CS 810: Introduction to Complexity Theory 9/18/2003

Lecture 11: P/poly, Sparse Sets, and Mahaney’s Theorem

Instructor: Jin-Yi Cai Scribe: Aparna Das, Scott Diehl, Giordano Fusco

1 From previous lectures
Last time we proved the Karp-Lipton Theorem:

THEOREM 1.1 (KARP-LIPTON) SAT has polynomial size circuits if and only if the polynomial
hierarchy collapses to 5 NTIY.

2 P/poly
We now introduce the class P /poly:

DEFINITION 2.1 A set A is in P/poly if 3B € P and an “advice” function s : N — ¥* such that
|s(n)| = n°M) and x € A & (x,s(]z|)) € B.

In other words, the advice function takes the length of the string z as input and produces a string
polynomial in |z| that allows us to decide membership in A in polynomial time.

Note if s(n) outputs the truth table for strings of length n, we can obviously decide membership
of z. However, in this case |s(n)| = 2" > n°M)| so it would not be an admissible advice function
for P/poly.

We now show the equivalence between P /poly and languages with polynomial size circuits.
THEOREM 2.2 L € P/poly < L has a polynomial sized circuit.

Proof. First we show the forward direction. Since L € P/poly there is exists a B € P and an
“advice” function s(n) as in the above definition. Since B € P, it has a polynomial sized circuit
that accepts input pairs (z, s(|x|)). We fix the value of s(n) in B’s circuit, so that B is hard-coded
to accept strings x of length n if and only if x € L. Now we can use such circuits to accept L. The
size of each circuit is (n + |s(n)[)?1) = nO0).

Now we show the converse. Suppose L has polynomial sized circuits. Then we define s(n) to be
the binary encoding for that circuit at length n. Then the Turing Machine M which on inputs
(x,s(]z])) evaluates the output of the circuit given by s(|z|) on x runs in polynomial time and
accepts z if and only if the circuit given by s(|z|) accepts x. Therefore x € L < (z, s(|z|)) € L(M),
where L(M) € P, so L € P/poly.

The proof above shows that saying a language is in P/poly is equivalent to saying that it has a
polynomial sized circuit. Therefore we can restate the Karp-Lipton theorem as follows:

THEOREM 2.3 If NP C P/poly then the polynomial hierarchy collapses to ¥5 N1IY.

3 Sparse sets

Now we are going to introduce another instrument called sparse sets that is also equivalent to
P /poly.

DEFINITION 3.1 A set S C X* is called a sparse set if |S="| = nOW e if the number of strings
at length n in S is at most polynomial in n.

Note that the definition could also be given as |[S=<"| = n©(1)

, which is equivalent.

There are a lot problems that can be described using sparse sets. For example, the halting problems
can be made very sparse. The power of this instrument is that sparse problems are combinatorially
very simple. A sparse set, S, can be thought of as a set of low-information content.

THEOREM 3.2 A language L has a polynomial size circuit if and only if L € P for some sparse
set S. More concisely:

L € P/poly <= L S;Pp) S for some sparse set S

Proof. [of <] Let S be a sparse set and M be a polynomial time TM which uses S as an oracle.
L is the language recognized by this machine. When the length of the input is n, the maximum
length string that can be queried is of size n©(1). In S, there are at most (no(l))o(l) = n%M strings
with length less than the maximum query length. So we can construct the advice function, s(n)
to list all strings in S that M could query on input length n. Therefore |s(n)| = n°M), and we
can construct a Turing Machine M’ that on input (z, s(n)) does as M does on z, except instead of
querying S, M’ simply scans s(n) to find the query answers.

Proof. [of =.] Let L be in P/poly. This means that some polynomial time Turing Machine N
accepts strings (z,s(n)) if and only if x € L. We want to design a sparse set S and a machine

M so that M can discover s(n) in polynomial time using S as an oracle. If we can do this, then
afterwards M can simply simulate N (since it now knows s(n)), so that L(M*) = L.

Consider the language S = {1"#p | p is a prefix of s(n)}. It is clear that S is sparse (in fact there
are at most linearly many strings of a given length in S). Using S as an oracle, we find s(n) one
bit at a time: first, ask to the oracle if the strings 1"#0, 1"#1 € S. Let 1"#b be the string out
of these two which is in S. Then we can extend it to find another bit of s(n) by asking which of
17#b0 or 1"#b1 is in S. We proceed in this manner until neither extension of our string is in S.
Then when this happens, we must have s(n). s(n) has polynomially many bits, so this can be done
in polynomial time.

Now that we have proved another definition equivalent to polynomial sized circuits, we can restate
the Karp-Lipton theorem again:

THEOREM 3.3 If SAT <7 S for some sparse set S, then the polynomial hierarchy collapses to
NI,

4 Mahaney’s Theorem

This raises the question: What if SAT is Karp reducible to a sparse set S? i.e. SAT <% S for
some sparse set S. This result is given by Mahaney’s Theorem, and we will give a proof due to
Ogihara and Watanabe.

