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Abstract

We present a fairly general method for finding
deterministic constructions obeying what we call k-
restrictions; this yields structures of size not much
larger than the probabilistic bound. The structures
constructed by our method include (n, k)-universal sets
(a collection of binary vectors of length n such that for

any subset of size k of the indices, all 2 configurations
appear) and families of perfect hash functions. The
near-optimal constructions of these objects imply the
very efficient derandomization of algorithms in learn-
ing, of fived-subgraph finding algorithms, and of near
optimal XIIX threshold formulae. In addition, they
derandomize the reduction showing the hardness of ap-
prozimation of set cover. They also yield determinis-
tic constructions for a local-coloring protocol, and for
exhaustive testing of circuits.

1 Introduction

Research conducted over the last decades has
demonstrated the significance of the Probabilistic
Method and of probabilistic algorithms and proce-
dures (see [6, 28] for recent reviews of these achieve-
ments). However, there are many reasons why one
should not be satisfied with a probabilistic construc-
tion of an object or with a probabilistic algorithm.
This is especially true in cases where there is no pro-
cedure for checking the correctness of the result. Also,
probabilistic algorithms often behave less satisfacto-
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rily than deterministic ones under recursion, since this
can require resource-expensive boosting of the success
probability. Hence, a lot of effort has been devoted to
finding ways of removing randomness from algorithms.
Unfortunately, the resulting algorithm is often much
less efficient than the original one. Exceptions to this
are, e.g., the results of [5, 10, 24], where there is no
significant penalty in time (or number of processors,
in the case of parallel algorithms).

The goal of this paper is to present a fairly gen-
eral method for constructing some combinatorial ob-
jects which we call k-restriction collections. All k-
restriction problems have a probabilistic construction
obtained by picking a random collection of vectors.
One can show a “union bound” for such a collection
(see Section 3.1), and our method achieves determin-
istic constructions of sizes close to that of the union
bound. These constructions in turn allow us to remove
the randomness from a large variety of algorithms. A
k-restriction problem is, roughly speaking, a collection
of vectors of length n over an alphabet of size b such
that for any k out the n indices, we will find some
“nice” configurations; see Section 2.2 for the formal
definition.

At the heart of our method are splitters: an
(n,k,€)-splitter H is a family of functions from
{1,...,n} to {1,...,¢} such that for all S C {1,...,n}
with |S| =k, there is a h € H that splits S perfectly,
i.e., into equal-sized parts (h=1(j))N S, j = 1,2,...4
(or as equal as possible, if £ does not divide k). Split-
ters themselves fall into the category of k-restriction
problems for which our construction is applicable: the
alphabet size is ¢ and each vector corresponds to a
function h, where the ith entry of the vector is h(7).
The nice configurations for a specified k-set S are
therefore those where each letter in the alphabet ap-

pears the same number of times, when restricted to
S.

1.1 Method

We give here a brief overview of our method. Start-
ing with a universe of size n, we first reduce our
problem to one with a universe of size k% by find-
ing a poly-time computable family H of (n,k,k?)-
splitters, i.e., a family H of maps from {1,...,n}
to {1,...,k?} such that for every k-sized subset S of
{1,...,n}, there is some function in H which is injec-
tive on S. A construction for the [k?]-sized universe
will then be “pulled back” to one on the [n]-universe,
at a poly(k) - logn cost in the size of the family.

Next we find a poly-time computable family of



(k?,k,1) splitters, typically for £ ~ logk. This gives
us, for each k-set in [k?], a function which partitions
the k-set into [ evenly sized blocks. We then give an
application-dependent construction within each block.
This construction will be of the same size guaranteed
by the existence proof, and its computation will not be
poly-time in the size of the construction; yet it will be
poly-time in the parameters of the original problem.

Finally the constructions for the different blocks are
combined into a construction for the [k?]-universe in
an application-specific manner.

1.2 Problems

There are several problems (combinatorial struc-
tures) falling into our framework for which our method
yields improved and near-optimal bounds. For most
of these problems the improvement is most apparent
when k& = ©(logn). These problems are defined in
Section 2.2 and their constructions and applications
are described in detail in Section 5. These k-restriction
problems include the following.

(i) Splitters are both a means (as mentioned above)
and an end of our work. They are rather basic combi-
natorial objects. We use them for constructing near-
optimal size depth-3 formulae for threshold functions,
in Section 5.4; this constructivizes the probabilistic
existential proof of [35]. An important special case of
splitters is:

(ii) Perfect hashing. Let H be a family of functions
mapping a domain of size n into a range of size k. H
is an (n, k)-family of perfect hash functions if for all
subsets S of size k from the domain there is an h € H
that is 1-1 on S. Thus these are (n,k, k)-splitters.
The union bound shows the existence of a family H

such that |H| = O(e*v/klogn), while it is known that
|H| > Q(eFlogn/Vk) [17, 21, 34, 32]. The previously
best-known explicit construction (based on [40] and
described in [7]), is of size Q(11¥logn) (this bound
was not made explicit in these papers).

In section 4.4 we present a deterministic construc-
tion of size e¥k9U°8k) Jogn, for this problem. Perfect
hash functions have many applications, e.g. in table
look-up and communication complexity [18, 26, 33].
The area where our method is most relevant is in
derandomizing the color-coding method of [7], where
we obtain deterministic algorithms with performance
close to the randomized ones.

