
THE LOAD, CAPACITY AND AVAILABILITY OF QUORUM

SYSTEMS

�

MONI NAOR

y

AND AVISHAI WOOL

z

Abstract.

A quorum system is a collection of sets (quorums) every two of which intersect. Quorum systems

have been used for many applications in the area of distributed systems, including mutual exclusion,

data replication and dissemination of information

Given a strategy to pick quorums, the load L(S) is the minimal access probability of the busiest

element, minimizing over the strategies. The capacity Cap(S) is the highest quorum accesses rate

that S can handle, so Cap(S) = 1=L(S).

The availability of a quorum system S is the probability that at least one quorum survives,

assuming that each element fails independently with probability p. A tradeo� between L(S) and the

availability of S is shown.

We present four novel constructions of quorum system, all featuring optimal or near optimal

load, and high availability. The best construction, based on paths in a grid, has a load of O(1=

p

n),

and a failure probability of exp(�
(

p

n)) when the elements fail with probability p <

1

2

. Moreover,

even in the presence of faults, with exponentially high probability the load of this system is still

O(1=

p

n). The analysis of this scheme is based on Percolation Theory.

Key words. quorum systems, load, fault tolerance, distributed computing, percolation theory,

linear programming.

AMS subject classi�cations. 60K35, 62N05, 68M10, 68Q22, 68R05, 90A28, 90C05.

1. Introduction.

1.1. Motivation. Quorum systems serve as a basic tool providing a uniform

and reliable way to achieve coordination between processors in a distributed system.

Quorum systems are de�ned as follows. A set system is a collection of sets S =

fS

1

; : : : ; S

m

g over an underlying universe U = fu

1

; : : : ; u

n

g. A set system is said

to satisfy the intersection property, if every two sets S;R 2 S have a nonempty

intersection. Set systems with the intersection property are known as quorum systems,

and the sets in such a system are called quorums.

Quorum systems have been used in the study of problems such as mutual exclu-

sion (cf. [39]), data replication protocols (cf. [7, 18]), name servers (cf. [32]), selective

dissemination of information (cf. [46]), and distributed access control and signatures

(cf. [34]).

A protocol template based on quorum systems works as follows. In order to per-

form some action (e.g., update the database, enter a critical section), the user selects a

quorum and accesses all its elements. The intersection property then guarantees that

the user will have a consistent view of the current state of the system. For example,

if all the members of a certain quorum give the user permission to enter the critical

section, then any other user trying to enter the critical section before the �rst user

�

A preliminaryversion of this paper appeared in the 35'th IEEE Symp. Found. of Comp. Science,

1994.

y

Dept. Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,

Israel. Incumbentof theMorris and Rose GoldmanCareer DevelopmentChair, supported by an Alon

fellowship and by a grant from the Israel Science Foundation administered by the Israeli Academy

of Sciences and Humanities. E-mail: naor@wisdom.weizmann.ac.il.

z

Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974. Work

done while at the Department of Applied Mathematics and Computer Science, The Weizmann In-

stitute, Rehovot 76100, Israel. E-mail: yash@research.bell-labs.com.

1

has exited (and released the permission-granting quorum from its lock) will be refused

permission by at least one member of any quorum it chooses to access.

In this work we consider three criteria of measuring how good a quorum system

is:

1. Load - A strategy is a rule giving each quorum an access frequency (so that

the frequencies sum up to 1). A strategy induces a load on each element, which is the

sum of the frequencies of all quorums it belongs to. This represents the fraction of the

time an element is used. For a given quorum system S, the load L(S) is the minimal

load on the busiest element, minimizing over the strategies. The load measures the

quality of a quorum system in the following sense. If the load is low, then each element

is accessed rarely, thus it is free to perform other unrelated tasks.

2. Capacity - We would like the system to handle as many requests as possible.

For this purpose we de�ne a(S; k), the number of quorum accesses that S can handle

during a period of k time units. This is the maximal t for which there exists a way to

schedule t quorum accesses, to quorums S

1

; : : : ; S

t

(allowing repetitions), such that

no element is accessed more than k times. The capacity Cap(S) is then the limit as

k!1 of a(S; k) normalized by k.

3. Availability - assuming that each element fails with probability p, what

is the probability, F

p

, that the surviving elements do not contain any quorum? This

failure probability measures how resilient the system is, and we would like F

p

to be

as small as possible.

Our goal is to investigate these criteria and �nd quorum systems that perform

well according to all three of them.

1.2. Related Work. The �rst distributed control protocols using quorum sys-

tems [42, 14] use voting to de�ne the quorums. Each processor has a number of votes,

and a quorum is any set of processors with a combined number of votes exceeding

half of the system's total number of votes. The simple majority system is the most

obvious voting system.

The availability of voting systems is studied in [4]. It is shown that in terms of

availability, the majority is the best quorum system when p <

1

2

. In [35] the failure

probability function F

p

is characterized, and among other things it is shown that the

singleton has the best availability when p >

1

2

. The case when the elements fail with

di�erent probabilities p

i

, all less than

1

2

, is addressed in [41].

The �rst paper to explicitly consider mutual exclusion protocols in the context

of intersecting set systems is [13]. In this work the term coterie and the concept of

domination are introduced. Several basic properties of dominated and non-dominated

coteries are proved.

Alternative protocols based on quorum systems (rather than on voting) appear

in [28] (using �nite projective planes), [1] (the Tree system), [5, 25] (using a grid) and

[23, 24, 38] (hierarchical systems). The triangular system is due to [26, 9]. The Wheel

system appears in [29]. The CWlog system appears in [37, 36]. The motivation for

several of these alternative systems was to �nd constructions with high availability

and low load (which is referred to in most of these papers as quorum systems with

small quorums).

In [19], the question of how evenly balanced the work load can be is studied.

Tradeo�s between the potential load balancing of a system and its average load are

obtained, and it is shown that in some quorum systems it is impossible to have a

perfect load balance, in which all the elements have an equal load.

A concept of capacity in voting systems is de�ned in [21] and some voting systems

2

are compared. The analysis does not distinguish between properties of the quorum

system and properties of the strategy that chooses which quorum to access.

A good reference to percolation theory is [15]. Two successful applications of

percolation to questions of computer science are [30] and [8].

While the majority quorum system is the best in terms of availability, and the

�nite projective planes construction have excellent load, they fail miserably according

to the other criteria: the load of majority is 1=2 and the failure probability of the

projective planes (FPP) goes to 1 (quickly) as the number of elements grows. In

fact, all of the existing constructions are less successful than ours in the simultaneous

achievement of high availability and low load.

1.3. New Results. We start by de�ning the concepts of load and capacity, and

showing that they can be formulated as linear or integer linear programs. Then

using results of hypergraph theory we show that Cap(S) = 1=L(S): Therefore all the

information regarding the capacity is captured by L(S).

We obtain several lower bounds on the load L(S). We show that if the minimal

quorum size is c(S) then L(S) � maxf1=c(S); c(S)=ng, hence L(S) � 1=

p

n. We also

obtain a tradeo� between the load and failure probability, i.e., F

p

� p

nL(S)

. In some

cases the linear program formulation of load also allows us to e�ciently compute the

load of a given quorum system, even if the quorums are not represented explicitly,

using the Ellipsoid algorithm adaptation of [16]. The behavior of the load when the

elements may fail is also studied. We assume the commonmodel that the elements fail

independently with probability p. The load then becomes a random variable L

p

(S).

Next we show some conditions that prove that a given strategy w induces the

optimal load. This enables us to �nd optimal strategies and to calculate L(S) of some

quorum systems, without actually solving the linear program.

The major contributions of this work are four novel quorum system construction,

all of which have optimal or near optimal load, and high availability i.e., a failure

probability that tends to 0 exponentially fast when p <

1

2

, or at least when p < � <

1

2

.

Our best construction is the Paths system, which is based on a percolation grid. It has

a load of O(1=

p

n), and a failure probability of exp(�
(

p

n)) when the elements fail

with probability p <

1

2

. Moreover, even in the presence of faults, with exponentially

high probability the load of this system is still O(1=

p

n). Two other constructions

resemble the Grid construction, but enhanced so their failure probability tends to 0.

The B-Grid system has L(B-Grid) = O(1=

p

n) and if p <

1

3

then F

p

(B-Grid) =

O(exp(�n

1=4

=2)). The SC-Grid system has L(SC-Grid) = O(

p

(lnn)=n), and if p <

1

2

� � for some � > 0 then F

p

(SC-Grid) � exp(�
(

p

n lnn)). The AndOr system uses

the AND/OR trees of [43]. It has L(AndOr) = O(1=

p

n), F

p

(AndOr) � exp(�
(

p

n))

when p <

1

4

, and F

p

� exp(�
(n

0:19

)) if p � 0:38 �
(n

�0:19

). The three latter

constructions also enjoy the property that their quorums are all of size O(

p

n).

Finally, we analyze the load of some known quorum system constructions. We

show that all voting systems have a load of at least

1

2

, which is very high. We also

show that non-dominated coteries have lower load than dominated ones.

The paper is organized in as follows. In Section 2 we present some basic de�ni-

tions. In Section 3 we de�ne the load and the capacity, their linear programs, and the

relationship between them. In Section 4 we prove the basic properties of the load. In

Section 5 we present the new constructions. In Section 6 we analyze the load of some

quorum systems.

2. Preliminaries.

3

2.1. De�nitions and Notation.

Definition 2.1. A Set System S = fS

1

; : : : ; S

m

g is a collection of subsets S

i

� U

of a �nite universe U . A Quorum System is a set system S that has the Intersection

property: S \R 6= ? for all S;R 2 S.

Alternatively, quorum systems are known as intersecting set systems or as in-

tersecting hypergraphs. The sets of the system are called quorums. The number of

elements in the underlying universe is denoted by n = jU j. The number of quorums in

the system is denoted by m. The cardinality of the smallest quorum in S is denoted

by c(S) = minfjSj : S 2 Sg.