THEOREM 4.1 (MAHANEY’S THEOREM) SAT <P S for some sparse set S # 0 if and only if
NP =P

Proof. [Ogihara and Watanabe]

<« This direction is trivial: If NP = P then our sparse set S can simply be {0} and the reduction
simply maps satisfiable formulas to {0} and unsatisfiable formulas to {1} (which is polynomial
time computable by assumption).

= Now assume that SAT <}, S for some sparse set S. Then we will show how to solve SAT in
polynomial time. To do this we will work with the language of left cut SAT:

DEFINITION 4.2 Lgar = {{p,0) | ¢ is a boolean function on x1,...,x, and o is a partial
assignment to x1, ..., T, such that there is some o’ <; o where |, =T}

The =, relation can be thought of as the “to the left of” function in the tree of partial truth
assignments under the left-right-root ordering. More formally:

DEFINITION 4.3 Let o = 01090 and T = T17o - - - T, be binary strings representing partial
truth assignments to . Then we say that o is to the left of T (and write o < T) if either o is
an extension of T or in the bit immediately before the first entry they differ at, o has bit 0 and
T has bit 1. In other words, let i = maz{j | 0 < j < min{k,m}, (Vj', 1 <j' < j)loj =7}
Then o <; 7 if either i =k or i < k with 0,41 =0 and 7,41 = 1.

So Lgar can be seen to consist of pairs of boolean formulas and partial assignments such that
the formula can be satisfied by an assignment to the left of the one given.

Clearly Lgat € NP since given ¢ and o, we can guess a truth assignment 7, and check that
T satisfies ¢ and 7 <; ¢ in polynomial time. Since SAT is NP-complete, then we must have
that Lgat <h SAT. We can then compose Karp reductions to see that Lgat <h, S.

Let f({p,0)) the the function that computes this reduction. Clearly |f((p,0))| < |p|OM)
(since the length of a partial truth assignment o can be at most the number of variables in
©, so {p,0) is no more than double |¢|). Similarly there are polynomial many strings in S
of length at most ||, Therefore there are at most (|o|?M)M) = ||O0) strings in S of
lengths that f can produce on formula . Let N be this number.

Now consider the binary tree of partial assignments to the variables of . We will find a
satisfying truth assignment (if one exists) by exploring the tree while maintaining at most
N nodes per level via pruning. If we can do this, then since there are n levels of the tree
and N is polynomial in ||, we will have a n - N9 = || time bound for our algorithm.
Therefore SAT € P, so P = NP.

We will show that a satisfying truth assignment can be found in such a manner by induction.
At level i of the tree, we have at most N nodes (partial truth assignments), and if ¢ is
satisfiable, then at least one node can be extended to a “leftmost” satisfying truth assignment
for ¢ (i.e. a satisfying truth assignment o such that for every other satisfying truth assignment
T, 0 =X T).

— Initially (at ¢ = 0) this is trivially true since the only node is e.

— Now assume it is true for levels ¢ < k. Let r be the number of nodes at level k, giving
us partial truth assignments o1,...,0,.. Then r < N by assumption, but the number of
nodes that can be produced for level k£ + 1 is 2r and may be more than N. If this is the
case, then we will form 2r query strings s, ..., sg, of the form f({(y,0o})), where o] for
1 < i < 2r are the possible extensions of o; for 1 < i < r. We will look for duplicates
amongst such query strings in order to prune our tree.

Suppose we have duplicates from nodes o and 7 — f({p,0)) = f({¢,7)). Note that
because their images under f are the same, and f reduces Lgar to S, either both (p, o)

and (p,7) are in Lgar or both are not. However, one must be “left” (=<;) of the other.
Therefore the right one (without loss of generality we can assume this is 7) cannot
extend to the “leftmost” satisfying assignment for ¢ (if one exists). Therefore we can
safely prune the node 7.

After pruning the right duplicates under f, we might still have more than /N nodes. In
this case, we can then iteratively prune the leftmost truth assignment o until we have
N nodes left. To see that this works, suppose some such ¢ could be extended to the
leftmost truth assignment for ¢. This would then imply that all pairs (p,7) for 7 to
the right of o would be in LgaT. Since all the images of the nodes under f are distinct
at this point, this would give us more than N distinct elements of S. However, N is
defined to be the maximum number of strings of S that f can produce, so this gives us
a contradiction. Therefore, after pruning, we have only N nodes at level k + 1, and if
there is a satisfying truth assignment for ¢, at least one node can be extended to the
leftmost truth assignment.

Therefore SAT can be solved in polynomial time by iteratively filling out and pruning
the levels of this tree until full truth assignments are generated. We can then test to
see if any satisfy ¢, and if so, accept. Otherwise, reject. If ¢ is satisfiable, the leftmost
satisfying assignment will be amongst the truth assignments tested, and we will accept.
If ¢ was not satisfiable, then obviously no satisfying truth assignments will be generated,
so we will reject. This shows that we can solve SAT in this manner in polynomial time,
which completes the proof.

