
Split-Ballot Voting:
Everlasting Privacy With Distributed Trust

TAL MORAN

Weizmann Institute of Science, Israel

and

MONI NAOR

Weizmann Institute of Science, Israel

In this paper we propose a new voting protocol with several desirable security properties. The

voting stage of the protocol can be performed by humans without computers; it provides every

voter with the means to verify that all the votes were counted correctly (universal verifiability)
while preserving ballot secrecy. The protocol has “everlasting privacy”: even a computationally

unbounded adversary gains no information about specific votes from observing the protocol’s
output. Unlike previous protocols with these properties, this protocol distributes trust between

two authorities: a single corrupt authority will not cause voter privacy to be breached. Finally,

the protocol is receipt-free: a voter cannot prove how she voted even if she wants to do so. We
formally prove the security of the protocol in the Universal Composability framework, based on

number-theoretic assumptions.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems—Distributed Applications; K.4.1 [Computers and Society]: Public Policy Issues—Pri-
vacy; E.3 [Data]: Data Encryption—Public Key Cryptosystems

General Terms: Security, Theory, Human Factors

Additional Key Words and Phrases: Voting Protocol,Everlasting Privacy,Universally-Composable,Receipt-
Free

1. INTRODUCTION

Recent years have seen increased interest in voting systems, with a focus on im-
proving their integrity and trustworthiness. This focus has given an impetus to
cryptographic research into voting protocols. Embracing cryptography allows us to
achieve high levels of verifiability, and hence trustworthiness (every voter can check
that her vote was counted correctly), without sacrificing the basic requirements of
ballot secrecy and resistance to coercion.

A “perfect” voting protocol must satisfy a long list of requirements. Among the
most important are:

This work was partially supported by the Israel Science Foundation
Moni Naor is the Incumbent of the Judith Kleeman Professorial Chair
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-

00001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–??.

2 · T. Moran and M. Naor

Accuracy The final tally must reflect the voters’ wishes.
Privacy A voter’s vote must not be revealed to other parties.
Receipt-Freeness A voter should not be able to prove how she voted (this is

important in order to prevent vote-buying and coercion).
Universal Verifiability Voters should be able to verify that their own votes were

“cast as intended”, and any interested party should be able to verify that all
the votes were “counted as cast”.

Surprisingly, using cryptographic tools we can construct protocols that satisfy all
four of these properties simultaneously. Unfortunately, applying cryptographic
techniques introduces new problems. One of these is that cryptographic proto-
cols are often based on computational assumptions (e.g., the infeasibility of solving
a particular problem). Some computational assumptions, however, may have a
built-in time limit (e.g., Adi Shamir estimated that all existing public-key systems,
with key-lengths in use today, will remain secure for less than thirty years [Shamir
2006]).

A voting protocol is said to provide information-theoretic privacy if a computa-
tionally unbounded adversary does not gain any information about individual votes
(apart from the final tally). If the privacy of the votes depends on computational
assumptions, we say the protocol provides computational privacy. Note that to co-
erce a voter, it is enough that the voter believe there is a good chance of her privacy
being violated, whether or not it is actually the case (so even if Shamir’s estimate
is unduly pessimistic, the fact that such an estimate was made by an expert may be
enough to allow voter coercion). Therefore, protocols that provide computational
privacy may not be proof against coercion: the voter may fear that her vote will
become public some time in the future.

While integrity that depends on computational assumptions only requires the
assumptions to hold during the election, privacy that depends on computational
assumptions requires them to hold forever. To borrow a term from Aumann, Ding
and Rabin [Aumann et al. 2002], we can say that information-theoretic privacy is
everlasting privacy.

A second problem that cryptographic voting protocols must consider is that most
cryptographic techniques require complex computations that unaided humans are
unable to perform. However, voters may not trust voting computers to do these
calculations for them. This mistrust is quite reasonable, because there is no way
for them to tell if a computer is actually doing what it is supposed to be doing (as
a trivial example consider a voting program that lets a voter choose a candidate,
and then claims to cast a vote for that candidate; it could just as easily be casting
a vote for a different candidate).

Finally, a problem that is applicable to all voting protocols is the problem of
concentrating trust. We would like to construct protocols that don’t have a “single
point of failure” with respect to their security guarantees. Many protocols involve a
“voting authority”. In some protocols, this authority is a single-point of failure with
respect to privacy (or, in extreme cases, integrity). Protocols that require the voter
to input their votes to a computer automatically have a single point of failure: the
computer is a single entity that “knows” the vote. This is not an idle concern: many
ways exist for a corrupt computer to undetectably output information to an outside
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 3

party (in some cases, the protocol itself provides such “subliminal channels”).

1.1 Our Contributions

In this paper we introduce the first universally-verifiable voting protocol with ev-
erlasting privacy that can be performed by unaided humans and distributes trust
across more than one voting authority. This protocol has reasonable complexity
(O(m) exponentiations per voter, where m is the number of candidates) and is
efficient enough to be used in practice.

We formally prove our protocol is secure in the Universal Composability (UC)
framework, which provides very strong notions of security. Loosely speaking, we
show that running our protocol is as secure as running the election using an abso-
lutely trustworthy third party (the “ideal functionality”), to whom all the voters
secretly communicate their choices, and who then announces the final tally (a for-
mal definition of this functionality appears in Section 4).

Surprisingly, we can attain this level of security even though we base the voting
protocol on commitment and encryption schemes that are not, themselves, univer-
sally composable (we propose using a modification of the Pedersen commitment
scheme together with Paillier encryption; see Appendix A for details).

As part of the formal proof of security, we can specify precisely what assumptions
we make when we claim the protocol is secure (this is not the case for most existing
voting protocols, that lack formal proofs completely).

In addition, we formally prove that our protocol is receipt-free (voters cannot
prove for whom they voted, even if they want to), using a simulation-based def-
inition of receipt-freeness previously introduced by the authors [Moran and Naor
2006].

Our insistence on rigorous proofs of correctness is not just “formalism for the
sake of formalism”. We believe that formal proofs of security provide several very
significant practical advantages. First, a precondition for proving security is pro-
viding a formal definition of what we are trying to prove. This definition is useful
in itself: it gives us a better understanding of what our protocol achieves, where it
can be used and what its failure modes are. This is especially evident for definitions
in simulation-based models (such as universal composability), since the definition
of an ideal functionality is usually very intuitive.

Secondly, even fairly simple protocols may have hard to find weaknesses. Without
a formal proof, we can never be certain that we have considered all possible avenues
of attack. A formal proof lists a small number of assumptions that imply the
security of the protocol. This means that to verify that a particular implementation
is secure, we can concentrate on checking only these assumptions: as long as they
are all satisfied, we can be certain an attack will not come from an unexpected
direction. To illustrate this point, we demonstrate a subtle attack against the
receipt-freeness of the Punchscan voting system [Chaum 2006] (see Section 2.4).

Finally, even though formal proofs are not “foolproof” — our definitions may
not capture the “correct” notion of security, or the proof itself may contain errors
— they give us a basis and a common language for meaningful discussions about
protocols’ security.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · T. Moran and M. Naor

1.2 Related Work

Voting Protocols. Chaum proposed the first published electronic voting scheme
in 1981 [Chaum 1981]. Many additional protocols were suggested since Chaum’s.
Among the more notable are [Fujioka et al. 1992; Cohen(Benaloh) and Fischer 1985;
Benaloh and Tuinstra 1994; Cramer et al. 1996; Cramer et al. 1997; Hirt and Sako
2000].

Most of the proposed voting schemes satisfy the accuracy, privacy and universal-
verifiability properties. However, only a small fraction satisfy, in addition, the
property of of receipt-freeness. Benaloh and Tuinstra [1994] were the first to define
this concept, and to give a protocol that achieves it (it turned out that their full pro-
tocol was not, in fact, receipt free, although their single-authority version was [Hirt
and Sako 2000]). To satisfy receipt-freeness, Benaloh and Tuinstra also required a
“voting booth”: physically untappable channels between the voting authority and
the voter.

Human Considerations. Almost all the existing protocols require complex compu-
tation on the part of the voter (infeasible for an unaided human). Thus, they require
the voter to trust that the computer casting the ballot on her behalf is accurately
reflecting her intentions. Chaum [2004], and later Neff [2004], proposed universally-
verifiable receipt-free voting schemes that overcome this problem. Reynolds [2005]
proposed another protocol similar to Neff’s.

All three schemes are based in the “traditional” setting, in which voters cast their
ballots in the privacy of a voting booth. Instead of a ballot box, the booth contains
a “Direct Recording Electronic” (DRE) voting machine. The voter communicates
her choice to the DRE (e.g., using a touch-screen or keyboard). The DRE encrypts
her vote and posts the encrypted ballot on a public bulletin board. It then proves
to the voter, in the privacy of the voting booth, that the encrypted ballot is truly
an encryption of her intended vote.

Chaum’s original protocol used Visual Cryptography [Naor and Shamir 1994]
to enable the human voter to read a complete (two-part) ballot that was later
separated into two encrypted parts, and so his scheme required special printers and
transparencies. Bryans and Ryan showed how to simplify this part of the protocol
to use a standard printer [Bryans and Ryan 2004; Ryan 2005]. A newer idea of
Chaum’s is the Punchscan voting system [Chaum 2006], which we describe in more
detail in Section 2.4.

Previously, the authors proposed a voting protocol, based on statistically-hiding
commitments, that combines everlasting security and a human-centric interface
[Moran and Naor 2006]. This protocol requires a DRE, and inherently makes use
of the fact that there is a single authority (the DRE plays the part of the voting
authority).

Adida and Rivest [2006] suggest the “Scratch&Vote” system, which makes use
of scratch-off cards to provide receipt-freeness and “instant” verifiability (at the
polling place). Their scheme publishes encryptions of the votes, and is therefore
only computationally private.

Our new scheme follows the trend of basing protocols on physical assumptions in
the traditional voting-booth setting. Unlike most of the previous schemes we also
provide a rigorous proof that our scheme actually meets its security goals.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 5

Fig. 1. Illustrated Sample Vote

2. INFORMAL OVERVIEW OF THE
SPLIT-BALLOT PROTOCOL

Our voting scheme uses two independent voting authorities that are responsible for
preparing the paper ballots, counting the votes and proving that the announced
tally is correct.

If both authorities are honest, the election is guaranteed to be accurate, information-
theoretically private and receipt-free. If at least one of the authorities is honest, the
election is guaranteed to be accurate and private (but now has only computational
privacy, and may no longer be receipt-free). If both authorities are corrupt, the
tally is still guaranteed to be accurate, but privacy is no longer guaranteed.

An election consists of four phases:

(1) Setup: In this stage the keys for the commitment and encryption schemes are
set up and ballots are prepared.

(2) Voting: Voters cast their ballots. This stage is designed to be performed us-
ing pencil and paper, although computers may be used to improve the user
experience.
A vote consists of four ballots, two from each voting authority. The voter

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · T. Moran and M. Naor

selects one ballot from each authority for auditing (they will not be used for
voting). The remaining two ballots are used to vote. The voter’s choices on both
ballots, taken together, uniquely define the vote. A partial copy of each ballot
is retained by the voter as a “verification receipt” (a more detailed description
appears in Section 2.2).

(3) Tally: The two authorities publish all of the ballots. Voters may verify that
their receipts appear correctly in the published tally. The two authorities then
cooperate to tally the votes. The final result is a public proof that the tally is
correct.

(4) Universal Verification: In this phase any interested party can download the
contents of the public bulletin board and verify that the authorities correctly
tallied the votes.

2.1 Shuffling Commitments

One of the main contributions of this paper is achieving “everlasting privacy” with
more than one voting authority. At first glance, this seems paradoxical: if a voting
authority publishes any information at all about the votes (even encrypted), the
scheme can no longer be information-theoretically private. On the other hand,
without publishing information about the votes, how can two voting authorities
combine their information?

We overcome this apparent contradiction by introducing the “oblivious commit-
ment shuffle”: a way for independent authorities to verifiably shuffle perfectly-
hiding commitments (which will give us information-theoretic privacy).

The problem of verifiably shuffling a vector of encrypted values has been well
studied. The most commonly used scheme involves multiple authorities who suc-
cessively shuffle the encrypted vector, each using a secret permutation, and then
prove that the resulting vector of encrypted values is valid. Finally, the authorities
cooperate to decrypt the ultimate output of the chain. If even one of the authori-
ties is honest (and keeps its permutation secret), the remaining authorities gain no
information beyond the final tally.

This type of scheme breaks down when we try to apply it to perfectly-hiding
commitments rather than encryptions. The problem is that in a perfectly-hiding
commitment, the committed value cannot be determined from the commitment
itself. Thus, the standard method of opening the commitments after shuffling
cannot be used.

The way we bypass the problem is to allow the authorities to communicate pri-
vately using a homomorphic encryption scheme. This private communication is not
perfectly hiding (in fact, the encryptions are perfectly binding commitments), but
the voting scheme itself can remain information-theoretically private because the
encryptions are never published. The trick is to encrypt separately both the message
and the randomness used in the commitments. We use a homomorphic encryption
scheme over the same group as the corresponding commitment. When the first au-
thority shuffles the commitments, it simultaneously shuffles the encryptions (which
were generated by the other authority). By opening the shuffled encryptions, the
second authority learns the contents and randomness of the shuffled commitments
(without learning anything about their original order). The second authority can
now perform a traditional commitment shuffle.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 7

2.2 Human Capability

Our protocol makes two questionable assumptions about human voters: that they
can randomly select a bit (to determine which ballots to audit), and that they
perform modular addition (to split their vote between the two authorities). The
first is a fairly standard assumption (in fact, we do not require uniform randomness,
only high min-entropy). The second seems highly suspect. However, it is possible
to implement the voting protocol so that the modular addition occurs implicitly as
a result of a more “natural” action for humans.

We propose an interface that borrows heavily from Punchscan’s in order to make
the voting task more intuitive. The basic idea is to form the ballot from three
separate pages. The first page contains the list of candidates, along with a letter
or symbol denoting each (this letter can be fixed before the election). The second
page contains a table of letters: each column of the table is a permutation of
the candidates. The third page is the one used to record the vote; it contains a
scannable bubble for each row of the table in the middle page.

Holes are cut in the top page and middle pages, so that when all three are
stacked a single random column of the table on the middle page is visible, as are
the bubbles on the bottom page. The voter selects a candidate by marking the
bubble corresponding to her choice. Since one authority randomly selects the table
(on the middle page) and the other authority randomly selects which of its columns
is used (determined by the position of the hole in the top page), the position of the
bubble marked by the voter does not give information about her choice unless both
the middle and top pages are also known.

2.3 Vote Casting Example

To help clarify the voting process, we give a concrete example, describing a typical
voter’s view of an election (this view is illustrated in Figure 1). The election is
for the office of president, and also includes a poll on “Proposition 123”. The
presidential candidates are Washington, Adams, Jefferson and Madison.

