
E�cient Cryptographic Schemes Provably as Secure as SubsetSum �Russell ImpagliazzoyDepartment of Computer ScienceUniversity of California at San DiegoLa Jolla, CA 92093USA
Moni NaorzDepartment of Applied Math andComputer ScienceWeizmann InstituteRehovot 76100, IsraelAbstractWe show very e�cient constructions for a pseudo-random generator and for a universalone-way hash function based on the intractability of the subset sum problem for certaindimensions. (Pseudo-random generators can be used for private key encryption and universalone-way hash functions for signature schemes). The increase in e�ciency in our constructionis due to the fact that many bits can be generated/hashed with one application of the assumedone-way function.All our construction can be implemented in NC using an optimal number of processors.

�Part of this work done while both authors were at UC Berkeley and part when the second author was at theIBM Almaden Research Center. Research supported by NSF grant CCR 88 - 13632. A preliminary version ofthis paper appeared in Proc. of the 30th Symp. on Foundations of Computer Science, 1989.yE-mail: russell@cs.ucsd.eduzIncumbent of the Morris and Rose Goldman Career Development Chair. Research supported by an AlonFellowship and a grant from the Israel Science Foundation administered by the Israeli Academy of Sciences.E-mail: naor@wisdom.weizmann.ac.il.



1 IntroductionMany cryptosystems are based on the intractability of number theoretic problems such as factor-ing and discrete logarithm. Both of these problems have a long history of attempted solutionsas well as many convenient features. However, it is desirable to consider protocols based onother types of problems. First, the protocols that are based on factoring and discrete log tendto be rather ine�cient. This is one reason these protocols are not extensively used in practice,although some implementations of the simplest of these protocols have been made. Secondly,there are no (provably secure) parallelizations of these protocols. Finally, although consideredunlikely, it is possible that feasible algorithms for these number theoretic problems exist. In thiscase, it is good to have other protocols to fall back on.One alternative that has been considered since the early days of public key cryptographyis the subset sum problem, (a.k.a. the knapsack problem). The subset sum problem is: givenn numbers, each l bits long, and a target sum T , �nd a subset of the numbers whose sum isT . Many schemes were suggested that use this problem as the basis for public key encryption.However, none of these schemes have been proven to be as secure as subset sum, and, in fact,most of them have been broken. See Brickell and Odlyzko [9] and Odlyzko [41] for a survey.The �rst to suggest using subset sum were Merkle and Hellman [36], and the only method forusing subset sum in a public key protocol that has not been broken is Chor and Rivest's [11].The approach taken here is di�erent in two ways. We are less ambitious, and are notattempting to construct a public key cryptosystem. Many important tasks in cryptographydo not require the full power of public key cryptography. These tasks include: private keyencryption, pseudo-random generation, zero knowledge protocols, identi�cation schemes anddigital signatures. These tasks are known to be implementable based on any one way function([24, 25, 38, 39, 21, 42]). However, the theoretical constructions suggested are extremely ine�-cient. We give very e�cient constructions for primitives such as pseudo-random generators anduniversal one-way hash functions (de�ned in [39]) which can be used to implement the abovetasks. To break our protocols is provably as hard as solving the subset sum problem for certaindimensions.Our constructions are extremely simple: at each step, it is only necessary to add n numbers oflength O(n). Thus, each step can clearly be implemented in any \reasonable" model of parallelcomputation with optimal speed-up. Since the steps can also be implemented in parallel, wehave optimal parallel implementation of the primitives. This is the �rst method that can beimplemented in NC which is provably secure1 for any of these tasks (except identi�cation inwhich the on-line part can be computed in NC using the Fiat-Shamir [13] method). In fact, we1Here, \provably secure" means that breaking the primitive in question is provably as hard as inverting awell-studied function which is widely assumed to be one-way. Some parallel construction have been given withoutthis property, e.g., ([37]). 1



will show that, in the case of pseudo-random generators, that expanding the seed by a smallamount can even be done in AC0.A major source of ine�ciency in the general constructions mentioned above is the fact thatthe one-way function on which they are based must be evaluated at least as many times as thereare bits in the "product" (i.e. the number of pseudo-random bits produced in pseudo-randomgenerators or the number of bits hashed in one-way hashing). We give the �rst provably secureconstructions where the number of times the one-way function is applied is substantially smallerthan the number of bits processed.The next subsection de�nes precisely the subset sum problem and the assumptions we makeconcerning its intractability. Subsection 1.2 surveys the known results about the complexity ofsolving subset sum problems.In Section 2 we prove that for dimensions n; ` with ` > n for which the subset sum problemis hard it is also pseudo-random. In Section 3 we show that for dimensions n; ` with ` < n forwhich the subset sum problem is hard it is also a universal one-way hash function.In Section 4 we consider a generalization of our results about universal one-way hash functionsto other groups (other than addition modulo powers of 2). We show how to relate the securityof such functions to conventional number-theoretic problems. We show for instance that thesubset product mod N function is as secure a universal one-way hash function as factoringN . Our results for pseudo-random generators also generalize, but this is not as interesting inthat we are not able to show any connections to widely accepted number-theoretic conjectures.Hash functions constructed using this method will not be particularly e�cient, but will beimplementable in parallel.A primitive for which no construction under a general assumption (e.g., existence of one-wayor trapdoor permutations) is bit commitment vs. a computationally unlimited receiver. Thisprimitive constructed under number theoretic assumptions was used by Brassard, Chaum andCrepeau [7] for minimum disclosure proofs. In section 5 we show how to construct this primitivebased on subset sum. Recently, [40] have shown how to construct such a bit commitment fromany one-way permutation; however their construction requires many rounds of interaction.Finally, in Section 6 we show that the assumption that the subset sum problem is hardyields a pseudo-random generator which can be implemented by a polynomial size constantdepth circuit, i.e., in AC0.1.1 The Subset Sum ProblemThe subset sum problem of dimensions n and ` is: given n numbers, ~a = (a1; a2; : : : ; an), eachl bits long, and a number T , �nd a subset S � f1; : : : ; ng such thatXi2S ai = T mod 2`. Weconsider families of subset problems where each family is determined by a function `(n) and forsize n the length of the n numbers is `(n). We can view this problem as that of inverting the2



