Computational Complexity:

A Conceptual Perspective

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

October 28, 2006

to Dana

©Copyright 2006 by Oded Goldreich.

Permission to make copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or com-
mercial advantage and that new copies bear this notice and the full citation on the first

page. Abstracting with credit is permitted.

Preface

The strive for efficiency is ancient and universal, as time and other resources are
always in shortage. Thus, the question of which tasks can be performed efficiently
is central to the human experience.

A key step towards the systematic study of the aforementioned question is a
rigorous definition of the notion of a task and of procedures for solving tasks. These
definitions were provided by computability theory, which emerged in the 1930’s.
This theory focuses on computational tasks, and considers automated procedures
(i.e., computing devices and algorithms) that may solve such tasks.

In focusing attention on computational tasks and algorithms, computability
theory has set the stage for the study of the computational resources (like time) that
are required by such algorithms. When this study focuses on the resources that are
necessary for any algorithm that solves a particular task (or a task of a particular
type), the study becomes part of the theory of Computational Complexity (also
known as Complexity Theory).!

Complexity Theory is a central field of the theoretical foundations of Computer
Science. It is concerned with the study of the intrinsic complexity of computa-
tional tasks. That is, a typical Complexity theoretic study looks at the computa-
tional resources required to solve a a computational task (or a class of such tasks),
rather than at a specific algorithm or an algorithmic schema. Actually, research in
Complexity Theory tends to start with and focus on the computational resources
themselves, and addresses the effect of limiting these resources on the class of tasks
that can be solved. Thus, Computational Complexity is the study of the what
can be achieved within limited time (and/or other limited natural computational
resources).

The (half-century) history of Complexity Theory has witnessed two main re-
search efforts (or directions). The first direction is aimed towards actually estab-
lishing concrete lower bounds on the complexity of problems, via an analysis of
the evolution of the process of computation. Thus, in a sense, the heart of this
direction is a “low-level” analysis of computation. Most research in circuit com-

n contrast, when the focus is on the design and analysis of specific algorithms (rather than
on the intrinsic complexity of the task), the study becomes part of a related subfield that may
be called Algorithmic Design and Analysis. Furthermore, Algorithmic Design and Analysis tends
to be sub-divided according to the domain of mathematics, science and engineering in which the
computational tasks arise. In contrast, Complexity Theory typically maintains a unity of the
study of tasks solveable within certain resources (regardless of the origins of these tasks).

3

plexity and in proof complexity falls within this category. In contrast, a second
research effort is aimed at exploring the connections among computational prob-
lems and notions, without being able to provide absolute statements regarding the
individual problems or notions. This effort may be viewed as a “high-level” study
of computation. The theory of NP-completeness as well as the studies of approx-
imation, probabilistic proof systems, pseudorandomness and cryptography all fall
within this category.

The current book focuses on the latter effort (or direction). We list several
reasons for our decision to focus on the “high-level” direction. The first is the great
conceptual significance of the known results; that is, many known results (as well as
open problems) in this direction have an extremely appealing conceptual message,
which can also be appreciated by non-experts. Furthermore, these conceptual
aspects may be explained without entering excessive technical detail. Consequently,
the “high-level” direction is more suitable for an exposition in a book of the current
nature. Finally, there is a subjective reason: the “high-level” direction is within
our own expertise, while this cannot be said about the “low-level” direction.

The last paragraph brings us to a discussion of the nature of the current book,
which is captured by the subtitle (i.e., “a conceptual perspective”). Our main
thesis is that complexity theory is extremely rich in conceptual content, and that
this contents should be explicitly communicated in expositions and courses on the
subject. The desire to provide a corresponding textbook is indeed the motivation
for writing the current book and its main governing principle.

This book offers a conceptual perspective on complexity theory, and the presen-
tation is designed to highlight this perspective. It is intended mainly for students
that wish to learn complexity theory and for educators that intend to teach a course
on complexity theory. The book is also intended to promote interest in complexity
theory and make it accessible to general readers with adequate background (which
is mainly being comfortable with abstract discussions, definitions, and proofs). We
expect most readers to have a basic knowledge of algorithms, or at least be fairly
comfortable with the notion of an algorithm.

The book focuses on several sub-areas of complexity theory (see the following
organization and chapter summaries). In each case, the exposition starts from the
intuitive questions addresses by the sub-area, as embodied in the concepts that it
studies. The exposition discusses the fundamental importance of these questions,
the choices made in the actual formulation of these questions and notions, the
approaches that underly the answers, and the ideas that are embedded in these
answers. Our view is that these (“non-technical”) aspects are the core of the field,
and the presentation attempts to reflect this view.

We note that being guided by the conceptual contents of the material leads, in
some cases, to technical simplifications. Indeed, for many of the results presented
in this book, the presentation of the proof is different (and arguably easier to
understand) than the standard presentations.

Organization and Chapter
Summaries

This book consists of ten chapters and seven appendices. The chapters constitute
the core of this book and are written in a style adequate for a textbook, whereas the
appendices provide additional perspective and are written in the style of a survey
article. The relative length and ordering of the chapters (and appendices) does not
reflect their relative importance, but rather an attempt at the best logical order
(i-e., minimizing the number of forward pointers).

Following are brief summaries of the book’s chapters and appendices. Theses
summaries are more detailed than those provided in Section 1.1.3 but less detailed
than the summaries provided at the beginning of each chapter.

Chapter 1: Introduction and Preliminaries. The introduction provides a
high-level overview of some of the content of complexity theory as well as a discus-
sion of some of the characteristic features of this field. The preliminaries provide
the relevant background on computability theory, which is the setting in which
complexity theoretic questions are being studied. Most importantly, central no-
tions such as search and decision problems, algorithms that solve such problems,
and their complexity are defined. In addition, this part presents the basic notions
underlying non-uniform models of computation (like Boolean circuits).

Chapter 2: P, NP and NP-completeness. The P-vs-NP Question can be
phrased as asking whether or not finding solutions is harder than checking the
correctness of solutions. An alternative formulation in terms of decision problems
asks whether or not discovering proofs is harder than verifying their correctness;
that is, is proving harder than verifying. It is widely believed that the answer
to the two equivalent formulation is that finding (resp., proving) is harder than
checking (resp., verifying); that is, that P is different from NP. At present, when
faced with a hard problem in NP, we can only hope to prove that it is not in P
assuming that NP is different from P. This is where the theory of NP-completeness,
which is based on the notion of a reduction, comes into the picture. In general,
one computational problem is reducible to another problem if it is possible to
efficiently solve the former when provided with an (efficient) algorithm for solving
the latter. A problem (in NP) is NP-complete if any problem in NP is reducible

to it. Amazingly enough, NP-complete problems exist, and furthermore hundreds
of natural computational problems arising in many different areas of mathematics
and science are NP-complete.

Chapter 3: Variations on P and NP. Non-uniform polynomial-time (P /poly)
captures efficient computations that are carried out by devices that handle specific
input lengths. The basic formalism ignores the complexity of constructing such de-
vices (i.e., a uniformity condition), but a finer formalism (based on “machines that
take advice”) allows to quantify the amount of non-uniformity. The Polynomial-
time Hierarchy (PH) generalizes NP by considering statements expressed by a
quantified Boolean formula with a fixed number of alternations of existential and
universal quantifiers. It is widely believed that each quantifier alternation adds ex-
pressive power to the class of such formulae. The two different classes are related
by showing that if NP is contained in P/poly then the Polynomial-time Hierarchy
collapses to its second level.

Chapter 4: More Resources, More Power? When using “nice” functions to
determine the algorithm’s resources, it is indeed the case that more resources allow
for more tasks to be performed. However, when “ugly” functions are used for the
same purpose, increasing the resources may have no effect. By nice functions we
mean functions that can be computed without exceeding the amount of resources
that they specify. Thus, we get results asserting, for example, that there are
problems that are solvable in cubic-time but not in quadratic-time. In the case of
non-uniform models of computation, the issue of “nicety” does not arise, and it is
easy to establish separations results.

Chapter 5: Space Complexity. This chapter is devoted to the study of the
space complexity of computations, while focusing on two rather extreme cases.
The first case is that of algorithms having logarithmic space complexity, which
seem a proper and natural subset of the set of polynomial-time algorithms. The
second case is that of algorithms having polynomial space complexity, which in turn
can solve almost all computational problems considered in this book. Among the
results presented in this chapter are a log-space algorithm for exploring (undirected)
graphs, a non-deterministic log-space procedure for recognizing directed graphs
that are mot strongly connected, and complete problems for N'£ and PSPACE
(under log-space and polynomial-time reductions, respectively).

Chapter 6: Randomness and Counting. Various failure types of probabilis-
tic polynomial-time algorithms give rise to complexity classes such as BPP, RP,
and ZPP. The results presented include the emulation of probabilistic choices by
non-uniform advice (i.e., BPP C P/poly) and the emulation of two-sided prob-
abilistic error by an JV-sequence of quantifiers (i.e., BPP C X,). Turning to
counting problems (i.e., counting the number of solutions for NP-type problems),
we distinguish between exact counting and approximate counting (in the sense of

relative approximation). While any problem in PH is reducible to the exact count-
ing class #P, approximate counting (for #7P) is (probabilisticly) reducible to A"P.
Additional related topics include #P-completeness, the complexity of searching for
unique solutions, and the relation between approximate counting and generating
almost uniformly distributed solutions.

