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Abstract

The first part of this work presents several results about non lin-
ear reconstruction of Fourier transform for ”simple” functions. The
second and the main part of this work deals with the Colliding Target
Detection problem (CTD). This problem concerns detection of two or
more targets which are close to each other. The usual resolution in
this case drops, so we shall analyze this problem utilizing the simplic-
ity of the transmitted and received signals. From the CTD problem
as well from the non linear Fourier transform reconstruction arises the
same set of non linear equations. We shall show some directions for
solving it.
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1 Summary.

1.1 The approach.

Consider the following general situation: we have to restore from a set of
noisy measurements a certain “signal” belonging to a given class (CT images,
radio signals of various origins, etc.). Assume that we are given a non-
linear approximation scheme S for signals from our class, which allows for an
accurate representation of each specific signal, and whose parameters reflect
the features we are interested in. We shall denote by S (λ) the signal model
provided by S, where λ is the set of the parameters.

In many cases such a scheme S is suggested by the mere physical nature
of the signal considered, like in the case of the reflected radar signal, which is
the superposition of the original pulse reflected from different targets. In this
case the most important non-linear parameters of S are the targets positions.
In other cases, the construction of the scheme S is not easy, as in the case of
medical and other images.

The main problem considered in this work is the following: given a class
of signals and a non-linear approximation scheme S for signals from our
class, how to reconstruct with a high accuracy the parameters λ of S from a
set of noisy measurements of the actual signal? In particular in this work
we shall focus on the colliding targets detection problem and bring up some
methods towards its solution.

Our basic approach is the following: Using specific mathematical features
of the problem we construct a system of non linear equations. This system’s
solution assumed to be the “best fitting” parameters λ (scalar or vector) of
S s.t the actual measurements and the measurements of the model S (λ) are
”close” to each other (”closeness” is to be discussed later).

We address in this thesis two different but related problems: The Fourier
inversion on piecewise polynomials and Radar target detection problem.

1.2 The nonlinear Fourier inversion problem.

We shall sketch an approach for the investigation of the general problem of
nonlinear parameters reconstruction with some specific problems, related to
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the reconstruction from the Fourier data of functions with the “edge-type”
singularities. The approximating models S (λ) are piecewise polynomials. In
this initial stage we assume all the data to be accurate and do not address
explicitly the problems of the noise separation. This approach is for future
investigation and it will not present a significant part in the results and the
conclusions of this work.

1. Reconstruction of a piecewise constant function from its
Fourier coefficients.

In fact, we replace the Fourier coefficients by the moments, and obtain
explicitly a system of nonlinear equations for the coordinates of the discon-
tinuity points and for the function values between the jumps. We shall show
that also the solution of this system can be obtained explicitly. (see §4.7
below)

2. Reconstruction of a piecewise polynomial function from its
Fourier coefficients.

It looks plausible that in the case of a piecewise polynomial function it is
still possible to solve the corresponding system of nonlinear equations explic-
itly. The corresponding nonlinear systems of equations are closely related to
the ones we found in the target detection problem. We shall describe these
systems below.

1.3 The Radar Target Detection problem.

We suggest to start the investigation of the nonlinear reconstruction in the
case of the noisy data from a very specific problem, arising in the analysis
of the radar signals. In some aspects this problem has a simpler formulation
than the general reconstruction problem above. On the other hand, this
problem is characterized by a very high noise level, it is still open in some
important instances, and it is practically important.

1. The simplified Target Detection problem.

Here we assume that the reflected radar signal is the sum of the original
pulse, reflected from different point targets. We assume in addition that the
amplitude and the initial phase of the reflected pulses are preserved. This
last assumption is not realistic, and we remove it later on.
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Under the above assumptions the only parameters of S are the targets
positions, i.e. the time shifts of the reflected pulses.

We propose to investigate this problem on the base of convolving the
Taylor polynomial of the signal against a precalculated kernels which diago-
nalize the system of moments. This Taylor polynomial is developed w.r.t the
targets positions. This method gives a system of nonlinear equations that
approximate our parameters. .

2. The extended Target Detection problem.

As above, we assume that the reflected radar signal is the sum of the
original pulse, reflected from different point targets. However, as it happens
in reality, the amplitude and the initial phase of the reflected pulses may
vary, and they are not known a priori.

We get more free parameters than in the simplified problem above. We
propose to estimate these parameters on the base of a more careful analysis
of the correlation function.

3. The problem of detection of colliding targets.

The problem of an accurate detection of two or more targets roughly
at the same distance is practically very important. The resolution of the
conventional methods drops in such situations. We propose to investigate this
problem combining the analysis of the convolution function with the Taylor
expansion of the signal with respect to a small parameter (or parameters).

4. An analytic method to solve the nonlinear system of moments
equation

We shall discuss a method given by [7] to solve the very special form
of equations that arise from the colliding targets detection problem, as well
from the Fourier transform reconstruction of piecewise constant functions.
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2 Fourier transform of piecewise polynomial

functions.

In this section we study the behavior of the Fourier transform on the classes
of piecewise polynomial functions of the prescribed combinatorial complexity.
Let us introduce some notations. We consider the space L2 (S1) of all the
square integrable functions on the unit circle S1. The Fourier transform is a
mapping (an isomorphism) F : L2 (S1) → l2 of L2 (S1) into the space l2 of all
square summable double infinite sequences (...a−n, a−n+1, . . . , an−1, an, . . .),
defined by an (f) = 1

2π

∫

S1 f (t) exp (−int) dt. We shall use also a partial
Fourier transform Fk which associates to a function f its Fourier polynomial
of degree k, i.e: Fk (x) =

∑k

n=−k an (f) einx.

2.1 Complexity of piecewise polynomial functions.

We consider piecewise polynomial functions on S1. Let such a function g (x)
be represented by the polynomials Pq (x) on the intervals ∆q, q = 1, ..., r of
the partition Σ of S1. We define the combinatorial complexity σPP (g) of g

as follows:

Definition 2.1 The combinatorial complexity σPP (g) is the sum r+
∑r

q=1 dq

or
∑r

q=1 (dq + 1) .

The specific choice of this complexity expression is motivated by the following
simple observation:

Proposition 2.1 The number of sign changes of a piecewise polynomial
function g on S1 does not exceed σPP (g).

Proof: Sign changes of g may occur either at the end points of the intervals
∆q, q = 1, ..., r of the partition Σ of S1, or at the interior points of these
intervals ∆q at which the polynomial Pq vanishes. The total number of zeroes
of all the polynomials Pq does not exceed

∑r
q=1 dq. Adding the endpoints of

∆q we get the required expression.

We need also the following simple lemma:
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Lemma 2.1 Let g1, . . . , gl be piecewise polynomial functions with σPP (gj) ≤
dj , j = 1, . . . , l. Then for g = g1 + . . . + gl the combinatorial complexity
σPP (g) satisfy

σPP (g) ≤ δ (δ + 1) ,

where δ = (d1 + . . . + dl) .

Proof: Consider a partition Σ of S1 which is a common refinement of all
the partitions Σj , j = 1, . . . , l of gj. The number of the intervals in each
Σj does not exceed dj. Therefore, the number of the intervals ∆q in Σ does
not exceed d1 + . . . + dl = δ. g is a polynomial on each ∆q, of the degree at
most equal the maximum of the degrees of the polynomials forming gj . In
particular, this degree does not exceed d1 + . . . + dl = δ. By definition 2.1,
we have then σPP (g) ≤ δ (δ + 1). This completes the proof of the lemma.

Remark 1. The bound of Lemma 2.1 is essentially sharp. Indeed, consider
the case where g1 is a polynomial of degree d1, while g2 is a piecewise constant
function with d2 partition intervals. We have σPP (g1) = d1 + 1, σPP (g1) =
d2. The sum g = g1 + g2 is a piecewise polynomial function with d2 partition
intervals, and with the degree of the polynomial on each interval equal to d1.
Hence σPP (g) = (d1 + 1) d2. For large and roughly equal d1, d2 this is of the
same order as the bound of Lemma 2.1.

Remark 2. Notice, however, that the number of zeroes and of sign changes
of g in the example above is bounded by d2+d1. Indeed, let us count the sign
changes of g along the segments where g1 is monotone. On each segment the
sign changes are bounded by the number of partitioning intervals overlap-
ping this segment. All together we counted the number of the partitioning
intervals while counting twice each interval that has an extremum of p in it’s
interior. All together we can not have more than d1 − 1 + d2. Recalling that
if the polynomial is of odd degree, sign change can occur also at the end and
beginning point of S1 gives us d1 + d2.