following function: f(~a; S) = ~a;Xi2S ai mod 2l(n);i.e. the function which concatenates ~a with the sum of the ai's for i 2 S. We usually think ofa1; a2; : : : ; an as a �xed parameter (like the modulus in RSA), and view f as mapping an n bitstring S to an l(n) bit string. In this case we will write f~a(S) for f(~a; S). Also, we often identifythe subset S � f1; : : : ; ng with its incidence vector s 2 f0; 1gn and write f~a(s).We now formally de�ne what we mean by hard:De�nition 1.1 Let ffng be a sequence of functions indexed by n such that fn : Dn 7! Rn. Wesay that ffng is one-way if� fn(x) is polynomial time computable� there is no polynomial time algorithm I that can invert f on a random input: for everyc > 0 and for every probabilistic polynomial time algorithm I (that attempts to invert f),the probability that f(I(f(x))) = f(x) is at most n�c for an input x 2 Dn chosen uniformlyat random, for all but �nitely many n.We say that the subset sum problem for length l(n) is hard if the corresponding sequence offunctions f is one-way.The character of the subset sum problem is quite di�erent when l(n) > n and when l(n) < n.In the �rst case the function is almost 1-1 and expands the length of the input. In the secondcase the function is many to one, almost onto and contracts the input. The applications wegive for these two cases are consequently quite di�erent. We use the �rst case for pseudo-random generation, and the second case for one-way hashing. We can quantify \almost onto"and \almost 1-1" as follows:The following de�nition of Santha and Vazirani [43] describes distributions that are closeenough to uniform for our purposes.De�nition 1.2 [43] Let D be a probability distribution on f0; 1gm. We say D is quasi-randomwithin �, if 8X � f0; 1gm we have that jPrD[X]� jXj2m j < �, where PrD[X] is the probability thatan element chosen according to D is in X.Proposition 1.1 1. Let l(n) = cn for c > 1. Let ~a = (a1; a2; : : : an) and S both be chosenuniformly at random. Except with probability exponentially small, there is no S0 6= S suchthat f~a(S) = f~a(S0).2. Let l(n) � cn for c < 1. For all but an exponentially small fraction of ~a = (a1; a2; : : : ; an),the distribution given by f~a(S) for a randomly chosen S is quasi-random within an expo-nentially small amount. 3



Proof: The main idea for obtaining both parts of the proposition is to view the di�erent f~a's,ranging over all choices of ~a, as a pair-wise independent family of hash functions from f0; 1gn tof0; 1gl(n). Let S; S0 2 f0; 1gn be such that S 6= S0 and S; S0 6= 0n, and consider ~a being selecteduniformly at random. Now, if Si 6= 0 then f~a(S) = ai+Pj 6=i Sjaj is uniformly distributed, sinceai is independent of the other aj . Similarly for S0. Also, assume Si = 1 and S0i = 0. Then, �xingall the aj for j 6= i determines f~a(S0) but leaves f~a(S) completely undetermined. Hence, f~a(S0)and f~a(S) are independent uniformly distributed variables, for every such pair S and S0.Hence, if l(n) � cn; c > 1, we haveProb[9S0 6= S; f~a(S) = f~a(S0)] � XS0 6=S Prob[f~a(S0) = f~a(S)] � 2n2�l(n) � 2�(c�1)n:If l(n) � cn; c < 1, we can apply the leftover hash lemma of [25], [26] to see that the expecteddistinguishability of f~a(S) and a random y 2 f0; 1gl(n) is at most 2�(n�l(n))=2 � 2�((1�c)=2)n. Wethen apply Markov's inequality to get the result claimed in part 2 of the proposition. 2.From the above, it is not di�cult to see that the most secure choice of parameters for subsetsum is when l(n) = n. If the subset S is, with high probability, uniquely determined by the sumfor l(n) bits and an inversion algorithm exists for this length, then to invert the function givensome l0(n) > l(n) bits, one can simply ignore all but the least signi�cant l(n) bits of ~a and T .On the other hand, if for l(n) bits, the sum is almost uniformly distributed, then to invert thefunction for l0(n) < l(n) bits, one can simply append l(n)� l0(n) random bits to each of the ai'sand to T , and use whatever method inverts the function for l(n) bit strings. This is summarizedin the following proposition:Proposition 1.2 1. Let n � l(n) � l0(n). If subset sum is hard for l0(n) then it is also hardfor l(n).2. Let n � l(n) � l0(n). If subset sum is hard for l0(n) then it is also hard for l(n).3. if subset sum is hard for l(n), and c > 0 then subset sum is hard for l(n) + c log n andl(n)� c log n.In the applications to come we will assume that subset sum is hard for l(n) of the form c � nfor some constant c. When l(n) is su�ciently larger than n the function f is almost 1-1; whenl(n) is su�ciently smaller than n the function f is almost onto, and almost all outputs occurroughly the same number of times.E�ciency of implementation: How e�cient is it to use this one-way function f~a ? A �rstimpression is that large key length might make use of this function impractical. As detailed inthe next section, to withstand current attacks we must have n and l(n) on the order of 100, so todescribe ~a will require on the order of 10,000 bits. However, this is actually misleading in that4



for all applications described here, ~a can be chosen once and for all by the protocol designer andpublicly announced. Thus, individual keys will be of length O(n+ l(n)) instead of O(nl(n)).All that is required to compute f~a is the normal addition of n numbers of length O(n),which requires approximately the same time as a single naive multiplication. Since there arevery e�cient and highly parallelizable implementations of iterated addition, it is highly suitablefor either hardware or software implementations. As mentioned before, this function is in theclass NC1 and all of the construction in this paper can be implemented in NC.1.2 The complexity of subset sumSubset sum is one of the original problems that Karp [28] proved to be NP-Hard, (i.e thecorresponding decision problem is NP-Complete). However, although this probably means thatno feasible worst case algorithm exists for this problem, it says little about the hardness of arandom instance. Many NP-Complete problems are known to have polynomial average casealgorithms. The subset problem under the assumption that the inputs are chosen uniformly atrandom has been investigated in a number of papers [8, 12, 15, 27, 32]. For the case l(n) > n2,Lagarias and Odlyzko [32] and Brickell [8] have shown a feasible algorithm which solves thisproblem for almost all instances of these dimensions.The Lagarias-Odlyzko [32] and Brickell [8] algorithms mentioned above transform the subsetsum problem into a shortest vector in lattice problem. A shortest vector in a lattice problem is:given vectors V1; V2; : : : ; Vn 2 Rm �nd the shortest vector (Euclidean norm) V in fPni=1 ziVijzi 2Zg. The n numbers a1; a2; : : : ; an and the target sum T determine the lattice and every solutionto the subset sum problem corresponds to a vector in the lattice.What they showed is that if `(n) > 1:5472 �n then with high probability (over the choices ofthe subset problem of these dimensions) the vector corresponding to the solution to the subsetsum problem is the shortest in the lattice. This was improved very recently by Coster, LaMac-chia, Odlyzko and Schnorr [12] and Joux and Stern [27] who showed a di�erent transformationthat has the property that the vector corresponding to the solution is the shortest whenever`(n) > 1:0629 � n. ([12] also contains some evidence showing the limitation of this method.)The above mentioned papers suggest as a second stage �nding the these shortest vectors usingthe lattice base reduction algorithm of Lenstra, Lenstra and Lov�asz [33] (or some modi�cationof it, cf. [44]). This algorithm is not guaranteed to �nd a shortest vector but one that is atmost 2n times the shortest. In order to get that with high probability the shortest vector ismuch shorter than the other vectors, one has to require `(n) > n2. However, the hardness ofthe shortest vector problem is uncertain: the problem is not known to be NP-Hard and it isconceivable that a polynomial time algorithm exists. To our knowledge, there is no generallybelieved conjecture that it is hard.Thus, to be on the safe side we must assume that there is an e�cient algorithm for the5



