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ALGEBRAIC RECONSTRUCTION OF “SHIFT-GENERATED”
SIGNALS FROM INTEGRAL MEASUREMENTS
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ABSTRACT. The main goal of the present work is to develop a recon-
struction scheme for the signals being linear combinations of the shifts
of one or more known functions and their derivatives (in one or several
variables). We call this class “shift-generated signals”. Many important
signal appearing in theoretical study and in practical applications are of
this form (or can be accurately approximated by shift-generated signals).

This work belongs to a direction in Signal Processing called “Alge-
braic Sampling”. It deals with signals of an a priori known form, spec-
ified by a finite number of unknown parameters, and their reconstruc-
tion from measurements (like moments, Fourier coefficients, etc.). The
reconstruction is performed as follows: we substitute the symbolic ex-
pression of the signal to the expression of the measurements (like the
Fourier integral), and equate the resulting symbolic expressions in the
parameters to the actual measurements. In this way we get a system of
algebraic (usually non-linear) equations (of the so-called “Prony-like”
form), which we subsequently solve.

In this work we provide some new results on a solution in closed form
and stability of multi-dimension Prony-like systems.

As far as shift-generated signals are concerned, we provide the fol-
lowing new results:

For the case of the shifts of one function and its derivatives we suggest
a new reconstruction method based on producing a “convolution dual”
system to the measurements kernels. We analyze the scope of this ap-
proach and show that it extends the reconstruction in “closed form” to
some new classes of measurements.

In the case of two or more functions we propose a “Fourier decou-
pling” approach based on a special choice of the measurements related to
zeroes of the Fourier transform of the shifted functions. In some (appar-
ently new) cases this approach provides reconstruction in closed form.

In connection to the Fourier decoupling method we analyze a general
problem of solving Prony-like systems built on the base of non-uniform
sampling. This question brings in some recent results on the discrete
version of the classical Turan-Nazarov inequality for exponential poly-
nomials.

Some simulation results illustrating the proposed reconstruction meth-
ods are provided.

Date: November 24, 2011.
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1. INTRODUCTION

This work belongs to a direction in Signal Processing called “Algebraic
Sampling” (or “Algebraic Signal Reconstruction”. See, as a part, [5, 6,
8, 39, 23, 44, 45, 46, 55, 60, 67] and references therein). This approach
deals with signals of an a priori known form, specified by a finite number
of unknown parameters, and their reconstruction from measurements (like
moments, Fourier coefficients, etc.).

In an oversimplified form, the reconstruction is performed as follows:
we substitute the symbolic expression of the signal to the expression of the
measurements (like the Fourier integral), and equate the resulting symbolic
expressions in the parameters to the actual measurements. In this way we
get a system of algebraic (usually non-linear) equations, which we subse-
quently solve.

In the most of situations considered in Algebraic Sampling the result-
ing systems can be linearized. This fact makes this approach feasible and
practically important in many applications.

In the present work we develop a reconstruction scheme for signals being
linear combinations of the shifts of one or more known functions and their
derivatives (in one or several variables). We call this class “shift-generated
signals”. Such signals appear in numerous applications. Many important
functions appearing in theoretical investigations are of this form (or can be
accurately approximated by shift-generated signals).
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We summarize the main contributions of this work in some details in
Section1.5below.

1.1. Typical applications of Algebraic Sampling. The problem of data
reconstruction of an a priori known structure appears in many practically
important situations: Signal processing (1-Dimension), picture recogni-
tion/compression/processing/ etc, X-Ray analyzing (2-Dimension), Com-
puter tomography/MRI/(3-Dimension) and more. In all those cases we are
given a set of measurements (mostly linear/integral functionals) and using
a finite number of those measurements we need to approximate/reconstruct
the original data. There is a wide literature presenting successful applica-
tions of this approach to various practical problems. For a small sample see
[4, 22, 27, 28] and references therein.

1.2. Assumptions on signals complexity.The role of the assumption of a
“low complexity” (and not exclusively of a regularity or “small bandwidth”)
of the signals considered has been well recognized in recent years in Signal
and Image processing. The most popular (and universal) measure of com-
plexity today seems to be “sparseness” of signals representation in one or
another wavelets basis. In contrast, in Algebraic Sampling the “simplicity”
of the signal is measured by the number of its possible (explicitly known)
degrees of freedom. In particular, for the “finite rate of innovation” signals
(see [8, 44, 45, 46, 55, 67] and Section1.4below) this number is measured
per unit of time.
The simplicity assumption is central for the Algebraic Sampling approach.
It extends the classical regularity (and/or bandwidth) assumptions. Indeed,
it is well known that the usual Fourier reconstruction scheme (partial sums
of Fourier series) provides an accurate and robust reconstruction for regular
signals, but fails on signals with singularities (jumps). A general expec-
tation is that ultimately the Algebraic Sampling approach will reconstruct
“simple signals with singularities” from a given number of their Fourier co-
efficients as good as smooth ones. In particular, the results of [20, 29, 45,
7, 6, 23, 67] strongly support the following conjecture:

There is a non-linear algebraic procedure reconstructing any signal in a
class of piecewise Ck-functions (of one or several variables) from its first N
Fourier coefficients, with the overall accuracy of orderC

Nk . This includes the
discontinuities’ positions, as well as the smooth pieces over the continuity
domains.

Recently in [7] a partial answer to this problem has been obtained: such
a reconstruction is possible with “half of the smoothness”, i.e. with the
accuracy of orderC

N
k
2
. One of the goals of the present work is to prepare

tools for a further analysis of this problem in one and several variables.



4 NIV SARIG SUPERVISOR: PROF. YOSEF YOMDIN

1.3. Comparison with Compressed Sensing.Compressed Sensing is a
powerful recently developed approach in Signal Processing which utilizes
(theoretically, almost to the maximal possible extent) the sparseness of the
signals processed. While the extent of applicability of Algebraic Sampling
is somewhat narrower than that of Compressed Sensing (because of a re-
quirement of the a priori known structure of the signals) there is a serious
overlapping between the applicability domains of both methods.

We believe that the problem of reconstruction of shifts of given functions
studied in the present work, may serve as a natural test case for a compar-
ison of Algebraic Sampling and Compressed Sensing approaches to signal
reconstruction. We expect that if the required a priori information is avail-
able, Algebraic Sampling has a potential to perform better than Compressed
Sensing. Indeed, the first requires the number of measurements equal to the
number of the degrees of freedom of the signal. On the other hand, as it was
mentioned above, performance of the second depends on the sparseness of
the signal. For signals depending on their parameters in a non-linear way,
their sparseness in any linear basis typically reflects their simplicity (i.e.
the number of their non-linear degrees of freedom) only very partially (see
[23]).

We consider a problem of a theoretical and experimental comparison be-
tween Compressed Sensing and Algebraic Sampling as an important direc-
tion for a future research. In Section8.2 below we discuss in somewhat
more detail specific situations where such a comparison can be carried out.

1.4. Vetterli’s approach - Finite rate of innovation. In a series of papers
[8, 44, 45, 55, 46, 67] Vetterli and coauthors solved a very similar to ours
reconstruction problem for signalsx(t) with the property which they define
asFinite rate of innovation per unit of time. That is the requirement that the
number of new degrees of freedom of the signal which are added per unit
of time be finite. In their setting the signalx is basically of the same form
as in our equation (2.10), with the dilations equal to 1. But the shifts can
appear, with a finite density, along the infinite time period. So they consider
a set of functions{gr}Rr=0 and the model to be reconstructed is (the notation
is taken from [8])

x(t) = ∑
n∈Z

R−1

∑
r=0

γn,rgr (t− tn) (1.1)

Since thegr ’s are a priori known, it is clear that the free parameters (the
degrees of freedom) of this signal are the positionstn and the amplitudes
γn,r . The measurements are taken as sampling the signal on a sequence of
pre-described pointsτn with a given filterϕ. Thus the measurements are of
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the form

yn= x∗ϕ(τn) =
∫

x(t)ϕ(τn− t)dt.

The kernelϕ is taken s.t. it falls under one of the following 3 cases:

(1) Polynomial reproducing kernel:For all m= 1, . . . ,N there exist
cm,n’s s.t for all t

∑
n∈N

cn,mϕ(t−n) = tm.

This condition is equivalent to the Strang-Fix condition that is

ϕ̂(0) 6= 0 andϕ̂(m)(2πn) = 0 for n 6= 0 andm= 0,1, . . . ,N

(2) Exponential reproducing kernel:For all complexα0 andλ we de-
noteαm= α0+mλ. Then there existcm,n’s s.t for all t

∑
n∈N

cm,nϕ(t−n) = eαmt

(3) Kernels with rational Fourier transform:For the sameαm as before,
any kernel with Fourier transform of the form

ϕ̂(ω) = ∏I
k=0 iω−bi

∏N
m=0 iω−αm

with I < N.

In all casesN is chosen with respect to the rate of innovation of the signal.
In each case the parameters of the signal are reconstructed in a way similar
to the method we shall present later in this report.
If the support of the kernel is finite it is possible to reconstruct also signals
generated from infinite number of translations of the given functionsgr ,
assuming they are well separated to groups of the same number of transla-
tions.
In [44] a reconstruction of signals of two dimensions is presented. The sig-
nals are piecewise polynomial one-dimensional curves inR2.
In [8, 44, 45, 46] a noise is added to the signal and some approximations on
the measurements and the reconstruction scheme are shown. Using over-
sampling the noise can be reduced by a factor of 2.

1.5. Content of the work.

1.5.1. The main problem.In Section2.3 we introduce in detail the main
problem considered in this work. The a priori known form of the model is:

F(x) = ∑
i, j,k

ai, j,k f ( j)i (rk(x−xk)) (1.2)

where the parameters to be found are the amplitudesai, j,k, the dilationsrk
and the translationsxk. The measurements considered are mostly moments
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and Fourier coefficients of the unknown signalF . The problem is to find the
unknown parameters from the measurements in a robust and efficient way.

1.5.2. One and multi-dimensional Prony systems.The problem above leads
to a non-linear system of equations of the form

mn=
N

∑
i=1

aix
n
i , n= 0,1. . . . (1.3)

This infinite set of equations is called Prony system. In Chapter3 we dis-
cuss solution of this system in one and several variables. In the last case we
present some new (to our best knowledge) results and provide a simple and
robust solution method in some special cases. We also analyze local sta-
bility of the solutions, extending known results in one dimension to several
variables.

1.5.3. Convolution method.In Section4we define anf - “convolution dual”
system of kernelsψn for a given f and a given systemϕn of the measure-
ments kernels. In particular, forϕn = xn we define the dual polynomials
{ψn}∞

n=0 with respect tof in such a way that the equation
∫

f (t−x)ψn(t)dt = xn, n= 0,1, . . . (1.4)

is satisfied. We show that an application of convolution-dual systems re-
duces our reconstruction problem to a certain Prony-like system. We pro-
vide some specific examples and show that in a more general situation con-
struction of dual systems leads to a certain functional equation. We analyze
solutions of this functional equation and in this way show how this approach
leads to some new classes of measurement kernels for which the problem
can be solved in a closed form.

1.5.4. Shifts of several signals: Fourier decoupling.In Chapter5 we con-
sider reconstruction of signals of the form :

F(x) =
k

∑
i=1

qi

∑
q=1

aiq fi(x−xiq), x, xiq ∈ R
n. (1.5)

We assume that the signalsf1, . . . , fk are known (in particular, their Fourier
transformsf̂i(ω) are known), whileaiq, xiq are the unknown signal param-
eters to be found. We explicitly assume here thatk≥ 2, so the methods of
Section4 are not directly applicable. Still, we would like to obtain an ex-
plicit (in a sense) reconstruction from a relatively small collection of mea-
surements. To achieve this goal, instead of taking Fourier coefficients ofF
we allow “non-uniform samples” of the Fourier transform̂F of F .
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We use the freedom in the choice of the sample setZ in order to “de-
couple” the system of reconstruction equations (5.2) given below, and to
reduce it tok separate systems, each including only one of the signalsfi . To
achieve this goal we takeZ to be a subset of the common set of zeroes of
the Fourier transformsF ( fl ), l 6= i. The decoupled systems turn out to be
of a “generalized Prony” type.

1.5.5. Reconstruction from non-uniform sampling.In Section6 we discuss
in detail the problem of unique solvability of systems obtained in Chapter5,
as it depends on the geometry of the sample setZ. We introduce the notions
of “interpolating” and “Turan” sets. We show that a discrete version of the
classical Turan-Nazarov inequality for exponential polynomials, recently
obtained in [26] provides a simple geometric characterization of those sam-
ple setsZ for which the generalized Prony system is robustly solvable.

1.5.6. Numerical simulations.In Chapter7 we present numerical simula-
tions implementing the suggested reconstruction methods and discuss their
feasibility with and without the presence of noise.

1.5.7. Addendum: future research directions.In Chapter8we discuss some
problems where a plausible approach seems to be in sight. One concerns
the “genericity” of the properties of zeroes of the Fourier transforms of
functions in various classes to provide Turan sampling sets. The second
discuss a possible theoretical comparison between Algebraic Sampling and
Compressed Sensing approaches to signal recovery.

2. THE MAIN PROBLEM

2.1. First (toy) example: We consider the function on the real interval
[0,1]

Ft,a(x) = aH(x− t) =

{
a x≥ t
0 x< t

.

Assume we are given the first two momentsm0(Ft,a),m1(Ft,a). This is our
system of equations

m0=
∫ 1

0
Ft,a(x)dx=

∫ 1

t
adx= a−at (2.1)

m1=
∫ 1

0
xFt,a(x)dx=

∫ 1

t
axdx=

a
2
−

a
2

t2. (2.2)

Clearly we can reconstructa andt as

t =
2m1

m0
−1 anda=

m0/2
1− m1

m0

. (2.3)
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Here using a-priory knowledge on our signal (step function) we can re-
construct it exactly. In classical-linear reconstruction, any finite number of
moments (polynomials, Fourier etc...) will yield approximation problems
such as the Gibbs effect and poor convergence issues. In [6, 23, 39, 40] we
can see a generalization for this example to piece-wise constant functions
on a finite interval.

2.2. Second (more elaborate) example:Consider the modelF in two di-
mensions

Fx0,y0,x1,y1(x,y) = χQ+(x0,y0)(x,y)+χD+(x1,y1)(x,y) (2.4)

whereQ is the unit square andD is the unit disk,

A+(x′,y′) = {(x,y) : (x−x′,y−y′) ∈ A} (2.5)

and

χA(x) =

{
1 if x∈ A
0 if x 6∈ A

. (2.6)

The function (2.4) is a sum of characteristic functions of the translated
square and disk inR2. Substituting this function in the moments equations
we obtain

mi, j =
∫

R2
Fx0,y0,x1,y1(x,y)x

iyjdxdy, (2.7)

which for 0≤ i+ j ≤ 2 gives

m0,0= π+4
m1,0= πx1+4x0
m0,1= πy1+4y0

m2,0=
π
4+πx2

1+
4
3+4x2

0
m0,2=

π
4+πy2

1+
4
3+4y2

0
m1,1= πx1y1+4x0y0+

π
8

. (2.8)

With some basic calculations we can see that

x1=
πm1,0±

√
4π[(π+4)m2,0−m1,0]−π3− 28

3 π2− 64
3 π

π(π+4)

y1=
πm0,1±

√
4π[(π+4)m0,2−m0,1]−π3− 28

3 π2− 64
3 π

π(π+4)

x0=
m1,0−πx1

4

y0=
m0,1−πy1

4

(2.9)

The momentm1,1 can be used to determine the signs of the roots. In this
example it is enough to know 5 moments in order to reconstruct the func-
tion exactly.
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The momentm0,0 (as long it is non 0) is of no importance in this example,
hence we use 4 moments to calculate the values of our 4 parameters and
one more moment to decide the square root sign.
For more general situations we may apply a similar, though more compli-
cated analysis.

2.3. ”Algebraic Sampling” - The Main Problem. Here we introduce the
main problem we address in this work. As it was explained above, “al-
gebraic sampling” or “algebraic signal reconstruction” approach deals with
the following problem: let a finite-parametric family of functionsF =Fp(x),
x∈ Rd be given, withp= (p1, . . . , pr) a set of parameters. We callFp(x) a
model, and usually we assume that it depends on some of its parameters in a
non-linear way (this is almost always the case with the “geometric” param-
eters representing the shape and the position of the model). The problem is:

How to reconstruct in a robust and efficient way the parameters p from
a set of “measurements” mj1(F), . . . ,mjn(F)?