The degree of an element i 2 U in a quorum system S is the number of quorums

that contain i: deg(i) = jfS 2 S : i 2 Sgj.

Definition 2.2. Let S be a quorum system. S is s-uniform if jSj = s for all

S 2 S.

Definition 2.3. A quorum system S is (s; d)-fair if it is s-uniform and deg(i) =

d for all i 2 U . S is called s-fair if it is (s; d)-fair for some d.

Definition 2.4. A Coterie is a quorum system S that has the Minimality prop-

erty: there are no S;R 2 S, S � R.

Definition 2.5. Let R;S be coteries (over the same universe U). Then R

dominates S, denoted R � S, if R 6= S and for each S 2 S there is R 2 R such that

R � S. A coterie S is called dominated if there exists a coterie R such that R � S.

If no such coterie exists then S is non-dominated (ND). Let NDC denote the class of

all ND coteries.

2.2. The Probabilistic Failure Model. We use a simple probabilistic model

of the failures in the system. We assume that the elements (processors) fail indepen-

dently with probabilities p

i

. We assume that the failures are transient. We assume

also that the failures are crash failures, and that they are detectable.

Definition 2.6. A con�guration is a vector x 2 f0; 1g

n

in which x

i

= 1 i� the

element i 2 U has failed.

Notation: For a con�guration x let dead(x) = fi 2 U : x

i

= 1g denote the set

of failed elements, and let live(x) = fi 2 U : x

i

= 0g denote the set of functioning

elements.

Notation: We use q

i

= 1� p

i

to denote the probability of survival of element i.

Definition 2.7. For every quorum S 2 S let E

S

be the event that S is hit, i.e.,

at least one element i 2 S has failed (or, x

i

= 1 for some i 2 S). Let fail(S) be the

event that all the quorums S 2 S are hit, i.e., fail(S) =

T

S2S

E

S

.

When the failure probabilities are equal, i.e., p = (p; : : : ; p), we use the de�nition

of [35] of the global system failure probability of a quorum system S, as follows.

Definition 2.8. F

p

(S) = P

p

(fail(S)) = P

p

�

T

S2S

E

S

�

:

When we consider the asymptotic behavior of F

p

(S

n

) for a sequence S

n

of quorum

system over a universe with an increasing size n, we �nd that for many constructions

it is similar to the behavior described by the Condorcet Jury Theorem [6]. Hence, the

following de�nition of [35].

Definition 2.9. A parameterized family of functions g

p

(n) : N ! [0; 1], for

p 2 [0; 1], is said to be Condorcet i� lim

n!1

g

p

(n) =

�

0; p <

1

2

,

1; p >

1

2

,

and g

1=2

(n) =

1

2

for

all n. If g

p

(n) has this behavior for p 6=

1

2

but g

1=2

(n) 6=

1

2

, then it is said to be almost

Condorcet.

4

3. Load and Capacity.

3.1. Strategies and Load. A protocol using a quorum system (for mutual ex-

clusion, say) occasionally needs to access quorums during its run. A strategy is a

probabilistic rule that governs which quorum is chosen each time. In other words, a

strategy gives the frequency of picking each quorum S

j

.

Definition 3.1. Let a quorum system S = (S

1

; : : : ; S

m

) be given over a uni-

verse U . Then w 2 [0; 1]

m

is a strategy for S if it is a probability distribution over

the quorums S

j

2 S, i.e.,

P

m

j=1

w

j

= 1.

For every element i 2 U , a strategy w of picking quorums induces the frequency

of accessing element i, which we call the load on i. The system load, L(S), is the load

on the busiest element induced by the best possible strategy. Formally,

Definition 3.2. Let a strategy w be given for a quorum system S = (S

1

; : : : ; S

m

)

over a universe U . For an element i 2 U , the load induced by w on i is `

w

(i) =

P

S

j

3i

w

j

. The load induced by a strategy w on a quorum system S is

L

w

(S) = max

i2U

`

w

(i):

The system load on a quorum system S is

L(S) = min

w

fL

w

(S)g;

where the minimum is taken over all strategies w.

Remarks:

(i) The load L(S) should be viewed as a \best case" de�nition. A load of L(S)

is achieved only if the quorums are chosen according to an optimal strategy. However

a protocol using the quorum system may use some other strategy (for instance if

computing an optimal strategy is too costly), hence the actual load might be higher

than L(S). This also means that L(S) is a property inherent to the combinatorial

structure of the quorum system, and not to the protocol using the system.

(ii) In the de�nition of L(S) we are assuming that all the elements of the uni-

verse are functioning, so all the quorums of the system are usable. In the sequel the

de�nition is extended to the case where the elements may fail.

3.2. A Linear Programming Formulation of the Load. An alternative way

to de�ne the load is via a Linear Programming formulation. This formulation shows

that the load L(S) can be computed in polynomial time using Linear Programming

algorithms (cf. [40]) if S is given explicitly.

Definition 3.3. Let a quorum system S = (S

1

; : : : ; S

m

) be given over a uni-

verse U of size n. De�ne a variable w

j

for each quorum S

j

2 S and an additional

variable L. Then the system load L(S) is de�ned by the following linear program.

LP : L(S) = minL; s:t:

8

<

:

P

m

j=1

w

j

= 1; (i)

P

S

j

3i

w

j

� L; for all i 2 U; (ii)

w

j

� 0; L � 0: (iii)

Notation: We use (w;L) to denote a tuple of a strategy and a possible load,

that together constitute a point in the problem domain [0; 1]

m+1

.

Remark: The program LP is always feasible, since for any quorum system S and

strategy w, the point (w; 1) is trivially feasible. Clearly, LP is also a bounded linear

program, so L(S) is always �nite.

5

The next de�nition and lemma show that the load L(S) is closely related to the

well known fractional matching number of a hypergraph (cf. [12], p. 149).

Definition 3.4. The fractional matching number of a quorum system, denoted

by �

�

, is

FM : �

�

(S) = max

m

X

j=1

f

j

; s:t:

�
P

S

j

3i

f

j

� 1; for all i 2 U;

f

j

� 0:

Lemma 3.5. L(S) = 1=�

�

(S) for any quorum system S

Proof. Let w be an optimal strategy for program LP , attaining L(S). Then f

de�ned by f

j

= w

j

=L(S) is feasible in program FM . Since FM is maximizing it

follows that �

�

(S) �

P

j

f

j

= 1=L(S).

On the other hand, consider f which optimizes programFM , with

P

j

f

j

= �

�

(S).

Then w de�ned byw

j

= f

j

=�

�

is a strategy (since

P

j

w

j

= 1), and (w; 1=�

�

) is feasible

for program LP . Since L(S) is minimal it follows that L(S) � 1=�

�

(S).

Notation: For a vector y 2 [0; 1]

n

and a set S � U , let y(S) =

P

i2S

y

i

.

Fact 3.6. Let S be a quorum system as in De�nition 3.3. De�ne a variable y

i

for each element i 2 U , and an additional variable T . The dual of program LP is

DLP : t(S) = maxT; s:t:

8

>

>

<

>

>

:

P

n

i=1

y

i

� 1; (iv)

y(S

j

) � T; for all S

j

2 S; (v)

y

i

� 0; (vi)

T 7 0: (vii)

Remarks:

(i) Formally the variable T is unconstrained (vii). However at the optimum

t(S) = T is positive, since T = 0 is feasible for any vector y 2 [0; 1]

n

and DLP is a

maximization problem.

(ii) The value of t(S) does not change if we require equality in (iv), since we can

increase the y

i

values without violating any inequality in (v) and without changing T .

Using the dual program DLP allows us in some cases to compute L(S) even

when S is given implicitly, using the Ellipsoid algorithm of [16, 27] (see Section 4.3).

3.3. The Capacity of a Quorum System. Each time that a distributed pro-

tocol generates an access to a quorum S 2 S, it causes work to be done by the

elements of S. During the time that the elements of S are busy with one quorum

access, they cannot handle another. However other elements may be used in the next

quorum access, making use of the parallelism in the system. We want to �nd what is

the maximal rate of quorum access that the system allows.

Assume that it takes one unit of time for an element to complete the work required

for a single quorum access. Now consider a period of k time units, and some schedule

of quorum accesses that need to take place during this period. Let the integers r

j

count the number of times that each quorum S

j

2 S is accessed, with the total number

of accesses being a =

P

S

j

2S

r

j

. Ignoring the order in which the quorum accesses are

scheduled, a necessary condition for the system to handle all a accesses within this

period of k time units is that every element i 2 U be accessed at most k times. The

following de�nition formalizes this condition using an integer linear program.

Definition 3.7. The maximum number of quorum accesses which a quorum

6

system S can handle within k units of time is

IP : a(S; k) = max

m

X

j=1

r

j

; s:t:

8

<

:

P

S

j

3i

r

j

� k; for all i 2 U;

r

j

� 0;

r

j

2 N:

The capacity of the system S is de�ned to be the maximal rate at which the

system handles quorum accesses. In other words, the capacity is the number of

accesses a(S; k) that the system can handle, normalized by k. Since we are interested

in the behavior over long time periods, we let the period k tend to in�nity.

Definition 3.8. The capacity of a quorum system S is

Cap(S) = lim

k!1

a(S; k)

k

:

In hypergraph theory the quantity a(S; k) is known as the k-matching number

of S, and is usually denoted by �

k

(cf. [12] p. 154). Furthermore, Proposition 5.12 of

[12] shows that lim

k!1

�

k

=k = �

�

, hence by the de�nition of the capacity and Lemma3.5

we obtain:

Corollary 3.9. Cap(S)= 1/L(S). Therefore all the information regarding the

capacity is captured by L(S). In [33] we gave a direct proof of Corollary 3.9 (without

using the hypergraph machinery), which indicates how to schedule the quorum ac-

cesses so the capacity tends to 1=L(S): select the quorums independently at random

using a strategy w which optimizes the load.

3.4. The Load with Failures. In this section we extend our de�nition of the

load to the case where the elements may fail. We use the simple probabilistic failure

model of Section 2.2, namely that the elements fail independently with probabilities

p = (p

1

; : : : ; p

n

).

