
Receipt-Free Universally-Verifiable Voting With

Everlasting Privacy⋆

Tal Moran1 and Moni Naor1⋆⋆

Department of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot, Israel

Abstract. We present the first universally verifiable voting scheme that
can be based on a general assumption (existence of a non-interactive
commitment scheme). Our scheme is also the first receipt-free scheme to
give “everlasting privacy” for votes: even a computationally unbounded
party does not gain any information about individual votes (other than
what can be inferred from the final tally).

Our voting protocols are designed to be used in a “traditional” setting, in
which voters cast their ballots in a private polling booth (which we model
as an untappable channel between the voter and the tallying authority).
Following in the footsteps of Chaum and Neff [7,16], our protocol en-
sures that the integrity of an election cannot be compromised even if

the computers running it are all corrupt (although ballot secrecy may be
violated in this case).

We give a generic voting protocol which we prove to be secure in the
Universal Composability model, given that the underlying commitment
is universally composable. We also propose a concrete implementation,
based on the hardness of discrete log, that is slightly more efficient (and
can be used in practice).

Keywords: receipt-free voting human protocol universally composable for-
mal proof

1 Introduction

One of the earliest secret election protocols is the source of the word “ostracism”:
when the citizens of ancient Athens believed a politician had too much power,
they held a vote to determine if he should be exiled for a period of ten years.
The vote was conducted by having each citizen write the name of the person
he most hated on a pot shard (these shards were called ostraca) and place it in
a vase. After the votes were cast, the shards were taken out of the vases and
counted. Many modern voting systems follow a very similar protocol, replacing
clay with paper and vases with ballot boxes.

⋆ This work was partially supported by the Minerva Foundation
⋆⋆ Incumbent of the Judith Kleeman Professorial Chair



1.1 Challenges in Designing Voting Protocols

One of the main problems with traditional systems is that the accuracy of the
election is entirely dependent on the people who count the votes. In modern
systems, this usually consists of fairly small committees: if an entire committee
colludes, they can manufacture their own results. Even worse, depending on the
exact setup it may be feasible to stuff ballot boxes, destroy votes or perform
other manipulations.

The problems with assuring election integrity were a large factor in the in-
troduction of mechanical voting machines, and more recently, optical scan and
“Direct Recording Electronic” (DRE) machines. These perform a function iden-
tical to a ballot box and paper ballots, using a different medium: the basic pro-
tocol remains the same. While alleviating some of the problems (such as ballot
stuffing), in some cases they actually aggravate the main one: instead of relying
on a large number of election committees (each of which has a limited potential
for harm), their security relies on a much smaller number of programmers (who
may be able to undetectably change the results of the entire election).

There has also been a large amount of more theoretical research, aimed at us-
ing cryptographic tools to define and solve the problems inherent in conducting
secure elections. The most important advantage of cryptographic voting proto-
cols over their physical counterparts is the potential for universal verifiability:
the possibility that every voter (and even interested third parties) can verify that
the ballot-counting is performed correctly. The challenge, of course, is satisfying
this property while still maintaining the secrecy of individual ballots.

A problem that was first introduced with mechanical voting machines, and
exacerbated in DRE and many cryptographic systems, is that part of the protocol
must be performed by a machine (or computer), whose inner workings are opaque
to most voters. This can have a serious impact on the trust a voter places in
the results of the election (e.g., “how do I know that when I pushed the button
next to candidate A the machine didn’t cast a vote for B?”). One of the targets
recently identified in the cryptographic literature is to design systems that can
be trusted by human voters even if the election computers are running malicious
code.

Another attack on both traditional and cryptographic voting systems is vote-
buying and coercion of voters. To prevent this, we would like a voter to be unable
to convince a third party of her vote even if she wants to do so. This property,
called receipt-freeness, is strictly stronger than ballot secrecy, and seems even
harder to achieve simultaneously with universal-verifiability. As is the case for
election integrity, it is much more difficult to design a receipt-free protocol if the
voter is required to perform secret calculations on a computer: the voter may be
forced to use an untrusted computer to perform the calculations (or even one
provided by the coercer), in which case the coercer can learn the secret.

There are also problems specific to the cryptographic case. One of these
is that cryptographic protocols are often based on computational assumptions
(e.g., the infeasibility of solving a particular problem). Unfortunately, some com-



putational assumptions may not hold forever (e.g., Adi Shamir estimated that
existing public-key systems will remain secure for less than thirty years [21]).

A voting protocol is said to provide information-theoretic privacy if a compu-
tationally unbounded adversary does not gain any information about individual
votes (apart from the final tally). If the privacy of the votes depends on compu-
tational assumptions, we say the protocol provides computational privacy. Note
that to coerce a voter, it is enough that the voter believe there’s a good chance
of her privacy being violated, whether or not it is actually the case (so even if
Shamir’s estimate is unduly pessimistic, the fact that such an estimate was made
by an expert may be enough to allow voter coercion). Therefore, protocols that
provide computational privacy may not be proof against coercion: the voter may
fear that her vote will become public some time in the future.

While integrity that depends on computational assumptions only requires the
assumptions to hold during the election, privacy that depends on computational
assumptions requires them to hold forever. To borrow a term from Aumann et
al. [1], we can say that information-theoretic privacy is everlasting privacy.

A related problem is that we would like to base our voting schemes on assump-
tions that are as strong as possible. Existing voting schemes generally require
public-key encryption (or very specific computational assumptions, such as the
hardness of computing discrete log in certain groups).

1.2 Our Results

In this paper, we present the first universally verifiable voting scheme that can
be based on a general assumption (existence of a non-interactive commitment
scheme).

Our protocol also satisfies the following properties:

– It has everlasting privacy (provided the commitment scheme is statistically
hiding). To the best of our knowledge, only one published protocol has this
property [9], and this protocol is not receipt-free.

– The protocol does not require human voters to perform any complex opera-
tions (beyond choosing a random string and comparing two strings)

– The integrity of the election is guaranteed even if the DRE is corrupted.
– It is receipt-free. We use a technique from Neff’s voting scheme [16] to achieve

receipt-freeness without requiring complex computation on the voter’s part.

