
Cryptographic and Physical Zero-Knowledge Proof Systems for

Solutions of Sudoku Puzzles

Ronen Gradwohl∗ Moni Naor† Benny Pinkas‡ Guy N. Rothblum§

Abstract

We consider cryptographic and physical zero-knowledge proof schemes for Sudoku, a popular
combinatorial puzzle. We discuss methods that allow one party, the prover, to convince another
party, the verifier, that the prover has solved a Sudoku puzzle, without revealing the solution
to the verifier. The question of interest is how a prover can show: (i) that there is a solution
to the given puzzle, and (ii) that he knows the solution, while not giving away any information
about the solution to the verifier.

In this paper we consider several protocols that achieve these goals. Broadly speaking, the
protocols are either cryptographic or physical. By a cryptographic protocol we mean one in the
usual model found in the foundations of cryptography literature. In this model, two machines
exchange messages, and the security of the protocol relies on computational hardness. By a
physical protocol we mean one that is implementable by humans using common objects, and
preferably without the aid of computers. In particular, our physical protocols utilize items such
as scratch-off cards, similar to those used in lotteries, or even just simple playing cards.

The cryptographic protocols are direct and efficient, and do not involve a reduction to other
problems. The physical protocols are meant to be understood by “lay-people” and imple-
mentable without the use of computers.

∗Department of Computer Science and Applied Math, The Weizmann Institute of Science, Rehovot 76100, Israel;
email: ronen.gradwohl@weizmann.ac.il. Research supported by US-Israel Binational Science Foundation Grant
2002246.

†Incumbent of the Judith Kleeman Professorial Chair, Department of Computer Science and Applied Math, The
Weizmann Institute of Science, Rehovot 76100, Israel; email: moni.naor@weizmann.ac.il. Research supported in
part by a grant from the Israel Science Foundation.

‡Department of Computer Science, University of Haifa, Haifa, Israel; email: benny@pinkas.net. Research sup-
ported in part by the Israel Science Foundation (grant number 860/06).

§CSAIL, MIT, Cambridge, MA 02139, USA; email: rothblum@csail.mit.edu. Research supported by NSF grant
CNS-0430450 and NSF grant CFF-0635297.

1 Introduction

Sudoku is a combinatorial puzzle that swept the world in 2005 (especially via newspapers, where
it appears next to crossword puzzles), following the lead of Japan (see the Wikipedia entry [21] or
the American Scientist article [13]). In a Sudoku puzzle the challenge is a 9×9 grid subdivided into
nine 3×3 subgrids. Some of the cells are already set with values in the range 1 through 9 and the
goal is to fill the remaining cells with numbers 1 through 9 so that each number appears exactly
once in each row, column and subgrid. Part of the charm and appeal of Sudoku appears to be the
ease of description of the problems, as compared to the time and effort it takes one to solve them.

A natural issue, at least for cryptographers, is how to convince someone else that you have
solved a Sudoku puzzle without revealing the solution. In other words, the question of interest here
is: how can a prover show (i) that there is a solution to the given puzzle, and (ii) that he knows
the solution, while not giving away any information about the solution. In this paper we consider
several methods for doing just that. Broadly speaking, the methods or protocols we consider are
either cryptographic or physical. By a cryptographic protocol we mean one in the usual model found
in the foundations of cryptography literature. In this model, two machines exchange messages and
the security of the protocol relies on computational hardness (see Goldreich [8] for an accessible
account and [9] for a detailed one). By a physical protocol we mean one that is implementable by
humans using common objects, and preferably without the aid of computers. In particular, our
protocols utilize everyday items such as playing cards, scissors and scratch-off cards that are similar
to those used in lotteries.

This Work: The general problem of Sudoku (on an n×n grid) is in the complexity class NP,
which means that given a solution it is easy to verify that it is correct (In fact, Sudoku is known to
be NP-Complete [22], but we are not going to use this fact, at least not explicitly.). Since there are
cryptographic zero-knowledge proofs for all problems in NP [10], there exists one for Sudoku, via
a reduction to 3-Colorability or some other NP-Complete problem with a known zero-knowledge
proof (see definition in Section 2). In this work, however, we are interested in more than the mere
existence of such a proof, but rather in its efficiency, understandability, and practicality, which we
now explain.

First, the benefits of a direct zero-knowledge proof (rather than via a reduction) are clear, as the
overhead of the reduction is avoided. Thus, the size of the proof can be smaller, and the computation
time shorter. In addition, we wish our proofs to be easy to understand by “non-experts”. This
is related to the practicality of the proof: the goal is to make the interaction implementable in
the real world, perhaps even without the use of a computer. One of the important aspects of
this implementability requirement is that the participants have an intuitive understanding of the
correctness of the proof, and thus are convinced by it, rather than relying blindly “on the computer”.
(For another example in which this intuitive understanding is important, see the work of Moran and
Naor [15] on methods for polling people on sensitive issues.) Physical protocols whose security is
intuitively clear are also a good way for teaching zero-knowledge to non-experts (see [2, 4, 6, 17, 19]
for other explorations of simple cryptographic protocols for education and fun).

The contributions of this paper are (i) efficient cryptographic protocols for showing knowledge
of a solution of a Sudoku puzzle which do not reveal any other useful information (these are known
as zero-knowledge proofs of knowledge) and (ii) several transparent (to the participants) physical
protocols that achieve the same task. As mentioned above, the physical protocols use everyday
objects. The protocols are straightforward to implement and have good error probabilities. In
particular we offer protocols that use some trust (e.g. in a copier) and obtain zero soundness error.

1

Organization: In Section 2 we outline the definition of a zero-knowledge protocol, and the prop-
erties of the cryptographic and physical protocols. In section 3 we describe two cryptographic
zero-knowledge protocols: the first protocol is very simple and direct, and the second is slightly
more involved, but has a lower (better) probability of error. In Section 4 we describe several phys-
ical protocols utilizing scratch-off cards and discuss their implementation using playing cards and
cutting sheets of papers. Finally, in Section 5 we discuss further research directions.

2 Definitions
Sudoku: An instance of Sudoku is defined by the size n = k2 of the n×n grid, where the subgrids
are of size k×k. Some of the cells are already filled with values in the range {1, . . . , n}. The goal is
to fill the remaining cells with numbers from the same range so that each number appears exactly
once in each row, column and subgrid.

Note that in general the size of an instance is O(n2 log n) bits and this is the size of the solution
(or witness) as well.

Cryptographic Functionalities: We only give rough descriptions of zero-knowledge proofs and
of commitments. For more details, see the above mentioned books by Goldreich [8, 9], or the
writeup by Vadhan [20]. In general, a zero-knowledge proof, as defined by Goldwasser, Micali and
Rackoff [11], is an interactive-proof between two parties, a prover and a verifier. They both know
an instance of a problem (e.g. a Sudoku puzzle) and the prover knows a solution or a witness. The
two parties exchange messages and at the end of the protocol the verifier ‘accepts’ or ‘rejects’ the
execution. The protocol is probabilistic, i.e., the messages that the two parties send to each other
are functions of their inputs, the messages sent so far and their private random coins (sequence of
random bits that each party is assumed to have in addition to its input). Once the programs of the
verifier and prover are fixed, for a given instance the messages sent are a function of the random
coins of the prover and verifier only. We will be discussing several properties of such protocols:
completeness, soundness, zero-knowledge and proof-of-knowledge.