Definition 3.10. Let x 2 f0; 1g

n

be the current con�guration. Then S

x

is the

subcollection of functioning quorums, S

x

= fS 2 S : S � live(x)g.

Definition 3.11. The load of a quorum system S over a con�guration x 2

f0; 1g

n

is de�ned as follows. If S

x

= ? then L(S

x

) = 1. If there are functioning

quorums, i.e., S

x

6= ?, then

L(S

x

) = minL; s:t:

8

<

:

P

S

j

2S

x

w

j

= 1;

P

S

x

3S

j

3i

w

j

� L; for all i 2 live(x);

w

j

� 0; L � 0:

Remark: When there are no functioning quorums in the current con�guration,

there is no natural concept of load. We choose to de�ne L(S

x

) = 1 for such a

con�guration to capture the intuition of a monotonic load; as more elements fail, the

load increases. The intuition behind this de�nition is justi�ed in Proposition 3.16.

Definition 3.12. Let the elements fail with probabilities p = (p

1

; : : : ; p

n

). Then

the load is a random variable L

p

(S) de�ned by

P

�

L

p

(S) = L

�

=

X

x

L(S

x

)=L

Y

i2dead(x)

p

i

Y

i2live(x)

q

i

:

7

If the probabilities p = (p; : : : ; p) are all equal, we denote the random load by L

p

(S).

Let EL

p

(S) denote the expectation of L

p

(S).

Fact 3.13. For any quorum system S, if the elements never fail then EL

0

(S) =

L(S) and if the elements fail with probability 1 then EL

1

(S) = 1.

Lemma 3.14. Let S be a quorum system. Then EL

p

(S) � F

p

(S) for any p 2

[0; 1].

Proof. By De�nition 3.11, in a con�guration x that causes a system failure (i.e.,

all the quorums are hit) the load is 1. Since F

p

(S) is the probability of a system

failure, we get

EL

p

(S) = [1� F

p

(S)] � g(S; p) + F

p

(S) � 1

for some g(S; p) � 0, and we are done.

The following examples show that although the FPP quorum system and the

Grid system have optimal or near optimal load of O(1=

p

n) when all the elements are

functioning (see Example 4.11), this load is not stable.

Example 3.15. In [35] it is shown that F

p

(FPP) �!

n!1

1 and F

p

(Grid) �!

n!1

1

for any p > 0. Therefore Lemma 3.14 gives that EL

p

(S) �!

n!1

1 for both systems.

The next proposition shows the correctness of the intuition that if the elements

are more fail prone then the load is higher. For the proof we need some notation and

two lemmas.

Proposition 3.16. EL

p

(S) is a monotone non-decreasing function of p 2 [0; 1]

for any S.

Notation: For con�gurations x and z, denote x � z if x

i

� z

i

for all i 2 U .

Notation: For a vector z = (z

1

; : : : ; z

n

), let (1

i

; z) denote the vector z with a 1

plugged into the i'th coordinate: (1

i

; z) = (z

1

; : : : ; z

i�1

; 1; z

i+1

; : : : ; z

n

), and similarly

for (0

i

; z).

Lemma 3.17. Consider the function L(x) : f0; 1g

n

7! [0; 1] de�ned by L(x) =

L(S

x

) for some quorum system S. If x � z then L(x) � L(z).

Proof. If x � z then every element that is functioning in con�guration x (with

x

i

= 0) is also functioning in z. Therefore S

x

� S

z

. If S

x

= ? then by De�nition 3.11

L(x) = 1 and we are done. Otherwise, any strategy w that only uses quorums of S

x

is a valid strategy for S

z

as well, and by the minimality of L(S

z

) the claim follows.

Lemma 3.18. Let S be a quorum system, let the elements fail with probabilities

p = (p

1

; : : : ; p

n

) and let L(x) = L(S

x

) be the load over con�guration x. Consider the

multi-linear function h(p) : [0; 1]

n

7! [0; 1] de�ned by

h(p) =

X

x2f0;1g

n

L(x)

Y

x

k

=1

p

k

Y

x

k

=0

q

k

= E[L(x)]:

Then

@h

@p

i

= h(1

i

;p)� h(0

i

;p) = E[L(1

i

;x)� L(0

i

;x)]:

Proof. Sum h(p) separately for con�gurations in which element i is failed (x

i

= 1)

or is functioning (x

i

= 0).

h(p) = p

i

X

x:x

i

=1

L(x)

Y

x

k

=1

k 6=i

p

k

Y

x

k

=0

q

k

+ q

i

X

x:x

i

=0

L(x)

Y

x

k

=1

p

k

Y

x

k

=0

k 6=i

q

k

= p

i

h(p

1

; : : : ; p

i�1

; 1; p

i+1

; : : : ; p

n

) + q

i

h(p

1

; : : : ; p

i�1

; 0; p

i+1

; : : : ; p

n

)

= p

i

h(1

i

;p) + q

i

h(0

i

;p):

8

Taking partial derivatives we get

@h

@p

i

= h(1

i

;p)� h(0

i

;p). Having element i fail

with probability 1 is the same as having a constant 1 in the random con�guration x,

so h(1

i

;p) = E[L(1

i

;x)]. Linearity of the expectation completes the lemma.

Proof of Proposition 3.16: Consider the case where the elements fail with

probabilities p = (p

1

; : : : ; p

n

), and let L(x) and h(p) be as before. By Lemma 3.17

L(x) is non-decreasing, so L(1

i

;x) � L(0

i

;x) for every i. Therefore by Lemma 3.18,

@h

@p

i

� 0 as an expectation of non-negative terms, so h(p) is non-decreasing in every

coordinate. Plugging p = (p; : : : ; p) shows that EL

p

(S) = h(p; : : : ; p) is a non-

decreasing function.

3.5. Other Measures of Load. In order to measure an intuitive notion of

\load" of a quorum system, our de�nition of L(S) (De�nitions 3.2 and 3.3) is not the

only one that comes to mind. Here we discuss the shortcomings of some alternatives.

Several authors (e.g., [28, 1] have emphasized the criterion of having small quo-

rums. This is an important parameter since it captures the message complexity of a

protocol using the quorum system. However it does not tell us how to use the quo-

rums so each element is used as infrequently as possible. Moreover, our lower bounds

(Propositions 4.1 and 4.2) show that if the quorum size is small (i.e., c(S) <

p

n)

then decreasing it any further actually increases the load. We therefore argue that

when analyzing a quorum system, one should consider both its quorum size and load

(and of course its availability) since each measures a di�erent aspect of the system's

quality. Having a small quorum size does not give us the whole picture.

Looking for systems with small average quorum size can also be misleading. For

instance, the average quorum size in the Wheel system [29] is very small (� 3) but

the load is high: L(Wheel) � 1=2.

Another tempting de�nition is that of an average load, rather than the maximum,

i.e., AvL(S) = min

w

1

n

P

i2U

P

S

j

3i

w

j

; minimizing over strategies w. An equivalent

notion is that of the total load, which is the same as the average except for the

scaling factor of 1=n. However by changing the summation order it follows that

AvL(S) = min

w

1

n

P

1�j�m

w

j

jS

j

j: A strategy that minimizes this expression is the

trivial strategy that always uses the smallest quorum S

min

(with probability 1), so

AvL is an uninteresting measure.

4. Properties of the Load.

4.1. Lower Bounds and a Tradeo� of the Load. In this section we present

three lower bounds on the load L(S), in terms of the smallest quorum cardinality

c(S) and the universe size n. Two of these can be found in the hypergraph literature

as upper bounds for the fractional matching number �

�

, and we present them here

using our terminology. We also show a tradeo� between the availability of a quorum

system, quanti�ed by the failure probability F

p

, and the load.

Proposition 4.1. ([12], p. 150): L(S) �

c(S)

n

for any quorum system S.

Proposition 4.2. L(S) �

1

c(S)

for any quorum system S.

Proof. Let S

min

2 S be a quorum such that jS

min

j = c(S) and let y be de�ned by

y

i

=

1

c(S)

for i 2 S

min

and y

i

= 0 otherwise. Then (y; 1=c(S)) is feasible for program

DLP so the claim follows by the weak duality of linear programming.

Proposition 4.3. ([2], cf. [12] p. 170): Let m(S) be the number of quorums in S.

Then

L(S) �

1

p

n

s

1 +

c(S) � 1

m(S)

�

1

p

n

:

9

Example 4.4. The following examples show that both Propositions 4.1 and 4.2

give meaningful lower bounds on the load of some quorum systems.

(i) Over an odd-sized universe, all the quorums of the simple majority system

Maj are of size (n+ 1)=2, therefore by Proposition 4.1, L(Maj) � (n + 1)=2n >

1

2

.

(ii) In the Tree system [1], the smallest quorums have cardinality log(n + 1).

Therefore by Proposition 4.2, L(Tree) � 1= log(n+ 1).

The following proposition shows a tradeo� between the failure probability and

the load.

Proposition 4.5. F

p

(S) � p

nL(S)

for any quorum system S and any p 2 [0; 1].

Proof. Consider a quorum S

min

with jS

min

j = c(S). If all the elements of S

min

fail then by the Intersection property the system fails, therefore F

p

(S) � p

c(S)

. The

claim follows since c(S) � nL(S) by Proposition 4.1.

Definition 4.6. An in�nite family of quorum systems S

n

over universes of

increasing size n is said to have a tight tradeo� if

L(S) � C �

� logF

p

(S

n

)

n

for some constant C = C(p) > 0 that depends only on 0 < p <

1

2

.

Remark: It is pointless to consider values of p �

1

2

since in [35] it is proved that

F

p

(S) �

1

2

for such p and any quorum system S, so Proposition 4.5 is meaningless

asymptotically in this case.

4.2. Conditions for Optimality of the Load. In this section we present sev-

eral conditions that guarantee the optimality of a strategy w. The �rst condition,

which can be applied to any system S, is an immediate consequence of Linear Pro-

gramming duality.