We give a rigorous proof that our protocol is secure in the Universally Compos-
able model (given a universally-composable commitment scheme). This is a very
strong notion of security. We also give a slightly more efficient protocol based on
Pedersen Commitments (this protocol is secure, but not in the UC model, since
Pedersen Commitments are not UC secure).

An additional contribution of this paper is a formal definition of receipt-
freeness in the general multi-party computation setting (we also prove that our
protocol satisfies this definition). Our definition is a generalization of Canetti
and Gennaro’s definition for an incoercible computation [4]. To the best of our



knowledge, this is the first definition to capture receipt-freeness in the general
case (most previous papers that deal with receipt-freeness do not provide a
formal definition at all).

1.3 Previous Work on Voting Protocols

The first published electronic voting scheme was proposed by Chaum [5], based
on mixes. Loosely speaking, a mix is a device that hides the correspondence
between its inputs and outputs by accepting (encrypted) inputs in large batches
and mixing them before output. This can be used to hide the correspondence
between voters and their votes, allowing each voter to make sure her vote was
counted (ensuring the integrity of the election) while preserving the secrecy of
the vote. A strong advantage of this scheme over previous voting systems (e.g.,
putting paper slips in ballot boxes) is that the integrity of the vote no longer
rests in the hands of a few trustees: every voter can verify that their vote was
counted (i.e. it has individual verification). The privacy of the votes does depend
on a small number of trustees (the mixing centers), though. Other advantages
are convenience and speed: a voter can vote from any location with network
access, and the votes are tabulated by computers immediately after they were
all cast.

Many additional protocols were suggested since Chaum’s. Almost all can be
classified into one of three categories:

Mix-Type These are protocols based on mixes, such as Chaum’s original pro-
tocol.

Blind Signatures These are protocols based on “blind signatures”, introduced
by Chaum in [6]. A blind signature allows a signer to digitally sign a docu-
ment without knowing what was signed. In a voting scheme based on blind
signatures, the general idea is that the voter has her ballot blindly signed
by the voting authority, and later publishes the ballot using an anonymous
channel. Although Chaum suggested the use of blind signatures for voting in
his original paper, the first published protocol that makes use of blind signa-
tures was by Fujioka et al. [11]. A major problem of blind signature schemes
is that they require anonymous channels (so that the voter can publish her
signed vote linking the vote to the voter).

Homomorphic A function E is homomorphic if for any x and y in its domain
it satisfies E(x)E(y) = E(x + y). The general idea of a homomorphic voting
scheme is for each voter to encrypt her vote using a public-key homomorphic
encryption function, where the public key is published before the election.
Each voter must prove that her encrypted vote is an encryption of a valid
vote (the voting schemes differ on the exact way in which this is done). The
encrypted votes are summed using the homomorphic property of the encryp-
tion function (without decrypting them). Finally, a set of trustees cooperate
to decrypt the final tally (the secret key for the encryption scheme is divided
between the trustees). The advantages of using homomorphic schemes are
efficiency and verifiability: many operations can be carried out on the en-
crypted votes, in public, so they are both verifiable and can be performed



during the voting process (without interaction between the voting author-
ities). The first protocol of this type was devised by Cohen (Benaloh) and
Fischer [8]. Additional examples of this type of scheme are [2,9,10,12].

Receipt-Free Voting Only a small fraction of the proposed voting schemes satisfy
the property of receipt-freeness. Benaloh and Tuinstra [2] were the first to define
this concept, and to give a protocol that achieves it (it turned out that their full
protocol was not, in fact, receipt free, although their single-authority version was
[12]). Their protocol was based on homomorphic encryption rather than mixes.
To satisfy receipt-freeness, Benaloh and Tuinstra also required a physical “voting
booth”: completely untappable channels between the voting authority and the
voter. Sako and Kilian showed that a one-way untappable channel is enough
[20], and gave a receipt-free mix-type voting scheme based on this assumption
(our protocol makes this assumption as well). Other protocols were also devised,
however the minimal assumption required by protocols that do not use a trusted
third party device (e.g., a smart card) is the one-way untappable channel.

Human Considerations Almost all the existing protocols require complex com-
putation on the part of the voter (infeasible for an unaided human). Thus, they
require the voter to trust that the computer actually casting the ballot on her
behalf is accurately reflecting her intentions. Chaum [7], and later Neff [16],
proposed universally-verifiable receipt-free voting schemes that overcome this
problem. Recently, Reynolds proposed another protocol similar to Neff’s [18].

All three schemes are based in the “traditional” setting, in which voters cast
their ballots in the privacy of a voting booth. Instead of a ballot box the booth
contains a DRE. The voter communicates her choice to the DRE (e.g., using a
touch-screen or keyboard). The DRE encrypts her vote and posts the encrypted
ballot on a public bulletin board. It then proves to the voter, in the privacy of the
voting booth, that the encrypted ballot is a truly an encryption of her intended
vote. After all the votes have been cast, the votes are shuffled and decrypted
using mix-type schemes.

Chaum’s protocol uses a two-part ballot. Together, both parts define the vote
in a manner readable to a human. Either part separately, however, contains only
an encrypted ballot. The voter chooses one part at random (after verifying that
the ballot matches her intended choice), and this part becomes her receipt. The
other part is destroyed. The ballots are constructed so that in an invalid ballot,
at least one of the two parts must be invalid (and so with probability at least
1
2 this will be caught at the tally stage). Chaum’s original protocol used Visual
Cryptography [15] to enable the human voter to read the complete (two-part)
ballot, and so required special printers and transparencies. Bryans and Ryan
showed how to simplify this part of the protocol to use a standard printer [3,19].