In this work mj will be either the momentsmj(F) =
∫

xjFp(x)dx or the
Fourier coefficients.

A remarkable fact is that many specific types of the models as above
used in algebraic sampling lead to basically the same type of non-linear
equations: the “generalized Prony systems”. This includes the systems ap-
pearing in Vetterli’s approach described above, in various problems of sig-
nal reconstruction from moments (see [60] for a very partial overview), in
reconstruction ofD-finite and piecewise-smooth functions [5, 6, 7], and in
many other situations.

The same is true in the problem we study in this work - reconstruction
from integral measurements signals having the form of a linear combination
of shifts of a number of known functions and their derivatives. Let us spec-
ify the modelsFp we work with. We assume that a collection of functions
{ f1, . . . , fM} is given on which we have all the required information. The
model is:

F(x) = ∑
i, j,k

ai, j,k f ( j)i (rk(x−xk)) (2.10)

where the parameters to be found are the amplitudesai, j,k, the dilationsrk
and the translationsxk.
The functionsfi ’s can be rather arbitrary. We shall need some non-vanishing
properties of their Fourier transform, and for some of our calculations also
certain restrictions on their growth at infinity.
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The linear measurements we consider are linear functionals that can be
given by an analytic formula, e.g:

(1) Polynomial moments:

mn=
∫

F(x)xndx.

(2) Fourier series’ coefficients:

Fn=
∫

F(x)einxdx.

(3) Integration against a sequence of functions{ϕn}

Gn=
∫

F(x)ϕn(x)dx.

(4) Sampling the signalF with a filter ϕ (Convolution against a trans-
lated kernel at some given pointstn).

Vn=
∫

F(x)ϕ(x− tn)dx

See [8, 44, 45, 55, 67] and Section1.4for Vetterli’s work).

So the main specific problem in algebraic signal reconstruction which we
consider in this work is the following:

Knowing a priory the form (2.10) of the signal F reconstruct it (i.e. find all
the unknown parameters in (2.10): the amplitudes ai, j,k, the dilations rk and
the translations xk) from a set of measurements as above. This should be
done in a robust and noise-resistant way, with a number of measurements
used as close to the number of unknowns as possible.

We shall mostly concentrate on linear combinations of shifts of one or
several functions. However, adding shifts of derivatives and dilations will
be also discussed below. We provide also some new results on stability of
reconstruction. However, we do not provide in this work a detailed study of
the reconstruction problem from noisy data. This is an important problem
for a future research.

2.4. A small detour - Completeness via Wiener’s Tauberian theorem.
Working with shifts of given functions we shall naturally encounter various
problems related to zeroes of their Fourier transform. Although we do not
explicitly use below any “density” property of such shifts, we recall shortly
one classical result relating density of shifts of a given function and non-
vanishing property of its Fourier transform.

Theorem 1. (Wiener’s Tauberian theorem) A function f∈ L1 and all its
translations span a dense subset in L1 if and only if f̂ does not vanish.
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The ”only if” part of the theorem is easy to explain, since if there exists
someω s.t f̂ (ω) = 0 then any functiong s.t ĝ(ω) 6= 0 could not be approx-
imated usingf and its translations. Otherwise, since the Fourier transform
is continuous, we would get for some large enoughN and somexi ’s that

0 6= ĝ(ω)≈ F

[
N

∑
i=1

ai f (x+xi)

]

(ω) =
N

∑
i=1

aie
ixiωF [ f ](ω) =

N

∑
i=1

aie
ixiω0= 0.

The if part of the theorem is less trivial and we will not present it here (for
more details see [59]).
Clearly, the closure of all the translations off contains also all the deriva-
tives of f and vice versa.

3. ONE AND MULTI - DIMENSIONAL PRONY SYSTEMS

3.1. One-dimensional Prony system.Prony system appears as we try to
solve a very simple version of the shifts reconstruction problem as above.
Assume that we have in (2.10) only one functionf which is the delta func-
tion, all the dilations are equal to one, and no derivatives are allowed. (2.10)
then becomes

F(x) =
N

∑
j=1

ajδ(x−xi). (3.1)

We will use as measurements the polynomial moments:

mn=
∫ ∞

−∞
F(x)xndx.

After substitutingF into the integral definingmn we will get

mn=
∫ N

∑
j=1

aiδ(x−xj)x
ndx=

N

∑
j=1

ajx
n
j .

Consideringai andxi as unknowns, we obtain equations

mn=
N

∑
j=1

ajx
n
j ,n= 0,1. . . . (3.2)

This infinite set of equations is called Prony system. It can be traced at least
to R. de Prony (1795, [56]) and it is used in a wide variety of theoretical
and applied fields. See [45, 60] and references therein for a very partial list.
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3.2. Solving the Prony system.Here we sketch the main steps of the so-
lution of this system. For more details see, e.g. [52]. First we define the
moment generating function

I(z) =
∞

∑
n=0

mnzn. (3.3)

Summing up geometric progressions we find

I(z) =
∞

∑
n=0

mnzn=
N

∑
j=1

ai

∞

∑
n=0

xn
j z

n=
N

∑
i=1

ai

1−xjz
. (3.4)

We conclude, in particular, that

I(z) =
N

∑
j=1

ai

1−xjz
. (3.5)

is a rational function of degreeN vanishing at infinity. The poles and
residues ofI(z) in (3.5) are 1

xj
and−aj/xj respectively, from them we can

extract the unknowns.
Now in order to findI(z) explicitly from the first 2N+1 moments

m0,m1, . . . ,m2N we use the Pad́e approximation approach (see [52]): write
I(z) as P(z)

Q(z) with polynomialsP(z) =A0+A1z+ ∙ ∙ ∙+AN−1zN−1 andQ(z) =

B0+B1z+ ∙ ∙ ∙+BNzN of degreesN−1 andN, respectively.
Multiplying by Q we haveI(z)Q(z) = P(z). Now equating the coeffi-

cients on both sides we get the following system of linear equations:

m0B0= A0

m0B1+m1B0= A1

.............................

m0BN−1+m1BN−2+ ∙ ∙ ∙+mN−1B0= AN−1

m0BN+m1BN−1+ ∙ ∙ ∙+mN−1B1+mNB0= 0

m1BN+m2BN−1+ ∙ ∙ ∙+mNB1+mN+1B0= 0

..............................

The rest of the equations in this system are obtained by further shifts of
the indices of the moments, and so they form a Hankel-type matrix.

Now, being a rational function of degreeN, I(z) is uniquely defined by
its first 2N Taylor coefficients (the difference of two such functions cannot
vanish at zero with the order higher than 2N− 1). We conclude that the
linear system consisting of the first 2N homogeneous equations as above is
uniquely solvable up to a common factor ofP andQ (of course, this fact
follows also form a general Padé approximation theory - see [52]).
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Now a solution procedure for the Prony system can be described as fol-
lows:

1. Solve a linear system of the first 2N equations as above (with the coef-
ficients - the known momentsmk) to find the moments generating function
I(z) in the formI(z) = P(z)

Q(z) .

2. RepresentI(z) in a standard way as the sum of elementary fractions
I(z) = ∑N

j=1
aj

1−xjz. (Equivalently, find poles and residues ofI(z)). Besides
algebraic operations, this requires just finding the roots of the polynomial
Q(z). Then (aj ,xj), j = 1, . . . ,N form the unique solution of the Prony
system (3.2).

The equations above provide also a linear recurrence for the moments
mn. This recurrence (and the equations) can be obtained in a different way:
we know that the momentsmn, being the Taylor coefficients of a rational
functionI(z), admit a linear recurrence relation. indeed, forI(z) = P(z)

Q(z) then
if deg(P) < deg(Q) (as in our case) with deg(Q) = N then we get that for
all k≥ 0

0=
1

(N+k)!
0=

1
(N+k)!

dN+k

dzN+kP(z) =
1

(N+k)!
dN+k

dzN+k(I(z)Q(z))

=
1

(N+k)!

N+k

∑
j=0

(
N+k

j

)

I ( j)(z)Q(N+k− j)(z)

=
N+k

∑
j=i

1
j!

1
(N+k− j)!

I ( j)(z)Q(N+k− j)(z).

Evaluating these expressions at 0 and shifting the summation gives us

0=
N

∑
j=0

Mk+ jQN− j

whereQ(z) = ∑N
j=0Qjzj . Assuming thatQ(0) 6= 0 we get the recurrence

relation

mk+N =
N−1

∑
j=0

mk+ j

(

−
QN− j

Q0

)

. (3.6)

Given the first 2N momentsmn we can find the recurrence relation coef-
ficients (i.e. the denominatorQ(z)), next the numeratorP(z), and through
them, as above, the poles and residues ofI and hence the unknown parame-
ters ofF . Notice that given the translationsxn’s, the amplitudesan’s can be
calculated by solving the Vandermonde system
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






1 1 . . . 1
x1 x2 . . . xn
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n














a1
a2
...

an





=







m0
m1
...

mn−1





 (3.7)

The robustness and efficiency of this calculation is an important question
for further research (for some results see [5, 6, 20, 42]). In the next section
we provide the local stability bound for the solution of one-dimensional
Prony system due to D. Batenkov ([5, 6, 7]).

3.2.1. Local stability estimates for a one-dimensional Prony system.In [5]
Batenkov proves the following theorem (theorem 4.1 page # 18)

Theorem 2. Let {mk}2N
k=0 be the exact unperturbed moments of the model

(3.1). Assume that all the xj ’s are distinct and also aj 6= 0 for j = 1, . . . ,N.
Now let m̃k be perturbations of the above moments such thatmaxk|mk−
m̃k| < ε. Then, for sufficiently smallε, the perturbed Prony system has a
unique solution which satisfies:

|x̃j −xj | ≤C1ε|aj |
−1

|ãj −aj | ≤C1ε

where C1 is an explicit constant depending only on the geometry of x1, . . . ,xN.
More precisely C1∼ 1

∏i 6= j |xi−xj |
.

From Theorem2 we get that our solution method for Prony system is robust
and the accuracy depends on the geometry of the shiftsxj ’s. (For more
details and a full proof see also [7]).

3.3. Multi-dimensional Prony system. In this section we generalize Prony
system and its solution method to the case of several variables. We shall see
that certain solution steps (the recurrence relation for the moments, and, in
general, the reconstruction of the moments generating function in the form
I(z) = P(z)

Q(Z) in the lines of multi-dimensional Padé approximation) remain
essentially the same as in one-dimensional case. However, the final recon-
struction of the signal from the moments generating function turns out to be
essentially more involved in several variables than in one dimension. We
utilize a special form of the rational functionI(z) as appears for the mo-
ments of a linear combination ofδ-functions inRd.

First we introduce some multi-dimensional notations:

Forn= (n1, . . . ,nd), k= (k1, . . . ,kd) ∈Nd, x= (x1, . . . ,xd) ∈Cd anda∈C
we define a partial ordern≤ k if for all j ∈ {1, . . . ,d} nj ≤ kj . Next, we
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definen! =∏d
j=1nj ! and then, fork≤ n,

(n
k

)
= n!

k!(n−k)! =∏d
j=1

(nj
kj

)
is well

defined. Put also|n|=∑d
j=1nj , an= a|n| andxn=∏d

j=1x
nj
j . Finally we will

define the derivative operator∂ as ∂
∂x =

(
∂

∂x1
, . . . , ∂

∂xd

)
and for each multi-

indexn we define ∂n

∂xn =∏d
j=1

∂nj

∂xj
nj .

3.3.1. Linear combinations ofδ-functions, their moments and generating
functions.Consider a signal of the form

F(x) =
N

∑
i=1

aiδ(x−xi), xi ∈ R
d. (3.8)

Now, for n a multi-index of dimensiond andx∈ Rd we get

mn(F) =
∫

Rd
F(x)xndx=

N

∑
i=1

aix
n
i .

Considering the moments as known measurements, while the parameters
ai, xi of F as unknowns, we obtain a multi-dimensional Prony system

N

∑
i=1

aix
n
i =mn, n≥ (0,0, . . . ,0). (3.9)

So in multi-dimensional notations as above this system has exactly the same
form as the one-dimensional system (3.2).

We can now define the multi-dimensional moments’ generating function

I(z) = ∑
n∈Nd

mnzn. (3.10)

As in one dimension, we shall show thatI(z) is a rational function of degree
at mostNd. RepresentingI(z) as P(z)

Q(z) we get exactly in the same way as
above an infinite system of linear equations for the coefficients ofP andQ,
with a Hankel-type matrix formed by the momentsmk. In multidimensional
notations this system takes the following form: for eachv∈ Nd we have

Av=
|v|

∑
l=0

∑
|u|=l
u≤v

muBv−u (3.11)

whereAv is either thevth coefficient of the polynomialP (if v is a power
in the polynomial) or zero (otherwise). This last equation can be written in
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more detailed form: denotev= (v1, . . . ,vd) and putu= (u1, . . . ,ud) hence

Av=
|v|

∑
l=0

min{l ,v1}

∑
u1=0

. . .
min{l−u1−u2−...−uk,vk}

∑
uk+1=0

. . .
min{l−u1...−ud−1,vd}

∑
ud=0

muBv−u.

We should notice that sinceBv−u are coefficients of a polynomialQ, all
of them starting from some finite order are equal to 0, hence from some
point on, the length of the right hand side in equation (3.11) stabilizes and
we can get a homogenous system of linear equations for the coefficients
of Q (the Bv) with the least number of equations needed. By the same
consideration as above - in the one dimensional case, after we take enough
equations in this system the solution is unique up to a re-scaling (see [2, 52,
64] and references therein for Canterbury approximants , multidimensional
Recursive Systems and Pade approximants in several dimensions).

As in one-dimensional case, we can obtain the recurrence relation for the
moments directly: write, as above,

P(z) =Q(z)I(z).

Now, for n a multi-index we differentiateP n times and use the Leibnitz
rule which applies also for multi-dimensional derivations:

∂n

∂znP(z) =
∂n

∂zn [I(z)Q(z)] = ∑
m≤n

(
n
m

)
∂m

∂zmI(z)
∂n−m

∂zn−mQ(z).

For n with multi-index norm (|n|) greater thend the degree ofQ (and then
greater then the degree ofP) the left hand side of the last equation is zero.
Assume thatQ(z) =∑|m|≤d qmzm then if we evaluate every thing at 0 we get

0= ∑
|n−k|≤d,k≤n

(
n
k

)

k!mk(n−k)!qn−k = n! ∑
|n−k|≤d,k≤n

Mkqn−k (3.12)

which is a finite recurrence relation (in several dimensions) for the Taylor
coefficients ofI (for eachn). It leads to essentially the same system of
equations as (3.11) above.

However, from this point the multi-dimensional situation becomes essen-
tially more complicated. While in dimension oneI(z) can be, essentially,
any rational function of degreeN (naturally represented as the sum of ele-
mentary fractions), in several variablesI(z) turns out to have a very special
form. This fact can be easily understood via counting degrees of freedom.
Indeed, in one variable the signals are of the form

F(x) =
N

∑
i=1

aiδ(x−xi), xi ∈ R
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have 2N degrees of freedom, exactly as rational functions of degreeN with-
out a polynomial part.

In d> 1 variables the signals

F(x) =
N

∑
i=1

aiδ(x−xi), xi ∈ R
n

haveN(d+1) degrees of freedom, while rational functions ofd variables
of degreeNd have

((N+1)d
d

)
degrees of freedom which is much more than

N(d+1).

We shall strongly rely on this special form ofI(z) in our reconstruction
algorithm. Now we will describe it accurately.

Proposition 3.1. For F(x) =∑N
i=1aiδ(x−xi), xi ∈Rn the moments’ gener-

ating function I(z) is a rational function the form

I(z) =
N

∑
i=1

ai

d

∏
j=1

1
1−xi j zj

.

Assuming that all the coordinates xi j of the points xi , i = 1, . . .N, j =
1, . . .d, are pairwise distinct, we have the following description of the poles
of I(z): the poles of the first order of I(z) form a grid of hyperplanes
zj =

1
xi j
, i = 1, . . .N, j = 1, . . .d. The poles of the second order lie on

the intersections of the hyperplanes(zp=
1

xip
)∩ (zq=

1
xiq
), i = 1, . . .N, 1≤

p< q≤ d, etc. Finally, the poles of order N of I(z) are the pointsx̂i =
( 1

xi1
, 1

xi2
, . . . , 1

xid
).