Sarah, the voter, enters the polling place and receives two pairs of ballot pages
in sealed envelopes, each pair consisting of a “Top” ballot page and a “Middle”
ballot page (we can think of the two voting authorities as the “Top” authority and
the “Middle” authority). Each envelope is marked either “Top” or “Middle”, and
has a printed “verification code” (this code is actually a commitment to the public
section of the ballot, as described in Section 5.1). Sarah first chooses a pair of ballot
pages to audit. This pair is immediately opened, and the “red” (dark) ballot pages
inside the envelopes are scanned, as are the verification codes on the envelopes.
Sarah is allowed to keep all parts of the audited ballots.

The election officials give Sarah a green (light) “bottom page” that is printed with
the verification codes from both the remaining (unopened) envelopes (alternatively,
the verification codes could be printed on a sticker that is affixed to the green page
before handing it to Sarah). She enters the polling booth with the green page and
both unopened envelopes.

Inside the polling booth, Sarah opens the envelopes and takes out the red pages.
The middle page is printed with a table of letters representing the candidates (the
letters were chosen in advance to be the first letter of the candidate’s surname).

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · T. Moran and M. Naor

The order of the letters in the table is chosen randomly by the Middle authority
(different ballot pages may have different orders). Similarly, the order of the “Yes”
and “No” responses to Proposition 123 is random. The top page has a hole cut
out that reveals a single column of the table — which column is randomly chosen
by the Top authority. Sarah stacks all three pages (the top ballot page, the middle
ballot part, and the green “bottom page”). Taken together, these pages form a
complete ballot. Sarah wants to vote for Adams and to vote Yes on Proposition
123. She finds her candidate’s letter on the ballot, and marks the corresponding
bubble (the marks themselves are made on the green, bottom page that can be seen
through the holes in the middle and top pages). She also finds the “Yes” choice for
Proposition 123, and marks its corresponding bubble.

Sarah then separates the pages. She shreds the red pages that were inside the
envelopes. To prevent vote-selling and coercion attacks, Sarah must be forced to
destroy the red pages (e.g., perhaps the output of the shredder is visible to election
officials outside the voting booth).

Sarah exits the voting booth holding only the marked, green page. This sheet of
paper is then scanned (with the help of the election officials). The scanner can give
immediate output so Sarah can verify that she filled the bubbles correctly, and that
the scanner correctly identified her marks. Note that Sarah doesn’t have to trust the
scanner (or its software) in any way: The green page and the audited ballots will be
kept by Sarah as receipts which she can use to prove that her vote was not correctly
tabulated (if this does occur). At home Sarah will make sure that the verification
code printed on the pages, together with the positions of the marked bubbles, are
published on the bulletin board by the voting authorities. Alternatively, she can
hand the receipts over to a helper organization that will perform the verification
on her behalf.

2.4 The Importance of Rigorous Proofs of
Security for Voting Protocols

To demonstrate why formal proofs of security are important, we describe a vote-
buying attack against a previous version of the Punchscan voting protocol. The
purpose of this section is not to disparage Punchscan; on the contrary, we use
Punchscan as an example because it is one of the simplest protocols to understand
and has been used in practice. A closer look at other voting protocols may reveal
similar problems. Our aim is to encourage the use of formal security analysis to
detect (and prevent) such vulnerabilities.

We very briefly describe the voter’s view of the Punchscan protocol, using as
an example an election race between Alice and Bob. The ballot consists of two
pages, one on top of the other. The top page contains the candidates’ names, and
assigns each a random letter (either A or B). There are two holes in the top page
through which the bottom page can be seen. On the bottom page, the letters A
and B appear in a random order (so that one letter can be seen through each hole
in the top page). Thus, the voter is presented with one of the four possible ballot
configurations (shown in Figure 2).

To vote, the voter marks the letter corresponding to her candidate using a wide
marker: this marks both the top and bottom pages simultaneously. The two pages
are then separated. The voter chooses one of the pages to scan (and keep as a
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 9

Fig. 2. Punchscan Ballot Configurations

receipt), while the other is shredded (these steps are shown in Figure 3).

Fig. 3. Punchscan Ballot Fig. 4. “Bad” Receipts

Each pair of pages has a short id, which a voting authority can use to determine
what was printed on each of the pages (this allows the authority to determine the
voter’s vote even though it only receives a single page). For someone who does not
know the contents of the shredded page, the receipt does not give any information
about the voter’s choice.

Giving each voter a receipt for her vote is extremely problematic in traditional
voting systems, since the receipt can be used to coerce voters or to buy votes.
Punchscan attempts to prevent vote-buying by making sure that the receipt does
not contain any information about the voter’s choice. At first glance, this idea
seems to work: if an adversary just asks a voter to vote for a particular candidate
(by following the Punchscan protocol honestly), there is no way the adversary can
tell, just by looking at the receipt, whether the voter followed his instructions or
not.

Below, we show that for a slightly more sophisticated adversary, a vote-buying
attack is possible against Punchscan.

2.4.1 A Vote Buying Attack. To demonstrate the attack, we continue to
use the Alice/Bob election example. Suppose the coercer wants to bias the vote
towards Alice. In this case, he publishes that he will pay for any receipt except
those shown in Figure 4 (i.e., everything except a “B,A” bottom page on which
“A” was marked, and a “B,A” top page on which the right hole was marked).

This attack will force one fourth of the voters to vote for Alice in order to get paid.
To see why, consider the four possible ballot configurations (in Figure 2). Since the
coercer will accept any marking on an “A,B” top page or an “A,B” bottom page,
in three of the four configurations the voter can vote as she wishes. However, if
both the top and the bottom pages are “B,A” pages (this occurs in one fourth of
the cases), the voter is forced to vote for Alice if she wants to return an acceptable
receipt.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · T. Moran and M. Naor

Although three-fourths of the voters can vote for any candidate, this attack is
still entirely practical. When a race is close, only a small number of votes must
be changed to tip the result in one direction. Compared to the “worst possible”
system in which an adversary can buy votes directly, Punchscan requires the at-
tacker to spend only four times as much to buy the same number of votes. Since
the receipts are published, this attack can be performed remotely (e.g., over the
internet), making it much worse than a “standard” vote-buying attack (such as
chain-voting) that must be performed in person.

We note that the current version of Punchscan (as described in [Popoveniuc and
Hosp 2006]) instructs the voter to commit to the layer she will take before entering
the voting booth. This requirement does suffice to foil the attack described above.
Similar attacks, however, may still be possible. The point we hope to make is that,
lacking a formal proof of security, it is very hard to be certain.

3. UNDERLYING ASSUMPTIONS

One of the important advantages of formally analyzing voting protocols is that we
can state the specific assumptions under which our security guarantees hold. Our
protocol uses a combination of physical and cryptographic assumptions. Below, we
define the assumptions and give a brief justification for each.

3.1 Physical Assumptions

Undeniable Ballots. To allow voters to complain convincingly about invalid ballots,
they must be undeniable: a voter should be able to prove that the ballot was created
by the voting authority. This type of requirement is standard for many physical
objects: money, lottery-tickets, etc.

Forced Private Erasure. In order to preserve the receipt-freeness of the protocol,
we require voters to physically erase information from the ballots they used. The
erasure assumption is made by a number of existing voting schemes that require
the voter to choose some part of the ballot to securely discard (e.g., Punchscan
[Chaum 2006], Scratch&Vote [Adida and Rivest 2006]). In practice, this can be
done by shredding, by chemical solvent, etc.

At first glance, it might appear that simply spoiling a ballot that was not correctly
erased is sufficient. However, this is not the case; the voter must be forced to
erase the designated content. Otherwise, a coercer can mount a vote-buying attack
similar to the one described in section 2.4, where some voters are told to invalidate
their ballots by refusing to erase them (and showing the complete ballot to the
coercer).

Since only the voter should be able to see the contents of the erased part of the
ballot, finding a good mechanism to enforce erasure may be difficult (e.g., handing
it to an official to shred won’t work). However, a large-scale attack that relies on
circumventing this assumption may be detected by counting the number of spoiled
ballots.

Voting Booth. In order to preserve privacy and receipt-freeness, the voter must
be able to perform some actions privately. The actions the voter performs in the
voting booth are opening sealed ballots, reading their contents and erasing part of
the ballot.

Untappable Channels. We use untappable channels in two different ways. First,
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 11

in order to guarantee everlasting privacy and receipt-freeness, ballots must be de-
livered from the voting authorities to the voter without any information about their
contents leaking to a third party. The amount of data each voter must receive is
small, however, and the untappable channel may be implmented, for example, using
sealed envelopes.

Second, for the same reason, communication between the two voting authorities
is also assumed to take place using untappable private channels. The amount of
information exchanged is larger in this case, but this is a fairly reasonable assump-
tion: the voting authorities can be physically close and connected by direct physical
channels.

The untappable channel can also be replaced by encryption using a one-time pad
(since this is also information-theoretically private). However, to simplify the proof
we consider only an ideal untappable channel in this paper.

Public Bulletin Board. The public bulletin board is a common assumption in
universally-verifiable voting protocols. This is usually modeled as a broadcast
channel, or as append-only storage with read-access for all parties. A possible
implementation is a web-site that is constantly monitored by multiple verifiers to
ensure that nothing is erased or modified.

Random Beacon. The random beacon, originally introduced by Rabin [Rabin
1983], is a source of independently distributed, uniformly random strings. The
main assumption about the beacon is that it is unpredictable. In practice, the bea-
con can be implemented in many ways, such as by some physical source believed
to be unpredictable (e.g., cosmic radiation, weather, etc.), or by a distributed com-
putation with multiple verifiers.

We use the beacon for choosing the public-key of our commitment scheme and
to replace the verifier in zero-knowledge proofs. For the zero-knowledge proofs, we
can replace the beacon assumption by a random oracle (this is the Fiat-Shamir
heuristic): the entire protocol transcript so far is taken as the index in the random
oracle that is used as the next bit to be sent by the beacon.

3.2 Cryptographic Assumptions

Our protocol is based on two cryptographic primitives: perfectly-hiding homomor-
phic commitment and homomorphic encryption. The homomorphic commitment
requires some special properties.

Homomorphic Commitment. A homomorphic commitment scheme consists of
a tuple of algorithms: K, C, PK , and VK . K : {0, 1}` × {0, 1}` 7→ K accepts
a public random bit-string and a private auxiliary and generates a commitment
public key cpk ∈ K. C is the commitment function, parametrized by the public
key, mapping from a message group (M,+) and a randomizer group (R,+) to the
group of commitments (C, ·).
PK and VK are a zero-knowledge “prover” and “verifier” for the key generation:

these are both interactive machines. The prover receives the same input as the key
generator, while the verifier receives only the public random string and the public
key. To allow the verification to be performed publicly (using a random beacon),
we require that all of the messages sent by VK to PK are uniformly distributed
random strings.

For any probabilistic polynomial time turing machines (PPTs) K∗, P ∗K (corre-
ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · T. Moran and M. Naor

sponding to an adversarial key-generating algorithm and prover), when cpk ←
K∗(rK), rK ∈R {0, 1}` is chosen uniformly at random then, with all but negligible
probability (the probability is over the choice of rK and the random coins of K∗, P ∗K
and VK), either the output of VK(rK , cpk) when interacting with P ∗K is 0 (i.e., the
verification of the public-key fails) or the following properties must hold:

(1) Perfectly Hiding: For any m1,m2 ∈ M, the random variables C(m1, r) and
C(m2, r) must be identically distributed when r is taken uniformly at random
from R. (Note that we can replace this property with statistically hiding com-
mitment, but for simplicity of the proof we require the stronger notion).

(2) Computationally Binding: For any PPT A (with access to the private coins of
K∗), the probability that A(cpk) can output (m1, r1) 6= (m2, r2) ∈M×R such
that Ccpk(m1, r1) = Ccpk(m2, r2) must be negligible. The probability is over
the random coins of K∗, A and rK .

(3) Homomorphic in both M and R: for all (m1, r1), (m2, r2) ∈ M× R, and all
but a negligible fraction of keys, C(m1, r1) · C(m2, r2) = C(m1 +m2, r1 + r2).

(4) Symmetry: The tuple (K,C ′), where C ′(m, r) .= C(r,m) should also be a
commitment scheme satisfying the hiding and binding properties (i.e., it should
be possible to use C(m, r) as a commitment to r).

Finally we also require the interaction between PK and VK to be zero-knowledge:
there should exist an efficient simulator that, for every rK and K(rk, aux), produces
a simulated transcript of the interaction that is computationally-indistinguishable
from a real one — even though it is not given aux (the secret auxiliary input to
K).

Simulated Equivocability. For achieving UC security, we require the commitment
scheme to have two additional algorithms: K ′ : {0, 1}`

′
7→ {0, 1}`, C ′ : {0, 1}`

′
×

C ×M 7→ R, such that the output of K ′ is uniformly random. The scheme must
satisfy an additional property when we replace rK with K ′(l), where l ∈R {0, 1}`:
(5) Perfect Equivocability: For everym ∈M and c ∈ C, CK∗(K′(l))(m,C ′(l, c,m)) =

c.

That is, it is possible to generate a public-key that is identical to a normal public
key, but with additional side information that can be used to efficiently open every
commitment to any value

Homomorphic Public-Key Encryption. The second cryptographic building block
we use is a homomorphic public-key encryption scheme. We actually need two en-
cryption schemes, one whose message space isM and the other whose message space
is R (whereM and R are as defined for the commitment scheme). The schemes are
specified by the algorithm triplets (KG(M), E(M), D(M)) and (KG(R), E(R), D(R)),
where KG is the key-generation algorithm, E(X) : X × T 7→ E(X) the encryption
algorithm and D(X) : E(X) 7→ X the decryption algorithm. We require the en-
cryption schemes to be semantically secure and homomorphic in their message
spaces: for every x1, x1 ∈ X and any r1, r2 ∈ T , there must exist r′ ∈ T such that
E(X)(x1, r1) · E(X)(x2, r2) = E(X)(x1 + x2, r

′). .
We do not require the encryption scheme to be homomorphic in its randomness,

but we do require, for every x1, r1, x2, that r′ is uniformly distributed in T when
r2 is chosen uniformly.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 13

To reduce clutter, when it is obvious from context we omit the key parameter
for the commitment scheme (e.g., we write C(m, r) instead of Ccpk(m, r)), and the
randomness and superscript for the encryption schemes (e.g., we write E(m) to
describe an encryption of m).

Below, we use only the abstract properties of the encryption and commitment
schemes. For an actual implementation, we propose using the Paillier encryption
scheme (where messages are in Zn for a composite n, together with a modified
version of Pedersen Commitment (where both messages and randomness are also
in Zn). More details can be found in Appendix A.