2.2 Injectivity of the Fourier transform.

Let PP (δ) ⊂ L2 (S1) be the subset of all square-integrable semi-algebraic
functions of the combinatorial complexity (as defined in §2.1 above) at most
δ.
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Notice that PP (δ) is not a linear subspace in L2 (S1). Indeed, PP (δ)
contains, in particular, all the piecewise constant functions with the number
of the partition intervals at most δ. However, for a generic choice of the
partition points the sum f + g of two such functions f and g is piecewise
constant only on the refined partition, containing 2δ intervals, and hence its
combinatorial complexity σPP (f + g) is 2δ. In general, for f1, . . . , fl piece-
wise constant functions with the number of the partition intervals δ1, . . . , δl,
respectively, we have σPP (f1 + . . . + fl) ≤ δ1+. . .+δl, and the equality holds
for a generic choice of the partitions. In general, the behavior of a combina-
torial complexity of piecewise polynomial functions is partially described by
Lemma 2.1.

Now we can prove our first main result, showing that a piecewise poly-
nomial function of a combinatorial complexity δ is uniquely defined by its

first r = 2δ (2δ + 1). By first r Fourier coefficients we mean {ak (f)}
r
2

k=−
r
2

.

Fourier coefficients. We do not touch in this stage the question of how such
a function can be actually reconstructed from the Fourier data.

We shall prove two theorems, one for moment transform and another for
Fourier transform. Both of them use the same basic method while the first
theorem is maybe less technical.

First we shall consider the moments mk (g) =
∫ 2π

0
tkg (t) dt

k = 0, 1, . . . . So we consider the “moment transform”

M (g) = (m0 (g) , m1 (g) , . . . , mr (g) , . . .) ,

and the partial moment transforms

Mr (g) = (m0 (g) , m1 (g) , . . . , mr (g)) .

We shall prove injectivity of the appropriate moment transform on PP (δ)
and then return to the original setting of the Fourier transform.

Theorem 2.1 Mr is injective on PP (δ).

Proof: Assume, in contrary, that there are functions g1 and g2 in PP (δ),
g1 6= g2 with exactly the same moments up to r-th. Hence for the difference
g = g2 − g1 6= 0 we have the vanishing of the moments up to r-th: mj (g) =
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0, j = 0, 1, . . . , r. By Lemma 2.1 we have for the combinatorial complexity
of g the bound σPP (g) ≤ r. By Proposition 2.1 σPP (g) bounds from above
the number of sign changes of g. Thus g changes sign at certain points
x1, . . . , xq, q ≤ r (If g flip sign by vanishing on some interval we take only
one point -w.l.o.g the middle- in this interval as xi).

Let us construct now a polynomial Q (t) of degree q with exactly the same
sign pattern as g that is: Q (t) = sgn (g (0)) (−1)q ∏q

i=1 (x − xi). Write Q as
Q (x) =

∑q

0 αjx
j . We have g (x) Q (x) > 0 everywhere, except the points

x1, . . . , xq and the intervals where g ≡ 0 (which are not all the domain since
g 6≡ 0). Therefore

∫

S1 g (x) Q (x) > 0. On the other hand, this integral can
be expressed as a linear combination of the moments: 0 <

∫

S1 g (x) Q (x) =
∑q

1 αj

∫

S1 xjg (x) dx =
∑q

0 αjmj (g) = 0, since all the moments of g up to
r-th vanish by the assumption. This contradiction proves Theorem 2.1.

Lemma 2.2 For even q and {xi}
q

i=1 ⊂ C the product

q
∏

i=1

sin

(

1

2
(x − xi)

)

(1)

can be expressed as a trigonometric polynomial

q

2
∑

j=−
q

2

αje
ijx. (2)

Proof: In the preceding calculation we will use the trigonometric identities:

2 sin α sin β = cos (α − β) − cos (α + β)

and
cos (α + β) = cos (α) cos (β) + sin (α) sin (β) ,
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and the Euler identity.
∏q

i=1 sin
(

1
2
(x − xi)

)

=
∏

q

2

j=1 sin
(

1
2
(x − x2j−1)

)

sin
(

1
2
(x − x2j)

)

= 1
2

∏

q

2

j=1

{

cos[1
2
(x − x2j−1) −

1
2
(x − x2j)] − cos[1

2
(x − x2j−1) + 1

2
(x − x2j)]

}

= 1
2

∏

q

2

j=1 cos
(

−1
2
x2j−1 + 1

2
x2j

)

− cos
(

x − 1
2
x2j−1 −

1
2
x2j

)

=: 1
2

∏

q

2

j=1 aj − cos (x + bj) = 1
2

∏

q

2

j=1 aj − cos x cos bj + sin x sin bj

=:
∏

q

2

j=1 ãj + b̃je
ix + γ̃je

−ix =
∑

q

2

j=−
q

2

αje
ijx

(3)
Using the fact that einxeimx = ei(n+m)x, the last equality is easy to verify. By
this we proved Lemma 2.2.

Theorem 2.2 F r
2

is injective on PP (δ).

Proof: Assume, in contrary, that there are functions g1 and g2 in PP (δ),
g1 6= g2 with exactly the same first r Fourier moments. Hence for the differ-
ence g = g2 − g1 6= 0 we have the vanishing of the first r Fourier coefficients:
f±j (g) = 0, j = 0, 1, . . . , r

2
. By Lemma 2.1 we have for the combinatorial

complexity of g the bound σPP (g) ≤ r. By Proposition 2.1 σPP (g) bounds
from above the number of sign changes of g. Thus g changes sign at certain
points x1, . . . , xq, q ≤ r (If g flip sign by vanishing on some interval we take
only one point -w.l.o.g the middle- in this interval as xi). W.l.o.g q is an even
number (otherwise add xq+1 = 2π).

Let us now construct a trigonometric polynomial with exactly the same
sign pattern as g: Q (x) = sgn (g (0)) (−1)q ∏q

i=1 sin
(

1
2
(x − xi)

)

. Every
sin

(

1
2
(x − xi)

)

is negative from 0 till xi and positive from xi till 2π (this
fact is similar to the property of the product suggested in theorem 2.1). Using

lemma 2.2 we get the exponential polynomial structure Q (x) =
∑

q

2

−
q

2

αne−inx.

Therefore we have g (x) Q (x) > 0 everywhere, except the points x1, . . . , xq,

(and 0 if q was odd at the beginning) and the intervals where g ≡ 0 (which
are not all the domain since g 6≡ 0). Therefore

∫

S1 g (x) Q (x) > 0. On the
other hand, this integral can be expressed as a linear combination of the
Fourier coefficients:

0 <
∫

S1 g (x) Q (x) =
∑

q

2

−
q

2

αn

∫

S1 e−inxg (x) dx

= 2π
∑

q

2

−
q

2

αnan (g)

= 0
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since all the Fourier coefficients of g up to r
2

vanish by the assumption. This
contradiction proves Theorem 2.2.

Remark 1. It is not completely clear, whether we need r = 2δ (2δ + 1)
moments to reconstruct a function from PP (δ) uniquely. This number r ap-
pears as a result of taking the difference of two functions in PP (δ). However,
to conclude that a function g ∈ PP (δ) vanishes, it is enough the vanishing
of its δ + 1 first moments or first δ + δ (mod2) Fourier moments:

Proposition 2.2 If for a function g ∈ PP (δ) we have mi (g) = 0, i =
0, 1, . . . , δ (respectively a±i (g) = 0, i = 0, 1, . . . ,

⌈

δ
2

⌉

), then g ≡ 0.

Proof: Exactly the same as for Theorems 2.1 and 2.2, taking into account
that the number of the sigh changes of g is at most δ (notice that here δ does
not need to be even as r was in the proof of theorem 2.1).

Remark 2. In Theorem 2.1 (respectively 2.2) we showed that for all se-
quence of points {xi}

q
i=1 and the basis {xn}∞n=1

(

{einx}∞n=−∞

)

there exists a
polynomial (Fourier polynomial) Q (x) of degree q that changes sign at each
xi. It is suggested to expand these theorems to other bases of L2 as Legendre,
Hermite, Laguerre etc. Maybe it is also possible to find criteria on a basis of
L2 s.t it will posses this property. Clearly, in this kind of bases, it is needed
first to define generalized polynomials and their degree.
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3 Explicit equations for the Fourier inversion.