The completeness of the protocol is the probability that an honest verifier accepts a correct
proof, i.e. one done by a prover holding a legitimate solution and following the protocol. All our
protocols will have perfect completeness; a correct proof is always accepted (i.e. with probability
1). The probability is over the random coins of the prover and the verifier. The soundness error
(or soundness) of the protocol is the (upper bound on the) probability that a verifier accepts an
incorrect proof, i.e. a proof to a fallacious statement; in our case this is the statement that the
prover knows a solution to the given Sudoku puzzle, even though it does not know such a solution.

The goal in designing the protocols is to prevent the verifier from gaining any new knowledge
from a correct (interactive) proof. I.e., the protocol should be zero-knowledge in the following
sense: whatever a verifier could learn by interacting with the correct prover, the verifier could
learn itself. To formalize this requirement, we require that there is an efficient simulator that could
have generated the verifier’s conversation with the prover without the benefit of the conversation
actually occurring, based on knowing the puzzle alone, without knowledge of the solution. Since
the protocol is probabilistic, we consider the distribution of the conversation, the messages sent
back and forth between the prover and verifier. We want the two distributions, the one of a
conversation between the real prover and verifier, and the one that the simulator produces, to be
indistinguishable. Furthermore, we want a simulator for any possible behavior of the verifier, even
a verifier that does not follow the prescribed protocol.

Our protocols should also be proofs-of-knowledge: if the prover (or anyone impersonating him)
can succeed in making the verifier accept, then there is another machine, called the extractor, that

2

can communicate with the prover and actually come up with the solution itself. This must involve
running the prover several times using the same randomness (which is not possible under normal
circumstances), so as not to contradict the zero-knowledge properties.

The only cryptographic tool used by our proofs is a commitment protocol. A commitment
protocol allows one party, the sender, to commit to a value to another party, the receiver, with the
latter not learning anything meaningful about the value. Such a protocol consists of two phases.
The first is the commit phase, following which the sender is bound to some value v, while the
receiver cannot determine anything useful about v. In particular, this means that the receiver
cannot distinguish between the case v = b and v = b′ for all b and b′. This property is called
hiding. Later on, the two parties may perform a decommit or reveal phase, after which the receiver
obtains v and is assured that it is the original value; in other words, once the commit phase has
ended, there is a unique value that the receiver will accept in the reveal phase. This property is
called binding. Bit commitments can be based on any one-way function [16] and are fairly efficient
to implement. Both the computational complexity and the communication complexity of such
protocols are reasonable and in fact one can amortize the work if there are several simultaneous
commitments. In this case, the amortized complexity of committing to a bit is O(1).

Note that in this setting we think of the adversary as controlling one of the parties (prover and
verifier) and as being malicious in its actions. The guarantees we make (both against a cheating
prover trying to sneak in a fallacious proof and against a cheating verifier trying to learn more than
it should) are with respect to any behavior.

Physical Protocols: While the cryptographic setting is well established and reasonably stan-
dard, when discussing ‘physical’ protocols there are many different options, ranging from a deck of
cards [4, 7, 19] to a PEZ dispenser [2], a broadsheet newspaper [17], and more [5] (see [14] for a short
survey). In our setting we will be using tamper-evident sealed envelopes, as defined by Moran and
Naor [14]. It is simplest to think of these as scratch-off cards: each card has a number on it from
{1, . . . , n}, but that number cannot be determined unless the card is scratched (or the envelope is
opened and the seal is broken). Actually for two of our three physical protocols the tamper evident
sealed envelopes can be implemented via standard playing cards. These are ‘sealed’ by turning a
card face down, and opened by turning the card over. For a demonstration of a zero-knowledge
proof for Sudoku using only playing cards, see the web page [12].

We would like our physical protocols to enjoy zero-knowledge properties as well. For this to be
meaningful we have to define the power of the physical objects that the protocol uses, as well as
the assumptions on the behavior of the humans performing it. In general, the adversarial behavior
we combat is more benign than the one in the cryptographic setting. See details in Section 4.

3 Cryptographic Protocols

We provide two cryptographic protocols for Sudoku. The setting is that we have a prover and
a verifier who both know an instance of an n×n Sudoku puzzle, i.e. a subset of the cells with
predetermined values. The prover knows a solution to the instance and the verifier wants to make
sure that (i) a solution exists and (ii) the prover knows the solution.

The protocols presented are in the standard cryptographic setting, as described in Section 2.
The structure of the proof is as follows, which is common to many zero-knowledge protocols:

1. The prover commits to several values. These values are functions of the instance, the solution
and some randomization known only to the prover.

3

2. The verifier requests that the prover open some of the committed values – this is called
the challenge. The verifier chooses the challenge at random from a collection of possible
challenges.

3. The prover opens the requested values.

4. The verifier checks the consistency of the opened values with the given instance, and accepts
or rejects accordingly.

The only cryptographic primitive we use in both protocols is bit or string commitment as
described above.

To prove that a protocol with the structure above is zero-knowledge we use the so called ‘stan-
dard’ argument, due to [10]: we require that the distribution of the values opened in Step 3 is an
efficiently computable function of the Sudoku puzzle and the challenge the verifier sent in Step 2
(but not of the puzzle’s solution. If the number of possible challenges in Step 2 is polynomial in
the size of the Sudoku puzzle, then this property, together with the indistinguishably property of
the commitment protocol, implies the existence of an efficient simulator, as described below.

The simulator operates in the following way: it picks at random a challenge that the verifier
might send in Step 2 (i.e. it guesses what the verifier’s challenge will be), and computes commitments
for Step 1 that will satisfy this challenge. The simulator simulates sending these commitments to
the verifier, then it runs the verifier’s algorithm with the puzzle as its input, a fresh set of random
bits and these commitments being the first message it receives. It then obtains the challenge the
verifier sends in Step 2. If this challenge is indeed the value it guessed, then the simulator can open
the commitments it sent and the verifier should accept; the simulator can continue simulating the
protocol and output the transcript of the simulated protocol execution. Otherwise, the simulator
resets the simulation and starts it all over again.

If the number of possible challenges is polynomial, then each time the simulator “guesses” the
verifier’s challenge, it is correct with some ‘reasonably high’ probability (i.e. at least an inverse
polynomial). Therefore within a polynomial number of tries the simulator is expected to guess the
verifier’s challenge correctly and the simulation process succeeds. This procedure guarantees that
the protocol is zero knowledge because the output of the simulator looks very much like a successful
execution of the proof protocol. I.e., the output of the simulator is indistinguishable from what the
verifier would see when interacting with the prover, but is computed without ever talking with the
prover!

The two protocols we provide are based on two classic zero-knowledge protocols for NP problems:
for 3-Colorability and Graph Hamiltonicity. We find it interesting that while the original protocols
seem to fit different types of problems, we could efficiently adapt both of them for the same problem.

3.1 A Protocol Based on Coloring

The following protocol is an adaptation of the famed GMW zero-knowledge proof of 3-Colorability
of a graph [10] (see [9]) for Sudoku puzzles. The idea there was for the prover to randomly permute
the colors and then commit to the (permuted) color of each vertex. The verifier picks a random
edge and checks that its two end points are colored differently. To apply this idea in the context of
Sudoku it helps to think of the graph as being partially colored to begin with, so one should also
check consistency with the partial coloring. The resulting Sudoku protocol consists of the prover
randomly permuting the numbers and committing to the resulting solution. What the verifier
checks is either the correctness of the values of one of the rows, columns or subgrids, or consistency
with the filled-in values. The protocol operates in the following way:

4

Protocol 1 A cryptographic protocol with 1 − 1
3n+1

soundness error
Prover:

1. Prover chooses a random permutation σ : {1, . . . , n} 7→ {1, . . . , n}.

2. For each cell (i, j) with value v, prover sends to verifier a commitment for the value σ(v).

Verifier: Chooses at random one of the following 3n + 1 possibilities: a row, column or subgrid
(3n possibilities), or ‘filled-in cells’, and asks the prover to open the corresponding commitments.
After the prover responds, in case the verifier chose a row, column or subgrid, the verifier checks
that all values are indeed different. In case the verifier chose the filled-in cells option, it checks that
cells that originally had the same value still have the same value (although the original value may
be different than the committed one), and that cells with different values are still different, i.e. that
σ is indeed a permutation over the values in the filled-in cells.