Proof: We shall follow the same reasoning as in one-dimensional case, with
small modifications:

I(z)= ∑
n∈Nd

mnzn= ∑
n∈Nd

∫

Rd

N

∑
i=1

aiδ(x−xi)x
nzndx= ∑

n∈Nd

N

∑
i=1

aiz
n
∫

Rd
δ(x−xi)x

ndx

= ∑
n∈Nd

N

∑
i=1

ai(xi)
nzn=

N

∑
i=1

ai ∑
n∈Nd

(xi)
nzn.

Now we can notice that

∑
n∈Nd

xn
i zn= ∑

n∈Nd

d

∏
j=1
(xi j zj)

nj =
d

∏
j=1

∞

∑
r=0
(xi j zj)

r =
d

∏
j=1

1
1−xi j zj

hence as claimed

I(z) =
N

∑
i=1

ai

d

∏
j=1

1
1−xi j zj

.
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The form of the denominator of the rational functionI(z) shows immedi-
ately the positions of its poles of all the orders. Indeed, as a result of our
assumption all the hyperplaneszj =

1
xi j
, i = 1, . . .N, j = 1, . . .d are pair-

wise different, and the poles on them cannot cancel with one another. This
completes the proof of the proposition.

3.3.2. Separation of variables in the multi-dimensional Prony system.As-
suming, as above, that all the coordinatesxi j of the pointsxi , i= 1, . . .N, j =
1, . . .d, are pairwise distinct, and, moreover, thatai1 6= ai2 for i1 6= i2, we can
suggest a simpler method for solving Prony system (3.9), reducing it tod
one-dimensional systems. A theoretical advantage of this approach is also
that we use a smaller number of the moment equations than in a general
Pad́e approximation approach outlined above. Still, this number is larger
than the number of the degrees of freedom of the signalF . A modification
of our method in order to reduce the number of the equations required is an
important problem.

Let us consider “partial moment generating functions”Ir(t), t ∈ C, r =
1, . . . ,d, defined by

Ir(t) =
∞

∑
l=1

mler (F)t
l , (3.13)

whereer is a multi-index defined by(er) j = 0 for r 6= j and 1 otherwise.
We have the following simple fact:

Proposition 3.2. Ir(t) is a one-dimensional moments generating function
of the moments of

Fr(x) =
N

∑
i=1

aiδ(x−xir ).

It coincides with the restriction of I(z) to the r-th coordinate axis inCd.

Proof: Let us evaluateI(z) along ther-th coordinate axis, that is on the line
z= ter with er as above andt ∈ C. We get

I(ter) =
N

∑
i=1

ai

d

∏
j=1

1
1−xi j t(er) j

=
N

∑
i=1

ai
1

1−xir t

which is the moments generating function ofFr . Now, to expressIr(t)

through the multi-dimensional moments we notice that(ter)
k=∏d

j=1 tkj (er)
kj
j ,

since(er) j is non zero just whenr = j. We get that(ter)
k = tkr and then

I(ter) = ∑
k∈Nd

mk(ter)
k = ∑

k=ler

mk(ter)
k =

∞

∑
l=0

Mler t
l .
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This shows thatIr(t)≡ I(ter) and completes the proof of the proposition.

Now we are back to the one dimensional case. Applying the method de-
scribed in Section3.2 above we find for eachr = 1, . . . ,d the coordinates
x1r , . . . ,xNr and (repeatedly) the coefficientsa1, . . . ,aN. It remains to arrange
these coordinates into the pointsxj = (xj1, . . . ,xjd). This presents a certain
combinatorial problem, since Prony system (3.9) is invariant under permu-
tations of the indexj. Under the assumptions above we proceed as follows:
for eachr = 1, . . . ,d we have obtained the (unordered) collection of the pairs
(aj ,xjr ), j = 1, . . . ,N. By assumptionsaj1 6= aj2 for j1 6= j2. Hence we can
arrange in a unique way all the pairs(aj ,xjr ), j = 1, . . . ,N, r = 1, . . . ,d into
the sequences of pairs[(a1,x11), . . . ,(a1,x1d)], . . . , [(aN,xN1), . . . ,(aN,xNd)].
This gives us the desired solution of the multi-dimensional Prony system
(3.9).

Notice that the assumptionaj1 6= aj2 for j1 6= j2 is essential here. Indeed,
for x1 6= x2 andx1 = (x1,x2), x2 = (x2,x1), x̂1 = (x1,x1), x̂2 = (x2,x2) we

havemk = (x1)k+ (x2)k ≡ (x̂1)k+ (x̂2)k = x|k|1 + x|k|2 for k on each of the
coordinate axes. So the (unique up to permutations of the indexj) solution
of the Prony system cannot be reconstructed from these moments only.

Another remark is that the separation of variables as described above
requires knowledge of 2dN momentsmn (2N on each of the coordinate
axes). This is almost twice more thanN(d+1) unknowns. We believe that
this number can be significantly reduced in some cases, and consider this
reduction as an important problem for future research.

3.3.3. Local stability estimates for a multi-dimensional Prony system.Sta-
bility estimates for the solution of one-dimensional Prony system (Section
3.2.1) can be extended to the multi-dimensional case considered above (all
the coordinatesxi j of the pointsxi , i = 1, . . .N, j = 1, . . .d, are pairwise
distinct, andai1 6= ai2 for i1 6= i2.). We shall use theorem2 above several
times for the local stability in each dimension separately. We rephrase the
theorem for the multi dimensional case:

Theorem 3. Let {mkel}
2N
k=0

d
l=1 be the exact unperturbed moments of the

model(3.8). Assume that all the coordinates of the translations xj =(xj1, . . . ,xjd)
are distinct and also aj 6= 0 for j = 1, . . . ,N. Now letm̃kel be perturbations
of the above moments such thatmaxk,l |mkel − m̃kel | < ε. Then, for suffi-
ciently smallε, the perturbed Prony system has a unique solution which
satisfies:

|x̃jl −xjl | ≤Cl ε|aj |
−1

|ãj −aj | ≤Cl ε
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where Cl is an explicit constant depending only on the geometry of x1l , . . . ,xNl

(the lth coordinate of the translations x1, . . .xN). More precisely Cl ∼ 1
∏i 6= j |xil−xjl |

.

3.4. Solution of the multi-dimensional Prony system in the general case.
Through the last sections we assumed that the amplitudesaj are pairwise
different and using this assumption we could match the amplitudesaj ’s to
their corresponding translationsxj = (xj1, . . . ,xjd). In this section we show
how to find this match also ifaj are not pairwise different.

3.4.1. The combinatorial matching problem for the multi-dimensional Prony
system.By solving the set of equations (3.11) we have the coefficientsAν
of the numerator andBν of the denominator of the rational functionI(z).
Next, using the separation of variable method we found for each dimension
k= 1, . . . ,d the valuexjk - thekth component of thejth translation matched
to its amplitudeaj .
We can sum up this information in the next schema:







{(a1,x11), . . . ,(aN,xN1)},
{(a1,x12), . . . ,(aN,xN2)},

...
{(a1,x1d), . . . ,(aN,xNd)}





 . (3.14)

The above representation is an ordered (by dimension) array of unordered
sets of pairs. We would like to re-arrange the data as follows:






{(a1,x11), . . . ,(aN,xN1)},
{(a1,x12), . . . ,(aN,xN2)},

...
{(a1,x1d), . . . ,(aN,xNd)}





 −→






(a1,x1= (x11, . . . ,x1d)),
(a2,x2= (x21, . . . ,x2d)),

...
(aN,xN = (xN1, . . . ,xNd))





.

The schema to the right is an unordered set of ordered pairs such that the
amplitudeaj matched to its corresponding translationxj . As mentioned
before, if all theaj ’s are pairwise different this reordering is easy: we just
need to match all the components related to the same amplitude together to
get thejth translation.

3.4.2. Solution to the matching problem in the multi-dimensional Prony
system.Using proposition3.1 and the representation ofI(z) = P(z)

Q(z) as a
ratio of two polynomials (we may assume thatQ(0) = 1) we can write ex-
plicitly

Q(z) =
N

∏
i=1

d

∏
j=1
(1−xi j zj) (3.15)
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P(z) =
N

∑
i=1

ai

N

∏
l 6=i
l=1

d

∏
j=1
(1−xl j zj). (3.16)

DefinePi(z) = ai ∏N
l 6=i l=1

∏d
j=1(1−xl j zj) as theith summand in (3.16). The

following proposition is obvious by observingPi .

Proposition 3.3. Pi is zero on the hyperplanes zj = 1/xl j for all (l , j) s.t
l 6= i.

Using proposition3.3we can state and easily prove the next proposition:

Proposition 3.4. Let r1 = r be any number between1 and N then for n,
2≤ n≤ d and any choice of1≤ rk ≤ N s.t. k= 2, . . . ,n, the restriction of

Pr to the intersection of the hyperplanes
n⋂

k=1
{z= 1/(xrk)k} is not the zero

polynomial if and only if r= r1= r2= . . .= rn.

The essence in proposition3.4 is that if we restrictP(z) to some point
y= (y1, . . . ,yd) such that the components ofy are not taken from only one
translationxi then the polynomialP(z) will be identically zero.
Using proposition3.4, we can re-arrange the data as follows:

(step= 0) If the list (3.14) of all the pairs(ai ,xi j ) is empty - stop, otherwise go
to step 1.

(step= 1) Out of the pairs(ai ,xi1) choose one(ar ,(xr)1), and restrictP to the
hyperplanez1= 1/(xr)1.

(step= 2) Out of the pairs(ai ,xi2) in the list, focus on the pairs for which
ai = ar . Find one, out of them, for which the restriction ofPr to
the intersection of the hyperplanes{z1 = 1/(xr)1} ∩ {z2 = 1/xi2}
will not be identically zero. This one will determine the second
coordinate ofxr : (xr)2= xi2.

...
(step= k) Out of the pairs(ai ,xik) in the list, focus on the pairs for which

ai = ar . Find one, out of them, for which the restriction ofPr to the

planes
k−1
∩
j=1
{z : zj = 1/(xr) j}

⋂
{z : zk= 1/xik} will not be identically

zero. This one will determine thekth coordinate ofxr : (xr)k = xik.
...
... Repeat the above till we reach the last dimensiond.
...

(end) After thedth step, we matchedar andxr = ((xr)1, . . . ,(xr)d)). Next
we modify the list (3.14) by erasing thed pairs{(ar ,(xr) j)}dj=1, and
go back to step number 0.
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Following these steps we solve the combinatorial matching problem.

4. CONVOLUTION METHOD

In this Section we present a “convolution method” for reconstructing a
signal (which is supposed to be a linear combination of shifts of single a
priori known function) from a sequenceΦ of integral measurements defined
through a given systemϕn of the measurements kernels. We define anf -
“convolution dual” system of kernelsψn for a given f and a given system
ϕn of the measurements kernels. As an example, forϕn= xn we define the
dual polynomials{ψn}∞

n=0 with respect tof in such a way that the equation
∫

f (t−x)ψn(t)dt = xn, n= 0,1, . . . (4.1)

is satisfied. We show that an application of convolution-dual systems re-
duces our reconstruction problem to a certain Prony-like system. We pro-
vide some specific examples and show that in a more general situation con-
struction of dual systems leads to a certain functional equation. We analyze
solutions of this functional equation and in this way show how this approach
leads to some new classes of measurement kernels for which the problem
can be solved in a closed form.

4.1. Reconstruction with the convolution dual polynomials. We start
with the moments as the measurements. Letf be a smooth function with
finite support s.t. its zero moment does not vanish. We want to reconstruct
the signalF of the a priori known form

F(x) =
N

∑
i=1

ai f (x−xi) (4.2)

from a certain number of the moments

mn=
∫ ∞

−∞
F(x)xndx, n= 0,1, . . . , (4.3)

i.e. to find the unknown parametersai , xi , i = 1, . . . ,N.

We want to define the “f -convolution dual polynomials{ψn}∞
n=0 to the

sequence of the monomials 1,x,x2, . . . ,xs, . . . in such a way that
∫

f (t−x)ψn(t)dt = xn, n= 0,1, . . . . (4.4)

Theorem 4. If f̂ ∈Cs(R) and f̂ (0) 6= 0 then the formula

ψn(x) =
n

∑
k=0

Cn,kx
k, n≤ s (4.5)
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where

Cn,k =
1
√

2π

(
n
k

)

(i)n+k
[

∂n−k

∂ωn−k

∣
∣
∣
∣
ω=0

1
F [ f ](−ω)

]

. (4.6)

defines polynomialsψn which satisfy equation (4.4) for all n≤ s.

Proof. We shall use the following facts

(1) In distribution sense:

F −1[δ(n)](x) =
1
√

2π

∫
δ(n)(ω)eixωdω

=
1
√

2π

∫
δ(ω)(−1)n

dn

dωneixωdω=
1
√

2π

∫
δ(ω)(−1)n(ix)neixωdω

=
(−ix)n
√

2π

∫
δ(ω)eixωdω=

(−ix)n
√

2π
hence

F −1[δ(n)](x) =
(ix)n
√

2π
and √

2π(−i)nδ(n)(ω) = F [xn](ω) (4.7)

whereF −1 is the inverse fourier transform.

(2) The convolution theorem:

F [ f ∗ψ](ω) = F
[∫

f (x− t)ψ(t)dt

]

(ω) =
√

2πF [ f ](ω)F [ψ](ω). (4.8)

(3) The following simple calculation:
For f−(x) = f (−x)

F [ f−](ω) =
1
√

2π

∫ ∞

−∞
f (−t)e−itωdt =

1
√

2π

∫ −∞

∞
f (u)e−i(−u)ω(−du)

=
1
√

2π

∫ ∞

−∞
f (u)eiuωdu

hence
F [ f−](ω) = F [ f ](−ω). (4.9)

Having (4.7), (4.8) and (4.9) we get
√

2π(−i)nδ(n)(ω) = F [xn](ω) = F
[∫

f (t−x)ψn(t)dt

]

(ω)

=
√

2πF [ f ](−ω)F [ψn](ω)
hence

F [ψn](ω) =
1

F [ f ](−ω)
(−i)nδ(n)(ω). (4.10)
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Notice that from the properties given onf we know thatF [ f ](0) 6= 0 and it
is differentiable around 0 as many times as needed (here we should remark
that the this assumption onf is not a trivial one, therefore its impact on
the applicability of this theorem should be addressed separately in future
research) . Therefore

ψn(x) = F −1[F [ψn]](x)

= 1√
2π

∫ 1
F [ f ](−ω)(−i)nδ(n)(ω)eiωxdω

= (−i)n√
2π

∫ 1
F [ f ](−ω)δ

(n)(ω)eiωxdω

= in√
2π

∫ ∂n

∂ωn

(
1

F [ f ](−ω)e
iωx
)

δ(ω)dω

= in√
2π

∂n

∂ωn

∣
∣
∣
ω=0

(
1

F [ f ](−ω)e
iωx
)

= in√
2π ∑n

k=0

(n
k

) ∂n−k

∂ωn−k

∣
∣
∣
ω=0

(
1

F [ f ](−ω)

)
∂k

∂ωk

∣
∣
∣
ω=0

(
eiωx
)

= ∑n
k=0Ck,nxk

and theψn’s are indeed thef -convolution dual polynomials to the sequence
of the monomials. �

Given Theorem4 we shall define the generalized moments

Mn=
n

∑
k=0

Cn,kmk. (4.11)

From expression (4.5) for ψn we get

Mn=
n

∑
k=0

Cn,kmk =
∫

F(t)
n

∑
k=0

Cn,kx
k =

∫
F(t)ψn(t)dt =

=
N

∑
i=1

ai

∫
f (t−xi)ψn(t)dt =

N

∑
i=1

aix
n
i .

Thus we get a Prony system for the unknownsai ,xi of our reconstruction
problem, but with the right-hand sides being the generalized momentsMn:

Mn=
N

∑
i=1

aix
n
i . (4.12)

Expression (4.11) , i.e. the fact that we are able to represent the generalized
moments through the original ones, plays a main role in our approach: in-
deed, what we assume to be known are the original momentsmn, while in
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the right-hand side of (4.12) we get the generalized onesMn. We shall stress
this requirement also in our generalization of this technique (see Section4.2
below).