Proposition 4.7. Let a quorum system S be given, and let w be a strategy

for S with an induced load of L

w

(S) = L. Then L is the optimal load i� there exists

y 2 [0; 1]

n

such that y(U) = 1 and y(S) � L for all S 2 S.

Proof. By the premise, (w;L) is a feasible point of LP , with an objective function

value of L. Therefore by duality, L is the optimum i� there exists a feasible point

of the dual problem DLP with an objective function value of L as well. By the

de�nition of DLP , this implies that L is optimal i� there exists y such that (y;L) is

dual-feasible, which is guaranteed by the conditions on y.

One way to search for a good strategy w is to try to �nd a balancing strategy. We

can try to do this by constructing a feasible point (w;L) for the following balanced load

Linear Program, in which the inequalities (ii) of LP are replaced by equalities (ix).

BLP :

8

<

:

P

m

j=1

w

j

= 1; (viii)

P

S

j

3i

w

j

= L; for all i 2 U; (ix)

w

j

� 0; L � 0: (x)

The program BLP is not always feasible, since �nding a solution would imply that S

can be perfectly balanced, which cannot be done for all quorum systems [19]. Nev-

ertheless, one could hope that such a balancing strategy (if found) would induce the

optimal load. The next proposition shows that this is true for a certain subclass of

quorum systems.

Proposition 4.8. Let S be an s-uniform quorum system. Let w be a strategy

and L � 0 be such that (w;L) is a feasible point to program BLP . Then the optimal

load is L(S) = L = s=n.

10

Proof. First let us show that L = s=n. Using the equalities (ix) we get

X

i2U

X

S

j

3i

w

j

= nL:(1)

By switching the summation order and using the s-uniformity of S and equality (viii)

we get

X

i2U

X

S

j

3i

w

j

=

m

X

j=1

w

j

X

i2S

j

1 = s

m

X

j=1

w

j

= s:(2)

By equating (1) and (2) we conclude that L = s=n.

Now let y = (1=n; : : : ; 1=n) be a weight vector for the elements. Clearly y(U) = 1,

and y(S) = jSj=n = s=n = L for any quorum S 2 S, since S is s-uniform. Therefore

(y;L) is dual-feasible, so by Proposition 4.7, L(S) = L.

Remark: The proof does not use the fact that S is a quorum system in any way,

and holds for non intersecting set systems as well.

The condition that Proposition 4.8 places on a strategy w is a very weak one.

It su�ces to show that w is a feasible balancing strategy for it to induce the unique

optimal load, if S is uniform. The following example shows that the uniformity

is crucial; non-uniform quorum systems can have several balancing strategies, with

di�erent induced loads.

Example 4.9. Consider the quorum system

S = f f1; 4; 6g; f2; 4; 7g; f3; 5; 6;7g;f1;2;3;5g;

f1; 2; 3; 4g; f2; 3; 4;5g; f3; 4;5;6g;f4;5;6; 7g; f5; 6; 7;1g; f6; 7;1;2g;f7;1;2; 3g g:

The strategy w = (0; 0; 0; 0;

1

7

;

1

7

;

1

7

;

1

7

;

1

7

;

1

7

;

1

7

) is balancing with a load of L

w

(S) = 4=7.

However the strategy w

0

= (

1

4

;

1

4

;

1

4

;

1

4

; 0; 0; 0; 0;0;0;0) is also balancing, with a load

of L

w

0

(S) = 1=2.

If S is a fair system, then the next proposition shows that we can compute the

load and optimal strategy immediately. This is a restatement of Proposition 5.1 of

[12] using the fact that L(S) = 1=�

�

.

Proposition 4.10. Let S be an (s; d)-fair quorum system. Then L(S) = s=n =

d=m.

Example 4.11. The following examples demonstrate the use of Proposition 4.10.

The �rst shows that the lower bound of Example 4.4 is tight, and the other two show

that the optimal load of Proposition 4.3, 1=

p

n, can be attained.

(i) Over an odd-sized universe, Maj is an

n+1

2

-fair quorum system, so L(Maj) =

n+1

2n

�

1

2

.

(ii) The FPP system [28] is a (t + 1)-fair quorum system over n = t

2

+ t + 1

elements, so L(FPP) =

t+1

t

2

+t+1

�

1

p

n

. In fact equality holds in the tighter lower

bound of Proposition 4.3 for this system.

(iii) The Grid system [5] is a (2h � 1)-fair system over n = h

2

elements, so

L(Grid) =

2h�1

h

2

�

2

p

n

.

4.3. E�ective Calculation of the Load. If a quorum system S is given ex-

plicitly, as a list of all m quorums, then program LP of De�nition 3.3 can be solved in

poly(n;m) time using Linear Programming (cf. [40]). However often S is given implic-

itly, say, via some data structure containing the elements coupled with a polynomial-

time procedure to produce a quorum on demand. In such a case just writing program

11

Input a point (y;T).

The rows are U

1

; : : : ; U

d

.

Q ?; s 0

for i = d to 1 // bottom to top

r

P

j2U

i

y

j

if r + s < T then

return U

i

[Q // y(U

i

[Q) < T

else

j argmin

k2U

i

fy

k

g // min weight in row i

s s + y

j

Q Q [fjg

end-for

return TRUE // (y;T) is dual-feasible

Fig. 1. An oracle for a Crumbling Wall quorum system.

LP could be an exponential task since typically m = 2

(n)

. Calculating the load

quickly is especially important when failures may occur, since the computation needs

to be done repeatedly after each con�guration change.

Instead we make use of the adaptation of the Ellipsoid algorithm of [16]. Let d

denote the dimension of the problem at hand. The Ellipsoid algorithm uses an oracle,

which receives a point x 2 R

d

and performs the following action.

(i) If x is a feasible point, then return TRUE.

(ii) Otherwise, return a hyperplane separating x from the feasible region (i.e.,

return a violated constraint).

Given such an oracle, that works in time � , the algorithm solves the linear program

in time poly(�; d).

We achieve nothing by applying this algorithm to problem LP since its dimension

is m + 1. However we can apply this algorithm to the dual problem DLP , whose

dimension is n + 1. Translated to our terminology, we need to provide an oracle

whose input is a point (y;T). If (y;T) is feasible in DLP then the oracle returns

TRUE, otherwise it returns a quorum S 2 S such that y(S) < T . If this oracle works

in poly(n) time then the algorithm calculates the load in poly(n) time.

Remark: Solving problem DLP gives us the optimal value of the load, but does

not �nd a strategy that induces this load. Just writing down a strategy would cause

a time complexity of
(m).

Example 4.12. In the systems of the Crumbling Wall class [37] the elements

are arranged in rows of di�erent widths, and a quorum is the union of a full row

and a representative from each row below the full row. The procedure in Figure 1

is an oracle of the required kind, with a time complexity of O(n). Therefore we can

compute the load of any CrumblingWall using the Ellipsoid algorithm outlined above.

5. Optimal Load, High Availability Quorum Systems.

5.1. The Paths System. In this system, the elements constitute a type of

square grid, and a quorum is the union of two paths, one connecting the left and

right sides and one connecting the top and bottom sides. Our analysis shows that

L(Paths) = O(

1

p

n

) and that F

p

(Paths) � e

�
(

p

n)

for p <

1

2

, so the tradeo� between

the load and failure probability is tight. Moreover, we show that even in the presence

12

of faults, with exponentially high probability the load is still L

p

(Paths) = O(

1

p

n

) for

all p <

1

2

, which is the best we can hope for. We also give a simple and e�cient

algorithm for computing a strategy which induces an almost optimal load when some

elements are faulty. The proofs are based on theorems of Percolation Theory (see

Appendix A).

Definition 5.1. Let G(d) be the subgrid ofZ

2

with vertex set fv 2Z

2

: 0 � v

1

�

d + 1; 0 � v

2

� dg and edge set consisting of all edges joining neighboring vertices

except those joining vertices u, v with either u

1

= v

1

= 0 or u

1

= v

1

= d+ 1.

Definition 5.2. Let G

�

(d), the dual of G(d) be the subgrid with vertex set

fv + (

1

2

;

1

2

) : 0 � v

1

� d;�1 � v

2

� dg and edge set consisting of all edges joining

neighboring vertices except those joining vertices u, v with either u

2

= v

2

= �

1

2

or

u

2

= v

2

= d+

1

2

.

See Figure 2 for a drawing of G(d) and G

�

(d). Note that every edge e 2 G(d) has

a dual edge e

�

2 G

�

(d) which crosses it. We call such e and e

�

a dual pair of edges.

Note also that G(d) and G

�

(d) are isomorphic; G

�

(d) may be obtained by rotating

G(d) at a right angle around the origin and relocating the vertex labeled (0; 0) to the

point (d+

1

2

;�

1

2

). Both G(d) and G

�

(d) contain d

2

+ (d+ 1)

2

= 2d

2

+ 2d+ 1 edges.

(0,0)

Fig. 2. The grids G(3) (full lines) and G

�

(3) (dotted lines).

Definition 5.3. The Paths quorum system of order d has n = 2d

2

+ 2d + 1

elements, and we identify an element in U with a dual pair of edges e 2 G(d) and

e

�

2 G

�

(d). A quorum in the system is the union of (elements identi�ed with) the

edges of a left-right path in G(d) and the edges of a top-bottom path in G

�

(d).

Proposition 5.4.

p

2

p

n

/ L(Paths) /

2

p

2

p

n

.

Proof. For the lower bound, note that the smallest quorum has size c(Paths) =

2d+ 1, and we can apply Proposition 4.1 to get L(Paths) �

2d+1

2d

2

+2d+1

. For the upper

bound, consider the quorums of the type S

j

= fedges joining u; v 2 G(d) : u

2

=

v

2

= jg [fedges joining u; v 2 G

�

(d) : u

1

= v

1

= j +

1

2

g, for j = 0; : : : ; d. Each

element corresponding to a horizontal edge in G(d) appears in two such quorums,

except elements on the diagonal that appear only once. A strategy choosing only

these quorums with probability

1

d+1

induces a load of

2

d+1

.

