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ALGEBRAIC RECONSTRUCTION OF “SHIFT-GENERATED”
SIGNALS FROM INTEGRAL MEASUREMENTS

NIV SARIG
SUPERVISOR: PROF. YOSEF YOMDIN

ABSTRACT. The main goal of the present work is to develop a recon-
struction scheme for the signals being linear combinations of the shifts
of one or more known functions and their derivatives (in one or several
variables). We call this class “shift-generated signals”. Many important
signal appearing in theoretical study and in practical applications are of
this form (or can be accurately approximated by shift-generated signals).

This work belongs to a direction in Signal Processing called “Alge-
braic Sampling”. It deals with signals of an a priori known form, spec-
ified by a finite number of unknown parameters, and their reconstruc-
tion from measurements (like moments, Fourier coefficients, etc.). The
reconstruction is performed as follows: we substitute the symbolic ex-
pression of the signal to the expression of the measurements (like the
Fourier integral), and equate the resulting symbolic expressions in the
parameters to the actual measurements. In this way we get a system of
algebraic (usually non-linear) equations (of the so-called “Prony-like”
form), which we subsequently solve.

In this work we provide some new results on a solution in closed form
and stability of multi-dimension Prony-like systems.

As far as shift-generated signals are concerned, we provide the fol-
lowing new results:

For the case of the shifts of one function and its derivatives we suggest
a new reconstruction method based on producing a “convolution dual”
system to the measurements kernels. We analyze the scope of this ap-
proach and show that it extends the reconstruction in “closed form” to
some new classes of measurements.

In the case of two or more functions we propose a “Fourier decou-
pling” approach based on a special choice of the measurements related to
zeroes of the Fourier transform of the shifted functions. In some (appar-
ently new) cases this approach provides reconstruction in closed form.

In connection to the Fourier decoupling method we analyze a general
problem of solving Prony-like systems built on the base of non-uniform
sampling. This question brings in some recent results on the discrete
version of the classical Turan-Nazarov inequality for exponential poly-
nomials.

Some simulation results illustrating the proposed reconstruction meth-
ods are provided.

Date November 24, 2011.
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1. INTRODUCTION

This work belongs to a direction in Signal Processing called “Algebraic
Sampling” (or “Algebraic Signal Reconstruction”. See, as a p&it6]

8, 39, 23, 44, 45, 46, 55, 60, 67] and references therein). This approach
deals with signals of an a priori known form, specified by a finite humber
of unknown parameters, and their reconstruction from measurements (like
moments, Fourier coefficients, etc.).

In an oversimplified form, the reconstruction is performed as follows:
we substitute the symbolic expression of the signal to the expression of the
measurements (like the Fourier integral), and equate the resulting symbolic
expressions in the parameters to the actual measurements. In this way we
get a system of algebraic (usually non-linear) equations, which we subse-
guently solve.

In the most of situations considered in Algebraic Sampling the result-
ing systems can be linearized. This fact makes this approach feasible and
practically important in many applications.

In the present work we develop a reconstruction scheme for signals being
linear combinations of the shifts of one or more known functions and their
derivatives (in one or several variables). We call this class “shift-generated
signals”. Such signals appear in numerous applications. Many important
functions appearing in theoretical investigations are of this form (or can be
accurately approximated by shift-generated signals).
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We summarize the main contributions of this work in some details in
Sectionl.5below.

1.1. Typical applications of Algebraic Sampling. The problem of data
reconstruction of an a priori known structure appears in many practically
important situations: Signal processing (1-Dimension), picture recogni-
tion/compression/processing/ etc, X-Ray analyzing (2-Dimension), Com-
puter tomography/MRI/(3-Dimension) and more. In all those cases we are
given a set of measurements (mostly linear/integral functionals) and using
a finite number of those measurements we need to approximate/reconstruct
the original data. There is a wide literature presenting successful applica-
tions of this approach to various practical problems. For a small sample see
[4, 22, 27, 28] and references therein.

1.2. Assumptions on signals complexity.The role of the assumption of a
“low complexity” (and not exclusively of a regularity or “small bandwidth”)

of the signals considered has been well recognized in recent years in Signal
and Image processing. The most popular (and universal) measure of com-
plexity today seems to be “sparseness” of signals representation in one or
another wavelets basis. In contrast, in Algebraic Sampling the “simplicity”
of the signal is measured by the number of its possible (explicitly known)
degrees of freedom. In particular, for the “finite rate of innovation” signals
(see B, 44, 45, 46, 55, 67] and Sectiori.4 below) this number is measured

per unit of time.

The simplicity assumption is central for the Algebraic Sampling approach.
It extends the classical regularity (and/or bandwidth) assumptions. Indeed,
it is well known that the usual Fourier reconstruction scheme (partial sums
of Fourier series) provides an accurate and robust reconstruction for regular
signals, but fails on signals with singularities (jumps). A general expec-
tation is that ultimately the Algebraic Sampling approach will reconstruct
“simple signals with singularities” from a given number of their Fourier co-
efficients as good as smooth ones. In particular, the resul0pPp, 45,

7, 6, 23, 67] strongly support the following conjecture:

There is a non-linear algebraic procedure reconstructing any signal in a
class of piecewisefunctions (of one or several variables) from its first N
Fourier coefficients, with the overall accuracy of orc&r. This includes the
discontinuities’ positions, as well as the smooth pieces over the continuity
domains.

Recently in [f] a partial answer to this problem has been obtained: such
a reconstruction is possible with “half of the smoothness”, i.e. with the
accuracy of orde%. One of the goals of the present work is to prepare

N2 . . . .
tools for a further analysis of this problem in one and several variables.
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1.3. Comparison with Compressed SensingCompressed Sensing is a
powerful recently developed approach in Signal Processing which utilizes
(theoretically, almost to the maximal possible extent) the sparseness of the
signals processed. While the extent of applicability of Algebraic Sampling

is somewhat narrower than that of Compressed Sensing (because of a re-
guirement of the a priori known structure of the signals) there is a serious
overlapping between the applicability domains of both methods.

We believe that the problem of reconstruction of shifts of given functions
studied in the present work, may serve as a natural test case for a compar-
ison of Algebraic Sampling and Compressed Sensing approaches to signal
reconstruction. We expect that if the required a priori information is avail-
able, Algebraic Sampling has a potential to perform better than Compressed
Sensing. Indeed, the first requires the number of measurements equal to the
number of the degrees of freedom of the signal. On the other hand, as it was
mentioned above, performance of the second depends on the sparseness of
the signal. For signals depending on their parameters in a non-linear way,
their sparseness in any linear basis typically reflects their simplicity (i.e.
the number of their non-linear degrees of freedom) only very partially (see
[23)).

We consider a problem of a theoretical and experimental comparison be-
tween Compressed Sensing and Algebraic Sampling as an important direc-
tion for a future research. In Secti@?2 below we discuss in somewhat
more detail specific situations where such a comparison can be carried out.

1.4. Vetterli’'s approach - Finite rate of innovation. In a series of papers
[8, 44, 45, 55, 46, 67] Vetterli and coauthors solved a very similar to ours
reconstruction problem for signatét) with the property which they define
asFinite rate of innovation per unit of timé'hat is the requirement that the
number of new degrees of freedom of the signal which are added per unit
of time be finite. In their setting the signalis basically of the same form
as in our equation10), with the dilations equal to 1. But the shifts can
appear, with a finite density, along the infinite time period. So they consider
a set of functiont{gr}rR:0 and the model to be reconstructed is (the notation
is taken from §])
R-1
X)) =5 > ¥nror (t—tn) (1.1)
NezZ r=
Since theg,’s are a priori known, it is clear that the free parameters (the
degrees of freedom) of this signal are the positipnand the amplitudes
Ynr. The measurements are taken as sampling the signal on a sequence of
pre-described points, with a given filter¢. Thus the measurements are of
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the form
Yo =X 0(t) = [ X(OB (T~ V)l
The kernelp is taken s.t. it falls under one of the following 3 cases:

(1) Polynomial reproducing kernelFor all m= 1,...,N there exist
Cmn’S .t for allt

chn’mq)(t —n)=t™

ne
This condition is equivalent to the Strang-Fix condition that is

#(0) # 0 andd™ (2m) = 0 forn£ 0 andm=0,1,...,N

(2) Exponential reproducing kerneFor all complexag andA we de-
noteam = 0+ MA. Then there existmn's s.t for allt

S Cmnd(t—n) = e
neN
(3) Kernels with rational Fourier transformEor the same, as before,
any kernel with Fourier transform of the form

| :

B(o) = =070 iy o,

|_|m:0 10— 0m

In all casesN is chosen with respect to the rate of innovation of the signal.
In each case the parameters of the signal are reconstructed in a way similar
to the method we shall present later in this report.
If the support of the kernel is finite it is possible to reconstruct also signals
generated from infinite number of translations of the given functmns
assuming they are well separated to groups of the same number of transla-
tions.
In [44] a reconstruction of signals of two dimensions is presented. The sig-
nals are piecewise polynomial one-dimensional curvé®in
In [8, 44, 45, 46] a noise is added to the signal and some approximations on
the measurements and the reconstruction scheme are shown. Using over-
sampling the noise can be reduced by a factor of 2.

1.5. Content of the work.

1.5.1. The main problemln Section2.3 we introduce in detail the main
problem considered in this work. The a priori known form of the model is:

F(x) = _Zkai,j,kfi(j)(rk(x—xk)) (1.2)
L1,

where the parameters to be found are the amplitadgg the dilationsry
and the translationg. The measurements considered are mostly moments
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and Fourier coefficients of the unknown sigikalThe problem is to find the
unknown parameters from the measurements in a robust and efficient way.

1.5.2. One and multi-dimensional Prony systermi$e problem above leads
to a non-linear system of equations of the form

N
m="9 ax',n=0,1.... (1.3)
2

This infinite set of equations is called Prony system. In Chaptee dis-

cuss solution of this system in one and several variables. In the last case we
present some new (to our best knowledge) results and provide a simple and
robust solution method in some special cases. We also analyze local sta-
bility of the solutions, extending known results in one dimension to several
variables.

1.5.3. Convolution methodIn Sectiord we define arf - “convolution dual”
system of kernelg, for a givenf and a given syster, of the measure-
ments kernels. In particular, fdr, = x" we define the dual polynomials
{Un}n_o wWith respect tof in such a way that the equation

/f(t—x)lpn(t)dt:x”, n=0,1,... (1.4)

is satisfied. We show that an application of convolution-dual systems re-
duces our reconstruction problem to a certain Prony-like system. We pro-
vide some specific examples and show that in a more general situation con-
struction of dual systems leads to a certain functional equation. We analyze
solutions of this functional equation and in this way show how this approach
leads to some new classes of measurement kernels for which the problem
can be solved in a closed form.

1.5.4. Shifts of several signals: Fourier decouplinip Chapters we con-
sider reconstruction of signals of the form :

k G
F(X) = Z zlaq fi(Xx—Xq), X, Xig € R". (1.5)
i=1qg=

We assume that the signdis .. ., fx are known (in particular, their Fourier
transformsfj(w) are known), whileaiq, xiq are the unknown signal param-
eters to be found. We explicitly assume here that2, so the methods of
Section4 are not directly applicable. Still, we would like to obtain an ex-
plicit (in a sense) reconstruction from a relatively small collection of mea-
surements. To achieve this goal, instead of taking Fourier coefficieiiits of
we allow “non-uniform samples” of the Fourier transfoFof F.
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We use the freedom in the choice of the sampleZsat order to “de-
couple” the system of reconstruction equatiof) given below, and to
reduce it tk separate systems, each including only one of the sighal®
achieve this goal we tak# to be a subset of the common set of zeroes of
the Fourier transformg (f)), | #i. The decoupled systems turn out to be
of a “generalized Prony” type.

1.5.5. Reconstruction from non-uniform samplinign Section6 we discuss

in detail the problem of unigue solvability of systems obtained in Chdpter
as it depends on the geometry of the sampl&s#&¥e introduce the notions

of “interpolating” and “Turan” sets. We show that a discrete version of the
classical Turan-Nazarov inequality for exponential polynomials, recently
obtained in R6] provides a simple geometric characterization of those sam-
ple setsZ for which the generalized Prony system is robustly solvable.

1.5.6. Numerical simulationsln Chapter7 we present numerical simula-
tions implementing the suggested reconstruction methods and discuss their
feasibility with and without the presence of noise.

1.5.7. Addendum: future research directionk Chaptei8 we discuss some
problems where a plausible approach seems to be in sight. One concerns
the “genericity” of the properties of zeroes of the Fourier transforms of
functions in various classes to provide Turan sampling sets. The second
discuss a possible theoretical comparison between Algebraic Sampling and
Compressed Sensing approaches to signal recovery.

2. THE MAIN PROBLEM

2.1. First (toy) example: We consider the function on the real interval
[0,1]
a x>t
Ra(x) =aH(x—t) = { 0 x<t
Assume we are given the first two momemig(R a), i (R.a). This is our
system of equations

1 1
my = / R.a(X)dx= / adx=a—at (2.1)
0 t
1 1
m = / XR a(X)dx = / axdx= 2 22, (2.2)
0 ’ t 2 2
Clearly we can reconstruatandt as
2m mp/2
t:E—landa: 1M (2.3)

mo
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Here using a-priory knowledge on our signal (step function) we can re-
construct it exactly. In classical-linear reconstruction, any finite number of
moments (polynomials, Fourier etc...) will yield approximation problems
such as the Gibbs effect and poor convergence issues, 23,[39, 40] we
can see a generalization for this example to piece-wise constant functions
on a finite interval.