4.1.1. Adding derivatives of f .The technique of dual polynomials pre-
sented in Section4.1 above can be naturally extended to the linear com-
binations of shifts of a function and its derivatives. Let us consider signals
F of the form

F(x) =
N

∑
i=1

q

∑
j=0

ai, j f ( j)(x−xi). (4.13)

We use the same dual polynomialsψn as in Theorem4 and the same gener-
alized momentsMn as in (4.11) above. So for anyF we haveMn=Mn(F)=∫

F(t)ψn(t)dt. Hence for the generating functionI(z) = ∑∞
n=0Mnzn and for

F as in (4.13) we obtain

I(z) =
∞

∑
n=0

Mnzn=
N

∑
i=1

q

∑
j=0

ai, j

∞

∑
n=0

zn
∫ ∞

−∞
f ( j)(x−xi)ψn(x)dx

=
N

∑
i=1

q

∑
j=0

ai, j(−1) j
∂ j

∂xj
i

∞

∑
n=0

zn
∫ ∞

−∞
f (x−xi)ψn(x)dx

=
N

∑
i=1

q

∑
j=0

ai, j(−1) j
∂ j

∂xj
i

∞

∑
n=0

xn
i zn

=
∞

∑
n=0

zn(
N

∑
i=1

q

∑
j=0

ai, j(−1) j
n!

(n− j)!
xn− j

i ).

Comparing coefficients with the same powers ofz we get the following
system of equations:

N

∑
i=1

q

∑
j=0

ai, j(−1) j
n!

(n− j)!
xn− j

i =Mn, n= 0,1, . . . . (4.14)

This is a direct generalization of the usual Prony system (4.12). It can be
solved in a similar way. Manipulating further the expression forI(z):

I(z) =
N

∑
i=1

q

∑
j=0

ai, j(−1) j
∂ j

∂xj
i

∞

∑
n=0

xn
i zn

=
N

∑
i=1

q

∑
j=0
(−1) jai, j

∂ j

∂xj
i

1
1−xiz

=
N

∑
i=1

q

∑
j=0

(−1) j j!ai, j zj

(1−xiz) j+1 .
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So we finally obtain that

I(z) =
N

∑
i=1

q

∑
j=0

(−1) j j!ai, j zj

(1−xiz) j+1 (4.15)

and againI is a rational function of degreeN(q+ 1) tending to zero at
infinity. Now we bring this rational fraction to its normal form. We use the
following identity:

zj

(z−1) j+1 =
(z−1+1) j

(z−1) j+1 =

∑ j
l=0

( j
l

)
(z−1)l

(z−1) j+1 =
j

∑
l=0

(
j
l

)
1

(z−1) j+1−l

that is

zj

(z−1) j+1 =
j

∑
l=0

(
j
l

)
1

(z−1)l+1 . (4.16)

We get that

I(z) =∑
i, j

(−1) j j!ai, j zj

(1−xiz) j+1 =∑
i, j

(−1) j+1 j!ai, j

(−xi) j
(xiz) j

(xiz−1) j+1

=∑
i, j

−ai, j

(xi) j

j

∑
l=0

j!

(
j
l

)
1

(xiz−1)l+1

that is

I(z) =∑
i, j

j

∑
l=0

j!

(
j
l

)
(−1)l ai, j/x

j
i

(1−xiz)l+1 . (4.17)

Now we proceed exactly as in solving the usual Prony system: first we
find I(z) in a form I(z) = P(z)

Q(z) from an appropriate number of its initial
Taylor coefficientsMn (see [52] for more details). Next we find the poles of
I(z) and its essential part (i.e. all its negative Laurent coefficients) at these
poles. Finally, using the expressions for these poles and negative Laurent
coefficients given in (4.17) we reconstruct the initial unknownsxi andai, j .

Let us stress that although the method described above solves in a closed
form any system of the form (4.14), serious stability problem arise when the
nodes approach one another and collide. Some initial steps in the study of
“collision singularities” in solutions of such systems can be found in [69].



ALGEBRAIC RECONSTRUCTION FROM INTEGRAL MEASUREMENTS 27

4.1.2. Multi-dimensional f -convolution dual polynomials.The notion of
f -convolution dual systems, as well as the result and the proof of Theo-
rem 4 can be easily generalized to a multi-dimensional case. In fact, we
just have to interpret all the notations above as the multi-dimensional ones,
according to Section3.3. However, we provide here another computation
of f -convolution dual polynomials which fits better further generalizations.
In the computations below we assume all the integrals to converge but do
not specify explicitly assumptions onf , etc., in order to stress the formal-
algebraic nature of the results.

So we are looking for polynomialsψn satisfying, in multi-index notations
of Section3.3

∫
f (t−x)ψn(t)dt = xn, n≥ (0, . . . ,0),

identically inx. Let us write

ψn(t) = ∑
q≤n

An,qt
q, n≥ (0, . . . ,0). (4.18)

We have to determine the unknown coefficientsAn,q.
Forx, t ∈ Rd we have,

(x+ t)n= ∑
k≤n

(
n
k

)

xktn−k, n≥ (0, . . . ,0).

Therefore, for eachf we obtain
∫

f (t−x)tndt =
∫

f (u)(x+u)ndu= ∑
k≤n

(
n
k

)

xk
∫

f (u)un−k

= ∑
k≤n

(
n
k

)

xkmn−k( f ) = ∑
k≤n

Bn,kx
k, n≥ (0, . . . ,0),

where we denote
(n

k

)
mn−k( f ) by Bn,k = Bn,k( f ).

Thus we get, using (4.18)
∫

f (t−x)ψn(t)dt =
∫

f (t−x)∑
q≤n

An,qt
qdt = ∑

q≤n
An,q

∫
f (t−x)tqdt

= ∑
q≤n

An,q ∑
k≤q

Bq,kx
k = ∑

k≤n

xk ∑
k≤q≤n

Bq,k An,q.

Equating the resulting polynomial inx to xn we get for eachn≥ (0, . . . ,0)
the following system of linear equations:

∑
k≤q≤n

Bq,k An,q= 0, k< n, Bn,n An,n= 1. (4.19)
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This system is triangular. Assuming thatm(0,...,0)( f ) 6= 0 we can subse-
quently solve it with respect to the unknownsAn,q. Indeed, ifm(0,...,0)( f ) 6=
0 thenBq,q 6= 0 for each multi-indexq. Therefore from the last equation of
(4.19) we findAn,n.

Let us fix k̂ = n− em whereem is the vector index with 1 in itsm-th
coordinate and zeroes otherwise. For suchk̂ we get from (4.19) a two-term
equationBk̂,k̂An,k̂+Bn,k̂An,n = 0 which gives usAn,k̂. Continuing in this
way we subsequently find all the unknown coefficientsAn,k, k≤ n. Thus
we have proved the following result:

Proposition 4.1. For each f(x), x ∈ Rd with the moments mk( f ) defined
for k≤ s and with m(0,...,0)( f ) 6= 0 the expression (4.18) with the coefficients
An,k determined via system (4.19) define for n≤ s a dual polynomial system
ψn to the monomials xn.

Notice that the existence of the moments up to orders is a very similar re-
quirement to the differentiability of̂f at zero, which we assume in Theorem
4.

The approach of the present section can be used for a wider class of
measurement kernelsϕn, beyond the usual monomials. For the calculations
above to be directly applicable these kernels have to satisfy the following
functional equation:

ϕn(x+ t) = ∑
k≤n

Ck,nϕk(x)ϕn−k(t) (4.20)

for some scalar coefficientsCk,n, k≤ n. Below we describe general solu-
tions of this functional equation.

4.2. A general setting of the convolution method.In this section we de-
scribe a more general setting of the convolution method, generalizing spe-
cific examples presented in Section4.1.

As above, our goal is to reconstruct “shift-generated” signals of the form

F(x) =
N

∑
i=1

ai f (x−xi), x,xi ∈ R
d (4.21)

from a set of measurements

μn(F) =
∫

F(x)ϕn(x)dx, n≥ (0, . . . ,0). (4.22)

The function f and the measurement kernelsϕn are known in advance (It
is reasonable to assume that the kernelsϕn are linearly independent or even
close to orthogonal. However in this case we do not make this assumption.).
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Next we fix a certain sequence of functionshn, n≥ (0, . . . ,0) in such
a way that the system of equations of the form∑N

i=1aihn(xi) = sn, n ≥
(0, . . . ,0) would allow for a simple solution.

Now we would like to find a sequence of kernelsψn, n≥ (0, . . . ,0) sat-
isfying a system of identities

∫
f (x− t)ψn(x)dx= hn(t), n≥ (0, . . . ,0). (4.23)

In addition we require that the measurements ˆμn(F) =
∫

F(x)ψn(x)dx be
expressible through the original measurementsμn(F). Under these assump-
tions we have:

Proposition 4.2. The parameters ai ,xi of the signal (4.21) satisfy a system
of equations

N

∑
i=1

aihn(xi) = μ̂n, n≥ (0, . . . ,0).

Proof: By identities (4.23) we have for eachn≥ (0, . . . ,0)

μ̂n(F) =
∫

F(x)ψn(x)dx=
N

∑
i=1

ai

∫
f (x−xi)ψn(x)dx=

N

∑
i=1

aihn(xi).

This completes the proof.�

By our assumptions, the right hand side of the system obtained in Propo-
sition4.2can be expressed through the original measurementsμn while the
system itself allows for an explicit solution.

In order to findψn let us rewrite equations (4.23) in the form

f− ∗ψn= hn

(here, again as before,f−(x) = f (−x) andF [ f−](ω) = F [ f ](−ω)). For-
mally we can apply to both sides Fourier transform and write

F [ f−]F [ψn] = F [hn],

and hence

ψn= F −1
[

F [hn]

F [ f−]

]

(4.24)

Of course, to make this formal inversion of the convolution operator a true
one we have to investigate the properties of the ratio of the Fourier trans-
forms as above, and, in particular, to compare the zeroes ofF [hn] and of
F [ f ]. Taking in account Wiener’s tauberian theorem (Theorem1 above) we
can expect that the properties of zeroes of the Fourier transformF [ f ] play
the most important role in the inversion of the convolution operator. Indeed,
the convolutionf ∗ψn is a continuous linear combination of shifts off with
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the weights given byψn. We do not further develop the most general setting
as above in this work, considering it as an important direction for a future
research.

4.2.1. f -convolution duals to the kernelsϕn. Given f andϕ= {ϕn(t)}, n≥
(0, . . . ,0) as above, let us takehn = ϕn (as it was for polynomial duals in
Section4.1). We shall make more explicit also the requirements of repre-
sentability of the measurements ˆμn throughμn: we shall try to findψn in a
form of certain “triangular” linear combinations

ψn(t) = ∑
k≤n

Ck,nϕk(t) (4.25)

Now the main requirement onψn is that they are, in a sense, some “f -
convolution dual” functions (similar to a bi-orthogonal set of functions)
with respect to the systemϕn(t). More accurately, we require that

∫
f (t−x)ψn(t)dt = ϕn(x). (4.26)

We shall call a sequenceψ = {ψn(t)} satisfying (4.25), (4.26) f - convo-
lution dual toϕ.

Proposition4.2now takes the form

Theorem 5. Let a sequenceψ = ψn(t) be f -convolution dual toϕ. Define
Mn by Mn= ∑k≤nCk,nmk. Then the parameters ai and xi in (4.2) and (4.21)
satisfy the following system of equations (“generalized Prony system”):

N

∑
i=1

aiϕn(xi) =Mn, n≥ (0, . . . ,0). (4.27)

4.3. Solving functional equation (4.20). The method applied in Section
4.1 for polynomial duals can be extended to produce more general mea-
surement kernelsψn satisfying conditions of Theorem5. For the calcula-
tions in Section4.1 to be directly applicable these kernels have to satisfy
the following functional equation (4.20):

ϕn(x+ t) = ∑
k≤n

Ck,nϕk(x)ϕn−k(t)

for some scalar coefficientsCk,n, k≤ n. In this section we describe general
solutions of this functional equation, restricting the presentation to the case
of one variable.

We shall look only for smooth function (it is sufficient to ask for a dif-
ferentiability at one point only). Under this assumption we could solve this
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triangular infinite set of functional equations by differentiating it with re-
spect tot at t = 0 (for more details see [1, 13]):

ϕ′n(x) =
n

∑
k=0

Ck,nϕk(x)ϕ′n−k(0). (4.28)

Theorem 6. The solution of (4.28) can be given by a sequence of sum of
exponentials multiplied by polynomials.

Proof. The set (4.28) is an infinite triangular set of ordinary differential
equations which we can solve step by step forn= 0,1, . . . ,. Once we are
given the values{ϕ′n(0)}∞

n=0 we can see that eachϕn is a sum of exponen-
tials with exponents{Ck,l ϕ′l−k(0)}k≤l≤n . If one of the exponents is repeated
in the sequence then it will be multiplied by a polynomial of a finite degree.
By this we proved that only sum of polynomials multiplied by exponentials
can satisfy this kind of a functional equation, and we also have its general
form.
Symbolically, if we denote

ϕ(x)=







ϕ0
ϕ1
ϕ2
...





 , A=







C0,0ϕ′0(0) , 0 , . . . , . . . , . . .
C0,1ϕ′1(0) , C1,1ϕ′0(0) , 0 , . . . , . . .
C0,2ϕ′2(0) , C1,2ϕ′1(0) , C2,2ϕ′0(0) , 0 , . . .

... ,
... ,

... ,
... ,

...







whereA is an infinite dimension operator. Then the differential equation
can be written as

ϕ′ = Aϕ⇒ ϕ(x) = eAxc

for some initial valuec. If Ci,i andϕ′(0) are non zero thenA is invertible
and

ϕ′(0) = Aϕ(0) = Ac⇒ c= A−1ϕ′(0)
hence the solution to this functional equation is

ϕ(x) = A−1eAxϕ′(0).

If (as in the polynomial case)ϕ′0(0) does equal 0 then the operator exponent
and thus the solution to (4.28) will be given by polynomials as in Theorem
4. �

5. FOURIER DECOUPLING

5.1. Shifts of several signals.In this Section we consider reconstruction
of signals of the form :

F(x) =
k

∑
i=1

qi

∑
q=1

aiq fi(x−xiq), x, xiq ∈ R
n. (5.1)
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As usual, we assume that the signalsf1, . . . , fk are known (in particular, their
Fourier transformŝfi(ω) are known), whileaiq, xiq are the unknown signal
parameters to be found. In contrast with Section3 we explicitly assume
here thatk ≥ 2, so the methods of Section3 are not directly applicable.
Still, we would like to obtain an explicit (in a sense) reconstruction from a
relatively small collection of measurements.

Our strategy is as follows:

1. Instead of taking Fourier coefficients (moments) ofF we allow “non-
uniform samples” of the Fourier (Mellin) transforms ofF . Indeed, the
Fourier coefficientscj(F) can be considered as the samples of the Fourier
transformF (F)(s) =

∫
Rn e−2πis∙xF(x)dx at the integer pointsj ∈ Rn. Re-

spectively, the momentsmj(F) can be considered as the samples of the
Mellin transformM (F)(s) =

∫
Rn xsF(x)dx at the integer pointsj ∈ Rn.

So we shall choose a “sampling set”Z ⊂ Rn in a special way, in order
to simplify the reconstruction problem, and we shall use as the “measure-
ments” the generalized Fourier coefficients (generalized moments)cs(F) =∫
Rn e−2πis∙xF(x)dx, or ms(F) =

∫
Rn xsF(x)dx, for s∈ Z. Typically setsZ

will be finite.

2. We use the freedom in the choice of the sample setZ in order to
“decouple” the system of reconstruction equations (5.2) given below, and
to reduce it tok separate systems, each including only one of the signalsfi .
To achieve this goal we takeZ to be a subset of the common set of zeroes of
the Fourier transformsF ( fl ), l 6= i (respectively, of the Mellin transforms
M ( fl ), l 6= i).