Chapter 7: The Bright Side of Hardness. It turns out that hard problem can
be “put to work” to our benefit, most notably in cryptography. One key issue that
arises in this context is bridging the gap between “occasional” hardness (e.g., worst-
case hardness or mild average-case hardness) and “typical” hardness (i.e., strong
average-case hardness). We consider two conjectures that are related to P # NP.
The first conjecture is that there are problems that are solvable in exponential-
time but are not solvable by (non-uniform) families of small (say polynomial-size)
circuits. We show that these types of worst-case conjectures can be transformed
into average-case hardness results that yield non-trivial derandomizations of BPP
(and even BPP = P). The second conjecture is that there are problems in NP
for which it is easy to generate (solved) instances that are hard to solve for other
people. This conjecture is captured in the notion of one-way functions, which are
functions that are easy to evaluate but hard to invert (in an average-case sense). We
show that functions that are hard to invert in a relatively mild average-case sense
yield functions that are hard to invert almost everywhere, and that the latter yield
predicates that are very hard to approximate (called hard-core predicates). The
latter are useful for the construction of general-purpose pseudorandom generators
as well as for a host of cryptographic applications.

Chapter 8: Pseudorandom Generators. A fresh view at the question of ran-
domness was taken in the theory of computing: It has been postulated that a
distribution is pseudorandom if it cannot be told apart from the uniform distri-
bution by any efficient procedure. The paradigm, originally associating efficient
procedures with polynomial-time algorithms, has been applied also with respect
to a variety of limited classes of such distinguishing procedures. The archetypical
case of pseudorandom generators refers to efficient generators that fool any feasible
procedure; that is, the potential distinguisher is any probabilistic polynomial-time
algorithm, which may be more complex than the generator itself. These generators
are called general-purpose, because their output can be safely used in any efficient
application. In contrast, for purposes of derandomization, one may use pseudoran-
dom generators that are somewhat more complex than the potential distinguisher
(which represents the algorithm to be derandomized). Following this approach and
using various hardness assumptions, one may obtain corresponding derandomiza-
tions of BPP (including a full derandomization; i.e., BPP = P). Other forms of
pseudorandom generators include ones that fool space-bounded distinguishers, and
even weaker ones that only exhibit some limited random behavior (e.g., outputting
a pair-wise independent sequence).

Chapter 9: Probabilistic Proof Systems. Randomized and interactive veri-
fication procedures, giving rise to interactive proof systems, seem much more pow-
erful than their deterministic counterparts. In particular, interactive proof systems
exist for any set in PSPACE D coNP (e.g., for the set of unsatisfied proposi-
tional formulae), whereas it is widely believed that some sets in coNP do not
have NP-proof systems. Interactive proofs allow the meaningful conceptualization
of zero-knowledge proofs, which are interactive proofs that yield nothing (to the
verifier) beyond the fact that the assertion is indeed valid. Under reasonable com-
plexity assumptions, every set in A'P has a zero-knowledge proof system. (This
result has many applications in cryptography.) A third type of probabilistic proof
systems is the model of PCPs, standing for probabilistically checkable proofs. These
are (redundant) NP-proofs that offers a trade-off between the number of locations
(randomly) examined in the proof and the confidence in its validity. In particular,
a small constant error probability can be obtained by reading a constant number
of bits in the redundant NP-proof. The PCP Theorem asserts that NP-proofs can
be efficiently transformed into PCPs. The study of PCPs is closely related to the
study of the complexity of approximation problems.

Chapter 10: Relaxing the Requirement. In light of the apparent infeasibility
of solving numerous useful computational problems, it is natural to seek relaxations
of these problems that remain useful for the original applications and yet allow
for feasible solving procedures. Two such types of relaxations are provided by
adequate notions of approximation and a theory of average-case complexity. The
notions of approximation refer to the computational problems themselves; that
is, for each problem instance we extend the set of admissible solutions. In the
context of search problems this means settling for solutions that have a value
that is “sufficiently close” to the value of the optimal solution, whereas in the
context of decision problems this means settling for procedures that distinguish
yes-instances from instances that are “far” from any yes-instance. Turning to
average-case complexity, we note that a systematic study of this notion requires
the development of a non-trivial conceptual framework. A major aspect of this
framework is limiting the class of distributions in a way that, on one hand, allows
for various types of natural distributions and, on the other hand, prevents the
collapse of average-case complexity to worst-case complexity.

Appendix A: Glossary of Complexity Classes. The glossary provides self-
contained definitions of most complexity classes mentioned in the book. The glos-
sary is partitioned into two parts, dealing separately with complexity classes that
are defined in terms of algorithms and their resources (i.e., time and space com-
plexity of Turing machines) and complexity classes defined in terms of non-uniform
circuit (and referring to their size and depth). The following classes are defined:
P, NP, coNP, BPP, RP, coRP, ZPP, #P, PH,E, EXP, NEXP, L, NL, RL,
PSPACE, P/poly, NC*, and AC*.

Appendix B: On the Quest for Lower Bounds. This appendix surveys some
attempts at proving lower bounds on the complexity of natural computational prob-
lems. The first part, devoted to Circuit Complexity, reviews lower bounds for the
size of (restricted) circuits that solve natural computational problems. This repre-
sents a program whose long-term goal is proving that P # NP. The second part,
devoted to Proof Complexity, reviews lower bounds on the length of (restricted)
propositional proofs of natural tautologies. This represents a program whose long-
term goal is proving that NP # coNP.

Appendix C: On the Foundations of Modern Cryptography. This ap-
pendix surveys the foundations of cryptography, which are the paradigms, ap-
proaches and techniques used to conceptualize, define and provide solutions to
natural security concerns. It presents some of these conceptual tools as well as
some of the fundamental results obtained using them. The appendix augments
the partial treatment of one-way functions, pseudorandom generators, and zero-
knowledge proofs (which is included in Chapters 7-9). Using these basic tools, the
appendix provides a treatment of basic cryptographic applications such as Encryp-
tion, Signatures, and General Cryptographic Protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-
domization. The probabilistic preliminaries include conventions regarding ran-
dom variables and overviews of three useful inequalities (i.e., Markov Inequality,
Chebyshev’s Inequality, and Chernoff Bound). The advanced topics include con-
structions and lemmas regarding families of hashing functions, a study of the sam-
ple and randomness complexities of estimating the average value of an arbitrary
function, and the problem of randomness extraction (i.e., procedures for extracting
almost perfect randomness from sources of weak or defected randomness).

Appendix E: Explicit Constructions. Complexity theory provides a clear
perspective on the intuitive notion of an explicit construction. This perspective is
demonstrated with respect to error correcting codes and expander graphs. On the
topic of codes, the appendix focuses on various computational aspects, containing
a review of several popular constructions as well as a construction of a binary code
of constant rate and constant relative distance. Also included are a brief review
of the notions of locally testable and locally decodable codes, and a useful upper-
bound on the number of codewords that are close to any single word. Turning
to expander graphs, the appendix contains a review of two standard definitions of
expanders, two levels of explicitness, two properties of expanders that are related to
(single-step and multi-step) random walks on them, and two explicit constructions
of expander graphs.

Appendix F: Some Omitted Proofs. This appendix contains some proofs that
were not included in the main text (for a variety of reasons) and still are beneficial
as alternatives to the original and/or standard presentations. Included are proofs

10

that PH is reducible to #P via randomized Karp-reductions, and that ZP(f) C
AM(O(f)) € AM(f), for any function f such that f(n) € {2, ..., poly(n)}.

Appendix G: Some Computational Problems. This appendix includes def-
initions of most of the specific computational problems that are referred to in the
main text. In particular, it contains a brief introduction to graph algorithms,
boolean formulae and finite fields.

Acknowledgments

My perspective on complexity theory was most influenced by Shimon Even and
Leonid Levin. In fact, it was hard not to be influenced by these two remarkable and
highly opinionated researchers (especially for somebody like me who was fortunate
to spend a lot of time with them).?

Shimon Even viewed complexity theory as the study of the limitations of al-
gorithms, a study concerned with natural computational resources and natural
computational tasks. Complexity theory was there to guide the engineer and to
address the deepest questions that bother an intellectually curious computer scien-
tist. I believe that this book shares Shimon’s view of complexity theory as evolving
around such questions.

Leonid Levin emphasized the general principles that underly complexity theory,
rejecting any “model-dependent effects” as well as the common coupling of com-
plexity theory with the theory of automata and formal languages. In my opinion,
this book is greatly influenced by these opinions of Levin.

I wish to acknowledge the influence of numerous other colleagues on my pro-
fessional perspectives and attitudes. These include Shafi Goldwasser, Dick Karp,
Silvio Micali, and Avi Wigderson. I also wish to thank many colleagues for their
comments and advice regarding earlier versions of this text. A partial list includes
Noam Livne, Omer Reingold, Dana Ron, Ronen Shaltiel, Amir Shpilka, Madhu
Sudan, Salil Vadhan, and Avi Wigderson.