shortest vector problem and chose the dimension `(n) to be smaller than 1:0629 � n.As for other case, when l(n) is very small, say O(log n), then the subset sum problem can besolved via dynamic programming. (For very dense problems, `(n) < 1=2 log n, there are moree�cient algorithms, as was recently shown by Galil and Margalit [17]. ) For the length function`(n) = n, the best known attack takes time O(2n=2) and space O(2n=4) due to Schroeppel andShamir [46].The recent papers [44] and [45] report extensive experimental work on the subset sum problemand several variants. They manage to solve problems of size up to n = 74 using moderate amountof computation.From the discussion above it is clear that the subset sum of the dimensions we require isreceiving considerable attention. However we think that more cryptanalytic e�ort should bedevoted to it before we can conclude that it is safe to assume that it hard for some speci�c `and n and use it in any actual implementation.2 An E�cient Pseudo-Random GeneratorA pseudo-random generator is a way to obtain many random looking bits from a short trulyrandom seed. Formally, a function G : f0; 1gn 7! f0; 1gl(n) is a pseudo random generator if everyalgorithm A that tries to distinguish between outputs of G and truly random sequences has anegligible probability of success, (i.e. for each d > 0 except for �nitely many n's jPr[A(G(x)) =1]� Pr[A(y) = 1]j < n�c where x 2 f0; 1gn and y 2 f0; 1gl(n) are uniformly chosen.)Pseudo-random generators have many applications in cryptography. These include: privatekey encryption [22, 20, 35], bit commitment [38] ( the strong committer variant, which allowszero knowledge proofs [21]) and succinct secret sharing [31].Cryptographically strong pseudo-random generators were de�ned by Blum and Micali [5]who constructed a pseudo-random generator based on discrete-log. Blum, Blum and Shub[4] constructed a pseudo-random generator based on quadratic residuosity. Yao [47] showedthat the de�nition given above is equivalent to that of Blum and Micali, and gave a generalconstruction that can be based on any one-way permutation. An essential part in these andother constructions is a hard bit for a one-way function f , i.e. a function b : f0; 1gn 7! f0; 1gsuch that given f(x) no polynomial time machine can guess b(x) with probability greater than1=2 + 1=poly(n). Goldreich and Levin [19] have shown that for any one-way function f theinner product with a random vector is a hard bit. More precisely, if x; r 2 f0; 1gn let r � x bethe inner product (mod 2) of x and r, i.e. r � x = 1 if the number of bit positions i suchthat ri = xi = 1 is odd, where ri and xi are the ith bits of r and x respectively. Then theGoldreich-Levin Theorem is:Theorem 2.1 [19] Let f be a one-way function. For any polynomial time algorithm A and any6



polynomial p, for all but �nitely many n's, Pr[A(f(x); r) = r � x] < 1=2 + 1=p(n) where theprobability is taken over uniformly chosen x; r 2 f0; 1gn.We apply this theorem in a novel way. Functions that hide bits were used to generate pseudo-random sequences as follows: on a seed x, output b(x) and apply f to x; repeat this processwith f(x) playing the role of x. This yields only one bit per application of the one-way functionand is sequential. Some improvements have been suggested, like extending the one hidden bitto O(log n) bits, but this is only a slight improvement in performance. Our construction obtainsO(n) bits per application of the one-way function, (which is the subset sum function). As waspointed out in Micali and Schnorr [37], the technique of [20] can be used to generate pseudo-random sequences of any polynomial length in parallel, once a way of generating in paralleln + O(n) bits from n bits is given. Since subset sum is amenable to parallelism, this yields aparallel method for generating pseudo-random sequences.Suppose that the subset sum problem with l(n) = (1 + c)n is hard, for c > 0. We showthat it is also a pseudo-random generator. This is in contrast with previous results where theone-wayness of a function was used to construct a di�erent pseudo-random generator. (Forinstance, using the �rst part of Proposition 1.1, that the subset sum function is 1-1 with highprobability for l(n) = (1 + c)n one can construct using the method of Goldreich, Krawczyk andLuby [18] a pseudo random generator. This generator will output one bit for each computationof the subset sum.) In our case, the one-way function and the pseudo-random generator are thesame. The loss of e�ciency which occurs in the conversion process in previous constructions isno problem in ours.Theorem 2.2 Let l(n) = (1 + c)n for c > 0. If the subset sum function for length l(n) isone-way, then it is also a pseudo-random generator.Proof: Although this theorem holds for subset sum as de�ned above, for ease of expositionwe will prove it �rst for subset sum where the addition is performed modulo a prime p and allnumber are chosen at random from f0; : : : ; p�1g and later explain how to obtain the case wherethe addition is modulo a composite, in particular 2`.Assume that f is not pseudo-random. We will show that we can use the distinguisher topredict, given r and f~a(s) the inner product of r and s with probability at least 1=2+1=poly(n).From the Goldreich-Levin Theorem (Theorem 2.1) this contradicts the assumed one-wayness off . In this particular case, the inner product bit has a special interpretation. We think of s andr as describing subsets of the ai's. The inner product of s and r is 1 if the intersection of thesesubsets is odd. Our strategy is to use the distinguisher to predict the size of this intersection,and thus to predict its parity.The distinguisher gets as input a1; a2; : : : ; an 2 f0; p � 1g and a supposed sum of a subsetT 2 f0; p � 1g. Without loss of generality, we assume that the distinguisher outputs 1 with7