3. The decoupled systems turn out to be of a “generalized Prony” type.
We discuss in detail the problem of unique solvability of such systems. We
discuss shortly a method for their solution via the least square fitting. At
present we are not aware of any method for a solution of generalized Prony
systems “in closed form”, as it is described in Section3 for the standard
ones. Theoretically, interpolation operator provides a reduction of any gen-
eralized Prony system to the standard one. However, this reduction requires
an explicit construction of the interpolation which, presumably, requires
operations equivalent to a solution of the original system.

5.2. Reconstruction system and its decoupling.To simplify a presenta-
tion we consider only the Fourier measurements. Moment case is somewhat
more difficult, since moments behavior under shifts is more complicated
than that of the Fourier data, and it leads to triangular transformation matri-
ces. We return to moments and Mellin transform in Section6.4below.

ForF of the form (5.1) and for anys∈ Rn we have
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cs(F) =
∫

Rn
e−2πis∙xF(x)dx=

k

∑
j=1

qj

∑
q=1

ajqe−2πis∙xjqcs( f j).

So taking samples at the pointss of the sample setZ = {s1, . . . ,sm}, and

denotingyk
jq = e−2πixk

jq we get our reconstruction system in the form

k

∑
j=1

qj

∑
q=1

ajqcsl ( f j)y
sl
jq = csl (F), l = 1, . . . ,m. (5.2)

In system (5.2) the right hand sidescsl (F) are the known measurements,
while the Fourier coefficientscsl ( f j) are known by assumptions. However,
we cannot divide bycsl ( f j) and reduce (5.2) to the Prony-like system since
in each its equation all the functionsf1, . . . , fk are present. In order to “de-
couple” system (5.2) we use the freedom in the choice of the sample setZ.
For eachi = 1, . . . ,k we takeZ to be a subset of the common set of zeroes
Zl of the Fourier transformsF ( fl ), l 6= i. As an immediate consequence we
obtain:

Proposition 5.1. If Z= {s1, . . . ,sm}⊂ (∩l 6=iZl )\Zi. Then system (5.2) takes
form

qi

∑
q=1

aiqysl
iq =Csl (F), l = 1, . . . ,m, where Csl (F) =

csl (F)
csl ( fi)

. (5.3)

We call (5.3) a generalized Prony system. ForZ consisting of integer
pointss we get back to a certain part of the usual one.

Proposition5.1 implies that “generically” we can expect that reconstruc-
tion system (5.2) can be completely decoupled for the numberk of the func-
tions fi satisfyingk≤ n+1. Indeed, assuming that the zero setsZl of the
Fourier transformsF ( fi), i ≤ k, aren−1-dimensional hypersurfaces meet-
ing one another transversally, we find that ifk= n+1 then the common set
of zeroesZl , l 6= i, consists of isolated points. Ifk< n+1 then this com-
mon set of zeroes consists typically ofn+1− k-dimensional components.
Generically, these points (components) do not belong toZi , so they can be
used as the sampling setZ to get (5.3). However, fork> n+1 the common
set of zeroesZl , l 6= i is usually empty, and we cannot use the approach of
Proposition5.1 (The genericity and transversality notions here should be
understood in the scope of Thom’s transversality theorem , for references
see [34]).

The most important problem which arises in applications of Proposition
5.1 is whether the resulting system (5.3) is uniquely solvable, and how to
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solve it in a robust way. Notice that this system depends only onn,k,qj
and on the sampling setZ. The Fourier coefficientscsl ( fi) enter (as the
denominators) only into the right hand side of (5.3), so the only information
we need oncsl ( fi) is how well they are separated from zero.

As for the left hand part of (5.3), assuming that the dimensionn, the
numberk of the shifted signalsfi , and the numbersqi , i = 1, . . . ,k of the
allowed shifts are fixed, it depend only on the sampling setZ. We study
this dependence in detail in Section6. In Section8 we outline a possible
approach to investigation of the specific sampling sets which may appear
in the Fourier decoupling procedure. Other than these 2 sections a deeper
harmonic analysis approach on the zeros of the fourier transform should be
addressed in future research.

Let us describe separately one-dimensional situation where the decou-
pling procedure becomes especially transparent. In subsection5.4 below
we give some one-dimensional and multidimensional examples of decou-
pling and solving reconstruction system (5.2).

5.3. One-dimensional case.Let the functionsf1 and f2 be given. The
signal we want to reconstruct is of the form

F(x) =
N

∑
l=1

a1
l f1(x+x1

l )+a2
l f2(x+x2

l ). (5.4)

The parameters to be found areaj
l andxj

l where j = 1,2. Denote byZ1
(respectively,Z2) the zero set of the Fourier transform off1 (resp. f2) and
let S1 = {ω1

l } ⊂ Z2 \Z1,S2 = {ω2
l } ⊂ Z2 \Z1. So the pointsω1

l are in the
zero set of the Fourier transform̂f2 and not in the zero set of̂f1, and the
pointsω2

l are in the zero set of̂f1 and not in the zero set of̂f2. We shall
assume that the setsS1,S2 contain enough points for the resulting systems to
be uniquely solvable (see below). Under this assumption and since thef j ’s
are a-priori known, we obtain the following new set of equations (where
j = 1,2 andl = 1,2, . . . :

F̂(ω j
l ) =

N

∑
l=1

a1
l eix1

l ω j
l f̂1(ω

j
l )+a2

l eix2
l ω j

l f̂2(ω
j
l ) =

N

∑
l=1

aj
l e

ix j
l ω j

l f̂ j(ω
j
l ).

Actually we’ve de-coupled the original reconstruction equations to two

separated sets, one for each functionf j , j = 1,2. Let us defineγ j,l =
F̂(ω j

l )

f̂ j (ω
j
l )

andτ j
l = eix j

l . For eachj = 1,2 we get a generalized Prony system as

γ j
l =

N

∑
l=1

aj
l (τ

j
j)

ω j
l . (5.5)
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Solvability of these systems depends on the geometry of the points{ω j
l }.

Using the results of Theorem6.1 in Section6.3 below we finally get the
following explicit result:

Theorem 5.1. Assume that in the notations as above each set Sj , j = 1,2
contains at least2N points. Then the signal F can be uniquely recon-
structed from its Fourier samples at the points of S= S1∪S2 via solving
the decoupled systems (5.5).

An important question is: for what kind of geometries of the sample set
S the solution of the systems (5.5) can be given in a closed form? It is so
for uniform grids where we get the original Prony system. Its solution in
closed form has been presented in Section3.3above.

Another important question is the geometry of the zero set of a Fourier
transform of functions in specific classes. Some initial results in this direc-
tion are given in Section8 below.

5.4. An example in dimension 1.Here we give a simple example of the
decoupling procedure (in dimension 1). In this example we have a case
where the resulting generalized Prony systems are actually the standard
ones. This is an outcome of the special geometry of the zeros of the Fourier
transforms of the functionsf1 and f2 we use. Letf1(x) = χ[−1,1](x) and
f2(x) = δ(x−1)+δ(x+1).

cs( f1) =
1
√

2π

∫ ∞

−∞
f1(x)e

−isxdx=
1
√

2π

∫ 1

−1
e−isxdx

=
1

−is
√

2π
(e−is−eis) =

√
2
π

sins
s

and

cs( f2) =
1
√

2π

∫ ∞

−∞
f2(x)e

−isxdx=
1
√

2π
(e−is+eis) =

√
2
π

coss.

The zeros of the Fourier transform off1 are located onπn, n∈ Z/{0} and
of f2 on (12+n)π, n ∈ Z. Since these sets are just shifted integersZ, the
generalized Prony systems in (5.3) are actually the standard ones. Forf2
(5.3) takes the form

cπn(F)√
2
π(−1)n

=
N

∑
q=1

a2q(y2q)
πn.



36 NIV SARIG SUPERVISOR: PROF. YOSEF YOMDIN

If we denoteMn =
cπn(F)√

2
π (−1)n

, Aq = a2q(y2q)
π andxq = (y2q)

π we get the

usual Prony system as

Mn=
N

∑
q=0

Aqxn
q ,n∈ Z.

For f1 we get

c( 1
2+n)π(F)

√
2
π
(−1)n+1

( 1
2+n)π

=
N

∑
q=1

a1q(y1q)
( 1

2+n)π ,n∈ Z/{0}

in this case we denoteμn=
c
( 12+n)π(F)
√

2
π
(−1)n+1

( 12+n)π

, αl = a1q(y1q)
π
2 andξl = (y1q)

π and

we get again the usual Prony system as

μn=
N

∑
q=1

αqξn
q, n∈ Z/{0}.

Solving these two systems using the same method as in Section3 will give
us the translations and amplitudes of the functionsf1, f2.

5.5. A two-dimensional example. In dimension 2 we may take a collec-
tion of 3 squaresQ1= [−3,3]2,Q2= [−5,5]2,Q3= a rotation of the square
[−
√

2,
√

2]2 by 450. The models in our signal will be the characteristic
functions of the three squares, i.e:

χi(x) =

{
1 x∈Qi
0 x 6∈Qi

(5.6)

Proposition 5.2. The zero sets Z1,Z2 and Z3 of the Fourier transforms of
the three functionsχ1,χ2 andχ3 intersect each other in such a way that the
decoupling procedure based on the sets S1= (Z2∩Z3)\Z1,S2= (Z3∩Z1)\
Z2 and S3 = (Z1∩Z2) \Z3 provides three standard Prony systems for the
shifts of each of the functions.

Proof: Simple calculation gives

χ̂1(ω,ρ) = 4sin3ω
ω ∙ sin3ρ

ρ
χ̂2(ω,ρ) = 4sin5ω

ω ∙ sin5ρ
ρ

χ̂3(ω,ρ) = 8
sin ω+ρ

2
ω+ρ

2
∙

sin ω−ρ
2

ω−ρ
2
.

(5.7)

SoZ1 is the union of horizontal or vertical lines crossing the Fourier plane’s
axes at(0, nπ

3 ) or (nπ
3 ,0) respectively, for all non zero integern. Similarly

for Z2 only that the lines cross the axes at(0, nπ
5 ) or (nπ

5 ,0).
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Z3 is the union of lines with slopes 1 or−1 crossing theω axis at 2πn for
some non zero integern.
We recall thatS1= (Z2∩Z3)\Z1,S2= (Z3∩Z1)\Z2 andS3= (Z1∩Z2)\Z3,
hence for all two integersn andm (1+5n

5 ,
1+5n

5 ) ∈ S1,(
1+3m

3 ,
1+3m

3 ) ∈ S2 and
since1+3m

3 ± 1+5n
5 is not an integer,(1+3m

3 ,
1+5n

5 ) ∈ S3. These 3 points form
a triangle that is shown in Figure1 which repeats itself as a pattern as shown
in Figure2. (In these figures a part ofZ1 is represented by the horizontal
dashed lines, a part ofZ2 is given by the vertical dashed pointed lines, and
a part ofZ3 with the solid lines).

FIGURE 1. The triangle formed by the three points(1/3,1/3),(1/5,1/5) and(1/3,1/5).

Now, we can decouple the generalized Prony system to solve the ampli-
tudes and translations ofχ3 using points fromS3 which has the same geom-
etry as of the set of the integers (so the decoupled system can be transformed
to the usual Prony system). Using similar considerations we can show that
the situation is the same also forS1 andS2.

5.6. A multi-dimensional example. For a general, multi-dimensional ex-
ample we can take different cubes, dilated and rotated in different dilations
and angles. The zero sets of the Fourier transform of the characteristic
functions of the cubes will give us again a grid like pattern as in the two
dimensional case, with a fundamental simplex that repeats its self along all
axes. We also notice that we can convolve the chosen cubes against func-
tions with non vanishing Fourier transform and get different examples with
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FIGURE 2. The repeating triangles are marked with black points inside them.

the same behavior of the zero sets of our models. Notice that also the con-
volution will have compact support as the characteristic functions of the
cubes.

6. RECONSTRUCTION FROM NON-UNIFORM SAMPLING

Fourier decoupling method presented in the previous Section5 is based
on sampling our signals at common zeroes of the Fourier transforms of
some of the shifted signals. As it was mentioned above, while using this
method we usually can transform a full reconstruction system into a number
of systems for the shifts of each signal separately, the solvability of the
resulting systems depends on the sampling sets we are forced to use.

However, non-uniform sampling sets naturally appear in many other prob-
lems, and solvability of the resulting reconstruction systems presents by
itself an important and interesting problem.

In the present section we consider the problem of reconstruction from
non-uniform samples of signals presented by linear combinations ofδ-
functions. This is exactly what we need in Fourier decoupling, and this
is also a natural starting point for a study of non-uniform sampling in a
general case.
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6.1. Interpolating and least square fitting for exponential polynomi-
als. In this section we consider multi-dimensional exponential polynomi-
als, while in Section6.3below we restrict ourselves to the one-dimensional
case only.

Consider a generalized Prony system as it appears in (5.3) above:

N

∑
q=1

aqysl
q = μl , l = 1, . . . ,m. (6.1)

HereS= {s1, . . . ,sm} ⊂ Rn is the sampling set. Writingyq = eλq we can
represent this system in the form

N

∑
q=1

aqeλqsl = μl , l = 1, . . . ,m. (6.2)

As usual, expressions (6.1) and (6.2) can be interpreted as the samples at the
appropriate points of the Fourier (Mellin) transform of a linear combination
of δ-functions. Both these cases lead to the expressions (6.2) of a specific
form: the exponentsλq are purely imaginary in the Fourier case and real
in the Mellin case. We discuss this in Section6.4 below. However, in the
continuation of this Section we allow arbitrary exponentsλq ∈ C. So our
exponential polynomials are complex functions of a real multidimensional
argument.

In this section we characterize thoseSfor which system (6.1) (resp. (6.2))
can be solved uniquely with respect toaq andyq (aq and λq), and study
the robustness of the solution. In order to provide such a characterization
it is convenient to associate to system (6.1) a functionΦ(s) = ∑N

q=1aqys
q

of a variables∈ Rn, in which our unknownsaq, yq, q= 1, . . . ,m appear
as parameters. System (6.2) allows us to rewriteΦ(s) as an exponential
polynomialΦ(s) = ∑N

q=1aqeλqs.

Now the problem of solving generalized Prony system (6.2) can be rein-
terpreted as an interpolation problem for the exponential polynomialsΦ(s)=
∑N

q=1aqeλqs. However, there is an important difference here with the poly-
nomial interpolation: our problem is non-linear in a half of the parame-
ters. Indeed, the exponentsλq (or, equivalently, the “nodes”yq) enterΦ in
a strongly non-linear way. This requires a careful and somewhat lengthy
statement of the definitions and results below.

6.1.1. Interpolating sets and Turan sets.

Definition 6.1. A set S= {s1, . . . ,sm} ⊂ Rn is called an interpolating set
for exponential polynomials of degree N if anyΦ(s) = ∑N

q=1aqeλq∙s with
aq 6= 0, q= 1, . . . ,N is uniquely defined by its values on S.
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The assumptionaq 6= 0, q = 1, . . . ,N is essential since foraq = 0 the
parameterλq can be arbitrary.

A basic example of an interpolating set is provided by Section3 above
which describes the explicit solution of the multidimensional Prony system
and states its uniqueness.

If we write (λq) j = log(xqj ) this result can be now reformulated as

Theorem 6.1.A set SN⊂Rn which is the union of the integer points(0,1,2, . . . ,2N)
on each of the coordinate axes is an interpolating set for exponential poly-
nomials of degree N satisfying the assumption that all the coordinates xi j of
the points xi , i = 1, . . .N, j = 1, . . .d, are pairwise distinct, and, moreover,
that ai1 6= ai2 for i1 6= i2.

The notion of interpolating set is central for our study. Indeed, the appli-
cability of the decoupling procedure described above depends on the set of
zeroes of the Fourier transforms to be interpolating for exponential polyno-
mials of the degree equal to the number of the allowed shifts.

It would be important to completely characterize interpolating sets of
a given degree. In algebraic case, i.e. for the problem of interpolating
algebraic polynomials of degreed, a general description of such sets can be
produced easily (although the condition is not always easy to check - see
[68].):

Proposition 6.1. Z ⊂ Rn is an interpolation set for algebraic polynomials
of degree d if and only if it is not contained in the set of zeroes of any non-
zero polynomial P of degree d.

In dimension one we conclude that a set is an interpolation set for alge-
braic polynomials of degreed if and only if it contains more thand points.