Proof of the required properties: The perfect completeness of the protocol is straightforward. As for
Soundness, note that any cheating prover must cheat either in his commitments for a row, column,
subgrid, or the filled-in cells (namely, there is at least one question of the verifier for which the prover
cannot provide a correct answer). Thus, the verifier catches a cheating prover with probability at
least 1/(3n + 1). The fact that the protocol is a proof-of-knowledge follows from observing that a
prover that convinces the verifier with high probability (greater than 1 − 1/(3n + 1))) is able to
answer all 3n + 1 queries properly. It is therefore possible to extract the solution by running the
protocol and rewinding it multiple times until the prover answers all queries; then find a reverse
permutation σ−1 mapping the filled-in values to the original ones and use it to deduce the solution
(if not all values appear in the filled-in cells, then any permutation σ−1 that maps the filled-in
cells correctly is sufficient). To verify the zero-knowledge property note that the distribution on the
values of the answer when the challenge is a row, column or subgrid is simply a random permutation
of {1, . . . , n}. The distribution in case the challenge is filled-in cells is a random injection of the
values appearing in those cells to {1, . . . , n}. Therefore it is easy to simulate the prover’s answers
and the zero-knowledge property of the protocol follows the standard arguments.

The witness/solution size of this protocol, as well as the number of bits committed, are both
O(n2 log n) bits.

3.2 An Efficient Cryptographic Protocol with Constant Soundness Error

Below is a more efficient zero-knowledge protocol for the solution of a Sudoku puzzle. It is closest
in nature to Blum’s protocol for proving the existence of a Hamiltonian Cycle [3]. The protocol
has constant (2/3) soundness error for an n×n Sudoku problem, and its complexity in terms of the
number of bits committed to is O(n2 log n), which is also the witness/solution size.

The idea of the protocol is to triplicate each cell, creating a version of the cell for the row,
column and subgrid in which it participates. The triplicated cells are then randomly permuted and
the prover’s job is to demonstrate that the following properties hold:

a. The cells corresponding to the rows, columns and subgrids have all possible values.

b. The three copies of each cell have the same value.

c. The cells corresponding to the predetermined values indeed contain them.

If all three conditions are met, then, as we show below, there is a solution and the prover knows
it. The following protocol implements this idea:

5

Protocol 2 A cryptographic protocol with 2/3 soundness error
Prover:

1. Commit to 3n2 values v1, v2, . . . , v3n2 where each cell of the grid corresponds to three randomly
located indices (i1, i2, i3). The values of vi1 , vi2 and vi3 should be the value v of the cell in the
solution.

2. Commit to n2 triples of locations in the range {1, . . . , 3n2}, where each triple (i1, i2, i3) cor-
responds to the locations of a cell of the grid in the list of commitments of Item 1.

3. Commit to the names of the grid cells of each triple from Item 2.

4. Commit to 3n sets of locations from Item 1, corresponding to the rows, columns and subgrids,
where each set is of size n and no two cells intersect.

Verifier: Ask one of the following three queries at random:

a. Open all 3n2 commitments of Item 1 and the commitments of Item 4. When the answer is
received, verify that each set contains n different numbers and that no two sets intersect.

b. Open all 3n2 commitments of Item 1 and the commitments of Item 2. When the answer is
received, verify that each triple contains the same numbers, that every number appears in n
triples, and that no two triples intersect.

c. Open the commitments of Items 2, 3 and 4 as well as the commitments of Item 1 corresponding
to filled-in cells in the Sudoku puzzle. When the answer is received, verify (i) that the opened
committed values are consistent with the predetermined values, (ii) that the set partitions of
Item 4 are consistent with the rows, columns and subgrids as defined by the grid locations of
the commitments and (iii) that the naming of the triples is consistent with the grid locations
of the commitments.

Proof of the required properties: The perfect completeness of the protocol is straightforward. To
examine other properties, note that each option for the verifier’s query checks a corresponding
property from the list of properties that the prover must prove. The first query (query (a)) checks
the constraint that all values appear in each row, column and subgrid (item (a) in the list of
properties above). The second option for the query (query (b)) makes sure that the value of the
cell is consistent in its three appearances (item (b) in the list of properties above). The third option
for the query (query (c)) makes sure that the filled-in cells have the correct value (item (c) in the
list of properties above), and that the partitioning of the cells to rows, columns and subgrids is
legitimate. Therefore, if all three challenges are met, then we have a solution to the given Sudoku
puzzle. As a result, a prover which cannot solve the puzzle cannot answer all three queries, and
is caught with probability of at least 1/3 (Soundness is therefore proved, with soundness error of
2/3). The protocol is a proof-of-knowledge as well, since given the answers to all three possible
queries of the verifier it is easy to find the solution to the puzzle. Regarding the zero-knowledge
property, note that for each challenge it is easy to describe the distribution on the desired response:

a. The answer to the first query is a random permutation of the sequence of the length 3n2

where each element in {1, . . . , n} appears 3n times, together with a random partitioning of
the sequence into non-intersecting sets containing all the values in {1, . . . , n}.

b. The answer to the second query is a sequence as above plus a random partition into equi-
valued triples.

6

c. The answer to the third query consists of n2 triples of locations in the range {1, . . . , 3n2}, a
random one-to-one mapping of these triples to the n2 cells of the grid, 3n sets containing the
locations of the cells of each rows, columns and subgrids, and the list of values of filled-in
cells.

Therefore, the zero-knowledge of the protocol follows from standard arguments, as outlined in the
beginning of the section.

Overhead of our protocols: The communication complexity and computation time of both
protocols presented here is similar (assuming efficient commitments), and is O(n2 log n). However,
the first protocol allows the prover to cheat (without being caught) with relatively high probability,
(1 − 1/(3n + 1)), while the second protocol has a constant probability of catching a cheater. In
both cases the soundness error can be decreased by repeating the protocols several times, either
sequentially or in parallel (for parallel repetition more involved protocols have to be applied, see [9],
to preserve the zero-knowledge property). Therefore, to reduce the cheating probability to ε, the
first protocol has to be repeated O(n log(1/ε)) times and the resulting communication complexity
is O(n3 log n log 1/ε) bits, while the second protocol should be repeated only O(log 1/ε) times, and
the resulting communication complexity is O(n2 log n log 1/ε) bits.

4 Physical Protocols

The protocols described in Section 3 can both have a physical analog, given some physical way to
implement the commitments. The problematic point is that tests such as checking that the set
partitions and the naming of the triples are consistent (needed in challenge (c) of the protocol in
Section 3.2) are not easy for humans to perform. In this section we describe protocols that are
designed with human execution in mind, taking into account the strengths and weaknesses of such
beings.