probability at least 1=2 + 1=p(n) when T is indeed the sum of a random subset and that itoutputs 1 with probability almost exactly 1=2 when T is chosen uniformly at random fromf0; p� 1g. On input f~a(s); r our predictor does the following:1. Choose a random k 2 f0; : : : ; ng (this is our guess as to the size of the intersection.)2. Choose a random x 2 f0; : : : ; p� 1g.3. Let bi = ai + x if ri = 1, and bi = ai otherwise.4. Feed the distinguisher with the bi's and f~a(s) + kx (mod p).5. If the distinguisher outputs 1, then output the parity of k, otherwise output the negationof the parity.We show below that the above algorithm predicts the inner product with probability at least1=2 + 1=np(n). Suppose that at the �rst step we have guessed k correctly, i.e. k is the size ofthe intersection of r and s. In this case, our prediction for the inner product is correct if thedistinguisher outputs 1. Claim 2.1 says that this happens with probability at least 1=2+1=p(n).In the other cases, Claim 2.2 says that the the input to the distinguisher is totally randomand hence the probability that our algorithm predicts the inner product is 1/2. Since the �rstcase happens with probability 1=n, altogether the probability of correctly predicting the innerproduct is at least 1=2 + 1=np(n).We now prove these two claims.Claim 2.1 The conditional probability that our algorithm predicts the inner product correctlygiven that k is the size of the intersection of r and s is at least 1=2 + 1=p(n).Proof: The distribution the distinguisher sees in this case can be generated as follows:� Pick a random s; r 2 f0; 1gn and let k be the size of their intersection.� Pick random a1; a2; : : : ; an 2 f0; : : : ; p� 1g and let T =Xi2s ai.� Pick x randomly and let bi = ai + x if ri = 1 and bi = ai otherwise. Let T 0 = T + kx.� Output b1; b2; : : : ; bn; T 0.We claim that this distribution is exactly that of a1; a2; : : : ; an; T . This is true since each bi isindependent and uniformly distributed and sinceXi2s bi =Xi2s ai + Xi2r\sx = T + kx = T 0:8



Both the bi's and the ai's are independent and uniform and T and T 0 are determined by theirvalues in the same way. By assumption, the distinguisher outputs 1 with probability at least1=2+1=p(n) on this distribution. As we have noted in this case our algorithm predicts the innerproduct precisely when the distinguisher outputs 1. 2Claim 2.2 The conditional probability that the algorithm predicts the inner product bit giventhat k is not the size of the intersection of r and s is 1=2.Proof: Fix any s; r 2 f0; 1gn and �x k to be di�erent from k0 = jr \ sj. The distributionthe distinguisher sees in this case can be generated as follows: Pick random a1; a2; : : : ; an 2f0; : : : ; p� 1g. Let T =Xi2s ai. Pick x 2 f0; : : : ; p� 1g randomly. Let bi = ai + x if ri = 1 andbi = ai otherwise. Let T 0 = T + kx and let T 00 = T + k0x. Output b1; b2; : : : ; bn; T 0. We claimthat this distribution is exactly that of a1; a2; : : : ; an; U where U is chosen uniformly at randomfrom f0; : : : ; p� 1g. As before, a1; a2; : : : ; an; T and b1; b2; : : : ; bn; T 00 are identically distributed.We also know that b1; b2; : : : bn; T 00 is independent of x. We have that T 0 = T 00 + (k � k0)x andsince we are working in a �eld and k � k0 6= 0, T 0 is uniformly distributed and independent ofb1; b2; : : : bn.From our assumption on the distinguisher, it outputs 1 on this distribution with probability1/2. Since this is true for every s; r and k, the probability of correctly predicting is 1/2 in thiscase. 2.We now turn to the case where the arithmetic is done modulo 2l(n). The proof is similar,however additional complications arise because the multiplication is no longer over a �eld. Theproof of Claim 2.1 remains unchanged. In Claim 2.2 we should consider what happens when k�k0is not relatively prime to 2`(n). Let g = GCD(2`(n); k� k0) � n and let y = (k � k0)x mod 2`(n).We know that gjy and that yg is distributed uniformly in f0; : : : ; 2`(n)g � 1g. On the other hand,since g is small (much smaller than `(n)), by Proposition 1.1 part (2), T 00 mod g is quasi-randomover f0; : : : ; g � 1g. Note that given T 00, b1; b2; : : : ; bn and k � k0 the conditional distribution ofx is uniform in f0; : : : ; 2`(n) � 1g and therefore T 00 is independent of y. Hence we have thatT 00 + y = g(bT 00=gc+ y=g mod 2`=g) + (T 00 mod g)is quasi-random over f0; : : : ; 2`(n) � 1g. This shows that Claim 2.2 holds for arithmetic modulo2l(n) and concludes the proof of the theorem. 2Once we have a way of obtaining (1 + c)n pseudo-random bits from a seed of n bits, we canuse the method of Goldreich, Goldwasser and Micali [20] to extend an n bit seed to an arbitrarypolynomial length pseudo-random sequence. (Once a1; a2; : : : ; an are chosen at random they canbe �xed for all applications. Thus they do not count for the length of the seed). We start witha seed s 2 f0; 1gn and compute f~a(s). The last cn of this number are output and the rest areused as the new seed. This is repeated until we have as many bits as we want.9



To generate a sequence of length m we need O(m=n) iterations. Each iteration requires O(n)additions of number which are O(n) bits long. In particular, to generate a sequence of length2n requires only O(1) iterations. Goldreich, Goldwasser and Micali [20] also show how a parallelpseudo-random number generator doubling the number of bits can be used to implement inparallel a pseudo-random generator for any length. The number of parallel iterations in theirconstruction is log(m=n).3 A Family of Universal One Way Hash FunctionsA family of universal one-way hash functions is a collection F of functions f : f0; 1gn 7! f0; 1gmwith the property that for any element x 2 f0; 1gn if f is chosen at random from the collectionF , then it is hard to �nd an element y 6= x such that f(y) = f(x), (although many such y'sexist2). We say that such a y collides with x. Such functions were introduced by Naor andYung [39], who showed how they can be applied to various solve authentication problems, mostnotably signature schemes and public �ngerprints for �les. Naor and Yung showed how such afamily can be constructed given any 1-1 one-way function. However, in a dual way to the case ofthe pseudo-random generation, the construction achieves compression of one bit per applicationof the one-way function.We suggest using the subset sum function in the case l(n) < n as a one-way hash function. Ifl(n) = (1�c)n for c > 0, then a1; a2; : : : ; an 2 f0; 1gl(n) de�ne a function f~a : f0; 1gn 7! f0; 1gl(n).We claim that the collection of all such functions de�nes a family of universal one-hash functions,assuming subset sum is hard for this length.Naor and Yung have shown that the composition of several families of universal one-wayhash functions is also a universal one-way hash. Therefore, if we can construct a family thatachieves compression of cn bits we can construct from it a family that achieves any polynomialcompression, i.e. for any N , polynomial in n, we can hash a string of N bits to one which is nbits long. This can be achieved by O(log n) compositions, and therefore can be implemented inparallel poly-log time (NC). The number of addition operations required to hash a string fromN bits to n bits is linear in N .Theorem 3.1 Let l(n) = (1 � c)n for c > 0. If the subset sum function for length l(n) isone-way, then it is also a family of universal one-way hash functions.Proof: We have to show that for any s1 2 f0; 1gn, if a1; a2; : : : ; an 2 f0; 1gl(n) are chosen atrandom, then �nding s1 6= s2 such that f~a(s1) = f~a(s2) it as hard as inverting the subset sumfunction.2Note that we have not required that m < n, but the hash functions is pretty useless otherwise.10



