node v in the graph, let Node 
(v) be the node in the tree T(G) where v is contained. The sets contained in each 
node of the tree form a partition of the nodes in G. Let A, B, and C be the 
compoinents of G as defined above (note that A, B, and C form a partition of V). 
Let G a be the subgraph induced by the vertex set A and G B be the subgraph 
induced by the vertex set B. Define T(G) recursively as follows: if IV[ < p2/4, then 
T(G) is just a one-node tree that contains the set V. Otherwise, the root of tree 
T(G) contains the nodes in component C. The right subtree of T(G) is T(Ga) and 
the left subtree is T(Gn). 

Observation. I f two nodes, u and v, are adjacent in G, then either Node (u) = Node 
(v), Node (u) is an ancestor of Node (v), or Node (v) is an ancestor of Node (u). 

We use stickers to cover all graph nodes v such that Node (v) is an interior 
node in the tree T(G). We call these nodes sticker nodes. All other nodes are called 
pebble nodes and are covered by pebbles. We cover the graph in topological order. 
It follows directly from the results of [LT'J that if the degree of the graph is bounded 
by p/(4" log p), then the subgraph induced by the nodes at each leaf in T(G) can 
be covered using only p/2 pebbles and without using any stickers. Therefore, if a 
node v is a pebble node and all of the sticker nodes that precede v in the topological 
ordering are already covered, then any node having an unblocked path (a path 
with no sticker or pebble on it) to v is contained in Node (v) and thus v can be 
covered using p/2 pebbles. To cover a sticker node v in the graph, we assume that 
all sticker nodes that precede v in the topological ordering have been covered. If 
u is an uncovered direct predecessor of v, then u is a pebble node such that all of 
u's predecessors that are sticker nodes have been covered. We cover u using p/2 
pebbles and leave the pebble on u. When all of the direct predecessors of v have 
been covered, then v can also be covered. 

Let S(n, p) be the number of stickers required to cover a planar graph on n 
vertices, using only p/2 pebbles. We then have 

S(n, p) < 2x/2" n + S(~n, p) + S((1 - ~t)m, p), 
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where 

and 

) S , p  = 0 ,  

which gives S(n, p) = O(n/p). [] 

Theorem 4.4. For all 0 < p < v/n/3, there is a family of bounded degree planar 
graphs that requires ~(n/p) stickers given at most p pebbles. 

Proof. A mountain range is a directed, acyclic, planar graph with vertex set 
{1 . . . . .  n}. The edge set is defined in terms of an auxiliary height function h from 
the vertex set into the nonnegative integers satisfying h(1)= h(n)= 0 and 
[h(i + 1 ) -  h(i)[ = 1. There is an edge from i to j if and only i f j  = i + I or j = 
min{k > i[h(k) = h(i)}. We define a peak of a mountain range to be a subgraph 
induced by a sequence of nodes, [i . . . . .  j ] ,  where h(0 = h(j) = 0 and h(k) :~ 0 for 
k ~ [ i  + l . . . . .  j - l ] .  

At least r pebbles are required to pebble a mountain range that has r peaks 
of height r. The size of the smallest such graph is n = 2r 2 + 1. The case where 
r = 3 is shown in Figure 1. (See [M].) 

Now examine the mountain range of size n with n/3p peaks each of height 
3p/2. Divide the peaks into sections of 3p/2 consecutive peaks. This gives 2n/9p z 

sections. Since p < ~/-n/3, there is at least one section of peaks. Each section 
requires 3p/2 pebbles to be covered [M].  If only p pebbles are available, then at 
least p/2 stickers are required for each section because the number of pebbles plus 
the number of stickers must be at least 3p/2 for each section. Since stickers cannot 
be reused, and there are 2n/gp 2 sections, n/9p stickers are required to cover the 
whole graph. [] 

T h e o r e m  4.5. Any binary tree can be covered using O(n/2 p) stickers where n is the 
number of nodes in the tree and p is the number of  available pebbles. 

/\ /\ 
1 \ 1 \ 1 \  

�9 \! ,Y ,. 

Fig. 1 
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Proof. We show that there are O(n/2 p) nodes whose removal results in compo- 
nents which are all of size smaller than 2 p nodes. Any tree of size 2 p nodes can be 
pebbled with p pebbles. The entire graph can be covered by using stickers to cover 
O(n/2 p) nodes that partion the tree into subtrees of size at most 2 p and using p 
pebbles to cover each of the nodes in the subtree. Such a partition can be shown 
to exist as we now describe. Every binary degree tree has a node, v, such that 

�89 < T o < In, 

where T~ is the number of nodes in the subtree rooted at v [B]. If this node is 
removed, then there are two subgraphs, each with fewer than 2.n/3 nodes. Let 
T(n, p) be the number of nodes that must be removed from any binary tree on n 
nodes to obtain components that are all smaller than 2 ~ nodes: 

T(n, p) < T(~ . n, p) + T((1 -- a)n, p) + 1, 

where 

and 

T(2 p, p) = 0. 