Neff’s protocol makes ingenious use of zero-knowledge arguments. The idea is
that a zero-knowledge argument system has a simulator that can output “fake”
proofs indistinguishable from the real ones. The DRE performs an interactive
zero-knowledge protocol with the voter to prove that the encrypted ballot cor-
responds to the correct candidate. The DRE uses the simulator to output a



zero-knowledge proof for every other candidate. The proofs are of the standard
“cut-and-choose” variety. In a “real” proof, the DRE commits, then the voter
gives a random challenge and the DRE responds. In the “fake” proofs, the voter
first gives the random challenge and then the DRE commits and responds. The
voter only has to make sure that she gave the challenge for the real candidate
after the DRE was committed, and that the challenge printed on the receipt
matches what she gave. Everything else can be publicly checked outside the vot-
ing booth. Since no one can tell from the receipt in which order the commitments
and challenges were made, the zero-knowledge property ensures that they cannot
be convinced which of the proofs is the real one.

2 The Model

The physical setup of our system is very similar to many existing (non-electronic)
voting schemes. Voters cast their ballots at polling stations. The votes are tab-
ulated for each station separately, and the final tally is computed by summing
the results for all stations.

2.1 Basic Assumptions

Human Capability An important property of our protocol is that its security is
maintained even if the computers running the elections are corrupt (and only
some of the human voters remain honest). Thus, we must define the operations
we expect a human to perform. We make three requirements from human voters:

1. They can send messages to the DRE (e.g., using a keyboard). We require
voters to send a few short phrases. This should be simple for most humans
(but may be a slight problem for disabled voters).

2. They can verify that two strings are identical (one of which they chose them-
selves)

3. They can choose a random string. This is the least obvious of the assump-
tions we make. Indeed, choosing truly uniformly random bits is probably
not something most humans can do. However, using physical aids (coins,
dice, etc.) and techniques for randomness extraction it may be possible. In
our security proofs, in order to clarify the presentation, we will ignore these
subtleties and assume the voters can choose uniformly random strings.

Physical Commitment In order to achieve receipt-freeness, our protocol requires
a commitment with an extremely strong hiding property: The verifier’s view at
the end of the commit stage is a deterministic function of her view before the
commit stage (i.e., not only can the view not contain any information about the
committed string, it cannot even contain randomness added by the committer).
Such a commitment is not possible in the “plain” cryptographic model (even
with computational assumptions), but can be easily implemented by physical
means (for example, by covering part of the printer’s output with an opaque



shield, so that the voter can see that something has been printed but not what).
Note that the security of the protocol does not depend on physical commitment,
only the receipt-freeness.

2.2 Participating Parties

In our description, we consider only a single polling booth (there is no interaction
between booths in our system, apart from the final, public summation of results).
Formally, we consider a few classes of participants in our voting protocol:

Voters There are an arbitrary number of voters participating in the protocol
(we will denote the number of voters by n). Each voter has a secret input
(the candidate she wants to vote for).

DRE The protocol has only a single DRE party. The DRE models the ballot
box: it receives the votes of all the voters and outputs the final tally at the
end.

Verifier A Verifier is a party that helps verify that the voting protocols are
being followed correctly. Although there can be many verifiers (and voters
can be verifiers as well) the verifiers are deterministic and use only public
information, so we model them as a single party.

Adversary The adversary attempts to subvert the voting protocol. We detail
the adversarial model in Sections 2.4 and 2.5.

2.3 Protocol Structure and Communication Model

As is customary in universally-verifiable voting protocols, we assume the avail-
ability of a public Bulletin Board : a broadcast channel with memory. All parties
can read from the board and all messages from the DRE are sent to the bulletin
board.

Our voting protocols consist of three phases:

1. Casting a Ballot. In this phase, each voter communicates directly with the
DRE over a private, untappable, channel (inside the voting booth). All com-
munication from the DRE to the voter is through the bulletin board.
In practice, the voter will not be able to access the bulletin board while in
the voting booth. Thus, we assume there is a separate channel between the
DRE and the voter, also with memory (e.g., a printer). The DRE outputs its
messages both to the printer (the printed messages form the voter’s receipt),
and to the bulletin board. This implementation adds an additional stage in
which the voter verifies that the contents of her receipt match the contents
on the bulletin board.
We need the physical commitment only at one point in the Ballot-Casting
phase. One possible implementation is by a shield covering part of the
printer’s output (so that the voter can see something has been printed under
the shield, but not what).



2. Tallying the results. This phase begins after all voters have cast their ballots,
and in this phase the results of the vote are revealed. The tallying consists of
an interactive protocol between the DRE and a random beacon, whose only
messages are uniformly random strings. In practice, we can use the Fiat-
Shamir heuristic, replacing the beacon’s messages with a secure hash of the
entire transcript to that point (in the analysis the hash function is modeled
as a random oracle). The entire transcript of the tally phase is sent to the
bulletin board.

3. Universal Verification. This phase consists of verifying the consistency of
the messages on the bulletin board. This can be performed by any interested
party, and is a deterministic function of the information on the bulletin
board.

2.4 Universal Composability

We consider a number of different adversarial models. In the basic model, the
adversary can adaptively corrupt the DRE and the voters (since there are ar-
bitrarily many verifiers, and all are running the same deterministic function of
public information, it is reasonably to assume not all of them can be corrupted).
We formalize the capabilities of the adversary by defining them in the Univer-
sally Composable model, using the ideal voting functionality, FV . In the ideal
world, The DRE does nothing unless it is corrupted. When the DRE is corrupt,
ballots no longer remain secret (note that this must be the case in any protocol
where the voter divulges her vote to the DRE). The integrity of the vote is al-
ways maintained. The verifiers have no input, but get the final output from the
functionality (or ⊥ if the functionality was halted by the adversary).

The adversary is allowed to intercept every outgoing message from the func-
tionality, and has the choice of either delivering the message or sending the Halt

command to the functionality (in which case the message will not be received
by other parties).

The ideal functionality realized by our voting scheme accepts only one “hon-
est” command and one “cheating” command (beyond the special Halt and Cor-

rupt commands that can be sent by the adversary)

Vote c On receiving this command from voter v, the functionality verifies that
this is the only Vote command sent by v. It then:
1. Increments counter c.
2. If the DRE is corrupt, the functionality outputs Voted v, c to the ad-

versary.
3. Broadcasts the message Voted v.
4. If all n voters have sent a Vote command, the functionality outputs the

final value of the counters to the verifiers.
ChangeVote c, c′ This command can only be sent by a corrupt voter v and

only if the DRE is also corrupt. On receiving this command, the functionality
verifies that a Vote c command was previously sent by v. It then decrements
counter c and increments counter c′. This command can be sent after the
last voter has voted and before the final tally is output.