Lastly, I am grateful to Mohammad Mahmoody Ghidary and Or Meir for their
careful reading of drafts of this manuscript and for the numerous corrections and
suggestions they have provided.

Relation to previous texts of mine. Some of the text of this book has been
adapted from previous texts of mine. In particular, Chapters 8 and 9 were written
based on my surveys [87, Chap. 3] and [87, Chap. 2], respectively; but the exposition
has been extensively revised to fit the significantly different aims of the current
book. Similarly, Section 7.1 and Appendix C were written based on my survey [87,
Chap. 1] and books [88, 89]; but, again, the previous texts are very different in many
ways. In contrast, Appendix B was adapted with relatively little modifications from
a section of an article by Avi Wigderson and myself [104].

2Shimon Even was my graduate studies adviser (at the Technion, 1980-83); whereas I had a
lot of meetings with Leonid Levin during my post-doctoral period (at MIT, 1983-86).

Chapter 1

Introduction and
Preliminaries

You can start by putting the DO NOT DISTURB sign.

Cay, in Desert Hearts (1985).

The current chapter consists of two parts. The first part provides a high-level
introduction to (computational) complexity theory. This introduction is much
more detailed than the laconic statements made in the preface, but is quite sparse
when compared to the richness of the field. In addition, the introduction contains
several important comments regarding the contents, approach and style of the
current book.

average-case approximation
pseudorandomness
PCP
PSPACE 1P ZK
PH
BPP RP
NP coNP
P
NL

L

lower bounds

The second part of this chapter provides the necessary preliminaries to the rest
of the book. It includes a discussion of computational tasks and computational
models, as well as natural complexity measures associated with the latter. More
specifically, this part recalls the basic notions and results of computability theory
(including the definition of Turing machines, some undecidability results, the notion
of universal machines, and the definition of oracle machines). In addition, this part
presents the basic notions underlying non-uniform models of computation (like
Boolean circuits).

4 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

1.1 Introduction

This section consists of two parts: the first part refers to the area itself, whereas
the second part refers to the current book. The first part provides a brief overview
of Complexity Theory (Section 1.1.1) as well as some reflections about its char-
acteristics (Section 1.1.2). The second part describes the contents of this book
(Section 1.1.3), the considerations underlying the choice of topics as well as the
way they are presented (Section 1.1.4), and various notations and conventions (Sec-
tion 1.1.5).

1.1.1 A brief overview of Complexity Theory

Out of the tough came forth sweetness'

Judges, 14:14

Complexity Theory is concerned with the study of the intrinsic complexity of com-
putational tasks. Its “final” goals include the determination of the complexity of
any well-defined task. Additional goals include obtaining an understanding of the
relations between various computational phenomena (e.g., relating one fact regard-
ing computational complexity to another). Indeed, we may say that the former
type of goals is concerned with absolute answers regarding specific computational
phenomena, whereas the latter type is concerned with questions regarding the re-
lation between computational phenomena.

Interestingly, so far Complexity Theory has been more successful in coping with
goals of the latter (“relative”) type. In fact, the failure to resolve questions of the
“absolute” type, led to the flourishing of methods for coping with questions of the
“relative” type. Musing for a moment, let us say that, in general, the difficulty
of obtaining absolute answers may naturally lead to seeking conditional answers,
which may in turn reveal interesting relations between phenomena. Furthermore,
the lack of absolute understanding of individual phenomena seems to facilitate the
development of methods for relating different phenomena. Anyhow, this is what
happened in Complexity Theory.

Putting aside for a moment the frustration caused by the failure of obtaining
absolute answers, we must admit that there is something fascinating in the success
to relate different phenomena: in some sense, relations between phenomena are
more revealing than absolute statements about individual phenomena. Indeed, the
first example that comes to mind is the theory of NP-completeness. Let us consider
this theory, for a moment, from the perspective of these two types of goals.

Complexity theory has failed to determine the intrinsic complexity of tasks such
as finding a satisfying assignment to a given (satisfiable) propositional formula or
finding a 3-coloring of a given (3-colorable) graph. But it has established that
these two seemingly different computational tasks are in some sense the same (or,
more precisely, are computationally equivalent). We find this success amazing

IThe quote is commonly used to mean that benefit arose out of misfortune.

1.1. INTRODUCTION)

and exciting, and hopes that the reader shares these feelings. The same feeling of
wonder and excitement is generated by many of the other discoveries of Complexity
theory. Indeed, the reader is invited to join a fast tour of some of the other questions
and answers that make up the field of Complexity theory.

We will indeed start with the “P versus NP Question”. Our daily experience is
that it is harder to solve a problem than it is to check the correctness of a solution
(e.g., think of either a puzzle or a research problem). Is this experience merely
a coincidence or does it represent a fundamental fact of life (or a property of the
world)? Could you imagine a world in which solving any problem is not significantly
harder than checking a solution to it? Would the term “solving a problem” not
lose its meaning in such a hypothetical (and impossible in our opinion) world?
The denial of the plausibility of such a hypothetical world (in which “solving” is
not harder than “checking”) is what “P different from NP” actually means, where
P represents tasks that are efficiently solvable and NP represents tasks for which
solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the
task of proving theorems versus the task of verifying the validity of proofs. Indeed,
finding proofs is a special type of the aforementioned task of “solving a problem”
(and verifying the validity of proofs is a corresponding case of checking correctness).
Again, “P different from NP” means that there are theorems that are harder to
prove than to be convinced of their correctness when presented with a proof. This
means that the notion of a proof is meaningful (i.e., that proofs do help when
trying to be convinced of the correctness of assertions). Here NP represents sets
of assertions that can be efficiently verified with the help of adequate proofs, and
P represents sets of assertions that can be efficiently verified from scratch (i.e.,
without proofs).

In light of the foregoing discussion it is clear that the P-versus-NP Question is
a fundamental scientific question of far-reaching consequences. The fact that this
question seems beyond our current reach led to the development of the theory of
NP-completeness. Loosely speaking, this theory identifies a set of computational
problems that are as hard as NP. That is, the fate of the P-versus-NP Question
lies with each of these problems: if any of these problems is easy to solve then
so are all problems in NP. Thus, showing that a problem is NP-complete provides
evidence to its intractability (assuming, of course, “P different than NP”). Indeed,
demonstrating NP-completeness of computational tasks is a central tool in indicat-
ing hardness of natural computational problems, and it has been used extensively
both in computer science and in other disciplines. NP-completeness indicates not
only the conjectured intractability of a problem but rather also its “richness” in the
sense that the problem is rich enough to “encode” any other problem in NP. The
use of the term “encoding” is justified by the exact meaning of NP-completeness,
which in turn is based on establishing relations between different computational
problems (without referring to their “absolute” complexity).

The foregoing discussion of the P-versus-NP Question also hints to the impor-
tance of representation, a phenomenon that is central to complexity theory. In
general, complexity theory is concerned with problems the solutions of which are

6 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

implicit in the problem’s statement (or rather in the instance). That is, the problem
(or rather its instance) contains all necessary information, and one merely needs to
process this information in order to supply the answer.? Thus, complexity theory is
concerned with manipulation of information, and its transformation from one rep-
resentation (in which the information is given) to another representation (which
is the one desired). Indeed, a solution to a computational problem is merely a
different representation of the information given; that is, a representation in which
the answer is explicit rather than implicit. For example, the answer to the question
of whether or not a given Boolean formula is satisfiable is implicit in the formula
itself (but the task is to make the answer explicit). Thus, complexity theory clari-
fies a central issue regarding representation; that is, the distinction between what
is explicit and what is implicit in a representation. Furthermore, it even suggests
a quantification of the level of non-explicitness.

In general, complexity theory provides new viewpoints on various phenomena
that were considered also by past thinkers. Examples include the aforementioned
concepts of proofs and representation as well as concepts like randomness, knowl-
edge, interaction, secrecy and learning. We next discuss some of these concepts
and the perspective offered by complexity theory.

The concept of randomness has puzzled thinkers for ages. Their perspective
can be described as ontological: they asked “what is randomness” and wondered
whether it exist at all (or is the world deterministic). The perspective of complexity
theory is behavioristic: it is based on defining objects as equivalent if they cannot
be told apart by any efficient procedure. That is, a coin toss is (defined to be)
“random” (even if one believes that the universe is deterministic) if it is infeasible
to predict the coin’s outcome. Likewise, a string (or a distribution of strings) is
“random” if it is infeasible to distinguish it from the uniform distribution (regard-
less of whether or not one can generate the latter). Interestingly, randomness (or
rather pseudorandomuess) defined this way is efficiently expandable; that is, under
a reasonable complexity assumption (to be discussed next), short pseudorandom
strings can be deterministically expanded into long pseudorandom strings. Indeed,
it turns out that randomness is intimately related to intractability. Firstly, note
that the very definition of pseudorandomness refers to intractability (i.e., the infea-
sibility of distinguishing a pseudorandomness object from a uniformly distributed
object). Secondly, as stated, a complexity assumption, which refers to the exis-
tence of functions that are easy to evaluate but hard to invert (called one-way
functions), implies the existence of deterministic programs (called pseudorandom
generators) that stretch short random seeds into long pseudorandom sequences. In
fact, it turns out that the existence of pseudorandom generators is equivalent to
the existence of one-way functions.