Hence, 

[] 

The next theorem shows that this is the best possible. 

Theorem 4.6. ~(n/2 ~+1) stickers are required in order to cover balanced binary 
trees with edges directed toward the root, where n is the number of nodes in the tree 
and p is the number of available pebbles. 

Proof. Let T be the complete binary tree of height h with n = 2 k + 1 nodes. Let v 
be a node in such a tree and let P(v) be the number of pebbles required to cover 
v. It is known that h + 1 pebbles are required to cover T [PH].  Now consider the 
nodes in the tree that are at distance p from the leaves. There are 2 h-p such nodes. 
A subtree rooted at one of these nodes is balanced and has 2 p+t nodes. Thus, it 
takes p + 1 pebbles to pebble one of these subtrees. If we only have p pebbles 
available, we must use at least one sticker to cover the subtree. Since there are 
2 h-~ such subtrees, we must use at least 2 h-z = n/2 p+~ stickers to cover the entire 
binary tree. []  

5. Relationships Between Write-Once Complexity Classes and 
Other Complexity Classes 

Definition. WO-PSPACE is the class of problems that can be solved in poly- 
nomial space on a W O M M  where the number of regular memory registers 
available is C(n) = c. 
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Theorem 5.1. WO-PSPACE = P. 

Proof. As a result of our simulation upper bounds, it is clear that anything that 
is in P is also in WO-PSPACE. We now show that a problem in WO-PSPACE 
is in P. First notice that only a polynomial number of writes to the write-once 
memory  can be made, because each write sets at least one bit. This implies that 
the write-once memory can only be in a polynomial number of configurations 
throughout the course of the computation. Since there are only c -d - l og  n bits of 
regular memory,  the regular memory can only be in one of n c" ~ configurations. 
Therefore the number  of memory configurations is bounded by a polynomial in 
n. Each operation depends on the current instruction (of which there are a fixed 
number) and on the memory configuration. Since the computation terminates, no 
two time steps have the same memory configuration and current instruction. 
Therefore there can only be a polynomial number  of operations. [] 

6. Conclusions and Further Questions 

In this paper  we have introduced a model for computation with write-once 
memory. We found that several algorithms can be easily converted to run as 
quickly on this model as on an RAM with regular memory,  but that others seem 
to require some slowdown. We make an attempt to characterize the reasons for 
this difference. 

All of our simulation time upper bounds use only a constant number of regular 
memory words. What better time bounds can be found for simulations on the 
W O M M  when the number of regular memory words is more than a constant? 

As noted before, it would be of interest to find problems for which the time 
or space complexity is provably greater on the W O M M  than it is on the RMM. 
On the other hand, as is the case in parallel complexity classes, there are many 
problems for which it should be possible to find upper bounds on time and space 
which are better than those given by simulation results. For example, can 
maximum flow problems be solved as quickly on a W O M M ?  

The branching program model was used to investigate t ime-space tradeoffs 
of general computation. There is a natural analogue of this model in write-once 
memory. Is there a stronger t ime-space tradeoff lower bound for sorting on this 
model than the f~(n 2) lower bound in [BC] for branching programs on regular 
memory? Given o(n) write-once memory words for free, can it be shown that there 
is an f~(n z) lower bound on the t ime-regular-memory-space tradeoff? On the other 
hand, there are a few known O(n log n)-time randomized algorithms for sorting 
which use O(n) words on a W O M M ,  but are there any such deterministic 
algorithms? 

Can algorithms for maintaining persistent data-structures be found which run 
on a W O M M  with comparable bounds on time and space as those achieved on 
an R M M  in [DSST'I? 

We could consider extensions of this model to models of parallel computation. 
Similar simulation results could again be used to give algorithms on PRAMs with 
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write-once memory with slightly worse running times than those on PRAMs with 
regular memory, but the above questions for sequential complexity are still 
relevant with respect to parallel complexity. 

Though this model is incomparable with the Hierarchical Memory Model 
with Block Transfer model defined in [ACS], it seems that many of the same 
problems that can be done with little slowdown on that model can also be done 
with little slowdown on a WOMM. It would be interesting to find out if this is 
because of the oblivious nature of the algorithms exhibited in [ACSI, or if there 
is a deeper reason for this to be the case. 

Finally, the model could be extended to incorporate more sophisticated ways 
of modeling seek time. For  example, it would be more accurate to distinguish 
between consecutive and nonconsecutive reads when charging for a step. If no 
seek is required for a consecutive read, how is the number of seeks required 
affected? 
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