(iii) (n,k)-universal sets. This problem is to con-
struct a small set of vectors T' C {0,1}"™ such that
for any index set S C {1,2,...,n} with |S| = k, the
projection of 7' on S contains all possible 2¥ config-
urations. The problem originated in the testing of
circuits, since it allows exhaustive testing of a circuit
where each component relies on at most k inputs. The
union bound shows the existence of (n,k)-universal
sets of size [k2¥Inn]. A lower bound of Q(2%Inn) is
known [20]. Previously, the best explicit construction

was of size O(min{k2%* logn, k?2%* log® n}) [3, 4, 30].

In section 5.2 we present a near-optimal determinis-

tic construction of size 28k°(1°8 %) Jog n and discuss the
applications of this construction for the fault-tolerance
of the hypercube, learning algorithms, distributive col-
oring, and the hardness of the set-cover problem. An-
other class of structures related to the hardness of set-
cover, anti-universal sets, is discussed in Section 5.3.

1.3 Explicit Constructions: Global vs.

Local

There is a distinction to be made, when discussing
explicit constructions, between what we call local and
global constructions. For instance, if we were asked to
construct an undirected graph G = (V, E) on n ver-
tices satisfying a certain property, we could give a de-
terministic construction which would list the edges in
E in poly(n) time; we would call this a globally explicit
construction. However, a stronger type of construc-
tion is possible: given any node v € V, outputting its
neighborhood N (v) in poly(logn, |N(v)|) time; this is
what we would call a locally explicit construction, and
is what is usually called for in the explicit construc-
tion of dispersers and constant-degree expanders, for
instance. Clearly, local is stronger than global, in anal-
ogy to the distinction between log-space and polyno-
mial time.

In our context of, say, universal test sets and perfect
hash functions, globally explicit constructions would
refer to listing out the corresponding families F' in
time polynomial in their size. Locally explicit con-
structions would just ask for h;(j) to be evaluated in
time polynomial in the representation of m,¢ and j,
i.e., O(log(n + |F|)). (Here h; stands for the ith func-
tion in the family F', and j is any index in {1,...,n}.)
When applying the construction for removing random-
ness, we require only globally explicit constructions
and hence, in describing our results above, we referred
to globally explicit ones. However, we also provide lo-
cally explicit constructions; these too come to within

a 2°(F) factor of optimal, but the 2°(F) term is worse.

1.4 A brief review of derandomization

The random choices made by a probabilistic algo-
rithm naturally define a probability space where each
choice corresponds to a random variable. To remove
randomness from an algorithm, we need a way of find-
ing a successful assignment to these choices, determin-
istically.

One such approach, the method of conditional prob-
abilities ([39, 36]), is to search the probability space
for a good choice by shrinking the probability space
at every iteration, by fixing an additional choice. A
different approach for finding a good point is to show
that if the random choices satisfy only some limited
form of independence (in which case we may have a
smaller space), the algorithm is successful. This ap-
proach is taken in [23, 2, 19, 30, 4].

These two approaches have been combined in two
different ways in the past, in [9, 24, 29] and [5]. The
framework suggested in this paper is a synthesis of
many known techniques. Finding the “right” combi-
nation for achieving near-optimality seems to be the
main contribution of this work.



2 Tools and definitions

Notation. Let [n] denote the set {1,2,...,n}. For
any k, 1 < k < n, the family of k-sized subsets (or
k-sets) of [n] is denoted by ().

2.1 Limited independence and small-bias
probability spaces

Let Q be a probability space with n random vari-
ables z1,x,,...x,, each taking values in a finite set
A. Recall that Q is called k-wise independent if
for any {i1,72,...,ix} C [n], the random variables
Ty, Tiy, - - -, Ly, are mutually independent. Often, as
will be the case in this paper, it is also assumed that
each z; is uniformly distributed in A.

Fairly tight bounds are known on the size of k-
wise independent spaces: there are explicit construc-
tions of k-wise independent probability spaces of size

O(naa;‘lk) (assuming a is prime and n+1 is a power of
a), where a (= |A|) is the alphabet size. On the other

hand, there is a lower bound of ZLka (}1), which for

fixed k is Q(n*/2]), for the size of such a sample space
(see [6, 2, 15]). An important property of these con-
structions is that it is possible to list all members of
the probability space in linear time.

When A = {0,1}, we say that Q is a k-wise e-
biased probability space if for any nonempty subset
S of [n] of size at most k we have |Pr(, sz =
0] — Pri@;cszi = 1] < e A key property of
any k-wise e-biased probability space is that Vs <
k Vi1 i, ..., 05} C (M) Wbi,bo,..., 0, € {0,1}

S

| Pr( /\

=1

) —1/2°%| <e.

Therefore k-wise e-biased probability spaces are de-
scribed as “almost k-wise independent” or “k-wise e-
dependent”. The construction of small-bias spaces due

o [30], as optimized in [3], yields a probability space
of size O(klog") those of [4] yield probability spaces
of size 0(7’c log ).