Suppose not, i.e. there exist an algorithm that with non negligible probability succeeds in�nding such an s2, then we will show how to use it to invert f with non negligible probability.Given a1; a2; : : : ; an 2 f0; 1gl(n) and a target sum T , we construct an input to the collision�nding algorithm as follows:1. Let the collision �nding algorithm select a (non-empty) s1 2 f0; 1gn2. compute T 0 =Xi2s1 ai. Choose a random j such that j 2 s1 and de�ne a0j = aj � T 0 + T .3. Give the instance a1; a2; : : : ; a0j ; : : : ; an and s1 to the algorithm that �nds collisions. Thealgorithm attempts to �nd s2 such that f(a1;a2;:::;a0j ;:::;an)(s2) = T 0.If the algorithm returns s2 that collides with s1 and j 62 s2, then s2 is a solution to ouroriginal problem, since swapping aj and a0j does not a�ect the sum over s2. If we could arguethat the distribution that the collision �nding algorithm sees is similar to its usual one, then theprobability that some colliding s2 will be found is non negligible. Note that we can assume thats1 6� s2, since otherwise we can use the collision �nding algorithm for solving the subset problemon T = 0 (which is at least as hard as the general problem). Furthermore, since j was chosenat random, the probability that j 62 s2 is at least 1=n. (Actually it is closer to 1=2, however 1=nis good enough for our purposes). Hence we have a 1=poly chance of breaking the subset sumproblem.The reason that the distribution the collision �nding algorithm sees is very close to itsregular one is that ai is distributed uniformly and independently for all i 6= j. By part 2 ofproposition 1.1 we know that T is distributed quasi-randomly given a1; a2; : : : ; an. Therefore a0jis quasi-random, and s1 looks like a random set whose sum is T . 2The following corollary will be useful in the next section.Corollary 3.1 Given a1; a2; : : : ; an=2 2 f0; 1gl(n) and a01; a02; : : : ; a0n=2 2 f0; 1gl(n) chosen at ran-dom, �nding two subsets of the ai's and a0i's that sum to the same value is as hard as invertingsubset sum on length l(n). 2As with pseudo-random generators, the system designer can chose ~a once and �x it. Togenerate from it a universal one-way hash function one has to chose only a random r 2 f0; 1gn.The function will be fr(s) = f~a(r�s). This yields a succinct representation for the one-way hashfunction, and thus can lead to e�cient provably secure digital signature schemes. Therefore inorder to represent a hash function from N bit to ` bits using as the building block subset sumof n number of length ` we need altogether n � `+ n � logn=`N bits. Furthermore, the amount ofstorage required in order to compute the hash function is only n logn=`N bits.
11



4 E�cient Universal One-Way Hash Functions with SecurityBased on Group-Theoretic ProblemsThe proof of Theorem 3 in the previous section did not use very much of the structure ofaddition in showing the equivalence between subset sum as a one-way function and subset sumas a universal one-way hash function. In fact, the analogous result holds for Subset G-product(see exact de�nition below) for any group G whose elements can be coded as strings of a certainlength, so that it is possible to multiply and invert elements in polynomial time, and to samplefrom G at random in polynomial-time. In this section, we show that inverting the subset G-product function for n > log(jGj) is as hard as inverting any onto homomorphism to G (fromany other group with the listed properties). In particular, for any prime p, and for n > logp,Subset Product mod p is as di�cult to invert as it is to take discrete logarithms mod p, and forN a Blum integer, Subset Product mod N is as hard as factoring N . Using the generalizationsof the results of last section, we then obtain e�ciently parallelizable universal one-way hashfunctions based either on discrete log or factoring Blum integers.The results of the �rst section are more speci�c, but can also be generalized to include subsetproduct modulo any integer N as long as n is relatively prime to �(N) . (In general, we needyn 2U Gx for y 2U Gx. ) However, we are not able to connect the security of this one-wayfunction with that of any group-theoretic problem. Thus, it is still an open problem to constructanNC-implementable pseudo-random generator (producing arbitrarily many output bits ) basedon discrete log or factoring. (However, Kharitonov [30] constructed a pseudo-random generatorbased on factoring that has a �xed sequential preprocessing phase and then can be expanded topolynomial length in NC.)De�nition 4.1 Let G = fGx; x 2 Ag; A � Z be a family of �nite groups indexed by integers,whose elements are also integers. We say that G is polynomial-time computable if, given x, thefollowing operations can be performed in probabilistic polynomial-time:1. Compute the identity of Gx.2. Given y; z 2 Gx compute y � z, where � is the group operation.3. Given y 2 Gx compute y�1, the multiplicative inverse of y in Gx.4. Select at random y 2U Gx.De�nition 4.2 Let G = fGx; x 2 Ag be a polynomial-time computable family of groups.Then the Subset G-Product function with parameters n; x takes as input an n-tuple of elementsy1; : : : ; yn of Gx and an n-bit string S and outputs the product in Gx, in order of appearance inthe n-tuple, of those elements yi with Si = 1. As before, we view n; x; ~y as being �xed, and soconsider the Subset G-Product function as a function from f0; 1gn ! Gx, f~y(S) = fn;x;~y(S).12