We now wish to calculate the failure probability of the Paths system. We assume

that the elements fail with probability p. A failed element corresponds to two closed

percolation edges: an edge e 2 G(d) and its dual edge e

�

2 G

�

(d). We say that a path

13

in G(d) is closed if all its edges are closed. De�ne the following events:

(i) LR = \there exists an open left-right path in G(d)",

(ii) LRC = \there exists a closed left-right path in G(d)",

(iii) TB = \there exists an open top-bottom path in G

�

(d)",

(iv) TBC = \there exists an closed top-bottom path in G

�

(d)".

Lemma 5.5. If p >

1

2

then there exists a positive function ' such that P

p

(LR) �

e

�'(p)d

.

Proof. Consider the grid G(d), and let � = fv 2 Z

2

: v

1

= d + 1g be the set of

Z

2

vertices on the in�nite vertical line on the right side of G(d). Let R denote the

vertices on the right side of G(d). Then summing along the possible starting points

on the left side,

P

p

(LR) �

d

X

k=0

P

p

((0; k)$ R) �

d

X

k=0

P

p

((0; k)$ �) = (d+ 1)P

p

(0$ �):

A path from the origin to � must exit the ball B(d), so we can apply Theorem A.1

to get

� (d+ 1)P

p

(0$ @B(d)) � (d+ 1)e

� (p)d

� e

�'(p)d

:

Corollary 5.6. If q >

1

2

(p <

1

2

) then there exists a positive function ' such

that P

p

(LRC) � e

�'(q)d

.

Proof. Exchanging the roles of p and q we get that P

p

(LRC) = P

q

(LR), so we

can apply Lemma 5.5.

Proposition 5.7. There exists a positive function ' such that F

p

(Paths) obeys

8

<

:

F

p

(Paths) � 2e

�'(q)d

; p <

1

2

,

F

p

(Paths) � 1� e

�'(p)d

; p >

1

2

,

1

2

< F

p

(Paths) �

3

4

; p =

1

2

,

so F

p

(Paths) is almost Condorcet.

Proof. By de�nition, the event \there is a live quorum" is LR\TB. A moment's

re
ection shows that an open left-right path exists in G(d) i� no closed top-bottom

path exists in G

�

(d), since a dual pair of edges e and e

�

have the same state (see dis-

cussion in [15], pp. 198{199). Therefore the events LR and TBC are complementary.

Since G(d) and G

�

(d) are isomorphic, then TB and LRC are also complementary

events. Therefore the system failure event is

fail = LR \ TB = TBC [LRC:

Additionally, the isomorphismbetween G(d) andG

�

(d) implies thatP

p

(LR) = P

p

(TB)

and P

p

(LRC) = P

p

(TBC). Now we consider the three cases, as follows.

(i) Let p <

1

2

. Then F

p

= P

p

(fail) = P

p

(LRC [TBC) � 2P

p

(LRC) and so

F

p

(Paths) � 2e

�'(q)d

by Corollary 5.6.

(ii) Let p >

1

2

. Then 1�F

p

= P

p

(LR\TB) � P

p

(LR) � e

�'(p)d

by Lemma 5.5.

(iii) Let p =

1

2

. From the above discussion and the proof of Corollary 5.6 it

follows that P

1=2

(LR) = P

1=2

(TB) =

1

2

. For the upper bound, note that both LR

and TB are increasing events, so we can use the FKG inequality [10]. Therefore

F

1=2

= 1�P

1=2

(LR \ TB) � 1�P

1=2

(LR)P

1=2

(TB) =

3

4

:

For the lower bound, note that Paths is a dominated quorum system. Therefore

F

1=2

(Paths) >

1

2

by a result of [35].

14

Finally, we show that w.h.p. the load of the Paths system is O(

1

p

n

) in the presence

of failures, for any failure probability p <

1

2

. In other words, the load has essentially

the same asymptotic behavior, as long as there is a good probability that at least one

functioning quorum exists.

Proposition 5.8. For any 0 � p <

1

2

there exists
 > 0 such that L

p

(Paths) =

O(

1

p

n

) with probability � 1� e

�
d

.

Proof. Let LR

r

be the event \there exist at least r + 1 edge disjoint left-right

paths in G(d)". Fix some

1

2

> p

0

> p. Then by Theorem A.3

1�P

p

(LR

r

) �

�

q

q � q

0

�

r

[1�P

p

0

(LR)]:

Now for p

0

<

1

2

,

P

p

0

(LR) = 1�P

p

0

(TBC) = 1�P

p

0

(LRC) � 1� e

�'(q

0

)d

by Corollary 5.6, so

P

p

(LR

r

) � 1�

�

q

q � q

0

�

r

e

�'(q

0

)d

:

Fix 0 <
 < ', let 0 < � =

'�

ln[q=(q�q

0

)]

, and let r = �d. Then P

p

(LR

r

) � 1 � e

�
d

:

In other words, w.h.p. there exist �d + 1 edge disjoint left-right paths in G(d). The

same also happens for top-bottom paths in G

�

(d). Therefore we can �nd �d + 1

quorums such that any element appears in at most two of them (once as an edge

e 2 G(d) and once as the dual edge). We conclude that when such quorums are

found, L

p

(Paths) �

2

�d+1

= O(

1

p

n

):

Remark: This is the strongest possible result regarding load with failures, since

if p �

1

2

then by Lemma 3.14 and a result of [35], EL

p

(S) � F

p

(S) �

1

2

for any

quorum system S.

Proposition 5.8 guarantees that w.h.p. a good strategy (that induces a load of

O(1=

p

n)) exists. We now describe an e�cient algorithm that �nds a nearly optimal

strategy w for any given con�guration x; the load induced by w is at most twice the

optimal load under con�guration x, L(Paths

x

).

The algorithm mimics the structure of the existence proof. As a preprocessing

step, that needs to be performed after each con�guration change, the algorithm �nds

a maximum collection of disjoint left-right paths, say k

LR

such paths, and similarly

�nds k

TB

disjoint top-bottom paths. This can be done by connecting a source vertex

s to all the vertices on the left side and a sink t to the vertices on the right, assigning

a capacity of 1 to all the edges, and �nding the maximum (s; t)
ow (and repeating

for TB paths). Since the network is planar we can �nd the
ow in time O(n logn)

using the algorithm of [20], or in time O(n

p

logn) by [17] using the methods of [11].

Given these path collections, the strategy w is the following: If either k

LR

= 0

or k

TB

= 0 then no live quorums exist in con�guration x. Otherwise, whenever a

quorum is needed, pick a LR path with uniform probability 1=k

LR

and a TB path

with uniform probability 1=k

TB

, and use their union. Since the paths are disjoint,

each element can appear at most once in a LR path and once in a TB path, so

L

w

(Paths

x

) � 1=k

LR

+ 1=k

TB

:

15

However, if the maximum
ow is k

LR

then the Max-Flow Min-Cut theorem implies

the existence of a k

LR

-size cut. Therefore any LR path that is open in con�guration x

must cross this cut via an edge, so some edge in this cut must have a load of at least

1=k

LR

under any strategy. This implies a lower bound on the load,

L(Paths

x

) � maxf1=k

LR

; 1=k

TB

g;

hence L

w

(Paths

x

) is at most twice the best possible.

Remark: A related construction, using paths on a triangular lattice with ele-

ments corresponding to the nodes, was suggested in [45] (see [44]). They show that

their construction has asymptotically high availability (F

p

! 0 when p <

1

2

in our

notation). The rate of convergence is not analyzed, and neither is the load (with or

without failures). Nevertheless it seems that an analysis similar to ours would show

that the characteristics of their system are comparable to those of our Paths system,

with a load of O(1=

p

n) and F

p

� e

�
(

p

n)

when p <

1

2

.

5.2. The B-Grid System. Arrange the elements in a rectangular grid of width d.

Split the grid logically into h bands of r rows each (so there are n = dhr elements). Call

r elements in a column that are all contained in a single band a mini-column. Then

a quorum consists of one mini-column in every band, and a representative element in

each mini-column of one band (see Figure 3).

Fig. 3. The B-Grid system over n = 240 elements with width d = 16, h = 5 bands and r = 3

rows per band. One quorum is shaded.

Lemma 5.9. L(B-Grid) =

d+hr�1

dhr

.

Proof. Clearly B-Grid is a fair quorum system, with a quorum size of d+ hr� 1,

and the lemma follows from Proposition 4.10.

Lemma 5.10. F

p

(B-Grid) �

�

dp

r

�

h

+ h

�

1� q

r

�

d

.

Proof. De�ne E

1

to be the event \in every band there exists a mini-column

whose elements all failed", and E

2

to be the event \there exists a band in which

every mini-column contains a failed element". Clearly the system failure event is

fail = E

1

[E

2

, so F

p

(B-Grid) � P(E

1

)+P(E

2

). We get the result since P(E

1

) �

�

dp

r

�

h

and P(E

2

) � h

�

1� q

r

�

d

.

In the next lemma we give a condition on r under which F

p

decays exponentially

fast in a large range of p values.

Lemma 5.11. If 0 � p �

1

3

and r = bln dc then F

p

(B-Grid) � e

�h

+ e

�

1

2

p

d

for

large values of d such that lnh <

1

2

p

d.

16

Proof. To get P(E

1

) �

�

dp

r

�

h

� e

�h

we require the condition

r >

ln d+ 1

ln1=p

:(3)

To get P(E

2

) � h

�

1� q

r

�

d

� e

�

1

2

p

d

we require the condition

r <

lnd� ln(lnh+

1

2

p

d)

ln 1=q

:(4)

If we consider only p �

1

3

, then

1

ln 1=p

� 0:91 and

1

ln 1=q

� 2:466, and a simple

check shows that r = bln dc �lls both conditions (3) and (4) for su�ciently large d if

lnh <

1

2

p

d.