In the case of exponential polynomials, because of non-linearity of the
problem, we can give only “an approximation” to the result of Proposition
6.1:

Proposition 6.2. If S⊂ Rn is an interpolation set for exponential polyno-
mials of degree N then S cannot be contained in the set of zeroes of any
non-trivial exponential polynomialΦ of degree N. If S is not contained in
the set of zeroes of any non-trivial exponential polynomialΦ of degree2N
then S is an interpolation set for exponential polynomials of degree N.

Proof: If there isΦ of degreeN which vanishes onSbut is not identically
zero, thenS is not interpolating by definition. Assume now thatS is not
contained in the set of zeroes of any non-trivial exponential polynomialΦ
of degree 2N. Assume that two exponential polynomialsΦ1 and Φ2 of
degreeN take the same values onS. HenceS is contained in the zero set of
Φ2−Φ1 which has degree at most 2N. We conclude thatΦ2≡Φ1. �
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Corollary 6.1. Any S⊂ R containing more thanκN = 2N(N+1)/2 points is
interpolation for exponential polynomials of degree N with real exponents.

Proof: By the bound of Khovanskii (see [38, 26] and Section6.3below) a
univariate exponential polynomial of degreeN with real exponents cannot
have more thanκN = 2N(N+1)/2 real zeroes.�

There are strong indications that in fact in many cases we need exactly
2N points. We plan to analyze this problem using generalized Vandermonde
determinants. Notice, however, that examples like sin(λx) which have a
growing number of zeroes in each fixed interval, may require introducing
bounds on the imaginary parts of the exponents.

It is not easy to check directly the condition of Proposition6.2 in several
variables. We would like to have simpler geometric conditions sufficient for
S to be interpolating, and on this base we would like to significantly extend
the class of interpolating sets, far beyond the standard example given by
Theorem6.1above. In order to do this we shall use a very recent extension
of the classical Turan inequality for exponential polynomials to discrete
sets obtained in [26] following the corresponding extension of the classical
Remez inequality for algebraic polynomials in [68].

The following definition extends the terminology used in [9, 68, 69] in
connection to the Remez inequality to the case of exponential ones (where
the Remez inequality is replaced by the Turan one):

Definition 6.2. A set S⊂ Rn is called a Turan set (of degree N) if for each
poly-interval In ⊂ Rn there is a constant K= KI ,S such that for any expo-
nential polynomialΦ(s) =∑N

q=1aqeλqs of degree N the following inequality
holds:

maxIn|Φ(s)| ≤ KI ,S eμn(In)max|Reλq| maxS|Φ(s)|. (6.3)

The minimum of the constants KI ,S in (6.3) is called the Turan constant (of
degree N) of the couple(I ,S), and it is denoted by TCN(I ,S).

The form of the inequality in (6.3) is chosen according to the “correctly
scaled” form of the Turan-Nazarov inequality for exponential polynomials
(and of its discrete version) as they are given in Section6.3below.

As we shall see in Section6.3, Turan sets allow for a “geometric” analy-
sis, and so they may be easier to deal with than interpolating sets. Accord-
ingly, we would like to replace the last with Turan sets. So our next goal
is to show that Turan sets are interpolating. For thevaluesof exponential
polynomials at each point we get this immediately:
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Lemma 6.1. Let S⊂ Rn be a Turan set of degree2N. Then for each s∈
Rn and for each exponential polynomialΦ of degree N the valueΦ(s) is
uniquely defined by the values ofΦ on S.

Proof: Consider two exponential polynomialsΦ1 andΦ2 of degreeN tak-
ing the same values onS. The differenceΦ1−Φ2 is zero onS, and sinceS
is a Turan set of degree 2N we conclude thatΦ1−Φ2 is identically zero on
Rn, and, in particular, ats.

Corollary 6.2. Let S⊂ Rn be a Turan set of degree2N. Then S is interpo-
lating for exponential polynomials of degree N.

Proof: By Lemma6.1 for each exponential polynomialΦ of degreeN the
values ofΦ(s) on S uniquely determine the values ofΦ on Rn, and, in
particular, on the setSN ⊂ Rn defined in Theorem6.1. It remains to use the
result of this theorem.�

In Section6.3below we give, following [26], a simple geometric criterion
for a given set to be a Turan set of degreeN. We further show in Section
6.3 that this criterion provides nontrivial sufficient conditions for zero sets
of Fourier transforms to be Turan sets.

We complete the present section with definition and some initial study of
the interpolation operators from the values on interpolating setsS. Denote
by EN the space of all exponential polynomialsΦ of degreeN.

Definition 6.3. Let S= {s1, . . . ,sm} ⊂ Rn be an interpolating set for ex-
ponential polynomials of degree N. The interpolation domain DS⊂ Rm

consists of the restriction vectorsΦS= {Φ(s1),Φ(s2), . . . ,Φ(sm)} for all
Φ∈EN. The interpolation operator IS : DS→EN associates to each V∈DS
the exponential polynomialΦ= IS(V) of degree N attaining on S values V.
For another set S′ = {s1, . . . ,sm′} ⊂ Rn the values interpolation operator
IvS : DS→ DS′ associates to each V∈ DS the restriction vector to S′ of the
exponential polynomialΦ= IS(V).

It is important to stress that the operatorsISandIvSare non-linear. Indeed,
a linear interpolation would produce for a sum of the restriction vectors the
sum of the exponential polynomials, which is an exponential polynomial of
degree 2N, and notN. Instead we find, solving an appropriate generalized
Prony system, a new exponential polynomial of degreeN which attains the
required values onS.

We consider the study of the interpolation operatorIS for various setsS
as one of the central questions for the future research.

6.2. Least square fitting for exponential polynomials. As it was men-
tioned above, at present we are not aware of any method for solving gener-
alized Prony systems “in closed form”. So a non-linear least square fitting
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looks to be a natural method to apply. In the case of noisy data this method
has an additional advantage: for a larger than minimally required sampling
sets there is usually a better noise resistance of the solutions. This approach
has been investigated in [45] and in many other publications.

Let us mention that the notion of a Turan set, introduced above, is very
relevant in the study of the non-linear parametric least square fitting for ex-
ponential polynomials. Indeed, in this process we use the mappingT which
associates to the parameters of the exponential polynomialΦ its values on
the interpolating setS. What is important in the estimates of the robust-
ness of the fitting and its rate of convergence is the norm of the inverse of
the JacobianJT of T. However, the inverseT−1 is exactly our interpola-
tion operatorIS. We expect that the norm of its Jacobian can be bounded
through the Turan constant ofS: the larger is this constant, the smaller is
the norm of the inversion. This fact shows how important for the practical
numerical solution of the generalized Prony systems is the understanding of
the geometry of Turan sets and of their Turan constants. We consider this
set of problems as an important direction for future research.

6.3. Turan-Nazarov inequality and its applications. Our main tool in
study of the interpolation problem for exponential polynomials (or, equiva-
lently, of the solvability of the generalized Prony systems) is provided by the
classical Tuŕan inequality in [63] and its recent generalization by Nazarov in
[51]. Below we state these classical results and then provide their extension
to discrete and finite sets recently obtained in [26].

6.3.1. Turan-Nazarov inequality in one variable.By an exponential poly-
nomial with one unknown we understand a finite sump(t) = ∑m

k=0ckeλkt ,
whereck,λk ∈ C. The number of non-vanishing terms in this sum is called
theorder of an exponential polynomialp(t). The numbersck are the coef-
ficients ofp(t), and the numbersλk are its exponents.

The classical Tuŕan inequality bounds the maximum of the absolute value
of an exponential polynomialp(t) on an intervalI through the maximum of
its absolute value on any subsetE of positive measure, Turán [63] assumed
E to be a subinterval ofI , and Nazarov [51] generalized it to any subsetE
of positive measure. More precisely, we have:

Theorem 6.2. ([51]) Let p(t) = ∑m
k=0ckeλkt with ck,λk ∈ C be an expo-

nential polynomial of order m+ 1. Let I ⊂ R be an interval, and E be a
measurable subset of I of positive measure μ(E). Then

sup
t∈I
|p(t)| ≤ eμ(I)∙max|Reλk| ∙

(
Cμ(I)
μ(E)

)m

∙sup
t∈E
|p(t)| , (6.4)

where C> 0 is an absolute constant.
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In several variables the corresponding inequality has been obtained in
[25].

An essential part of these inequalities is that the “sampling” setS is as-
sumed to have positive Lebesgue measure. This assumption is certainly
too restrictive for our applications where the sampling sets are usually fi-
nite. Fortunately, a recent result of [26] provides an extension of the Turán-
Nazarov inequality to arbitrary (in particular, finite) sampling sets.

6.3.2. The invariantωm(S) and Discrete Turan-Nazarov Inequality.To sim-
plify the presentation we shall assume that in the exponential polynomial
p(t) the coefficientsck and the exponentsλk are real.
Now, to defineωm(S) let us recall that the covering numberM(ε,S) is the
minimal number of closedε-intervals coveringS(see [24, 41]).

Definition 6.4. For S⊂ R ωm(S) = supε ε[M(ε,S)−m].

Now we are ready to state the (special case of the) main result of [26]:

Theorem 6.3. ([26]) The Lebesgue measure μ(S) in the Turan-Nazarov in-
equality can be replaced withω= ωm(S). More specifically, for each S we
have the following: Let p(t) = ∑m

k=0ckeλkt with ck,λk ∈ R be a real expo-
nential polynomial of order m. Let I⊂ R be an interval, and S be a subset
of I. Then

sup
t∈I
|p(t)| ≤ eμ(I)∙max|Reλk| ∙

(
Cμ(I)
ωm(S)

)m

∙sup
t∈S
|p(t)| , (6.5)

where C> 0 is an absolute constant.

Corollary 6.3. Any subset S⊂ I with ωm(S) > 0 is a Turan set. Its Turan

constant does not exceed
(

Cμ(I)
ωm(S)

)m
.

6.4. Moments and Mellin transform. In the previous sections we’ve con-
centrated on the specific type of exponential polynomials that appear as the
Fourier transform of a linear combination ofδ-functions inRn. Consider
now the case of Mellin transformM ( f )(s) =

∫
Rn xs f (x)dx. Assuming that

f is a linear combination ofδ-functions,

f (x) =
N

∑
q=1

aqδ(x−xq), xq ∈ I n⊂ Rn

we get

M ( f )(s) =
N

∑
q=1

aqxs
q.
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Writing, as above,xq= eλq, we finally obtains

M ( f )(s) =
N

∑
q=1

aqeλqsl = μl , l = 1, . . . ,m. (6.6)

Assuming that the generalized moment measurementsμl , or samples of the
Mellin transform, are taken at the sample pointssl , l = 1, . . . ,m, we obtain
the generalizes Prony system

N

∑
q=1

aqeλqsl = μl , l = 1, . . . ,m. (6.7)

The only difference of system (6.2) with the corresponding system (6.7)
is that the exponentsλq here are real, while in (6.2) they are purely imagi-
nary. However, this distinction requires some modification of the definitions
above. The reason is that for real exponents an additional term appears in
the Turan-Nazarov inequality, which is 1 for purely imaginaryλq. The
definition of the Turan sets was given above for general exponential poly-
nomials, so it takes into account this additional term. However, for the case
of Fourier transform we simply omitted it, while for the Mellin transform it
has to be preserved. With this only difference, the rest of the results above
remain true.

7. NUMERICAL SIMULATIONS

Here we present results of numerical simulations implementing the two
main methods suggested in this work. This section shows that these meth-
ods, suggested above, (all relying on the one dimensional Prony system
solution) are feasible and can be implemented at least to some extent.
We will show two results here. The first result (presented in section7.1) is
of the solution method of the multi-dimesional Prony system with variable
separation, as suggested in section3.3. We conclude that the method is sen-
sitive to noise addition but still gives reasonable results. Following this, we
will present (in section7.2) the Fourier decoupling method as suggested in
Section5. Here we conclude that this method also gives reasonable results.
We used the software Matlab (R2009b) and the code that is attached as
appendix A and B in page number65.

7.1. The variable separation method - A two dimensional signal recon-
struction. The model function we use in this simulation is

f (x,y) =

{
(12−x2−y2)exp(−x2−y2) ,x2+y2< 1

2
0 else where

(7.1)
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TABLE 1. N = 4, no noise, not overlapping supports of the
translated modelf .

amp. x y
max. error

in amplitude
max. error

in translation





−1
0.5

2
4













2
−3

4
−1













−2
0
−4

3





 9.0067e-5 5.4179e-5

which is supported on the disk of radius 1/
√

2 around the origin. This
function is continuous everywhere in the two dimensional plane. In each
simulation we choseN amplitudesai (pairwise different and not too small)
and 2N components of theN translations:x1, . . . ,xN (pairwise different)
andy1, . . . ,yN (also pairwise different) and generated a signal according to
the following formula:

F(x,y) =
N

∑
i=1

ai f (x−xi ,y−yi)+Noise(x,y). (7.2)

The noise (if we chose to add it) was a Gaussian noise, distributed nor-
mally with mean 0 and standard deviation 10− j for some j. GivenN, the
number of translations, we calculated, numerically, enough moments ofF
and found from them the generalized moments which are the inputs for the
2 dimensional Prony system. Then for each dimension we solved a one di-
mensional Prony system and combined the results. We use in this computa-
tion the assumption that the amplitudes and all the translations components
are pairwise different.

7.1.1. The Geometry of the translations locations.Here we present two
different simulations. Table1 and figures3(a)and3(b) present the recon-
struction of a signal where the supports of the translated modelf do not
intersect each other. Table2 and figures4(a) and4(b) present the recon-
struction of a signal where the supports of the translated modelf do inter-
sect each other.

7.1.2. The effect of the number of translations.Next we will present the
effect of a different number of translations on our reconstruction method.
We present the results from simulations in which we did not add noise to
the generated signal. The number of translated models in the signal grows
from 1 to 9 and the minimal distance between each two translations was not
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(a)

(b)

FIGURE 3. Simulations with out added noise for 4 not overlapping translated mod-
els: (a) is the reconstructed signal. (b) is the difference between the measured signal and
the reconstructed one..
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(a)

(b)

FIGURE 4. Simulations without added noise for 4 overlapping translated models:
(a) is the measured signal. (b) is the discrepancy.
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TABLE 2. N = 4, no noise, overlapping supports of the
translated modelf .

amp. x y
max. error

in amplitude
max. error

in translation





−1
0.5

2
4













0.2
−0.3

0.4
−0.1













−0.2
0

−0.4
0.3





 4.4029e-4 1.2940e-4

smaller than 0.5. We present in table3 and in figure5, the averaged maxi-
mal error of the reconstructed translations , the maximal error in the recon-
structed amplitude and theL2 norm of the difference between the measured
and the reconstructed signals, as it is changed with respect to the number of
translations over 100 simulations,

TABLE 3. The effect of the number oftranslations.
Number of
translations

max. error
in translations

max. error
in amplitude.

L2 norm of
the difference

1 8.523e-07 2.415e-06 1.403e-06
2 2.383e-06 5.904e-06 3.783e-06
3 8.141e-05 0.001 0.386e-03
4 0.072 0.279 0.114
5 0.227 0.442 0.278
6 0.929 1.206 0.588
7 1.462 1.415 0.927
8 1.720 1.838 2.496
9 2.045 2.351 1.361

7.1.3. The effect of noise addition to the signal.In this section we present
simulations in which we added a gaussian noise to our signal. We changed
the amplitude of the noise from 10−1 to 10−6. We also changed the number
of the translations from 1 to 7. We present the averages over 30 simula-
tions of the error in the location in figure6, the error in the amplitudes in
figure 7 and theL2 norm of the difference between the measured and the
reconstructed signals in figure8.
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FIGURE 5. Averaged results over 100 simulations with no added noise where the
number of different translations is changed from 1 to 9.

FIGURE 6. The average over 30 simulations, with added gaussian noise, of the max-
imal error in the translations.
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FIGURE 7. The average over 30 simulations, with added gaussian noise, of the max-
imal error in the amplitudes.