2.2. Second (more elaborate) exampleConsider the modédt in two di-
mensions

Fo.yox.y1 (% Y) = XQ+(x0,50) % ¥) + XD (x0,y2) (6 Y) (2.4)
whereQ is the unit square and is the unit disk,
A+(X,Y) ={(xy): (x=X,y—y) € A} (2.5)
and f
1 ifxeA
XA(X) = { 0 ifxgA " (2.6)

The function @.4) is a sum of characteristic functions of the translated
square and disk ilR%. Substituting this function in the moments equations
we obtain

m3j = /RZ F)(an()?Xlayl(X’y)X'y]dXdy (27)
which for 0<i+ j < 2 gives
Moo= Ti+4
Moo= TX1+4Xo
Mo1= Ty1+4Yyo
Moo= FHmg+d+ad 29
Moz = J+Ty5+3+4y3
My = TX1y1+4Xoyo+ g
With some basic calculations we can see that
T[]’n17oi\/ AT (Te+-4)mp o —my o] T8 — 28— 8t
X1 = T(T+4)
T”T‘O.li\/4”[(Tf+4)nb,2—mo,1]—ﬂg—%}ﬂz—%“ﬂ
yi= T(Tt+-4) (2.9)
Xo = ml,OZTlxl
Yo = ”b,l;"yl

The momenimg ; can be used to determine the signs of the roots. In this
example it is enough to know 5 moments in order to reconstruct the func-
tion exactly.
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The momentry g (as long it is non 0) is of no importance in this example,
hence we use 4 moments to calculate the values of our 4 parameters and
one more moment to decide the square root sign.

For more general situations we may apply a similar, though more compli-
cated analysis.

2.3. "Algebraic Sampling” - The Main Problem. Here we introduce the

main problem we address in this work. As it was explained above, “al-
gebraic sampling” or “algebraic signal reconstruction” approach deals with
the following problem: let a finite-parametric family of functiofis= Fp(x),

x € RY be given, withp = (py, ..., pr) a set of parameters. We call(x) a
model, and usually we assume that it depends on some of its parametersin a
non-linear way (this is almost always the case with the “geometric” param-
eters representing the shape and the position of the model). The problem is:

How to reconstruct in a robust and efficient way the parameters p from
a set of “measurements” (F),...,m; (F)?

In this work m; will be either the momentsn;(F) = [x/Fy(x)dx or the
Fourier coefficients.

A remarkable fact is that many specific types of the models as above
used in algebraic sampling lead to basically the same type of non-linear
equations: the “generalized Prony systems”. This includes the systems ap-
pearing in Vetterli’'s approach described above, in various problems of sig-
nal reconstruction from moments (seés®)] for a very partial overview), in
reconstruction oD-finite and piecewise-smooth functiorts p, 7], and in
many other situations.

The same is true in the problem we study in this work - reconstruction
from integral measurements signals having the form of a linear combination
of shifts of a number of known functions and their derivatives. Let us spec-
ify the modelsF, we work with. We assume that a collection of functions
{f1,..., fm} is given on which we have all the required information. The
model is:

F(x) = zkaa,j,kfi(”(rk(x—xk)) (2.10)
11,

where the parameters to be found are the amplitadgg the dilationsry

and the translations;.

The functionsfj’s can be rather arbitrary. We shall need some non-vanishing
properties of their Fourier transform, and for some of our calculations also
certain restrictions on their growth at infinity.
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The linear measurements we consider are linear functionals that can be
given by an analytic formula, e.qg:

(1) Polynomial moments:
My = /F(x)x“dx
(2) Fourier series’ coefficients:
Fn= /F(x)einxdx
(3) Integration against a sequence of functig¢fg}

Gn = /F(x)q)n(x)dx,

(4) Sampling the signdF with a filter ¢ (Convolution against a trans-
lated kernel at some given poirit3.

Vh = /F(x)q)(x—tn)dx
See B, 44, 45, 55, 67] and Sectiorl.4 for Vetterli's work).

So the main specific problem in algebraic signal reconstruction which we
consider in this work is the following:

Knowing a priory the formZ.10 of the signal F reconstruct it (i.e. find all

the unknown parameters i.(L0: the amplitudes g , the dilations g and

the translations ) from a set of measurements as above. This should be
done in a robust and noise-resistant way, with a number of measurements
used as close to the number of unknowns as possible

We shall mostly concentrate on linear combinations of shifts of one or
several functions. However, adding shifts of derivatives and dilations will
be also discussed below. We provide also some new results on stability of
reconstruction. However, we do not provide in this work a detailed study of
the reconstruction problem from noisy data. This is an important problem
for a future research.

2.4. A small detour - Completeness via Wiener's Tauberian theorem.
Working with shifts of given functions we shall naturally encounter various
problems related to zeroes of their Fourier transform. Although we do not
explicitly use below any “density” property of such shifts, we recall shortly
one classical result relating density of shifts of a given function and non-
vanishing property of its Fourier transform.

Theorem 1. (Wiener's Tauberian theorem) A functionefL; and all its
translations span a dense subset iniland only if f does not vanish.
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The "only if” part of the theorem is easy to explain, since if there exists
somew s.t f(w) = 0 then any functiory s.tg(w) # 0 could not be approx-
imated usingf and its translations. Otherwise, since the Fourier transform
is continuous, we would get for some large enotigand some;’s that

0#Q(w) ~ F [iaa f(X+x)

The if part of the theorem is less trivial and we will not present it here (for
more details se&p)]).

Clearly, the closure of all the translations btontains also all the deriva-
tives of f and vice versa.

Za‘éx.wf Zaaelx'wo 0.

3. ONE AND MULTI - DIMENSIONAL PRONY SYSTEMS

3.1. One-dimensional Prony system.Prony system appears as we try to
solve a very simple version of the shifts reconstruction problem as above.
Assume that we have ir2(10 only one functionf which is the delta func-
tion, all the dilations are equal to one, and no derivatives are allovetd) (

then becomes

N
X) = Zajé(x—xi). (3.2)
=1
We will use as measurements the polynomial moments:
My = / F (x)x"dx.
After substitutingF into the integral definingn, we will get
N N
My :/ ad(x—xj)x'dx="$ ajx].
A 5
Consideringg; andx; as unknowns, we obtain equations
N
z x ,n=0,1.. (3.2)

This infinite set of equations is called Prony system. It can be traced at least
to R. de Prony (179556]) and it is used in a wide variety of theoretical
and applied fields. Sed%, 60] and references therein for a very partial list.
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3.2. Solving the Prony system.Here we sketch the main steps of the so-
lution of this system. For more details see, e.§2][ First we define the
moment generating function

@) = imnz”. (3.3)

Summing up geometric progressions we find

00 N
aj
(2= Y mZ'=Y a x'2"= (3.4)
nZO jzl n= J 5 1-xz
We conclude, in particular, that
N
. g
1(2) = Z 1-xz (3.5)

is a rational function of degreBl vanishing at infinity. The poles and
residues of (2) in (3.5 arex—lj and—a;/x; respectively, from them we can
extract the unknowns.
Now in order to findl (z) explicitly from the first 2N + 1 moments
mo,ml,.i.), mpn We use the Padapproximation approach (se&2]): write
P(z

|(2) asgy g with polynomialsP(z) = Ao+ Agz+ - +An_1Z2V"1andQ(z) =

Bo+ B1z+ - --+BnZY of degreesN — 1 andN, respectively.
Multiplying by Q we havel (z2)Q(z) = P(z). Now equating the coeffi-
cients on both sides we get the following system of linear equations:

moBo = Ag
mMeB1 +mMBo = Aq

MoBn—1+MBn_2+ - +Mn_1Bo = An—1
MeBN +MiBn—1+ - +MN_1B1 +myBg =0
mBN+mpeBn_1+ - +MyB1+mMy1Bo=0

The rest of the equations in this system are obtained by further shifts of
the indices of the moments, and so they form a Hankel-type matrix.

Now, being a rational function of degrég 1(z) is uniquely defined by
its first 2N Taylor coefficients (the difference of two such functions cannot
vanish at zero with the order higher thaN 2 1). We conclude that the
linear system consisting of the firdNzhomogeneous equations as above is
uniquely solvable up to a common factor Bfand Q (of course, this fact
follows also form a general Padpproximation theory - seg&7]).
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Now a solution procedure for the Prony system can be described as fol-
lows:

1. Solve alinear system of the firdZquations as above (with the coef-
ficients - the known momentsy) to find the moments generating function
[(2) in the forml (z) = %.

2. Represent( z) in a standard way as the sum of elementary fractions

I(z) = ZJ _1175; (Equivalently, find poles and residuesl¢f)). Besides
algebraic operations, this requires just finding the roots of the polynomial
Q(2). Then(aj,xj), j =1,...,N form the unique solution of the Prony

system 8.2).

The equations above provide also a linear recurrence for the moments
my. This recurrence (and the equations) can be obtained in a different way:
we know that the moments,, being the Taylor coefficients of a rational

functionl (z), admit a linear recurrence relation. indeed,lf@ = y then

2
if deg(P) < deg(Q) (as in our case) with dé) = N then we get that for
allk>0

1 1 dNtk 1 gN+k
°= (N+Kk)! 0= (N+Kk)! di\”kp(z) - (N +K)! d2N+k(| (2Q(2))
N-+k | |
“wm () ) e e
! £
N+k 1 . .
— Z N—I—k—]) ——_1)(z)QNtk=D)(z).

Evaluating these expressions at 0 and shifting the summation gives us
N
0= Z)MH jON-j
j:

whereQ(z) = z'j\'onjzj. Assuming thaQ(0) # 0 we get the recurrence

relation
;m(ﬂ (-3 (3.6

Given the first A momentsm, we can find the recurrence relation coef-
ficients (i.e. the denominat@)(z)), next the numeratdp(z), and through
them, as above, the poles and residudsarfd hence the unknown parame-
ters of F. Notice that given the translationg's, the amplitudesy,’s can be
calculated by solving the Vandermonde system
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1 1 ... 1 a1 Mo
X1 X2 ... Xp o B my (3 7)
PRI AR (s an Mh-1

The robustness and efficiency of this calculation is an important question
for further research (for some results sBgd, 20, 42]). In the next section
we provide the local stability bound for the solution of one-dimensional
Prony system due to D. Batenkow(, 7]).

3.2.1. Local stability estimates for a one-dimensional Prony systemji5]
Batenkov proves the following theorem (theorem 4.1 page # 18)

Theorem 2. Let {m}2N, be the exact unperturbed moments of the model
(3.1). Assume that all thejs are distinct and also p#Ofor j =1,...,N.
Now letmy be perturbations of the above moments such thax|my, —

mx| < €. Then, for sufficiently smadl, the perturbed Prony system has a
unique solution which satisfies:

IXj —xj| < Caglayj|*
|aj —aj| <Cie

where G is an explicit constant depending only on the geometry,of X xy.
: 1

More precisely @ ~ i ]

From Theoren2 we get that our solution method for Prony system is robust

and the accuracy depends on the geometry of the st)iftis (For more

details and a full proof see alsd]].

3.3. Multi-dimensional Prony system. In this section we generalize Prony
system and its solution method to the case of several variables. We shall see
that certain solution steps (the recurrence relation for the moments, and, in
general, the reconstruction of the moments generating function in the form

I(z) = % in the lines of multi-dimensional Padapproximation) remain
essentially the same as in one-dimensional case. However, the final recon-
struction of the signal from the moments generating function turns out to be
essentially more involved in several variables than in one dimension. We
utilize a special form of the rational functidriz) as appears for the mo-

ments of a linear combination &tfunctions inRY.

First we introduce some multi-dimensional notations:

Forn=(ng,...,nq), k= (kg,...,kq) € N9, x=(xg,...,X3) € CYandac C
we define a partial order < k if for all j € {1,...,d} nj <k;. Next, we
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definen! = [1{_ nj! and then, foik < n, (i) = gt = M1 () is well

defined. Putalspn| = 39 nj, a" = a" andx" = [%_, x}’. Finally we wil

0 0

define the derivative operatdras 3 = (—axl,...,—axd
: ipd _ d 9"
indexn we defineg = [1j_4 o

) and for each multi-

3.3.1. Linear combinations obd-functions, their moments and generating
functions. Consider a signal of the form

N
F(x) = .Zlaié(x—xi), x € RY. (3.8)

Now, for n a multi-index of dimensionl andx € RY we get

mn(F) :/RdF(x)x”dx:_iaixi”.

Considering the moments as known measurements, while the parameters
g, X of F as unknowns, we obtain a multi-dimensional Prony system

N
Z‘ai&n:”h n> (070770) (39)
i=

So in multi-dimensional notations as above this system has exactly the same
form as the one-dimensional syste®d).

We can now define the multi-dimensional moments’ generating function

=S m2 (3.10)

neNd

As in one dimension, we shall show théz) is a rational function of degree

at mostNd. Representing(z) as% we get exactly in the same way as
above an infinite system of linear equations for the coefficienBaridQ,
with a Hankel-type matrix formed by the momenig In multidimensional

notations this system takes the following form: for eachN® we have

V|
AV: Z mJBV*U (311)
[=0|u[=l
u<v
whereA\ is either the!" coefficient of the polynomiaP (if v is a power
in the polynomial) or zero (otherwise). This last equation can be written in
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more detailed form: denote= (vi,...,Vy) and putu = (ug,...,uq) hence

v min{l,vi}  min{l—up—up—...—u, vk}  min{l—us...—ug_1,vg}
AV:Z Z Z PR Z mJBV*U'
I=0 u;=0 Uk+1:0 ug=0

We should notice that sind®,_, are coefficients of a polynomid&), all

of them starting from some finite order are equal to 0, hence from some
point on, the length of the right hand side in equati8ri{) stabilizes and

we can get a homogenous system of linear equations for the coefficients
of Q (the By) with the least number of equations needed. By the same
consideration as above - in the one dimensional case, after we take enough
eguations in this system the solution is unique up to a re-scalingZsg2 |

64] and references therein for Canterbury approximants , multidimensional
Recursive Systems and Pade approximants in several dimensions).

As in one-dimensional case, we can obtain the recurrence relation for the
moments directly: write, as above,

P(2) =Q(2)l(2).
Now, for n a multi-index we differentiaté> n times and use the Leibnitz
rule which applies also for multi-dimensional derivations:

an an n am an—m

3P0 = 5210021 = 3 (1) 55102 Fam)
For n with multi-index norm (n|) greater ther the degree of) (and then
greater then the degree BJ the left hand side of the last equation is zero.

Assume thaQ(z) = ¥ |m<q Gmz™ then if we evaluate every thing at 0 we get

n

0= K

)k!rnk(n—k)!anzn! S M (312

In—k|<d,k<n ( [n—k|<d,k<n

which is a finite recurrence relation (in several dimensions) for the Taylor
coefficients ofl (for eachn). It leads to essentially the same system of
equations as3(11) above.