The security, privacy and robustness of our protocol is proven by showing that
any attack against the protocol in the real world can be performed against the
ideal functionality in the ideal world (where the possible attacks are explicitly
defined). Due to space contraints, the formal description of the protocol and
proof of security will appear only in the full version.

2.5 Receipt-Freeness

The property of receipt-freeness is not adequately captured by the UC model. In
this model, in addition to corrupting parties, the adversary can coerce parties.
A coercion attack models the real-life scenario in which voters are bribed or
threatened to act according the adversaries wishes. The adversary can interro-
gate coerced parties and give them commands, but does not completely control
them (a formal definition of receipt freeness can be found in Section 4). When
considering the receipt-freeness of our protocol, we do not allow the adversary to
coerce or corrupt the DRE. The latter is because corrupting the DRE reveals the
voter’s inputs, and so the protocol is trivially coercible. The former is because
the DRE is a machine, so it does not make sense to bribe or threaten it.

It may make sense to coerce or corrupt the DRE’s programmers, however. The
difference between this situation and a corrupt DRE is that a corrupt DRE can
communicate freely with the adversary, while a “maliciously programmed” DRE
can communicate with the adversary only through the public communication
channel (in one direction) and the voter’s input (in the other direction). We
briefly discuss this problem in Section 5.

2.6 Timing Attacks

Like any cryptographic proof, the security of our protocol is guaranteed only as
far as the real-world matches the model on which our proof is based. One point
we think is important to mention is the “timing” side-channel. Our model does
not specify timing information for messages appearing on the bulletin board —
only the order of the messages. However, in a real life implementation it may
be possible to time the messages sent by the DRE. If the DRE actually does
send messages simultaneously to the bulletin board and the voter, this timing
information can be used to determine the voter’s input (since the time it takes
the voter to respond will be different). To prevent this attack, we specify that
the DRE sends its output to the bulletin board only after the voter leaves the
booth. One possible implementation (that also guarantees that the DRE can’t
leak information using timing, is that the DRE is not connected to a network at
all. Instead, it prints the output to be sent to the bulletin board. The printout
is given by the voter to the election officials on exiting the booth, who can scan
it and upload the information to the bulletin board.



3 Informal Protocol Description

3.1 Overview

At the highest level, our voting scheme is extremely simple: the voter enters
the voting booth and selects a candidate. The DRE uses a statistically-hiding
commitment scheme to publicly commit to the candidate (e.g., by posting the
commitment on a public bulletin board). It then proves privately to the voter
that the commitment is really to the voter’s candidate. After all voters have
cast their ballots, the DRE publishes the final tally. It then proves, using a zero
knowledge proof of knowledge, that the tally corresponds to the commitments
published for each voter.

Since we know how to construct a ZK proof of knowledge for any NP lan-
guage, and in particular we can construct such a proof system for any string
commitment scheme, it would appear that we could use any such system for the
private proof (the one that convices the voter that her ballot is being cast as she
intended). The zero-knowledge property would ensure that the voter cannot use
the proof to convince any third party of her vote.

The problem is that the voter is human, and the general zero-knowledge proof
systems require complex computations that are infeasible to perform without
the help of computers. Since the scheme must remain secure even if the DRE is
malicious, the voter cannot trust the DRE to make these calculations. Allowing
voters to use their own computers is not much better. Most voters do not know
how to verify that their computer is actually running the correct code. Even
worse, a coercive adversary could require a voter to use a computer supplied
by the adversary, in which case it could easily learn the identity of the voter’s
candidate.

Our solution is that used in Neff’s voting scheme: Neff observed that a stan-
dard cut-and-choose zero knowledge proof of some statement S has the following
structure: the prover commits to two proofs P0, P1, the verifier makes a choice b,
the prover reveals proof Pb and finally the verifier makes sure the revealed proof
is correct. The protocol is constructed so that if both P0 and P1 are valid proofs,
the statement S holds but, given b, anyone can construct a pair P ′

0, P
′

1 so that P ′

b

is correct (even if S does not hold). The insight is that a human can easily make
the choice b without the aid of a computer. To keep the proof private, the DRE
constructs a fake proof for all the other candidates by running the ZK simulator.
The only difference between the real and fake proofs in this case is that in the
real proof the DRE first commits, and then the voter chooses b, while in the fake
proof the voter reveals b before the DRE commits. This temporal information
cannot be inferred from the receipt. However, since the receipt is public, anyone
can check (using a computer) that both Pb and P ′

b are valid proofs. Even if the
voter does not trust her own computer, it is enough that someone with a good
implementation of the verification algorithm perform the check.

In the following subsections we present a concrete implementation of our
generic protocol. This implementation is based on Pedersen commitments. In
Section 3.2 we describe an example of a hypothetical voter’s interaction with



the system. Section 3.3 goes behind the scenes, and describes what is actually
occurring during this session (as well as giving a brief description of the protocol
itself).

3.2 A Voter’s Perspective

Fig. 3.1. Ballot for Betty

Figure 3.1 shows what Dharma, our hypothetical voter, would see while
casting her ballot in an election between candidates Alice, Betty and Charlie.
Dharma identifies herself to the election official at the entrance to the polling
station and enters the booth.

Inside the booth is the DRE: a computer with a screen, keyboard and an
ATM-style printer

1. The screen presents the choice of candidates: “Press A for Alice, B for Betty
and C for Charlie”. Dharma thinks Betty is the best woman for the job, and
presses B.

2. The DRE now tells Dharma to enter some random words next to each of
the other candidates (Alice and Charlie). For an even simpler experience,
the DRE can prefill the random words, and just give Dharma the option of



changing them if she wants. At any time until the final stage, Dharma can
change her mind by pressing ESC. In that case, the DRE spits out whatever
has been printed so far (this can be discarded), and returns to stage 1.