The next propositions are proved by plugging the parameters into Lemma 5.11

and Lemma 5.9. In Proposition 5.12 the failure probability is minimal for the B-Grid

system (up to a logarithmic factor in the exponent). In Proposition 5.13 the load is

minimal.

Proposition 5.12. If d = n

2=3

, r = bln dc and h = n=(rd) then L(B-Grid) =

O(n

�1=3

) and F

p

(B-Grid) = O(exp(�

n

1=3

lnn

)) in the range 0 � p �

1

3

.

Proposition 5.13. If d =

p

n, r = bln dc and h = n=(rd) then L(B-Grid) =

O(1=

p

n) and F

p

(B-Grid) = O(exp(�

n

1=4

2

)) in the range 0 � p �

1

3

.

Remark: Taking either d > n

2=3

or d <

p

n makes both the load and the

availability worse. Note that in any case, the tradeo� between the load and failure

probability is not tight. By Proposition 4.5 we could hope for a failure probability of

O(exp(�n

2=3

)) when the load is � n

�1=3

.

5.3. The SC-Grid System. Consider a grid made of h rows of cells with width d.

In a universe of size n = dh, allocate d di�erent elements to each row. Assume that

row j is allocated elements f1; : : : ; dg. Then for a parameter r < d, place the elements

into cells in shifted cyclic order: f1; : : : ; rg in cell (1; j), f2; : : : ; r + 1g in cell (2; j)

and so forth. Every element appears in r cells in the same row. A quorum in the

system is a set of elements that are a majority in one cell of every row and a majority

in every cell of one row (see Figure 4). This system is somewhat similar to that of

[38], in which each grid cell contains a distinct set of elements. For simplicity assume

that both d and r are odd.

AbC bCD CDE DEA EAb

fGh GhI hIj Ijf jfG

Klm lmN mNo NoK oKl

Fig. 4. The SC-Grid system over n = 15 elements with width d = 5, h = 3 rows and r = 3

elements per cell. The elements of one quorum are marked by capitalized letters, and the cells where

a majority is achieved are shaded.

Lemma 5.14. Let r be odd and let d > r. Consider a cycle of d elements, and

the d subsets C

1

; : : : ; C

d

of r consecutive elements along the cycle. Color G of the

17

elements in green, and let g

j

count the number of green elements in C

j

. If g

j

�

r+1

2

for all j then G � dd �

r+1

2r

e. If d j r then the bound can be achieved.

Proof. Sum the number of green elements in each C

j

. Then

P

d

j=1

g

j

= rG since

every green element is counted precisely r times. Since g

j

�

r+1

2

then rG � d �

r+1

2

and we are done.

If d = rx for some integer x then consider the x disjoint sets C

`

= f(` � 1)r +

1; : : : ; `rg for 1 � ` � x. In each set color the �rst

r+1

2

elements in green. Then every

set C

j

contains

r+1

2

green elements and G = x �

r+1

2

, so the lower bound is achieved.

Lemma 5.15.

rh+d

2n

/ L(SC-Grid) /

r

d

.

Proof. By Lemma 5.14 the smallest quorum size is c(SC-Grid) �

r+1

2

(h�1)+

d+1

2

,

so the lower bound follows from Proposition 4.1. For the upper bound, consider the

quorums S

1

; : : : ; S

k+1

, where S

j

contains all the d elements of row j, and

r+1

2

elements

of every row i 6= j. Consider a speci�c row j. As long as k

r+1

2

� d we can use a

di�erent set of

r+1

2

elements from row j in quorum S

i

for i 6= j, so every element

appears in at most 2 quorums. Therefore we can take k = b

2d

r+1

c. A strategy that

chooses one of these quorums with equal probability induces a load of

2

k+1

�

r

d

.

Notation: Let f

x

be the probability that at least

x+1

2

elements fail out of x

when each element fails independently with probability p.

Lemma 5.16. F

p

(SC-Grid) � (df

r

)

h

+ hf

d

.

Proof. Call a cell failed if a majority of its elements fail. Let E

1

be the event

\all the rows contain at least one failed cell", and let E

2

be the event \there exists

a row in which all the cells failed". Then F

p

(SC-Grid) � P(E

1

) + P(E

2

). Clearly

P(E

1

) � (df

r

)

h

. By Lemma 5.14, if all the cells in row j have failed then at least

d+1

2

of the elements in row j have failed, so P(E

2

) � hf

d

.

Lemma 5.17. For every � <

1

2

there exists " > 0 such that when 0 � p �

1

2

� �

and r �

2

"

ln d then

F

p

(SC-Grid) � d

�h

+ he

�"d

:

Proof. By a Cherno� inequality, there exists " > 0 such that f

x

� e

�"x

for all x

when 0 � p �

1

2

� �. For this ", if r �

2

"

lnd then f

r

� 1=d

2

. Plugging this into

Lemma 5.16 �nishes the lemma.

By plugging the parameter values into Lemma 5.15 and 5.17 we obtain the fol-

lowing result.

Proposition 5.18. For every � <

1

2

there exists " > 0 such that if 0 � p �

1

2

� �, then taking r = d

2

"

ln de, d =

p

n lnn and h = n=d gives F

p

(SC-Grid) =

exp(�
(

p

n lnn)) and L(SC-Grid) = O(

q

lnn

n

).

Remark: The parameters were chosen to minimize the failure probability. The

tradeo� between the load and failure probability is tight for this construction.

5.4. The AndOr System. Consider a complete rooted binary tree of height h,

rooted at root, and identify the n = 2

h

leaves of the tree with the system elements.

We de�ne two recursive procedures, that operate on a subtree rooted at v and return

a set of elements.

(i) For a leaf v, ANDset(v) = ORset(v) = fvg.

(ii) ANDset(v) = ORset(v:left) [ORset(v:right).

(iii) ORset(v) has a choice; it can be either ANDset(v:left) or ANDset(v:right).

18

A quorum in the AndOr system is any set Q = S [R where S is an ANDset(root)

and R is an ORset(root).

It is easy to think of the AndOr system as the conjunction of two boolean func-

tions, corresponding to the top level activations of ANDset and ORset . Each function

is de�ned by a complete tree of alternating AND and OR gates, over the same inputs,

but one function has an AND gate at the root while the other has an OR gate there.

Lemma 5.19. If S = ANDset(root) and R = ORset(root), then jS \ Rj = 1

for any choices made by the activations of the ORset procedure. Hence AndOr is a

quorum system.

Proof. By induction on the tree height h. The case h = 0 is obvious. For h � 1,

assume w.l.g. that the ORset procedure uses the left subtree. Then any element

in the right subtree is not in the intersection, and by the induction hypothesis the

intersection in the left subtree has size 1.

Lemma 5.20. The AndOr system is a fair system, with

c(AndOr) =

�

2

p

n� 1; h even,

3

p

n=2� 1; h odd.

Proof. The fairness is obvious from symmetry. Let ANDsize(h) = jANDset(root)j

denote the size of the output of the ANDset procedure on a tree with height h, and

similarlyORsize(h) = jORset(root)j. Then by de�nition, ANDsize(0) = ORsize(0) =

1, and

ANDsize(h) = 2ORsize(h� 1);

ORsize(h) = ANDsize(h� 1):

It is easy to show by induction on h that ORsize(h) = 2

b

h

2

c

and ANDsize(h) = 2

b

h+1

2

c

.

Combining with Lemma 5.19 �nishes the proof.

Proposition 5.21. L(AndOr) = O(1=

p

n).

Proof. Apply Proposition 4.10 using Lemma 5.20.

The following proposition shows the high availability of the AndOr system. The

proof is an adaptation of the proof in [43]. We include it here for completeness,

omitting some of the technical details.

Proposition 5.22. Let � =

3�

p

5

2

� 0:38. F

p

(AndOr) � exp(�
(

p

n)) when

p <

1

4

and F

p

� exp(�
(n

0:19

)) when p � ��
(n

�0:19

).

Proof. Let f

A

(h) denote the probability that all the possible outputs sets of the

ANDset procedure are hit, and similarly f

O

for the ORset procedure, on a tree with

height h. Clearly F

p

(AndOr) � f

A

(h) + f

O

(h). By the de�nitions,

f

A

(h) = 2f

2

A

(h � 2)� f

4

A

(h� 2);

f

O

(h) = 4f

2

O

(h � 2)� 4f

3

O

(h� 2) + f

4

O

(h� 2);

and f

A

(0) = f

O

(0) = p. Obviously f

A

(h) < 2f

2

A

(h � 2), and also f

O

(h) = f

2

O

(h �

2) (2� f

O

(h� 2))

2

< 4f

2

O

(h� 2). Therefore by induction, when h is even,

f

A

(h) < 2

2

h

2

�1

p

2

h

2

< (2p)

p

n

and similarly f

O

(h) < (4p)

p

n

. So it follows that F

p

(AndOr) � exp(�
(

p

n)) when

p <

1

4

. When h is odd the bound is similar.

19

Now f

O

has a stable point at p = � and f

A

has a stable point at p = 1� �. As

shown by [43], if there are n = O(d

5:3

) leaves in the tree and p < ��
(d

�1

) < 1���

(d

�1

), then f

A

(h) < 2

�d�1

and the same for f

O

. Setting d = O(n

1=5:3

) = O(n

0:19

)

�nishes the claim.

We now describe how to use the AndOr system when some elements have failed.

We show an algorithm that �nds a nearly optimal strategy w for any given con�gura-

tion x; the load induced by w is at most twice the optimal load under con�guration x,

L(AndOr

x

). The description is of an activation at the top level of ANDset(root), say.

The description of the ORset activation is identical.

The algorithm is a preprocessing step which needs to be done after each con�g-

uration change. It begins by recursively marking the internal nodes in the tree as

\alive" or \dead" in the obvious way; an AND node is alive if both its children are

alive, and an OR node is alive if at least one child is alive.