However, from this point the multi-dimensional situation becomes essen-
tially more complicated. While in dimension ohé) can be, essentially,
any rational function of degreld (naturally represented as the sum of ele-
mentary fractions), in several variablég) turns out to have a very special
form. This fact can be easily understood via counting degrees of freedom.
Indeed, in one variable the signals are of the form

F(x) = _ia;é(x—xi), XieR
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have 2 degrees of freedom, exactly as rational functions of delyresth-
out a polynomial part.

Ind > 1 variables the signals

N
= Zaé(x—xi), Xj € R"

haveN(d + 1) degrees of freedom, while rational functionsc¥ariables
of degreeNd have((ijl)d) degrees of freedom which is much more than
N(d+1).

We shall strongly rely on this special form bfz) in our reconstruction
algorithm. Now we will describe it accurately.

Proposition 3.1. For F(x) = z!\‘zlaié(x— Xi), X € R"the moments’ gener-
ating function () is a rational function the form

N d 1
=5 a .
i; Jljll_xijzj

Assuming that all the coordinates; yof the points x i =1,...N, j =
1,...d, are pairwise distinct, we have the following description of the poles
of 1(z): the poles of the first order of() form a grid of hyperplanes

zj = le, i=1...N, j=1,...d. The poles of the second order lie on

the intersections of the hyperplani@s = é) N(zg= Xi—lq), i=1,...N,1<
p < qg<d, etc. Finally, the poles of order N of4) are the points§ =
(%7%7"'7%)'

Proof: We shall follow the same reasoning as in one-dimensional case, with

small modifications:
Zlaz” / (x—x;)x"dx

I(z): / Zla.éx X; )X nz”dx_
N
- nesz izl - Z\ neNd XI '

neNd neNd
Now we can notice that
d d o

neNd i

d
. 1
X'z = I_L(“i)”' = (%;z)" = .
nesz neszJ— J j=1r= J J[lll XijZj
hence as claimed
N 1
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The form of the denominator of the rational functibfz) shows immedi-
ately the positions of its poles of all the orders. Indeed, as a result of our
assumption all the hyperplangs= %, i=21...N, j=1,...d are pair-

J

wise different, and the poles on them cannot cancel with one another. This
completes the proof of the proposition.

3.3.2. Separation of variables in the multi-dimensional Prony systés.
suming, as above, that all the coordinatesf the pointsq, i=1,...N, j=

1,...d, are pairwise distinct, and, moreover, that# a;, for iy # i, we can
suggest a simpler method for solving Prony syst&)( reducing it tod
one-dimensional systems. A theoretical advantage of this approach is also
that we use a smaller number of the moment equations than in a general
Pacde approximation approach outlined above. Still, this number is larger
than the number of the degrees of freedom of the sifna\ modification

of our method in order to reduce the number of the equations required is an
important problem.

Let us consider “partial moment generating functiohst), t € C, r =
1,...,d, defined by

0= me(FI, (3.13)
=1

wheree is a multi-index defined byey)j = 0 forr # j and 1 otherwise.
We have the following simple fact:

Proposition 3.2. I,(t) is a one-dimensional moments generating function
of the moments of

N
:_Zlaié(x—xir).

It coincides with the restriction of(k) to the r-th coordinate axis i,
Proof: Let us evaluaté(z) along ther-th coordinate axis, that is on the line
Zz=te with e as above antle C. We get

d

)= 3af] -2
]11 x.t 1-xt X t

which is the moments generating function 6f Now, to express;(t)
through the muilti-dimensional moments we notice tha* = [19_, t* (er)'j(j,

since(er); is non zero just when= j. We get thafte,)* = t“ and then

u@:zmm%zwmhimi
keNd k=le =0
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This shows thal (t) = | (te;) and completes the proof of the proposition.

Now we are back to the one dimensional case. Applying the method de-
scribed in Sectior.2 above we find for each=1,...,d the coordinates
X1,,- .., XN, and (repeatedly) the coefficierdts . .., an. It remains to arrange
these coordinates into the points= (Xxj,,...,Xj,). This presents a certain
combinatorial problem, since Prony systeBrd} is invariant under permu-
tations of the index. Under the assumptions above we proceed as follows:
foreachr =1,...,d we have obtained the (unordered) collection of the pairs
(aj,X%j,), j =1,...,N. By assumptions;, # a;, for j1 # j>. Hence we can
arrange in a unique way all the pafes, xj, ), j=1,...,N,r=1,...,dinto
the sequences of paif&y, X1, ), ..., (a1,X14)],- - - [(AN, XNy )5 - - -5 (BN XNg ) |-

This gives us the desired solution of the multi-dimensional Prony system
(3.9.

Notice that the assumptiax), # aj, for j1 # j2 is essential here. Indeed,
for xg # xp andxt = (xq,%2), X2 = (X2,X1), X = (X1,X1), X2 = (X2, X2) We
havem, = (x1)K 4+ (x®)k = (RHK + (R2)k = x‘lk| + x‘zkl for k on each of the
coordinate axes. So the (unique up to permutations of the ipdexdution
of the Prony system cannot be reconstructed from these moments only.

Another remark is that the separation of variables as described above
requires knowledge ofdN momentsm, (2N on each of the coordinate
axes). This is almost twice more thaiid + 1) unknowns. We believe that
this number can be significantly reduced in some cases, and consider this
reduction as an important problem for future research.

3.3.3. Local stability estimates for a multi-dimensional Prony syst&ta-

bility estimates for the solution of one-dimensional Prony system (Section
3.2.]) can be extended to the multi-dimensional case considered above (all
the coordinates;; of the pointsx;, i =1,...N, j=1,...d, are pairwise
distinct, anda;, # &, for i1 # i2.). We shall use theorer? above several
times for the local stability in each dimension separately. We rephrase the
theorem for the multi dimensional case:

Theorem 3. Let {myq }ﬁﬁofj:l be the exact unperturbed moments of the
model(3.8). Assume that all the coordinates of the translatiopsXx;, , . .., Xj,)
are distinct and also p# Ofor j =1,...,N. Now letmyq be perturbations

of the above moments such thmbx | |mg — Mg | < €. Then, for suffi-
ciently smalle, the perturbed Prony system has a unique solution which
satisfies:

< -1
X, — X, | < Ciglaj
|aj —aj| <Ce
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where G is an explicit constant depending only on the geometry, of x, Xy,
(the " coordinate of the translations x .. xy). More precisely €~ m
3.4. Solution of the multi-dimensional Prony system in the general case.
Through the last sections we assumed that the amplitadase pairwise
different and using this assumption we could match the amplitagsgo
their corresponding translatiorg = (Xj,,...,Xj,). In this section we show
how to find this match also H; are not pairwise different.

3.4.1. The combinatorial matching problem for the multi-dimensional Prony
system.By solving the set of equation8.(L1]) we have the coefficients,

of the numerator an®, of the denominator of the rational functid(z).

Next, using the separation of variable method we found for each dimension
k=1,...,d the valuex;, - the k! component of thg!" translation matched

to its amplitudes;.

We can sum up this information in the next schema:

{(a17X11)7 RRE) (aNaXNl)}a

{(alaxlz)v":7(aN’XN2)}’ (3.14)

(@1, %) - (B8, X))

The above representation is an ordered (by dimension) array of unordered
sets of pairs. We would like to re-arrange the data as follows:

{(alaxll)a' ) (aN?XNl)}? (al,Xl - (Xlla .- '7X1d)),
{(a1,%1,),- .-, (AN, XNp) } (a2,%2 = (X2;,---,%X24))s
. — .
{(alyxld)w"a(aNaXNd)} (anxN = (XNla"',XNd))

The schema to the right is an unordered set of ordered pairs such that the
amplitudea; matched to its corresponding translatign As mentioned
before, if all theaj’s are pairwise different this reordering is easy: we just
need to match all the components related to the same amplitude together to
get thejt" translation.

3.4.2. Solution to the matching problem in the multi-dimensional Prony

system.Using proposition3.1 and the representation &fz) = % as a

ratio of two polynomials (we may assume tigt0) = 1) we can write ex-
plicitly
N d

r| (1-x%,7) (3.15)
= ]:1

;:I
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N N d
Za,r“] (1-x,7). (3.16)

DefineR(z) = g |‘||?éll 1|‘|] 1(1—x. zJ) as the'™™ summand in§.16). The
following proposition is obvious by observirig).

Proposition 3.3. R is zero on the hyperplanes z 1/x; for all (1,j) st
| 1.
Using propositior8.3we can state and easily prove the next proposition:

Proposition 3.4. Let r; = r be any number betweehand N then for n,
2<n<d and any choice of <rg <N s.t. k=2,...,n, the restriction of
n
P to the intersection of the hyperplang3 {z= 1/(x. )k} is not the zero
k=1
polynomial ifand only ifr=r1=ro = ... =rp.
The essence in propositidh4 is that if we restrictP(z) to some point
y = (Y1,.--,Ydq) such that the components phre not taken from only one
translationx; then the polynomialP(z) will be identically zero.
Using propositior8.4, we can re-arrange the data as follows:
(step=0) Ifthe list (3.14) of all the pairg(a;, ;) is empty - stop, otherwise go
to step 1.
(step= 1) Out of the pairga;,x;,) choose onéa,, (X )1), and restricP to the
hyperplanez; = 1/(X)1.
(step=2) Out of the pairga;,x;,) in the list, focus on the pairs for which
a; = a;. Find one, out of them, for which the restriction I&f to
the intersection of the hyperplan¢s = 1/(X/)1} N{z = 1/x;,}
will not be identically zero. This one will determine the second
coordinate of: (Xr)2 = X,.

(step=k) Out of the pairs(a;,x;, ) in the list, focus on the pairs for which
a; = a,. Find one, out of them, for which the restrictionfto the

k—
planes_ﬂi{z: zi=1/(%)j}N{z: 2= 1/%, } will not be identically
=

zero. This one will determine tHdD coordinate ofke: (X )k = Xiy.-

: Repeat the above till we reach the last dimension

(end) After thedth step, we matched andx; = ((X)1,...,(Xr)d)). Next
we modify the list 8.14) by erasing thel pairs{(ay, (Xr)j)}(jj:l, and
go back to step number 0.
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Following these steps we solve the combinatorial matching problem.

4, CONVOLUTION METHOD

In this Section we present a “convolution method” for reconstructing a
signal (which is supposed to be a linear combination of shifts of single a
priori known function) from a sequengeof integral measurements defined
through a given system, of the measurements kernels. We definefan
“convolution dual” system of kernel§,, for a givenf and a given system
dn, of the measurements kernels. As an examplepfor x" we define the
dual polynomialg{yn},_o with respect tof in such a way that the equation

/f(t—x)lpn(t)dt:x”, N=0,1,... 4.1)

is satisfied. We show that an application of convolution-dual systems re-
duces our reconstruction problem to a certain Prony-like system. We pro-
vide some specific examples and show that in a more general situation con-
struction of dual systems leads to a certain functional equation. We analyze
solutions of this functional equation and in this way show how this approach
leads to some new classes of measurement kernels for which the problem
can be solved in a closed form.

4.1. Reconstruction with the convolution dual polynomials. We start

with the moments as the measurements. fLbe a smooth function with
finite support s.t. its zero moment does not vanish. We want to reconstruct
the signaF of the a priori known form

N
FX)=Y af(x—x) 4.2)
2
from a certain number of the moments
m :/ F(x)x"dx, n=0,1,..., (4.3)
i.e. to find the unknown parametess x;, i =1,...,N.

We want to define the f-convolution dual polynomial§n},_, to the
sequence of the monomialsxix?, ..., xs,... in such a way that

/f(t—x)qJn(t)dt:x“, N=0,1,.... (4.4)
Theorem 4. If f € CS(R) and (0) # 0 then the formula

n(X) = : Cord, n<s 4.5
Wn(X) k; K (4.5)
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where

defines polynomialg,, which satisfy equatiord(4) for alln <s.

Proof. We shall use the following facts
(1) In distribution sense:

= / 5 ()& dc
1 Xw _ N AIXW
:E/ES((»)(—)—e' doo \/_n/es )P (ix)"e e

~ (=ix)"

V2n
hence ("

~115(M7 (y) —
9'— 1[6 ](X)_ \/ZT
and
V2r(—i)"8" (w) = F X" (w) (4.7)

where ¥ ~1is the inverse fourier transform.
(2) The convolution theorem:

Pl eyl = 7 | [ 0 0wd] (@) = Ve s v @

(3) The following simple calculation:
For f_(x) = f(—x)

T[f—](w):\/%T/mf( —Itwdt_\/]'_n/_oof(u)e—i(—u)co(_du)
\/_n/ f(u)d"“du
hence
FIE)(@) = FI(-w). (4.9)

Having @.7), (4.8) and @.9) we get
VR -i)80(w) = 7hel@) = 7 | [ 1 untt] @)
— V2R ()~ ) F ) (©)

hence
1

Ffl(-w)

F [Wn](w) = (—i)"8" (w). (4.10)
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Notice that from the properties given drwe know that¥ [f](0) # 0 and it

is differentiable around 0 as many times as needed (here we should remark
that the this assumption ohis not a trivial one, therefore its impact on

the applicability of this theorem should be addressed separately in future
research) . Therefore

Wn(X) = FHF [Wn]](x)

= Ja) 71t ()"0 (@)edo

= o | it O (@) dw

e |
= Jo) dir (e ™) Slwdo

_ " 9"
T /21 0w’

oo ()

- —k
- \/I_;TTZE:O (E) a(z:n—k

k .
oo 1) 27,0 (€

w=0

and they,’s are indeed thé-convolution dual polynomials to the sequence
of the monomials. O

Given Theoreml we shall define the generalized moments
n
Mn = ZOCn,km(- (4.11)
k=

From expressior4(5) for Y, we get

Mn= 3 G = [ (1) 5 Crod = [ FOun(td -
= Zla;/ (t—=X)Wn(t)dt = Zla.x

Thus we get a Prony system for the unknovens; of our reconstruction
problem, but with the right-hand sides being the generalized morivgnts

N
3

Expression4.1]) , i.e. the fact that we are able to represent the generalized
moments through the original ones, plays a main role in our approach: in-
deed, what we assume to be known are the original mommapte/hile in
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the right-hand side of}(12 we get the generalized onkk,. We shall stress
this requirement also in our generalization of this technique (see Séc#ion
below).