4. THREAT MODEL AND SECURITY

We define and prove the security properties of our protocol using a simulation
paradigm. The protocol’s functionality is defined by describing how it would work in
an “ideal world”, in which there exists a completely trusted third party. Informally,
our security claim is that any attack an adversary can perform on the protocol in
the real world can be transformed into an attack on the functionality in the ideal
world. This approach has the advantage of allowing us to gain a better intuitive
understanding of the protocol’s security guarantees, when compared to the game-
based or property-based approach for defining security.

The basic functionality is defined and proved in Canetti’s Universal Compos-
ability framework [Canetti 2000]. This provides extremely strong guarantees of
security, including security under arbitrary composition with other protocols. The
ideal voting functionality, described below, explicitly specifies what abilities the
adversary gains by corrupting the different parties involved.

We also guarantee receipt-freeness, a property that is not captured by the stan-
dard UC definitions, using a similar simulation-based definition (see Appendix C).

4.1 Ideal Voting Functionality

The voting functionality defines a number of different parties: n voters, two voting
authorities A1 and A2, a verifier and an adversary. The voting authorities’ only
action is to specify the end of the voting phase. Also, there are some actions the
adversary can perform only after corrupting one (or both) of the voting authorities.
The verifier is the only party with output. If the protocol terminates successfully,
the verifier outputs the tally, otherwise it outputs ⊥ (this corresponds to cheating
being detected).

When one (or both) of the voting authorities are corrupt, we allow the adversary
to change the final tally, as long as the total number of votes changed is less than
the security parameter k (we consider 2−k negligible).1 This is modeled by giving
the tally privately to the adversary, and letting the adversary announce an arbitrary
tally using the Announce command (described below). If one of the authorities
is corrupt, we also allow the adversary to retroactively change the votes of corrupt
voters, as a function of the tally (if we were to use a universally-composable en-
cryption scheme, rather than one that is just semantically secure, we could do away
with this requirement).

1This is a fairly common assumption in cryptographic voting protocols (appearing in [Chaum

2004; Bryans and Ryan 2004; Ryan 2005; Chaum 2006], among others).

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · T. Moran and M. Naor

If neither of the voting authorities is corrupt, the adversary cannot cause the
functionality to halt. The formal specification for the voting functionality, Fvote,
follows:

Vote v, xv On receiving this command from voter v, the functionality stores the
tuple (v, xv) in the vote database S and outputs “v has voted” to the adversary.
The functionality then ignores further messages from voter v. The functionality
will also accept this message from the adversary if v was previously corrupted
(in this case an existing (v, xv) tuple can be replaced). If one of the authorities
was corrupted before the first Vote command was sent, the functionality will
also accept this message from the adversary after the Tally command has been
received (to change the vote of voters that were corrupted before the tally).

Vote v, ∗ This command signifies a forced random vote. It is accepted from the
adversary only if voter v is coerced or corrupted. In that case, the functionality
chooses a new random value xv ∈R Zm, and stores the tuple (v, xv) in the
database.

Vote v,⊥ This command signifies a forced abstention. It is accepted from the
adversary only if voter v is coerced or corrupted. In that case, the functionality
deletes the tuple (v, xv) from the database.

Tally On receiving this command from an authority, the functionality computes
τi = | {(v, xv) ∈ S | xv = i} | for all i ∈ Zm. If none of the voting authorities
are corrupt, the functionality sends the tally τ0, . . . , τm−1 to the verifier and
halts (this is a successful termination). Otherwise (if at least one of the voting
authorities is corrupt), it sends the tally, τ0, . . . , τm−1, to the adversary.

Announce τ ′0, . . . , τ
′
m−1 On receiving this command from the adversary, the

functionality verifies that the Tally command was previously received. It then
computes d =

∑m−1
i=0 |τi − τ ′i| (if one of the authorities is corrupt and the ad-

versary changed corrupt voters’ choices after the Tally command was received,
the functionality recomputes τ0, . . . , τm−1 before computing d). If d < k (where
k is the security parameter) it outputs the tally τ ′0, . . . , τ

′
m−1 to the verifier

and halts (this is considered a successful termination).
Corrupt v On receiving this command from the adversary, the functionality sends

xv to the adversary (if there exists a tuple (v, xv) ∈ S).
Corrupt Aa On receiving this command from the adversary, the functionality

marks the voting authority Aa as corrupted.
RevealVotes On receiving this command from the adversary, the functionality

verifies that both of the voting authorities A1 and A2 are corrupt. If this is the
case, it sends the vote database S to the adversary.

Halt On receiving this command from the adversary, the functionality verifies that
at least one of the voting authorities is corrupt. If so, it outputs ⊥ to the verifier
and halts.

Our main result is a protocol that realizes the ideal functionality Fvote in the
universal composability model. A formal statement of this is given in Theorem 5.1,
with a proof in Section 6.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 15

4.2 Receipt-Freeness

As previously discussed, in a voting protocol assuring privacy is not enough. In
order to prevent vote-buying and coercion, we must ensure receipt-freeness: a voter
shouldn’t be able to prove how she voted even if she wants to. We use the def-
inition of receipt-freeness from [Moran and Naor 2006], an extension of Canetti
and Gennaro’s incoercible computation [Canetti and Gennaro 1996]. This defini-
tion of receipt-freeness is also simulation based, in the spirit of our other security
definitions.

Parties all receive a fake input, in addition to their real one. A coerced player will
use the fake input to answer the adversary’s queries about the past view (before
it was coerced). The adversary is not limited to passive queries, however. Once a
player is coerced, the adversary can give it an arbitrary strategy (i.e. commands
the player should follow instead of the real protocol interactions). We call coerced
players that actually follow the adversary’s commands “puppets”.

A receipt-free protocol, in addition to specifying what players should do if they are
honest, must also specify what players should do if they are coerced; we call this a
“coercion-resistance strategy” The coercion-resistance strategy is a generalization of
the “faking algorithm” in Canetti and Gennaro’s definition — the faking algorithm
only supplies an answer to a single query (“what was the randomness used for the
protocol”), while the coercion-resistance strategy must tell the party how to react
to any command given by the adversary.

Intuitively, a protocol is receipt-free if no adversary can distinguish between a
party with real input x that is a puppet and one that has a fake input x (but a
different real input) and is running the coercion-resistance strategy. At the same
time, the computation’s output should not change when we replace coerced parties
running the coercion-resistance strategy with parties running the honest protocol
(with their real inputs). Note that these conditions must hold even when the
coercion-resistance strategy is known to the adversary.

In our original definition [Moran and Naor 2006], the adversary can force a party
to abstain. We weaken this definition slightly, and allow the adversary to force a
party to vote randomly. The intuition is that a uniformly random vote has the same
effect, in expectation, as simply abstaining2. Our protocol is receipt-free under this
definition (Theorem 5.2 gives a more precise statement of this fact).

Note that the intuition for why this is acceptable is not entirely correct: in some
situations, the new definition can be significantly weaker. For example, when vot-
ing is compulsory, “buying” a random vote may be much cheaper than “buying” an
abstention (the price would have to include the fine for not voting). Another situa-
tion where forcing randomization may be more powerful than forcing an abstention
is if the margin of victory is important (such as in proportional elections). In many
cases, however, the difference is not considered substantial enough to matter; we
note that Punchscan and Prêt à Voter, two of the most widely-known universally-
verifiable voting schemes, are also vulnerable to a forced randomization attack.

2Note that the attack we describe in Section 2.4 is not equivalent to forcing a random vote: the

coercer forces voters to choose the desired candidate with higher probability than the competitor.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · T. Moran and M. Naor

5. SPLIT-BALLOT VOTING PROTOCOL

In this section we give an abstract description of the split-ballot voting protocol
(by abstract, we mean we that we describe the logical operations performed by the
parties without describing a physical implementation). In the interest of clarity,
we restrict ourselves to two voting authorities A1,A2, n voters and a single poll
question with answers in the group Zm. We assume the existence of a homomor-
phic commitment scheme (K,C) (with the properties defined in Section 3.2) whose
message space is a group (M,+), randomizer space a group (R,+), and commit-
ment space a group (C, ·). Our protocol requires M to be cyclic and have a large
order: |M| ≥ 22k+2, and we assume m < 2k (k is the security parameter defined
in Section 4.1). Furthermore, we assume the existence of homomorphic encryption
schemes with the corresponding message spaces.

5.1 Setup

The initial setup involves:

(1) Choosing the system parameters (these consist of the commitment scheme pub-
lic key and the encryption scheme public/private key pair). Authority A1 runs
KG(M) and KG(R), producing (pk(M), sk(M)) and (pk(R), sk(R)). A1 sends
the public keys over the private channel to authority A2. It also runs K using
the output of the random beacon as the public random string, and the private
coins used in running KG(M) and KG(R) as the auxiliary. This produces the
commitment public key, cpk. Authority A1 now runs PK using the random bea-
con in place of the verifier (this produces a public proof that the commitment
key was generated correctly).

(2) Ballot preparation. Each voting authority prepares at least 2n ballot parts
(the complete ballots are a combination of one part from each authority). We
identify a ballot part by the tuple ~w = (a, i, b) ∈ {1, 2} × [n] × {0, 1}, where
Aa is the voting authority that generated the ballot part, i is the index of
the voter to whom it will be sent and b a ballot part serial number. Each
ballot part has a “public” section that is published and a “private” section
that is shown only to the voter. The private section for ballot part B~w is a
random value t~w ∈R Zm. For ~w = (2, i, b) (i.e., ballot parts generated by
authority A2), the public section of B~w consists of a commitment to that value:
c~w

.= C(t~w, r~w), where r~w ∈R R. For ~w = (1, i, b) (ballot parts generated by
A1), the public section contains a vector of commitments: c~w,0, . . . , c~w,m−1,
where c~w,j

.= C(t~w + j (mod m), r~w,j), and r~w,j ∈R R (i.e., the commitments
are to the numbers 0 through m− 1 shifted by the value t~w). The authorities
publish the public parts of all the ballots to the bulletin board.

5.2 Voting

The voter receives two ballot parts from each of the voting authorities, one set is
used for voting, and the other to audit the authorities. The private parts of the
ballot are hidden under a tamper-evident seal (e.g., an opaque envelope). Denote
the voter’s response to the poll question by xv ∈ Zm. Informally, the voter uses a
trivial secret sharing scheme to mask her vote: she splits it into two random shares
whose sum is xv. The second share is chosen ahead of time by A2, while the first
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 17

is selected from the ballot part received from A1 by choosing the corresponding
commitment. A more formal description appears as Protocol 1.

Protocol 1 Ballot casting by voter v
1: Wait to receive ballots parts B~w, for all ~w ∈ {1, 2} × {v} × {0, 1} from the

authorities.
2: Choose a random bit: bv ∈R {0, 1}
3: Open and publish ballot parts B(1,v,1−bv) and B(2,v,1−bv). {these will be used

for auditing the voting authorities}
4: Verify that the remaining ballot parts are still sealed, then enter the voting

booth with them.
5: Open the ballot parts B(1,v,bv) snd B(2,v,bv).
6: Compute sv

.= xv − t(1,v,bv) − t(2,v,bv) (mod m). To reduce clutter, below we
omit the subscripts bv and sv, denoting c(1,v)

.= c(1,v,bv),sv
, r(1,v)

.= r(1,v,bv),sv
,

c(2,v)
.= c(2,v,bv), r(2,v)

.= r(2,v,bv) and t(a,v)
.= t(a,v,bv). {The computation can

be perfomed implictly by the voting mechanism, e.g., the method described in
Section 2.2}.

7: Physically erase the private values t~w from all the received ballot parts. {This
step is the “forced ballot erasure”}

8: Leave the voting booth.
9: Publish sv {recall that c(1,v) and c(2,v) were already published by the authori-

ties}.

5.2.1 Coercion-Resistance Strategy. We assume the adversary cannot ob-
serve the voter between steps 4 and 8 of the voting phase (i.e., while the voter is in
the voting booth).

If the voter is coerced before step 4, the voter follows the adversary’s strategy
precisely, but uses random t(a,v) values instead of those revealed on the opened
ballots. Because of the forced erasure, the adversary will not be able to tell whether
the voter used the correct values or not. By using random values, the end result is
that the voter votes randomly (coercing a voter to vote randomly is an attack we
explicitly allow).

If the voter is coerced at step 4 or later (after entering the voting booth), she
follows the regular voting protocol in steps 4 through 7. Even if she is coerced
before step 7, she lies to the adversary and pretends the coercion occurred at step
7 (the adversary cannot tell which step in the protocol the voter is executing while
the voter is in the booth). In this case, the adversary cannot give the voter a
voting strategy, except one that will invalidate the ballot (since the voter has no
more “legal” choices left). The voter must still convince the adversary that her vote
was for the “fake input” provided by the adversary rather than her real input. To
do this, she pretends the t(2,v) value she received was one that is consistent with
the fake input and her real sv. Using the example in Figure 1, if Sarah was trying
to convince a coercer that she actually voted for Jefferson (instead of Adams), she
would claim that the upper ballot part had the hole in the leftmost position (rather
than the second position), so that her choice on the lower ballot part corresponds
to Jefferson.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · T. Moran and M. Naor

Note that the adversary can force the voter to cast a random ballot, for example
by telling her to always fill the top bubble on the bottom page. However, forcing a
random vote is something we explicitly do not prevent.

5.3 Tally

The tally stage is performed by the voting authorities and does not require voter
participation (for the intuition behind it, see Section 2.1). Before the start of the
tally stage, all authorities know, for every voter v: sv, c(1,v) and c(2,v) (this was
published on the public bulletin board). Each authority Aa also knows the private
values t(a,v) and r(a,v) (the voter’s choice is xv = sv + t(1,v) + t(2,v) (mod m)).

For all 1 ≤ v ≤ n, denote d3,v
.= c(1,v)c(2,v) = C(xv (mod m), r(1,v) +r(2,v)). The

value d3,v is a commitment to voter v’s choice, up to multiples of m; both the value
and the randomness for the commitment are shared among the two authorities (note
that c(1,v) = c(1,v,bv),sv

is a commitment to xv− t(2,v), while c(2,v) is a commitment
to t(2,v), so their product, the homomorphic addition of the committed values, gives
us a commitment to xv as required).

The tally stage uses as subprotocols some zero-knowledge proofs. In particular,
we use a proof that one vector of commitments “is a valid shuffle” of another, and
a proof that “a committed number is in a specific range”. Since we use perfectly-
hiding commitments, the “value of a commitment” is not well defined. What we ac-
tually use is a zero-knowledge proof of knowledge: the prover proves that it “knows”
how to open the commitment to a value in the range, or how to shuffle and random-
ize the first vector of commitments to construct the second. These zero-knowledge
protocols are based on standard techniques; simple protocols that meet our require-
ments appear in Appendix B.