2.2  k-restriction problems

An instance of a k-restriction problem is speci-
fied by (i) positive integers b, k,n,m, and (ii) a list
C = C1,Cy,...,C,, where each C; C [b]*, and with
E]}cl]e collection C being invariant under permutations of

For a vector v = (v1,ve, ...,

vn,) € [b]™ and a subset
S € ("), we say that v satisfies the restriction C; at
S if v(S) € C;. (Here v(S) is the vector (v, ..., vs,),
for S = {i1,...,4is} and iy < ... < i,.) We say that a
collection of vectors V C [b]™ satisfies the constraints
C it vS € (7)) and V5 : 1 < j < m there exists v € V
such that v(S) € C;. An important parameter of a
k-restriction problem is ¢ = mini<;<,, |C;]. We call
c¢/b* the density of the problem.

We now define the problems we deal with in this
paper and explain why they fall into the category of

k-restriction problems. See the introduction for the
definition of splitters, (n, k)-universal sets, and per-
fect hash families.

(i) The (n,k,¢)-Splitters problem. (In case ¢ does
not divide k, we require the first (k mod ¢) parts to
be of size [k/{] and the remaining ones to be of size
k/¢].) To specify splitters as a restriction problem,
let b = ¢ and let C consist of one set C; containing all

vectors from [b]* such that each value in [b] appears

exactly k/¢ times. Here, ¢ = (k/Z k/f ) k/Z)‘

(ii) Perfect hashing. In this case, b = k and C has
exactly one element C; C [k]*, which contains pre-
cisely all the permutations of [k]. Hence, ¢ = k! and
the density is k!/k*. Note that perfect hash families
are splitters with £ = k

(iii) The (n,k)-universal set problem. In this
problem, b = 2 and C consists of 2* sets C, = {z}
for all z € {0,1}*. In this case, ¢ = 1.

(iv) In order to prove improved non-approximability
results for the set-cover problem, Feige has recently in-
troduced the following sets [16], which we call (n, k,b)
anti-universal sets as suggested by Oded Goldreich:
a family of functions from [n] to [b] where for every k-
set in [n] and every vector v € [b]¥, there is a function
that disagrees with v in every coordinate. Formally,
it is a collection of functions mapping [n] to [b] such
that

k

V(il,iz,...,ik) S [’I’L] V(al,az,...,ak) € [b]k

dh € H Vj € [k] h(ij) # a;.
In this case C consists of bF sets

Co={ye]*: yj#a; V1<j<k},

for all x € [b]*. Note that for b = 2, anti-universal
sets are identical to (n, k)-universal sets. However for
general b, we have ¢ = (b — 1)*; the density is
G-/

Note that C is implicitly presented in all the above
four problems, and hence, we do not need an explicit
list of the constraints for any of these problems. Thus
by (globally) efficient algorithms for these four prob-
lems, we just mean algorithms taking time polynomial
in n and in the output size.

3 Probabilistic and exhaustive bounds
for k-restriction problems
3.1 The union bound for k-restriction
problems
Suppose that for a k-restriction problem specified
by C = C1,Cs, ...,Cp, C [b]* such that |C;| > ¢, we at-
tempt a probabilistic construction. If a random vector

v € [b]™ is chosen and we consider a specific S € (”])



and some C; € C, then the probability that v satis-

fles C; at S is ‘f,fl > Therefore, if we choose
t random vectors, we get via the union bound that
the probability that the collection does not satisfy C

is bounded above by

Z ZPr[no v satisfies C; at S|
Se([z]) j=1

(S (-5 < ()05

Restricting (1) to be less than 1 implies that

klnn +1Inm

t2> fm] (2)

suffices; thus, for any given k-restriction problem of
density ¢, there exists a solution of at most this size.
We will refer to (2) as the union bound. For many
k-restriction problems the union bound is very close
to the best (smallest) possible construction: e.g., for
(n, k)-universal sets and perfect hash functions.

3.2 “Smart” exhaustive search

We now show how to get a construction that is of
size equaling that given by the union bound, for any
k-restriction problem. This phase of the construction
is computationally expensive in its own right, i.e., not
polynomial time in its parameters; however with the
parameters we will be using it, it will take time poly-
nomial in the parameters of the main problem. The
reason for dubbing this “smart” search is that though
it does brute-force search, the search domain is much
smaller than that of the class of all functions mapping
[n] to [b].

Typically, for a “main problem” with parameters
N,K and B we apply this phase with n = K2,
k = K/(log K log B) or K/log K, and b = B. Since we
are discussing general k-restriction problems here, we
assume that the collection of constraints C is presented
by a membership oracle: a procedure that, given any
ve ", S e (") and j € [m], says whether or not
v(S) € C}, within some time bound T'. For the exam-
ples we are interested in, this oracle computation will
be easy, usually taking just O(k) time.

Let Hp ey be a k-wise independent probability
space with n random variables taking values in [b],
such as the one mentioned in section 2.1. Henceforth,
we assume that b < n for k-restriction problems for
simplicity, since this is the case for all our applica-
tions; thus, |H, ;| < n*. First note that the union
bound (2) is applicable even when the vectors are not
chosen uniformly at random from [b]", but chosen uni-
formly at random from the much smaller space H,, 1 s
— this follows from the fact that (1) examines only
k-sets of [n].