Tamper evidence as a physical cryptographic primitive: A locked box is a common
metaphoric description of bit (or string) commitment, where the commiter puts the hidden se-
cret inside the box, locks it, keeps the key but gives the box to the receiver. At the reveal stage he
gives the key to the receiver who opens it. The problem with this description is that the assumption
is that the receiver can never open the box without the key. It is difficult to imagine a physical
box with such a guarantee that is also readily available, and its operation transparent to humans1.
A different physical metaphor was proposed by Moran and Naor [14], who suggested concentrating
on the tamper-evident properties of sealed envelopes and scratch-off cards. That is, anyone holding
the envelopes can open them and see the value inside, but this act is not reversible and it will
be transparent to anyone examining the envelope in the future. We require this property from
the physical primitives we use. Another property we require from our envelopes is that they be
indistinguishable, i.e. it should be impossible to tell two envelopes apart, at least by the party that
did not create them (this is a little weaker than the indistinguishable envelope model formalized in
[14]).

Another distinction between our physical model and the cryptographic one has to do with the
way in which we regard the adversary. Specifically, the adversary we combat in the physical model
is more benign than the one considered in the cryptographic setting or the one in [14, 15]. We can
think of our parties as not wanting to be labelled ‘cheaters’, and so the assurance we provide is

1Perhaps quantum cryptography can yield an approximation to such a box, but not a perfect one. See the
discussion in [14].

7

that either the protocol achieves its goal or the (cheating) party is labelled a cheater. The protocol
does not prevent cheating by adversaries that accept the risk of being labelled as cheaters (in this
respect it is similar to the model of covert adversaries [1]).

We think of the prover and verifier as being present in the same room, and in particular the
protocols we describe are not appropriate for execution over the postal system (see Section 5). The
presence of the two parties in the same room is required since the protocols use such operations
as shuffling a given set of envelopes - one party wants to make sure that the shuffle is appropriate,
while the other party wants to make sure that the original set of envelopes is indeed the one being
shuffled.

We also need two additional functionalities that are not included in the vanilla model of sealed
envelopes ([14, 15]): shuffle and triplicate. The shuffle functionality is essentially an indistinguish-
able shuffle of a set of seals. Suppose some party has a sequence of seals L1, . . . , Li in his possession.
Invoking the shuffle functionality on this sequence is equivalent to picking σ ∈R Si, i.e. a random
permutation on i elements, to yield the sequence Lσ(1), . . . , Lσ(i). The triplicate functionality is
used only in our last protocol, so we defer its description to Section 4.2.

Defining zero-knowledge and knowledge extraction. It is easy to apply in the physical
setting described above the same definitions of completeness and soundness as in the cryptographic
setting. The definition of zero-knowledge in the physical setting can be made rigorous: as in the
cryptographic case, we need to come up with a simulator that can emulate the interaction between
the prover and verifier. The simulator interacts with a cheating verifier, runs in probabilistic
polynomial time, and produces an interaction that is indistinguishable from the verifier’s interaction
with the prover. The simulator does not have a correct solution to the Sudoku instance, but it
does have an advantage over the prover: at any point in time it is allowed to swap a committed
value (e.g., an unscratched card) with another. This advantage replaces the ability of simulators to
“rewind” the verifier in cryptographic zero-knowledge protocols. An appropriate analogy is editing
a movie, as first suggested in [18]. When making a movie of the proof one can swap the cards and
edit the movie so this action is unnoticeable. The result is indistinguishable from what one would
see in a real execution. We will describe such simulators in Sections 4.1 and 4.2.

Finally, since we want protocols that are also proofs-of-knowledge, we will describe extractors
that interact with honest provers in the physical setting and extract a correct solution for the
Sudoku instance.

Implementing the seals: There are several options for implementing the tamper evident seals
required for the physical protocols.

• They can be implemented using sealed envelopes. Namely, the required value is put in a
sealed envelope which cannot be distinguished from other envelopes. The value cannot be
revealed without opening the envelope. It is obvious, from observing an envelope, to decide
whether it was opened or not.

• The protocol can be based on the use of scratch-off cards, which have the same properties as
tamper resistant envelopes.

• Given that the setting we consider involves the prover and receiver being in the same room
there is a very simple implementation for the seals without scratch-off cards or envelopes:
standard playing cards. Sealing a value means that a card with this value is placed faced
down. The equivalent of scratching off or opening the value is simply turning the card over
so that it is face up. Tamper evidence is achieved by making sure that no card is turned over
before it should be.

8

The prevalence of playing cards and the experience people have in shuffling such cards makes
this implementation very attractive. This implementation is relevant for the first two proto-
cols. A demonstration of running the first protocol using only playing cards is documented
in the web page [12].

Another implementation we consider is based on cutting a sheet of paper that contains a
solved instance.

4.1 A Physical Zero-Knowledge Protocol with Constant Soundness Error

In the following protocol, the probability that a cheating prover will be caught is at least 8/9. Each
cell should have three (identical) cards. The main idea is that instead of running a subprotocol to
check that the values of each triple are indeed identical we let the verifier make the assignment of
the three cards to the corresponding row, column and subgrid at random. The protocol operates
in the following way (described using scratch-off cards):

Protocol 3 A physical protocol with 1/9 soundness error

• The prover places three scratch-off cards on each cell. On filled-in cells, he places three cards
with the correct value, which are already open (scratched).

• For each row/column/subgrid, the verifier chooses (at random) one of the three cards of each
cell in the corresponding row/column/subgrid.

• The prover makes packets of the verifier’s requested cards (i.e. for every row/column/subgrid,
he assembles the requested cards). He then shuffles each of the 3n packets separately (using
the shuffle functionality), and hands the shuffled packets to the verifier.

• The verifier scratches off all the cards in each packet and verifies that each packet contains
all of the numbers.

An implementation with playing cards: As mentioned above, this protocol can be imple-
mented using standard playing cards, without any scratch-off layer. In the first step the prover puts
all cards face down, except for those cards in filled-in cells, which are put face up. In the following
steps the verifier randomly assigns the three cards of every cell to the row/column/subgrid con-
taining this cell, and the prover makes packets and shuffles them, without turning over the cards.
Only in the last step do the parties turn the cards over and examine their values.

Completeness: Perfect completeness of the protocol is straightforward.

Soundness: We claim that the soundness error of the protocol is 1/9. We describe a simple
argument showing that the soundness error is 1/3 and provide a more involved analysis showing
that it is indeed 1/9.

Lemma 1 The cheating probability of a corrupt verifier in Protocol 3 is at most 1/3.

Proof: Assume that the prover does not know a valid solution for the puzzle. Then he is always
caught by the protocol as a liar if he places the cards such that each cell has three cards of identical
value. The only way a cheating prover can cheat is by placing three cards that are not all of the
same value on a cell, say cell a. This means that in this cell at least one value y must be different
from all others. Suppose that for all other cells the verifier has already assigned the cards to the

9

rows, columns and subgrids. A necessary condition for the (cheating) prover to succeed is that
given the assignments of all cells except a there is exactly one row, column or subgrid that needs
y to complete the values in {1, . . . , n}. The probability that for cell a the verifier assigns y to the
row, column or subgrid that needs it is 1/3.

A more involved argument shows that the soundness error is actually only 1/9.

Lemma 2 The cheating probability of a corrupt verifier in Protocol 3 is at most 1/9.

The full proof appears in the Appendix. The basic idea is that while we know that there is a cell
where not all three values are the same, we also know that the total number of cards of each value
must be correct, otherwise the prover will be caught with probability 1. Thus, there must be at
least two cells on which the prover cheats, say a and b. The proof considers different ways in which
a prover can cheat on these cells, and shows that his success probability is bounded above by 1/9.

Zero-Knowledge: To show that Protocol 3 is zero-knowledge, we have to describe an efficient
simulator that interacts with a cheating verifier, and produces an interaction that is indistinguish-
able from the verifier’s interaction with the prover. The simulator does not have a correct solution
to the Sudoku instance, but it does have an advantage over the prover: before handing the shuffled
packets to the verifier, it is allowed to swap the packets for different ones (see the discussion above).
The simulator acts as follows:

• The simulator places three arbitrary scratch-off cards on each cell.