The tally is performed in two phases. The first phase (cf. Protocol 2) is a public
“mix-net”-like shuffle of the commitments, while the second is a private protocol
between the two authorities, at the end of which the first authority learns how to
open the shuffled commitments.

In the first phase, the authorities, in sequence, privately shuffle the vector of
committed votes and publish a new vector of commitments in a random order (we
denote the new vector published by authority Aa: da,1, . . . , da,n). The new com-
mitments are rerandomized (so they cannot be connected to the original voters)
by homomorphically adding to each a commitment to a random multiple of m. To
prevent A2 from using the rerandomization step to “tag” commitments and thus
gain information about specific voters, A1’s randomization value is taken from a
much larger range (A2 chooses a multiple of m in Z2k , while A1 chooses one in Z22k ;
we require |M| > 22k+2 so that the rerandomization doesn’t cause the commitment
message to “roll over”). Each authority also proves in zero-knowledge that the pub-
lished commitments are a valid shuffle of the previous set of commitments (where
by “valid shuffle”, we mean that if it can open one vector of commitments, then it
can open the other vector to a permutation of the values). A graphic representation
of this phase of the tally appears in Figure 5.

The output of the final shuffle at the end of the first phase is a vector of com-
mitments to the voters’ choices that neither of the authorities can connect to the
corresponding voters. However, neither of the authorities can open the commit-
ments, since the secret randomness is shared among both of them. In the second
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 19

Fig. 5. Tally Phase 1

phase of the tally, the authorities perform the same shuffles on encrypted, rather
than committed values (the encryptions all use the public key generated by A1).
At the end of the second phase, A1 learns the information required to open the
final commitment vector, and publishes this, revealing the tally. The communica-
tion between the authorities is over an untappable channel between them, so that
the public information remains unconditionally private. This phase of the tally is
specified by Protocols 3 (for authority A1) and 4 (for authority A2).

Protocol 2 Tally Phase 1: Authority Aa
1: Choose a random permutation σa : [n] 7→ [n],
2: Choose random values ua,1, . . . , ua,n ∈R R
3: Choose random values za,1, . . . , za,n ∈R Z2(3−a)k

4: If a = 1, wait for d2,1, . . . , d2,n to be published.
5: for 1 ≤ i ≤ n do
6: Choose a random value u′a,i ∈R R.
7: Publish d′a,i

.= da+1,σa(i) · C(0, u′a,i −mu′a,i).
8: Publish δa,i

.= C(za,i, u′a,i)
9: Publicly prove in zero-knowledge (using the random beacon) that δa,i is a

commitment to a value in Z2(3−a)k (i.e., that za,i < 2(3−a)k)
10: Publicly prove in zero-knowledge (using the random beacon) that ca,i is a

commitment to a value in Z2dlog me

11: Denote da,i
.= d′a,iδ

m
a,i = da+1,σa(i)C(za,im,ua,i)

12: end for
13: Publicly prove in zero-knowledge that d′a,1, . . . , d

′
a,n is a valid shuffle of

da+1,1, . . . , da+1,n (using the random beacon).

5.4 Universal Verification and Output

The verification can be performed by anyone with access to the public bulletin
board. This phase consists of verifiying all the published zero-knowledge proofs by
running the zero-knowledge verifier for each proof, using the corresponding output
of the random beacon for the random coins. The verifier then computes and outputs
the final tally. The verification protocol appears as Protocol 5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · T. Moran and M. Naor

Protocol 3 Tally Phase 2: Authority A1

1: Wait for Tally Phase 1 to terminate.
2: Verify all the published zero-knowledge proofs of shuffling.
3: for 1 ≤ i ≤ n do
4: Send to Authority A2: e(M)

1,i
.= E(M)(si + t(1,i)) = E(M)(xi − t(2,i))

5: Send to Authority A2: e(R)
1,i

.= E(R)(r(1,i))
6: end for
7: Prove in (interactive) zero-knowledge to A2 that e

(M)
1,1 , . . . , e

(M)
1,n and

e
(R)
1,1 , . . . , e

(R)
1,n are encryptions of the message (resp. randomness) corresponding

to c(1,1), . . . , c(1,n).
8: Wait to receive e(M)

2,1 , . . . , e
(M)
2,n and e

(R)
2,1 , . . . , e

(R)
2,n over the untappable channel

from A2.
9: for 1 ≤ i ≤ n do

10: Compute ξi
.= D(M)(e(M)

2,σ1(i)
) + z1,im

11: Compute ρi
.= D(R)(e(R)

2,σ1(i)
) + u1,i

12: Verify that d1,i = C(ξi, ρi)
13: end for
14: Publish ξ1, . . . , ξn and ρ1, . . . , ρn.

Protocol 4 Tally Phase 2: Authority A2

1: Wait for Tally Phase 1 to complete.
2: Verify all zero-knowledge proofs published in phase 1.
3: Wait to receive e(M)

1,1 , . . . , e
(M)
1,n and e

(R)
1,1 , . . . , e

(R)
1,n over the untappable channel

from A1.
4: Verify the zero-knowledge proof that the encryptions correspond to the com-

mitted values and randomness
5: for 1 ≤ i ≤ n do
6: Send to Authority A1: e(M)

2,i
.= e

(M)
1,σ2(i)

E(M)(t(2,σ2(i))+z2,im) = E(M)(xσ2(i)+
z2,im)

7: Send to Authority A1: e(R)
2,i

.= e
(R)
1,σ2(i)

E(R)(r(2,σ2(i)) + u2,i)
8: end for

5.5 Security Guarantees

We give two different formal security guarantees for this protocol, formally specified
by the theorems below. The first is a guarantee for privacy and accuracy of the
tally (Theorem 5.1), and the second a guarantee against vote-buying and coercion
(Theorem 5.2).

Theorem 5.1. The Split-Ballot Voting Protocol UC-realizes functionality Fvote,
for an adversary that is fully adaptive up to the end of the voting phase, but then
statically decides which of the voting authorities to corrupt (it can still adaptively
corrupt voters).

The reason for the restriction on the adversary’s adaptiveness is that the homo-
morphic encryption scheme we use is committing.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 21

Protocol 5 Verification
1: Verify the proof that the commitment key was generated correctly {the proof

generated in step 1, Section 5.1}
2: for 1 ≤ i ≤ n do {Verify opened ballots chosen for audit}
3: Verify for all j ∈ Zm that c(1,i,1−bi),j = C(t(1,i,1−bi) +j (mod m), r(1,i,1−bi),j)

4: Verify that c(2,i,1−bi) = C(t(2,i,1−bi), r(2,i,1−bi))
5: end for
6: Verify the shuffle proofs (produced in step 13 of Protocol 2)
7: for 1 ≤ i ≤ n do {Verify opening of final, shuffled commitments}
8: Verify that d1,i = C(ξi, ρi)
9: end for

10: for i ∈ Zm do {Compute and output the tally}
11: Compute τi

.= |{j ∈ [n] | ξj ≡ i (mod m)}|
12: Output τi {The tally for candidate i}
13: end for

Note that this limitation on adaptiveness only holds with respect to the privacy
of the votes under composition, since an adversary whose only goal is to change the
final tally can only gain by corrupting both voting authorities at the beginning of
the protocol.

The proof of Theorem 5.1 appears in Section 6

Theorem 5.2. The Split-Ballot voting protocol is receipt-free, for any adversary
that does not corrupt any of the voting authorities.

The formal proof of this theorem appears in Section 7. The intuition behind it is
apparent from the coercion-resistance strategy (described in Section 5.2).

6. PROOF OF ACCURACY AND PRIVACY GUARANTEE (THEOREM 5.1)

In order to prove the security of our protocol in the UC model, we must show that
there exists a simulator I (the “ideal adversary”) that internally runs a black-box
straight-line (without rewinding) simulation of the real-world adversary, A, simu-
lating its view of the honest parties and the functionalities used by the real protocol.
At the same time, the simulator interacts with the ideal voting functionality to al-
low it to keep the real-world adversary’s simulated view consistent with the input
and output of the parties in the ideal world. The protocol UC-realizes the ideal
functionality if no environment machine (which sets the inputs for the parties and
controls the real-world adversary) can distinguish between a real execution of the
protocol and a simulated execution in the ideal world.

The general idea of the simulation is that I creates, internally, a “provisional
view” of the world for all honest parties. Throughout the simulation, it updates
this view so that it is consistent with the information I learns. At any point, if
the adversary corrupts a party then I also corrupts that party (learning its input,
and updating the provisional view to be consistent with that information). If the
adversary corrupts both of the election authorities, A1 and A2, I sends the Re-
vealVotes command to Fvote (and learns the votes of all honest parties). Because
the simulator can choose the commitment key in such a way that commitments

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · T. Moran and M. Naor

are equivocable, it can make sure the “visible” parts of the provisional view (those
that can be seen by the adversary) are also consistent with what the environment
knows at all times (by changing retroactively the contents of the commitments).
Thus, I is able to simulate the honest parties exactly according to the real protocol,
creating a view that is statistically close to the view in the real world.

There are four main sticking points in this approach:

(1) The adversary can prepare “bad ballots” in the setup phase (which it does not
know how to open correctly). Since the commitment is perfectly hiding, the
simulator cannot tell at that point which of the ballots is bad. We deal with
this by allowing I to change the tally by a small number of votes (the number
depends on the security parameter). The idea is that there are only two ways for
the adversary to change the tally: either it can equivocate on commitments (in
this case, we can use the environment/adversary pair to break the commitment
scheme), or it prepares bad ballots. If it prepares many bad ballots, it will be
caught with high probability, since I simulates the honest voters correctly, and
they choose to audit a bad ballot pair with probability 1

2 . So if we simply ignore
the cases in which it was not caught, the distributions of the environment’s view
in the real and ideal world will still be statistically close.

(2) Unlike perfectly-hiding commitments, the encryptions send in the second tally
phase cannot be retroactively changed in light of new information. This prob-
lem is solved by the restriction on the adaptiveness of the adversary (either
it doesn’t get to see the encryptions at all before it sees their contents, or it
doesn’t get to see the contents of the encryptions).

(3) The revealed values of the shuffled commitments aren’t exactly the voters’
choices — they are the voters’ choices only up to multiples of m. For example,
If xv = 0, this value can be shared between the authorities as 0, 0 (in which case
the commitment d3,v = 0), but also as m−1, 1, (in which case the commitment
d3,v = m). Since each authority knows its share of xv, the revealed commitment
can leak information about a specific voter. To prevent this, we would like to
“rerandomize” the value by adding a uniformly random multiple ofm. However,
since it is likely that m - |M|, adding large multiples of m could change the
value. Instead, authority A2 (who shuffles first) adds multiples of m from a
large range, but one that is guaranteed not to “overflow”. To prevent A2 from
using the randomization step itself to gain information about specific voters,
A1 does the same thing with an even larger range. Thus, the revealed tallies
leak only a negligible amount of information about the specific voters.

(4) Finally, we use the semantic security of the encryption scheme to show that the
environment/adversary pair cannot use the encryptions sent in the tally phase
to gain any advantage in differentiating the real and ideal worlds. If it can, we
can use them to break the encryption scheme.

Below we describe the protocol for I. In order to make the proof readable, we
do not formally specify the entire simulation protocol. Instead, we focus on the
points where I cannot simply follow the real protocol for its simulated parties
(either because it lacks information the real parties have, or because A deviated
from the protocol). We also omit the global mechanics of the simulation: whenever
A corrupts a party, I also corrupts the corresponding ideal party; whenever A
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 23

instructs a corrupted party to output a message, I instructs the corresponding
ideal party to output the message as well. If A deviates from the protocol in a
way that is evident to honest real parties (e.g., refuses to send messages, or sends
syntactically incorrect messages to honest parties), I halts the simulation (and the
parties output ⊥). An exception is when corrupt voters deviate from the protocol in
this way: in this case the voter would be ignored by honest authorities (rather than
stopping the election), and I forces an abstention for that voter. Except for the
noted cases, we explictly specify when I sends commands to Fvote; the simulation
is self-contained and only visible to A and the environment through the interactions
of the simulated parties with the adversary.

6.1 Setup Phase

I chooses a random seed s ∈ {0, 1}`
′

and simulates the random beacon, using K ′(s)
to generate the part of the beacon used as input to the commitment-key generation
algorithm, K (this will allow I to equivocate commitments). It then runs the
ballot preparation stage by simulating A1 and A2 exactly according to protocol (or
according to the real-world adversary’s instructions, if one or both are corrupted).
At the end of this stage, the adversary is committed to the contents of any ballots
it sent.

6.2 Voting Phase

Honest Voter. When it receives a “v has voted” message from the voting function-
ality for an honest voter v, I begins simulating voter v running Protocol 1. The
actions of I depend on whether the adversary has corrupted both A1 and A2:

Case 1: If both A1 and A2 are corrupt, I learns xv from the voting functionality. It
can then exactly simulate an honest voter voting xv

Case 2: If at least one of the authorities is honest, I simulates a voter using a ran-
dom value x′v for the voter’s choice value. This involves choosing a random
commitment from the set received from A1.

Corrupt Voter. Throughout this phase, I simulates a corrupt voter v by following
A’s instructions exactly. If both authorities were honest at the beginning of the
voting stage (in particular, if the ballots were generated by I), I computes xv =
sv + t(1,v) + t(2,v) and sends a Vote (v, xv) command to Fvote. If at least one
authority was corrupt at the beginning ot the voting stage, I sends nothing to the
ideal functionality (but in this case it will be able to cast a vote in the tally phase).
Denote by W the number of voters for which I did not cast a vote during the voting
phase.

Voter Corrupted During Protocol. If a voter v is honest at the beginning of the
phase, and is corrupted during the protocol, I learns the real choice xv when the
voter is corrupted. If both authorities were already corrupt, I already knows xv so
this information will not have changed any of the views in the simulation. If at least
one authority was honest and x′v 6= xv, I has to rewrite its history (both that of the
honest authority and that of voter v) to be consistent with the new information. In
this case, it uses its ability to equivocate commitments to rewrite the value of t(a,v),
where a is the index of an honest authority (this will also change the randomness
of the commitments). The new value will satisfy xv = sv + t(1,v) + t(2,v).

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · T. Moran and M. Naor

Authority Corrupted During Protocol. If, at the beginning of the voting phase,
both authorities are honest and later one is corrupted, I does not need to rewrite
its history, since it is consistent with the real world simulation.

If, at the beginning the voting phase, at least one authority is honest and some-
time later both of the authorities become corrupted, I learns the choices of all
previous voters at that point. In this case, when the last authority is corrupted,
I may be forced to rewrite its history as well as that of the honest voters whose
choices didn’t match the guesses made by I. It does this by using its ability to
equivocate commitments in order to change only the private parts of the ballots
which were not seen by A before the corruption.