Theorem 1 For any k-restriction problem with b <
n, there is a deterministic algorithm that outputs a col-
lection obeying the k-restrictions, with the size of the

collection equaling the union bound. The time taken
to output the collection is

bk n
o(— - cm T | Hppol,
(C <k> m | Hon ke b

where T is the time complexity of the membership
oracle. There is a parallel algorithm that outputs a
collection at most a constant times larger than the
union bound in time poly(T + klogn + logm), using

O((}) -m - |Hnx,s|) EREW PRAM processors.

Proof . Counsider a set-system in which the universe
(ground set) is Hp . The sets are T ;, indexed by
pairs (S, 7) such that S € ([Z]) and 1 <j <m. Ts;
consists of all h € H, ; that satisfy C; at S. We
do not explicitly list out the sets T's ;: note that any
given h can be tested for membership in 75 ; in time
T, using the given membership oracle. Any subset
of Hy p that hits (intersects) all subsets Ts; is a
good collection (i.e. is a collection satisfying the k-
restriction problem). This is the well-known hitting
set or transversal, problem for hypergraphs.

We can find such a collection by a greedy algo-
rithm via a simple observation, which follows fairly
easily by inspecting (1) and by using the fact that (1)
holds even if we pick vectors at random from H, j p;
the observation is that there must be an h € Hy, 1

such that h hits at least fraction c/b* of the sets T ;.
The obvious idea then is to find such an i using the
membership oracle and add it to our current (partial)
hitting set, “removing” the sets hit by h from the set-
system, and repeating. Finding such an h takes time
at most O((}) -m - T - |Hp|); also, the number of
sets in our set-system is effectively “shrunk” to at most
m(})(1 — ¢/b*) after picking h.

Therefore the results of a greedy algorithm would

produce a construction of size [%], same as

that of (2). Also, the total time taken is at most

0(<Z) cm T [Hapeol(O (1= ¢/8)")), e,

=0

c k

This is the same as running the method of conditional
probabilities on the small space H,, 1 p; if we were to
run this method on the entire [b]™ space, the time
taken would be enormous.

Alternatively, any approximation algorithm for the
hitting set problem is applicable here. (This is rel-
evant in the parallel context, where one cannot use
the greedy algorithm directly.) Berger, Rompel and
Shor [10] have presented an efficient parallel algorithm
for approximating the hitting set problem. This al-
gorithm finds a hitting set that is within a constant
factor of the output of the greedy algorithm. a

For two of our main applications, we explicitly state
the time complexity of smart search; Theorem 2 fol-
lows directly from Theorem 1.

b n
O(— - < ) -m-T - |Hn7k7b|)-



Theorem 2 (i) An (n,k)-family of perfect hash func-
tions C(n, k) of cardinality O(e*vklogn), can be con-
structed deterministically in time O(KF+1(7)n*/k!).
(i) For any given n and k < n, an (n,k)-universal
set of cardinality O(k2F logn) can be constructed de-
terministically in time O((})k22kn*/2]).

Note that this is not our final construction of per-
fect hash families and universal sets! The time com-
plexities are too high in theorems 1 and 2, but the
advantage offered by them is that the function fami-
lies constructed are of “small” size (equaling the union
bound). Theorems 1 and 2 will be invoked later on,
with “small” values for » and k; this will keep the
time taken low, while presenting function families of
reasonable size.

4 Splitters

We now present a globally efficient construction for
(n, k, £)-splitters. Whenever ¢ < k, we assume for no-
tational convenience that ¢ | k (the argument for the
general case is similar). We first present a probabilistic
argument for (n, k, £)-splitters when ¢ < k, in Section
4.1. Sections 4.2 and 4.3 then provide some simple
splitting families, which will be used to solve some ba-
sic sub-problems arising in our applications. Section
4.4 presents a near-optimal construction, building on
the results of Sections 3.2, 4.2 and 4.3.

4.1 Probabilistic argument for splitters

Suppose ¢ < k, ¢ | k. If we pick s independent
random functions from [n] to [¢] where

K((k/OY kInn
= (L .

then we see from (1) that we have an (n, k, £)-splitter
with positive probability. Using Robbins’ formula—
et/(1204 0 ara(a/e)® < a! < e'/(129)\/21a(a/e)® [38)

in the above definition of s and defining
ok, 0) = (2mk/0)!/2e"*/(12k)

for notational convenience, we see that s =
O(Vko(k,€)logn). Hence we get

Lemma 1 If ¢ | k, then for every n >k, there exists
an (n, k, £)-splitter of size O(vka(k,€)logn).

4.2 Splitters for size-reduction

In our applications, it will be useful to have the pa-
rameter n “small” as a function of k; this would then
help us invoke Theorems 1 and 2, while still keeping
the time complexity low. The splitter of Lemma 2
shows how to do this “size-reduction”, which essen-
tially allows us to replace n by k2. This makes our
upper bounds for the applications have a linear de-
pendence on logn. Lemma 2 involves constructing a
family of functions A : [n] — [k?] such that for all

S € (1), there is some function in A that is injective
on

Lemma 2 There is an explicit (n,k,k?)-splitter
A(n, k) of size O(k®logklogn).