• After the verifier chooses the cards for the corresponding packets, the simulator takes them
and shuffles them (just as the prover does).

• Before handing the packets to the verifier, the simulator swaps each packet with a randomly
shuffled packet of scratch-off cards, in which each card appears once. If there is a scratched
card in the original packet, there is one in the new packet as well.

Note that the final packets, and therefore the entire execution, are indistinguishable from those
provided by an honest prover, since the shuffle functionality guarantees that the packets each
contain a randomly shuffled set of scratch-off cards.

Knowledge extraction: To show that the protocol constitutes a proof-of-knowledge, we describe
the extractor for this protocol, which interacts with the prover to extract a solution to the Sudoku
instance: After the prover places the cards on the cells, the extractor simply scratches all the cards.
If the proof convinces the verifier with high probability, then the scratched-cards give a solution.

Overhead: Finally, in terms of the complexity of the protocol, we utilize 3n2 scratch-off cards,
and 3n shuffles by the prover. Consider the typical 9×9 case. The total number of cards needed
is 3 · 81 = 243 cards, 27 cards of each type. We want to use standard packs of playing cards, (it
is important that they have identical backs). Using only the cards numbered 1 to 9, discarding all
other cards, requires 7 packs (if all the cards are used, 5 packs suffice). So the equipment needed
to execute the protocol for any puzzle is a large sheet with the 9×9 grid marked on it and several
packs of cards. A demonstration of running the protocol in this manner is documented in the web
page [12]. However, recall that we are interested in making the protocols accessible to humans. For
a standard 9×9 Sudoku grid, this protocol requires 27 shuffles by the prover, which seems a bit
much. Thus, we now give a variant of this protocol that reduces the number of shuffles to one.

10

4.1.1 Reducing the Number of Shuffles

We now discuss a variant of the previous protocol, where the number of required shuffles is c− 1,
at the expense of each shuffle being applied to a larger set of envelopes (expected size 3n2/c) and
with worse soundness (1− 8

9
c−1

c). The idea is to run the protocol as above, but then pick a random
subset of the rows, columns and subgrids and perform the shuffle on all of them simultaneously.
Note that the special case of only one shuffle has soundness error 4/9.

Protocol 4 A physical protocol with c− 1 shuffles and 1 − 8(c−1)
9c

soundness error

• The prover places three scratch-off cards on each cell. On filled-in cells, he places three
scratched cards with the correct value.

• For each row/column/subgrid, the verifier chooses (at random) one of the three cards for each
cell in the corresponding row/column/subgrid.

• The prover makes packets of the verifier’s requested cards (i.e. for every row/column/subgrid,
he assembles the requested cards into a packet).

• The verifier marks each packet with a number chosen uniformly at random from 0, . . . , c− 1,
where 0 corresponds to leaving the packet unmarked.

• For i = 1, . . . , c− 1:

– The prover takes all packets marked with i, shuffles them all together, and hands them
to the verifier.

– The verifier scratches off all the cards and verifies that in each packet, each number
appears the correct number of times (namely, if t packets were marked i, each number
must appear t times in the packet corresponding to i).

As before, the protocol is perfectly complete, since an honest prover will always succeed. For
analyzing the soundness, note that if the prover is cheating, then with probability 8/9 (as above)
there is at least one packet which is unbalanced. If this packet is marked (i.e. by a number i
from 1 to c− 1), and no other unbalanced packet is marked by i, then the final count of values is
unbalanced and the prover fails. However, we have to be a bit careful here, since there may be two
or more unbalanced packets that, when marked together, balance each other out. The exact result
is proven in the following lemma.

Lemma 3 The cheating probability of a corrupt verifier in Protocol 4 is at most (1− 8
9

c−1
c).

Proof: With probability 8/9, some packet, say a, is unbalanced. Now suppose the verifier has
already gone through all other packets and marked them. Thus far, each marked packet is either
balanced or unbalanced. If they are all balanced, then with probability (c − 1)/c the verifier will
mark packet a with one of 1, . . . , c−1, and the final mix will be unbalanced. If one marked packet is
unbalanced, then with probability (c−1)/c the verifier will not mark the packet a with the correct
number, and again the final mix will be unbalanced. Finally, if more than one marked packet
is unbalanced, then with probability 1 the final mix will be unbalanced. Thus, with probability
(c − 1)/c, the final mix will be unbalanced, and the verifier will be caught. Note that this was
conditioned on the fact that some packet is unbalanced, so overall, the probability that a cheating
prover will be caught is 8/9 · (c− 1)/c as claimed.

The zero-knowledge and proof-of-knowledge properties can be proved in the same way as they
were proved for Protocol 3.

11

4.2 A Physical Zero-Knowledge Protocol with no Soundness Error

In this section we describe another physical zero-knowledge protocol, this time with the optimal
soundness error of 0. This comes at the expense of a slightly stronger model, as we also make use of
the triplicate functionality of the tamper-evident seals. This functionality generates three identical
copies of a card, without revealing its value.

4.2.1 The triplicate functionality

We show here two possible methods of implementing the triplicate functionality:

Triplicate using a trusted setup: It is simplest to view this functionality as using some sup-
plementary “material” that a trusted party provides to the parties. For instance, if the Sudoku
puzzles are published in a newspaper, the newspaper could provide this material to its readers. The
material consists of a bunch of scratch-off cards with the numbers {1, . . . , n} (3n of each value).
The cards come in triples that are connected together with an open title card on top that an-
nounces the value. The title card can be torn off (see figure below). It is crucial that the three
unscratched cards hide the same value, and that it is impossible to forge such triples in which the
hidden numbers vary.

Figure 1: A scratch-off card with the triplicate functionality.

Triplicate without trusted setup: It is preferable to be able to implement the triplicate func-
tionality in the absence of a trusted party preparing the cards in advance. To do so we utilize a
property of the human visual system: it can easily distinguish between a uniformly colored patch
and one which has more than one color. We will use scratch-off cards as before, but the underlying
numbers are replaced by colors, in a straightforward encoding, e.g. ‘1’ is encoded by yellow, ‘2’ by
red etc. The idea is that the prover prepares a scratch-off card which is (or at least should be)
uniformly colored. The verifier partitions (cuts) the card at random to three parts of equal shape
and size. When it is time to peel off the top layer, if the color in one of the parts is not uniform
then it is evident the prover was cheating and the verifier will summarily reject. Concretely, let the
prover use a circular scratch card. When the prover wishes to triplicate a card, he asks the verifier
to cut the card into three equally shaped parts (if it is easier to perform, he could ask the verifier
to partition into four parts, one of which will be thrown away or shuffled and checked separately).
The point is that the partitioning should be random.

12

If this task is performed by humans (which is the objective of this procedure), then slight
variations in shapes will most likely go unnoticed by the human eye. A cheating prover may cheat
by coloring some third a different color from the rest. However, assuming the cards are circles,
there are (infinitely) many places in which the verifier can cut the cards. Thus, the probability that
he cuts along the border separating two different colors (which is the only way the prover will not
be caught) is nearly zero (the exact value depends on assumptions on resolution and on the exact
way the random partition is generated).

Using the tamper-evident seals with the additional shuffle and triplicate functionalities, the
protocol is as follows:

Protocol 5 A physical protocol with 0 soundness error, using triplicate

• The prover lays out the seals corresponding to the solution in the appropriate place. The seals
placed on the filled-in squares are scratched off; they and must be the correct value (otherwise
the verifier rejects).