Case 1: If A1 is corrupted last, I can rewrite the value t(1,v) to match the voter’s choice
by equivocating on the commitments c(1,v),1, . . . , c(1,v),m

Case 2: If A2 is corrupted last, I can rewrite the value t(2,v) to match the voter’s choice
by equivocating on the commitment c(2,v)

6.3 Tally Phase

This phase begins when a voting authority sends the Tally command to Fvote,
or the adversary has corrupted an authority and decides to end the voting phase.
I waits for Fvote to announce the tally. The simulator’s strategy now depends on
which of the voting authorities is corrupt (note that from this stage on the adversary
is static with regard to corrupting the voting authorities). We can assume w.l.o.g.
that A corrupted the relevant authorities at the start of the Setup phase: if only one
authority is corrupted during the protocol, I’s simulation is identical to the case
where the authority was corrupt from the start, but chose to follow the protocol
correctly. If both authorities are corrupted, I was required to rewrite its view at
the time of the second corruption; however, the rewritten history is identical to a
simulation in which both authorities were corrupted from the start and chose to
follow the protocol honestly.

Case 1: Neither voting authority is corrupt. I generates vectors of random com-
mitments for d1,1, . . . , d1,n, d2,1, . . . , d2,n, d′1,1, . . . , d′1,n and d′2,1, . . . , d

′
2,n.

Using its ability to equivocate, I can open the commitments to any value.
In particular, it can pass all the zero-knowledge proofs. and open the commit-
ments d1,1, . . . , d1,n to values that match the announced tally and are identically
distributed to the outcome in the real world protocol.

Case 2: Exactly one authority is corrupt. I rewrites its provisional view for the
honest authority to make it consistent with the announced tally, using a ran-
dom permutation for the honest voters. It then simulates the honest authority
according to protocol, using its provisional view. At the end of Protocol 3, I
simulates the verifier running Protocol 5. If verification fails, I halts in the
ideal world as well. Otherwise, I now knows the real-world tally: τ0, . . . , τm−1.
This may be different from the ideal-world tally announced by Fvote; If the
ideal-world tally can be changed to the real-world one by adding W votes and
changing k votes (where W is the number of corrupt voters for whom I did not
cast a vote in the voting phase), I sends the appropriate Vote commands to
Fvote, then sends an Announce command with the updated tally. Otherwise,
I outputs “tally failure” and halts. In this case the real and ideal worlds are

ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 25

very different; however, we prove that this happens with negligible probability
(see Claim 6.3).
If an honest voter v is corrupted during the tally phase, I learns xv and must
provide the voter’s provisional history to A. If x′v 6= xv, I chooses one of the
remaining honest voters v′ for which x′v′ = xv and rewrites both voters’ views
by equivocating on the commitments generated by the honest authority. In
the new views x′v′ ← x′v and x′v ← xv. Note that there will always be such
an honest voter, since the provisional views of the simulated honest voters are
consistent with the ideal-world tally, which is consistent with the inputs of the
ideal voters.

Case 3: Both authorities are corrupt. In this case, I knows the inputs of all voters,
so it can create a completely consistent view. I follows the instructions of
the real-world adversary until ξ1, . . . , ξn and ρ1, . . . , ρn are published. It then
simulates the verifier running Protocol 5. If verification fails, I halts in the ideal
world as well. Otherwise, I now knows the real-world tally: τ0, . . . , τm−1. As
in the case of a single corrupt authority, if the ideal-world tally can be changed
to the real-world one by adding W votes and changing k votes, I sends the
appropriate Vote commands to Fvote, then sends a Announce command with
the real-world tally. Otherwise, I outputs “tally failure” and halts.

6.4 Indistinguishability of the Real and Ideal Worlds

To complete the proof of Theorem 5.1, we must show that the environment machine
cannot distinguish between the real protocol executed in the real world, and I’s
simulation executed in the ideal world. This is equivalent to showing that the views
of the environment in both cases are computationally indistinguishable.

To define the environment’s view, it is helpful to explicitly describe the views of
all the parties in the real world:

Verifier: The verifier’s view consists of all the public information (and only that):
(1) The output of the random beacon: R.
(2) The commitment public key, cpk = K(R), generated by A1 in the Setup

phase
(3) The proof of correctness for the commitment public key (the output of PK)
(4) The audit bits of the voters: bv for all v ∈ [n].
(5) The public and private parts of all the audit ballots: B~w for all ~w = (a, v, i)

such that i = 1− bv.
(6) Randomness for all the audit ballots: r~w for all ~w = (2, v, i) such that

i = 1− bv and r~w,j for all v ∈ [n], j ∈ Zm and ~w = (1, v, 1− bv).
(7) Public part of the ballots for cast ballots: sv,c(1,v),j and c(2,v) for all v ∈ [n]

and j ∈ Zm.
(8) Public proofs of tally correctness: d′a,1, . . . , d

′
a,n, δa,1, . . . , δa,n for a ∈

{1, 2} and the transcripts of the zero-knowledge proofs that these were
generated correctly.

(9) The Opening of the shuffled commitments: ξ1, . . . , ξn and ρ1, . . . , ρn.
Voter v: The voter’s view includes all the public information (the verifier’s view)

in addition to:
(1) The voter’s input: xv

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · T. Moran and M. Naor

(2) The private part of the voter’s ballots: t(1,v) and t(2,v)
Authority A1: The view of this authority consists of the verifier’s view, and in

addition:
(1) The public keys for the encryption schemes: pk(M) and pk(R).
(2) The secret keys for the encryption schemes: sk(M) and sk(R).
(3) The private parts of the voters’ ballots: t(1,v) for all v ∈ [n]
(4) The randomness for the commitments in the voters’ ballots: r~w,j for all

v ∈ [n], j ∈ Zm and ~w = (1, v, bv)
(5) The permutation σ1 and the values u1,1, . . . , u1,n, u′1,1, . . . , u′1,n and z1,1, . . . , z1,n
(6) The secret random coins for the encryptions sent to A2.
(7) The encryptions received from A2: e(M)

2,1 , . . . , e
(M)
2,n and e

(R)
2,1 , . . . , e

(R)
2,n and

their contents.
(8) The secret random coins used in the zero-knowledge proofs in which A1

was the prover.
Authority A2: The view of this authority consists of the verifier’s view, and in

addition:
(1) The public keys for the encryption schemes: pk(M) and pk(R)

(2) The private parts of the voters’ ballots: t(2,v) for all v ∈ [n]
(3) The randomness for the commitments in the voters’ ballots: r~w for all

v ∈ [n] and ~w = (2, v, bv)
(4) The permutation σ2 and the values u2,1, . . . , u2,n, u′2,1, . . . , u′2,n and z2,1, . . . , z2,n
(5) The encryptions received from A1: e(M)

1,1 , . . . , e
(M)
1,n and e

(R)
1,1 , . . . , e

(R)
1,n .

(6) The secret random coins for the encryptions sent to A1.
(7) The secret random coins used in the zero-knowledge proofs in which A2

was the prover.
A: The real-world adversary’s view consists of the verifier’s view, any messages it

receives from the environment and the view of any party it corrupts.
Environment: The environment’s view consists of A’s view, and in addition, the

inputs of all the voters: x1, . . . , xn and its own random coins.

In the ideal world, the environment’s view is the same, except that the views of
the real-world parties are those simulated by I. The other difference is that in the
ideal world, the output of the verifier seen by the environment is the tally produced
by Fvote (none of the other parties have output).

The following lemma completes the proof of Theorem 5.1:

Lemma 6.1. The enviroment’s view in the real world is computationally indis-
tinguishable from its view in the ideal world.

Proof. Setup and Voting Phases. First, note that in the Setup and Voting
phases of the protocol, as long as I can perfectly equivocate commitments, the
views are identically distributed. This is because the views of the simulated parties
are always kept in a perfectly consistent state, given the knowledge I has about
the voters’ inputs. Whenever a simulated party is corrupted, I gains enough infor-
mation to perfectly rewrite its view so that it is consistent with the previous view
of the environment.

Thus, the only possible way the views could differ is if I cannot equivocate
commitments. This can occur only if the commitment key published in the Setup
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 27

phase is not the one chosen by I. But by the definition of the commitment scheme,
the probability that A1 can generate a key that passes verification but does not
allow equivocation is negligible.

Tally Phase. In the Tally phase, I deviates from a perfect simulation only when
at least one of the authorities is corrupt. The possible reasons I’s simulation may
be imperfect are:

(1) The Vote commands sent to Fvote by the simulator are not consistent with the
tally in the simulation. This would cause the output of the verifier in the ideal
world to differ from its output in the real world. Note that the inconsistency
will be noticable only if the ideal-world tally is “far” from the real-world tally:
If it can be modified by adding W arbitrary votes and changing up to k votes,
I will be able to “fix” the ideal-world tally. The probability that I fails in this
way is negligible, as we prove in Claim 6.3.

(2) If A1 is honest and A2 is corrupt:
(a) The encryptions e(M)

1,1 , . . . , e
(M)
1,n and e(R)

1,1 , . . . , e
(R)
1,n may be inconsistent with

the environment’s view in the ideal world: the encrypted values contain
I’s simulated inputs for the honest voters (which may differ from the real
inputs of the voters). The environment, however, knows the real inputs of
the voters. Although the environment’s views may be statistically far, the
semantic security of the encryption scheme implies that the encryptions
of two different messages are computationally indistinguishable, even when
the messages are known. Hence, the environment’s views of the encryptions
in the real and ideal world are computationally indistinguishable.

(b) The distribution of ξ1 . . . , ξn may be inconsistent with the environment’s
view in the ideal world. This can happen because ξ1, . . . , ξn is a permuta-
tion of x1, . . . , xn only modulo m; the actual values depend on the permu-
tations σ1, σ2 the values t(1,1), . . . , t(1,n), t(2,1), . . . , t(2,n), z(1,1), . . . , z(1,n),
z(2,1), . . . , z(2,n) and on the order of the simulated votes chosen by I (which
may differ from the actual order). However, the statistical distance between
the views of ξ1, . . . , ξn in the real and ideal worlds is negligible. Intuitively,
this is because A2 can only add multiples of m up to 2k. No matter what it
does, once A1 adds a multiple of m uniformly chosen up to 22k, the output
distribution will be nearly uniform (only an exponentially small fraction of
the output values will have different probabilities). We prove this formally
in Claim 6.2.

(3) If A1 is corrupt and A2 is honest, the distribution of ξ1 . . . , ξn may be incon-
sistent with the environment’s view in the ideal world. This can happen for
exactly the same reason as it does when A2 is corrupt and A1 honest: the
extra multiples of m in ξ1 . . . , ξn may contain information about the order of
the votes. As in the previous case, the statistical distance between the views of
ξ1, . . . , ξn in the real and ideal worlds is negligible (here the intuition is that A1

can only set tv to be at most 2m, while A2 will add a multiple of m uniformly
chosen up to 2k. We omit the formal proof, as it is almost identical to the proof
of Claim 6.2.

Verification Phase. Since the verifier cannot be corrupted and uses only public
information, the views of the environment in the verification phase are identical in

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · T. Moran and M. Naor

the real and ideal world, except in case of a tally failure (which we prove occurs
with negligible probability).

The proof of Lemma 6.1 is completed by the claims below:

Claim 6.2. Fix any permutation σ2 and values t(1,1), . . . , t(1,n) ∈ Z2m, t(2,1), . . . , t(2,n) ∈
Z2m, z(2,1), . . . , z(2,n) ∈ Z2k and x1, . . . , xn ∈ Zm. For a permutation π, let
Ξπ = ξ1 . . . , ξn be the output of the protocol when it is run with the fixed values,
permuted voter inputs xπ(1), . . . , xπ(n) and when σ1, z(1,1), . . . , z(1,n) are chosen
randomly (following the protocol specification).

Then for any two permutations π1 and π2, the statistical difference between Ξπ1

and Ξπ2 is at most n2−k+1.

Proof. Note that ξi = xπ(σ2(σ1(i))) +(fσ2(σ1(i)) +z2,σ1(i) +z1,i)m, where fi ∈ Z4.
First, we define a new random variable Ξ′π = (ξ′1 . . . , ξ′n), whose value is similar
to Ξπ, except without the fixed multiples of m: ξ′i = xπ(σ2(σ1(i))) + z1,im. Note
that π ◦ σ2 ◦ σ1 is a random permution for any fixed π and σ2, and {z1,i} are
identically and independently distributed. Hence, for any two permutations π1

and π2, Ξ′π1 and Ξ′π2 are identically distributed. Next, we will show that for any
permutation π, the statistical difference between Ξ′π and Ξπ is at most n2−k. Thus,
by the triangle inequality, the statistical difference between Ξπ1 and Ξπ2 is at most
n2−k+1. Denote ~ξ .= (ξ1 . . . , ξn). By definition, the statistical difference between
the two distributions is:

∆(Ξ′π,Ξπ) =
1
2

∑
~ξ

∣∣∣Pr[Ξ′π = ~ξ]− Pr[Ξπ = ~ξ]
∣∣∣

=
1

2n!

∑
~ξ

∣∣∣∣∣∑
σ1

[
Pr[Ξ′π = ~ξ | σ1]− Pr[Ξπ = ~ξ | σ1]

]∣∣∣∣∣
≤ 1

2n!

∑
~ξ,σ1

∣∣∣Pr[Ξ′π = ~ξ | σ1]− Pr[Ξπ = ~ξ | σ1]
∣∣∣ .

Denote p .= Pr[Ξπ = ~ξ | σ1] and p′
.= Pr[Ξ′π = ~ξ | σ1]. Let ζi

.= fσ2(σ1(i)) + z2,σ1(i)

(the fixed multiples of m) and θi
.= xπ(σ2(σ1(i))) (the permuted inputs). Note that

since fσ2(σ1(i)) < 4 ≤ 2k we have 0 ≤ ζi ≤ 2k+1. By our definition of p:

p = Pr[
n∧
i=1

(θi + ζim+ z1,im = ξi) | σ1]

(where the probability is only over {z1,i}). Hence, p 6= 0 only if for all 1 ≤ i ≤ n,
it holds that θi ≡ ξi (mod m) and z1,i = 1

m (ξi − θi)− ζi.
Since z1,i is uniformly chosen in Z22k (and in particular 0 ≤ z1,i ≤ 22k), it follows

that p 6= 0 only if for all 1 ≤ i ≤ n:

ζi ≤
1
m

(ξi − θi) ≤ 22k + ζi.