Proof We follow the well-known trick of using an
asymptotically good error correcting code with n code-
words over the alphabet [£?], with a minimum rela-
tive distance of at least 1 — 2/k? between any pair
of codewords. Such explicit codes of length L =
O(kSlognlogk) exist [3]. There is a natural corre-
spondence between the code and a family of splitters:
the splitting family corresponds to the index set [L].
By summing the distances, we get that for any subset
of k codewords there is an index where they all differ.
This index corresponds to the good split. O

Alternatively, if we use the FKS functions (Corol-
lary 2 and Lemma 2 [18]) then we get a family of size
O(k*log® n/ log(klogn)).
4.3 Splitters for decomposition

Our applications will need small splitting families,
and here we use a simple “intervals” family of splitters.
This family is not very efficient but we will be using
it in the range n = k? and ¢ = k°() (principally £ =
O(log k)) where its overhead is modest compared to
the complexity of the overall construction.

Lemma 3 For any k < n and for all £ < n, there is
an explicit family B(n, k,£) of (n, k,£)-splitters of size

(e21)-

Proof For every choice of 1 <141 <o <+ <iy_1 <
n, define a function h : [n] — [€] by h(s) = jiff i;,_1 <
s <1, for all s € [n] (taking 4o =0 and iy =n). O
4.4 Globally Explicit Splitter Construc-
tion

We now describe our best constructions of splitters.
The form of the construction depends on the relative
sizes of k and [.

First we note a lemma which follows from Theo-
rem 1.

Lemma 4 For { <k, an (n,k,{)-splitter of cardinal-
ity O(o(k,0)Vklogn) can be constructed determinis-
tically in time O(Vk(})n*o(k, ().

Theorem 3
(i) For £ = O(Vk), we can produce an (n,k,l)-
splitter of size
s = Ok*OWlogn/(0))
= O((o(k, )TV EOW Jog n)
in poly(n, s) time, where the o(1) term decreases

monotonically and goes to 0, as E/\/E decreases
and goes to 0.

(ii) For ¢ < k and { = w(Vk), we can produce an
(n, k, £)-splitter of size

s = O(o(k,£)' ™M logn)



in poly(n, s) time, where the o(1) term goes to 0

as Z/\/E — 00.

(iii) Perfect Hash Functions: For k < 1 <
k2, we can produce an (n,k,()-splitter of size
ek kOUosk) logn, in time linear in the output size.
(Also, for any £ < k, an (n,k)-perfect family of
hash functions of cardinality

. ¢
ekkO(l)(logn)(kl‘) (lnkw/2k/(7ré)) can be con-

structed deterministically in time

poly(n) (/M (5 k¢ (k/0)1.)

(iv) For | > k%, we can produce an (n,k,{)-splitter of
size O(k®logklogn) in time poly(n, k).

Proof. 1. Let A = A(n,k) and B = B(k%,k,{) be
the respective function families (splitters) presented
by Lemmas 2 and 3. For every a € A and b € B,
consider the function g,s(z) = b(a(x)); our function
family F; will contain all the |A||B| such functions
ga,b- To see that Fy is an (n,k,£)-splitter, consider
any S € ([Z]). There exists an a € A which is 1-1 on
S, and a b € B that splits the image of S under a cor-
rectly; hence Fj is all we need. Now |Fi| = |A||B| =
O(k**+9W logn /() = O((a(k, )5t M EOM) logn),
for families of splitting problems with ¢ = O(Vk).
This is not too far from the bound of Lemma 4; this
method will, however, lead to huge splitters as £ grows
further (£ = w(vk)), and hence we use a different ap-
proach in part (2).

2. For this part of the theorem, the o(-) and w(-)
notation refers to k£ tending to infinity. We will need
an integral parameter 1 < r < £,

r = O(klog/(¢log(2k/L))).

Note that 7 = o(£) since ¢ = w(Vk); a similar easily
verified fact that we will need is

(k/r)*/m = (2k/0)°® and k°0) = O(a(k,[)”"(l)().)
3
We will assume for notational convenience that
r | £ | k. Define the function families A; =
A(n,k), B = B(k* k,r) and C = A(k% k/r) as pre-
sented by Lemmas 2 and 3, and the family D to be
the ((k/r)?,k/r,€/r)-splitter presented by Lemma 4.
Fix any a € A, € B, any sequence of ele-
ments c¢p,c2,...,¢. of C, and any sequence of ele-
ments dy,ds,...,d,. of D. Then we define a function
Ga,b,c1,....crydr,...dy * [n] — [E] by

Ja,b,cy,...,cr,d1,...,dy (:E)
= (b(a(z)) = DU/ + dp(a(a)) (C(a(a)) (a(2)))-

Our function family F» is composed of precisely all
such functions gap.c,,....c,,di,....d,- We first consider

|F»| and the time to construct F», and then prove that
F5 is an (n, k, £)-splitter. Note that

|| Al BI(IClID))"
2
= 0(k°Y(logn) (k )
r

- (GkfryO® ogr)oh/r,e/m) )
= 0(k°a(k,0)logn)
= O(a(k,0)' "M logn), by (3).

The total time to construct the families A;, B, C and
D is, by Lemmas 2, 3 and 4,

pOZy(|A1|7 |B|7 |C|) +
ORI (K7 ) (e r)?7 o (k7,0 /7) log(k /7).