• The verifier triplicates the seals (using the triplicate functionality).

• For each seal, each third is taken to be in its corresponding row / column / subgrid packet,
and the packets are shuffled by the prover (using the shuffle functionality). The prover hands
the packets to the verifier.

• The verifier scratches off the cards of each packet, and verifies that in each packet all numbers
in {1, . . . , n} appear.

The completeness of the protocol is clear. As for soundness, note that the triplicate functionality
solves the problem of the first physical protocol (Protocol 3), by preventing the prover from assigning
different values to the same cell. Therefore the prover has no way of cheating. Thus, the soundness
error of the protocol is 0 (assuming that the triplicate functionality is perfect, i.e., that the prover
can never generate different copies of the same card).

The simulator for this protocol is nearly identical to that of Protocol 1, with the exception that
the cards in the swapped packets are also formed using the triplicate functionality. Since we are
assuming that triplicated cards are indistinguishable by the verifier, the packets swapped by the
simulator will look the same to the verifier as the original packets. The protocol will therefore be
zero-knowledge and be a proof-of-knowledge.

4.3 A Protocol Using Scissors and a Sheet Paper

The physical protocols we have described so far are based on the use of cards or other methods of
sealing information. We now describe a protocol (and several variants) based on the prover writing
down the solution on a sheet of paper and then cutting it to pieces according to the verifier’s
orders. We first describe the basic protocol, then explain why a simpler variant is insecure, and
then describe and analyze some variants of the basic protocol.

Protocol 6 A physical protocol using scissors

a. The prover takes a sheet of paper on which the puzzle is printed. He then writes down, for
every cell with a filled-in value, this filled-in value on back side of the cell (namely, on the
back of the page, right behind the printed filed-in value). The result is that filled-in cells, and
only them, have their values written on both sides of the page.

13

b. The prover writes down the solution to the puzzle on the (original) printed puzzle, and keeps
this side of the page hidden from the verifier.

c. The verifier checks that the prover wrote the right values on the back of the puzzle.

d. If the previous check is fine, the verifier chooses one option out of rows/columns/subgrids.

e. Suppose that the verifier chooses “rows”. The prover then cuts the puzzle and separates it
into n rows. (If the choice is “columns” the prover separates the columns from each other,
and similarly for subgrids. In the rest of the protocol description we then replace the word
“row” by “column”, or “subgrid”, according to the verifier’s choice above.) The prover then
cuts each row to separate it into n cells. He shuffles the cells of each row (separately from the
cells of other rows) and then hands them to the verifier.

f. The verifier checks that: (1) each row contains all n values, (2) in each row the cells whose
value is written on both sides agree with the filled-in values of that row in the puzzle, and (3)
these cells have the same value written on both their sides.

Given this protocol, it is unclear at first why the prover is required to write the values of the filled-in
cells on both sides of the page. A simpler protocol could use a standard puzzle (with no values
written on the back) and continue as Protocol 6 (without requiring the verifier to verify the values
written on the back of the cells). The problem with this simple protocol is that it does not detect
whether the prover solves a different puzzle in which every row/cells/subgrid has the same set of
filled-in values as the original one, but in different locations.2

Before analyzing the protocol, let use describe two simple variants which have the same prop-
erties:

• In the first variant, the original puzzle already has the filled-in values printed on both sides
of the page.

• In the second variant, the prover does not write values on the back of the puzzle. However,
after cutting a row into cells he first lets the verifier open the locations of filled-in values and
verify that they are correct. Only then does the prover shuffle the remaining cells of the row.
The verifier then verifies that the shuffled values contain the values that should appear in all
the blank cells.

Analysis. The completeness of the protocol is clear. As for soundness, note that a prover which
does not know a solution to the puzzle cannot write a solution which satisfies all three possible
queries of the verifier. This prover is therefore caught with probability of at least 1/3, and conse-
quently the soundness error is at most 2/3. The zero-knowledge property is shown by a simulator
which interacts with the verifier, and replaces the values of the pieces of every row with a random
permutation of the values [1, n]. Knowledge extraction is demonstrated by an extractor which
interacts with the prover and simply turns the page over to examine the solution.

2It is interesting to find out whether the following statement is correct: “If for two Sudoku puzzles it holds that
the set of filled-in values of every row/column/subgrid of the first puzzle is equal to the set of filled-in values of this
row/column/subgrid in the second puzzle, then given a solution to the first puzzle it is easy to solve the second puzzle”.
If this statement is correct then the simpler protocol described here can replace Protocol 6.

14

4.3.1 Reducing and Eliminating the Soundness Error

Using a trusted copier to achieve 0 soundness error. Just as in Section 4.2, we will show
that some degree of trust in a third party allows us to completely eliminate the soundness error.
Suppose that the two parties have access to a trusted copier. Say, a copy machine which can be
used to make three copies of the original solution in a way which ensures the verifier that the three
copies are identical, and ensures the prover that the verifier does not see the copied solution. In
this case, the verifier can ask the prover to apply the protocol to the rows of the first copy, the
columns of the second copy, and the subgrids of the third copy. Any incorrect solution is identified
with probability 1, and the soundness error is 0.

Repetition. Repeating the protocol k independent times obviously reduces the soundness error
to (2/3)k. This process might be tedious as the parties need to separately cut each of the k puzzles.
What we would like to do is amortize the cutting and the shuffling of the repetitive executions.

Consider a protocol working in the following way: The prover writes down k copies of the
solution; the verifier divides them at random into three packets; the prover then cuts in parallel
the rows and then the cells of the first packet (namely, applies a single cut to separate the first
row of each of the puzzles from the other rows, etc.). The prover then shuffles all cells of the
first row of the first packet, and the verifier checks that each value appears among these cells the
same number of times. They then apply this procedure to the other rows and then to the packets
corresponding to columns and to subgrids. This protocol is efficient, but it does not check each
copy of the solution independently. It therefore does not identify cheating if the cheating prover
is lucky and the incorrect solutions whose rows are chosen to be examined are such that their row
values cancel each other (namely, the total number of cells of a specific value is the same for all
values, even though some rows are unbalanced).

In fact, we claim that the soundness of this protocol is Θ(1/
√

k); a proof of a soundness upper
bound is presented in Appendix B and we now argue that that the soundness error of the protocol
is Ω(1/

√
k) (which is quite high compared to the exponentially small error we would like to have

and achieve in the colorful protocol below). Suppose that a cheating prover does not know how to
solve a puzzle, but he does know a solution which is correct, except for having two ‘1’ values in
the first row and two ‘2’ values in the second row (all other rows, as well as columns and subgrids
are correct). He also knows a solution which has two ‘2’ values in the first row and two ‘1’ values
in the second row. This prover is only caught if the number of solutions of the first type which is
assigned to the “rows” packet is equal to the number of solutions of the second type assigned to the
packet. Since the total number of solutions assigned to this packet is Ω(k) (with all but negligible
probability), the probability of these two numbers being equal is Ω(1/

√
k).

The colorful option. We suggest a variant of the simple repetition procedure that yields an
exponential drop-off in the probability of error. The idea is to use k copies of the puzzle printed
on sheets of paper of different colors. The prover writes the solution on each one of the copies
and then the verifier divides the copies into three random packets. He asks the prover to apply
the protocol to the rows of the first packet, the columns of the second packet, and the subgrids
of the third packet. The prover can cut in parallel, and shuffle in parallel, all copies in the first
packet; and similarly for the second and third packets. The verifier should check that in every
row the pieces of each color form a permutation of the numbers [1, n]. The work of the prover (in
terms of the number of cuts he has to make) is therefore roughly three times the work in the basic
solution, while the soundness error is reduced to (2/3)k. (Note that a similar gain in efficiency can

15

be achieved even if all copies are of the same color, if the prover shuffles the cells in a way which
does not mix the values of a cell of one puzzle with the values of cells of different puzzles. Namely,
if a packet contains k′ copies, then shuffling is done in a careful way which ensures that the k′

copies of the value of each cell do not mix with values of a different cell, and do not change their
order. Using the colorful sheets makes this operation very simple for humans.)