When p > 0, then p = 2−2kn (since for every i there is exactly one “good” choice
for z1,i). Similarly, p′ 6= 0 only if for all 1 ≤ i ≤ n, it holds that θi ≡ ξi (mod m)
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 29

and 1
m (ξi− θi) ≤ 22k. Hence, if p 6= p′ then for all 1 ≤ i ≤ n: θi ≡ ξi (mod m) and

either

Case 1: p 6= 0, p′ = 0: for all 1 ≤ i ≤ n, ζi ≤ 1
m (ξi − θi) ≤ 22k + ζi and there exists i

such that 22k < 1
m (ξi − θi) ≤ 22k + ζi or

Case 2: p = 0, p′ 6= 0: for all 1 ≤ i ≤ n, 1
m (ξi − θi) ≤ 22k and there exists i such that

1
m (ξi − θi) ≤ ζi.

Note that both p and p′ depend only on ~ξ (and not on σ1). So we can write

∆(Ξ′π,Ξπ) ≤ 1
2

∑
~ξ

|p(~ξ)− p′(~ξ)| = 2−2kn−1
∣∣∣{~ξ | p(~ξ) 6= p′(~ξ)

}∣∣∣ (1)

We can list all such ~ξ (possibly overcounting) in the following way:

(1) Choose i ∈ [n] (n possibilities)
(2) Choose one of the two cases above for which p 6= p′ (2 possibilities):
(3) Depending on which is chosen, either:
Case 1: choose ξi such that 22k + ζi ≥ 1

m (ξi − θi) > 22k or
Case 2: choose ξi such that 1

m (ξi − θi) ≤ ζi
(in either case, since m ≥ 2, there are 1

mζi ≤ 2k possibilities)
(4) For all 1 ≤ j ≤ n, j 6= i:
Case 1: choose ξj such that ζj ≤ 1

m (ξj − θj) ≤ 22k + ζj or
Case 2: choose ξj such that 1

m (ξj − θj) ≤ 22k

(in either case, there are
∏
j

1
m22k ≤ 22(k−1)(n−1) ≤ 22kn−k possibilities)

Thus, the number of ~ξs that satisfy p(~ξ) 6= p′(~ξ) is bounded by n22kn−k+1. Plugging
this in to inequality 1, we get ∆(Ξ′π,Ξπ) ≤ 2−2kn−1 · nn22kn−k+1 ≤ n2−k.

Claim 6.3. The probability that the ideal simulator terminates the simulation
by outputting “tally failure” is a negligible function of k.

Proof. I outputs “tally failure” only if the simulated verifier did not abort, and
the ideal tally (computed by Fvote) cannot be changed to the real tally (the one
output by the simulated verifier) by adding W votes and changing k votes (where
W = 0 if both authorities were honest at the beginning of the voting phase, and
otherwise W is the number of voters who were corrupt during the voting phase).

Assume, in contradiction, that the environment/real-world adversary pair can
cause a tally failure with probability ε. We will show how to use such an environ-
ment/adversary pair to break the binding property of the commitment scheme.

That is, there exists a machine M that can produce, with probability polynomial
in ε, a commitment c and m1, r1, m2, r2, m1 6= m2 such that c = C(m1, r1) =
C(m2, r2).
M works by simulating the entire ideal world (including the enviroment machine,

Fvote and the ideal-world adversary, I). After each of the public zero-knowledge
proofs of knowledge in the Tally phase (steps 9, 10 and 13 in Protocol 2), M
rewinds the environment/real-adversary pair and runs their corresponding knowl-
edge extractors. Let ε′ be the probability that the knowledge extractors succeed
for all the proofs. Since each knowledge extractor succeeds with probability poly-
nomial in the probability that the verifier accepts, and the verifier accepts all the

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · T. Moran and M. Naor

proofs with probability at least ε (otherwise it would not cause a tally failure),
ε′ = poly(ε).

The proofs of knowledge allow M to extract the permutations for the shuffles
performed by the authorities, along with the randomizing values (and ensure that
the extracted values are in the correct ranges). Since the final opened commitments
are consistent with the real tally, the extracted value of the original commitment
vector (before both shuffles and randomization) must also be consistent with the
real tally. Let (x′′v, (r′′)v) denote the opening of the commitment d3,v that is output
by M .

For any execution of the protocol in the ideal world, the ideal tally consists of the
tally of all voters (if both authorities were honest at the beginning of the Voting
phase) or only of the honest voters (otherwise) This is because I does not send a
Vote command on behalf of corrupt voters if one of the authorities was corrupt at
the beginning of the Voting phase). A tally failure means that even after adding
W votes to the ideal tally, it differs from the real tally by more than k votes.

Case 1: All the ballots were generated by honest authorities. Since the honest
authorities are simulated by I (which is, in turn, simulated by M), this means
all the ballots were generated by M . In particular, there exists a voter v such
that xv 6= x′′v, and for which M knows r(1,v), r(2,v). Since d3,v = C(xv, r(1,v) +
r(2,v)) by the construction of d3, and d3,v = C(x′′v, r′′v) by the knowledge
extraction, M can open d3,v in two different ways.

Case 2: At least some of the ballots were generated by a corrupt author-
ity. In this case, there must still be at least k honest voters v1, . . . , vk such
that xvi

6= x′′vi
. (since W is the number of corrupt voters). To break the

commitment scheme, M rewinds the ideal-world to the end of the setup phase
(after all the ballots have been committed), then reruns the simulation with
new randomness for I. In particular, the honest voters’ audit bits are new
random bits. The probability that both simulations end with tally failures is
at least ε′2. In particular, when this occurs, the authorities correctly opened
all the audited commitments in the second simulation. The probability that
all k of the voters will have the same audit bits in both simulations is 2−k. If
this does not occur, the corrupt authorities will publish r(1,vi), r(2,vi) such that
d3,vi = C(xvi , r(1,vi) + r(2,vi)) for at least one of the honest voters. Again, this
will allow M to open d3,vi

in two different ways.

Taking a union bound, in the worst case the probability that M succeeds is at least
ε′

2 − 2−k = poly(ε) − 2−k. If ε is non-negligible, then M can break the binding
property of the commitment with non-negligible probablity.

7. PROOF OF RECEIPT-FREENESS (THEOREM 5.2)

The definition of receipt-freeness shares many elements with the security defini-
tions of the universal composability framework, hence the proofs will also be very
similar. In both cases, we must show that the view of an adversary in the real
world is indistinguishable from its view of a simulated protocol execution in an
ideal world, where there exists an ideal simulator, I. There is one main difference:
the adversaries (in both the real and ideal worlds) can perform an additional action:
coercing a party. Each party has, in addition to their input, a “coercion-response”
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 31

bit and a fake input (both also hidden from the adversary). The coercion-response
bit determines how they will respond to coercion. When the bit is 1, a coerced
party behaves exactly as if it were corrupted. When the bit is 0, however, instead
it executes a “coercion-resistance strategy”. In the ideal world, the strategy is to
send its real input to Fvote, but lie to the adversary and claim its input was the
fake input. In the real world, the coercion-resistance strategy is specified as part of
the protocol (see Section 5.2).

Like the proof of security in the UC model, the proof of Theorem 5.2 has two
parts: the description of the simulation run by I in the ideal world, and a proof
that the adversary’s views in the real and ideal worlds are indistinguishable. The
simulation is almost identical to the simulation in the proof of Theorem 5.1. The
difference is what happens when A coerces a voter (this does not occur in the
original simulation). I handles coercions of voters exactly like corruptions (i.e.,
they do not run the coercion-resistance strategy), with the following modifications:

(1) I coerces rather than corrupts the ideal voter.
(2) If voter v was coerced before step 4 of the Voting phase (i.e., before entering

the voting booth), I sends a Vote v, ∗ command to Fvote (signifying a forced
random vote), instead of a standard vote command.

(3) If the adversary causes the voter to behave in a way that would invalidate
her vote (e.g., send syntactically incorrect commands, or abort before casting a
ballot), I sends a Vote v,⊥ command to Fvote (signifying a forced abstention).

7.1 Indistinguishability of the Real and Ideal Worlds

To complete the proof of Theorem 5.2, we prove the following lemma:

Lemma 7.1. The adversary’s view in the real world is identically distributed to
its view in the ideal world.

Proof. Note that we only need to consider the case where both voting authori-
ties are honest. Hence, the adversary’s view consists only of the verifier’s view (the
random beacon and the information on the bulletin board) and the views of cor-
rupted voters and coerced voters (which, in the real world, may be fake, depending
on the value of their coercion-response bit).

We can assume the adversary also determines the inputs, fake inputs, and coercion-
response bits of all the voters (these are not given to I).

First, note that the generated ballots always consist of uniformly random values,
independet of the voters’ inputs, and the private part of the ballot is independent
(as a random variable) of the public part of the ballot (since the commitments are
perfectly hiding). Thus, the view generated by the coercion-resistance strategy is
identically distributed to the view of an honest voter in the real world, which in
turn is identically distributed to the view simulated by I.

Since, when authorities are honest, corrupt voters can have no effect on other vot-
ers (except by changing the final tally), we can assume w.l.o.g. that the adversary
does not corrupt voters (it can simply determine the inputs for honest voters). The
only remaining possibility for a difference between the adversary’s views is the joint
distribution of the inputs, fake inputs, coercion-resistance bits and the final tally.
However, since I can perfectly equivocate on commitments, the simulated tally it

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · T. Moran and M. Naor

produces will always be consistent with the ideal tally, and distributed identically
to the tally in the real world.

8. DISCUSSION AND OPEN PROBLEMS

Multiple Questions on a Ballot. As shown in the “illustrated example”, our voting
protocol can be easily adapted to use multiple questions on the same ballot. If there
are many questions, the pattern of votes on a single ballot may uniquely identify a
voter, hence tallying the questions together may violate voter privacy. In this case,
the tally protocol should be performed separately for each question (or for each
small group).

More than Two Authorities. We described the protocol using two authorities.
The abstract protocol can be extended to an arbitrary number of authorities (al-
though this may require finding a threshold version of the encryption scheme).
However, a major stumbling block is the human element: even for two authorities
this protocol may be difficult for some users. Dividing a vote into three parts will
probably be too complex without additional ideas in the area of human interface.

Receipt-Freeness with a Corrupt Authority. The current protocol is not receipt-
free if even one of the authorities is corrupt. Note that this is not a problem in
the proof, but in the protocol itself (if the voter does not know which authority is
corrupt): the voter can’t tell which of the ballots the coercer will have access to, so
she risks getting caught if she lies about the value she erased from the ballot. It is
an interesting open question whether this type of attack can be prevented.

Better Human Interface. Probably the largest hurdle to implementing this proto-
col is the human interface. Devising a simple human interface for modular addition
could prove useful in other areas as well.

APPENDIX

A. HOMOMORPHIC COMMITMENT AND ENCRYPTION SCHEMES OVER
IDENTICAL GROUPS

Our voting scheme requires a perfectly private commitment scheme with “match-
ing” semantically-secure encryption schemes. The commitment scheme’s message
and randomizer spaces must both be groups, and the commitment scheme must be
homomorphic (separately) in each of the groups. There must be a matching en-
cryption scheme for each group, such that the encryption scheme’s message space
is homomorphic over that group.

To meet these requirements, we propose using the standard Paillier encryption
scheme. The Paillier encryption public key consists of an integerN = p1p2, where p1

and p2 are safe primes, and an element e ∈ Z∗N2 . The private key is the factorization
of N . The encryption plaintext is in the group Zn

For the commitment scheme, we propose a modified version of the Pedersen
commitment scheme where both messages and randomness are also in the group
ZN . The commitment public key consists of N (the same value as the encryption
public key) along with random generators g, h in the order N subgroup of Z∗4N+1.
Below we give the details of this construction.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 33

A.1 Modified Pedersen

The abstract version of Pedersen commitment has a public key consisting of a cyclic
group G and two random generators g, h ∈ G such that logg h is not known to the
committer. The cryptographic assumption is that logg h is infeasible to compute.

The message and randomizer spaces for this scheme are both Z|G|. C(m, r) .=
gmhr. Since g and h are both generators of the group, for any m, when r is chosen
at random gmhr is a random group element. Therefore, this scheme is perfectly
hiding. If an adversary can find (m1, r1) 6= (m2, r2) such that gm1hr1 = gm2hr2 ,
then it can compute logg h = m2−m1

r1−r2 , violating the cryptographic assumption.
Hence the scheme is computationally binding. It is easy to see that the scheme is
homomorphic.

Finally, if we choose g, h = gx, where g is chosen randomly and x is chosen
randomly such that gx is a generator, we get an identically distributed public key,
but knowing x it is easy to equivocate.

In the “standard” implementation of Pedersen, G is taken to be the order q
subgroup of Z∗p, where p = 2q+1 and both p and q are prime (i.e., p is a safe prime).
g and h are randomly chosen elements in this group. The discrete logarithm problem
in G is believed to be hard when p is a safe prime chosen randomly in (2n, 2n+1).

Our modified version of Pedersen takes G to be the order N = p1p2 subgroup
of Z∗4n+1, where p1 and p2 are safe primes and 4n + 1 is also prime (we can’t use
2n + 1, since that is always divisible by 3 when p1 and p2 are safe primes). The
computational assumption underlying the security of the commitment scheme is
that, when p1 is a random safe prime and g and h are random generators of G,
computing logg h is infeasible. Note that it is not necessary to keep the factorization
of N secret (in terms of the security of the commitment scheme), but knowing the
factorization is not required for commitment.

A.2 Choosing the Parameters

The connection between the keys for the commitment and encryption schemes
makes generating them slightly tricky. On one hand, only one of the authorities
can know the private key for the encryption scheme (since its purpose is to hide
information from the other authority). On the other hand, the security of the com-
mitment must be publicly verifiable (even if both authorities are corrupt), hence
we cannot allow the authorities to choose the parameters themselves. Moreover,
for the commitment to be binding, N must have a large random prime factor, and
g and h must be chosen randomly.

Below, we sketch our proposed protocol for verifiably generating the system pa-
rameters. Protocol 6 generates the parameters for the Paillier encryption, and
Protocol 7 the parameters for the modified Pedersen commitment. The basic idea
is that A1 can use zero-knowledge proofs to show that the modulus N = p1p2 is
product of two safe primes, and to prove that p1 is a random safe prime: basically,
that it is the outcome of a coin-flipping protocol that A1 conducts with the random
beacon (this is accomplished by the loop at step 1 in Protocol 6). Technically,
the proofs should be output by Protocol 7 rather than 6 (since they are required to
prove the security of the commitment scheme). However, to clarify the presentation
we have included them in the encryption key-generation protocol.