Thus by (3), the time to construct F» is poly(|F»|, n).
To see that F is an (n, k, £)-splitter, take any S €

([Z]). By the definition of A; and b,
Ja € Ay Ibe BYier], |S:|=k/r,

where S; = SN (boa) (). Fix such an a and b.
Again by the definition of A, there exist ¢1,¢o,...,¢, €
C such that ¢; is 1-1 on S;; fix such a sequence
€1,C2, .- .,C. Finally by the definition of D, there is a
sequence d,ds,...,d, € D such that d; splits .S; into
¢/r pieces of size (k/r)/(¢/r) = k/{ each. It is now
not hard to verify that gq.p.c,.....c,.ds,...,d, SPlits S.

3. Let £ = clogk for some constant ¢ (chosen suit-
ably to minimize the running time, or the lower-order
terms in the size of the perfect hash family). Let
A = A(n,k), B = B(k* k,£) and C = C(k?, k/l) be
the respective function families presented by Lemmas
2 and 3, and by Theorem 2(i).

The intuition is as follows; as mentioned above, we
assume for now that £|k. A generic function f in our
desired perfect hash family H is defined by a function
a € A, a function b € B, and /¢ functions c¢y,...,¢cs €
C; any such choice of the functions a, b, and ¢; is
allowed. Now f is defined by f(z) = cy(a(a))(a()).

Observe that for any fixed S € (), Lemmas 2 and
3 provide some pair a, b so that each ¢; will be applied
to k/¢ points a(z), x € S. Now using Theorem 2(i),
ranging over all choices for ¢; € C, there will be a
function f € H that is 1-1 on S.

More formally, let j be defined (arbitrarily) to be
1 if ¢|k, and otherwise to be the integer given by
k= (—j)|k/l] +j[k/l]. Let Py, P,,..., P, be the
following function families: (i) P;, for 1 < ¢ < j, is
a (k%, [k/{])-perfect family of hash functions, as pre-
sented by Theorem 2(i), and (ii) P;, for j+1 <4 < ¢, is
a (k%, |k/¢])-perfect family of hash functions, as pre-
sented by Theorem 2(i).

Now for every f1 € A, fo € B and g; € P;, define,
Vs € [n]a h(f1,f2791792,---7gz)(5) to be

[k/€1(f2(f1(8)) = 1) + P15y (f1(5))



if f2(f1(s)) <Jj+1, and
[k/015 + [k/L)(f2(f1(8) = = 1) + Pry(s.(s)) (f1(8))

otherwise.

As sketched in the intuitive description above, we
define our desired family H of functions to be the col-
lection of all such functions Ay, 1, 41,95,....00)- NOW,

|A| = O(K®log klogn), |B] = () = kOUk) and
[Ii_, |Pi| = b kO = ekgOUosk)  Hence,

¢
(H| =418 [[ 1P| = *kO0s R logn. ()

=1
It is not hard to verify that each h € H maps [n] to
[k]. We now show that H is indeed (n, k)-perfect. Let

S be an arbitrary element of (I)). By the properties
of A and B, we know the existence of f; € A and
f2 € B such that

|(foo f1) (i) N S| = [k/£] for all i € [4], and

|(faof1)™*(i)NS| = |k/€] for alli € {j + 1,5 +2,...,}.

For each ¢ € [{], we are also assured of the existence of
a ¢g; € P; which is 1-1 on (f2 o f1)7(¢) N S. Thus,
bty f2,91,92,.090) 18 1-1 on S, which is what we set
about to show.

By Theorem 2(i), each P; can be constructed in
EOWK/6) = 20(k) time. (This is the reason for our
choice of £ to be Q(log k); since larger values of ¢ will
make the splitter of Lemma 3 inefficient, we settled
for £ = ©(logk).) The other operations take at most
poly(2F,n) time.

In some situations, it would be good to have the de-
pendence on £ explicit, rather than fixing ¢ = ©(log k).
By keeping ¢ unspecified above, we obtained the pa-
rameterized version of the statement (using Robbins’
formula).

4. From Lemma 2. a

A locally explicit construction for (n,k)-universal
sets is presented by Theorem 7; similar locally explicit
constructions of splitters and perfect hash families will
be presented in the final version of this work.

5 Applications

In this section, we show how to apply our method
to achieve good linear-time constructions of the k-
restriction problems defined in Section 2.2 (but for
splitters and perfect hash families, which we have al-
ready discussed). We also discuss the implication of
these constructions for efficient derandomization.
5.1 Applications of Perfect Hash func-

tions

Perfect hash functions have been used in [7] to
derandomize many algorithms for finding subgraphs,
such as paths and cycles of length k. We provide some
improvement to these methods.

Theorem 4 ([7]) A simple (directed) path of
length k —1 in a (directed) graph G = (V, E) that con-
tains such a path can be found in (2e)* - poly(k) - |V|
expected time in the undirected case and in (2e)* -
poly(k) - |E| expected time in the directed case. A
simple (directed) cycle of size k in a (directed) graph
G = (V,E) that contains such a path can be found in
either (2¢)* -poly(k)-|V||E| or (2e)* - poly(k)-|V|“ ex-
pected time, where w < 2.376 is the exponent of matrix
multiplication.