4.1.1. Adding derivatives of fThe technique of dual polynomials pre-

sented in Sectiod.1 above can be naturally extended to the linear com-
binations of shifts of a function and its derivatives. Let us consider signals

F of the form
N g ,
= ai j ) (x—x). (4.13)
2,2,

We use the same dual polynomiglg as in Theoremd and the same gener-
alized moment,, asin @.11) above. So for anff we haveMp = Mp(F) =

J F(t)yn(t)dt. Hence for the generating functidte) = 37 Mnz" and for
F asin @.13 we obtain

00 N g 00 0 .
_ Z) i;j;ai,jn;z”/_wf<J>(x—xi)qJn(x)dx
q
:ii jzoau OXJ Z)Zn/ f(X—%)Pn(X)dx
:ii 'iai’j( ]nzoxInzn
—~ ;z” Zgaj — .)!xi“_j).

Comparing coefficients with the same powerszot/e get the following
system of equations:

Zzoa” " )| X" =Mn, n=0,1,. (4.14)

This is a direct generallzatlon of the usual Prony systérhd. It can be
solved in a similar way. Manipulating further the expression {aj:

_SS --(—1)1"’—j S X7
_izlj;aw ox) nZO |
N ¢ . N g (_ 'a.,zJ
“2 Y 'axll Xz ZZ@ 121t
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So we finally obtain that

IalzJ

Z% %o (4.15)

and againl is a rational function of degred(q+ 1) tending to zero at
infinity. Now we bring this rational fraction to its normal form. We use the
following identity:

Z (z-1+1)
(z—1)i+1 — (z—1)i+1
Sio(D@-1" L /] 1
T -3 ) e
that is
Z i1
T l)e o @19
We get that
< (Dijlad (-1t (x2))
|(Z) - %(]_T@Jil = 2 (_Xi)j J (Xiz_l)j+l
—aij o . (] 1
ZET)‘JF J!(I>(x,z—1)'+1
that is

I J I%J'( ) 1- x{:‘1 J|/+X1 (4.17)

Now we proceed exactly as in solving the usual Prony system: first we
find 1(2) in a formI(z) = % from an appropriate number of its initial
Taylor coefficientdM,, (see p2] for more details). Next we find the poles of

I(z) and its essential part (i.e. all its negative Laurent coefficients) at these
poles. Finally, using the expressions for these poles and negative Laurent
coefficients given in4.17) we reconstruct the initial unknownsanda; ;.

Let us stress that although the method described above solves in a closed
form any system of the form(14), serious stability problem arise when the
nodes approach one another and collide. Some initial steps in the study of
“collision singularities” in solutions of such systems can be found$j. [
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4.1.2. Multi-dimensional f-convolution dual polynomial$he notion of
f-convolution dual systems, as well as the result and the proof of Theo-
rem4 can be easily generalized to a multi-dimensional case. In fact, we
just have to interpret all the notations above as the multi-dimensional ones,
according to Sectio.3. However, we provide here another computation
of f-convolution dual polynomials which fits better further generalizations.
In the computations below we assume all the integrals to converge but do
not specify explicitly assumptions o etc., in order to stress the formal-
algebraic nature of the results.

So we are looking for polynomialp,, satisfying, in multi-index notations
of Section3.3

/f(t ) Wn(t)dt=x", n> (0,...,0),

identically inx. Let us write

t)=Y Angt% n>(0,...,0). (4.18)

d<n
We have to determine the unknown coefficiefts,.
Forx,t € RY we have,

(x+t)"=S (E)xkt”k, n>(0,...,0).
k<n

Therefore, for eachi we obtain

f(t—x)t"dt= [ f(u)(x+u)" Xk Fuyun
AL

n
= z (k>xk|’Thk(f) = Z Bn7ka7 n> (0,...,0),
k<n k<n
where we denot€) mh_(f) by Bnk = Bn(f).
Thus we get, using4(19

/(t— X)Wn(t dt—/ft— > Angtidt= ZAnq/ft— x)t9dt

g<n g<n
=> Aug ) By = > X > BakAng.
g<n k<qg k<n k<g<n
Equating the resulting polynomial ikto x" we get for eacm > (0, ...,0)
the following system of linear equations:

> BokAng=0,k<n, BnnAnn=1 (4.19)

k<g<n
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This system is triangular. Assuming thatg o) (f) # 0 we can subse-
quently solve it with respect to the unknowysg. Indeed, ifmg . o) (f) #

0 thenBg q # O for each multi-index). Therefore from the last equation of
(4.19 we find A .

Let us fixk =n— ém Whereen, is the vector index with 1 in itsn-th
coordinate and zeroes otherwise. For skigve get from ¢.19 a two-term
equationBg ;A « + B, tAnn = 0 which gives usA ;. Continuing in this
way we su’bse’quentfy find all the unknown coefficieﬁ.;gk, k <n. Thus
we have proved the following result:

Proposition 4.1. For each f(x), x € RY with the moments gif) defined
fork <sandwith g, o)(f) # Othe expressiord(18) with the coefficients
An x determined via syster.(19 define for n< s a dual polynomial system
Wn to the monomials'%

Notice that the existence of the moments up to osdea very similar re-
quirement to the differentiability of at zero, which we assume in Theorem
4,

The approach of the present section can be used for a wider class of
measurement kernefs,, beyond the usual monomials. For the calculations
above to be directly applicable these kernels have to satisfy the following
functional equation:

dn(x+t) = z Ck,nq)k(x)q)n—k(t) (4.20)

k<n

for some scalar coefficienG,, k < n. Below we describe general solu-
tions of this functional equation.

4.2. A general setting of the convolution method.In this section we de-
scribe a more general setting of the convolution method, generalizing spe-
cific examples presented in Sectiéri.

As above, our goal is to reconstruct “shift-generated” signals of the form

F(x):iaif(x—xi), x,% € RY (4.21)

from a set of measurements

tn(F) = /F(x)q)n(x)dx, n>(0,...,0). (4.22)

The functionf and the measurement kernels are known in advance (It
is reasonable to assume that the kerpglare linearly independent or even
close to orthogonal. However in this case we do not make this assumption.).
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Next we fix a certain sequence of functiong n > (0,...,0) in such
a way that the system of equations of the fozrﬂzla;hn(xi) =S, N>
(0,...,0) would allow for a simple solution.

Now we would like to find a sequence of kerndlg, n > (0,...,0) sat-
isfying a system of identities
/ f(X— ) Wn(X)dX= hn(t), N> (0,...,0). (4.23)

In addition we require that the measuremam&) = [ F(x)Pn(x)dx be
expressible through the original measuremen(s ). Under these assump-
tions we have:

Proposition 4.2. The parameters;ax; of the signal 4.21) satisfy a system
of equations

N
_Zlaihn(xi) =i, n>(0,...,0).

Proof: By identities @.23 we have for each > (0,...,0)

N N
(F) = [ FOOUn00dx= 3 & [ Fc-x)4n(dx= 3 ata(x).

This completes the proof.]

By our assumptions, the right hand side of the system obtained in Propo-
sition 4.2 can be expressed through the original measuremgnisile the
system itself allows for an explicit solution.

In order to findyy, let us rewrite equationgt(23 in the form

f_xPn=hy
(here, again as beforé, (x) = f(—x) and F[f_](w) = F[f](—w)). For-
mally we can apply to both sides Fourier transform and write
F-]F [l = Flhl,
and hence

7 [l } (4.24)

-1

b=t T
Of course, to make this formal inversion of the convolution operator a true
one we have to investigate the properties of the ratio of the Fourier trans-
forms as above, and, in particular, to compare the zeroes[laf] and of
F[f]. Taking in account Wiener’s tauberian theorem (Theotexhove) we

can expect that the properties of zeroes of the Fourier transfgrihplay

the most important role in the inversion of the convolution operator. Indeed,
the convolutionf x i, is a continuous linear combination of shiftsfofvith
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the weights given by,. We do not further develop the most general setting
as above in this work, considering it as an important direction for a future
research.

4.2.1. f-convolution duals to the kernefs. Givenf andp = {¢dn(t)}, n>
(0,...,0) as above, let us taka, = ¢, (as it was for polynomial duals in
Section4.1). We shall make more explicit also the requirements of repre-
sentability of the measuremenis throughp,: we shall try to findy, in a
form of certain “triangular” linear combinations

Wn(®) = 3 Ceadil®) (4.25)

k<n

Now the main requirement oW, is that they are, in a sense, somg “
convolution dual” functions (similar to a bi-orthogonal set of functions)
with respect to the systetpy(t). More accurately, we require that

[ HE=Xn(t)dt = n(x). (4.26)

We shall call a sequencg = {Yn(t)} satisfying .25, (4.26 f - convo-
lution dual tog.
Proposition4.2 now takes the form

Theorem 5. Let a sequence = Y(t) be f-convolution dual t¢. Define
Mn by My = 3 k<nCi nMk. Then the parameters and x in (4.2) and @.21)
satisfy the following system of equations (“generalized Prony system”):

_iaiq)n(xi) =Mn, n>(0,...,0). (4.27)

4.3. Solving functional equation @.20. The method applied in Section
4.1 for polynomial duals can be extended to produce more general mea-
surement kernelg), satisfying conditions of Theoref For the calcula-
tions in Sectiord.1to be directly applicable these kernels have to satisfy
the following functional equatiord(20):

dn(X+t) = z Cindk(X)dn—k(t)

k<n

for some scalar coefficien@ , k < n. In this section we describe general
solutions of this functional equation, restricting the presentation to the case
of one variable.

We shall look only for smooth function (it is sufficient to ask for a dif-
ferentiability at one point only). Under this assumption we could solve this
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triangular infinite set of functional equations by differentiating it with re-
spect ta att = O (for more details sed[13)):

Bh0) = 3 Cnbk(Xh 1 (0): (4.28)
k=0

Theorem 6. The solution of4.28 can be given by a sequence of sum of
exponentials multiplied by polynomials.

Proof. The set 4.28 is an infinite triangular set of ordinary differential
equations which we can solve step by steprfet 0,1,...,. Once we are
given the valueg¢;,(0)};»_, we can see that ead is a sum of exponen-
tials with exponent$Cy 9|, (0) }k<i<n . If one of the exponents is repeated

in the sequence then it will be multiplied by a polynomial of a finite degree.
By this we proved that only sum of polynomials multiplied by exponentials
can satisfy this kind of a functional equation, and we also have its general
form.

Symbolically, if we denote

o Coolh(®) , O .o,

¢l C0,1¢€I_(0) ) C1,1¢6(0) ) 0 3 e
)= 9o | A=| Co205(0) , Cr204(0) , Co205(0) , O
whereA is an infinite dimension operator. Then the differential equation
can be written as
o' =Ad = ¢(x) = e¥c
for some initial valuec. If Ci; and$’(0) are non zero theA is invertible
and

¢'(0) = Ap(0) = Ac= c=A""¢'(0)
hence the solution to this functional equation is
d(x) = A"1e¥9'(0).

If (as in the polynomial case),(0) does equal 0 then the operator exponent
and thus the solution tal(28 will be given by polynomials as in Theorem
4, O

5. FOURIER DECOUPLING

5.1. Shifts of several signals.In this Section we consider reconstruction
of signals of the form :

k G
F(X) = Z Zlaq fi(x—Xiq), X, Xig € R". (5.1)
i=1g=
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As usual, we assume that the signgls . ., fx are known (in particular, their
Fourier transformd; (w) are known), whileaiq, Xiq are the unknown signal
parameters to be found. In contrast with Sectbwe explicitly assume
here thatk > 2, so the methods of Sectidhare not directly applicable.
Still, we would like to obtain an explicit (in a sense) reconstruction from a
relatively small collection of measurements.

Our strategy is as follows:

1. Instead of taking Fourier coefficients (moments)-ofve allow “non-
uniform samples” of the Fourier (Mellin) transforms Bt Indeed, the
Fourier coefficientg;(F) can be considered as the samples of the Fourier
transform 7 (F)(s) = [pn€ 2S*F(x)dx at the integer points € R". Re-
spectively, the moments;(F) can be considered as the samples of the
Mellin transformM (F)(s) = [zn X°F (X)dx at the integer point$ € R".

So we shall choose a “sampling s&"c R" in a special way, in order
to simplify the reconstruction problem, and we shall use as the “measure-
ments” the generalized Fourier coefficients (generalized momey(Es) =
Jan € ZTSXE(x)dx, or mg(F) = [ XSF(X)dx, for s€ Z. Typically setsZ
will be finite.

2. We use the freedom in the choice of the sampleZsget order to
“decouple” the system of reconstruction equatidh)(given below, and
to reduce it tck separate systems, each including only one of the sighals
To achieve this goal we takéto be a subset of the common set of zeroes of
the Fourier transformg (f)), | # i (respectively, of the Mellin transforms

M), | £i).

3. The decoupled systems turn out to be of a “generalized Prony” type.
We discuss in detail the problem of unique solvability of such systems. We
discuss shortly a method for their solution via the least square fitting. At
present we are not aware of any method for a solution of generalized Prony
systems “in closed form”, as it is described in Sect®for the standard
ones. Theoretically, interpolation operator provides a reduction of any gen-
eralized Prony system to the standard one. However, this reduction requires
an explicit construction of the interpolation which, presumably, requires
operations equivalent to a solution of the original system.

5.2. Reconstruction system and its decouplingTo simplify a presenta-

tion we consider only the Fourier measurements. Moment case is somewhat
more difficult, since moments behavior under shifts is more complicated
than that of the Fourier data, and it leads to triangular transformation matri-
ces. We return to moments and Mellin transform in Sed@igrbelow.