3. The DRE prints two rows. The actual printed information is hidden behind
a shield, but Dharma can verify that the two rows were actually printed.

4. Dharma enters a random challenge for her chosen candidate.

5. The DRE prints out the rest of the receipt. Dharma verifies that the chal-
lenges printed on the receipt are identical to the challenges she chose. If
everything is in order, she presses OK to finalize her choice. If something is
wrong, or if she changed her mind and wishes to vote for a different candi-
date, she presses ESC and the DRE returns to stage 1.

6. The DRE prints a “Receipt Certified” message on the final line of the receipt.
Dharma takes her receipt and leaves the voting booth. At home, she verifies
that the public bulletin board has an exact copy of her receipt, including the
two lines of “gibberish” (the bulletin board can be viewed from the internet).
Alternatively, she can give her receipt to an organization she trusts (e.g.,
“Betty’s Popular People’s Front”), who will perform this verification for her.

After all the voters have cast their ballots, the protocol moves to the Final
Tally phase. Voters are not required to participate in this phase — it consists of
a single broadcast from the DRE to the public bulletin board (here we assume
we are using the Fiat-Shamir heuristic to make the final tally non-interactive).
Note that we do not actually require the DRE to be connected to a network.
The DRE can store its output (e.g., on a removable cartridge). After the DRE
has written the final tally message, the contents of the cartridge can be uploaded
to the internet. Anyone tampering with the cartridge would be detected.

Anyone interested in verifying the election results participates in the Uni-
versal Verification phase. This can include voters, candidates and third parties.
Voters do not have to participate, as long as they made sure that a copy of their
receipt appears on the bulletin board, and they trust that at least one of the
verifying parties is honest.

Receipt-Freeness To get an intuitive understanding for why this protocol is
receipt-free, suppose Eve tries to bribe Dharma to vote for Alice instead. There
are only two things Dharma does differently for Alice and Betty: she presses B

in the first step, and she fills in Alice’s random words before the DRE prints
the first two lines of the receipt, while filling in Betty’s afterwards. Eve has no
indication of what Dharma pressed (since the receipt looks the same either way).
The receipt also gives no indication in what order the candidate’s words were
filled (since the candidates always appear in alphabetical order). Because the
first two lines of the receipt are hidden behind the shield when Dharma enters
the challenge for her chosen candidate, she doesn’t gain any additional informa-
tion as a result of filling out the challenges for Alice and Charlie; so whatever
Eve asks her to do, she can always pretend she filled out the challenge for Alice
after the challenge for Betty.



3.3 Behind the Scenes: An Efficient Protocol Based on the Discrete

Log Assumption

Pedersen Commitments The concrete protocol we describe in this section is
based on Pedersen commitments [17]; statistically hiding commitments whose
security is based on the hardness of discrete-log. We briefly describe the Pedersen
commitment, assuming discrete log is hard in some cyclic group G of order q, and
h, g ∈ G are generators such that the committer does not know logg h. To commit
to a ∈ Zq, the committer chooses a random element r ∈ Zq, and sends hagr.

Note that if the committer can find a′ 6= a and r′ such that ha′

gr′

= hagr, then
ha′

−a = gr−r′

, and so the commiter can compute logg h = r−r′

a′
−a

(in contradiction
to the assumption that discrete log is hard in G). Therefore the commitment is
computationally binding. If r is chosen uniformly at random from Zq, then gr is
a uniformly random element of G (since g is a generator), and so for any a the
commitment hagr is also a uniformly random element of G. So the commitment
is perfectly hiding.

We’ll now show what happened behind the scenes, assuming the parameters
G, h and g of the Pedersen commitment scheme are decided in advance and
known to all parties. For simplicity, we also assume a collision-resistant hash
function H : {0, 1}

∗

7→ Zq. This allows us to commit to an arbitrary string
a ∈ {0, 1}

∗

by committing to H(a) instead. Denote P (a, r) = hH(a)gr. To open
P (a, r), the committer simply sends a, r.

The security of the scheme depends on a security parameter, k. The proba-
bility that the DRE can change a vote without being detected is 2−k+1+O(nkǫ),
where n is the number of voters and ǫ is the probability of successfully breaking
the commitment scheme.

Casting the Ballot. We’ll go over the stages as described above.

1. (Dharma chose Betty). The DRE computes a commitment: v = P (Betty, r)
(where r is chosen randomly), and prepares the first step in a proof that
this commitment is really a commitment to Betty. This step consists of
computing, for 1 ≤ i ≤ k, a “masked” copy of v: bi = vgrB,i = P (Betty, r +
rB,i), where rB,i is chosen randomly.

2. (Dharma enters fake challenges). The DRE translates each challenge to a k

bit string using a predetermined algorithm (e.g., by hashing). Let Ai be the
ith bit of the challenge for Alice. For each bit i such that Ai = 0 the DRE
computes a commitment to Alice: ai = P (Alice, rA,i), while for each bit such
that Ai = 1 the DRE computes a masked copy of the real commitment to
Betty: ai = vgrA,i . Note that ai = P (Betty, r+rA,i). The set of commitments
a1, . . . , ak will form a fake proof that v is a commitment to Alice (we’ll see
why we construct them in this way in the description of universal verification
phase step 3.3). The DRE also computes c1, . . . , ck in the same way for
Charlie.
The DRE now computes a commitment to everything it has calculated so
far: x = P ([v, a1, . . . , ak, b1, . . . , bk, c1, . . . , ck], rx). It prints x on the receipt
(this is what is printed in the first two lines).



3. (Dharma enters the real challenge) The DRE translates this challenge into a
k bit string as in the previous step. Denote Bi the ith bit of the real challenge.

4. (The DRE prints out the rest of the receipt). The DRE now computes the
answers to the challenges: For every challenge bit i such that is Xi = 0 (where
X ∈ {A, B, C}), the answer to the challenge is sX,i = rX,i. For Xi = 1, the
answer is sX,i = r + rX,i. The DRE stores the answers. It then prints the
candidates and their corresponding challenges (in alphabetical order), and
the voter’s name (Dharma).