As pointed out in [7], explicit (|V], k)-perfect hash
functions can be used to derandomize their algorithm.
Thus, we get near-optimal derandomization using our
improved constructions of perfect hash functions. If
k = o(log|V|), Theorem 3(3) can be used as stated;
if k = ©(log|V|), we have to appeal to its parameter-
ized version to get the best constant in the exponent.
Analogous results hold for finding an isomorphic copy
of a fixed directed forest with k vertices in a graph, as
shown in [7].

Theorem 5 A simple (directed) path of length k — 1
in a (directed) graph G = (V, E) that contains such a

path can be found in (2¢)*-kOUek) .| V|log |V| time in
the undirected case and in (2¢)* - kOU°8%) . |E|log|V|

time in the directed case. A simple (directed) cycle of
size k in a (directed) graph G = (V, E) that contains

such a path can be found in either (2e)F - kOUogk) .
[V||E|log |V| or (2e)* - kCUcgk) .|V |« log |V time.

Note that if we are given an arbitrary graph (with
no assurance about the existence of the desired ob-
ject) then the [7] algorithms may err and to reduce
the probability of error significantly, to, say, at most
271Vl one may need to run the algorithm many times
(Q(|V])), incurring a cost larger than our deterministic
algorithm!

5.2 (n,k)-universal sets

The idea for (n, k)-universal sets is similar to that

behind Theorem 3, with the only modification being

that we now need the universal sets guaranteed by
Theorem 2(ii). We thus get

Theorem 6 We have a deterministic construction
for (n, k)-universal sets of size 2€kCU°8%) logn. The
collection may be listed in linear time.

We also present locally explicit constructions of (n, k)-
universal sets; the proof of Theorem 7 is sketched be-
low. Analogous results hold for perfect hash families
and splitters; we shall present the details in the full
version.

Theorem 7 There is a locally explicit construction of
(n, k)-universal sets of cardinality 2%+°*) logn.

Proof Sketch: The reason why the constructions of
Theorems 3 and 6 and are not locally explicit lies in
their usage of the smart search. This brings an expo-
nential dependence on k to the time complexity. In



order to get a local construction we must reduce the
problem to parameters that allow “smart”-search in
the allowed time (polynomial in logn and k). Note
that this construction is not local in the sense of pre-
senting an explicit structure, since some search is in-
volved; however, it is local in the sense of Section 1.3.

To achieve the above-stated locally explicit con-
struction, we need the following lemma. See, e.g.,
Lemma 2.3 in [11] for a proof of Lemma 5.

Lemma 5 Let r,k and n be positive integers such
that 1 < k < m and such that k/r > logk. Then
for any fized ¢ > 0, there exist constants a,b > 0
such that the following holds. If a random func-
tion [n] — [r] is picked so that the random variables
{h(1),h(2),...,h(n)} are uniform in [r] and (alogk)-
wise independent, then VS € ([Z]) Vie[r]:

Pr (| 1SN hLE)| = k/r | > by/(k/7) logr) <re,

We can use the alogk-wise independent sample
space H as discussed in Section 2.1. Briefly, our pro-
cedure involves a recursion of depth two:

(i) “Reduce” n to k2, using Lemma 2; hence we may
assume that n = k2 henceforth.

(ii) Take r; = bngk for some large enough (but fixed)

d. Apply Lemma 5 using the above-seen small proba-
bility space H of size k8% to reduce the problem
to r; subproblems, each of which is to construct a

(k?, k1 = k/r1 + b\/(k/r1)logry)-universal set.

(iii) Solve one of these subproblems recursively (see
below) and take the ri-fold directed product of the
constructed universal test set.

(iv) To solve the subproblem, take ro = 2 log®™ ! k; ap-
ply the hash functions as in Step (ii) and in order to
solve the resulting problem apply Theorem 6 above.
Note that the resulting ko is O(log k) and hence that
the search needed takes time only polynomial in k.

A different approach toward a local construction
which may yield improved results is to use a refined
version of Lemma 5 that will allow a very large frac-
tion of the elements of S to be mapped into bins that
do not contain much more than the expected number
(at most a standard deviation above the mean). The
good bins are handled recursively, as above. Those el-
ements that were not mapped into empty bins are then
taken care of via a separate construction of a (n, k')-
universal set, where k' < k. The two collections are
merged by adding (bit-wise Xor) all possible pairs of
vectors from the two constructions.

We shall present the detailed proofs in the full ver-
sion, both because of lack of space and also since our
applications require just globally efficient construc-
tions. |

The problem of constructing (n, k)-universal sets
has received much attention in the fault-diagnostic lit-
erature. See [41] for a bibliography on the problem.
We can also phrase the problem as follows: for any

S C [n], let S°® = S and S* = [n] — S. Then, our
problem is equivalent to finding a collection C of n
subsets of a ground set X that is as small as pos-
sible, such that for all Sy,S55,...,S, € C and for all
by, b, ..., bx € {0,1}, N, % # ¢. This was called k-
independent by Kleitman and Spencer [20]. An equiv-
alent formulation of this problem is related to a fault-
tolerance property of the hypercube [13].
Discussion of Krichevsky’s result. Krichevsky
[22] claims a deterministic construction of size

(1 + o(1))k2*Inn. However, this appears to be
wrong and his construction is of size at least
[2k+]ﬂ(k/1°g loglogk) |ogn, as shown in the full version
31].