5 Conclusions and Open Problems

We describe the main properties of the different physical protocols in Table 1. Note that Protocol 4
provides a nice tradeoff between the number of shuffles and the soundness error (e.g., setting c = d
results in 4 shuffles and a soundness error of 1/3, compared to 3n shuffles required in order to
achieve soundness error of 1/9 in Protocol 3.

of cards shuffles soundness error
Protocol 3 3n2 3n 1/9
Protocol 4 3n2 c− 1 1/9 + 8

9c

Protocol 5 n2 special cards 3n 0
Protocol 6 no cards n 2/3

Table 1: Comparing the different physical protocols

There are many remaining open questions: Is there an implementable physical protocol that
can be executed by (snail) mail, i.e. without assuming that the prover and the verifier are in the
same room? In principle we know that such protocols exist, based on the scratch-off functionality,
since in [14] it was shown how to construct commitments from this functionality and hence the
cryptographic protocols of Section 3 can be used. However, since there is an amplification step
in the construction of commitments from the tamper-evident envelopes of [14], involving a large
number of repetitions, the result is not really human implementable. On the same note, Tom
Berson asked whether it is possible to construct non-interactive physical protocols proving that a
puzzle is solvable. Such protocols could be used by puzzle designers to convince potential solvers
that a solution to a puzzle exists.

One of the major applications of zero-knowledge proofs in the cryptographic setting is as a
mechanism for converting a protocol that is resilient to semi-honest behavior of the participants
into one that is resilient to any malicious behavior. This conversion is not necessarily always
possible with physical protocols. It would be interesting to see whether it is possible to do so for
the Sudoku protocols.

Acknowledgments. We are grateful to Tal Moran for helpful discussions and comments. We
thank Tobias Barthel and Yoni Halpern for providing the initial motivation for this work. We
thank Avner Naor for suggesting that we consider cutting based protocols, Efrat Naor for helping
to implement the protocol with a deck of playing cards and Yael Naor for diligently reading the
paper.

References

[1] Yonatan Aumann and Yehuda Lindell, Security Against Covert Adversaries: Efficient Protocols
for Realistic Adversaries, In TCC 2007, Springer-Verlag (LNCS 4392), pp. 137-156, 2007.

16

[2] József Balogh, János A. Csirik, Yuval Ishai and Eyal Kushilevitz, Private computation using
a PEZ dispenser, Theoretical Computer Science 306(1-3): 69-84 (2003).

[3] Manuel Blum, How to Prove a Theorem So No One Else Can Claim It, Proc. of the Interna-
tional Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1444–1451.

[4] Claude Crépeau, Joe Kilian, Discreet Solitary Games, Advances in Cryptology - CRYPTO’93,
Lecture Notes in Computer Science 773, Springer, 1994, pp. 319–330.

[5] Ron Fagin, Moni Naor and Peter Winkler, Comparing Information Without Leaking It, Comm.
of the ACM, vol 39, May 1996, pp. 77–85.

[6] Michael R. Fellows and Neal Koblitz, Kid Crypto, Advances in Cryptology - Crypto ’92, Lecture
Notes in Computer Science 740, Springer-Verlag, pp. 371–389, 1992.

[7] Michael J. Fischer and Rebecca N. Wright, Bounds on Secret Key Exchange Using a Random
Deal of Cards, Journal of Cryptology, Vol. 9, No. 2, 1996.

[8] Oded Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudorandom-
ness, Springer, Algorithms and Combinatorics, Vol 17, 1998.

[9] Oded Goldreich, Foundations of Cryptography: Basic Tools, Cambridge U. Press, 2001.

[10] Oded Goldreich, Silvio Micali and Avi Wigderson, Proofs that Yield Nothing But their Validity,
and a Methodology of Cryptographic Protocol Design, J. of the ACM 38, 1991, pp. 691–729.

[11] Shafi Goldwasser, Silvio Micali and Charles Rackoff, The knowledge complexity of interactive
proof systems, SIAM J. Computing Vol. 18, no. 1, 1989, pp. 186–208.

[12] Ronen Gradwohl, Efrat Naor, Moni Naor, Benny Pinkas and Guy N. Rothblum, Proving
Sudoku in Zero-Knowledge with a Deck of Cards, January 2007.
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/SUDOKU_DEMO/

[13] Brian Hayes, Unwed Numbers. American Scientist Vol. 94, no. 1, January-February 2006.
http://www.americanscientist.org/template/AssetDetail/assetid/48550

[14] Tal Moran and Moni Naor, Basing Cryptographic Protocols on Tamper-Evident Seals, Pro-
ceedings of the 32nd International Colloquium on Automata, Languages and Programming
(ICALP) 2005, Lecture Notes in Computer Science 3580, Springer, pp. 285–297.

[15] Tal Moran and Moni Naor, Polling With Physical Envelopes: A Rigorous Analysis of a Human
Centric Protocol, Advances in Cryptology - EUROCRYPT 2006, Lecture Notes in Computer
Science 4004, Springer, 2006, pp. 88–108.

[16] Moni Naor, Bit Commitment Using Pseudo-Randomness, Journal of Cryptology, vol 4, 1991,
pp. 151–158.

[17] Moni Naor, Yael Naor and Omer Reingold, Applied kid cryptography or how to convince your
children you are not cheating, March 1999.
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/waldo.ps

17

[18] Jean-Jacques Quisquater, Myriam Quisquater, Muriel Quisquater, Michaël Quisquater, Louis
Guillou, Marie Annick Guillou, Gäıd Guillou, Anna Guillou, Gwenolé Guillou, Soazig Guil-
lou and Tom Berson, How to explain zero-knowledge protocols to your children, Advances in
Cryptology - CRYPTO’89, Lecture Notes in Computer 435, Springer, 1990, pp. 628–631.

[19] Bruce Schneier, The solitaire encryption algorithm, 1999.
http://www.schneier.com/solitaire.html.

[20] Salil P. Vadhan, Interactive Proofs & Zero-Knowledge Proofs, lectures for the
IAS/Park City Math Institute Graduate Summer School on Computational Complexity.
http://www.eecs.harvard.edu/~salil/papers/pcmi-abs.html

[21] Sudoku, Wikipedia, the free encyclopedia, (based on Oct 19th 2005 version),
http://en.wikipedia.org/wiki/Sudoku

[22] Takayuki Yato, Complexity and Completeness of Finding Another Solution and its Application
to Puzzles, Masters thesis, Univ. of Tokyo, Dept. of Information Science, Jan 2003. Available:
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.ps

A Improved Analysis for Soundness of Protocol 3

We now provide a more involved argument that shows that the soundness error is actually 1/9. We
know that there is a cell where not all three values are the same. Also, the total number of cards
of each value must be correct, otherwise the prover will be caught with probability 1. Thus, there
must be at least two cells on which the prover cheats, say a and b. We now consider different ways
in which a prover can cheat on these cells, and show that his success probability is bounded above
by 1/9.

First suppose the prover cheats on exactly two cells, say a and b, and suppose the values are
(x, x, y) for cell a and (y, y, x) for cell b. Note that this is the only way he can cheat on exactly two
cells without being caught with probability 1. There are three possibilities for the location of cells
a and b, and we analyze the probability of being caught for each.