For F of the form 6.1) and for anys € R" we have
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. k g .
oF) = [ eTEXd= 3 S ajge TR ))
R jzlqzl
So taking samples at the poirgof the sample seZ = {s;,...,sn}, and
. _omixK . .
denotmgy'fq = e ?™Ja we get our reconstruction system in the form

k 4
> Y ajgcs (fyjg=cs(F), I=1,...,m (5.2)
j=10=1
In system $.2) the right hand sidess (F) are the known measurements,
while the Fourier coefficientss (fj) are known by assumptions. However,
we cannot divide bys (fj) and reduceq.2) to the Prony-like system since
in each its equation all the functiorig, ..., fx are present. In order to “de-
couple” system%.2) we use the freedom in the choice of the sampleZset
Foreach =1,...,k we takeZ to be a subset of the common set of zeroes
Z, of the Fourier transformg (f)), | #i. As an immediate consequence we
obtain:

Proposition 5.1.1f Z = {sy,...,sm} C (Mi+Z) \ Zi. Then systen®(2) takes
form

d cs (F
S aiqyq=Cs(F), I =1,...,m where G (F) = S(f_). (5.3)
g=1 CS( l)
We call 6.3 a generalized Prony system. FEorconsisting of integer
pointss we get back to a certain part of the usual one.

Propositions.1implies that “generically” we can expect that reconstruc-
tion system%.2) can be completely decoupled for the numbkef the func-
tions f; satisfyingk < n+ 1. Indeed, assuming that the zero satef the
Fourier transform& (f;), i <k, aren— 1-dimensional hypersurfaces meet-
ing one another transversally, we find thakt i n+ 1 then the common set
of zeroe<, | # i, consists of isolated points. K< n+ 1 then this com-
mon set of zeroes consists typicallymof- 1 — k-dimensional components.
Generically, these points (components) do not belong,tso they can be
used as the sampling séto get 6.3). However, fork > n+ 1 the common
set of zeroeg, | # i is usually empty, and we cannot use the approach of
Proposition5.1 (The genericity and transversality notions here should be
understood in the scope of Thom’s transversality theorem , for references
see B4)).

The most important problem which arises in applications of Proposition
5.11is whether the resulting systerf.) is uniquely solvable, and how to
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solve it in a robust way. Notice that this system depends only,&;
and on the sampling s&. The Fourier coefficientss (fi) enter (as the
denominators) only into the right hand side 513), so the only information
we need orgs ( fi) is how well they are separated from zero.

As for the left hand part of§.3), assuming that the dimensian the
numberk of the shifted signaldj, and the numbers;, i = 1,...,k of the
allowed shifts are fixed, it depend only on the sampling&eiVe study
this dependence in detail in Sectién In Section8 we outline a possible
approach to investigation of the specific sampling sets which may appear
in the Fourier decoupling procedure. Other than these 2 sections a deeper
harmonic analysis approach on the zeros of the fourier transform should be
addressed in future research.

Let us describe separately one-dimensional situation where the decou-
pling procedure becomes especially transparent. In subsetddrelow
we give some one-dimensional and multidimensional examples of decou-
pling and solving reconstruction systef2).

5.3. One-dimensional caselet the functionsf; and f, be given. The
signal we want to reconstruct is of the form

N
= 3 a fu(x+x) + & fa (x4 x). (5.4)
=]

The parameters to be found aagandx’ wherej = 1,2. Denote byzZ;
(respectivelyZy) the zero set of the Fourier transform faf (resp. f2) and

let Sy = {w'} C 22\ Z1,S = {wP} C Z»\ Z1. So the pointsy! are in the
zero set of the Fourier transforrﬁz and not in the zero set (ﬁL and the
pointsoo,2 are in the zero set ofl and not in the zero set O‘E We shall
assume that the seg, S, contain enough points for the resulting systems to
be uniquely solvable (see below). Under this assumption and sindg’'she
are a-priori known, we obtain the following new set of equations (where
j=212and =1,2,.

quéxlu*f o) + @ (e Z al el fj(cy

Actually we've de-coupled the original reconstruction equations to two

J
separated sets, one for each functfpnj = 1,2. Let us defing; | = —“*—))

—

(
andTI e'xl For eachj = 1,2 we get a generalized Prony system as

j _ jm" 55
Y, I;a.(T,) (5.5)
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Solvability of these systems depends on the geometry of the p{]lq{ﬁs
Using the results of Theore® 1 in Section6.3 below we finally get the
following explicit result:

Theorem 5.1. Assume that in the notations as above each ge{ S 1,2
contains at leasEN points. Then the signal F can be uniquely recon-
structed from its Fourier samples at the points 0o£& U S, via solving
the decoupled systents. ).

An important question is: for what kind of geometries of the sample set
Sthe solution of the system$.6) can be given in a closed form? It is so
for uniform grids where we get the original Prony system. Its solution in
closed form has been presented in Sec8dabove.

Another important question is the geometry of the zero set of a Fourier
transform of functions in specific classes. Some initial results in this direc-
tion are given in Sectiof below.

5.4. An example in dimension 1. Here we give a simple example of the
decoupling procedure (in dimension 1). In this example we have a case
where the resulting generalized Prony systems are actually the standard
ones. This is an outcome of the special geometry of the zeros of the Fourier
transforms of the function$; and f, we use. Letf1(x) = X|_14(x) and

fo(X) = 0(x—1) + 0(X+1).

0 ) 1 .
CS( fl) = \/%-[\/;oo fl(x)eﬁ|SXdX: %T/_leBXdX
1 —is 2sins
e e _ eIS — &2l
—iS\/ 2T[( ) T S

and

cs(f2) = = [ fal0pe = ——(e ) - [ 2eoss

The zeros of the Fourier transform &f are located omnn, n € Z/{0} and
of f, on (% +n)1, n € Z. Since these sets are just shifted intedérshe
generalized Prony systems i6.8) are actually the standard ones. Her
(5.9 takes the form

cm(F) A m
ﬂ —quan(YZq) .

Tt
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_ _cm(F) — —
If we denoteMp, = \/%(—1)” , Aq = azq(y2q)™" andxq = (yoq)™ we get the

usual Prony system as

N
Mp = ZOAqxg ,NeZ.
q:

For f; we get

Cainn(F) N
(z+mm 1

AL = S Al F e 20}

Vi &

o €1 ryn(F) n

in this case we denois, = W, o) = aiq(y1q)2 andg| = (y1q)" and
n (1+n)n

we get again the usual Prony éystem as

N
bo="3 0qEG, n€ Z/{0}.
g=1

Solving these two systems using the same method as in S&idhgive
us the translations and amplitudes of the functibns..

5.5. A two-dimensional example. In dimension 2 we may take a collec-
tion of 3 square®; = [-3,3]%,Q2 = [-5,5]%, Q3 = a rotation of the square
[—v/2,/2]? by 4%. The models in our signal will be the characteristic
functions of the three squares, i.e:

w0={ g e (56)

Proposition 5.2. The zero sets/Z, and Z of the Fourier transforms of
the three functiong, X2 andxs intersect each other in such a way that the
decoupling procedure based on the sats=§2,NZ3)\ Z1,S = (Z3NZ;1) \

Zp and § = (21N Zp) \ Z3 provides three standard Prony systems for the
shifts of each of the functions.

Proof: Simple calculation gives

S __asin3w SInd

Xl(wa p) - 4% ) _pa:)

- i sin

Ra(0,p) = 4992 . = (5.7)
sin®2  sin®P

X3(w,p) =8 o Toh

2
So0Z; is the union of horizontal or vertical lines crossing the Fourier plane’s
axes af(0, ) or (,0) respectively, for all non zero integer Similarly
for Z; only that the lines cross the axes@t'T") or (%, 0).



ALGEBRAIC RECONSTRUCTION FROM INTEGRAL MEASUREMENTS 37

Z3 is the union of lines with slopes 1 erl crossing theo axis at 2m for
some non zero integex

We recall that = (Z,NZ3)\ Z1,S = (Z3NZ1) \ Z; andSs = (Z1NZ,) \ Z3,
hence for all two integens andm (32, 15 ¢ g (3£3m 183M) ¢ 5, gng
since M + 19N s not an integer X:3M, 191 € ;. These 3 points form

a triangle that is shown in Figuewhich repeats itself as a pattern as shown
in Figure2. (In these figures a part @ is represented by the horizontal
dashed lines, a part @ is given by the vertical dashed pointed lines, and
a part ofZ3 with the solid lines).

1 1
015 02 025 03 035

FIGURE 1. The triangle formed by the three poirits/3,1/3), (1/5,1/5) and(1/3,1/5).

Now, we can decouple the generalized Prony system to solve the ampli-
tudes and translations g using points frons which has the same geom-
etry as of the set of the integers (so the decoupled system can be transformed
to the usual Prony system). Using similar considerations we can show that
the situation is the same also f6randS,.

5.6. A multi-dimensional example. For a general, multi-dimensional ex-
ample we can take different cubes, dilated and rotated in different dilations
and angles. The zero sets of the Fourier transform of the characteristic
functions of the cubes will give us again a grid like pattern as in the two
dimensional case, with a fundamental simplex that repeats its self along all
axes. We also notice that we can convolve the chosen cubes against func-
tions with non vanishing Fourier transform and get different examples with
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=
=
:
0

FIGURE 2. The repeating triangles are marked with black points inside them.

the same behavior of the zero sets of our models. Notice that also the con-
volution will have compact support as the characteristic functions of the
cubes.

6. RECONSTRUCTION FROM NONUNIFORM SAMPLING

Fourier decoupling method presented in the previous Sebtisrbased
on sampling our signals at common zeroes of the Fourier transforms of
some of the shifted signals. As it was mentioned above, while using this
method we usually can transform a full reconstruction system into a number
of systems for the shifts of each signal separately, the solvability of the
resulting systems depends on the sampling sets we are forced to use.

However, non-uniform sampling sets naturally appear in many other prob-
lems, and solvability of the resulting reconstruction systems presents by
itself an important and interesting problem.

In the present section we consider the problem of reconstruction from
non-uniform samples of signals presented by linear combinatior’s of
functions. This is exactly what we need in Fourier decoupling, and this
is also a natural starting point for a study of non-uniform sampling in a
general case.
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6.1. Interpolating and least square fitting for exponential polynomi-
als. In this section we consider multi-dimensional exponential polynomi-
als, while in Sectiorb.3below we restrict ourselves to the one-dimensional
case only.

Consider a generalized Prony system as it appeats 3hdbove:

N
> agyg=m,1=1....m (6.1)
=1

HereS= {s,...,sm} C R" is the sampling set. Writingq = el we can
represent this system in the form

N
Z%@ﬁ:MJ:L”Jn (6.2)
og=1

As usual, expression§.() and 6.2) can be interpreted as the samples at the

appropriate points of the Fourier (Mellin) transform of a linear combination

of d-functions. Both these cases lead to the express®@sdf a specific
form: the exponentdq are purely imaginary in the Fourier case and real
in the Mellin case. We discuss this in Secti®d below. However, in the
continuation of this Section we allow arbitrary exponekgs= C. So our
exponential polynomials are complex functions of a real multidimensional
argument.

In this section we characterize thdS®r which system§.1) (resp. 6.2)
can be solved uniquely with respectdg andyqg (aqg andAq), and study
the robustness of the solution. In order to provide such a characterization
it is convenient to associate to systeflf a function®(s) = 23':1 aqYq
of a variables € R", in which our unknownsy, yq, 9= 1,...,m appear
as parameters. Systeri.?) allows us to rewriteP(s) as an exponential
polynomial®(s) = yi ; agehe®.

Now the problem of solving generalized Prony systé&n)(can be rein-
terpreted as an interpolation problem for the exponential polynomias—
zyzlaqus. However, there is an important difference here with the poly-
nomial interpolation: our problem is non-linear in a half of the parame-
ters. Indeed, the exponenitg (or, equivalently, the “nodesjy) enter® in
a strongly non-linear way. This requires a careful and somewhat lengthy
statement of the definitions and results below.

6.1.1. Interpolating sets and Turan sets.

Definition 6.1. A set S= {s,...,sm} C R" is called an interpolating set
for exponential polynomials of degree N if afys) = zgzlaqehrs with
ag# 0, g=1,...,N is uniquely defined by its values on S.
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The assumptiorg # 0, = 1,...,N is essential since foag = 0 the
parameteiq can be arbitrary.

A basic example of an interpolating set is provided by Secii@bove
which describes the explicit solution of the multidimensional Prony system
and states its uniqueness.

If we write (Aq)j = log(xg;) this result can be now reformulated as

Theorem 6.1.A set & C R"which is the union of the integer poir3,1,2,...,2N)
on each of the coordinate axes is an interpolating set for exponential poly-
nomials of degree N satisfying the assumption that all the coordingtes x

the pointsx i=1,...N, j=1,...d, are pairwise distinct, and, moreover,
that a, # a;, for iy # io.

The notion of interpolating set is central for our study. Indeed, the appli-
cability of the decoupling procedure described above depends on the set of
zeroes of the Fourier transforms to be interpolating for exponential polyno-
mials of the degree equal to the number of the allowed shifts.

It would be important to completely characterize interpolating sets of
a given degree. In algebraic case, i.e. for the problem of interpolating
algebraic polynomials of degrek a general description of such sets can be
produced easily (although the condition is not always easy to check - see
[68].):

Proposition 6.1. Z ¢ R" is an interpolation set for algebraic polynomials
of degree d if and only if it is not contained in the set of zeroes of any non-
zero polynomial P of degree d.

In dimension one we conclude that a set is an interpolation set for alge-
braic polynomials of degregif and only if it contains more thad points.

In the case of exponential polynomials, because of non-linearity of the
problem, we can give only “an approximation” to the result of Proposition
6.1

Proposition 6.2. If SC R" is an interpolation set for exponential polyno-
mials of degree N then S cannot be contained in the set of zeroes of any
non-trivial exponential polynomiab of degree N. If S is not contained in

the set of zeroes of any non-trivial exponential polynorhalf degree?N

then S is an interpolation set for exponential polynomials of degree N.

Proof: If there is® of degreeN which vanishes oi® but is not identically
zero, thenSis not interpolating by definition. Assume now tHais not
contained in the set of zeroes of any non-trivial exponential polyno#nial
of degree Rl. Assume that two exponential polynomiaty and ®, of
degreeN take the same values @& HenceSis contained in the zero set of
@, — ®d; which has degree at mosN2\We conclude tha®, = ®4. [



ALGEBRAIC RECONSTRUCTION FROM INTEGRAL MEASUREMENTS 41

Corollary 6.1. Any Sc R containing more thamy = 28YN+1/2 points is
interpolation for exponential polynomials of degree N with real exponents.