Complexity theory offers its own perspective on the concept of knowledge (and
distinguishes it from information). Specifically, complexity theory views knowledge
as the result of a hard computation. Thus, whatever can be efficiently done by any-

2In contrast, in other disciplines, solving a problem may require gathering information that is
not available in the problem’s statement. This information may either be available from auxiliary
(past) records or be obtained by conducting new experiments.

1.1. INTRODUCTION 7

one is not considered knowledge. In particular, the result of an easy computation
applied to publicly available information is not considered knowledge. In contrast,
the value of a hard to compute function applied to publicly available information
is knowledge, and if somebody provides you with such a value then it has provided
you with knowledge. This discussion is related to the notion of zero-knowledge
interactions, which are interactions in which no knowledge is gained. Such inter-
actions may still be useful, because they may convince a party of the correctness
of specific data that was provided beforehand.

The foregoing paragraph has explicitly referred to interaction. It has pointed
one possible motivation for interaction: gaining knowledge. It turns out that in-
teraction may help in a variety of other contexts. For example, it may be easier to
verify an assertion when allowed to interact with a prover rather than when reading
a proof. Put differently, interaction with a good teacher may be more beneficial
than reading any book. We comment that the added power of such interactive
proofs is rooted in their being randomized (i.e., the verification procedure is ran-
domized), because if the verifier’s questions can be determined beforehand then the
prover may just provide the transcript of the interaction as a traditional written
proof.

Another concept related to knowledge is that of secrecy: knowledge is some-
thing that one party has while another party does not have (and cannot feasibly
obtain by itself) — thus, in some sense knowledge is a secret. In general, complexity
theory is related to Cryptography, where the latter is broadly defined as the study
of systems that are easy to use but hard to abuse. Typically, such systems involve
secrets, randomness and interaction as well as a complexity gap between the ease
of proper usage and the infeasibility of causing the system to deviate from its pre-
scribed behavior. Thus, much of Cryptography is based on complexity theoretic
assumptions and its results are typically transformations of relatively simple com-
putational primitives (e.g., one-way functions) into more complex cryptographic
applications (e.g., secure encryption schemes).

We have already mentioned the concept of learning when referring to learning
from a teacher versus learning from a book. Recall that complexity theory provides
evidence to the advantage of the former. This is in the context of gaining knowledge
about publicly available information. In contrast, computational learning theory
is concerned with learning objects that are only partially available to the learner
(i.e., learning a function based on its value at a few random locations or even at
locations chosen by the learner). Complexity theory sheds light on the intrinsic
limitations of learning (in this sense).

Complexity theory deals with a variety of computational tasks. We have already
mentioned two fundamental types of tasks: searching for solutions (or rather “find-
ing solutions”) and making decisions (e.g., regarding the validity of assertion). We
have also hinted that in some cases these two types of tasks can be related. Now
we consider two additional types of tasks: counting the number of solutions and
generating random solutions. Clearly, both the latter tasks are at least as hard as
finding arbitrary solutions to the corresponding problem, but it turns out that for
some natural problems they are not significantly harder. Specifically, under some

8 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

natural conditions on the problem, approximately counting the number of solutions
and generating an approximately random solution is not significantly harder than
finding an arbitrary solution.

Having mentioned the notion of approrimation, we note that the study of the
complexity of finding approximate solutions has also received a lot of attention.
One type of approximation problems refers to an objective function defined on the
set of potential solutions. Rather than finding a solution that attains the optimal
value, the approximation task consists of finding a solution that attains an “almost
optimal” value, where the notion of “almost optimal” may be understood in dif-
ferent ways giving rise to different levels of approximation. Interestingly, in many
cases, even a very relaxed level of approximation is as difficult to obtain as solving
the original (exact) search problem (i.e., finding an approximate solution is as hard
as finding an optimal solution). Surprisingly, these hardness of approximation re-
sults are related to the study of probabilistically checkable proofs, which are proofs
that allow for ultra-fast probabilistic verification. Amazingly, every proof can be
efficiently transformed into one that allows for probabilistic verification based on
probing a constant number of bits (in the alleged proof). Turning back to approx-
imation problems, we note that in other cases a reasonable level of approximation
is easier to achieve than solving the original (exact) search problem.

Approximation is a natural relaxation of various computational problems. An-
other natural relaxation is the study of average-case complexity, where the “aver-
age” is taken over some “simple” distributions (representing a model of the prob-
lem’s instances that may occur in practice). We stress that, although it was not
stated explicitly, the entire discussion so far has referred to “worst-case” analysis
of algorithms. We mention that worst-case complexity is a more robust notion
than average-case complexity. For starters, one avoids the controversial question
of what are the instances that are “important in practice” and correspondingly
the selection of the class of distributions for which average-case analysis is to be
conducted. Nevertheless, a relatively robust theory of average-case complexity has
been suggested, albeit it is less developed than the theory of worst-case complexity.

In view of the central role of randomness in complexity theory (as evident, say,
in the study of pseudorandomness, probabilistic proof systems, and cryptography),
one may wonder as to whether the randomness needed for the various applications
can be obtained in real-life. One specific question, which received a lot of atten-
tion, is the possibility of “purifying” randomness (or “extracting good randomness
from bad sources”). That is, can we use “defected” sources of randomness in or-
der to implement almost perfect sources of randomness. The answer depends, of
course, on the model of such defected sources. This study turned out to be related
to complexity theory, where the most tight connection is between some type of
randomness extractors and some type of pseudorandom generators.

So far we have focused on the time complexity of computational tasks, while
relying on the natural association of efficiency with time. However, time is not
the only resource one should care about. Another important resource is space:
the amount of (temporary) memory consumed by the computation. The study
of space complexity has uncovered several fascinating phenomena, which seem to

1.1. INTRODUCTION 9

indicate a fundamental difference between space complexity and time complexity.
For example, in the context of space complexity, verifying proofs of validity of
assertions (of any specific type) has the same complexity as verifying proofs of
invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour of
some mountain tops, and dizziness is to be expected. Needless to say, the rest of
the book offers a totally different touring experience. We will climb some of these
mountains by foot, step by step, and will often stop to look around and reflect.

Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-
sults are not known for many of the “big questions” of complexity theory (most
notably the P-versus-NP Question). However, several highly non-trivial absolute
results have been proved. For example, it was shown that using negation can
speed-up the computation of monotone functions (which do not require negation
for their mere computation). In addition, many promising techniques were intro-
duced and employed with the aim of providing a low-level analysis of the progress of
computation. However, as stated in the preface, the focus of this book is elsewhere.

1.1.2 Characteristics of Complexity Theory

We are successful because we use the right level of abstraction

Avi Wigderson (1996)

Using the “right level of abstraction” seems to be a main characteristic of the The-
ory of Computation at large. The right level of abstraction means abstracting away
second-order details, which tend to be context-dependent, while using definitions
that reflect the main issues (rather than abstracting them away too). Indeed, using
the right level of abstraction calls for an extensive exercising of good judgment, and
one indication for having chosen the right abstractions is the result of their study.

One major choice of the theory of computation, which is currently taken for
granted, is the choice of a model of computation and corresponding complexity
measures and classes. Two extreme choices that were avoided are a too realistic
model and a too abstract model. On the one hand, the main model of computation
used in complexity theory does not try to reflect (or mirror) the specific operation
of real-life computers used at a specific historical time. Such a choice would have
made it very hard to develop complexity theory as we know it and to uncover
the fundamental relations discussed in this book: the mass of details would have
obscured the view. On the other hand, avoiding any reference to any concrete
model (like in the case of recursive function theory) does not encourage the intro-
duction and study of natural measures of complexity. Indeed, as we shall see in
Section 1.2.3, the choice was (and is) to use a simple model of computation (which
does not mirror real-life computers), while avoiding any effects that are specific to
that model (by keeping a eye on a host of variants and alternative models). The
freedom from the specifics of the basic model is obtained by considering complexity

10 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

classes that are invariant under a change of model (as long as the alternative model
is “reasonable”).

Another major choice is the use of asymptotic analysis. Specifically, we con-
sider the complexity of an algorithm as a function of its input length, and study
the asymptotic behavior of this function. It turns out that structure that is hidden
by concrete quantities appears at the limit. Furthermore, depending on the case,
we classify functions according to different criteria. For example, in case of time
complexity we consider classes of functions that are closed under multiplication,
whereas in case of space complexity we consider closure under addition. In each
case, the choice is governed by the nature of the complexity measure being consid-
ered. Indeed, one could have developed a theory without using these conventions,
but this would have resulted in a far more cumbersome theory. For example, rather
than saying that finding a satisfying assignment for a given formula is polynomial-
time reducible to deciding the satisfiability of some other formulae, one could have
stated the exact functional dependence of the complexity of the search problem on
the complexity of the decision problem.