We will often assume the verifier has assigned all values to packets except those of cells a and
b, and then analyze the probability that he makes the correct assignments of those cells. Before
assigning these two cells, however, we have some incomplete packets. We will say that a packet
that has all values except some value x “needs” x.

(i) In the simplest case, cells a and b are not in the same row, column, or subgrid, and are
thus “independent” in some sense. Suppose the verifier already assigned every card to a
row/column/subgrid except the cards of cells a and b. Then there are six packets that are not
yet complete – 2 each for a row, column, and subgrid. But each one of these packets can have
only 1 value that will yield a complete set, since it cannot be missing both an x and a y (if
it does, then the final card will not complete the packet regardless, and the cheating prover
will be caught). Thus, the only way the prover will not be caught is if the verifier assigns x
to the rows/columns/subgrids that need x, and y to the ones that need y. But this happens
with probability at most 1/9.

(ii) In this case, cells a and b are in the same row, column or subgrid (exactly one of them).
Without loss of generality, assume they are in the same row, and again that the verifier

18

already assigned every card to a row/column/subgrid except the cards of cells a and b. There
are several options:

– If the column and subgrid of cell a both need x, and the column and subgrid of cell b
both need y, then the verifier makes the correct assignment with probability 1/9. This
is because in order to accept, the verifier needs to assign x to the row of a and y to the
row of b, and each occurs independently with probability 1/3.

– If the column of cell a needs x and the subgrid needs y (or vice verse), and the column
of cell b needs x and its subgrid needs y (or vice versa), then again the verifier makes
the correct assignment with probability 1/9: He chooses y for cell a’s subgrid and x for
cell b’s column with probability 1/9, since each assignment is made independently with
probability 1/3.

– Any other situation results in the prover losing with probability 1, as there is no way to
select the cards to satisfy all constraints.

(iii) In the final case, cells a and b are in the same row (or column) and the same subgrid. Without
loss of generality, assume they are in the same row and subgrid. Consider the following
situations:

– Suppose cell a’s column needs y and cell b’s column needs x. In this case, the verifier
makes the correct assignment with probability 1/9, since each assignment is made with
probability 1/3.

– Now suppose the column of cell a needs x and the column of cell b needs y. In this
situation, however, the prover did not really need to cheat: he could have placed (x, x, x)
on cell a, and (y, y, y) on cell b, and the constraints on rows, columns, and subgrids would
have been satisfied. However, since we are assuming the prover does not know a correct
solution to the Sudoku problem, there must be some other cells on which he is cheating.

– Any other situation results in the prover losing with probability 1, as there is no way to
select the cards to satisfy all constraints.

Thus, either the correct assignment is made with probability 1/9, or some additional cells
have multiple-valued cards on them (in which case we can repeat the analysis for those cells).
In either case, if the prover does not lose with probability 1, he is caught with probability at
least 8/9.

Thus, if the prover cheats on exactly two cells, he is caught with probability at least 8/9. We
now argue that this is also true if he cheats on three or more of the cells. Let a and b be two of
the cheating cells. The values may be (x, x, y) and (y, y, x) as above, they may be (x, x, y) and
(y, y, z), or one or both of the cells may have three distinct values. In any case, we can do the same
analysis as above regarding the location of the two cells. A similar type of proof goes through, in
some cases with even lower probabilities of success for the cheating prover.

In all the above possibilities, the prover is caught with probability at least 8/9 and hence the
soundness error is 1/9.

B Soundness Analysis for Repetition of Protocol 6

In this section we argue that the soundness error in k repetitions of protocol 6, as described in the
final part of Section 4.3, is O(1/

√
k). Recall that the prover provides the verifier with k solutions,

19

which the verifier divides into three packets. For each packet either the rows, columns or the
subgrids of the prover’s solution will be cut separately, shuffled, and then the verifier will check
that all values appear the same number of times.

Assume, without loss of generality, that in at least k
3 of the submitted solutions there is a

malformed row, i.e. a row that does not contain all the values in [n] (if this is not the case a similar
argument will hold for the columns or subgrids).

Now partition the solutions with malformed rows into sets {S+
i,j , S

−
i,j}i,j∈[n]. A solution goes into

the set S+
i,j if: (i) its smallest malformed row is the i-th row, and (ii) in that row the smallest value

that does not appear exactly once is j, and (iii) j appears more than once. Similarly, a solution
goes into the set S−

i,j if (i) its smallest malformed row is the i-th row, (ii) in that row the smallest
value that does not appear exactly once is j, and (iii) j appears less than once, i.e. zero times.
We will use the notation si,j = |S+

i,j | + |S−
i,j |. Our assumption that at least a third of the row are

malformed implies that: ∑
i,j∈[n]

si,j ≥
k

3

Observe that for the verifier to accept, for each i, j ∈ [n] the solutions with with too many
j values in row i that the verifier puts into the “rows” packet must compensate exactly for the
solutions with zero j values in row i that the verifier puts into that packet. Denote by Ei,j the
event that in row i the jth value is balanced (that is has the right number). If Ei,j does not occur,
the verifier always rejects.

Enumerate all i, j ∈ [n] (in increasing lexicographic order), and let the verifier choose (at
random) into which packet (“rows”, “columns” or “subgrids”) to put each solution in S+

i,j and
S−

i,j . Event Ei,j is independent of all the partitioning (into ”rows”, ”columns” and ”subgrids”) of
solutions in S+

i′,j′ ∪ S−
i′,j′ for pairs (i′, j′) that are lexicographically larger than (i, j). This is true,

since by the way that we assigned solutions to the first malformed row and value these elements
cannot contribute to the jth count of the ith row. Now, let si,j > 0 and suppose the verifier has
partitioned all the solutions up to (i, j), that is for all pairs (i′, j′) lexicographically smaller than
(i, j) the verifier has partitioned the solutions in S+

i′,j′ ∪ S−
i′,j′ . No matter how these solutions were

partitioned, we claim that the conditional probability of event Ei,j occurring is bounded from above
by c ·

√
1

si,j
for some (universal) constant 0 < c < 1.

We will use the following fact (without proof): for any set of non-zero integers a1, a2, . . . , ak and
any target value T , if the ai’s are chosen independently with probability 1/3 into a subset R, then
the probability that

∑
i∈R ai = T is at most c · 1√

k
for some constant (independent of k) 0 < c < 1.

Consider now a pair i, j’s for which k = si,j > 0. Some of the solutions that do not have exactly
one j value in row i may already have been divided into packets and hence there is already some
imbalance for the j-th value in the i-th row, denoted by T . Let the number of times value j occurs
in row i of the solutions in S+

i,j and S−
i,j be a1, a2, . . . ak. These are non-zero integers and we are

picking with probability 1/3 each one of them. The cheating prover wins only if the set we picked
sums up to T , and this happens with probability at c ·

√
1

si,j
.

Now, let m be the number of pairs i, j such that si,j > 0. We conclude that the probability of
the cheating prover escaping detection is:

Pr[
∧

i,j∈[n]

Ei,j] ≤ cm ·
∏

i,j∈[n]:si,j>0

√
1

si,j

but recall also that (w.l.o.g.):
∑

i,j∈[n] si,j ≥ k
3 . The product is maximized when there is only a

20

single “big” Si,j of the same size as the number of solutions with malformed rows:

cm ·
∏

i,j∈[n]:si,j>0

√
1

si,j
≤ c ·

√
3
k

and we conclude that the soundness of the protocol is indeed O(1√
k
) as claimed. This is tight up

to constant factors, as noted in the discussion in Section 4.3.

21