Proof: By the bound of Khovanskii (se&8, 26] and Sectior6.3 below) a
univariate exponential polynomial of degrislewith real exponents cannot
have more thary = 2V(N+1)/2 real zeroes]

There are strong indications that in fact in many cases we need exactly
2N points. We plan to analyze this problem using generalized Vandermonde
determinants. Notice, however, that examples liké>sth which have a
growing number of zeroes in each fixed interval, may require introducing
bounds on the imaginary parts of the exponents.

It is not easy to check directly the condition of Propositiain several
variables. We would like to have simpler geometric conditions sufficient for
Sto be interpolating, and on this base we would like to significantly extend
the class of interpolating sets, far beyond the standard example given by
Theorem6.1above. In order to do this we shall use a very recent extension
of the classical Turan inequality for exponential polynomials to discrete
sets obtained inZg] following the corresponding extension of the classical
Remez inequality for algebraic polynomials B8].

The following definition extends the terminology used #) 68, 69 in
connection to the Remez inequality to the case of exponential ones (where
the Remez inequality is replaced by the Turan one):

Definition 6.2. A set SC R" is called a Turan set (of degree N) if for each
poly-interval I' C R" there is a constant K= K| s such that for any expo-
nential polynomiakp(s) = Y ; aqe’e® of degree N the following inequality
holds:

maxin|d(s)| < K s gn(inmARa| maxg|d(s)). (6.3)

The minimum of the constants «in (6.3) is called the Turan constant (of
degree N) of the couplg, S), and it is denoted by Ti@1,S).

The form of the inequality in€.3) is chosen according to the “correctly
scaled” form of the Turan-Nazarov inequality for exponential polynomials
(and of its discrete version) as they are given in Sedi@below.

As we shall see in Sectidh3, Turan sets allow for a “geometric” analy-
sis, and so they may be easier to deal with than interpolating sets. Accord-
ingly, we would like to replace the last with Turan sets. So our next goal
is to show that Turan sets are interpolating. Forvhkiesof exponential
polynomials at each point we get this immediately:
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Lemma 6.1. Let SC R" be a Turan set of degré2N. Then for each &
R" and for each exponential polynomid of degree N the valu®(s) is
uniquely defined by the values®fon S.

Proof: Consider two exponential polynomial® and®, of degreeN tak-
ing the same values d& The differenceb; — ®, is zero onS, and sinces
is a Turan set of degred\2we conclude tha®; — @, is identically zero on
R", and, in particular, a.

Corollary 6.2. Let SC R" be a Turan set of degre2N. Then S is interpo-
lating for exponential polynomials of degree N.

Proof: By Lemma6.1for each exponential polynomid of degreeN the
values of®d(s) on S uniquely determine the values df on R", and, in
particular, on the sy C R" defined in Theorem.1 It remains to use the
result of this theoreni]

In Section6.3below we give, following 26], a simple geometric criterion
for a given set to be a Turan set of degheWe further show in Section
6.3 that this criterion provides nontrivial sufficient conditions for zero sets
of Fourier transforms to be Turan sets.

We complete the present section with definition and some initial study of
the interpolation operators from the values on interpolating SeBenote
by En the space of all exponential polynomiabsof degree\.

Definition 6.3. Let S= {s1,...,5m} C R" be an interpolating set for ex-
ponential polynomials of degree N. The interpolation domagcDR™
consists of the restriction vectoBs = {P(s1), P(Sp),...,P(sm)} for all

® € En. The interpolation operatorgl: Ds— Eyn associates to each ¥ Dg
the exponential polynomi&@ = Is(V) of degree N attaining on S values V.
For another set S= {s1,...,Sw} C R" the values interpolation operator
lvs: Ds— Dg associates to each ¥ Dg the restriction vector to 'Sof the
exponential polynomiab = Ig(V).

Itis important to stress that the operatyandl,sare non-linear. Indeed,
a linear interpolation would produce for a sum of the restriction vectors the
sum of the exponential polynomials, which is an exponential polynomial of
degree R, and notN. Instead we find, solving an appropriate generalized
Prony system, a new exponential polynomial of dedveghich attains the
required values ofs.

We consider the study of the interpolation operaggfor various set$S
as one of the central questions for the future research.

6.2. Least square fitting for exponential polynomials. As it was men-
tioned above, at present we are not aware of any method for solving gener-
alized Prony systems “in closed form”. So a non-linear least square fitting
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looks to be a natural method to apply. In the case of noisy data this method
has an additional advantage: for a larger than minimally required sampling
sets there is usually a better noise resistance of the solutions. This approach
has been investigated id9] and in many other publications.

Let us mention that the notion of a Turan set, introduced above, is very
relevant in the study of the non-linear parametric least square fitting for ex-
ponential polynomials. Indeed, in this process we use the mafpivigich
associates to the parameters of the exponential polynaital values on
the interpolating se6. What is important in the estimates of the robust-
ness of the fitting and its rate of convergence is the norm of the inverse of
the JacobiadT of T. However, the invers& —! is exactly our interpola-
tion operatorls. We expect that the norm of its Jacobian can be bounded
through the Turan constant & the larger is this constant, the smaller is
the norm of the inversion. This fact shows how important for the practical
numerical solution of the generalized Prony systems is the understanding of
the geometry of Turan sets and of their Turan constants. We consider this
set of problems as an important direction for future research.

6.3. Turan-Nazarov inequality and its applications. Our main tool in
study of the interpolation problem for exponential polynomials (or, equiva-
lently, of the solvability of the generalized Prony systems) is provided by the
classical Tuan inequality in §3] and its recent generalization by Nazarov in
[5]]. Below we state these classical results and then provide their extension
to discrete and finite sets recently obtaineddf]]

6.3.1. Turan-Nazarov inequality in one variabl&y an exponential poly-
nomial with one unknown we understand a finite spft) = 3, cceM!,
wherecy, Ak € C. The number of non-vanishing terms in this sum is called
the order of an exponential polynomigd(t). The numbersy are the coef-
ficients of p(t), and the numberky are its exponents.

The classical Tuan inequality bounds the maximum of the absolute value
of an exponential polynomial(t) on an interval through the maximum of
its absolute value on any subgebf positive measure, Tan [63] assumed
E to be a subinterval df, and Nazarovj1] generalized it to any subskt
of positive measure. More precisely, we have:

Theorem 6.2. ([51]) Let pt) = zﬂ;ockeAkt with g, Ak € C be an expo-
nential polynomial of order m- 1. Let | C R be an interval, and E be a
measurable subset of | of positive measue)u Then

?é‘.p|p<t>|se“(')'max'mk'(%) suplp®)f, - (64)

where C> 0is an absolute constant.
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In several variables the corresponding inequality has been obtained in
[25].

An essential part of these inequalities is that the “sampling’'Ssstas-
sumed to have positive Lebesgue measure. This assumption is certainly
too restrictive for our applications where the sampling sets are usually fi-
nite. Fortunately, a recent result & provides an extension of the Tam-
Nazarov inequality to arbitrary (in particular, finite) sampling sets.

6.3.2. The invarianton(S) and Discrete Turan-Nazarov Inequalityfo sim-

plify the presentation we shall assume that in the exponential polynomial
p(t) the coefficientsy and the exponents, are real.

Now, to definewm(S) let us recall that the covering numbiér(e, S) is the
minimal number of closed-intervals coverings (see P4, 41]).

Definition 6.4. For SC R wm(S) = sup e[M(g,S) —m.
Now we are ready to state the (special case of the) main res@épf [

Theorem 6.3.([26]) The Lebesgue measuréguin the Turan-Nazarov in-
equality can be replaced witty = wy(S). More specifically, for each S we
have the following: Let (1) = T ,ce™ with o, Ak € R be a real expo-
nential polynomial of order m. Letd R be an interval, and S be a subset
of I. Then

Cu()

m
t<gwmmk<__). 0, 6.5
flele] p(t)] < (S ?gspl p(t)] (6.5)

where C> 0is an absolute constant.

Corollary 6.3. Any subset & | with wy(S) > 0is a Turan set. Its Turan
wh \™
constant does not exceé%) .

6.4. Moments and Mellin transform. In the previous sections we've con-
centrated on the specific type of exponential polynomials that appear as the
Fourier transform of a linear combination &ffunctions inR". Consider

now the case of Mellin transform/ (f)(s) = [ra X°f (x)dx. Assuming that

f is a linear combination a¥-functions,

1

N
fX) = agd(x—xq), Xq € 1" CR"
0=

we get
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Writing, as abovexg = ), we finally obtains

N
M(f)(s)= Y ag€ ™ =p, 1=1,....m (6.6)
d=1
Assuming that the generalized moment measuremegnts samples of the
Mellin transform, are taken at the sample poigt$ = 1,...,m, we obtain
the generalizes Prony system

N
Zaq@qszm,|=1,...,m. (6.7)
a=1

The only difference of systen6(2) with the corresponding systens.{)

is that the exponents; here are real, while in6(2) they are purely imagi-
nary. However, this distinction requires some modification of the definitions
above. The reason is that for real exponents an additional term appears in
the Turan-Nazarov inequality, which is 1 for purely imaginagy The
definition of the Turan sets was given above for general exponential poly-
nomials, so it takes into account this additional term. However, for the case
of Fourier transform we simply omitted it, while for the Mellin transform it
has to be preserved. With this only difference, the rest of the results above
remain true.

7. NUMERICAL SIMULATIONS

Here we present results of numerical simulations implementing the two
main methods suggested in this work. This section shows that these meth-
ods, suggested above, (all relying on the one dimensional Prony system
solution) are feasible and can be implemented at least to some extent.

We will show two results here. The first result (presented in segtibnis

of the solution method of the multi-dimesional Prony system with variable
separation, as suggested in secBdh We conclude that the method is sen-
sitive to noise addition but still gives reasonable results. Following this, we
will present (in sectior?.2) the Fourier decoupling method as suggested in
Section5. Here we conclude that this method also gives reasonable results.
We used the software Matlab (R2009b) and the code that is attached as
appendix A and B in page numb@5.

7.1. The variable separation method - A two dimensional signal recon-
struction. The model function we use in this simulation is
_ G- —y)exp—x*—y?) X+y <3
fixy) = { 0 else where (7.1)
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TABLE 1. N =4, no noise, not overlapping supports of the
translated model.

am « max. error max. error
b- y in amplitude | in translation

-1 2 -2

0.5 -3 0
5 4 4 9.0067e-5 5.4179e-5
4 -1 3

which is supported on the disk of radiug\12 around the origin. This
function is continuous everywhere in the two dimensional plane. In each
simulation we chosdl amplitudesy; (pairwise different and not too small)
and N components of thé&l translations:xy,...,xy (pairwise different)
andys,...,yn (also pairwise different) and generated a signal according to
the following formula:

N
F(x,y):Zlaif(x—xi,y—yi)+Noise(x,y). (7.2)

The noise (if we chose to add it) was a Gaussian noise, distributed nor-
mally with mean 0 and standard deviation 1Gor somej. GivenN, the
number of translations, we calculated, numerically, enough momeiits of
and found from them the generalized moments which are the inputs for the
2 dimensional Prony system. Then for each dimension we solved a one di-
mensional Prony system and combined the results. We use in this computa-
tion the assumption that the amplitudes and all the translations components
are pairwise different.

7.1.1. The Geometry of the translations locatiortdere we present two
different simulations. Tablé and figures3(a) and 3(b) present the recon-
struction of a signal where the supports of the translated mbdig not
intersect each other. Tabkand figures4(a) and4(b) present the recon-
struction of a signal where the supports of the translated mbdelinter-
sect each other.

7.1.2. The effect of the number of translatiordext we will present the
effect of a different number of translations on our reconstruction method.
We present the results from simulations in which we did not add noise to
the generated signal. The number of translated models in the signal grows
from 1 to 9 and the minimal distance between each two translations was not
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Reconstructed signal

(@)

The discrepancy

(b)

FIGURE 3. simulations with out added noise for 4 not overlapping translated mod-
els: (a) is the reconstructed signal. (b) is the difference between the measured signal and
the reconstructed one..
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The measured signal without add noise

-08
25

(@)

The sicrepancy

10

=13
25

(b)

FIGURE 4. simulations without added noise for 4 overlapping translated models:
(a) is the measured signal. (b) is the discrepancy.
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TABLE 2. N = 4, no noise, overlapping supports of the
translated model.

49

am X max. error max. error
P- y in amplitude | in translation

-1 0.2 —0.2

0.5 —-0.3 0
2 0.4 _04 4.4029e-4 1.2940e-4
4 -0.1 0.3

smaller than 0.5. We present in tald@nd in figure5, the averaged maxi-

mal error of the reconstructed translations , the maximal error in the recon-
structed amplitude and the norm of the difference between the measured
and the reconstructed signals, as it is changed with respect to the number of
translations over 100 simulations,

TABLE 3. The effect of the number @fanslations.

Number of max. error max. error Lo norm of
translations | in translations| in amplitude. | the difference
1 8.523e-07 2.415e-06 1.403e-06
2 2.383e-06 5.904e-06 3.783e-06
3 8.141e-05 0.001 0.386e-03
4 0.072 0.279 0.114
5 0.227 0.442 0.278
6 0.929 1.206 0.588
7 1.462 1.415 0.927
8 1.720 1.838 2.496
9 2.045 2.351 1.361

7.1.3. The effect of noise addition to the sign#h this section we present
simulations in which we added a gaussian noise to our signal. We changed
the amplitude of the noise from 1to 10-8. We also changed the number

of the translations from 1 to 7. We present the averages over 30 simula-
tions of the error in the location in figui® the error in the amplitudes in
figure 7 and theL, norm of the difference between the measured and the
reconstructed signals in figuge
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—#— Awerage L 2Morm of the difference
—+— Awerage maximal error in Location

log scale of error
=]

—#— fyerage maximal error in Amplidue

w0’ | | I | | !
1 2 3 4 5 5 7

MNurber of translations

FIGURE 5. Averaged results over 100 simulations with no added noise where the
number of different translations is changed from 1 to 9.