The injectivity of the Fourier transform on piecewise polynomial functions
suggests that the parameters of such a function (i.e. the coordinates of the
jump points and the coefficients of the polynomials on each segment) can be
uniquely reconstructed from the Fourier data. In this section we construct a
system of nonlinear equations which is satisfied by these parameters.

3.1 Fourier transform.

Assume f : S1 → C is a semi-algebraic function s.t f =
∑r

q=1 Pq (x) where

Pq (x) =
∑dq

m=0 pq,mxmχ∆q
(x) ,

χA (x) =

{

1 x ∈ A,

0 x 6∈ A
,

and the partition is defined

Σ = {∆q = [xq, xq+1] : −π = x1 < x2 < . . . < xr < xr+1 = π} .

Then

an (f) := 1
2π

∫ π

−π
f (x) e−inxdx = 1

2π

∑r
q=1

∑dq

m=0 pq,m

∫ xi+1

xi
xme−inxdx

=
∑d

m=0

∑m
l=0

Cm,l

nl+1

{

pr,mxm−l
r+1 e−inxr+1

+
[

∑r

q=2 (pq−1,m − pq,m)xm−l
q e−inxq

]

− p1,mxm−l
1 e−inx1

}

where
d = max {dq : q ∈ {1, . . . , r}} ,

pq,m = 0 if m > dq,

Cm,l = i1−lm!
2π(m−l)!

.

This can be written in a compact form using standard inner product

an (f) =
d

∑

m=0

m
∑

l=0

Cm,l 〈bm, Xn,m,l〉 (4)
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where
(bm)1 = −p1,m,

(bm)q = pq−1,m − pq,m q ∈ {2, . . . , r} ,

(bm)r+1 = pr,m,

(Xn,m,l)q
=

xm−l
q einxq

nl+1 q ∈ {1, . . . , r + 1} .

Notice that there is a (simple) unique linear transformation between (bm)q

and the non zero pq,m. Using the Lambert W function
(

z = W (z) eW (z)
)

we
can find that for m 6= l

(Xn,m,m)
q

=
xm−l

q einxq

nl+1 ⇐⇒

nl+1 (Xn,m,l)q
=

(

in
in

)m−l
xm−l

q einxq ⇐⇒

im−lnm+1 (Xn,m,l)q
= (inxq)

m−l
einxq ⇐⇒

in
m+1
m−l

m−l
(Xn,m,l)

1

m−l
q

= inxq

m−l
e

inxq

m−l ⇐⇒

xq = m−l
in

W

(

in
m+1
m−l

m−l
(Xn,m,l)

1

m−l
q

)

.

Using the fact that xq ∈ [−π, π] we can choose the right branch of W

(For more details on Lambert function see [4–6]).
For m = l it is easy to see that:

xq = −
i

n
ln

(

nm+1 (Xn,m,l)q

)

Clearly, fixing q, there is a strong algebraic relation between the (Xn,m,l)q
’s .

In the case of piecewise constant function we get d = 0 hence

nan (f) =
i

2π
〈b, Xn〉

where
b1 = −p1

bq = pq−1 − pq q ∈ {2, . . . , r}
br+1 = pr

(Xn)q = einxq q ∈ {1, . . . , r + 1}

(This last set of equations will rise as well from the target detection problem,
noting that einxq = (eixq)

n
)
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3.1.1 Another approach to the non linear equations of the Fourier
transform.

Consider the case in which all we know about our function f is that f ∈
PP (δ). If f is a polynomial of degree δ we will need to find δ +1 coefficients
of f , if f is a piecewise constant function on [0, 2π] we will need to find δ

partitioning points in [0, 2π]. We need to think of f as a piecewise poly-
nomial function (each polynomial of degree less then or equal to δ) over a
partition of [0, 2π] with δ points. Thus we need to find (δ + 1)2 + δ = O (δ2)
(as r = δ (δ + 1) = O (δ2)) parameters to define f (possibly some of the
leading coefficients will be zero or some of the partition points will equal
their neighbor). Using the previous notation we get that if f ∈ PP (δ) then
d1 = . . . = dr = r = δ hence

an (f) =

δ
∑

m=0

m
∑

l=0

Cm,l 〈bm, Xn,m,l〉 .

3.2 Moment transform.

Using the same notation in 3.1 we compute the moment transform of f

mn (f) =
∫ π

−π
f (x) xndx =

∑r

q=1

∑dq

m=0 pq,m

∫ xi+1

xi
xm+ndx

=
∑d

m=0
1

n+m+1

[

pr,mxn+m+1
r+1 +

∑r
q=2 (pq−1,m − pq,m) xn+m+1

q − p1,mxn+m+1
1

]

=
∑d

m=0
1

n+m+1
〈bm, Xn,m〉

where
(Xn,m)

q
= xn+m+1

q q ∈ {1, . . . , r + 1}

and again for piecewise constant function we get d = 0 hence

(n + 1)mn (f) = 〈b, Xn〉

where
(Xn)q = xn+1

q q ∈ {1, . . . , r + 1} .

(This set of equations, as we mentioned, will rise as well from the target
detection problem)
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3.2.1 Another approach to the non linear equations of the Mo-
ment transform.

Again using the same logic of section 3.1.1 we get

mn (f) =

δ
∑

m=0

1

n + m + 1
〈bm, Xn,m〉 . (5)

We get systems of exactly the same structure!

In each case we have to try to solve these systems explicitly. As mentioned
before we shall not address here the general case. One important special case
is treated in section §4.7
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4 The Colliding Targets Detection problem

(CTD).

4.1 The general manifestation of CTD.

Assume we have N targets in the space and we transmit from a radar at the
origin a signal M through the space. The signal reflects from the targets and
return with different amplitudes and phases shifts back to our radar where we
can measure the superposition reflected signals from the targets with some
probabilistic/physical noise added on the way. If our transmitted signal is
M (t), the positions of the targets are {τi}

N
i=1 and the different (complex)

amplitudes are {Ai}
N

i=1 then the reflected signal will be

F (t) =
N

∑

n=1

AnM (t − τn) + ǫ (t) . (1)

Here ǫ (t) is the added noise. We would like to find from the reflected signal
the parameters N, An and τn.

4.2 Special cases of Target Detection problem.

We approach the general target detection problem step by step, starting with
some simplified but still very instructive special cases.

4.2.1 Simplified Target Detection problem.

Here we assume that the reflected radar signal is the sum of the original
pulse, reflected from different point targets. We assume in addition that the
amplitude and the initial phase of the reflected pulses are preserved. This
last assumption is not realistic, and we remove it in the next section.

Under the above assumptions the only parameters of F are the targets
positions, i.e. the time shifts of the reflected pulses.

We investigate this problem on the base of the “correlation function”
which significantly reduces the noise.

17



4.2.2 Extended Target Detection problem.

As above, we assume that the reflected radar signal is the sum of the original
pulse, reflected from different point targets. However, as it happens in reality,
the amplitude and the initial phase of the reflected pulses may vary, and they
are not known a priori.

We get more free parameters than in the simplified problem above. We
estimate these parameters on the base of a more careful analysis of the cor-
relation function.

4.2.3 The problem of detection of colliding targets CTD.

The problem of an accurate detection of two or more targets roughly at
the same distance is practically very important. The resolution of the con-
ventional methods drops in such situations. We investigate this problem
combining the analysis of the convolution function with the description of
the typical patterns of this function.

A reasonable assumption will be that M (t) is supported on a finite do-
main let say [−a, a]. Therefore if m = min {|τi − τj | : i 6= j} > 2a, it is easy
to detect the position of the targets from the maximal points of the correla-
tion function of F with M . This is for the case when the noise |ǫ| << |F |, |M |.
If the noise ǫ (as in 1) is to large, it is possible to lower it with the convolution
mask - will be explained. In the case that m < 2a we fall below the ordinary
resolution of the system and we need to further analyze the reflected signal
to identify the parameters we look for.

4.3 The starting point - the case of one target.

In the case of one target the fact that the amplitude of the reflected signal
is not a priori known is not essential - we can always normalize the signal.