5. (Dharma accepts the receipt). The DRE prints a “Receipt Certified” message
on the final line of the receipt. (the purpose of this message is to prevent vot-
ers from changing their minds at the last moment, taking the partial receipt
and then claiming the DRE cheated because their receipt does not appear on
the bulletin board). It then sends a copy of the receipt to the public bulletin
board, along with the answers to the challenges and the information needed
to open the commitment x: (sA,1, . . . , sA,k, sB,1, . . . , sB,k, sC,1, . . . , sC,k) and
([v, a1, . . . , ak, b1, . . . , bk, c1, . . . , ck], rx).

Final Tally. The DRE begins the tally phase by announcing the final tally:
how many voters voted for Alice, Betty and Charlie. Denote the total number of
voters by n, and vi = P (Xi, ri) the commitment to voter i’s choice (Xi) that was
sent in the Ballot Phase. The DRE now performs the following proof k times:

1. The DRE chooses a random permutation π of the voters, and n “masking
numbers” m1, . . . , mn. It then sends the permuted, masked commitments of
the voters:
vπ(1)g

mπ(1) , . . . , vπ(n)g
mπ(n)

2. The random beacon sends a challenge bit b

3. If b = 0, the DRE sends π and m1, . . . , mn (unmasking the commitments
to prove it was really using the same commitments it output in the Ballot-
Casting phase). If b = 1, the DRE opens the masked commitments (with-
out revealing π, the correspondence to the original commitments). It sends:
(Xπ(1), rπ(1) + mπ(1)), . . . , (Xπ(n), rπ(n) + mπ(n))

Universal Verification (and security proof intuition). The purpose of
the universal verification stage is to make sure that the DRE sent well-formed
messages and correctly opened all the commitments. For the messages from the
Ballot-Casting phase, the verifiers check that:

1. x = P ([v, a1, . . . , ak, b1, . . . , bk, c1, . . . , ck], rx) This ensures that the DRE
committed to v and b1, . . . , bk (in Dharma’s case) before Dharma sent the
challenges B1, . . . , Bk (because x was printed on the receipt before Dharma
sent the challenges).

2. For every commitment xi (where x ∈ {a, b, c}), its corresponding challenge
Xi, and the response sX,i, the verifiers check that xi is a good commitment
to X when Xi = 0 (i.e., xi = P (X, sXi

)) and that xi is a masked version
of v if Xi = 1 (i.e., vsXi

= xi). Note that if xi is both a masked version of
v and a good commitment to X , then v must be a good commitment to X



(otherwise the DRE could open v to two different values, contradicting the
binding property of the commitment). This means that if v is a commitment
to some value other than the voter’s choice, the DRE will be caught with
probability at least 1 − 2−k: every commitment xi can be either a good
masked version of v or a good commitment to X , but not both. So for each
of the k challenges (which are not known in advance to the DRE), with
probability 1

2 . The DRE will not be able to give a valid response.

For the final tally phase, the verifiers also check that all commitments were
opened correctly (and according to the challenge bit). As in the Ballot-Casting
phase, if the DRE can correctly answer a challenge in both directions (i.e., the
commitments are a permutation of good masked versions of commitments to
the voter’s choices, and also when opened they match the tally), then the tally
must be correct. So the DRE has probability at least 1

2 of getting caught for
each challenge if it gave the incorrect tally. If the DRE wants to change the
election results, it must either change the final tally, change at least one of the
voter’s choices or break the commitment scheme. Since the protocol uses O(nk)
commitments (note that cheating on the commitments in the fake proofs doesn’t
matter), the total probability that it can cheat is bounded by 2 · 2−k + O(nkǫ).

Protocol Complexity. We can consider both the time and communication
complexity of the protocol. In terms of time complexity, the DRE must perform
O(knm) commitments in the Ballot Casting phase (where m is the number of
candidates), and O(kn) commitments in the Final Tally phase (the constants
hidden in the O notation are not large in either case). Verifiers have approxi-
mately the same time complexity (they verify that all the commitments were
opened).

The total communication complexity is also of the same order. In this case,
the important thing is to minimize the DRE’s communication to the voter (since
this must fit on a printed receipt). Here the situation is much better: the receipt
only needs to contain a single commitment and the challenges sent by the voter
(each challenge has k bits). Note that we do not use any special properties of
the commitment on the receipt (in practice, this can be the output of a secure
hash function rather than a Pedersen commitment).

3.4 Using Generic Commitment

The protocol we described above makes use of a special property of Pedersen
commitment: the fact that we can make a “masked” copy of a commitment. The
essence of our zero knowledge proof is that on the one hand, we can prove that
a commitment is a masked copy of another without opening the commitment.
On the other hand, just by seeing two commitments there is no way to tell that
they are copies, so opening one does not give us information about the other.

Our generic protocol uses the same idea, except that we implement “masked
copies” using an arbitrary commitment scheme. The trick is to use a double
commitment. Denote C(a, r) a commitment to a with randomness r.



The idea is to create all the “copies” in advance (we can do this since we know
how many copies we’re going to need): a “copyable” commitment to a, assuming
we’re going to need k copies, consists of v = C(C(a, r1), s1), . . . , C(C(a, rk), sk).
The ith copy of the commitment is C(a, ri). The hiding property of C ensures
that there is no way to connect C(a, ri) to v. On the other hand, the binding
property of C ensures that we cannot find any s′ such that C(C(a, ri), s

′) is in
v unless this was the original commitment.

Unlike the case with Pedersen commitments, when using the double com-
mitment trick an adversary can “copy” a commitment to a different value (the
adversary can always use different values in the inner commitments). The in-
sight here is that the adversary still has to commit in advance to the locations
of the errors. After the DRE commits, we randomly permute the indices (so
v = C(C(a, rσ(1)), sσ(1)), . . . , C(C(a, rσ(k)), sσ(k)), for some random permutation
σ). If the DRE did commit to the same value at every index, this permutation
will not matter. If the DRE committed to different values, we show that it will
be caught with high probability. Intuitively, we can consider each commitment
in the tally phase as a row of a matrix whose columns correspond to the voters.
By permuting the indices of the copies, we are effectively permuting the columns
of the matrix (since in the ith tally step we force the DRE to use the ith copy.
The DRE can pass the test only if all the rows in this matrix have the same
tally. But when the columns are not constant, this occurs with small probabil-
ity1. The formal protocol description and proof of security, as well as a proof
that our protocol is receipt-free, will appear in the full version.