@

Average maximal error in the locations
T

log scale of error
=
T

W0 | | | | |

Megative exponent of the amplitude of the noise

FIGURE 6. The average over 30 simulations, with added gaussian noise, of the max-
imal error in the translations.
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Average maximal error in the amplitudes

log scale of error

10° | | | | |
4

Megative exponent of the amplitude of the noise

FIGURE 7. The average over 30 simulations, with added gaussian noise, of the max-
imal error in the amplitudes.

Average L2 norm of the discrepancy

1o T T T T

log scale of error
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10 I I I \ \
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1 2 3 4 4 B
Megative exponent of the amplitude of the noise

FIGURE 8. The average over 30 simulations, with added gaussian noise, bjthe
norm of the difference between the measured signal and the reconstructed one.
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7.2. Simulation of the Fourier decoupling method - two different mod-

els in dimension 1. Here we present numerical simulations implementing
the Fourier decoupling method suggested in sedion

We generate signals of the form

N M
F(t) = Zaa ft—x)+ Zlbjg(t ~Yi)
1= =

on a uniform grid wherd andM are given integers, anfiandg are two

given models (functions). From the knowledge foandg we chose points

on which we calculated, numerically, the Fourier transforra of he points

were chosen such that we decouple the system into two different general-
ized Prony systems as suggested in Sed&idusing these values of Fourier
transform ofF as inputs for the generalized Prony system we transform the
systems to a usual Prony system which we finally solve to get analytic rela-
tions between the translatiorsy; and the amplitudes; andb; which we
extracted from these analytic expressions. The mofi@lsdg are chosen
such that the zero sets of their Fourier transform contain two disjoint arith-
metic sequences. Using the geometry of the arithmetic sequences we could
transform the generalized Prony system to a usual Prony system while the
transformation of the translations and amplitudes to the unknowns of the
Prony system are analytic and invertible.

The modelsf andg we chose are (see figuég

( 0 t<-a
(t+a)/(a—b) —-a<t<-b
f(t)= 1 —b<t<b
—(t—a)/(a—b) b<t<a
0 b<t

\

wherea = 8 andb = 2 and

( (t+a)/(a—b) —a<t<-b
—(t+c)/(b—c) —b<t<-—c
2(t+d)/d —-d<t<O0

gt) = —2(t—d)/d 0<t<d

(t—c)/(b—c) c<t<b
—(t—a)/(b—a) b<t<a
L 0 else where

wherea=10,b =7,c = 4 andd = 3. The zeros of the Fourier transform
of f that we chose, as the non uniform samples where the Fourier transform
of f vanishes but of does not, are located at the poigts= 11/5+ 21K, k=
0,1,2,... and the non uniform samplesgfats =1/7+2m, | =0,1,2....
Here the original signaF is generated as a sum bf = 12 shifts of the



ALGEBRAIC RECONSTRUCTION FROM INTEGRAL MEASUREMENTS 53

first model
second model

IE-3 3

FIGURE 9. The two models andg.

model f andM = 12 shifts of the modef) and a random choice of shifts
and amplitudes.

In figure 10 we present the original superposed sighah a bold green line

and the reconstructed signal in a thin red line (appears on the bold green
line exactly) in the upper plot, the two modeilsandg in the lower right

plot and the discrepancy between the reconstructed signal and the original
one in the lower left plot.

Signal, reconstructed signal, models and the discrepancy
T T T T T

“——input signal
reconstructed signals

first rodel
second model

0s

FIGURE 10. The original signal and the reconstructed signal over it (in thin line).
The discrepancy between them and the two moéieladg.
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TABLE 4. Statistics of 1000 simulations with two models -
Reconstruction accuracy for the signals, translations and am-

plitudes.
average | standard | maximal
error deviation error
Lo norm of the discreparyc 4.8395e-04 4.106e-04 2.6802e-3
L. norm of the discreparyc 3.4649e-04 2.6069e-04 1.5386e-3
max error in translations for the firstodel 1.0482e-05 9.9338e-06 7.4545e-05
max error in amplitudes for the firatodel 7.8464e-04 7.4750e-04 8.1301e-03
max error in translations for the secomibdel| 2.1513e-06 1.6933e-06 1.8705e-05
max error in amplitudes for the secombdel | 2.0252e-04 1.3696e-04 1.1545e-03

Next, we ran the previous simulation 1000 times vWthM=12 and differ-

ent, random amplitudes. We chose the translations randomly on the interval
[—%, %] while keeping the nodes not too close to each other.
we present in tablé the averages, the standard deviations and the maximal

values of the

(1) L2 andL., norms of the discrepancy between each original signal

and the reconstructed one.

(2) maximal error in the calculated translations and amplitudes.

Now we will present the statistics of different values from different steps
of the solution method. While solving the Prony system we must extract
roots of a given polynomial and invert two linear matrices: the Hankel type
matrix of the moments (as ir8(2) in section3) and the Vandermonde ma-
trix of the different translations (as ir3(7) in section3). To generate the
Hankel matrix we calculated the moments and built from them the matrix.
We calculated the moments twice: First integrating numerically from the

input signal and second from the known amplitudes and translations. To
generate the Vandermonde matrix we calculated the translations once from
the Prony system solution, but we could also generate the Vandermonde
matrix from the given translations. To analyse the accuracy of each step of
the reconstruction method we present in tabtbe averages, the standard
deviations and the maximal values of the

(1) I2 norm of the difference between the two results of the calculated
moments.

(2) I norm of the difference between the two results of the calculated
moments.
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TABLE 5. Statistics of 1000 simulations with two models -

difference between actual and numerical Prorgments.

average standard maximal
difference deviation difference

> norm for moments of the firshodel 6.2593e-03 3.6744e-03 1.7967e-02
l« norm for moments of the firshodel 3.4475e-03 2.14112e-03 1.1732e-02
> norm for moments of the secomaodel | 3.5434e-03 2.1280e-03 1.20145e-02
lo norm for moments of the secomaodel| 1.9377e-03 1.2480e-03 9.24089e-03

The stability of the solution depends on the condition numbers of the Hankel
. We will present the averages,

the standard deviations and the maximal values of the condition numbers of
the matrices in the next two tables. In tallave present the condition
numbers of the numerical data and on tabléhe condition numbers as
calculated from the exact translations and amplitudes.

and Vandermonde matric{x(A)

A
TA .

TABLE 6. Statistics of 1000 simulations with two models -
Condition numbers of the matrices calculated numerically

average standard | maximal

difference | deviation | difference
X (V) for first model 1.4016e+0Q 3.4253e-02 1.5191e+00
X(H) for first model 7.6399e+00Q 2.7958e+0Q 3.3711e+01
X(V) for secondmodel | 1.4020e+0Q 3.4418e-02 1.5744e+00
X(H) for secondmodel| 7.6864e+0Q 2.6872e+00 2.1114e+01

TABLE 7. Statistics of 1000 simulations with two models -
Condition numbers of the matrices calculated from the exact
translations andmplitudes.

average maximal
. standard "
condition L condition
deviation

number number
X (V) for first model 1.4015e+00Q 3.4247e-02 1.5189e+00
X(H) for firstmodel | 7.6399e+00Q 2.7958e+00Q 3.3708e+01
Xx(V) for secondnodel | 1.4020e+0Q 3.4411e-02 1.5743e+00
X(H) for secondmodel| 7.6863e+00 2.6872e+00 2.1111e+01
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7.3. A short discussion on the simulations’ results.

7.3.1. The Geometry of the translations locatioria.section7.1we recon-
structed two different signals. The difference was the intersection of the
supports of the signals. In the first simulation the intersection was empty.
In the second simulation we divided the values of the translations by 10 and
made the supports intersect. The errors in the second simulation got bigger
by 10 (approximately) Also, the relative error of the amplitudes (the error
divided by the value it self) and of the translations (the error divided by the
minimal differences between the different translations) was reasonable as
well . In later simulations we made sure that the translations will not be too
close to each other. We also made sure that the minimal distance will not be
changed between the simulations by a large amount. In sectiaimost

all the supports intersected each other, still we got reasonable results.

7.3.2. The effect of the number of translations. Table3 we see that with-
out noise our reconstruction method gave reasonable results as long as the
number of translations is not greater then 5.

7.3.3. The effect of the signal’s dimensio@ne difference between the first
simulation and the second one was the number of dimensions. The addition
of one more dimension in the first simulation constrained us to generate
signals with smaller resolution (less sampling points). In the second simu-
lation the higher resolution enables us to calculate the integrals much more
accurately. This is a possible explanation, why is it that in the second simu-
lation, reconstruction of 12 translated models was possible while in the first
one 4 or 5 translations was the upper limit for a reasonable reconstruction
in a reasonable running time.

7.3.4. The effect of noise addition to the signdlhe addition of noise to

the generated signal changed the behavior of the reconstruction method.
We can see from figured 7 and8 that for one or two translations still we

get reasonable results for noise with amplitude less thart.18or more
translations or noise of larger amplitudes the effect becomes more signifi-
cance. Itis worth to mention that there were simulations with more than 2
translations or with stronger noise for which the reconstruction method gave
yet reasonable results. Addition of noise to the simulation of the Fourier
decoupling gave similar results to these we present here. The numerical
robustness, with respect to noise addition, of the method should be studied
further.
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7.3.5. The decoupling methodA second difference between the 2 simu-
lations was measuring polynomial moments in the first multidimensional
simulation and measuring Fourier transform integrals on non uniform nodes
in the second one. We see that the decoupling method gives reasonable re-
sults, The effect of measuring Fourier transform on non uniform nodes has
minor effect on the accuracy of the reconstruction method.

7.3.6. Stability at each step separatelin the second simulations we pre-
sented the results of each step in the calculation process. We can see that
even with large number of different translations and amplitudes, the ex-
traction of the generalized moments (the inputs for the generalized Prony
system) from the integral measurements gives good results. The condition
number of the matrices, we had to invert, remains around 1 (as needed) and
the actual reconstructed results gave good approximation of the original in-
puts.

8. ADDENDUM: FUTURE RESEARCH DIRECTIONS

8.1. What sample sets can appear in Fourier decoupling?T'his section
outlines a possible approach to the following important problem:

Under what conditions the zero sets of the Fourier transforms of the
shifted signals, as they appear in Fourier decoupling, are interpolating (Tu-
ran) sets?

We expect that this is a “generic” situation: if these zero sets for each of
the signals are hypersurfaces of a sufficiently large area, and if they are in
a “general position” one with respect to others, then a lower bound for the
invariantw can be provided, which under some natural conditions implies
positivity of w and hence the interpolation property for the intersections of
the zero sets.

We outline a possible proof of this fact in a special case of three functions
in R? where the zero set of one of them is a collection of parallel straight
lines. We formulate also a general conjecture in dimension 2, and discuss its
possible proof and implications. We consider the completion of this proof
and a further investigation of the above problem as an important direction
of the future research.

Our approach is based on certain integral-geometric tools recently de-
veloped in [L4, 15]. These tools provide lower bounds on the number of
generic intersections points of spherical curves with hyperplanes, and on
the intersection angle. These estimates provide an integral-geometric coun-
terpart of the “quantitative Sard-like theorems” as appeat4h [The fol-
lowing result has been proved ihg):



58 NIV SARIG SUPERVISOR: PROF. YOSEF YOMDIN

Theorem 8.1.([15], Theorem 3.4) Lat : [0, T] — S™~! be a curve of length
L(o) and fixa € (0,1). Then there exisin — 2)-equator spherea ¢ S™1
such that the intersectioa N A contains at leas{1 — a)“*ZLTc[’) points X
satisfying the following condition: the angle betweemnd (x) at x is

1S
> al.

In fact, it is shown in 15] that the conditions as above are satisfied for
in a complement of a set of an arbitrarily small measure in the space of the
hyperplanes passing through the origirkih

Let us explain how Theore®.1 (or, more accurately, its affine version
which we do not state here) implies a lower bound on the invacieoftthe
intersection of certain affine curves. L8t Sc 12 ¢ R? be curves of the
lengthsLy, L. We assume that the cur& is twice differentiable, and that
its injectivity radius is bounded from below (i.e. it does not return to itself
too close). Now we tak&, to be a union of parallel straight lines in a dis-
tanced ~ L—ll one from another. Now we first apply $ a spherical rotation

Ua,. Applying Theorem8.1 we find thatS; NU,(S) contains abouCL%
points, with the lower bound on the intersection angle at each one. Now,
applying differentiability assumption and injectivity radius, we conclude
that these points aeseparated from one anothery L—ll Therefore thee
covering number o NU,(S) is of orderCL%. Taking into account that
the polynomialMz(¢g) in the definition ofw is of the first order in% ~ L1

we conclude thato(S; NU2(S)) > 0 for L large. Finally, we notice that
applying a spherical rotatidd; to bothS; andU,(S) we can “shift away”

all their intersection points from the third curtée

As applied to our decoupling problem, we expect the following statement
to hold.

Let three two-dimensional signals, f», f3 be given with the zero sets of
their Fourier transformsfy, fo, f3 being the curvesSS; and S as above.
Assume that the length, lof the curve $is large enough, with respect
to the number N of the shifts allowed. Let,U, be rigid transforma-
tions of the plane and denote Wy, f, the inverse Fourier transforms of
U1(f1),Uz(f2). Then for a set of positive measure of the rigid transforma-
tions Up, U, the Fourier decoupling procedure appliedtg f,, f3 produces

a uniquely solvable system for the shifts of the siggal f

We believe that the results df9] stated above allow for a serious gener-
alization. Let us state this expected generalization, preserving the “spheri-
cal” setting of [L5]. We consider the groupQ(3) of linear isometries oR>
with its Haar measurbp normalized byhpy(SQ(3)) = 1.
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Conjecture Let §, S, 3 be three G-smooth curves in the unit spheréS
RR3, of the spherical lengthsil Lo, L3, respectively. Then for each positive
a there is a set W SQ(3) x SQ(3) such that for eactiU,U,) € SQ(3) x
SQ(3) \ Wy the following conditions hold:

1. There are at least {fa)L1L, points § among the intersection points
of the curves Y(S) and W (S,), such that each two of these points are at

the distance at Ieaﬁhﬁl(;?l(_z)ﬂ)]l/z from one another.

