
Introduction to pairwise independent hashing

Recall the problem of hash tables: Let N be a large number and let S ⊂ {1, . . . , N} be a set such that
|S| � N . We wish to store the elements of S in a table of size ≈ |S|, such that we can e�ciently check whether
a number x ∈ {1, . . . , N} is in S or not. A common solution to this problem is using �hash tables�: Let M
denote the size of the table in which we want to store S. We choose a function h : {1, . . . , N} → {1, . . . ,M}.
Then, for every 1 ≤ i ≤ M , we store in the i-th cell of the table all the elements x ∈ S such that h(x) = i.
Whenever we are required to check whether a number x is in S, we read the h(x)-th cell of the table and
check if it contains x. If each cell in the table contains only a few elements of S, then this solution is very
e�cient.

How do we make sure that each cell in the table does not contain too many elements? We need to
choose h such that there are not many �collisions�, i.e., there are not many pairs of elements x, y ∈ S such
that h(x) = h(y). In order to achieve it, we choose a function h that maps the elements of {1, . . . , N} to
{1, . . . ,M} in a �random-like� manner. If h is �su�ciently random� and if M is su�ciently large comparing
to S, then we indeed expect that there won't be many collisions. The reason is that, if we would have chosen
h(x) and h(y) completely at random, then the probability that h(x) = h(y) would have been 1

M , which is
small. The problem is to choose a function h that has such a random property.

One possible solution for choosing such a function h is to choose h to be a random function from {1, . . . , N}
to {1, . . . ,M}. The problem with this solution is that in order to compute h later, we will need to store in
the memory a table that says for every x ∈ {1, . . . , N} what is h(x), and storing such a table will require
too much memory. We will have to �nd another solution.

Our problem can be now stated as follows: We need to �nd a function h that behaves like a random
function, even though it is not really a random function. Furthermore, we want to be able to compute h
without using too much memory. This problem is very, very common in Theoretical Computer Science, and
arises in many contexts rather than just in the context of hash tables - In fact, this is one of the major
problems of the theory of Derandomization.

In order to solve this problem, we �rst need to de�ne what does it mean for a function h to �behave like
a random function�. In the theory of Derandomization, there are many possible de�nitions of the �behavior
of a random function�, and each of those de�nitions is useful in other settings. In this course, we will only
need one of those de�nitions, known as �pairwise independence�.

Before introducing this de�nition, we �rst note that �pairwise independence� is not a property of a
single function, but rather a property of a family of functions. A family of functions is said to be pairwise
independent if when we choose a random function from this family, then the distrubition of the images of
the function is �somewhat random�. The formal de�nition is as follows:

De�nition. Let H be a family of functions from {1, . . . , N} to {1, . . . ,M}. The family H is said to be
pairwise independent if for every x, y ∈ {1, . . . , N} such that x 6= y, and for every a, b ∈ {1, . . . ,M} it holds
that

Pr
h∈H

[h(x) = a ∧ h(y) = b] =
1
M2

That is, if h is a function chosen uniformly at random from H, then the random variables h(x) and h(y) are
uniformly distributed and pairwise independent.

Suppose that we have such a pairwise independent family H, such that every function in H can be
represented using a small amount of bits (say, O(logN)) and such that every function in H can be computed
e�ciently. Using such a family, we can solve the problem of hash tables we described above. If we choose a
random function h ∈ H, then for every two elements x, y ∈ S, the probability that h(x) and h(y) will collide

1

is 1
M , and the expected number of collisions will be

∑

x,y∈S

1
M

=
(|S|

2

)
/M

Therefore, if we choose M = |S|2, the expected number of collisions will be smaller than 1, which is what
we want. This solution is very useful in applications where N � |S|2.

In this course, we will often use e�ciently computable pairwise independent families of functions. Usually,
we will use functions that map {0, 1}n to {0, 1}m, rather than {1, . . . , N} to {1, . . . ,M}. We will denote
such a family by Hn

m. That is:

De�nition. For every n,m ∈ N, the set Hn
m is a family of functions from {0, 1}n to {0, 1}m that satis�es

the following properties:

1. For every x, y ∈ {0, 1}n such that x 6= y and for every a, b ∈ {0, 1}m, it holds that

Pr
h∈Hnm

[h(x) = a ∧ h(y) = b] = 2−2m

2. Every function h ∈ Hn
m can be represented using a string of O(n + m) bits. This string is called

the description of h. Actually, for the applications we present in this course, it will su�ce to have
descriptions of length poly (n,m), rather than O(n+m).

3. Each function h ∈ Hn
m can be e�ciently computed given its description. That is, there is a polynomial

time algorithm that, given the description of a function h ∈ Hn
m and a string x ∈ {0, 1}n, computes

h(x).

Of course, before we can use such families, we need to prove that they exist. Such families can indeed
be constructed, but we won't show it here. The description of such constructions can be found in Appendix
D.2.2 of the book.

We �nish this introduction by describing a useful property of pairwise independent families of functions,
called �Mixing�. Fix some set S ⊆ {0, 1}n and a subset T ⊆ {0, 1}m. Suppose that we choose a random
function h : {0, 1}n → {0, 1}m (not necessarily in Hn

m). How many elements x ∈ S satisfy h(x) ∈ T? Well,
since for every x ∈ S and a ∈ T there is a probability of 2−m that h(x) = a, we would expect that about
|S| · |T | /2m.

Now, note that this argument should also hold when h is a random function in Hn
m, rather than any

random function, because by the de�nition of Hn
m, it also holds that for a random function h ∈ Hn

m, for
every x ∈ S and for every a ∈ T , the probability that h(x) = a is 2−m. Indeed, the mixing property of Hn

m

says that with high probability, the number of elements of S that map into T is |S| · |T | /2m, up to a small
error we denote by ε. Formally, this property is stated as follows:

Lemma (Mixing). Let S ⊆ {0, 1}n, T ⊆ {0, 1}m, and let h be function in Hn
m chosen uniformly at random.

Then, for every ε > 0 it holds that

(1− ε) |S| · |T |
2m

< |{x ∈ S : h(x) ∈ T}| < (1 + ε)
|S| · |T |

2m

with probability of at least 1− 2m

ε2·|S|·|T | .

The Mixing lemma can be proved quite easily using Chebyshev inequality. A useful special case of
the mixing lemma is when |T | = 1. This special case means that for every a ∈ {0, 1}m, it holds that∣∣h−1(a)

∣∣ ≈ |S| /2m with high probability.

2