Both the aforementioned choices are common to other branches of the theory of
computation. One aspect that makes complexity theory unique is its perspective
on the most basic question of the theory of computation; that is, the way it studies
the question of what can be efficiently computed. The perspective of complexity
theory is general in nature. This is reflected in its primary focus on the relevant
notion of efficiency (captured by corresponding resource bounds) rather than on
specific computational problems. In most cases, complexity theoretic studies do
not refer to any specific computational problems or refer to such problems merely
as an illustration. Furthermore, even when specific computational problems are
studied, this study is (explicitly or at least implicitly) aimed at understanding the
computational limitations of certain resource bounds.

The aforementioned general perspective seems linked to the significant role of
conceptual considerations in the field: The rigorous study of an intuitive notion of
efficiency must be initiated with an adequate choice of definitions. Since this study
refers to any possible (relevant) computation, the definitions cannot be derived by
abstracting some concrete reality. Indeed, the definitions attempt to capture any
possible reality, which means that the choice of definitions is governed by conceptual
principles and not merely by empirical observations.

1.1.3 Contents of this book

This book consists of ten chapters and seven appendices. The chapters constitute
the core of this book and are written in a style adequate for a textbook, whereas the
appendices provide additional perspective and are written in the style of a survey
article.

Section 1.2 and Chapter 2 are a prerequisite to the rest of the book. Technically,
it is the case that notions and results that appear in these parts are extensively
used in the rest of the book. More importantly, the former parts are the conceptual
framework that shapes the field and provides a good perspective on the questions
and answers provided. Indeed, Section 1.2 and Chapter 2 provide the very basic

1.1. INTRODUCTION 11

material that must be understood by anybody having an interest in complexity
theory.

In contrast, the rest of the book covers more advanced material, which means
that none of it can be claimed to be absolutely necessary for a basic understanding
of complexity theory. Indeed, although some advanced chapters refer to material in
other advanced chapters, the relation between these chapters is not a fundamental
one. Thus, one may choose to read and /or teach an arbitrary subset of the advanced
chapters and do it in an arbitrary order, provided one is willing to follow the
relevant references to some parts of other chapters (see Figure 1.1). Needless to
say, we recommend reading and/or teaching all the advanced chapters, and doing
so by following the order presented in this book.

10.1.1[101.2 | 10.2
Ve approx.|| prop.| |average|
\(of opt.)|| test. case

]

Jo2 zk'

~01 IP

\ 2 v
1
! 43 space T -«
at|[32] SP . [52]53]54
1 4.2 TIME \ L | NL |pspacH
P/poly| | PH \ i \ ,
~ - -|'4.1 advice ~-|-51 gengral |=---

Solid arrows indicate the use of specific results that are stated in the
section to which the arrow points. Dashed lines (and arrows) indicate
an important conceptual connection; the wider the line, the tighter
the connection. When relations are only between subsections, their
index is indicated.

Figure 1.1: Dependencies among the advanced chapters.

The rest of this section provides a brief summary of the contents of the various

12 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

chapters and appendices. This summary is intended for the teacher and/or the
expert, whereas the student is referred to the more reader-friendly summaries that
appear in the book’s prefix.

Section 1.2: Preliminaries. This section provides the relevant background on
computability theory, which is the basis for the rest of this book (as well as for
complexity theory at large). Most importantly, it contains a discussion of central
notions such as search and decision problems, algorithms that solve such problems,
and their complexity. In addition, this section presents non-uniform models of
computation (e.g., Boolean circuits).

Chapter 2: P, NP and NP-completeness. This chapter presents the P-vs-NP
Question both in terms of search problems and in terms of decision problems. The
second main topic of this chapter is the theory of NP-completeness. The chapter
also provides a treatment of the general notion of a (polynomial-time) reduction,
with special emphasis on self-reducibility. Additional topics include the existence of
problems in NP that are neither NP-complete nor in P, optimal search algorithms,
the class coNP, and promise problems.

Chapter 3: Variations on P and NP. This chapter provides a treatment
of non-uniform polynomial-time (P/poly) and of the Polynomial-time Hierarchy
(PH). Each of the two classes is defined in two equivalent ways (e.g., P/poly is
defined both in terms of circuits and in terms of “machines that take advice”). In
addition, it is shown that if NP is contained in P/poly then PH collapses to its
second level (i.e., 3).

Chapter 4: More Resources, More Power? The focus of this chapter is
on Hierarchy Theorems, which assert that typically more resources allow for solv-
ing more problems. These results depend on using bounding functions that can
be computed without exceeding the amount of resources that they specify, and
otherwise Gap Theorems may apply.

Chapter 5: Space Complexity. Among the results presented in this chapter
are a log-space algorithm for testing connectivity of (undirected) graphs, a proof
that 'L = coN'L, and complete problems for N'£ and PSPACE (under log-space
and poly-time reductions, respectively).

Chapter 6: Randomness and Counting. This chapter focuses on various
randomized complexity classes (i.e., BPP, RP, and ZPP) and the counting class
#P. The results presented in this chapter include BPP C P/poly and BPP C
Yo, the #P-completeness of the Permanent, the connection between approximate
counting and uniform generation of solutions, and the randomized reductions of
approximate counting to NP and of NP to solving problems with unique solutions.

1.1. INTRODUCTION 13

Chapter 7: The Bright Side of Hardness. This chapter deals with two con-
jectures that are related to P # N'P. The first conjecture is that there are problems
in £ that are not solvable by (non-uniform) families of small (say polynomial-size)
circuits, whereas the second conjecture is equivalent to the notion of one-way func-
tions. Most of this chapter is devoted to “hardness amplification” results that
convert these conjectures into tools that can be used for non-trivial derandomiza-
tions of BPP (resp., for a host of cryptographic applications).

Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-
tion of computational indistinguishability and corresponding notions of pseudoran-
domness. The definition of general-purpose pseudorandom generators (running in
polynomial-time and withstanding any polynomial-time distinguisher) is presented
as a special case of a general paradigm. The chapter also contains a presentation
of other instantiations of the latter paradigm, including generators aimed at deran-
domizing complexity classes such as BPP, generators withstanding space-bounded
distinguishers, and some special-purpose generators.

Chapter 9: Probabilistic Proof Systems. This chapter provides a treatment
of three types of probabilistic proof systems: interactive proofs, zero-knowledge
proofs, and probabilistic checkable proofs. The results presented include ZP =
PSPACE, zero-knowledge proofs for any NP-set, and the PCP Theorem. For the
latter, only overviews of the two different known proofs are provided.

Chapter 10: Relaxing the Requirement. This chapter provides a treatment
of two types of approximation problems and a theory of average-case (or rather
typical-case) complexity. The traditional type of approximation problems refers
to search problems and consists of a relaxation of standard optimization prob-
lems. The second type is known as “property testing” and consists of a relaxation
of standard decision problems. The theory of average-case complexity involves
several non-trivial definitional choices (e.g., an adequate choice of the class of dis-
tributions).

Appendix A: Glossary of Complexity Classes. The glossary provides self-
contained definitions of most complexity classes mentioned in the book.

Appendix B: On the Quest for Lower Bounds. The first part, devoted
to Circuit Complexity, reviews lower bounds for the size of (restricted) circuits
that solve natural computational problems. The second part, devoted to Proof
Complexity, reviews lower bounds on the length of (restricted) propositional proofs
of natural tautologies.

Appendix C: On the Foundations of Modern Cryptography. The first
part of this appendix augments the partial treatment of one-way functions, pseu-
dorandom generators, and zero-knowledge proofs (which is included in Chapters

14 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

7-9). Using these basic tools, the second part provides a treatment of basic cryp-
tographic applications such as Encryption, Signatures, and General Cryptographic
Protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-
domization. The probabilistic preliminaries include conventions regarding ran-
dom variables and overviews of three useful inequalities (i.e., Markov Inequality,
Chebyshev’s Inequality, and Chernoff Bound). The advanced topics include con-
structions of hashing functions and variants of the Leftover Hashing Lemma, and
overviews of samplers and extractors (i.e., the problem of randomness extraction).

Appendix E: Explicit Constructions. This appendix focuses on various com-
putational aspects of error correcting codes and expander graphs. On the topic
of codes, the appendix contains a review of the Hadamard code, Reed-Solomon
codes, Reed-Muller codes, and a construction of a binary code of constant rate and
constant relative distance. Also included are a brief review of the notions of locally
testable and locally decodable codes, and a list-decoding bound. On the topic of
expander graphs, the appendix contains a review of the standard definitions and
properties as well as a presentation of the Margulis-Gabber-Galil and the Zig-Zag
constructions.

Appendix F: Some Omitted Proofs. This appendix contains some proofs
that are beneficial as alternatives to the original and/or standard presentations.
Included are proofs that PH is reducible to #P via randomized Karp-reductions,

and that ZP(f) € AM(O(f)) € AM(f).

Appendix G: Some Computational Problems. This appendix contains a
brief introduction to graph algorithms, Boolean formulae, and finite fields.

Bibliography. As stated in Section 1.1.4, we tried to keep the bibliographic list
as short as possible (and still reached a couple of hundreds of entries). As a result
many relevant references were omitted. In general, our choice of references was
biased in favor of textbooks and survey articles. We tried, however, not to omit
references to key papers in an area.