2. Each of the points;ss at the distance at IeasHtLIH) (Lgi(f))(L3+1)}1/2
from the curve &

Here G (a),Cy(a),Cs(a) are positive for positiver but tend to zero aa
tends to zero.

We believe that the integral-geometric arguments used in the proof of
Theorem 3.4 in15] can be extended to the proof of the above conjecture.
Would this conjecture be true, it would imply the lower bound for the in-
variantw of the selU;(S§) NU2(S):

For eacha € (0,1] and (U1,U2) € SQ(3) x SO3) \ Wy we have

W(U1(S1) NU2(S)) > w(a, Ly, Lp) = €[Cr(a)Lilo —Ma(g)],  (8.1)

wheree = m For L;L, sufficiently largew(a,L1,Lp) > 0. To

prove this statement we notice that by the conjectureg trosen as above
the e-covering number of the sé11(S;) NU2(S) is at leastCy(a)L1Lo.
Then the bound fow follows from its definition. Positivity ofw for large
L,L, follows from the fact thaM;(g) is proportional to the square root of
L1Lo, according to the conjecture.

As above, this would imply a “quantitative genericity” for solvability of
the decoupled systems.

8.2. Comparison with Compressed SensingWe believe that the prob-

lem of reconstruction of shifts of given functions studied in the present
work, may serve as a natural test case for a comparison of Algebraic Sam-
pling and Compressed Sensing approaches to signal reconstruction. We
have mentioned in the introduction an important advantage of Compressed
Sensing: the universality of this approach. The method can be applied to
any signal, without any a priori information on its structure. If the signal
occurs to be sparse in the basis we work with, the results will reflect this
fact through an increased reconstruction accuracy.

In contrast, Algebraic Sampling requires an accurate a priori information
on the structure of the signal to be reconstructed. On the other hand, if such
an information is available, Algebraic Sampling has a potential to strongly
outperform Compressed Sensing. Indeed, the first requires the number of
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measurements equal to the number of the degrees of freedom of the signal.
On the other hand, performance of the second depends on the sparseness of
the signal. For signals depending on their parameters in a non-linear way,
their sparseness in any linear basis typically reflects their simplicity (i.e. the
number of their non-linear degrees of freedom) only very partially.

So we can take a functioh with a “non-sparse” representation in the
usual wavelets bases, and consider signals of the Fapth= SN ; a f (x—
Xi), as considered above. Assuming we know the Fourier coeffiagigits=
f(k) fork=0,1,...,2N, and they are well separated from zero. Then we
can reconstruck via the method described above, froMd Bf its Fourier
coefficientsck(F). On the other hand; will not have a sparse represen-
tation in any of the usual wavelet bases. So we cannot expect a good per-
formance of Compressed Sensing approach in this case. The a priori infor-
mation we have o will not help since Compressed Sensing algorithms
(at least, in their basic form) do not allow us to incorporate this a priori
information.

On the other hand, sincé is known, we can consider a wavelet-like
frame in an appropriate functional space consisting @nd of its shifts
in various scales. The assumption of non-vanishing of the Fourier coeffi-
cientsck(f) = f(k), via Wiener's tauberian theorem (see Theofeabove)
provides an estimate of the non-degeneracy of our frame. We can expect a
very sparse representationffin this system. So it looks possible to give
rigorous (and fare) estimates of the performance of each of the methods in
our case. We consider obtaining such estimates an important problem for
future research.
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Appendices

APPENDIXA. THE CODE OF THE FIRST SIMULATION

function [ xLocBody xAmpBody yLocBody yAmpBody..

end

condHx condVx condHy condVy..
xGeneralizedMoments yGeneralizedMomeijts.
= ReconLocAndAmpOneBody( numberOfGridPoints corner, noisedSignal
, humBody, body )
[xGeneralizedMoments yGeneralizedMomentp=...
CalculateAllGeneralizedMomen{siumberOfGridPoints corner, body,
noisedSignal, numBody);

[ xLocBody, xAmpBody, condHx, condVx] = SolveProny (
xGeneralizedMoments numBody) ;
[ yLocBody, yAmpBody, condHy, condVy ] = SolveProny (

yGeneralizedMoments numBody) ;
[xAmpBody, yAmpBody, xLocBody, yLocBody] = SortOutputgxAmpBody, yAmpBody,
xLocBody, yLocBody) ;

function [xGeneralizedMoments yGeneralizedMomentk=...

end

CalculateAllGeneralizedMomen{siumberOfGridPoints corner, body,
noisedSignal, numBody)

[xBodyMoments yBodyMomentg = CalculateMoments(
numberOfGridPoints corner, body, numBody ) ;

[xSignalMoments ySignalMoment§ = CalculateMoments(
numberOfGridPoints corner, noisedSignal, numBody );

xGeneralizedMoments = CalculateGeneralizedMoment$ xSignalMoments
xBodyMoments ) ;

yGeneralizedMoments = CalculateGeneralizedMoment¢ ySignalMoments

yBodyMoments ) ;

function [xModelMoments yModelMomentd = CalculateMoments(

end

numberOfGridPoints corner, model, numBody )
xModelMomentszeros(1l ,numBody3+2);
yModelMomentszeros(1,numBodyx3+2);
for 1=0:numBodyx3+2
xModelMomentgi+1)=CalculateMomentintegralnumberOfGridPoints
corner,model,i ,0);
yModelMomentqi+1)=CalculateMomentintegralnumberOfGridPoints
corner,model,0,i);
end

function moment= CalculateMomentintegral(numberOfGridPoints corner,

signal, indX,indY)
x=—corner:2xcorner/(numberOfGridPoints-1):corner;
y=x.7indY;
x=x."indX;
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grid=x"=y;
momentesum(sum( grid.x signal.x(2« corner/(numberOfGridPoints-1))"2))
end
function generalizedMoments = CalculateGeneralizedMoments.
(signalMoments, bodyMoment9
[row, col]=size(signalMomenty;
generalizedMomentszeros([row, col]);
generalizedMoment@+1,0+1)=CalculateGeneralizedCurrentMome(t
signalMomentg1,1) ,generalizedMomentgl ,1) ,bodyMoment{1,1));
for sumnm=1l:row+col-2
for i1=0:min(summ,row—1)
i2=summ-il;
if (i2+l<=col)
generalizedMomentGil+1,i2+1) =...
CalculateGeneralizedCurrentMoment.
(signalMomentgil+1,i2+1),generalizedMomentfl:il+1,1:
i2+1) ,bodyMoment{1:i1+1,1:i2+1));
end
end
end
end
function currentGeneralizedMomeriCalculateGeneralizedCurrentMome(nt

currentSignalMomentgeneralizedMomentshodyMoment9

currentGeneralizedMomerturrentSignalMomeng
s=size(bodyMomenty ;
il=s(1)-1;
12=5(2)-1;
for k1=0:i1
for k2=0:i2
if kl+k2<il+i2
currentGeneralizedMomerturrentGeneralizedMomenriChoice([
i1,i2],[k1,k2]) «xbodyMomentgil—k1+1,i2—-k2+1)x
generalizedMomentekl+1,k2+1);
end
end
end
currentGeneralizedMomerturrentGeneralizedMomerdbodyMomentg1,1);
end
function c=Choice(indxN,indxK)

c=1,
for i=1:length(indxN)
n=indxN(i);
k=indxK (i) ;
if n>=k
c=cxfactorial(n)/(factorial(k)sxfactorial(n-k));
else
c=0;
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end

function [ xBody, ampBody, condH, condV ] = SolveProny (momentsPron

end

numBody)
s=size(momentsProi;
if s(1)==1
%Finding the translations.
[xBody, condH]=FindLocBody(momentsPronnumBody) ;
%Finding the amplitudes.
[ampBody, condV]=FindAmpBody(xBody, momentsProi;
end

function [xBody,condH]=FindLocBody(pronyMoments numBody)

end

[H, condH]=MyHankle(pronyMoments numBody) ;

v=transposdpronyMoment{numBody+1:end)) ;
=—H\v;

a=[q;1];

xBody=transposg1./roots(q));

function [H condH]=MyHankle(pronyMoments numBody)

end

H=hankel(pronyMoment{1:end-numBody) ,pronyMomentg end-numBody: end—1)) ;
condH=cond(H) ;

function [ampBody, condV]=FindAmpBody(xBody, momentsPro

end

[V, condV]=MyVanderMondgxBody, length(momentsPro) ;
ampBody=(momentsPronV) ;

function [V, condV]=MyVanderMondg xBody, numMomentsProh

end

V=zeros(length(xBody) ,numMomentsPro;

for i=0:numMomentsProal
V(:,i+1)=xBody."i;

end

condV=cond(V);

function [xAmpBody,yAmpBody,xLocBody,yLocBody]=...

end

SortOutputgxAmpBody,yAmpBody, xLocBody, yLocBody)
[xAmpBody, Ix]=sort(xAmpBody) ;

[yAmpBody, ly ]= sort(yAmpBody) ;
xLocBody=xLocBody(Ix);

yLocBody=yLocBody(ly);
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APPENDIXB. THE CODE OF THE SECOND SIMULATION

function [ xRecBody, ampRecBody xGenRecBody ampGenRecBody
generalizedMoments conditondV] = ReconLocAndAmpOneBody( corner,
signal, body, first, step, numBody)
%Generating the generalized moments for the Prony systems

nonUniformZeroSamplesOfOtherBody = CalculateNonUniformZeroSamples
(first ,step,numBody);
generalizedMoments = CalculateGeneralizedMoments

( corner, body, signal, nonUniformZeroSamplesOfOtherBody;
%Solving the Prony system of each model
[ xGenRecBody ampGenRecBody,condH,condV] = SolveProny
( generalizedMoments numBody) ;
%Converting the results from the Prony systems to the results of the
%generalized Prony systems
[ ampRecBody xRecBody] = ConvertGenParToRecPar ( xGenRecBody
ampGenRecBody first , step);
%Sorting the results by magnitude of translations
[ ampRecBodyxRecBody,xGenRecBody, ampGenRecBody = Sortsort (
ampRecBody xRecBody, xGenRecBody ampGenRecBody);
end

function nonUniformSamplesCalculateNonUniformZeroSamplegfirst ,step ,

numOfOtherBody)
nonUniformSamplesfirst+step*(0:(2x numOfOtherBody1));
end
function generalizedMoments = CalculateGeneralizedMomen¢sorner,

body, signal, nonUniformZeroSamplesOfOtherBody
%Calculating the Fourier transform on the samples for the signal and
%the model.

bodyMoments = CalculateMoments(corner, body,
nonUniformZeroSamplesOfOtherBody
signalMoments = CalculateMoments(corner, signal,

nonUniformZeroSamplesOfOtherBody
% Generating the generalized moments.
generalizedMoments = ConvertMomentsToGeneralizedMoments.
(signalMoments bodyMoments ;

end

function modelMoments= CalculateMoment§écorner, model, nonUniformSample}
numBody=(length(nonUniformSample}—-2)/2;
modelMomentszeros(1l,numBody2+2) ;
%Generating the Fourier transform moments for the signal on the
%nonuniform samples.
for i=0:numBody2+1

modelMomentgi+1)=CalculateMomentintegrglcorner, model,
nonUniformSamplegi +1));

end

end
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function moment= CalculateMomentintegral( corner, model,
nonUniformSample

%Calculating the Fourier integral on a specific sample.
numberOfGridPointslength(model);
%Generating the axis.
x=—corner:2xcorner/(numberOfGridPoints-1):corner;
%Generating the Fourier exponent on the axis.
grid=1/(sqrt(2x%pi))*xexp(—lixxxnonUniformSamplg;
%Calculating the Fourier integral.
momentesum( grid.x modelx(2«xcorner/(numberOfGridPoints-1)));
end
function [ xBody, ampBody, condH, condV ] = SolveProny (momentsPron

numBody)

%Finding the translations.

[xBody, condH]=FindLocBody(momentsPronnumBody) ;

%Finding the amplitudes.

[ampBody, condV]=FindAmpBody(xBody, momentsProi;
end

function [xBody,condH]=FindLocBody(pronyMoments numBody)
[H, condH]=MyHankle(pronyMoments numBody) ;
v=transposdpronyMoment{numBody+1:end)) ;
g=—H\V;
a=[q;1];
xBody=transposg1l./roots(q));

end

function [H condH]=MyHankle(pronyMoments numBody)

H=hankel(pronyMoment{1:end-numBody) ,pronyMomentg end-numBody: end—1)) ;

condH=cond(H) ;
end

function [ampBody, condV]=FindAmpBody(xBody, momentsProf

[V, condV]=MyVanderMondg xBody, length(momentsProi) ;
ampBody=(momentsPronV) ;

end

function [V, condV]=MyVanderMondg xBody, numMomentsProh

V=zeros(length(xBody) ,numMomentsProh;
for i=0:numMomentsProrl
V(:,i+1)=xBody." i;
end
condV=cond(V);
end
function [ ampBody,xBody ] = ConvertGenParToRecP&xGenBody, ampGenBody
first, step)
xBody = (1i *(MyLog(xGenBody))/step);
ampBodyabs(ampGenBody ;
checkSignAmpBody= real(ampGenBodyx* exp(—1ixxBodyxfirst));
ampBody=(2x%(checkSignAmpBody-0)—1) .x ampBody;
xBody=real(xBody);
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89 end

90

91 function y=MylLog(x)
92 y=log(x);

93 while imag(y)>pi;
94 y=y—2%1i*pi;
95 end

96 while imag(y)<=pi;
97 y=y+2x1i*pi;
98 end

99 end

100

101 function [ampBody,xBody,xGenBody , ampGenBody] = Sortsort(ampBody, xBody,
xGenBody, ampGenBody)

102 if nargin==4

103 [*,11 = sort(real(xBody));
104 ampBody = ampBody(l);
105 xBody = xBody(1);

106 xGenBody = xGenBody (1) ;

107 ampGenBody= ampGenBody )
108 elseif nargirr=2

109 [~, 11 = sort(real(xBody));
110 ampBody = ampBody(l);
111 xBody = xBody(1);

112 xGenBody=0;

113 ampGenBodyO0;

114 end

115 end
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