Consider a live node v. If it is either an AND node, or an OR node with a single

live child, then any strategy that chooses to use (elements in the tree rooted at) v

is forced to use all v's live children. Therefore to complete the description of our

strategy w need to show what happens at OR nodes with two live children. For this,

during the preprocessing each such node v is given a probability �(v). If the strategy

w decides to use v's tree then it uses its left subtree with probability �(v) and its

right with probability 1� �(v).

To compute the �(v) values for live OR nodes v with two live children, the algo-

rithm recursively computes the optimal loads `

L

and `

R

in the left and right subtrees,

respectively. To achieve an optimal load for v's tree, �(v) must satisfy �`

L

= (1��)`

R

.

Therefore �(v) = `

R

=(`

L

+ `

R

), and the load induced on v's tree is `

L

`

R

=(`

L

+ `

R

).

The above computation is performed twice, once starting with ANDset(root)

and once with ORset(root). Note that a node may be marked \alive" w.r.t. the

ANDset(root) activation and \dead" w.r.t. the ORset, or vice versa. However every v

is assigned a single �(v) value since it is an OR node only w.r.t one top level activation.

This w would clearly induce an optimal load for any con�guration x if we were in-

terested in a single top level activation. However since we must activate both ANDset

and ORset at the top level, a moment's re
ection shows L

w

(AndOr

x

) � 2L(AndOr

x

).

Remarks:

(i) A quorum system can be constructed from any monotone read-once boolean

function in a similar way. This is achieved by taking some AND/OR formula F

implementing the function, and making a dual copy if it F

d

(in which every AND

gate is replaced by an OR gate and vice versa). A quorum is de�ned to be a union

of two sets of elements, one satisfying F and the other satisfying F

d

. The proof

of Lemma 5.19 would still hold for such a system. However the load and failure

probability would depend on the speci�c structure of the function used.

(ii) The AndOr system is isomorphic to the hierarchical grid construction of [24],

when the grids at all the levels are 2� 2 grids. The read-quorum and write-quorum

procedures of [24] correspond to our top level activations of the ANDset and ORset

procedures, respectively. However ours is a much stronger analysis; we calculate the

load, and analyze the rate of decay of F

p

and the critical probability �.

6. Load Analyses of some Quorum Systems.

6.1. Non Dominated Coteries Have Lower Load. The following proposi-

tion shows that non-dominated coteries (see De�nition 2.5) have the lowest loads. This

gives further support to the intuitive view that NDC's are preferable to dominated

coteries for practical applications.

20

Proposition 6.1. Let S, R be quorum systems over the same universe U such

that R � S. Then L(R) � L(S).

Proof. Assume that S = fS

1

; : : : ; S

m

g and R = fR

1

; : : : ; R

m

0

g. De�ne a mapping

' : S 7! R as follows. For every set S

k

2 S consider the minimal j such that R

j

� S

k

,

and let '(S

k

) = R

j

. By De�nition 2.5 there exists such an R

j

for every S

k

, so ' is

well de�ned. Let w be an optimal strategy for S. De�ne w

0

for R by

w

0

j

=

�

P

'(S

k

)=R

j

w

k

; if 9k : '(S

k

) = R

j

,

0; otherwise.

Clearly w

0

is a strategy for R. The load induced by strategy w

0

on an element i is

`

w

0

(i) =

X

R

j

3i

w

0

j

=

X

R

j

3i

0

@

X

'(S

k

)=R

j

w

k

1

A

�

X

S

k

3i

w

k

= `

w

(i):

Applied to the load on the busiest element i this implies that

L

w

0

(R) � L

w

(S) = L(S);

and by the minimality of L(R) the result follows.

Remark: Proposition 6.1 does not imply that dominated quorum systems neces-

sarily have a high load. In fact, all our constructions of Section 5 are dominated, and

have optimal or near optimal load. By Proposition 6.1 there exist NDC's with loads

which are as good or better|but these are more cumbersome to describe explicitly.

6.2. Voting Systems Have High Load. A popular and simple way to con-

struct a quorum system is by weighted voting [14, 13, 41, 29]. In this section we show

that L(S) >

1

2

for any voting system S, i.e., any voting system is at least as bad as

the Maj system in terms of load.

Definition 6.2. For each i 2 U let the integer v

i

� 0 denote the weight of i.

Let V =

P

i

v

i

be the total weight. The voting system de�ned by the weights v

i

is

Vote = fS � U :

X

i2S

v

i

>

V

2

g:

Proposition 6.3. L(Vote) >

1

2

.

Proof. Consider the vector y de�ned by y

i

= v

i

=V for all i 2 U . Clearly y(U) = 1.

By de�nition 6.2,

y(S) =

1

V

X

i2S

v

i

>

1

2

;

for any quorum S 2 Vote. Therefore (y;

1

2

) is a feasible point to program DLP , so

L(Vote) >

1

2

by the weak duality of linear programming.

6.3. The Tree System. We have shown in Example 4.4 that the load of the

Tree quorum system [1] is L(Tree) �

1

log(n+1)

. In this section we show that the

bound is almost tight; the precise load is L(Tree) =

2

log(n+1)+1

. We �rst show an

upper bound by balancing the load on the elements, and then show a matching lower

bound. We use h to denote the height of the tree (n = 2

h+1

� 1).

Claim 6.4. L(Tree) �

2

h+2

.

21

Proof. Denote a tree rooted at node i by T (i), and denote its left and right

subtrees by T

L

(i) and T

R

(i). We build a probabilistic recursive strategy Pick to pick

a quorum, using values �

h

, to be de�ned later, as follows.

Pick (T (i)) =

8

<

:

fig [Pick(T

L

(i)); with probability �

h

,

fig [Pick(T

R

(i)); with probability �

h

,

Pick(T

L

(i)) [Pick (T

R

(i)); with probability 1� 2�

h

.

Let L(h) denote the load induced by strategy Pick in a tree of height h. The load is

determined either by the load on the root i, or by the most heavily loaded element

in one of the subtrees. Therefore L(h) = maxf2�

h

; (1 � �

h

)L(h � 1)g: Choosing

�

h

=

L(h�1)

L(h�1)+2

balances the load, so with this choice the load obeys the recurrence

L(h) =

2L(h� 1)

L(h � 1) + 2

;

and L(0) = 1. A simple check shows that L(h) =

2

h+2

solves this recurrence, and then

�

h

=

1

h+2

for h � 1.

Claim 6.5. L(Tree) �

2

h+2

.

Proof. Let 0 � t

i

� h denote the distance from node i to the root. To show a

matching lower bound we build a dual-feasible weights vector y, de�ned by

y

i

=

(

1

h+2

�

1

2

�

t

i

; 0 � t

i

< h,

1

h+2

�

1

2

�

h�1

; t

i

= h.

It is easy to see that y is a valid weight vector. We need to show that y(S) �

2

h+2

for every quorum S 2 Tree.

By induction from the leaves towards the root, one can show that

y(S \ T (i)) =

�

2

h+2

�

1

2

�

t

i

; S \ T (i) 6= ?,

0; otherwise,

(5)

for every i 2 U and S 2 Tree. Plugging the root of the tree we obtain y(S) =

2

h+2

�

1

2

�

0

=

2

h+2

: Therefore (y;

2

h+2

) is feasible for program DLP so the claim follows

from the weak duality of linear programming.

6.4. The Hierarchical Quorum System. In this section we analyze the load

and availability of the hierarchical system of [23]. In this system the elements are

the leaves of a complete ternary tree. The internal nodes are 2-of-3 majority gates.

We show that F

p

(HQS) � exp(�
(n

0:63

)) when p <

1

3

and F

p

(HQS) � n

��(p)

when

p <

1

2

, and that L(HQS) = n

�0:37

.

The analysis is similar in nature to that of the AndOr system. However, HQS is

a non-dominated system, so the analysis is good up to

1

2

rather than up to the 0:38 of

the AndOr system. On the other hand the load of HQS is worse than the O(1=

p

n)

of the AndOr system.

We use h to denote the height of the tree (n = 3

h

).

Proposition 6.6. L(HQS) = n

�0:37

.

Proof. By symmetry it follows that HQS is a fair system, with c(HQS) = n

log

3

2

=

n

0:63

. Therefore by Proposition 4.10, L(HQS) = n

0:63

=n = n

�0:37

.

Proposition 6.7. F

p

(HQS) � exp(�
(n

0:63

)) when p <

1

3

and F

p

(HQS) �

n

��(p)

when p <

1

2

.

22

Proof. Let f(h) denote F

p

(HQS) on a tree with height h. Then f(h) obeys the

recurrence

f(h) = 3f

2

(h� 1)� 2f

3

(h� 1);

and f(0) = p. We observe that p =

1

2

is a stable point, so by a result of [35] it follows

that HQS is non-dominated. Now certainly f(h) < 3f

2

(h� 1), so by induction on h

we show that f(h) < 3

2

h

�1

p

2

h

< (3p)

n

log

3

2

; which proves the case when p <

1

3

.

For larger values of p, we prove by induction on h that f(h) is decreasing when

p <

1

2

, and then that

f(h) � p � (3p� 2p

2

)

h

:

If p =

1

2

� " then 3p� 2p

2

< 1� " so f(h) <

1

2

(1� ")

log

3

n

< n

��

for some �(p).

Remark: The HQS system has a tight tradeo� between its availability and load

when p <

1

3

.

Acknowledgments. We are grateful to David Peleg for his encouragement, and

to Danny Raz for his careful reading of our manuscript. We thank the anonymous

referees, whose remarks have helped us improve our presentation, and for bringing

[12] and [45] to our attention.

REFERENCES

[1] D. Agrawal and A. El-Abbadi, An e�cient and fault-tolerant solution for distributed mu-

tual exclusion, ACM Trans. Comp. Sys., 9 (1991), pp. 1{20.

[2] R. Aharoni, P. Erd

}

os, and N. Linial, Dual integer linear programs and the relationship

between their optima, in Proc. 17th ACM Symp. Theory of Computing, 1985, pp. 476{483.