Absent from this book. As stated in the preface, the current book does not
provide a uniform cover of the various areas of complexity theory. Notable omis-
sions include the areas of circuit complexity (cf. [43, 223]) and proof complexity
(ctf. [25]), which are briefly reviewed in Appendix B. Additional topics that are
commonly covered in complexity theory courses but omitted here include the study
of branching programs and decision trees (cf. [224]), parallel computation [133], and
communication complezity [141]. We mention that the recent textbook of Arora
and Barak [13] contains a treatment of all these topics. Finally, we mention a two
areas that we consider related to complexity theory, although this view is not very

1.1. INTRODUCTION 15

common. These areas are distributed computing [16] and computational learning
theory [135].

1.1.4 Approach and style of this book

According to a common opinion, the most important aspect of a scientific work is
the technical result that it achieves and the rest is redundancy introduced for the
sake of “error correction” and/or comfort. It is further believed that, like in a work
of art, the interpretation of the work should be left with the reader (or viewer or
listener).

The author disagrees with the aforementioned opinions, and argues that there
is a fundamental difference between art and science, and that this difference refers
exactly to the meaning of a piece of work. Science is concerned with meaning
(and not with form), and in its quest for truth and/or understanding it follows
philosophy (and not art). The author holds the opinion that the most important
aspects of a scientific work are the intuitive question that it addresses, the reason
that it addresses this question, the way it phrases the question, the approach that
underlies its answer, and the ideas that are embedded in the answer. Following this
view, it is important to communicate these aspects of the work, and the current
book is written accordingly.

The foregoing issues are even more acute when it comes to complexity theory,
firstly because conceptual considerations seems to play an even more central role in
complexity theory (as opposed to other fields; cf., Section 1.1.2). Furthermore (or
maybe consequently), complexity theory is extremely rich in conceptual content.
Unfortunately, this content is rarely communicated (explicitly) in books and/or
surveys of the area.> The annoying (and quite amazing) consequences are students
that have only a vague understanding of the meaning and general relevance of the
fundamental notions and results that they were taught. The author’s view is that
these consequences are easy to avoid by taking the time to explicitly discuss the
meaning of definitions and results. A related issue is using the “right” definitions
(i.e., those that reflect better the fundamental nature of the notion being defined)
and teaching things in the (conceptually) “right” order.

1.1.4.1 The general principle

In accordance with the foregoing, the focus of this book is on the conceptual aspects
of the technical material. Whenever presenting a subject, the starting point is the
intuitive questions being addressed. The presentation explains the importance of
these questions, the specific ways that they are phrased (i.e., the choices made in
the actual formulation), the approaches that underly the answers, and the ideas
that are embedded in these answers. Thus, a significant portion of the text is

31t is tempting to speculate on the reasons for this phenomenon. One speculation is that
communicating the conceptual content of complexity theory involves making bold philosophical
assertions that are technically straightforward, whereas this combination does not fit the character
of most researchers in complexity theory.

16 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

devoted to motivating discussions that refer to the concepts and ideas that underly
the actual definitions and results.

The material is organized around conceptual themes, which reflect fundamen-
tal notions and/or general questions. Specific computational problems are rarely
referred to, with exceptions that are used either for sake of clarity or because the
specific problem happens to capture a general conceptual phenomenon. For exam-
ple, in this book, complete problems are always secondary to the class for which
they are complete.*

1.1.4.2 On a few specific choices

Our technical presentation often differs from the standard one. In many cases
this is due to conceptual considerations. At times, this leads to some technical
simplifications. In this section we only discuss general themes and/or choices that
have a global impact on much of the presentation.

Avoiding non-deterministic machines. We try to avoid non-deterministic
machines as much as possible. As argued in several places (e.g., Section 2.1.4),
we believe that these fictitious “machines” have a negative effect both from a
conceptual and technical point of view. The conceptual damage caused by using
non-deterministic machines is that it is unclear why one should care about what
such machines can do. Needless to say, the reason to care is clear when noting that
these fictitious “machines” offer a (convenient or rather slothful) way of phrasing
fundamental issues. The technical damage caused by using non-deterministic ma-
chines is that they tend to confuse the students. Furthermore, they do not offer
the best way to handle more advanced issues (e.g., counting classes).

In contrast, we use search problems as the basis for much of the presentation.
Specifically, the class PC (see Definition 2.3), which consists of search problems
having efficiently checkable solutions, plays a central role in our presentation. In-
deed, defining this class is slightly more complicated than the standard definition
of NP (based on non-deterministic machines), but the technical benefits start ac-
cumulating as we proceed. Needless to say, the class PC is a fundamental class
of computational problems and this fact is the main motivation to its presenta-
tion. (Indeed, the most conceptually appealing phrasing of the P-vs-NP Question
consists of asking whether every search problem in PC can be solved efficiently.)

Avoiding model-dependent effects. Our focus is on the notion of efficient
computation. A rigorous definition of this notion seems to require reference to
some concrete model of computation; however, all questions and answers considered

4We admit that a very natural computational problem can give rise to a class of problems that
are computationally equivalent to it, and that in such a case the class may be less interesting
than the original problem. This is not the case for any of the complexity classes presented in
this book. Still, in some cases (e.g., NP and #7P), the historical evolution actually went from a
specific computational problem to a class of problems that are computationally equivalent to it.
However, in all cases presented in this book, a retrospective evaluation suggests that the class is
actually more important than the original problem.

1.1. INTRODUCTION 17

in this book are invariant under the choice of such a concrete model, provided
of course that the model is “reasonable” (which, needless to say, is a matter of
intuition). Indeed, the foregoing text reflects the tension between the need to
make rigorous definitions and the desire to be independent of technical choices,
which are unavoidable when making such definitions. Furthermore, in contrast to
common beliefs, the foregoing comments refer not only to time-complexity but also
to space-complexity. However, in both cases, the claim of invariance may not hold
for marginally small resources (e.g., linear-time or sub-logarithmic space).

In contrast to the foregoing paragraph, in some cases we choose to be specific.
The most notorious case is the association of efficiency with polynomial-time (see
§1.2.3.4). Indeed, all the questions and answers regarding efficient computation can
be phrased without referring to polynomial-time (i.e., by stating explicit functional
relations between the complexities of the problems involved), but such a generalized
treatment will be painful to follow.

1.1.4.3 On the presentation of technical material

In general, the more complex the technical material is, the more levels of exposi-
tions we employ (starting from the most high-level exposition, and when necessary
providing more than one level of details). In particular, whenever a proof is not
very simple, we try to present the key ideas first, and postpone implementation
details to later. We also try to clearly indicate the passage from a high-level presen-
tation to its implementation details (e.g., by using phrases such as “details follow”).
In some cases, especially in the case of advanced results, only proof sketches are
provided and the implication is that the reader should be able to fill-up the missing
details.

Few results are stated without a proof. In some of these cases the proof idea
or a proof overview is provided, but the reader is not expected to be able to fill-up
the highly non-trivial details. (In these cases, the text clearly indicates this state
of affairs.) One notable example is the proof of the PCP Theorem (Theorem 9.16).

We tried to avoid the presentation of material that, in our opinion, is neither
the “last word” on the subject nor represents the “right” way of approaching the
subject. Thus, we do not always present the “best” known result.

1.1.4.4 Organizational principles

Each of the main chapters starts with a high-level summary and ends with chapter
notes and exercises. The latter are not aimed at testing or inspiring creativity, but
are rather designed to help and verify the basic understanding of the main text.
As stated in the preface, this book focuses on the high-level approach to com-
plexity theory and the low-level approach (i.e., lower bounds) is briefly reviewed in
Appendix B. Other appendices contain material that is closely related to complex-
ity theory but is not an integral part of it (e.g., the Foundations of Cryptography).?

5 As further articulated in Section 7.1, we recommend not including a basic treatment of cryp-
tography within a course on complexity theory. Indeed, cryptography may be claimed to be
the most appealing application of complexity theory, but a superficial treatment of cryptography

18 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

In an attempt to keep the bibliographic list from becoming longer than an
average chapter, we omitted many relevant references. One trick used towards this
end is referring to lists of references in other texts, especially when these texts are
cited anyhow. Indeed, our choices of references were biased in favor of textbooks
and survey articles, because we believe that they provide the best way to further
learn about a research direction and/or approach. We tried, however, not to omit
references to key papers in an area. In some cases, when we needed a reference for
a result of interest and could not resort to the aforementioned trick, we cited also
less central work.

As a matter of policy, we tried to avoid credits in the main text. The few
exceptions are either pointers to texts that provide details that we chose to omit
or usage of terms (bearing researchers’ names) that are too popular to avoid.

Teaching note: The text also includes some teaching notes, which are typeset as this
one. Some of these notes express quite opinionated recommendations and/or justify

various expositional choices made in the text.

1.1.4.5 Additional notes

The author’s guess is that the text will be criticized for lengthy discussions of tech-
nically trivial issues. Indeed, most researchers dismiss various conceptual clarifica-
tions as being trivial and devote all their attention to the technically challenging
parts of the material. The consequence is students that master the technical ma-
terial but are confused about its meaning. In contrast, the author recommends
not being embarrassed of devoting time to conceptual clarifications, even if some
students may view them as obvious.