4 Incoercibility and Receipt-Freeness

Standard “secure computation” models usually deal with two types of parties:
honest parties with a secret input that follow the protocol, and corrupt parties
that are completely controlled by the adversary. In voting protocols, we often
need to consider a third type of player: a party that has a secret input, but is
threatened (or bribed) by the adversary to behave in a different manner. Such
a “coerced” player differs from a corrupt party in that she doesn’t do what the
adversary wishes if she can help it; if she can convince the adversary that she’s
following its instructions while actually following the protocol using her secret
input, she will.

Benaloh and Tuinstra [2] were the first to introduce this concept. Most papers
concerning receipt-free voting (including Benaloh and Tuinstra), do not give a
rigorous definition of what it means for a protocol to be receipt-free, only the
intuitive one: “the voter should not be able to convince anyone else of her vote”.

Canetti and Gennaro considered this problem for general multiparty com-
putation (of which voting is a special case), and gave a formal definition of
incoercibility [4]. Their definition is weaker than receipt-freeness, however: the
adversary is only allowed to coerce a player after the protocol is complete (i.e.,

1 for technical reasons, the technique we use in practice is slightly different, however
the idea is the same



it cannot require a coerced player to follow an arbitrary strategy, or even specify
what randomness to use).

Juels, Catalano and Jakobsson also give a formal definition of coercion-
resistance [13]. Their definition has a similar flavor, but is specifically tailored
to voting in a public-key setting. It is stronger than receipt-freeness in that a
coercion-resistant protocol must also prevent an abstention-attack (preventing a
coerced voter from voting). However, this strong definition requires anonymous
channels from voters to tallying authorities (otherwise an abstention-attack is
always possible).

Our formalization of receipt-freeness is a generalization of Canetti and Gen-
naro’s definition (and so can be used for any secure function evaluation), and
is strictly stronger (i.e., any protocol that is receipt-free under our definition is
incoercible as well). Loosely, both definitions require that any “coercion” the
adversary can do in the real world it can also do in an ideal world (where the
parties only interaction is sending their input to an ideal functionality that com-
putes the function). The difference is the adversarial model we consider in the
real world. Canetti and Gennaro allow the adversary to give coerced players an
alternative input. In our definition, the adversary can give coerced players an
arbitrary strategy (i.e. commands they should follow instead of the real protocol
interactions).

4.1 Formal Definition

Formally, a receipt-free protocol must specify, in addition to the strategy for
honest parties, a coercion strategy. When a party is coerced by the adversary,
it begins following the coercion strategy instead of the honest strategy. The
coercion strategy tells the party how to fake its responses to the adversary.

Ideal Setting. Consider the “ideal setting” for computing a function f . In this
setting we have n players, P1, . . . , Pn, with inputs x1, . . . , xn A trusted party
collects the inputs from all the players, computes f(x1, . . . , xn) and broadcasts
the result. In this setting, the ideal adversary I is limited to the following options:

1. corrupt a subset of the parties. In this case the adversary learns the parties’
real inputs and can replace them with inputs of its own choosing.

2. coerce a subset of the parties. The only thing an adversary can do with a
coerced party is to force it to use the input ⊥ (signifying a forced abstention).

I can perform these actions iteratively (i.e., adaptively corrupt or coerce parties
based on information gained from previous actions), and when it is done the
ideal functionality computes the function. I’s view in the ideal case consists its
own random coins, the inputs of the corrupted parties and the output of the ideal
functionality f(x1, . . . , xn) (where for corrupted parties xi is the input chosen
by the adversary).



Real-World Setting. In the “real-world setting”, we also have the n parties,
P1, . . . , Pn, with inputs x1, . . . , xn. Each party has a protocol specification, con-
sisting of a pair of interactive turing machines (Hi, Ci). There is also a “real”
adversary A.

The protocol proceeds in steps: In each step A can choose:

1. to corrupt a subset of the parties. In this case the adversary learns the entire
past view of the party and completely controls its actions from that point.

2. to coerce a subset of the parties. The adversary supplies each coerced party
with a “fake” input x′

i. From this point on it can interactively query and send
commands to the coerced party. The coerced party switches to the coercion
strategy Ci, which specifies how to respond to A’s queries and commands.

A performs these actions iteratively, adaptively coercing, corrupting and inter-
acting with the parties. A’s view in the real-world consists of its randomness,
the inputs and all communication of corrupted parties, its communications with
the coerced parties and all public communication.

Definition 1. A protocol is receipt-free if there exists an ideal adversary I, such
that for any real adversary A (with which I can communicate as a black-box)
and any input vector x1, . . . , xn, I’s output in the ideal world is indistinguishable
from A’s view of the protocol in the real world with the same input vector (where
the distributions are over the random coins of I, A and the parties).

It is important to note that even though a protocol is receipt-free by our
definition, it may still be possible to coerce players (a trivial example is if the
function f consists of the player’s inputs). What the definition does promise is
that if it is possible to coerce a party in the real world, it is also possible to
coerce that party in the ideal world (i.e. just by looking at the output of f).

5 Discussion

Splitting the Vote. Our scheme suffers a large drawback compared to many of
the published universally-verifiable schemes: we do not know how to distribute
the vote between multiple authorities. In our protocol, the DRE acts as the only
tallying authority. Thus, a corrupt DRE can reveal the voters’ ballots. This is also
the case with Chaum and Neff’s schemes, however (as well as traditional DRE
schemes in use today). It seems a fairly difficult problem to solve while taking
into account the limited abilities of voters (e.g., most secret sharing schemes
cannot be performed by unaided humans).