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · T. Moran and M. Naor

The generators g, h for the order N subgroup of Z∗4N+1, needed for the Pedersen
scheme, are simply random elements of Z4N+1 (chosen using the random beacon).
This works because a random element g ∈R Z4N+1 will be an element of Z∗4N+1 with
order o(g) ∈ {N, 2N, 4N} except with negligible probability (O(1/

√
N)), assuming

p1 and p2 are of order O(
√
N)). If the order of g is 2N (resp. 4N), then g2 (resp.

g4) will have order N (this computation can be replicated by the verifiers).
The protocols require integer commitments that have an efficent zero-knowledge

proof of multiplication. We need an integer commitment scheme whose setup can
be performed using a random beacon (rather than a trusted party). One such
possibility is the Damg̊ard-Fujisaki scheme [Damg̊ard and Fujisaki 2002], when in-
stantiated using class groups rather than an RSA modulus. For the zero-knowledge
proofs that p1 and p2 are safe primes, we can use the techniques of Camenisch and
Michels [1999].

Note that if we had a trusted third party to help with setup, we could significantly
simplify it. Even a third party that is only trusted during the setup could help (for
instance, by allowing us to use Damg̊ard-Fujisaki with an RSA modulus generated
by the third party).

Protocol 6 Key Generation for Encryption (KG)
Input: Security parameter k

1: repeat {Generate a verifiable commitment C1 to a random safe prime: p1}
2: Choose a random p′ ∈R Z2k

3: Publish a commitment C ′ to p′

4: Interpret the next output of the random beacon as a number p′′ ∈R Z2k

5: if p1 = p′ + p′′ (mod 2k) is a safe prime then
6: Publish a commitment C1 to p1

7: Prove in zero-knowledge (using the random beacon) that C1 is a commit-
ment to a safe prime, and that it is the sum of p′′ and the committed
value of C ′. {if the commitment is statistically hiding, this will be a zero-
knowledge proof of knowledge}.

8: else
9: Publicly open the commitment C ′, revealing p′.

10: end if
11: until p1 is a safe prime
12: Privately choose a random k-bit safe prime p2, such that 4p1p2 + 1 is prime.
13: Publish N = p1p2

14: Publish a commitment C2 to p2

15: Prove in zero-knowledge that C2 is a commitment to a safe prime, and that the
product of the values committed to in C1 and C2 is N .

16: Run the standard Paillier key generation using N as the modulus.

B. ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE

Our protocols require proving statements in zero-knowledge about committed val-
ues. Since we use perfectly-hiding commitments, proving that there exists an open-
ing of a commitment with some property is meaningless: there exist openings of
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 35

Protocol 7 Key Generation for Commitment (K)
Input: Modulus N output by KG (Protocol 6)

1: Interpret the next output of the random beacon as elements g, h ∈ Z∗4N+1.
2: for x ∈ {g, h} do
3: while xN 6≡ 1 (mod N2) do
4: x← x2

5: end while
6: end for
7: Output g, h and N .

the commitment to every value. Instead, we use zero-knowledge proofs of knowl-
edge [Bellare and Goldreich 1992]. Roughly, there exists an efficient “knowledge
extractor” that, given oracle access to a prover that succeeds with with some non-
negligible probability, can output a value consistent with what the prover claims to
know.

In this section we briefly describe the zero-knowledge proof subprotocols. These
are all honest-verifier, public-coin, zero-knowledge proofs of knowledge, using stan-
dard cut-and-choose techniques. When they are used publicly (i.e., on the bulletin
board), the verifier’s coins are taken from the random beacon, hence the honest-
verifier assumption makes sense. Although more efficient protocols exist for these
applications [Boudot 2000; Groth 2002], for the purpose of this paper we concen-
trate on simplicity and ease of understanding.

B.1 Proof That Two Commitments Are Equivalent

In step 7 of Protocol 3, authority A1 must prove that an encryption it generated
has the same value as a previously published commitment. The following subpro-
tocol works for any two homomorphic commitment schemes (in this case we can
consider the encryption a commitment scheme), as long as their message groups
are isomorphic. Since our commitment scheme is symmetric (we can consider it a
commitment to the randomness), this protocol works for that case as well.

We will assume two commitment schemes C1 and C2, with message space M,
commitment spaces C1, C2 (resp.) and randomness groups R1,R2 (resp.).

Let c1 ∈ C1 and c2 ∈ C2 be the commitments for which we are proving “equiva-
lence”. Formally, what the protocol proves is that the prover knows a value x ∈M
and values r1 ∈ R1, r2 ∈ R2 such that c1 = C1(x, r1) and c2 = C2(x, r2). The
complete protocol consists of k repetitions of Protocol 8; the probability that the
prover can cheat successfully is exponentially small in k.

B.2 Proof of Commitment Shuffle

We say a vector of commitments is “a valid shuffle” of a second vector if, whenever
the prover can open one vector, it can open both vectors to permutations of the
same set of values. Note that this property is an equivalence relation (with respect
a single prover).

An important point is that we do not require the prover to show that it can
open either of the vectors of commitments. This property is necessary, because our
voting protocol requires a voting authority to shuffle commitments that it does not

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · T. Moran and M. Naor

Protocol 8 Zero-Knowledge Proof That Two Committments Are Equivalent
Input: Verifier receives c1 ∈ C1 and c2 ∈ C2, Prover receives x ∈ M and r1 ∈
R1, r2 ∈ R2 such that c1 = C1(x, u1) and c2 = C2(x, u2)

1: Prover chooses values s ∈RM and u1 ∈R R1, u2 ∈ R2

2: Prover sends to verifier: d1
.= C1(x+ s, r1 + u1) and d2

.= C2(x+ s, r2 + u2)
3: Verifier sends to the prover a random bit b ∈R {0, 1}
4: if b = 0 then
5: Prover sends to the verifier: s, u1 and u2.
6: Verifier checks that d1 = c1C(s, u1) and d2 = c2C(s, u2)
7: else
8: Prover sends to the verifier: x+ s, r1 + u1 and r2 + u2

9: Verifier checks that d1 = C(x+ s, r1 + u1) and d2 = C(x+ s, r2 + u2)
10: end if

know how to open.
To construct a zero-knowledge proof, we use a standard cut-and-choose technique.

Roughly, the prover publishes a third vector of commitments, then, according to
the verifier’s choice, it either shows that this third vector is a valid shuffle of the
first, or that third vector is a valid shuffle of the second. If it is both, the first
vector must be a valid shuffle of the second (and vice-versa).

Formally, let c1, . . . , cn ∈ C and c′1, . . . , c
′
n ∈ C be commitments. The prover

must show that it knows a permutation σ : [n] 7→ [n] and values r1, . . . , rn ∈ R such
that for all i ∈ [n]: c′i = cσ(i) · C(0, ri).

The protocol consists of k repetitions of Protocol 9 (where k is the security
parameter).

Protocol 9 Zero-Knowledge Proof of Valid Shuffle
1: Prover chooses a random permutation π : [n] 7→ [n]
2: Prover chooses values r′1, . . . , r′n ∈R R.
3: for 1 ≤ i ≤ n do
4: Prover sends to the verifier: di

.= c′π(i) · C(0, r′i)
5: end for
6: Verifier sends to the prover a random bit b ∈R {0, 1}
7: if b = 0 then
8: Prover sends to the verifier: π
9: Prover sends to the verifier: r′1, . . . , r′n

10: for 1 ≤ i ≤ n do
11: Verifier checks that di = c′π(i) · C(0, r′i)
12: end for
13: else
14: Prover sends to the verifier: σ ◦ π
15: for 1 ≤ i ≤ n do
16: Prover sends to the verifier: si

.= rπ(i) + r′i
17: Verifier checks that di = cσ◦π(i) · C(0, si)
18: end for
19: end if

ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 37

B.3 Proof that a Committed Value is in Z2k

In steps 9 and 10 of Protocol 2, each authority must prove that a committed value
“is in an appropriate range”.

Formally, z ∈ C be a commitment. The prover must show that it knows values
x ∈ M and u ∈ R such that z = C(x, u) and x ∈ Z2k (i.e., that it knows how to
open the commitment to a value in the range).

Roughly, the idea behind the protocol is to show that the binary representation
of z has only k bits, by homomorphically constructing an equivalent commitment
from k commitments to binary values. The protocol itself appears as Protocol 10.

Protocol 10 Zero-Knowledge Proof that a Committed Value is in Z2k

Input: Verifier receives z ∈ C, Prover receives x ∈ M and u ∈ R such that
z = C(x, u), x < 2k.

1: Denote: c0
.= C(0, 0) and c1

.= C(1, 0)
2: Denote: b0, . . . , bk−1 the binary representation of x.
3: Prover chooses values r1, . . . , r2k ∈R R.
4: for 1 ≤ i ≤ 2k do
5: Prover computes and sends to verifier:

di−1
.=

{
C(bi−1, ri) if i ≤ k
C(1− bi−k−1, ri) if i > k

6: end for
7: Prover proves to verifier (using Protocol 9) that d0, . . . , d2k−1 is a valid shuffle

of c0, . . . , c0︸ ︷︷ ︸
×k

, c1, . . . , c1︸ ︷︷ ︸
×k

{note that this is indeed the case, since there are exactly

k commitments to 0 and k commitments to 1}
8: Prover and verifier both compute:

z′
.=
k−1∏
i=0

d2i

i = C

(
k−1∑
i=0

2ibi,
k−1∑
i=0

2iri

)

9: Prover proves to verifier (using Protocol 8) that z′ and z are commitments to the
same value. {Note that this is the case, since by the definition of b0, . . . , bk−1,
x =

∑k−1
i=0 2ibi}

C. A FORMAL DEFINITION OF RECEIPT-FREENESS

This section is taken almost verbatim from [Moran and Naor 2006]. This formaliza-
tion of receipt-freeness is a generalization of Canetti and Gennaro’s definition (and
so can be used for any secure function evaluation), and is strictly stronger (i.e., any
protocol that is receipt-free under this definition is post-factum incoercible as well).
The difference is the adversarial model we consider. Canetti and Gennaro only al-
low the adversary to query coerced players players after the protocol execution is
complete.

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · T. Moran and M. Naor

Unfortunately, this “perfect” receipt-freeness is impossible to achieve except for
trivial computations. This is because for any non-constant function, there must
exist some party Pi and some set of inputs to the other parties such that the
output of the function depends on the input used by xi. If the adversary corrupts
all parties except for Pi, it will be able to tell from the output of the function what
input what used by Pi, and therefore whether or not Pi was a puppet.

This is the same problem faced by Canetti and Genaro in defining post-factum
incoercibility. Like theirs, this definition sidesteps the problem by requiring that
any “coercion” the adversary can do in the real world it can also do in an ideal world
(where the parties’ only interaction is sending their input to an ideal functionality
that computes the function). Thus, before we give the formal definition of receipt-
freeness, we must first describe the mechanics of computation in the ideal and real
worlds. Below, f denotes the function to be computed.

C.1 The Ideal World

The ideal setting is an extension of the model used by Canetti and Genaro (the post-
factum incoercibility model). As in their model, there are n parties, P1, . . . , Pn, with
inputs x1, . . . , xn. Each party also has a “fake” input; they are denoted x′1, . . . , x

′
n.

The “ideal” adversary is denoted I.
In our model we add an additional input bit to each party, c1, . . . , cn. We call

these bits the “coercion-response bits”. A trusted party collects the inputs from all
the players, computes f(x1, . . . , xn) and broadcasts the result. In this setting, the
ideal adversary I is limited to the following options:

(1) Corrupt a subset of the parties. In this case the adversary learns the parties’
real inputs and can replace them with inputs of its own choosing.

(2) Coerce a subset of the parties. A coerced party’s actions depend on its coercion-
response bit ci. Parties for which ci = 1 will respond by sending their real input
xi to the adversary (we’ll call these “puppet” parties). Parties for which ci = 0
will respond by sending the fake input x′i to the adversary.
At any time after coercing a party, the adversary can provide it with an alter-
nate input x′′i . If ci = 1, the coerced party will use the alternate input instead
of its real one (exactly as if it were corrupted). If ci = 0, the party will ignore
the alternate input (so the output of the computation will be the same as if
that party were honest). There is one exception to this rule, and that is if the
alternate input is one of the special values ⊥ or ∗, signifying a forced abstention
or forced random vote, respectively. In this case the party will use the input
⊥, or choose a new, random, input regardless of the value of ci.

I can perform these actions iteratively (i.e., adaptively corrupt or coerce parties
based on information gained from previous actions), and when it is done the ideal
functionality computes the function. I’s view in the ideal case consists its own
random coins, the inputs of the corrupted parties, the inputs (or fake inputs) of the
coerced parties and the output of the ideal functionality f(x1, . . . , xn) (where for
corrupted and puppet parties xi is the input chosen by the adversary).

Note that in the ideal world, the only way the adversary can tell if a coerced
party is a puppet or not is by using the output of the computation – the adversary
has no other information about the coercion-response bits.
ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 39

C.2 The Real World

Our real-world computation setting is also an extension of the real-world setting in
the post-factum incoercibility model. We have n players, P1, . . . , Pn, with inputs
x1, . . . , xn and fake inputs x′1, . . . , x

′
n. The adversary in the real-world is denoted

A (the “real” adversary).
The parties are specified by interactive Turing machines restricted to probabilistic

polynomial time. Communication is performed by having special communication
tapes: party Pi sends a message to party Pj by writing it on the (i, j) commu-
nication tape (we can also consider different models of communication, such as a
broadcast tape which is shared by all parties). Our model does not allow erasure;
communication tapes may only be appended to, not overwritten. The communi-
cation is synchronous and atomic: any message sent by a party will be received in
full by intended recipients before the beginning of the next round.

We extend the post-factum incoercibility model by giving each party a private
communication channel with the adversary and a special read-only register that
specifies its corruption state. This register is initialized to the value “honest”, and
can be set by the adversary to “coerced” or “corrupted”. In addition, each party
receives the coercion response bit ci. We can think of the ITM corresponding to
each party as three separate ITMs (sharing the same tapes), where the ITM that
is actually “running” is determined by the value of the corruption-state register.
Thus, the protocol specifies for party Pi a pair of ITMs (Hi, Ci), corresponding to
the honest and coerced states (the corrupt state ITM is the same for all protocols
and all parties).

The computation proceeds in steps: In each step A can:

(1) Corrupt a subset of the parties by setting their corresponding corruption-state
register to “corrupted”. When its corruption-state register is set to “corrupted”,
the party outputs to the adversary the last state it had before becoming cor-
rupted, and the contents of any messages previously received. It then waits
for commands from the adversary and executes them. The possible commands
are:

Copy to the adversary a portion of one of its tapes (input, random, working
or communication tapes).
Send a message specified by the adversary to some subset of the other
parties.

These commands allow the adversary to learn the entire past view of the party
and completely control its actions from that point on. We refer to parties
behaving in this manner as executing a “puppet strategy”.