The motivational discussions presented in the text do not necessarily represent
the original motivation of the researchers that pioneered a specific study and/or
contributed greatly to it. Instead, these discussions provide what the author con-
siders to be a good motivation and/or perspective on the corresponding concepts.

1.1.5 Standard notations and other conventions

Following are some notations and conventions that are freely used in this book.

Standard asymptotic notation: When referring to integral functions, we use
the standard asymptotic notation; that is, for f,g : N — N, we write f = O(g)
(resp., f = Q(g)) if there exists a constant ¢ > 0 such that f(n) < c¢- g(n) (resp.,
f(n) > c-g(n)) holds for all n € N. We usually denote by “poly” an unspecified
polynomial, and write f(n) = poly(n) instead of “there exists a polynomial p such
that f(n) < p(n) for all n € N.” We also use the notation f = O(g) that mean
£(n) = poly(logn) - g(n), and = o(g) (resp., f = w(g)) that mean f(n) < c- g(n)
(resp., f(n) > c¢- g(n)) for every constant ¢ > 0 and all sufficiently large n.

(from this perspective) is likely to be misleading and cause more harm than good.

1.2. COMPUTATIONAL TASKS AND MODELS 19

Integrality issues: Typically, we ignore integrality issues. This means that we
may assume that log, n is an integer rather than using a more cumbersome form as
|log, n|. Likewise, we may assume that various equalities are satisfied by integers
(e.g., 2" = m™), even when this cannot possibly be the case (e.g., 2" = 3™). In
all these cases, one should consider integers that approximately satisfy the relevant
equations (and deal with the problems that emerge by such approximations, which
will be ignored in the current text).

Standard combinatorial and graph theory terms and notation: For any
set S, we denote by 2° the set of all subsets of S (i.e., 2° = {S' : §'C S}). For

a natural number n € N, we denote [n] def {1,...,n}. Many of the computational
problems refer to finite (undirected) graphs. Such a graph, denoted G = (V, E),
consists of a set of vertices, denoted V', and a set of edges, denoted E, which are
unordered pairs of vertices. By default, graphs are undirected, whereas directed
graphs consists of vertices and directed edges, where a directed edge is an order
pair of vertices. We also refer to other graph theoretic terms such as connectivity,
being acyclic (i.e., having no simple cycles), being a tree (i.e., being connected and
acyclic), k-colorability, etc. For further background on graphs and computational
problems regarding graphs, the reader is referred to Appendix G.1.

Typographic conventions: We denote formally defined complexity classes by
calligraphic letters (e.g., N"P), but we do so only after defining these classes. Fur-
thermore, when we wish to maintain some ambiguity regarding the specific formu-
lation of a class of problems we use Roman font (e.g., NP may denote either a class
of search problems or a class of decision problems). Likewise, we denote formally
defined computational problems by typewriter font (e.g., SAT). In contrast, generic
problems and algorithms will be denoted by italic font.

1.2 Computational Tasks and Models

We start by introducing the general framework for our discussion of computational
tasks (or problems) This framework refers to the representation of instances and
to two types of tasks (i.e., searching for solutions and making decisions). Once the
stage is set, we consider two types of models of computation: uniform models that
correspond to the intuitive notion of an algorithm, and non-uniform models (e.g.,
Boolean circuits) that facilitates a closer look at the way computation progresses.

Contents of Section 1.2. The contents of Sections 1.2.1-1.2.3 corresponds to a
traditional Computability course, except that it includes a keen interest in universal
machines (see §1.2.3.3), a discussion of the association of efficient computation with
polynomial-time algorithm (§1.2.3.4), and a definition of oracle machines (§1.2.3.5).
This material (with the exception of Kolmogorov Complexity) is taken for granted
in the rest of the current book. (We also call the reader’s attention to the dis-
cussion of generic complexity classes in Section 1.2.5.) In contrast, Section 1.2.4

20 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

presents basic preliminaries regarding non-uniform models of computation (i.e.,
various types of Boolean circuits), and these are only used lightly in the rest of the
book. Thus, whereas Sections 1.2.1-1.2.3 (and 1.2.5) are absolute prerequisites for
the rest of this book, Section 1.2.4 is not.

Teaching note: The author believes that there is no real need for a semester-long
course in Computability (i.e., a course that focuses on what can be computed rather
than on what can be computed efficiently). Instead, undergraduates should take a
course in Computational Complexity, which should contain the computability aspects
that serve as a basis for the rest of the course. Specifically, the former aspects should
occupy at most 25% of the course, and the focus should be on basic complexity issues
(captured by P, NP, and NP-completeness) augmented by a selection of some more
advanced material. Indeed, such a course can be based on Chapters 1 and 2 of the

current book (augmented by a selection of some topics from other chapters).

1.2.1 Representation

In Mathematics and related sciences, it is customary to discuss objects without
specifying their representation. This is not possible in the theory of computation,
where the representation of objects plays a central role. In a sense, a computation
merely transforms one representation of an object to another representation of the
same object. In particular, a computation designed to solve some problem merely
transforms the problem instance to its solution, where the latter can be though of
as a (possibly partial) representation of the instance. Indeed, the answer to any
fully specified question is implicit in the question itself.

Computation refers to objects that are represented in some canonical way, where
such canonical representation provides an “explicit” and “full” (but not “overly
redundant”) description of the corresponding object. We will consider only finite
objects like sets, graphs, numbers, and functions (and keep distinguishing these
types of objects although, actually, they are all equivalent). (For example, see
Appendix G.1 for a discussion of the representation of graphs.)

Strings. We consider finite objects, each represented by a finite binary sequence,
called a string. For a natural number n, we denote by {0,1}" the set of all strings
of length n, hereafter referred to as m-bit strings. The set of all strings is denoted
{0,1}*; that is, {0,1}* = U,,cn{0,1}". For z€{0,1}*, we denote by |z| the length
of z (i.e., 7€{0,1}/®l), and often denote by z; the i*® bit of z (i.e., z = z1 25 - - “Tg|)-
For z,y € {0,1}*, we denote by zy the string resulting from concatenation of the
strings x and y.

At times, we associate {0,1}* x{0,1}* with {0,1}*; the reader should merely
consider an adequate encoding (e.g., the pair (1 -+ T, y1 - yn) €{0,1}*x{0,1}*
may be encoded by the string z;12z1 -+ T, 01ly; - - - yn € {0,1}*). Likewise, we
may represent sequences of strings (of fixed or varying length) as single strings.
When we wish to emphasize that such a sequence (or some other object) is to be
counsidered as a single object we use the notation (-) (e.g., “the pair (z,y) is encoded
as the string (z,y)”).

1.2. COMPUTATIONAL TASKS AND MODELS 21

Numbers. Unless stated differently, natural numbers will be encoded by their
binary expansion; that is, the string b,_1---b1bp € {0,1}"™ encodes the number
Z;’gol b; - 2¢, where typically we assume that this representation has no leading
zeros (i.e., b,—_1 = 1). Rational numbers will be represented as pairs of natural
numbers. In the rare cases in which one considers real numbers as part of the
input to a computational problem, one actually mean rational approximations of
these real numbers.

Special symbols. We denote the empty string by A (i.e., A € {0,1}* and |A| = 0),
and the empty set by (. It will be convenient to use some special symbols that
are not in {0,1}*. One such symbol is L, which typically denotes an indication by
some algorithm that something is wrong.

1.2.2 Computational Tasks

Two fundamental types of computational tasks are so-called search problems and
decision problems. In both cases, the key notions are the problem’s instances and
the problem’s specification.

1.2.2.1 Search problems

A search problem consists of a specification of a set of valid solutions (possibly an
empty one) for each possible instance. That is, given an instance, one is required
to find a corresponding solution (or to determine that no such solution exists).
For example, consider the problem in which one is given a system of equations
and is asked to find a valid solution. Needless to say, much of computer science
is concerned with solving various search problems (e.g., finding shortest paths in
a graph, sorting a list of numbers, finding an occurrence of a given pattern in a
given string, etc). Furthermore, search problems correspond to the daily notion
of “solving a problem” (e.g., finding one’s way between two locations), and thus a
discussion of the possibility and complexity of solving search problems corresponds
to the natural concerns of most people.

In the following definition of solving search problems, the potential solver is a
function (which may be thought of as a solving strategy), and the sets of possible
solutions associated with each of the various instances are “packed” into a single
binary relation.

Definition 1.1 (solving a search problem): Let R C {0,1}* x {0,1}* and R(z) Lef
{y : (z,y) € R} denote the set of solutions for the instance x. A function f :
{0,1}* — {0,1}* U {L} solves the search problem of R if for every x the following
holds: if R(xz) # 0 then f(z) € R(x) and otherwise f(x) = L.

Indeed, R = {(z,y) : y€ R(z)}, and the solver f is required to find a solution (i.e.,
given x output y € R(x)) whenever one exists (i.e., the set R(x) is not empty). It
is also required that the solver f never outputs a wrong solution (i.e., if R(x) # 0

22 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

then f(z) € R(z) and if R(z) = 0 then f(z) = L), which in turn means that f
indicates whether x has any solution.