In this paper we always start with the convolution function: given a
reflected signal

F (t) = AM (t − τ) + ǫ (t) , (2)

where A is the signal amplitude, M (t) the standard radar pulse (reflected)
and ǫ (t) the noise, we construct the convolution function

Cf (t) = F ∗ M = AM ∗ M + ǫ ∗ M. (3)
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There are at least two reasons to use the convolution function as the input:
first, its Sound to Noise Ratio (SNR) is usually much better than for the
original signal F . Secondly, this function is efficiently and robustly computed
in the actually working detection algorithms, so it presents a natural input
for any further processing. Notice, however, that it is not necessary to use the
convolution with exactly the radar pulse M . Other convolution kernels can
be used. Another aspect is that if our transmitted signal M is not smooth
enough it is possible to gain a smooth convolution mask after convolving
with smooth enough function.

Still, the maximum of the convolution function can be strongly shifted
by the noise. Indeed, this maximum is a point-wise, and not an integral
characteristic of the convolution. Accordingly, with a high probability it
can deviate from the actual target position. In order to further improve the
accuracy of the detection we repeat the convolution step. Indeed, denoting
the ”convolution mask” M ∗ M by M1 , up to now we have

CF (t) = F ∗ M = A (M ∗ M) + ǫ ∗ M = A · M1 (t − τ) + ǫ1 (t) , (4)

where the convolved noise ǫ1 (t) is usually much smaller than the original one
(For some numerical estimations see §4.8.3). The equation 4 has exactly the
same form as the original equation 2 and we can apply the second convolution
step:

C2F (t) = CF ∗ M1 = A (M1 ∗ M1) + ǫ1 ∗ M1. (5)

(again the convolved kernel can be arbitrary and not M1) The expected twice
convolved noise ǫ2 (t) is usually much smaller than ǫ1 (t), and we take as the
estimated target position the maximum of the second convolution C2F (t).

4.4 Two targets with the same reflected amplitudes.

In this case the reflected signal has the form

F (t) = A[M (t − t1) + M (t − t2)] + ǫ (t) , (6)

where A is the signal amplitude. Accordingly, the convolution function has
the form

CF (t) = F ∗ M = A[M (t − t1) + M (t − t2)] ∗ M + ǫ ∗ M. (7)
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Hence it is the sum of the shifted convolution masks and the convolved noise

CF (t) = A[M1 (t − t1) + M1 (t − t2)] + ǫ1 (t) . (8)

Denoting by M2 = M1 ∗M1 the second convolution mask of the radar pulse,
we get for the second convolution of the signal

C2F (t) = CF ∗ M1 = A[M2 (t − t1) + M2 (t − t2)] + ǫ2 (t) . (9)

The same form of the signal is preserved also for the higher iterated convo-
lutions.

4.4.1 Identifying the middle point.

Another reasonable assumption is that the transmitted signal is symmetric
with respect to the middle point t0 = 1

2
(t1 + t2).

Let us assume that the distance t2 − t1 between the two targets is small.
In this case the second convolution of the signal C2F (t) has a unique well
defined extremum. In our case, in the absence of the noise this extremum is
exactly at the point t0 = 1

2
(t1 + t2), because of the symmetry of the signal.

In the presence of the noise we take this extremum as the estimate of this
middle point. Alternatively, we can estimate the position of this extremum
using higher iterated convolutions.

4.4.2 Identifying the time shift.

It remains to find the shift 2τ = t2 − t1. To simplify the notations, let us
assume that t0 = 1

2
(t1 + t2) = 0. We can naturally separate two steps in our

algorithm:

The first step is forming the iterated convolutions, in order to reduce
the noise. At present we work with the second convolution, but in principle
one can iterate the convolution step more times. It is a separate question
of what number of convolution is optimal. Although each convolution step
reduces the noise, it has also a ”low-pass filter” effect on the signal itself,
which ultimately reduces the resolution.

The second step is identifying the time shift parameter τ in the signal of
the form

F (t) = A[G (t − τ) + G (t + τ)] + ǫ (t) (10)
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where G (t) = M (t − t0). Indeed, the iterated convolutions preserve this
form of a signal. So we describe below this second step, assuming that the
noise ǫ (t) is sufficiently low.

4.4.3 First and second order expansion of the signal.

In accordance to what has been explained above, let us assume that the
measured reflected signal F (t) is given by

F (t) = A[G (t − τ) + G (t + τ)] + ǫ (t) , (11)

where G (t) is an a priori known twice differentiable function. Assuming, as
above, that τ is small enough, we get in the first approximation

G (t − τ) + G (t + τ) ≈ 2G (t) + G′ (t) τ − G′ (t) τ = 2G (t) . (12)

We see that because of the cancellation of the first order terms in τ the
measured reflected signal F (t) = A[G (t − τ) + G (t + τ)] + ǫ (t) does not
depend on τ in the first approximation. This fact presumably explains some
of the difficulties in the CTD.

Let us write the second order expansion in τ :

G (t − τ) + G (t + τ) ≈ 2G (t) + G′′ (t) τ 2, (13)

or
F (t) ≈ 2A · G (t) + 2A · G′′ (t) τ 2 + ǫ (t) . (14)

Assuming that the (integrated) noise is small with respect to τ 2, the “func-
tional” equation 14 allows us to produce a system of algebraic equations in
order to estimate both the time shift τ and the amplitude A.

4.4.4 Obtaining and solving equations on A and τ 2.

In order to produce from the functional relation 14 robust scalar equations
on A and τ 2, we integrate 14 with different weights. Let us fix first a function
U (t) orthogonal to G (t) (notice that G (t) is an a priori known function).
We get

∫

U (t)F (t) ≈ 2A

(
∫

U (t) G′′ (t)

)

τ 2 +

∫

U (t) ǫ (t) . (15)
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This is the first of our equations. To produce the second equation, let us fix
a function W (t) orthogonal to G′′ (t). Integrating, we obtain

∫

W (t) F (t) ≈ 2A

∫

W (t) G (t) +

∫

W (t) ǫ (t) . (16)

Dropping the noise, we conclude from this last equation that

A ≈

∫

W (t) F (t)

2
∫

W (t) G (t)
. (17)

Substituting this expression for A into 15 we get

τ 2 ≈

∫

U (t) F (t)
∫

W (t) G (t)
∫

U (t) G′′ (t)
∫

W (t)F (t)
. (18)

The expressions 17 and 18 provide a complete answer to our problem, as-
suming that the integrated noise

∫

U (t) ǫ (t) is small with respect to τ 2.

Remark. One can use other approaches to the analysis of the equation 14:

1. If the amplitude A is known and if we believe that the point-wise noise
level is low with respect to the expected value of τ 2, we just substitute t = 0
into the equation 14. We get

τ 2 ≈
F (0) − 2A · G (0)

2A · G′′ (0)
. (19)

2. If the point-wise noise is still too high, we can try to ”integrate it out”
convolving the equation 14 with a certain known kernel K, not necessarily
U or W used above:

∫

K (t)F (t) ≈ 2A

∫

K (t) [G (t) + G′′ (t) τ 2] +

∫

K (t) ǫ (t) .

Assuming that A is known, this leads to the following estimate for τ 2:

τ 2 ≈

∫

K (t) F (t) − 2A
∫

K (t) G (t)

2A
∫

K (t) G′′ (t)
. (20)

More generally, using two kernels K1 and K2 we get a system of two equations
on A and τ 2.
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3. Notice that for any exponential (or polynomial of degree < 2) function
g (also complex i.e in particular trigonometric functions) and for any kernel U

s.t
∫

gU = 0 we will get also that
∫

g′′U = 0 (since g′′ ∼ g), so this method
could not work for signal s.t its second convolution mask is exponential.
Recall that G is our second convolution mask of the transmitted signal M

i.e
G (t) = ((M ∗ M) ∗ (M ∗ M)) (t)

clearly if M is exponential so is G, and if G is exponential function then by
invoking the convolution theorem twice so is M i.e this method could not
work for exponential signals (in particular trigonometric ones). On the other
hand since we assume our signal is supported on a finite interval this kind of
a function is not of our concern.

4. For f, g functions s.t g 6≡ 0 define f ⊖g = f −g
∫

f(t)g(t)
∫

g2(t)
. Let us assume

that
∫

G2 (t)

∫

G′′2 (t) 6=

(
∫

G′′2 (t) G (t)

)2

and
∫

G (t)F (t)

∫

G′′2 (t) 6=

∫

G′′ (t)F (t)

∫

G (t) G′′ (t)

then we can suggest a universal kernels U and W in the form:U = G′′ ⊖ G

and W = G ⊖ G′′ using them we get

A = 1
2

∫

G(t)F (t)
∫

G′′2(t)−
∫

G′′(t)F (t)
∫

G′′(t)G(t)
∫

G2(t)
∫

G′′2(t)−(
∫

G′′(t)G(t))
2

τ 2 = 2
∫

F (t)G′′(t)
∫

G2(t)−
∫

F (t)G(t)
∫

G′′(t)G(t)
∫

F (t)G(t)
∫

G′′2(t)−
∫

F (t)G′′(t)
∫

G′′(t)G(t)

. (21)

See section §4.8.4 for this solution.