(2) Coerce a subset of the parties by setting their corresponding corruption-state
register to “coerced”. From this point on A can interactively query and send
commands to the coerced party as it can to corrupted parties. The coerced
party’s response depends on its coercion-response bit ci. If ci = 1, the party
executes the puppet strategy, exactly as if it were corrupted. If ci = 0, it runs
the coercion-resistance strategy Ci instead. The coercion-resistance strategy
specifies how to respond to A’s queries and commands.

(3) Send commands to corrupted and coerced parties (and receive responses).
ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · T. Moran and M. Naor

A performs these actions iteratively, adaptively coercing, corrupting and interacting
with the parties. A’s view in the real-world consists of its own randomness, the
inputs, randomness and all communication of corrupted parties, its communications
with the coerced parties and all public communication.

C.3 A Formal Definition of Receipt-Freeness

Definition C.1. A protocol is receipt-free if, for every real adversary A, there
exists an ideal adversary I, such that for any input vector x1, . . . , xn, fake input
vector x′1, . . . , x

′
n and any coercion-response vector c1, . . . , cn:

(1) I’s output in the ideal world is indistinguishable from A’s view of the protocol
in the real world with the same input and coercion-response vectors (where the
distributions are over the random coins of I, A and the parties).

(2) Only parties that have been corrupted or coerced by A in the real world are
corrupted or coerced (respectively) by I in the ideal world.

It is important to note that even though a protocol is receipt-free by this definition,
it may still be possible to coerce players (a trivial example is if the function f
consists of the player’s inputs). What the definition does promise is that if it is
possible to coerce a party in the real world, it is also possible to coerce that party
in the ideal world (i.e. just by looking at the output of f).

ACKNOWLEDGMENTS

We would like to thank Tal Rabin for suggesting that all the randomness for the
secret sharing can be chosen by the voting authorities rather than the voter. This
significantly simplified the protocol’s user inteface. We would also like to thank the
anonymous reviewers for their helpful comments.

REFERENCES

Adida, B. and Rivest, R. L. 2006. Scratch & vote: self-contained paper-based cryptographic
voting. In Proceedings of WPES ’06, the 5th ACM workshop on Privacy in electronic society

(Alexandria, VA, USA), J. Stern, Ed. ACM Press, New York, NY, USA, 29–40.

Aumann, Y., Ding, Y. Z., and Rabin, M. O. 2002. Everlasting security in the bounded storage
model. IEEE Trans. on Information Theory 48, 6, 1668–1680.

Bellare, M. and Goldreich, O. 1992. On defining proofs of knowledge. In Proceedings of

CRYPTO 1992, 12th Annual International Cryptology Conference (Santa Barbara, CA, USA),
E. F. Brickell, Ed. LNCS, vol. 740. Springer-Verlag Inc., New York, NY, USA, 390–420.

Benaloh, J. and Tuinstra, D. 1994. Receipt-free secret-ballot elections. In Proceedings of the

Twenty-Sixth Annual ACM Symposium on Theory of Computing (Montréal, Québec, Canada).
ACM Press, New York, NY, USA, 544–553.

Boudot, F. 2000. Efficient proofs that a committed number lies in an interval. See Preneel [2000],

431–444.

Bryans, J. W. and Ryan, P. Y. A. 2004. A simplified version of the Chaum voting scheme. Tech.
Rep. CS-TR 843, University of Newcastle. May.

Camenisch, J. and Michels, M. 1999. Proving in zero-knowledge that a number is the product
of two safe primes. In Proceedings of EUROCRYPT 1999, International Conference on the

Theory and Application of Cryptographic Techniques (Prague, Czech Republic), J. Stern, Ed.
LNCS, vol. 1592. 107–122.

Canetti, R. 2000. Universally composable security: A new paradigm for cryptographic protocols.

Cryptology ePrint Archive, Report 2000/067.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 41

Canetti, R. and Gennaro, R. 1996. Incoercible multiparty computation. In 37th Annual Sym-

posium on Foundations of Computer Science (Burlington, VT, USA). IEEE Computer Society
Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 504–513.

Chaum, D. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-

munications of the ACM 24, 2, 84–88.

Chaum, D. 2004. E-voting: Secret-ballot receipts: True voter-verifiable elections. IEEE Security

& Privacy 2, 1 (Jan./Feb.), 38–47.

Chaum, D. 2006. http://punchscan.org/.

Cohen(Benaloh), J. D. and Fischer, M. J. 1985. A robust and verifiable cryptographically

secure election scheme. In Proceedings of the 26th annual Symposium on Foundations of Com-
puter Science (Portland, OR, USA). IEEE Computer Society Press, 1109 Spring Street, Suite

300, Silver Spring, MD 20910, USA, 372–382.

Cramer, R., Franklin, M., Schoenmakers, B., and Yung, M. 1996. Multi-authority secret-

ballot elections with linear work. In Proceedings of EUROCRYPT 1996, International Confer-
ence on the Theory and Application of Cryptographic Techniques (Saragossa, Spain), U. Mau-

rer, Ed. LNCS, vol. 1070. Springer-Verlag Inc., New York, NY, USA, 72–83.

Cramer, R., Gennaro, R., and Schoenmakers, B. 1997. A secure and optimally efficient multi-

authority election scheme. In Proceedings of EUROCRYPT 1997, International Conference on
the Theory and Application of Cryptographic Techniques (Konstanz, Germany), W. Fumy, Ed.

Vol. 1233. Springer-Verlag Inc., New York, NY, USA, 103–118.

Damg̊ard, I. B. and Fujisaki, E. 2002. A statistically-hiding integer commitment scheme based

on groups with hidden order. In Proceedings of ASIACRYPT 2002, International Conference
on the Theory and Application of Cryptology and Information Security (Queenstown, New

Zealand), Y. Zheng, Ed. LNCS, vol. 2501. Springer, New York, NY, USA, 125–142.

Fujioka, A., Okamoto, T., and Ohta, K. 1992. A practical secret voting scheme for large scale

elections. In Proceedings of AUSCRYPT 1992, Workshop on the Theory and Application of
Cryptographic Techniques (Gold Coast, Queensland, Australia), J. Seberry and Y. Zheng, Eds.

LNCS, vol. 718. Springer-Verlag Inc., New York, NY, USA, 244–251.

Groth, J. 2002. A verifiable secret shuffle of homomorphic encryptions. In Proceedings of PKC

2003, 6th International Workshop on Theory and Practice in Public Key Cryptography (Miami,
FL, USA), Y. Desmedt, Ed. Lecture Notes in Computer Science, vol. 2567. Springer, 145–160.

Hirt, M. and Sako, K. 2000. Efficient receipt-free voting based on homomorphic encryption. See

Preneel [2000], 539+.

Moran, T. and Naor, M. 2006. Receipt-free universally-verifiable voting with everlasting privacy.

In Proceedings of CRYPTO 2006, 26th Annual International Cryptology Conference (Santa
Barabara, CA, USA), C. Dwork, Ed. LNCS, vol. 4117. Springer, New York, NY, USA, 373–

392. http://www.wisdom.weizmann.ac.il/~talm/papers/MN06-voting.pdf.

Naor, M. and Shamir, A. 1994. Visual cryptography. In Proceedings of EUROCRYPT 1994,

Workshop on the Theory and Application of Cryptographic Techniques (Perugia, Italy), A. De
Santis, Ed. LNCS, vol. 950. Springer-Verlag Inc., New York, NY, USA, 1–12.

Neff, C. A. 2004. Practical high certainty intent verification for encrypted votes. http://www.

votehere.net/vhti/documentation/vsv-2.0.3638.pdf.

Popoveniuc, S. and Hosp, B. 2006. An introduction to punchscan. http://punchscan.org/

papers/popoveniuc_hosp_punchscan_introduction.pdf.

Preneel, B., Ed. 2000. Advances in Cryptology - EUROCRYPT 2000, International Conference

on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18,
2000, Proceedings (Bruges, Belgium). LNCS, vol. 1807. Springer, New York, NY, USA.

Rabin, M. O. 1983. Transaction protection by beacons. J.Computer and System Sciences 27, 2,

256–267.

Reynolds, D. J. 2005. A method for electronic voting with coercion-free receipt. Presentation:

http://www.win.tue.nl/~berry/fee2005/presentations/reynolds.ppt.

Ryan, P. Y. A. 2005. A variant of the Chaum voter-verifiable scheme. In Proceedings of WITS
’05, 2005 Workshop on Issues in the Theory of Security (Long Beach, CA, USA). ACM Press,

New York, NY, USA, 81–88.

ACM Journal Name, Vol. V, No. N, Month 20YY.

http://punchscan.org/
http://www.wisdom.weizmann.ac.il/~talm/papers/MN06-voting.pdf
http://www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf
http://www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf
http://punchscan.org/papers/popoveniuc_hosp_punchscan_introduction.pdf
http://punchscan.org/papers/popoveniuc_hosp_punchscan_introduction.pdf
http://www.win.tue.nl/~berry/fee2005/presentations/reynolds.ppt

42 · T. Moran and M. Naor

Shamir, A. 2006. Cryptographers panel, RSA conference. Webcast: http://media.omediaweb.

com/rsa2006/1_5/1_5_High.asx.

Nomenclature

(pk(X), sk(X)) The public/secret keys (resp.) for the encryption scheme with mes-
sage space X , where X ∈ {M,R}, page 16

` Length of random inputs to K (in bits), page 11, 12

e
(M)
1,i Encryption of authority A1’s share of voter i’s choice (E(M)(xi − t(2,i))),

page 20

e
(R)
1,i Encryption of authority A1’s share of the commitment randomness for voter

i(E(R)(r(1,i))), page 20
Fvote The ideal voting functionality, page 13
C Commitment group for commitment scheme (group operation is “·”), page 11
E(X) Group of encrypted messages, where X ∈ {M,R}. The group operation is

·, page 12
K Set of public keys for commitment scheme., page 11
R Randomizer group for commitment scheme (group operation is “+”), page 11
ρi The decrypted randomness for the commitment d1,i, page 20
σa Private permutation (shuffle) of voters chosen by authority Aa. The com-

position of the permutations is the one eventually revealed, page 19
τi The tally for candidate i, page 14
~w Tuple, (a, i, b), identifying ballot part, where Aa is the generating authority,

i is the voter id and b is a bit used as a serial number, page 16
ξi The decrypted message for the commitment d1,i, page 20
Aa Voting authority a, page 13
bv Serial number of ballot parts chosen by voter to be cast (1− bv is the serial

number of the ballot parts used for auditing), page 17
B~w The ballot part identified by the tuple ~w, page 16
C Commitment function, parameterized by the public key. C(x, r) ∈ C is a

commitment to x with secret randomness r, page 11
c(1,v) Shorthand for c(1,v,bv),sv

, the commitment to the value xv− t(2,v) (mod m)
(this is chosen by the voter from the set of commitments published inB(1,v)),
page 17

c(2,v) The commitment to the masking value t(2,v), page 17
c~w,j A commitment to t~w+j (mod m); in ballot parts generated by A1, page 16
c~w A commitment to t~w, page 16
cpk The public key for the commitment scheme, page 16
D(M) Decryption function with message space X , where X ∈ {M,R}, page 12
d3,v A commitment to voter v’s choice generated by homomorphically adding

the commitments to the voter’s masked choice and the commitments to the
masking value, page 18

ACM Journal Name, Vol. V, No. N, Month 20YY.

http://media.omediaweb.com/rsa2006/1_5/1_5_High.asx
http://media.omediaweb.com/rsa2006/1_5/1_5_High.asx

Split-Ballot Voting: Everlasting Privacy With Distributed Trust · 43

da,1, . . . , da,n A vector of commitments to the voters’ choices published by au-
thority Aa who generates it by shuffling and rerandomizing the vector
da+1,1, . . . , da+1,n, page 18

E(M) Encryption function with message space X , where X ∈ {M,R}; E(x, r) is
an encryption of x with randomness r, page 12

K Public key generation algorithm for commitment scheme., page 11
k Security parameter; we consider 2−k negligible, page 13
K ′ Equivocable secret key generation algorithm for commitment scheme (the

output of K ′ is used as an input to K), page 12
KG(X) Key generation algorithm for encryption scheme with message space X ,

where X ∈ {M,R}, page 12
m Number of candidates, page 3
n Number of voters, page 13
PK , VK Prover and Verifier algorithms, resp. for the commitment key generation

algorithm, page 11
r~w,j The secret randomness for the commitment c~w,j ; in ballot parts generated

by A1, page 16
r~w The secret randomness for the commitment c~w, page 16
sv The masked choice for voter v: sv

.= xv − t(1,v) − t(2,v) (mod m), page 17
t(a,v) Shorthand for t(a,v,bv): the masking value used by authority Aa for voter

v’s choice, page 17
t~w A random masking value (t~w ∈ Zm) for ballot-part ~w, page 16
ua,i The randomizing value added to the randomness of the commitment da+1,σa(i)

in the shuffle performed by authority Aa, page 19
v Used to represent the voter whose index is v, page 13
W The number of corrupt voters for which I did not cast a vote during the

voting phase, page 23
xv Voter v’s choice of candidate (xv ∈ Zm), page 13
za,i The randomizing value added to the message of the da+1,σa(i) in the shuffle

performed by authority Aa. For A2 this value is uniformly chosen from
Z2k , while for A1 it is chosen from Z22k . The actual value added is za,im,
page 19

x′v Random value chosen by I in place of unknown choice of voter v, page 23
I The “ideal adversary” in the UC model, page 21
A The “real-world adversary” in the UC model, page 21

ACM Journal Name, Vol. V, No. N, Month 20YY.

	Introduction
	Our Contributions
	Related Work

	Informal Overview of the Split-Ballot Protocol
	Shuffling Commitments
	Human Capability
	Vote Casting Example
	The Importance of Rigorous Proofs of Security for Voting Protocols
	A Vote Buying Attack

	Underlying Assumptions
	Physical Assumptions
	Cryptographic Assumptions

	Threat Model and Security
	Ideal Voting Functionality
	Receipt-Freeness

	Split-Ballot Voting Protocol
	Setup
	Voting
	Coercion-Resistance Strategy

	Tally
	Universal Verification and Output
	Security Guarantees

	Proof of Accuracy and Privacy Guarantee (Theorem 5.1)
	Setup Phase
	Voting Phase
	Tally Phase
	Indistinguishability of the Real and Ideal Worlds

	Proof of Receipt-Freeness (Theorem 5.2)
	Indistinguishability of the Real and Ideal Worlds

	Discussion and Open Problems
	Homomorphic Commitment and Encryption Schemes over Identical Groups
	Modified Pedersen
	Choosing the Parameters

	Zero-Knowledge Proofs of Knowledge
	Proof That Two Commitments Are Equivalent
	Proof of Commitment Shuffle
	Proof that a Committed Value is in Z2k

	A Formal Definition of Receipt-Freeness
	The Ideal World
	The Real World
	A Formal Definition of Receipt-Freeness

	Acknowledgments
	References