FIGURE 8. The average over 30 simulations, with added gaussian noise, of theL2

norm of the difference between the measured signal and the reconstructed one.
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7.2. Simulation of the Fourier decoupling method - two different mod-
els in dimension 1.Here we present numerical simulations implementing
the Fourier decoupling method suggested in section5.
We generate signals of the form

F(t) =
N

∑
i=1

ai f (t−xi)+
M

∑
j=1

bjg(t−yj)

on a uniform grid whereN andM are given integers, andf andg are two
given models (functions). From the knowledge onf andg we chose points
on which we calculated, numerically, the Fourier transform ofF . The points
were chosen such that we decouple the system into two different general-
ized Prony systems as suggested in Section5. Using these values of Fourier
transform ofF as inputs for the generalized Prony system we transform the
systems to a usual Prony system which we finally solve to get analytic rela-
tions between the translationsxi ,yj and the amplitudesai andbj which we
extracted from these analytic expressions. The modelsf andg are chosen
such that the zero sets of their Fourier transform contain two disjoint arith-
metic sequences. Using the geometry of the arithmetic sequences we could
transform the generalized Prony system to a usual Prony system while the
transformation of the translations and amplitudes to the unknowns of the
Prony system are analytic and invertible.
The modelsf andg we chose are (see figure9)

f (t) =






0 t <−a
(t+a)/(a−b) −a≤ t <−b

1 −b≤ t < b
−(t−a)/(a−b) b≤ t < a

0 b≤ t

wherea= 8 andb= 2 and

g(t) =






(t+a)/(a−b) −a≤ t <−b
−(t+c)/(b−c) −b≤ t <−c

2(t+d)/d −d≤ t < 0
−2(t−d)/d 0≤ t < d
(t−c)/(b−c) c≤ t < b
−(t−a)/(b−a) b≤ t < a

0 else where.

wherea= 10,b= 7,c= 4 andd= 3. The zeros of the Fourier transform
of f that we chose, as the non uniform samples where the Fourier transform
of f vanishes but ofg does not, are located at the pointssk= π/5+2πk, k=
0,1,2, . . . and the non uniform samples ofg atsl = π/7+2πl , l = 0,1,2. . ..
Here the original signalF is generated as a sum ofN = 12 shifts of the
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FIGURE 9. The two modelsf andg.

model f andM = 12 shifts of the modelg and a random choice of shifts
and amplitudes.
In figure10we present the original superposed signalF in a bold green line
and the reconstructed signal in a thin red line (appears on the bold green
line exactly) in the upper plot, the two modelsf andg in the lower right
plot and the discrepancy between the reconstructed signal and the original
one in the lower left plot.

FIGURE 10. The original signal and the reconstructed signal over it (in thin line).
The discrepancy between them and the two modelsf andg.
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TABLE 4. Statistics of 1000 simulations with two models -
Reconstruction accuracy for the signals, translations and am-
plitudes.

average
error

standard
deviation

maximal
error

L2 norm of the discrepancy 4.8395e-04 4.106e-04 2.6802e-3
L∞ norm of the discrepancy 3.4649e-04 2.6069e-04 1.5386e-3
max error in translations for the firstmodel 1.0482e-05 9.9338e-06 7.4545e-05
max error in amplitudes for the firstmodel 7.8464e-04 7.4750e-04 8.1301e-03
max error in translations for the secondmodel 2.1513e-06 1.6933e-06 1.8705e-05
max error in amplitudes for the secondmodel 2.0252e-04 1.3696e-04 1.1545e-03

Next, we ran the previous simulation 1000 times withN=M=12 and differ-
ent, random amplitudes. We chose the translations randomly on the interval
[−1

2,
1
2] while keeping the nodes not too close to each other.

we present in table4 the averages, the standard deviations and the maximal
values of the

(1) L2 andL∞ norms of the discrepancy between each original signal
and the reconstructed one.

(2) maximal error in the calculated translations and amplitudes.

Now we will present the statistics of different values from different steps
of the solution method. While solving the Prony system we must extract
roots of a given polynomial and invert two linear matrices: the Hankel type
matrix of the moments (as in (3.2) in section3) and the Vandermonde ma-
trix of the different translations (as in (3.7) in section3). To generate the
Hankel matrix we calculated the moments and built from them the matrix.
We calculated the moments twice: First integrating numerically from the
input signal and second from the known amplitudes and translations. To
generate the Vandermonde matrix we calculated the translations once from
the Prony system solution, but we could also generate the Vandermonde
matrix from the given translations. To analyse the accuracy of each step of
the reconstruction method we present in table5 the averages, the standard
deviations and the maximal values of the

(1) l2 norm of the difference between the two results of the calculated
moments.

(2) l∞ norm of the difference between the two results of the calculated
moments.
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TABLE 5. Statistics of 1000 simulations with two models -
difference between actual and numerical Pronymoments.

average
difference

standard
deviation

maximal
difference

l2 norm for moments of the firstmodel 6.2593e-03 3.6744e-03 1.7967e-02
l∞ norm for moments of the firstmodel 3.4475e-03 2.14112e-03 1.1732e-02
l2 norm for moments of the secondmodel 3.5434e-03 2.1280e-03 1.20145e-02
l∞ norm for moments of the secondmodel 1.9377e-03 1.2480e-03 9.24089e-03

The stability of the solution depends on the condition numbers of the Hankel

and Vandermonde matrices
(

χ(A) = ‖A‖∞
‖A−1‖∞

)
. We will present the averages,

the standard deviations and the maximal values of the condition numbers of
the matrices in the next two tables. In table6 we present the condition
numbers of the numerical data and on table7 the condition numbers as
calculated from the exact translations and amplitudes.

TABLE 6. Statistics of 1000 simulations with two models -
Condition numbers of the matrices calculated numerically.

average
difference

standard
deviation

maximal
difference

χ(V) for first model 1.4016e+00 3.4253e-02 1.5191e+00
χ(H) for first model 7.6399e+00 2.7958e+00 3.3711e+01
χ(V) for secondmodel 1.4020e+00 3.4418e-02 1.5744e+00
χ(H) for secondmodel 7.6864e+00 2.6872e+00 2.1114e+01

TABLE 7. Statistics of 1000 simulations with two models -
Condition numbers of the matrices calculated from the exact
translations andamplitudes.

average
condition
number

standard
deviation

maximal
condition
number

χ(V) for first model 1.4015e+00 3.4247e-02 1.5189e+00
χ(H) for first model 7.6399e+00 2.7958e+00 3.3708e+01
χ(V) for secondmodel 1.4020e+00 3.4411e-02 1.5743e+00
χ(H) for secondmodel 7.6863e+00 2.6872e+00 2.1111e+01
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7.3. A short discussion on the simulations’ results.

7.3.1. The Geometry of the translations locations.In section7.1we recon-
structed two different signals. The difference was the intersection of the
supports of the signals. In the first simulation the intersection was empty.
In the second simulation we divided the values of the translations by 10 and
made the supports intersect. The errors in the second simulation got bigger
by 10 (approximately) Also, the relative error of the amplitudes (the error
divided by the value it self) and of the translations (the error divided by the
minimal differences between the different translations) was reasonable as
well . In later simulations we made sure that the translations will not be too
close to each other. We also made sure that the minimal distance will not be
changed between the simulations by a large amount. In section7.2 almost
all the supports intersected each other, still we got reasonable results.

7.3.2. The effect of the number of translations.In Table3 we see that with-
out noise our reconstruction method gave reasonable results as long as the
number of translations is not greater then 5.

7.3.3. The effect of the signal’s dimension.One difference between the first
simulation and the second one was the number of dimensions. The addition
of one more dimension in the first simulation constrained us to generate
signals with smaller resolution (less sampling points). In the second simu-
lation the higher resolution enables us to calculate the integrals much more
accurately. This is a possible explanation, why is it that in the second simu-
lation, reconstruction of 12 translated models was possible while in the first
one 4 or 5 translations was the upper limit for a reasonable reconstruction
in a reasonable running time.

7.3.4. The effect of noise addition to the signal.The addition of noise to
the generated signal changed the behavior of the reconstruction method.
We can see from figures6, 7 and8 that for one or two translations still we
get reasonable results for noise with amplitude less than 10−4. For more
translations or noise of larger amplitudes the effect becomes more signifi-
cance. It is worth to mention that there were simulations with more than 2
translations or with stronger noise for which the reconstruction method gave
yet reasonable results. Addition of noise to the simulation of the Fourier
decoupling gave similar results to these we present here. The numerical
robustness, with respect to noise addition, of the method should be studied
further.
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7.3.5. The decoupling method.A second difference between the 2 simu-
lations was measuring polynomial moments in the first multidimensional
simulation and measuring Fourier transform integrals on non uniform nodes
in the second one. We see that the decoupling method gives reasonable re-
sults, The effect of measuring Fourier transform on non uniform nodes has
minor effect on the accuracy of the reconstruction method.

7.3.6. Stability at each step separately.In the second simulations we pre-
sented the results of each step in the calculation process. We can see that
even with large number of different translations and amplitudes, the ex-
traction of the generalized moments (the inputs for the generalized Prony
system) from the integral measurements gives good results. The condition
number of the matrices, we had to invert, remains around 1 (as needed) and
the actual reconstructed results gave good approximation of the original in-
puts.

8. ADDENDUM: FUTURE RESEARCH DIRECTIONS

8.1. What sample sets can appear in Fourier decoupling?This section
outlines a possible approach to the following important problem:

Under what conditions the zero sets of the Fourier transforms of the
shifted signals, as they appear in Fourier decoupling, are interpolating (Tu-
ran) sets?

We expect that this is a “generic” situation: if these zero sets for each of
the signals are hypersurfaces of a sufficiently large area, and if they are in
a “general position” one with respect to others, then a lower bound for the
invariantω can be provided, which under some natural conditions implies
positivity of ω and hence the interpolation property for the intersections of
the zero sets.

We outline a possible proof of this fact in a special case of three functions
in R2 where the zero set of one of them is a collection of parallel straight
lines. We formulate also a general conjecture in dimension 2, and discuss its
possible proof and implications. We consider the completion of this proof
and a further investigation of the above problem as an important direction
of the future research.

Our approach is based on certain integral-geometric tools recently de-
veloped in [14, 15]. These tools provide lower bounds on the number of
generic intersections points of spherical curves with hyperplanes, and on
the intersection angle. These estimates provide an integral-geometric coun-
terpart of the “quantitative Sard-like theorems” as appear in [14]. The fol-
lowing result has been proved in [15]:
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Theorem 8.1.([15], Theorem 3.4) Letσ : [0,T]→Sn−1 be a curve of length
L(σ) and fixα ∈ (0,1). Then there exist(n−2)-equator spheresλ ⊂ Sn−1

such that the intersectionσ∩ λ contains at least(1−α)n−2L(σ)
π points x

satisfying the following condition: the angle betweenλ and v(x) at x is
≥ απ

2.

In fact, it is shown in [15] that the conditions as above are satisfied forl
in a complement of a set of an arbitrarily small measure in the space of the
hyperplanes passing through the origin inRn.

Let us explain how Theorem8.1 (or, more accurately, its affine version
which we do not state here) implies a lower bound on the invariantω of the
intersection of certain affine curves. LetS1,S⊂ I2 ⊂ R2 be curves of the
lengthsL1,L. We assume that the curveS1 is twice differentiable, and that
its injectivity radius is bounded from below (i.e. it does not return to itself
too close). Now we takeS2 to be a union of parallel straight lines in a dis-
tanceδ≈ 1

L1
one from another. Now we first apply toS2 a spherical rotation

U2,. Applying Theorem8.1 we find thatS1∩U2(S2) contains aboutCL2
1

points, with the lower bound on the intersection angle at each one. Now,
applying differentiability assumption and injectivity radius, we conclude
that these points areε-separated from one another,ε ≈ 1

L1
. Therefore thee

covering number ofS1∩U2(S2) is of orderCL2
1. Taking into account that

the polynomialM2(ε) in the definition ofω is of the first order in1
ε ≈ L1

we conclude thatω(S1∩U2(S2)) > 0 for L1 large. Finally, we notice that
applying a spherical rotationU1 to bothS1 andU2(S2) we can “shift away”
all their intersection points from the third curveS.

As applied to our decoupling problem, we expect the following statement
to hold.

Let three two-dimensional signals f1, f2, f3 be given with the zero sets of
their Fourier transformsf̂1, f̂2, f̂3 being the curves S1,S2 and S as above.
Assume that the length L1 of the curve S1 is large enough, with respect
to the number N of the shifts allowed. Let U1,U2 be rigid transforma-
tions of the plane and denote bȳf1, f̄2 the inverse Fourier transforms of
U1( f̂1),U2( f̂2). Then for a set of positive measure of the rigid transforma-
tions U1,U2 the Fourier decoupling procedure applied tōf1, f̄2, f3 produces
a uniquely solvable system for the shifts of the signal f3.

We believe that the results of [15] stated above allow for a serious gener-
alization. Let us state this expected generalization, preserving the “spheri-
cal” setting of [15]. We consider the groupSO(3) of linear isometries ofR3

with its Haar measurehμnormalized byhμ(SO(3)) = 1.
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Conjecture Let S1,S2,S3 be three C2-smooth curves in the unit sphere S2⊂
R3, of the spherical lengths L1,L2,L3, respectively. Then for each positive
α there is a set Wα ⊂ SO(3)×SO(3) such that for each(U1,U2) ∈ SO(3)×
SO(3)\Wα the following conditions hold:

1. There are at least C1(α)L1L2 points sj among the intersection points
of the curves U1(S1) and U2(S2), such that each two of these points are at

the distance at least C2(α)
[(L1+1)(L2+1)]1/2

from one another.

2. Each of the points sj is at the distance at least C3(α)
[(L1+1)(L2+1)(L3+1)]1/2

from the curve S3.

Here C1(α),C2(α),C3(α) are positive for positiveα but tend to zero asα
tends to zero.

We believe that the integral-geometric arguments used in the proof of
Theorem 3.4 in [15] can be extended to the proof of the above conjecture.
Would this conjecture be true, it would imply the lower bound for the in-
variantω of the setU1(S1)∩U2(S2):

For eachα ∈ (0,1] and(U1,U2) ∈ SO(3)×SO(3)\Wα we have

ω(U1(S1)∩U2(S2))≥ ω(α,L1,L2) = ε[C1(α)L1L2−M2(ε)], (8.1)

whereε= C2(α)
[(L1+1)(L2+1)]1/2

. For L1L2 sufficiently largeω(α,L1,L2)> 0. To

prove this statement we notice that by the conjecture, forε chosen as above
the ε-covering number of the setU1(S1)∩U2(S2) is at leastC1(α)L1L2.
Then the bound forω follows from its definition. Positivity ofω for large
L1L2 follows from the fact thatM2(ε) is proportional to the square root of
L1L2, according to the conjecture.

As above, this would imply a “quantitative genericity” for solvability of
the decoupled systems.

8.2. Comparison with Compressed Sensing.We believe that the prob-
lem of reconstruction of shifts of given functions studied in the present
work, may serve as a natural test case for a comparison of Algebraic Sam-
pling and Compressed Sensing approaches to signal reconstruction. We
have mentioned in the introduction an important advantage of Compressed
Sensing: the universality of this approach. The method can be applied to
any signal, without any a priori information on its structure. If the signal
occurs to be sparse in the basis we work with, the results will reflect this
fact through an increased reconstruction accuracy.

In contrast, Algebraic Sampling requires an accurate a priori information
on the structure of the signal to be reconstructed. On the other hand, if such
an information is available, Algebraic Sampling has a potential to strongly
outperform Compressed Sensing. Indeed, the first requires the number of
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measurements equal to the number of the degrees of freedom of the signal.
On the other hand, performance of the second depends on the sparseness of
the signal. For signals depending on their parameters in a non-linear way,
their sparseness in any linear basis typically reflects their simplicity (i.e. the
number of their non-linear degrees of freedom) only very partially.

So we can take a functionf with a “non-sparse” representation in the
usual wavelets bases, and consider signals of the formF(x) = ∑N

i=1ai f (x−
xi), as considered above. Assuming we know the Fourier coefficientsck( f )=
f̂ (k) for k= 0,1, . . . ,2N, and they are well separated from zero. Then we
can reconstructF via the method described above, from 2N of its Fourier
coefficientsck(F). On the other hand,F will not have a sparse represen-
tation in any of the usual wavelet bases. So we cannot expect a good per-
formance of Compressed Sensing approach in this case. The a priori infor-
mation we have onF will not help since Compressed Sensing algorithms
(at least, in their basic form) do not allow us to incorporate this a priori
information.