4.5 Two targets with unknown reflected amplitudes.

In this section we assume that the measured reflected signal F (t) is given by

F (t) = A1G (t − t1) + A2G (t − t2) + ǫ (t) , (22)

where G (t) is an a priori known twice differentiable function. Using the
same methods as above we can estimate a certain ”common amplitude” of the
signal, and thus ”normalize” the expression for F in such a way that only one
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unknown amplitude parameter appears. To simplify the computations below,
let us assume that A1 = 1 and so F (t) = G (t − t1) + A · G (t − t2) + ǫ (t).

As the first step we look for the extremum t0 of F . (Let us remind that
F is assumed to be a certain iterated convolution of the original measured
reflected signal, so the noise ǫ is assumed to be small). Accordingly, we
suppose that we have an accurate practical method for the estimation of t0.
Now let us express t0 analytically.

4.5.1 The expected extremum of the signal.

As above, the time shift τ = t2 − t1 between the two targets is assumed to
be small. Using the second order approximation G (t) ≈ G (0) + 1

2
G′′ (0) t2

(where 0 is assumed to be the extremum and the center of G) we find that
F (t) ≈ G (0)+ 1

2
G′′ (0) (t − t1)

2 +A[G (0)+ 1
2
G′′ (0) (t − t2)

2], which is equal

to Const+ 1
2
(1 + A) G′′ (0) [(t − t1)

2 +A(t − t2)
2]. The extremum of the last

function is at the point t0 = t1+At2
1+A

. Notice that t0 − t1 = A
1+A

(t2 − t1) =
A

1+A
τ, t2 − t0 = 1

1+A
(t2 − t1) = 1

1+A
τ.

Denoting A
1+A

by α and 1
1+A

by β, α + β = 1, and shifting the origin into
the point t0, we can write

F (t) = G (t + ατ) + A · G (t − βτ) + ǫ (t) . (23)

Remind that the extremum point t0 can be practically identified in a robust
way, and hence the time shift as above can be performed explicitly.

4.5.2 First and second order expansion of the signal.

Assuming, as above, that τ is small enough, we get in the first approximation

F (t) ≈ (1 + A) G (t) + (α − Aβ)G′ (t) τ = (1 + A)G (t) , (24)

since α−Aβ = A
1+A

− A
1+A

= 0. Thus, also for nonequal amplitudes the first
order approximation in τ vanishes. Notice that for A = 1 we get the case of
equal amplitudes, considered in section 4.4 above.

So let us write the second order expansion: using α = (Aβ2 + α2)

F (t) ≈ (1 + A) G (t) +
1

2
αG′′ (t) τ 2 + ǫ (t) . (25)
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In this expression we have two unknowns: A and τ (α is being expressed
through A).

4.5.3 Obtaining and solving equations on A and τ .

Integrating the equation 25 with different weights, in the same way as in
section §4.4 above, we can extract from it some simple algebraic relations
between A and τ . First, let us fix a function U (t) orthogonal to G (t) (remind
that G (t) is a known function). Integrating 25 with U (t) we get

∫

U (t) F (t) ≈
1

2
α

(
∫

U (t)G′′ (t)

)

τ 2 +

∫

U (t) ǫ (t) , (26)

since
∫

U (t) G (t) = 0 by the choice of U (t). Assuming that the integrated
noise is small, we get from here that

ατ 2 ≈ 2

∫

U (t) F (t)
∫

U (t)G′′ (t)
. (27)

The right hand side of this equation we can compute directly from the mea-
sured signal F (t). The equation 27 is the first in our basic nonlinear system
of equations for the unknowns A and τ .

Now let us integrate the equation 25 with a different weight W (t), not
orthogonal to G (t) but orthogonal to G′′ (t). We obtain, dropping the noise

∫

W (t) F (t) ≈ (1 + A)

∫

W (t) G (t) . (28)

The equation 28 is the second one in our basic nonlinear system of equations
for the unknowns A and τ . Now we can easily solve the system of equations
27 and 28: Solving 28 we obtain

A ≈

∫

W (t)F (t)
∫

W (t) G (t)
− 1. (29)

Substituting 28 into 27, in particular, expressing through A the coefficient
α, we finally find τ 2

τ 2 ≈ 2

∫

U (t)F (t)
∫

W (t)F (t)
∫

U (t) G′′ (t)
[∫

W (t) F (t) −
∫

W (t) G (t)
] .
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See section §4.8.5 for this solution.

Remark 1. We can take different orthogonal and not orthogonal to G
kernels and integrate them with the equation 25. In particular, we can take
as a kernel G itself. In this way we get different equations of the form 27
and 28. Presumably, using a few of such equations may improve the final
accuracy of our estimates. As well we can take the universal kernels we
mentioned in §4.5.3 then we get:

∫

U (t)F (t) =

∫

G′′ (t)F (t) −

∫

G (t)F (t)
∫

G (t)G′′ (t)
∫

G2 (t)

∫

W (t)F (t) =

∫

G (t) F (t) −

∫

G′′ (t)F (t)
∫

G′′ (t) G (t)
∫

G′′2 (t)

∫

U (t)G′′ (t) =

∫

G′′2 (t) −

(∫

G (t) G′′ (t)
)2

∫

G2 (t)

∫

W (t) G (t) =

∫

G2 (t) −

(∫

G (t) G′′ (t)
)2

∫

G′′2 (t)

as long the appropriate integrals does not vanish.

4.6 A General CTD Problem.

4.6.1 Generating the set of equations to solve CTD.

Let us assume that our transmitted signal (or its second convolution) M is in
C l+1 (R) and has compact support. Assume that we know that there are N targets

all of them near the origin and that the noise is small. Our measured signal now
is

F (t) =

N
∑

n=1

AnM (t − τn) + ǫ (t) . (30)

Let us develop F (t) − ǫ (t) in Taylor expansion up to the lth derivative with the
remainder in Lagrange form:

F (t) − ǫ (t) =

l
∑

k=0

1

k!

N
∑

n=1

AnM (k) (t) τk
n +

1

(l + 1)!

N
∑

n=1

AnM (l+1) (t + cn) τ l+1
n .
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Denoting

ρN (t) =
1

(l + 1)!

N
∑

n=1

AnM (l+1) (t + cn) τ l+1
n (31)

gives us

F (t) − ǫ (t) − ρN (t) =

l
∑

k=0

M (k) (t) βk (32)

where βk =
∑N

n=1
1
k!Anτk

n .

Now we shall address a theoretic problem. The result we shall use to analyze
CTD.

4.6.2 Finding the Dual basis for a function and its derivatives.

Consider the space L2 (R) and let f ∈ C l+1 (R) be a function with a compact
support s.t for all n ∈ N the set

{

f (i)
}n

i=0
is linearly independent (as long the

derivatives are defined). In other words f is not a solution of an o.d.e with constant
coefficients. (equivalently f is not a sum of polynomials multiplied by exponents,
in particular any function with compact support).
For fix n ≤ l, we would like to find a set of functions {Ui}

n
i=0 s.t

〈

f (i), Uj

〉

= δi,j

in the L2 inner product.

We would like to find the dual basis of
{

f (i)
}n

i=0
in the subspace Wn = sp

{

f (i)
}n

i=0
.

Let us define Gn (f)i,j =
〈

f (i), f (j)
〉

the n + 1 by n + 1 Gramm-Schmidt matrix

related to f (which is invertible since the set
{

f (i)
}n

i=0
is linearly independent).

Proposition 4.1 Uj =
∑n

k=0 aj,kf
(k) is the dual basis of

{

f (i)
}n

i=0
in Wn iff ai,j =

(

Gn (f)−1
)

i,j

Proof:
”⇐”: Let us look at the inner product

〈

Ui, f
(j)

〉

=

n
∑

k=0

ai,k

〈

f (k), f (j)
〉

=

n
∑

k=0

(

Gn (f)−1
)

i,k
Gn (f)k,j = Idi,j = δi,j .