[3] M. Aizenman, J. T. Chayes, L. Chayes, J. Fr

�

ohlich, and L. Russo, On a sharp transition

from area law to perimeter law in a system of random surfaces, Comm. Mathematical

Physics, 92 (1983), pp. 19{69.

[4] D. Barbara and H. Garcia-Molina, The reliability of vote mechanisms, IEEE Trans. Com-

put., C-36 (1987), pp. 1197{1208.

[5] S. Y. Cheung, M. H. Ammar, and M. Ahamad, The grid protocol: A high performance

scheme for maintaining replicated data, in Proc. 6th IEEE Int. Conf. Data Engineering,

1990, pp. 438{445.

[6] N. Condorcet, Essai sur l'application de l'analyse �a la probabilit�e des decisions rendues �a la

pluralite des voix. Paris, 1785.

[7] S. B. Davidson, H. Garcia-Molina, and D. Skeen, Consistency in partitioned networks,

ACM Computing Surveys, 17 (1985), pp. 341{370.

[8] M. Dubiner and U. Zwick, Ampli�cation and percolation, in Proc. 33rd IEEE Symp. Foun-

dations of Comp. Sci. (FOCS), 1992, pp. 258{267.

[9] P. Erd

}

os and L. Lov

�

asz, Problems and results on 3-chromatic hypergraphs and some related

questions, in In�nite and Finite Sets, Colloq. Math. Soc. J�anos Bolyai 10, 1975, pp. 609{

627.

[10] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some par-

tially ordered sets, Comm. Mathematical Physics, 22 (1971), pp. 89{103.

[11] G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications,

SIAM J. Computing, 16 (1987), pp. 1004{1022.

[12] Z. F

�

uredi,Matchings and covers in hypergraphs, Graphs and Combinatorics, 4 (1988), pp. 115{

206.

[13] H. Garcia-Molina and D. Barbara, How to assign votes in a distributed system, J. ACM,

32 (1985), pp. 841{860.

[14] D. K. Gifford, Weighted voting for replicated data, in Proc. 7th Symp. Oper. Sys. Princip.,

1979, pp. 150{159.

[15] G. R. Grimmett, Percolation, Springer-Verlag, 1989.

[16] M. Gr

�

otschel, L. Lov

�

asz, and A. Schrijver, The ellipsoid method and its consequences

in combinatorial optimization, Combinatorica, 1 (1981), pp. 169{197.

23

[17] R. Hassin, Maximum
ow in (s; t) planar networks, Inf. Proc. Letters, 13 (1981), p. 107.

[18] M. P. Herlihy, Replication Methods for Abstract Data Types, PhD thesis, Massachusetts

Institute of Technology, MIT/LCS/TR-319, 1984.

[19] R. Holzman, Y. Marcus, and D. Peleg, Load balancing in quorum systems, in Proc. 4th

Workshop on Algorithms and Data Structures, Kingston, Ont., Canada, 1995, pp. 38{49.

To appear in SIAM J. Discrete Math.

[20] A. Itai and Y. Shiloach, Maximum
ow in planar networks, SIAM J. Computing, 8 (1979),

pp. 135{150.

[21] P. Jalote, S. Rangarajan, and S. K. Tripathi, Capacity of voting systems, IEEE Trans.

Software Eng., 19 (1993), pp. 698{706.

[22] H. Kesten, The critical probability of bond percolation on the square lattice equals

1

2

., Comm.

Mathematical Physics, 71 (1980), pp. 41{59.

[23] A. Kumar, Hierarchical quorum consensus: A new algorithm for managing replicated data,

IEEE Trans. Comput., 40 (1991), pp. 996{1004.

[24] A. Kumar and S. Y. Cheung, A high availability

p

n hierarchical grid algorithm for replicated

data, Inf. Proc. Letters, 40 (1991), pp. 311{316.

[25] A. Kumar, M. Rabinovich, and R. K. Sinha, A performance study of general grid structures

for replicated data, in Proc. 13th Inter. Conf. Dist. Comp. Sys., 1993, pp. 178{185.

[26] L. Lov

�

asz, Coverings and colorings of hypergraphs, in Proc. 4th Southeastern Conf. Combi-

natorics, Graph Theory and Computing, 1973, pp. 3{12.

[27] , An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM, Philadelphia, 1986.

[28] M. Maekawa, A

p

n algorithm for mutual exclusion in decentralized systems, ACM Trans.

Comp. Sys., 3 (1985), pp. 145{159.

[29] Y. Marcus and D. Peleg, Construction methods for quorum systems, Tech. Report CS92{33,

The Weizmann Institute of Science, Rehovot, Israel, 1992.

[30] T. R. Mathies, Percolation theory and computing with faulty arrays of processors, in Proc.

3rd ACM-SIAM Symp. on Discrete Alg., 1992, pp. 100{103.

[31] M. V. Menshikov, Coincidence of critical points in percolation problems, Soviet Mathematics

Doklady, 33 (1986), pp. 856{859.

[32] S. J. Mullender and P. M. B. Vit

�

anyi, Distributed match-making, Algorithmica, 3 (1988),

pp. 367{391.

[33] M. Naor and A. Wool, The load, capacity and availability of quorum systems, in Proc. 35th

IEEE Symp. Foundations of Comp. Sci. (FOCS), 1994, pp. 214{225.

[34] , Access control and signatures via quorum secret sharing, in Proc. 3rd ACM Conf. Comp.

and Comm. Security, New Delhi, India, 1996, pp. 157{168. Also available as Theory of

Cryptography Library record 96-08, http://theory.lcs.mit.edu/�tcryptol/1996.html.

[35] D. Peleg and A. Wool, The availability of quorum systems, Information and Computation,

123 (1995), pp. 210{223.

[36] , The availability of crumbling wall quorum systems, Discrete Applied Math., 74 (1997),

pp. 69{83.

[37] , Crumbling walls: A class of practical and e�cient quorum systems, Distributed Com-

puting, 10 (1997), pp. 87{98.

[38] S. Rangarajan and S. K. Tripathi, A robust distributed mutual exclusion algorithm, in

Proc. 5th Inter. Workshop on Dist. Algorithms (WDAG), LNCS 579, Springer-Verlag,

1991, pp. 295{308.

[39] M. Raynal, Algorithms for Mutual Exclusion, MIT press, 1986.

[40] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, Chichester,

1986.

[41] M. Spasojevic and P. Berman, Voting as the optimal static pessimistic scheme for managing

replicated data, IEEE Trans. Par. Dist. Sys., 5 (1994), pp. 64{73.

[42] R. H. Thomas, A majority consensus approach to concurrency control for multiple copy

databases, ACM Trans. Database Sys., 4 (1979), pp. 180{209.

[43] L. G. Valiant, Short monotone formulae for the majority function, J. Algorithms, 5 (1984),

pp. 363{366.

[44] C. Wu, Replica control protocols that guarantee high availability and low access cost, Tech.

Report 1817, Dept. Computer Science, U. Illinois Urbana-Champaign, Urbana, Illinois,

1993.

[45] C. Wu and G. G. Belford, The triangular lattice protocol: A highly fault tolerant protocol

for replicated data, in Proc. 11th IEEE Symp. on Reliable Dist. Sys., 1992, pp. 66{73.

[46] T. W. Yan and H. Garcia-Molina, Distributed selective dissemination of information, in

Proc. 3rd Inter. Conf. Par. Dist. Info. Sys., 1994, pp. 89{98.

24

A. Results of Percolation Theory. In this section we list the de�nitions and

results that are used in our analysis of the Paths system, following [15].

The percolation model we are interested in is as follows. Let Z

2

be the graph of

the square lattice in the plane. Assume that an edge between neighboring vertices in

Z

2

is closed with probability p and open with probability q = 1� p, independently of

other edges. This model is known as bond percolation on the square lattice. Another

natural model, which plays a minor role in our work, is the site percolation model. In

it the vertices are closed with probability p. Unless otherwise stated, we always use

the bond percolation model.

Notation: For an event E de�ned in the percolation model (either on Z

2

or on

some �nite subgraph of Z

2

), we denote the probability of E by P

p

(E).

A key idea in percolation theory is that there exists a critical probability, p

c

, such

that graphs with p < p

c

exhibit qualitatively di�erent properties than graphs with

p > p

c

. For example, Z

2

with p < p

c

has a single connected (open) component of

in�nite size. When p > p

c

there is no such component (see [15], p. 110). For bond

percolation in the plane p

c

=

1

2

[22].

Notation: Let B(d) be the ball of radius d with center at the origin; B(d) =

fv 2 Z

2

: jv

1

j + jv

2

j � dg. Let @B(d) be the surface of B(d), @B(d) = fv 2 Z

2

:

jv

1

j + jv

2

j = dg. For a vertex v and a set of vertices A, let v $ A denote the event

that there exists an open path between v and some vertex in A.

The following theorem shows that when the probability p for a closed edge is above

the critical probability, the probability of having long open paths decays exponentially

fast.

Theorem A.1. [31] If p >

1

2

then there exists (p) > 0 such that

P

p

(0$ @B(d)) < e

� (p)d

for all d:

Definition A.2. Let E be an event de�ned in the percolation model. Then the

interior of E with depth r, denoted I

r

(E), is the set of all con�gurations in E which

are still in E even if we perturb the states of up to r edges.

We may think of I

r

(E) as the event that E occurs and is `stable' with respect to

changes in the states of r or fewer edges. The de�nition is useful to us in the following

situation. If LR is the event \there exists an open left-right path in a rectangle D",

then by
ow considerations it follows that I

r

(LR) is the event \there are at least r+1

edge disjoint open left-right paths in D".

Theorem A.3. [3] Let E be an increasing event and let r be a positive integer.

Then

1�P

p

(I

r

(E)) �

�

q

q � q

0

�

r

[1�P

p

0

(E)]

whenever 0 � p < p

0

� 1.

The theorem amounts to the assertion that if E is likely to occur when the edge

failure probability is p

0

, then I

r

(E) is likely to occur when the failure probability is

smaller than p

0

.

25