Application to learning algorithms: Blum and
Rudich [9] have applied the construction of (n,k)-
universal sets to obtain a deterministic algorithm to
learn k-term DNF's. Bshouty [14] provided a learning
algorithm for k-CNF running in time polynomial in
the DNF size. The time in both algorithms is pro-
portional to the size of the (n,k)-universal sets. Our
construction for (n,k)-universal sets yields improved
algorithms; the improvement is most significant when
k = O(logn).

Application to the hardness of approximat-
ing the set cover problem: Under the assumption

that NP ¢ DTIM E[n?°"¥'°9(")] Lund & Yannakakis
showed that for any fixed ¢ < 1/4, one cannot approxi-
mate set cover to within a factor of clog, N in polyno-
mial time, where N is the size of the ground set of the
set cover instance [25]. What is striking about this re-
sult is the existence of well-known polynomial-time al-
gorithms achieving a performance ratio of In N +O(1).
One of the main ingredients of this result was an ex-
plicit construction of (n,k)-universal sets. Since the
randomized construction of (n, k)-universal sets is bet-
ter than the previously known deterministic construc-
tions, they also used the randomized construction to

show that if NP ¢ ZTIM E[nr°'¥'09(")]  then for any
fixed ¢ < 1/2, one cannot approximate set cover to
within a factor of clog, N in random polynomial time
(ZTIME denotes zero-error probabilistic polynomial
time, corresponding to Las Vegas algorithms). Bellare
et al. [8] improved the time bounds of Lund & Yan-
nakakis above while losing a bit in the constants. How-
ever, taken together with the recent result of Raz [37]
we get that that the time complexity can be reduced
to n@Ueglosn) The constants of logn are still 1/4 and
1/2 for the deterministic and randomized cases respec-
tively. Our explicit construction improves these non-
approximability results by making the deterministic
and randomized case have the same performance; we
thus conclude that

Theorem 8 If NP ¢ DTIME[pCUole(m)]  then
for any fized ¢ < 1/2, one cannot approzimate set
cover to within a factor of clogy, N in deterministic
polynomial time.

Application to distributed coloring: Szegedy and
Vishwanathan [42] considered the local coloring prob-
lem (see their paper for definition). They showed, via



a non-constructive argument, the existence of recolor-
ing protocols that starting with a graph of max de-
gree d colored with ¢ colors go (in a single step) to
O(d2?loglogc) colors. Mayer et al [27] showed that
the key property used by [42] is (n,d)-universal sets.
Using the improved construction of this paper we get a
constructive version of [42], to within a factor d°(og4)
of the color bound of O(d2?1loglogc).

5.3 Anti-Universal Sets

In this section we show the construction of anti-
universal sets (see definition in section 2.2). The
union bound guarantees such a family of size s =
[(b/(b—1))*k1n(bn)] and as before, we have a simple
deterministic construction of such a family, running in
time (nb)?®)s. To make this more efficient, we first
reduce n to k2, as before. Next if b = O(1), then
we can split to £ = logklogb parts, and get a final
output of size sk€(°gk1ogb) Oy the other hand, if b
increases with the parameters of the problem, we can
split to £ = blog k parts, and get a final output of size
skO(blogk)

Theorem 9 For any fived b, there is a globally ex-
plicit construction for (n,k,b) anti-universal sets of
size (b/b — 1)FkCU°8k) logn. The collection may be
listed in linear time.

The hardness result of [25] was very recently im-
proved by Feige [16] to get the best possible result for
the approximation ratio, (1 — o(1))In N. The type of
family he requires is what we termed an (n, k, b) anti-
universal set. Thus he obtains:

Theorem 10 [16] If NP ¢ DTIM E[pCUoglos(n)]
then for any fized ¢ < 1, one cannot approrimate set
cover to within a factor of cln N in polynomial time.

5.4 Depth-3 formulae for threshold func-
tions

We now show an application of our splitter con-
struction. The kth threshold function T} of n Boolean
variables is a Boolean function which is 1 iff at least
k of the variables are 1. In a formula, each non-
output gate has fanout exactly one, and a XII¥ for-
mula has the form \/, A, V. Luvw, Where each L is
either a variable or a negated variable. The size
of a formula is the total number of literals in it.
The work of [35] shows that for k and n large and
k < n/2, every XIIY formula for T has size at

least exp(Q(y/k/Ink))nlogn, where exp(x) denotes

e*. For k and n large and k < n?/3 it is also shown
in [35] that there exist XIIX formulas for computing
TP with size at most exp(2vk In k)n log n; this proof
is probabilistic. By using some ideas from [35] and by
invoking some of our ideas from above, we present an
explicit version of this upper bound, with a little loss.
The proof of Theorem 11 is given in the full version.

Theorem 11 For any pair of positive integers n and
k with k < n, a monotone XIIX formula G of size

e‘/E+2\/E1“kkO(1)nlogn exists, to compute the func-
tion T7'; G can be constructed deterministically in
time polynomial in its size.
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