”⇒”: We shall show that in Wn there is only one dual basis to
{

f (i)
}n

i=0
and by

that prove this implication. Assume that
{

Ũi

}m

i=0
⊂ Wn is a dual basis, i.e for all
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i, j = {0, . . . , n}
〈

Ũi, f
(j)

〉

= δi,j . Therefor

〈

Ũi − Ui, f
(j)

〉

=
〈

Ũi, f
(j)

〉

−
〈

Ui, f
(j)

〉

= δi,j − δi,j = 0

from here we conclude that Ũi−Ui ∈ W⊥
n . Since Ũi, Ui ∈ Wn we get that Ũi−Ui ∈

Wn ∩ W⊥
n = {0} ⇒ Ũi = Ui. And by this we proved this Proposition.

Finding this we can easily see that if we take vi ∈ W⊥
n and define Ûi = Ui + vi

then we still have
〈

Ûi, f
(j)

〉

= δi,j. From the uniqueness of Ui in Wn follows that

this is all the freedom we can have in the choice of Ûi.

Proposition 4.2 Given Vn s.t
〈

Vn, f (i)
〉

= δn,i for all i ∈ {0, . . . , n, . . . , 2n} the

relation Vj−1 = −V ′

j generate a dual linear independent set for
{

f (i)
}n

i=0
in W2n.

Proof: Assume we have found Vn, Vn−1, . . . , Vj s.t for all i ∈ {n, n − 1, . . . , j} and
r ∈ {1, . . . , n, . . . , n + j}

〈

Vi, f
(r)

〉

= δi,r

then for all r ∈ {1, . . . , n, . . . , n + j − 1}

〈

Vj−1, f
(r)

〉

=

∫

R

Vj−1f
(r) =

∫

R

(

−V ′

j

)

f (r)

Using integration by parts and the fact that the support of f is compact we get

〈

Vj−1, f
(r)

〉

=

∫

R

Vjf
(r+1) = δj,r+1 = δj−1,r.

By this induction we proved the duality property of {Vj}
n
j=0 w.r.t

{

f (i)
}n

i=0
.

Assume that there exists {aj}
n
j=0 constants s.t

∑n
j=0 ajVj = 0 then for all i ∈

{0, . . . , n}

0 =
〈

0, f (i)
〉

=

〈

n
∑

j=0

ajVj , f
(i)

〉

=

n
∑

j=0

aj

〈

Vj, f
(i)

〉

=

n
∑

j=0

ajδi,j = ai.

Therefor {Vj}
n
j=0 is a linear independent set. By this we proved the Proposition.

Proposition 4.3 Vn =
∑2n

i=0 bif
(i) where b = G2n (f)−1 en and (ei)j = δi,j for all

i, j ∈ {0, . . . , 2n}.
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Proof:
b = G2n (f)−1 en ⇐⇒ G2n (f) b = en

⇐⇒ (G2n (f) b)i = (en)i = δi,n

⇐⇒
∑2n

j=0 (G2n (f))i,j bj = δi,n

⇐⇒
∑2n

j=0

〈

f (j), f (i)
〉

bj = δi,n

⇐⇒
〈

∑2n
j=0 bjf

(j), f (i)
〉

= δi,n

⇐⇒
〈

Vn, f (i)
〉

= δi,n

Remark: Notice that in order to find all the {Ui}
n
i=0 together as in Proposition

4.1, we made all the calculation in space of dimension n + 1. To find Vn and to
develop the rest by differentiating as in Proposition 4.2, we made calculations in
space of dimension 2n + 1.

Proposition 4.4 If g ∈ C0 (R) is twice differential function then
∫

R
gg′′ = 0 ⇐⇒

g ≡ 0

Proof: The proof is easy using integration by parts and zero value on the bound-
aries for g and g′.
Conclusion:

{

f (i)
}

(respectivly {Vi} from proposition 4.2) is not an orthogonal
set.
Remark: A suggested question for future work can be :
How close to orthogonal we can get it?

4.6.3 Producing the explicit system of equations

Assume more that
{

M (i)
}l

i=0
is a linear independent set (since the support of M

is compact it is a reasonable assumption). Convolving 32 with the kernels Ui we
just found we get

〈F,Ui〉 − 〈ǫ, Ui〉 − 〈ρN , Ui〉 =

l
∑

k=0

〈

M (k) (t) , Ui (t)
〉

βk =

l
∑

k=0

δk,iβk = βi

that is
〈F,Ui〉 − 〈ǫ, Ui〉 − 〈ρN , Ui〉 = βi (33)
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In equation 33 the expression 〈F,Ui〉 is the actual ”measurement”. The noise
〈ǫ, Ui〉 is unknown, while for the remainder term we have the following bound
(using Cauchy-Schwartz inequality)

| 〈ρN , Ui〉 | =

∣

∣

∣

∣

∣

1

(l + 1)!

N
∑

n=1

An

〈

Ui,M
(l+1) (t + cn)

〉

τ l+1
n

∣

∣

∣

∣

∣

≤
N

(l + 1)!
RARl+1

τ ‖M (l+1)‖ · ‖Ui‖ =: RN,i (34)

where RA and Rτ are a-priori bounds for the amplitudes and the positions of the
targets.

Side remarks:

1. RA can be taken as the initial amplitude of the transmitted signal. The
energy conservation law explains why it is a bound (maybe not tight enough).

2. Rτ can be taken as a from §4.2.3 or smaller if we investigate more.

Assuming the noise is much smaller than the remainder we can omit the corre-
spondence term to get

| 〈F,Ui〉 − βi| ≤ RN,i. (35)

Our basic assumption is that Rτ is small. Taking it to the power of l + 1 gives
us even smaller parameter. Taking this assumption under account we can use the
Lagrange reminder as a good bound for estimation.

Now we finally obtain the set of equations

γk := k! 〈F,Uk〉 =
N

∑

n=1

Anτk
n (36)

where the An’s and τn’s are the unknowns.
The number N is not easy to find, this methods assumes we know the total number
of targets a-priori.

4.7 Solution Methods of 36.

We shall introduce 2 methods to solve 36:

1. Analytic method suggested by Kisunko in [7].

2. Special case for 2 colliding targets.
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4.7.1 Analytic method suggested by Kisunko in [7].

Let us find a Generating function for the sequence γk’s (as in 36). Let z be an
auxiliary coefficient. Using it we get

g (z) =
∞
∑

k=0

γkz
k =

∞
∑

k=0

N
∑

n=1

Anτk
nzk =

N
∑

n=1

An

∞
∑

k=0

(zτn)k =
N

∑

n=1

An

1 − zτn
. (37)

Hence g is a rational function of degree N .
From 37 we can see that τ−1

n are the poles of g and An = −τnRes
(

g, τ−1
n

)

.
Notice that the γk’s are the Taylor coefficients of g for k ∈ {0, 1, . . .}.

Let us remind that the Taylor coefficients of a rational function of degree N satisfy
a linear recurrence relation of length 2N .
So our problem is to find explicitly the function g from the first 2N coefficients
γk’s.

Proposition 4.5 Let h (x) = p(x)
q(x) be a rational function s.t q (x0) 6= 0 and deg p <

deg q = n. Then there exists {ci}
n−1
i=0 s.t

ak+n =

n−1
∑

i=0

ciak+i

where ai are the Taylor coefficients of h around x0.

Proof: Let us differentiate p (x) , n + k times. Since deg p < n ≤ n + k we get

0 =
dk

dxk
0 =

dk

dxk

dn

dxn
p (x) =

dn+k

dxn+k
p (x) =

dn+k

dxn+k
(h (x) q (x)) .

Therefore

0 =
dn+k

dxn+k
(h (x) q (x)) =

n+k
∑

j=0

(

n + k

j

)

h(n+k−j) (x) q(j) (x) =

n
∑

j=0

(

n + k

j

)

h(n+k−j) (x) q(j) (x) .

Evaluating at x = x0 and rearranging we get

0 =
n

∑

j=0

(n + k)!

j!

h(n+k−j) (x0)

(n + k − j)!
q(j) (x0) =

n
∑

j=0

q(j) (x0) (n + k)!

j!
an+k−j.
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Using the fact that q (x0) 6= 0 we get

ak+n =
n

∑

j=1

−q(j) (x0)

q (x0) j!
an+k−j =

n−1
∑

i=0

−q(n−i) (x0)

q (x0) (n − i)!
ak+i =:

n−1
∑

i=0

ciak+i.