Robustness of the Voting Scheme. The robustness of a voting scheme is its ability
to recover from attacks without requiring the election to be canceled. Because
the DRE is the sole tallying authority, a corrupt DRE can clearly disrupt the
elections (e.g., by failing to output the tally). The UC proof shows that voters
cannot disrupt the elections just by interacting with the DRE (the only thing a



voter can do in the ideal model is either vote or abstain). However, our model
does not prevent false accusations against the DRE. For example, a corrupt voter
that is able to fake a receipt can argue that the DRE failed to publish it on the
bulletin board. Using special paper for the receipts may help, but preventing
this and similar attacks remains an open problem.

Traditional Paper Trail as Backup. Many critics of non-cryptographic DRE sys-
tems are pushing for a “voter verified paper-trail”: requiring the DRE to print
a plaintext ballot that the voter can inspect, which is then placed in a real bal-
lot box. In a non-cryptographic system, the paper trail can help verify that a
DRE is behaving honestly, and act as a recovery mechanism when it is not. In
our system, a paper trail can be used for the recovery property alone: if the
DRE is misbehaving, our protocol ensures it will be detected with high proba-
bility (without requiring random audits of the paper trail). In that case, we can
perform a recount using the paper ballots.

Randomness and Covert channels. One problem that also plagues Neff’s scheme,
and possibly Chaum’s [14], is that a corrupt DRE can convey information to an
adversary using subliminal channels. In this case, an adversary only needs access
to the bulletin board in order to learn all the voters choices. The source of the
problem is that the DRE uses a lot of randomness (e.g., the masking factors for
the commitments and the random permutations in the final tally phase).

In our scheme based on Pedersen commitments, we have a partial solution
to this problem. It requires the output of the DRE to be sent through a series
of “filters” before reaching the printer or bulletin board. The idea is that for
each Pedersen commitment of the form x = hagr received by a filter, it will
choose a random masking factor s, and output xgs. If the DRE opens x by
sending (a, r), the filter will send instead (a, r + s). In a similar way the filter
can mask the permutations used in the final-tally phase by choosing its own
random permutations and composing them. Note that the filter does not need
to know the value of the commitments or the original permutations in order to
perform its operation. If the DRE is honest, the filter receives no information
and so cannot covertly send any. If the filter is honest, any randomness sent by
the DRE is masked, so no information embedded in that randomness can leak.
By using a series of filters, each from a different trustee, we can ensure that the
DRE does not utilize covert channels (as long as at least one of the filters is
honest). A general solution to this problem is still an interesting open problem.

An even stronger adversary may be able to both coerce voters and mali-
ciously program the DRE. Our protocol is vulnerable in this case. For example,
a coercer can require a voter to use a special challenge, which is recognized by
the DRE (a coercer can verify that the voter used the required challenge, since
it appears on the public bulletin board). Once it knows a voter is coerced, the
DRE can change the vote as it wishes (since the coerced voter will not be able
to complain). Possibly mitigating the severity of this attack is the fact that, in
order to significantly influence the outcome of an election, the adversary must
coerce many voters. This makes it much harder to keep the corruption secret.



Separate Tallying. Our scheme requires the tally to be performed separately for
each DRE. This reveals additional information about voter’s choices (in many
real elections this information is also available, however). An open problem is
to allow a complete tally without sacrificing any of the other properties of our
scheme (such as receipt-freeness and everlasting privacy).

References

1. Y. Aumann, Y. Z. Ding, and M. O. Rabin. Everlasting security in the bounded
storage model. IEEE Transactions on Information Theory, 48(6):1668–1680, 2002.

2. J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In STOC ’94,
pages 544–553, 1994.

3. J. W. Bryans and P. Y. A. Ryan. A simplified version of the Chaum voting scheme.
Technical Report CS-TR 843, University of Newcastle, 2004.

4. R. Canetti and R. Gennaro. Incoercible multiparty computation. In FOCS ’96,
pages 504–513, 1996.

5. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–88, 1981.

6. D. Chaum. Blind signature systems. In CRYPTO ’83, page 153, 1983.
7. D. Chaum. E-voting: Secret-ballot receipts: True voter-verifiable elections. IEEE

Security & Privacy, 2(1):38–47, Jan./Feb. 2004.
8. J. D. Cohen(Benaloh) and M. J. Fischer. A robust and verifiable cryptographically

secure election scheme. In FOCS ’85, pages 372–382, 1985.
9. R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority secret-

ballot elections with linear work. In EUROCRYPT ’96, pages 72–83, 1996.
10. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient

multi-authority election scheme. In Eurocrypt ’97, pages 103–118, 1997.
11. A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large

scale elections. In AUSCRYPT ’92, volume 718 of LNCS, pages 244–251, 1993.
12. M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryp-

tion. In Eurocrypt 2000, volume 1807 of LNCS, pages 539+, 2000.
13. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections.

In WPES ’05, pages 61–70, 2005.
14. C. Karlof, N. Sastry, and D. Wagner. Cryptographic voting protocols: A systems

perspective. In USENIX Security ’05, pages 33–50, 2005.
15. M. Naor and A. Shamir. Visual cryptography. In Eurocrypt ’94, volume 950 of

LNCS, pages 1–12, 1995.
16. C. A. Neff. Practical high certainty intent verification for encrypted votes, October

2004. http://www.votehere.net/vhti/documentation/vsv-2.0.3638.pdf.
17. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. In CRYPTO ’91, volume 576 of LNCS, pages 129–140, 1991.
18. D. J. Reynolds. A method for electronic voting with coercion-free receipt. FEE ’05.

Presentation: http://www.win.tue.nl/b̃erry/fee2005/presentations/reynolds.ppt.
19. P. Y. A. Ryan. A variant of the Chaum voter-verifiable scheme. In WITS ’05,

pages 81–88, 2005.
20. K. Sako and J. Kilian. Receipt-free mix-type voting schemes. In EUROCRYPT

’95, volume 921 of LNCS, pages 393–403, 1995.
21. A. Shamir. Cryptographers panel, RSA conference, 2006. Webcast:

http://media.omediaweb.com/rsa2006/1 5/1 5 High.asx.


	Receipt-Free Universally-Verifiable Voting With Everlasting Privacy 
	Tal Moran and Moni Naor