Proposition 4.1 Let n > c log(jGxj) for c > 1. Then, for all but an exponentially small fractionof the choices of ~y 2U (Gx)n, the induced distribution f~y(S) for S 2U f0; 1gn is statisticallyindistinguishable within an exponentially small amount from the uniform distribution on Gx.Proof: The proof is analogous to Proposition 1.1. (One technical point is that one needs theleftover hash lemma of [26], which works under the weaker assumption that the hash functionsin question are universal2 in the sense of [10], rather than pairwise independent.) 2Theorem 4.1 Let G = fGxjx 2 Ag and H = fHyjy 2 Bg be polynomial-time computablefamilies of groups, let g : B ! A be a polynomial-time computable function, and let h = fhyjy 2Bg be a family of polynomial-time computable onto homomorphisms from Hy to Gg(y). Then anyalgorithm to invert the Subset G-Product function with parameters x = g(y); n > c log(jGX j); c >1 with non-negligible probability of success on random inputs, yields an algorithm to invert hy.Proof: Let A be the algorithm inverting the Subset G-Product function. Let z 2U Gx. To �ndh�1y (z), we randomly generate b1; : : : ; bn�1 2U Hy and compute ri = hy(bi) for i = 1; : : : ; n� 1,and let rn = z. We then pick a random permutation � and let r0i = r�(i). Let T = hy(t); t 2U Hy.We then run A on input ~r0 and T . If it outputs a solution S so that S(�(n)) = 1, we have(r01)S(1) : : : (r0�(n)�1)S(�(n)�1)z(r0�n+1)S(�(n)+1) : : : ; (r0n)S(n) = T . Since we know an h�1y for allthe r0i; i 6= �(n) and for T , we can then compute an h�1y for z. Now, since ~r0 is uniformlydistributed, by Proposition 4.1, the distribution on T (a random group element) given ~r0 isindistinguishable from the output of the Subset G-Product function with the same parameters.Thus, by assumption, A �nds some solution S with non-negligible probability. If A does so, thensince S = 0n only when T = 1, and since � is independent of ~r0, S(�(n)) = 1 with probabilityat least 1=n. Hence, our inverting algorithm succeeds with non-negligible probability. 2.Corollary 4.1 Subset Product in a �nite �eld Fp for n > c log p, c > 1, is as secure as discretelog in Fp.Proof: Let g be a generator for Fp and let Hp�1;g be the additive group mod p � 1. Thenhp�1;g(y) = gy is an onto group homomorphism. 2.Corollary 4.2 Let N be an integer and let QRN be the subgroup of quadratic residues mod N .Then, for n > c logN , c > 1, the Subset Product in QRN function is as secure as factoring N .Proposition 4.2 Let N = pq be a product of two primes. Then, for n > c logN , c > 1, theSubset Product mod N function is as secure as factoring N .Proof: We reduce to the Subset Product in QRN function. Let A be any algorithm invertingsubset product mod N function on random outputs. Let a and b be such that a 2 QRp; a =2 QRq13



and b =2 QRp; b 2 QRq. (a and b can be chosen at random, and will have the desired propertieswith a constant probability.) Given an instance x1; : : : ; xn; T of Subset Product in QRN , wereduce to an instance of Subset Product mod N as follows. We let ri; si 2 f�1; 0; 1g so thateach is �1 with probability 1=4, 0 with probability 1=2 and 1 with probability 1=4 and letyi = aribsixi. We pick r; s 2 f�1; 0; 1g similarly and let T 0 = arbsT . All the yi's and T 0 areuniformly distributed mod N , and so by Proposition 4.1 are exponentially indistinguishablefrom a random output of the Subset Product mod N function. Thus, A �nds a subset S withT 0 = �i2Syi.We claim that with probability at least 
(1=n), T = �i2Sxi. To simplify the discussion,let yn+1 = (T 0)�1; rn+1 = �r; sn+1 = �s, xn+1 = T�1 and S0 = S [ fn + 1g. Then we have�i2S0 yi = 1, yi = aribsixi, and we want �i2S0xi = 1. Let R1 = fi 2 S0jri 2 f�1; 1gg = fi 2S0jyi =2 QRpg; R2 = fi 2 S0jsi 2 f�1; 1gg = fi 2 S0jyi =2 QRqg. Then given ~y (which determinesthe distribution on S and hence on R1; R2), for each i 2 R1 we have that ri is uniformly andindependently distributed in f�1; 1g, and similarly for each i 2 R2 and si. Hence, for any ~y andS = A(~y), there is an 
(1=n1=2) probability that Pi2S0 ri = 0 and a similar and independentprobability that Pi2S0 si = 0. Therefore the probability that both events occur is 
(1=n). Inthis case, 1 = �i2S0yi = a0b0�i2S0xi, so we have solved the instance of QRN Subset Product.2. Finally, we noteTheorem 4.2 Let G = fGxjx 2 Ag be a family of polynomial-time computable groups. Thenif n > clog(jGxj) for c > 1, and the Subset G-Product function with parameters x and n isone-way, it is also a Universal One-Way Hash Function.Proof: Analogous to Theorem 3.1. 2.5 Bit Commitment vs. a Strong ReceiverBit commitment is a basic protocol which is useful and essential in many cryptographic appli-cations, such as coin 
ipping by telephone [3], zero-knowledge and minimum disclosure proofs([21, 7]) and identi�cation schemes [13].Naor [38] has shown how to implement bit commitment given any pseudo-random generator.His scheme su�ces for the all applications above, except minimum disclosure. Furthermore,his scheme enables commit to n bits at the price of generating a pseudo-random sequence oflength O(n). In our context it implies that if subset sum with l(n) = (1 + c)n is one-way, thencommitment to n bits can be done with n additions.As mentioned, minimum disclosure requires a special kind of bit commitment, one which issecure vs. a computationally unlimited receiver. In [7] it is shown how to implement this kind of14



bit commitment based on factoring and discrete log. [40] show a general but highly interactiveprotocol, which can be based on any one-way permutation.Bit commitment is a way for a committer Alice to send a receiver Bob a locked box containinga bit. Only Alice has a key to the box, which she can send to Bob at a later stage. Bob can besure that the contents of the box are �xed, i.e not tampered with between the time he receivedit and the time it was opened. Alice can be sure that Bob has no idea what the value of thebit in the box is. Many times during a protocol, the box is never opened, and Alice wishes thatit never be opened in any time in the future. In most bit commitment schemes, Bob can openthe box, if he has super-polynomial time. In a strong receiver bit commitment protocol, Aliceshould have the con�dence that the box cannot be opened even by a Bob with an unlimitedcomputational ability.We give a construction which is based on the assumption that subset sum with l(n) = cn,where c < 1=2, is one-way. Unlike the other constructions in this paper, we do not claim thatit is particularly e�cient. A more practical version is possible if we assume that a trusted thirdparty, such as the protocol designer, �xes some parameters at random. (The trusted party neednot be available during the execution of the protocol!)We give the protocol assuming that the trusted third party has chosen a1; a2; : : : ; an=2 2f0; 1gl(n) and a01; a02; : : : ; a0n=2 2 f0; 1gl(n). (If there is no such third party, then the ai's and a0i'scan be chosen via coin 
ipping over the telephone [3] which can be implemented using a bitcommitment scheme vs a strong committer, as in [38]. This commitment can also be based onthe hardness of subset sum.)The commit protocol to a bit b:1. Alice chooses s 2R f0; 1gn=2.2. If b = 0 then Alice sends Bob T =Xi2s ai3. If b = 1 then Alice sends Bob T =Xi2s a0i,To reveal, she sends s and b. Bob veri�es that the commit protocol was obeyed.Alice's unconditional security is based on part 2 of proposition 1.2: The distributions on Tgiven that b = 0 or 1 are both quasi-random (with high probability) and thus indistinguishableeven to a strong Bob. Bob's security is based on the fact proved in section 3 that if an l(n)subset sum function is one-way, then given two sets of n=2 numbers, it is hard to �nd two subsetsthat sum to the same value.
15