By this we proved the Proposition.

Assume we have the first 2N equations of 36. In order to find g we have to preform
the following two steps:

1. Finding the linear coefficients of the recursion relation between the first 2N
γk

′s (for the solvability of this linear system see [7]). By this step we find
the denominator of g and therefore the τn’s.

2. Finding the nominator of g and through it the An’s.

Notice that in our case, if q is the denominator of g then q (0) = 1 6= 0. Having
this and the ci’s we can construct q (as in 37) from its derivatives at 0. In this
case

ci = −
qN−i (0)

(N − i)!
. (38)

Therefore

q (z) = −

N
∑

i=0

cN−iz
i. (39)

Let us write g (z) = p(z)
q(z) where q is known. p is just a polynomial of degree less

than N . Equating the first N1 γk’s to the first N + 1 Taylor coefficients of g gives
us N + 1 linear equations to solve for p coefficients. (for details see [7, 8])

4.7.2 Special cases for 2 colliding targets.

Notice that if the targets are symmetrical around zero then

F (t) = A1M (t + τ) + A2M (t − τ) (40)

and its Taylor expansion is

F (t) =

∞
∑

n=0

1

n!
(A1 + (−1)n A2)M (n) (t) τn. (41)

Integrating against the dual kernels w.r.t
{

M (i)
}

(see §4.6.2) we get

| 〈F,Um〉 −
1

m!
(A1 + (−1)m A2) τm| < R2,m (42)
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Notice that for all m > 1

A1 + (−1)m A2 = A1 + (−1)m−2 A2.

Dropping the remainder in equation 42 gives us

〈F,Um〉 =
1

m!
(A1 + (−1)m A2) τm. (43)

From dividing equation 43 with it self for two different indexes m and m − 2 we
get that

τ =

√

〈F,Um〉m (m − 1)

〈F,Um−2〉
. (44)

Notice also that we can verify the assumption of the targets symmetry around zero
by checking that for all l,m > 1

〈F,Um〉m (m − 1)

〈F,Um−2〉
=

〈F,Ul〉 l (l − 1)

〈F,Ul−2〉
. (45)

Now in general situation (non symmetric targets) we can proceed as follows: we
shift our system to the time t0 where our measurement βi satisfy 45. The position
of the shift will satisfy

t0 =
τ1 + τ2

2
(46)

and by denoting

τ =
τ1 − τ2

2
(47)

we will get a symmetric situation. Then we can find τ using 44. In order to find
A1, A2 we will solve the first two equations for γ1, γ2 with A1, A2 as unknowns and
τ substituted from 44. We will solve the system

(

1 1
1 −1

)(

A1

A2

)

=

(

γ0
γ1

τ

)

(48)

which is solvable since its determinant is −2 6= 0.
Since τ is small as m gets larger the expression 1

m! (A1 + (−1)m A2) τm gets smaller,
so we will get the best results from the few first equations.

For the case m = 2, 3 we get explicitly:

τ =

√

〈F,U2〉 2

〈F,U0〉
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as a solution for τ and 45 becomes

〈F,U2〉

〈F,U0〉
= 3

〈F,U3〉

〈F,U1〉
.

For numerical results concerning this section see §4.8.6.

4.8 Numerical results.

4.8.1 Introduction.

Below we present some initial numerical results in the colliding target problems.
The main purpose of the numerical simulations we have tested was to check a
feasibility of the suggested approach. We still do not address some important
issues in the practical implementation of the CTD problem.
Each section contains a detailed explanation of the results presented in it.
At the end of each section the reader could see a table summarizing all the results
together.

4.8.2 General explanation about the simulations

In each simulation we generated a function and a random noise. If the noise am-
plitude was as high as the amplitude of the function we call the function: signal.
If the noise amplitude was much smaller than the amplitude of the function we
call the function: convolution mask.
In each section we superposed the function with it self after shifting it and mul-
tiplying it with different amplitudes. To this superposition we added the noise
with different amplitudes. Then in each section we calculated the shifts and the
amplitude using different methods.
If the noise amplitude was 0 we used only one calculation as the result. If the
noise amplitude was not 0 we calculated the shifts and the amplitudes 20 times.
Each time with the same superposed functions but with different random noise.
The result we took was the calculated mean and the standard deviation of the 20
simulations.
The noise was taken as a random noise on the interval [−1, 1] or a normal (gaus-
sian) noise with mean 0 and standard deviation 1.

4.8.3 Detecting the shift of one target from highly noisy measure-
ments.

In this section we simulated a received signal reflected from only one target but
with high noise level.
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As a first transmitted signal we will have

M1 (t) =
1

0.24
χ[π−0.2,π+0.2] (t) (t − (π − 0.2))2 (t − (π + 0.2))2 (49)

see figure 1.
This is a 4 times differentiable bump, centered at π, with width of 0.2 to each

0 2 4 6 8
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0.2

0.4

0.6

0.8

1

Figure 1: Transmitted bump signal without noise.

side and amplitude 1 unit. In this case the shift is not small since there is only
one target. We will find the shift from the maxima of the second convolution of
the received signal with the transmitted signal.

The aim in this simulation is to show that the second convolution mask de-
creases the noise in a satisfactory manner.

We will use a uniform noise with amplitude of 1 unit (strong as the signal it
self) - see figure 2. The second convolution mask for this signal can be seen in
figure 3

After averaging 20 simulations of the second convolution mask of this signal
with different uniform noises and with a shift of 2 units we got that the averaged
shift was 1.9831 with standard deviation of 0.0129.

Making the same calculations with normal noise the results were: averaged
shift of 1.9092 with standard deviation of 0.4237.

As a second transmitted signal we will have

M2 (t) = sin
(

t2
)

(50)

see figure 4.
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Figure 2: Transmitted bump signal shifted by 2 units with uniform
noise having amplitude of 1 unit.
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Figure 3: Second convolution mask for bump signal shifted by 2 units
with uniform noise having amplitude of 1 unit .
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Figure 4: Transmitted sin (t2) signal without noise.
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Figure 5: Transmitted sin (t2) signal shifted by 2 units without noise -
use of periodicity.
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Notice that in this case the shifted signal will use 2π periodicity - see figure 5.
We will use a normal noise with amplitude of 2 units (strong as the signal it

self) see figure 6.
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2

Figure 6: Transmitted sin (t2) signal shifted by 2 units with uniform
noise having amplitude of 2 units.

The second convolution mask for this signal can be seen in figure 7
After averaging 20 maximums of the second convolution mask of this signal

with different uniform noises and with a shift of 2 units we got that the averaged
shift was 2.0013 with standard deviation of 0.0066.

Making the same calculations with normal noise the results were: averaged
shift of 2.5050 with standard deviation of 1.4615. (We do not know why in this
case the calculated mean of the shift is much more far from the given shift than in
other functions and noises type. This issue should be studied in a future work.)

Having these results we can see that the second convolution mask gives good
results for the maxima detection. Where as can be seen from figures 2 and 6 it is
more difficult to find the shift directly from them.
All the results for this section are collected in this table:
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Figure 7: Second convolution mask for sin (t2) signal shifted by 2 units
with uniform noise having amplitude of 2 unit.

signal type data type shift

M1 given 2
uniform noise amp=1 calculated average 1.9831

20 measurements standard deviation 0.0129

M1 given 2
normal noise amp=1 calculated average 1.9092

20 measurements standard deviation 0.4237

M2 given 2
uniform noise amp=2 calculated average 2.0013

20 measurements standard deviation 0.0066

M2 given 2
normal noise amp=1 calculated average 2.5050(!)

20 measurements standard deviation 1.4625(!)

4.8.4 Solution for two targets with one amplitude.

In this section we will show some numerical results of two targets detection with
the same amplitude, a small symmetric shift and noise.

Our first convolution mask was

G1 (t) =
(

t2 − 1
)2

χ[−1,1] (t)

which is a symmetric 4 times differentiable bump on the interval [−1, 1] with
amplitude of 1 unit. See figure 8
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Figure 8: A bump signal without noise.

Next we Superposed two signals with the same amplitude of 0.5 unit and shifted
symmetrically around zero by 0.15 unit each. See figure 9. We can also see in this
figure that the superposed signal has a shape similar to the original function.
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Figure 9: Two bump signals without noise shifted by 0.15 each with
common amplitude 0.5 units and their superposition.