On the other hand, sincef is known, we can consider a wavelet-like
frame in an appropriate functional space consisting off and of its shifts
in various scales. The assumption of non-vanishing of the Fourier coeffi-
cientsck( f ) = f̂ (k), via Wiener’s tauberian theorem (see Theorem1 above)
provides an estimate of the non-degeneracy of our frame. We can expect a
very sparse representation ofF in this system. So it looks possible to give
rigorous (and fare) estimates of the performance of each of the methods in
our case. We consider obtaining such estimates an important problem for
future research.
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Appendices
APPENDIX A. THE CODE OF THE FIRST SIMULATION

1 f u n c t i o n [ xLocBody xAmpBody yLocBody yAmpBody. . .
2 condHx condVx condHy condVy. . .
3 xGenera l izedMoments yGenera l izedMoments] . . .
4 = ReconLocAndAmpOneBody( numberOfGr idPo in ts, co rne r , n o i s e d S i g n a l

, numBody, body )
5 [ xGenera l izedMoments, yGenera l izedMoments] = . . .
6 C a l c u l a t e A l l G e n e r a l i z e d M o m e n t s( numberOfGr idPo in ts, co rne r , body ,

n o i s e d S i g n a l, numBody) ;
7 [ xLocBody , xAmpBody, condHx, condVx] = So lveProny (

xGenera l izedMoments, numBody) ;
8 [ yLocBody , yAmpBody, condHy, condVy ] = So lveProny (

yGenera l izedMoments, numBody) ;
9 [ xAmpBody, yAmpBody, xLocBody , yLocBody] = S o r t O u t p u t s( xAmpBody, yAmpBody,

xLocBody , yLocBody) ;
10 end
11
12 f u n c t i o n [ xGenera l izedMoments, yGenera l izedMoments] = . . .
13 C a l c u l a t e A l l G e n e r a l i z e d M o m e n t s( numberOfGr idPo in ts, co rne r , body ,

n o i s e d S i g n a l, numBody)
14 [xBodyMoments, yBodyMoments] = Calcu la teMoments (

numberOfGr idPo in ts, co rne r , body , numBody ) ;
15 [ xSignalMoments, ySignalMoments] = Calcu la teMoments (

numberOfGr idPo in ts, co rne r , n o i s e d S i g n a l, numBody ) ;
16 xGenera l izedMoments = Ca l cu la teGene ra l i zedMomen ts( xSignalMoments,

xBodyMoments ) ;
17 yGenera l izedMoments = Ca l cu la teGene ra l i zedMomen ts( ySignalMoments,

yBodyMoments ) ;
18
19 end
20
21 f u n c t i o n [ xModelMoments, yModelMoments] = Calcu la teMoments (

numberOfGr idPo in ts, co rne r , model, numBody )
22 xModelMoments= z e r o s( 1 ,numBody∗3+2) ;
23 yModelMoments= z e r o s( 1 ,numBody∗3+2) ;
24 f o r i =0:numBody∗3+2
25 xModelMoments( i +1)=C a l c u l a t e M o m e n t I n t e g r a l( numberOfGr idPo in ts,

co rne r , model, i , 0 ) ;
26 yModelMoments( i +1)=C a l c u l a t e M o m e n t I n t e g r a l( numberOfGr idPo in ts,

co rne r , model, 0 , i ) ;
27 end
28 end
29
30 f u n c t i o n moment = C a l c u l a t e M o m e n t I n t e g r a l( numberOfGr idPo in ts, co rne r ,

s i g n a l , indX , indY )
31 x=−c o r n e r:2∗ c o r n e r/ ( numberOfGr idPo in ts−1) : c o r n e r;
32 y=x . ˆ indY ;
33 x=x . ˆ indX ;
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34 g r i d=x ’ ∗ y ;
35 moment=sum( sum( g r i d .∗ s i g n a l .∗ ( 2∗ c o r n e r/ ( numberOfGr idPo in ts−1) ) ˆ 2 ) )

;
36
37 end
38
39 f u n c t i o n genera l i zedMoments = Ca l cu la teGene ra l i zedMomen ts. . .
40 (s ignalMoments, bodyMoments)
41 [ row , c o l ]= s i z e( s igna lMoments) ;
42 genera l i zedMoments= z e r o s( [ row , c o l ] ) ;
43 genera l i zedMoments(0+1 ,0+1) =C a l c u l a t e G e n e r a l i z e d C u r r e n t M o m e n t(

s igna lMoments( 1 , 1 ) ,genera l i zedMoments( 1 , 1 ) ,bodyMoments( 1 , 1 ) ) ;
44 f o r summ=1:row+col−2
45 f o r i 1 =0:min (summ, row−1)
46 i 2 =summ−i 1 ;
47 i f ( i 2+1<=c o l )
48 genera l i zedMoments( i 1 +1 , i 2 +1) = . . .
49 C a l c u l a t e G e n e r a l i z e d C u r r e n t M o m e n t. . .
50 ( s igna lMoments( i 1 +1 , i 2 +1) , genera l i zedMoments( 1 : i 1 +1 ,1 :

i 2 +1) ,bodyMoments( 1 : i 1 +1 ,1 : i 2 +1) ) ;
51 end
52 end
53 end
54 end
55
56 f u n c t i o n cu r ren tGenera l i zedMomen t=C a l c u l a t e G e n e r a l i z e d C u r r e n t M o m e n t(

cur ren tS igna lMoment, genera l i zedMoments, bodyMoments)
57 cu r ren tGenera l i zedMomen t=cu r ren tS igna lMomen t;
58 s= s i z e( bodyMoments) ;
59 i 1 =s ( 1 )−1;
60 i 2 =s ( 2 )−1;
61 f o r k1=0: i 1
62 f o r k2=0: i 2
63 i f k1+k2<i 1 + i 2
64 cu r ren tGenera l i zedMomen t=cur ren tGenera l i zedMoment−Choice( [

i1 , i 2 ] , [ k1 , k2 ] ) ∗bodyMoments( i1−k1+1 , i2−k2+1)∗
genera l i zedMoments( k1+1 ,k2+1) ;

65 end
66 end
67 end
68 cu r ren tGenera l i zedMomen t=cu r ren tGenera l i zedMomen t/ bodyMoments( 1 , 1 ) ;
69 end
70
71 f u n c t i o n c=Choice( indxN , indxK )
72 c=1;
73 f o r i =1: l e n g t h( indxN )
74 n=indxN ( i ) ;
75 k=indxK ( i ) ;
76 i f n>=k
77 c=c∗ f a c t o r i a l ( n ) / ( f a c t o r i a l ( k ) ∗ f a c t o r i a l ( n−k ) ) ;
78 e l s e
79 c=0;
80 end
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81 end
82 end
83
84 f u n c t i o n [ xBody , ampBody, condH, condV ] = So lveProny ( momentsPron,

numBody)
85 s= s i z e( momentsPron) ;
86 i f s ( 1 ) ==1
87 %Find ing t h e t r a n s l a t i o n s .
88 [xBody , condH]= FindLocBody( momentsPron, numBody) ;
89 %Find ing t h e a m p l i t u d e s .
90 [ampBody, condV]= FindAmpBody( xBody , momentsPron) ;
91 end
92 end
93
94 f u n c t i o n [ xBody , condH]= FindLocBody( pronyMoments, numBody)
95 [H, condH]= MyHankle( pronyMoments, numBody) ;
96 v= t r a n s p o s e( pronyMoments( numBody+1:end) ) ;
97 q=−H\v ;
98 q=[ q ; 1 ] ;
99 xBody= t r a n s p o s e( 1 . / r o o t s( q ) ) ;

100 end
101
102 f u n c t i o n [H condH]= MyHankle( pronyMoments, numBody)
103 H=hanke l( pronyMoments( 1 : end−numBody) , pronyMoments( end−numBody: end−1) ) ;
104 condH=cond(H) ;
105 end
106
107 f u n c t i o n [ ampBody, condV]= FindAmpBody( xBody , momentsPron)
108 [V , condV]= MyVanderMonde( xBody , l e n g t h( momentsPron) ) ;
109 ampBody=( momentsPron/V) ;
110 end
111
112 f u n c t i o n [ V , condV]= MyVanderMonde( xBody , numMomentsPron)
113 V= z e r o s( l e n g t h( xBody) , numMomentsPron) ;
114 f o r i =0:numMomentsPron−1
115 V ( : , i +1)=xBody . ˆ i ;
116 end
117 condV=cond(V) ;
118 end
119
120 f u n c t i o n [ xAmpBody, yAmpBody, xLocBody , yLocBody ] = . . .
121 S o r t O u t p u t s( xAmpBody, yAmpBody, xLocBody , yLocBody)
122 [xAmpBody, Ix ]= s o r t ( xAmpBody) ;
123 [yAmpBody, Iy ]= s o r t ( yAmpBody) ;
124 xLocBody=xLocBody( Ix ) ;
125 yLocBody=yLocBody( Iy ) ;
126 end
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APPENDIX B. THE CODE OF THE SECOND SIMULATION

1 f u n c t i o n [ xRecBody, ampRecBody xGenRecBody, ampGenRecBody,
genera l i zedMoments condH, condV] = ReconLocAndAmpOneBody( co rne r ,
s i g n a l , body , f i r s t , s tep , numBody)

2 %Genera t i ng t h e g e n e r a l i z e d moments f o r t h e Prony s y s t e m s
3 nonUni formZeroSamplesOfOtherBody = Calcu la teNonUni fo rmZeroSamples

( f i r s t , s tep , numBody) ;
4 genera l i zedMoments = Ca l cu la teGene ra l i zedMomen ts

( co rne r , body , s i g n a l , nonUni formZeroSamplesOfOtherBody) ;
5 %S o l v i n g t h e Prony sys tem o f each model
6 [ xGenRecBody, ampGenRecBody, condH, condV] = So lveProny

( genera l i zedMoments, numBody) ;
7 %Conve r t i ng t h e r e s u l t s f rom t h e Prony s y s t e m s t o t h e r e s u l t s o f t h e
8 %g e n e r a l i z e d Prony s y s t e m s
9 [ ampRecBody, xRecBody] = Conver tGenParToRecPar ( xGenRecBody,

ampGenRecBody, f i r s t , s t e p) ;
10 %S o r t i n g t h e r e s u l t s by magni tude o f t r a n s l a t i o n s
11 [ ampRecBody, xRecBody, xGenRecBody , ampGenRecBody] = S o r t s o r t (

ampRecBody, xRecBody, xGenRecBody, ampGenRecBody) ;
12 end
13
14 f u n c t i o n nonUniformSamples=Calcu la teNonUni fo rmZeroSamples( f i r s t , s t e p ,

numOfOtherBody)
15 nonUniformSamples= f i r s t + s t e p∗ ( 0 : ( 2∗ numOfOtherBody+1) ) ;
16 end
17
18 f u n c t i o n genera l i zedMoments = Ca l cu la teGene ra l i zedMomen ts( co rne r ,

body , s i g n a l , nonUni formZeroSamplesOfOtherBody)
19 %C a l c u l a t i n g t h e Fou r i e r t r a n s f o r m on t h e samples f o r t h e s i g n a l and
20 %t h e model .
21 bodyMoments = Calcu la teMoments ( co rne r , body ,

nonUni formZeroSamplesOfOtherBody) ;
22 s igna lMoments = Calcu la teMoments ( co rne r , s i g n a l ,

nonUni formZeroSamplesOfOtherBody) ;
23 % Genera t i ng t h e g e n e r a l i z e d moments .
24 genera l i zedMoments = ConvertMomentsToGeneral izedMoments. . .
25 (s ignalMoments, bodyMoments) ;
26
27 end
28
29 f u n c t i o n modelMoments = Calcu la teMoments( co rne r , model, nonUni formSamples)
30 numBody=( l e n g t h( nonUni formSamples)−2) / 2 ;
31 modelMoments= z e r o s( 1 ,numBody∗2+2) ;
32 %Genera t i ng t h e Fou r i e r t r a n s f o r m moments f o r t h e s i g n a l on t h e
33 %nonun i fo rm samples .
34 f o r i =0:numBody∗2+1
35 modelMoments( i +1)=C a l c u l a t e M o m e n t I n t e g r a l( co rne r , model,

nonUni formSamples( i +1) ) ;
36 end
37 end
38
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39 f u n c t i o n moment = C a l c u l a t e M o m e n t I n t e g r a l( co rne r , model,
nonUniformSample)

40 %C a l c u l a t i n g t h e Fou r i e r i n t e g r a l on a s p e c i f i c sample .
41 numberOfGr idPo in ts= l e n g t h( model) ;
42 %Genera t i ng t h e a x i s .
43 x=−c o r n e r:2∗ c o r n e r/ ( numberOfGr idPo in ts−1) : c o r n e r;
44 %Genera t i ng t h e Fou r i e r exponen t on t h e a x i s .
45 g r i d = 1 / ( s q r t (2∗ p i ) ) ∗exp(−1 i ∗x∗nonUniformSample) ;
46 %C a l c u l a t i n g t h e Fou r i e r i n t e g r a l .
47 moment=sum( g r i d .∗model∗ (2∗ c o r n e r/ ( numberOfGr idPo in ts−1) ) ) ;
48 end
49
50 f u n c t i o n [ xBody , ampBody, condH, condV ] = So lveProny ( momentsPron,

numBody)
51 %Find ing t h e t r a n s l a t i o n s .
52 [xBody , condH]= FindLocBody( momentsPron, numBody) ;
53 %Find ing t h e a m p l i t u d e s .
54 [ampBody, condV]= FindAmpBody( xBody , momentsPron) ;
55 end
56
57 f u n c t i o n [ xBody , condH]= FindLocBody( pronyMoments, numBody)
58 [H, condH]= MyHankle( pronyMoments, numBody) ;
59 v= t r a n s p o s e( pronyMoments( numBody+1:end) ) ;
60 q=−H\v ;
61 q=[ q ; 1 ] ;
62 xBody= t r a n s p o s e( 1 . / r o o t s( q ) ) ;
63 end
64
65 f u n c t i o n [H condH]= MyHankle( pronyMoments, numBody)
66 H=hanke l( pronyMoments( 1 : end−numBody) , pronyMoments( end−numBody: end−1) ) ;
67 condH=cond(H) ;
68 end
69
70 f u n c t i o n [ ampBody, condV]= FindAmpBody( xBody , momentsPron)
71 [V , condV]= MyVanderMonde( xBody , l e n g t h( momentsPron) ) ;
72 ampBody=( momentsPron/V) ;
73 end
74
75 f u n c t i o n [ V , condV]= MyVanderMonde( xBody , numMomentsPron)
76 V= z e r o s( l e n g t h( xBody) , numMomentsPron) ;
77 f o r i =0:numMomentsPron−1
78 V ( : , i +1)=xBody . ˆ i ;
79 end
80 condV=cond(V) ;
81 end
82
83 f u n c t i o n [ ampBody, xBody ] = Conver tGenParToRecPar( xGenBody, ampGenBody,

f i r s t , s t e p)
84 xBody = (1 i ∗ (MyLog( xGenBody) ) / s t e p) ;
85 ampBody=abs( ampGenBody) ;
86 checkSignAmpBody= r e a l ( ampGenBody.∗ exp(−1 i ∗xBody∗ f i r s t ) ) ;
87 ampBody=(2∗ ( checkSignAmpBody>0)−1) .∗ ampBody;
88 xBody= r e a l ( xBody) ;
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89 end
90
91 f u n c t i o n y=MyLog( x )
92 y= log ( x ) ;
93 wh i le imag( y )>p i ;
94 y=y−2∗1 i ∗ p i ;
95 end
96 wh i le imag( y )<=−p i ;
97 y=y+2∗1 i ∗ p i ;
98 end
99 end

100
101 f u n c t i o n [ ampBody, xBody , xGenBody , ampGenBody ] = S o r t s o r t( ampBody, xBody ,

xGenBody, ampGenBody )
102 i f n a r g i n==4
103 [ ˜ , I ] = s o r t ( r e a l ( xBody) ) ;
104 ampBody = ampBody( I ) ;
105 xBody = xBody( I ) ;
106 xGenBody = xGenBody ( I ) ;
107 ampGenBody= ampGenBody( I ) ;
108 e l s e i f n a r g i n==2
109 [ ˜ , I ] = s o r t ( r e a l ( xBody) ) ;
110 ampBody = ampBody( I ) ;
111 xBody = xBody( I ) ;
112 xGenBody=0;
113 ampGenBody=0;
114 end
115 end
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