6 Subset Sum with Constant Depth CircuitsOne of the few lower bounds known in complexity theory concern the class of polynomial sizedconstant depth circuits (AC0). It is known that the parity function cannot be computed in AC0and hence summing many numbers cannot be done in AC0 [1, 16], (exponential lower bounds onthe size of a constant depth circuit to compute these functions are given in [48, 23]). However, weshow that random instances of the subset sum problem can be generated in AC0. If subset sum issecure for any length l(n), then our construction gives a one-way function and a pseudo-randomgenerator computable in AC0. This is the �rst example of such functions. In contrast, Linial,Mansour and Nisan [34] have shown that no pseudo-random function generator, as de�ned byGoldreich, Goldwasser and Micali [20], can be implemented in AC0 (more precisely, no pseudo-random function secure against an adversary operating in npolylog(n) time can be computable inAC0). We should also note that our results have been applied by Kharitonov [29] to show thehardness of learning problems.The basic idea is to generalize a method suggested by Babai [2] and Boppana and Lagarias [6].Instead of �rst generating a random ~a and then computing a sum, which cannot be done in AC0,we generate the sum, the subset and ~a simultaneously. Successive members of the subset shouldcancel each other, so that the biggest and smallest members of the subset are the only indicesthat a�ect the sum.For any length l(n), we can generate uniformly at random a1; a2; : : : ; an 2 f0; 1gl(n), S 2f0; 1gn and T =Xi2S ai mod 2l(n). The generator is the following:Input: n+ n � `(n) bits.1. generate S 2 f0; 1gn and a01; a02; : : : ; a0n 2 f0; 1gl(n) from the input bits.2. Find imin = mini2S i and imax = maxi2S i.3. For every i 2 S such that i > imin evaluate ji = maxfj < ijj 2 Sg.4. for each 1 � i � n set ai by the following rules� If i 62 S then set ai = a0i� If i 2 S and i > imin, then set ai = a0i � a0ji .� If i = imin, then set ai = a0i5. Compute T =Xi2S ai =Xi2S a0i � a0ji = aimax � aimin mod 2l(n)Output: T; a1; a2; : : : an ((n+ 1) � `(n) bits).Every step in the above procedure can be computed in AC0: steps 2 and 3 require onlyan AND of at most n inputs and steps 4 and 5 are can be done in AC0 since addition andsubtraction are in AC0. 16



Claim 6.1 If the inputs S 2 f0; 1gn and a01; a02; : : : ; a0n 2 f0; 1gl(n) to the above procedure arerandom, then the output T; a1; a2; : : : an is distributed as a sum of a subset of number all chosenuniformly at randomThus, if subset sum is secure for any l(n), the procedure above de�nes a one-way function which iscomputable in AC0. (The function maps S 2 f0; 1gn and a01; a02; : : : ; a0n to T and a1; a2; : : : ; an).This is the �rst example of such a function that we know of. As we have mentioned in section1, if subset sum is secure for any l(n), then it is secure for n+ log n. Therefore, by Theorem 2.2the procedure above with `(n) = n+ log n de�nes a pseudo-random generator that expands theinput by log n bits. We do not know if one can construct in AC0 a pseudo-random generatorbased on subset sum that expands the input by any polynomial.7 ConclusionsWe have shown a number of very e�cient implementation of cryptographic schemes which aresecure if subset sum is hard to invert for certain length parameters. More cryptanalytic e�ortshould be devoted to understanding the di�culty of subset sum for these parameters beforeour constructions should be used. We hope that our results will encourage such an e�ort.Our results also shed some light on the theoretical question of whether it is possible to havemeaningful cryptography in very low-level complexity classes.8 AcknowledgmentsWe thank Manuel Blum for suggesting that we look at subset sum, Ernie Brickell for helpfuladvise about the state of the art of solving low density subset problems and Mike Luby andRonitt Rubinfeld for interesting discussions. We thank the anonymous referees for their diligentreading and useful suggestions.Note Added in Proof: recent result of M. Ajtai (\Generating Hard Instances of LatticeProblems", to appear, Proc. 28th Symposium on Theory of Computing, 1996) implies that ifthe subset sum problem is easy on the average, then the shortest vector in a lattice problem iseasy in the worst-case.References[1] M. Ajtai, �11 formulas of �nite Structures, Ann Pure & Apll. Logic 24, pp 1-48, 1983.[2] L. Babai, Random Oracles Separate PSPACE From the Polynomial-time Hierarchy, Infor.Proc. Let., vol 26, pp. 51-53, 1987. 17



[3] M. Blum, Coin Flipping by Telephone, Proc. 24th IEEE Compcon, 1982, pp. 133-137.[4] L. Blum, M. Blum and M. Shub, A simple Unpredictable Pseudo-Random Number Generator,Siam J. on Comput., 1986.[5] M. Blum, S. Micali How to Generate Cryptographically Strong Sequences of Pseudo-RandomBits, Siam J. on Comput., vol 13, 1984, pp 850-864.[6] R. B. Boppana and J. C. Lagarias, One-way functions and circuit complexity, Proc. Structurein Complexity Theory, Springer Verlag, 1986, pp. 51-65.[7] G. Brassard, D. Chaum, C. Crepeau, Minimum Disclosure Proofs of Knowledge, J. of Comp.Sys. Sci., vol 37, pp. 156{189.[8] E. F. Brickell, Solving low density knapsacks, Proc. Crypto 83, pp 25-37.[9] E. F. Brickell and A. M. Odlyzko, Cryptanalysis: A Survey of Recent Results, Proc. of theIEEE, vol. 76, pp. 578-593, May 1988.[10] L. Carter and M. Wegman, Universal Classes of Hash Functions, JCSS, 1979, Vol. 18, pp.143-154.[11] B. Chor and R. L. Rivest, A Knapsack Type Public Key Crypto-System Based on arithmeticin �nite �elds, IEEE Transaction on Information Theory, Vol 34, 1988, pp. 901-909.[12] M. J. Coster, B. A. LaMacchia, A. M. Odlyzko and C. P. Schnorr, An improved low-densitysubset sum algorithm, Proc. Advances in Cryptology - Eurocrypt'91, Springer Verlag, 1991,pp. 54{67.[13] A. Fiat and A. Shamir, How to Prove Yourself, Proc. of Advances in Cryptology - Crypto'86, Springer Verlag, 1987, pp. 641{654.[14] A. M Frieze, On the Lagarias Odlyzko algorithm for the subset sum problem, SIAM J.Comput., vol 15, 1986, pp. 536{539.[15] M. Furst and R. Kannan, Succinct certi�cates for almost all subset sum problems, Siam J.on Comput., vol 18, 1989, pp. 550-558.[16] M. Furst, J. Saxe and M. Sipser, Parity circuits and the polynomial time hierarchy, Proc.22nd Symposium on Foundations of Computer Science, 1981, pp. 260{270.[17] Z. Galil and O. Margalit, An almost linear time algorithm for the dense subset sum problem,Siam J. Comput., vol 20, 1991, pp. 1157{1189.18