Trying to calculate the shift in this case using expressions 18 and 17 above
gives us a shift of 0.138 and amplitude of 0.4977.

Using smaller shift of 0.01 gave much better results of 0.0099 shift and 0.5
amplitude.

With small shifts we could calculate the shift and the amplitude also in the
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presence of noise as long as the amplitude of the noise was at least one magnitude
of order smaller than the shift.

Our second convolution mask was

G2 (t) = sin2
(

t2 − 1
)

χ[−1,1](t)

See figure 10.
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Figure 10: A sin2 (t2 − 1) signal without noise.

Next we Superposed two signals with the same amplitude of 0.5 unit and shifted
symmetrically around zero by 0.15 unit each. See figure 11.

Trying to calculate the shift in this case using expressions 18 and 17 gives us
a shift of 0.1328 and amplitude of 0.4969.

Using smaller shift of 0.01 gave much better results of 0.0099 shift and 0.5
amplitude.

With small shifts we could calculate the shift and the amplitude also in the
presence of noise as long as the amplitude of the noise was at least one magnitude
of order smaller than the shift.
All the results for this section are collected in this table:
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Figure 11: Two sin2 (t2 − 1) signals shifted by 0.15 each, with common
amplitude 0.5 units without noise and their superposition.

signal type data type amplitude shift

G1 given 0.5 0.15
calculated 0.4977 0.1380

G1 given 0.5 0.01
calculated 0.5 0.0099

G2 given 0.5 0.15
calculated 0.4969 0.1328

G2 given 0.5 0.01
calculated 0.5 0.0099

4.8.5 Solution for two targets with two different amplitudes.

In this section we shall find A and τ in formula 23 using expressions 27 and 28.
Our first simulation will use convolution mask of the form

G3 (t) =
(

t2 − 1
)2

χ[−1,1] (t) .

This is a four time differential bump on the interval [−1, 1] with amplitude of 1
units. Next we generated 23 with A = 2 and τ = 0.1 without noise. Using 27 and
28 we got shift of 0.0968 units and amplitude of 1.9994 units. With presence of
uniform noise of amplitude 0.1 (as strong as the signal it self) after averaging 20
results (from different uniform noises) we got averaged shift of 0.0940 units with
standard deviation of 0.0221 units, and amplitude of 1.9979 units with standard
deviation of 0.0059 units.
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Our second simulation will use convolution mask of the form

G4 (t) = sin2
(

t2 − 1
)

χ[−1,1](t).

Next we generated 23 with A = 2 and τ = 0.1 without noise. Using 27 and 28 we
got shift of 0.0956 units and amplitude of 1.9992 units. With presence of uniform
noise of amplitude 0.1 (as strong as the signal it self) after averaging 20 results
(from different uniform noises) we got averaged shift of 0.0948 units with standard
deviation of 0.0140 units, and amplitude of 1.9995 units with standard deviation
of 0.0050 units.
All the results for this section are collected in this table:

signal type data type amplitude shift

G3 given 2 0.1
calculated 1.9994 0.0968

G3 given 2 0.1
Uniform noise amp=0.1 calculated average 1.9979 0.0940

20 Measurements standard deviation 0.0059 0.0221

G4 given 2 0.1
calculated 1.9992 0.0956

G4 given 2 0.1
Uniform noise amp=0.1 calculated average 1.9995 0.0948

20 Measurements standard deviation 0.0050 0.0140

4.8.6 Solution using 44 and 48.

In this section we will solve 36 for the case N = 2 and under the assumption that
the system is symmetric i.e τ1 = −τ2, using 44 and 48. We generate 36 as an
outcome of a symmetric CTD problem with two targets and different amplitudes.
Our first simulation will use signal of the form

M3 (t) =
(

t2 − 1
)4

χ[−1,1] (t) .

This is an eight time differential bump on the interval [−1, 1] with amplitude
of 1 units. Next we superposed two signals with amplitude 2 and 1 units and
shifts of 0.1 to each side of zero without noise. Using 44 and 48 we got shift
of 0.09938 units and amplitudes of 0.99674 and 2.00249 units. With presence of
uniform noise of amplitude 1 (as strong as the signal it self) after averaging 20
results (from different uniform noises) we got averaged shift of 0.09502 units with
standard deviation of 0.02163 units, and amplitudes of 0.94251 and 2.04236 units
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with standard deviation of 0.16685 and 0.15867 units.
Our second simulation will use signal of the form

M4 (t) =
(

t2 − 1
)4

eit2χ[−1,1](t).

For this signal the calculations will lead to complex solutions. We will take the
real part of the solution since it is the closest real number to the solution (in all
reasonable norms).
Next we superposed two signals with amplitude 2 and 1 units and shifts of 0.1 to
each side of 0 without noise. Using 44 and 48 we got shift of 0.09919 units and
amplitudes of 0.99575 and 2.00322 units. With presence of uniform noise of am-
plitude 1 (as strong as the signal it self) after averaging 20 results (from different
uniform noises) we got averaged shift of 0.09797 units with standard deviation of
0.01689 units, and amplitudes of 0.97988 and 2.01596 units with standard devia-
tion of 0.16409 and 0.14702 units.
All the results for this section are collected in this table:

signal type data type amplitude1 amplitude2 shift

M3 given 2 1 0.1
calculated 2.00249 0.99674 0.09938

M3 given 2 1 0.1
Uniform noise amp=1 calculated average 2.04236 0.94251 0.09502

20 Measurements standard deviation 0.15867 0.16685 0.02163

M4 given 2 1 0.1
calculated 2.00322 0.99575 0.09919

M4 given 2 1 0.1
Uniform noise amp=1 calculated average 2.01596 0.97988 0.09797

20 Measurements standard deviation 0.14702 0.16409 0.01689
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5 Conclusions.

In this section we will overview all the sections we had through this work. We
shall point the most significant topics and results we had and suggest directions
for future discussion.

5.1 Non Linear Fourier and Moment Reconstruction.

• In section §2 we used the notion of semi-algebraic complexity in order to show
that for simple functions, and in particular piecewise polynomials, the partial

Fourier transform is injective. We showed the same result for the moment

transform. This injectivity is a necessary condition for reconstructing a func-
tion from its first few moments. We showed some bounds for the number of
moments needed in order to get the injectivity.

• At the end of section §2 we suggested that it is possible to find generalized
polynomials from an L2 basis with a certain sign pattern. This topic should
be studied in a future work. First for classic bases in L2 as Legendre, Hermite,
Laguerre, etc. Second to find general conditions on an L2 basis to posses this
property.

• In section §3 we formed a set of non linear equations. We believe that the
solution of this set will be a good approximation for the parameters of the
function we need to reconstruct. This claim should be studied in a future
work.

• The set of equations, 36, that rose from the piecewise constants function’s
reconstruction is the same set that rose from the CTD problem we analyzed
in later section. Other sets of equations that rose from general piece-wise
polynomial function have similar form as the one we studied in this work.
The solutions of these sets should be studied in a future work.

5.2 The Colliding Targets Detection Problem.

• In section §4 we described the problem of target detection and in particular
the colliding target detection - the CTD.

• In §4.3 we discussed about noise reduction and the convolution mask. We
used these two notions in order to find maxima of a noisy signal.

• In section §4.4 we analyzed a simplified case of CTD. We had 2 targets with
the same reflection amplitude shifted symmetrically around zero. The shift
and the amplitude were the parameters in this problem. We used second
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degree Taylor approximation of the signal and some convolution kernels to
find the parameters.

• In section §4.5 we analyzed two targets with two different amplitudes and
shifts.

• In section §4.6 we analyzed the general CTD problem and generated a set of
non linear equations-36, on the parameters (the unknowns amplitudes and
shifts).

• In section §4.6.2 We introduced a notion of a dual basis (or kernels) for a
function and its derivatives. We saw that in all reasonable cases neither
the function and its derivatives nor the set of kernels are orthogonal sets.
We suggested to check how close to orthogonal we can bring them. This
suggestion should be studied in a future work.

• In section §4.7 we showed some suggested solutions of the set 36. Also we
used 36 to solve a two colliding targets case. These solutions of 36 should be
studied in a future work.

• In section §4.8 we showed some initial numerical results intended for a basic
testing of our approach. All the numerical schemes and simulations should
be studied in a future work, in much more details

5.3 General Remarks.

This work opens several direction for future research. Most of the numerical
schemes, estimations, noise analysis and some more topics in this work should
be studied in a future work.
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