[18] O. Goldreich, H. Krawczyk and M. Luby, On the existence of Pseudorandom Generators,Proc. of the 29th Symposium on the Foundation of Computer Science , 1988, pp. 12-24.[19] O. Goldreich and L. Levin, A Hard-Core Predicate for all One-Way Functions, Proc. of the21st Symposium on the Theory of Computing, 1989.[20] O. Goldreich, S. Goldwasser and S. Micali, How to Construct Random Functions, J. of theACM, vol 33, 186, pp. 792-807.[21] O. Goldreich, S. Micali, A. Wigderson, Proofs that Yield Nothing but Their Validity anda Methodology of Cryptographic Protocol Design, Proc. 27rd Symposium on Foundations ofComputer Science, 1986, pp 174-187.[22] S. Goldwasser and S. Micali, Probabilistic Encryption, J. of Computer and Systems Sciences,vol 28, 1984, pp 270-299.[23] J. Hastad, Improved lower bounds for small depth circuits, Proc. 18th Symposium on Theoryof Computing, 1986.[24] J. Hastad, Pseudo-Random Generators under Uniform Assumptions, Proc. 19th Symposiumon Theory of Computing, 1990.[25] R. Impagliazzo, L. Levin and M. Luby, Pseudo-random generation from one-way functions,Proc. 21st Symposium on Theory of Computing, 1989, pp. 12-24.[26] R. Impagliazzo and D. Zuckerman, Recycling random bits, Proc. of the 30th IEEE Sympo-sium on Foundations of Computer Science, 1989, pp. 248-253.[27] A. Joux and J. Stern, Improving the critical complexity of the Lagarias Odlyzko attackagainst subset sum problems, Proc. of 8th International Conference on Fundamentals of Com-putation Theory, Springer Verlag, 1991, pp. 258{264.[28] R. M. Karp, Reducibility among combinatorial problems, in Complexity of ComputerComputation, ed. R. E. Miller and J. W. Thatcher, New York: Plenum Press, 1972.[29] M. Kharitonov, Cryptographic lower bounds for learnability of Boolean functions on theuniform distribution, Proc. 5th COLT, Morgan Kaufman, 1992.[30] M. Kharitonov, Cryptogrhapic hardness of distribution-speci�c learning, Proc. 25th ACMSymp. on Theory of Computing, 1993.[31] H. Krawczyk, Secret Sharing Made Short, Proc. of Advances in Cryptology - Crypto '93,Springer Verlag, 1994, pp. 136{146. 19



[32] J. C. Lagarias and A. M. Odlyzko, Solving low density subset sum problems, J. of the ACM,vol. 32, 1985, pp. 229-246.[33] A. K. Lenstra, H. W. Lenstra and L. Lov�asz, Factoring polynomials with rational coe�-cients, Math. Ann., vol 261, 1982, 515-534.[34] N. Linial, Y. Mansour and N. Nisan, Constant depth circuits, Fourier Transform, andLearnability, J. of the ACM., vol. 40, 1993, pp. 607-620.[35] M. Luby and C. Racko�, How to Construct a Pseudo-random Permutation from a Pseudo-random function, Siam J. on Computing, vol 17, 1988, pp. 373-386.[36] R. C. Merkle and M. Hellman, Hiding information and Signature in Trapdoor Knapsack,IEEE Transaction on Information Theory, Vol 24, 1978, pp. 525-530.[37] S. Micali and C. P. Schnorr E�cient, Perfect Polynomial Random Number Generators, J.of Cryptology, vol 3, 1991, pp. 157-172.[38] M. Naor, Bit Commitment Using Pseudo-Randomness, J. of Cryptology, vol 4, 1991, pp.151-158.[39] M. Naor and M. Yung, Universal One Way Hash Functions and Their Cryptographic Ap-plications, Proc. 21st Annual Symposium on the Theory of Computing, 1989, pp. 33-43.[40] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung Perfect Zero-Knowledge Argumentsfor NP Can be Based on General Complexity Assumptions, Proc. of Advances in Cryptology- Crypto '92, Springer Verlag, 1993, pp. 196{214.[41] A. M. Odlyzko, The rise and fall of knapsack cryptosystems, in Cryptology and Com-putational Number Theory, C. Pomerance ed., AMS Proc. Symp. Appl. Math, vol 42,1990, pp. 75{88.[42] J. Rompel, One-Way Functions are Necessary and Su�cient for Secure Signatures, Proc.22nd Symposium on Theory of Computing, 1990, pp. 387{394.[43] M. Santha and U. V. Vazirani, Generating Quasi-random Sequences from Slightly-randomSources, Proc. 25th Symposium on the Theory of Computing, 1984, pp. 434-440.[44] C. P. Schnorr and M. Euchner, Lattice base reduction: improved practical algorithms forsolving subset sum problems, Mathematical Programming, vol 66 (1994), pp. 181-199.[45] C. P. Schnorr and H. H. H�orner, Attacking the Chor-Rivest Cryptosystem by ImprovedLattice Reduction, manuscript, 1994. 20



[46] R. Schroeppel and A. Shamir, A T �S2 = O(2n) time/space tradeo� for certain NP-Completeproblems, Proc. 20th Symposium on Foundations of Computer Science, 1979, pp. 328{336.[47] A. C. Yao, Theory and Applications of Trapdoor Functions, Proc. 23rd Symposium onFoundations of Computer Science, 1982, pp. 80-91.[48] A. C. Yao, Separating the polynomial time hierarchy by oracles, Proc. 26th Symposium onFoundations of Computer Science, 1985, pp. 1-10.

21