A special case of interest is the case of search problems having a unique solution
(for each possible instance); that is, the case that |R(z)| = 1 for every z. In this
case, R is essentially a (total) function, and solving the search problem of R means

computing (or evaluating) the function R (or rather the function R’ defined by

R'(z) = y where R(z) = {y}). Popular examples include sorting a sequence

of numbers, multiplying integers, finding the prime factorization of a composite
number, etc.

1.2.2.2 Decision problems

A decision problem consists of a specification of a subset of the possible instances.
Given an instance, one is required to determine whether the instance is in the
specified set (e.g., the set of prime numbers, the set of connected graphs, or the
set of sorted sequences). For example, consider the problem where one is given a
natural number, and is asked to determine whether or not the number is a prime.
One important case, which corresponds to the aforementioned search problems, is
the case of the set of instances having a solution; that is, for any binary relation
R C {0,1}* x {0,1}* we consider the set {x : R(z) # 0}. Indeed, being able
to determine whether or not a solution exists is a prerequisite to being able to
solve the corresponding search problem (as per Definition 1.1). In general, decision
problems refer to the natural task of making binary decision, a task that is not
uncommon in daily life (e.g., determining whether a traffic light is red). In any
case, in the following definition of solving decision problems, the potential solver
is again a function (i.e., in this case it is a Boolean function that is supposed to
indicate membership in the said set).

Definition 1.2 (solving a decision problem): Let S C {0,1}*. A function f :
{0,1}* — {0, 1} solves the decision problem of S (or decides membership in S) if for
every x it holds that f(x) =1 if and only if x € S.

We often identify the decision problem of S with S itself, and identify S with its
characteristic function (i.e., with xs : {0,1}* — {0,1} defined such that ys(z) =1
if and only if z € S). Note that if f solves the search problem of R then the
Boolean function f : {0,1}* — {0,1} defined by f'(z) ® 1if and only if f(z) # L
solves the decision problem of {x : R(z) # 0}.

Most people would consider search problems to be more natural than decision
problems: typically, people seeks solutions more than they stop to wonder whether
or not solutions exist. Definitely, search problems are not less important than
decision problems, it is merely that their study tends to require more cumbersome
formulations. This is the main reason that most expositions choose to focus on
decision problems. The current book attempts to devote at least a significant
amount of attention also to search problems.

1.2. COMPUTATIONAL TASKS AND MODELS 23

1.2.2.3 Promise problems (an advanced comment)

Many natural search and decision problems are captured more naturally by the
terminology of promise problems, where the domain of possible instances is a subset
of {0,1}* rather than {0, 1}* itself. In particular, note that the natural formulation
of many search and decision problems refers to instances of a certain types (e.g., a
system of equations, a pair of numbers, a graph), whereas the natural representation
of these objects uses only a strict subset of {0,1}*. For the time being, we ignore
this issue, but we shall re-visit it in Section 2.4.1. Here we just note that, in typical
cases, the issue can be ignored by postulating that every string represents some
legitimate object (i.e., each string that is not used in the natural representation of
these objects is postulated as a representation of some fixed object).

1.2.3 Uniform Models (Algorithms)

We are all familiar with computers and with the ability of computer programs
to manipulate data. This familiarity seems to be rooted in the positive side of
computing; that is, we have some experience regarding some things that computers
can do. In contrast, complexity theory is focused at what computers cannot do, or
rather with drawing the line between what can be done and what cannot be done.
Drawing such a line requires a precise formulation of all possible computational
processes; that is, we should have a clear model of all possible computational
processes (rather than some familiarity with some computational processes).

Before being formal, let we offer a general and abstract description, which
is aimed at capturing any artificial as well as natural process. Indeed, artificial
processes will be associated with computers, whereas by natural processes we mean
(attempts to model) the “mechanical” aspects the natural reality (be it physical,
biological, or even social).

A computation is a process that modifies an environment via repeated applica-
tions of a predetermined rule. The key restriction is that this rule is simple: in each
application it depends and affects only a (small) portion of the environment, called
the active zone. We contrast the a-priori bounded size of the active zone (and of
the modification rule) with the a-priori unbounded size of the entire environment.
We note that, although each application of the rule has a very limited effect, the
effect of many applications of the rule may be very complex. Put in other words, a
computation may modify the relevant environment in a very complex way, although
it is merely a process of repeatedly applying a simple rule.

As hinted, the notion of computation can be used to model the “mechanical”
aspects of the natural reality; that is, the rules that determine the evolution of
the reality (rather than the specifics of reality itself). In this case, the evolution
process that takes place in the natural reality is the starting point of the study, and
the goal of the study is finding the (computation) rule that underlies this natural
process. In a sense, the goal of Science at large can be phrased as finding (simple)
rules that govern various aspects of reality (or rather one’s abstraction of these
aspects of reality).

Our focus, however, is on artificial computation rules designed by humans in

24 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

order to achieve specific desired effects on a corresponding artificial environment.
Thus, our starting point is a desired functionality, and our aim is to design compu-
tation rules that effect it. Such a computation rule is referred to as an algorithm.
Loosely speaking, an algorithm corresponds to a computer program written in a
high-level (abstract) programming language. Let us elaborate.

We are interested in the transformation of the environment affected by the
computational process (or the algorithm). Throughout (most of) this book, we
will assume that, when invoked on any finite initial environment, the computation
halts after a finite number of steps. Typically, the initial environment to which
the computation is applied encodes an input string, and the end environment (i.e.,
at termination of the computation) encodes an output string. We consider the
mapping from inputs to outputs induced by the computation; that is, for each
possible input z, we consider the output y obtained at the end of a computation
initiated with input z, and say that the computation maps input z to output y.
Thus, a computation rule (or an algorithm) determines a function (computed by
it): this function is exactly the aforementioned mapping of inputs to outputs.

In the rest of this book (i.e., outside the current chapter), we will also consider
the number of steps (i.e., applications of the rule) taken by the computation on
each possible input. The latter function is called the time complexity of the com-
putational process (or algorithm). While time complexity is defined per input, we
will often considers it per input length, taking the maximum over all inputs of the
same length.

In order to define computation (and computation time) rigorously, one needs
to specify some model of computation; that is, provide a concrete definition of
environments and a class of rules that may be applied to them. Such a model
corresponds to an abstraction of a real computer (be it a PC, mainframe or net-
work of computers). One simple abstract model that is commonly used is that of
Turing machines (see, §1.2.3.1). Thus, specific algorithms are typically formalized
by corresponding Turing machines (and their time complexity is represented by the
time complexity of the corresponding Turing machines). We stress, however, that
most results in the Theory of Computation hold regardless of the specific compu-
tational model used, as long as it is “reasonable” (i.e., satisfies the aforementioned
simplicity condition and can perform some obviously simple computations).

What is being computed? The forgoing discussion has implicitly referred to
algorithms (i.e., computational processes) as means of computing functions. Specif-
ically, an algorithm A computes the function fa : {0,1}* — {0,1}* defined by
fa(z)=y if, when invoked on input z, algorithm A halts with output y. However,
algorithms can also serve as means of “solving search problems” or “making de-
cisions” (as in Definitions 1.1 and 1.2). Specifically, we will say that algorithm A
solves the search problem of R (resp., decides membership in S) if f4 solves the
search problem of R (resp., decides membership in S). In the rest of this exposition
we associate the algorithm A with the function f4 computed by it; that is, we write
A(z) instead of fa(z). For sake of future reference, we summarize the foregoing
discussion.

1.2. COMPUTATIONAL TASKS AND MODELS 25

Definition 1.3 (algorithms as problem-solvers): We denote by A(x) the output
of algorithm A on input x. Algorithm A solves the search problem R (resp., the
decision problem S) if A, viewed as a function, solves R (resp., S).

Organization of the rest of Section 1.2.3. In §1.2.3.1 we provide a sketchy
description of the model of Turing machines. This is done merely for sake of pro-
viding a concrete model that supports the study of computation and its complexity,
whereas most of the material in this book will not depend on the specifics of this
model. In §1.2.3.2 and §1.2.3.2 we discuss two fundamental properties of any rea-
sonable model of computation: the existence of uncomputable functions and the
existence of universal computations. The time (and space) complexity of compu-
tation is defined in §1.2.3.4. We also discuss oracle machines and restricted models
of computation (in §1.2.3.5 and §1.2.3.6, respectively).

1.2.3.1 Turing machines

The model of Turing machines offer a relatively simple formulation of the notion
of an algorithm. The fact that the model is very simple complicates the design of
machines that solve problems of interest, but makes the analysis of such machines
simpler. Since the focus of complexity theory is on the analysis of machines and not
on their design, the trade-off offers by this model is suitable for our purposes. We
stress again that the model is merely used as a concrete formulation of the intuitive
notion of an algorithm, whereas we actually care about the intuitive notion and
not about its formulation. In particular, all results mentioned in this book hold for
any other “reasonable” formulation of the notion of an algorithm.

The model of Turing machines is not meant to provide an accurate (or “tight”)
model of real-life computers, but rather to capture their inherent limitations and
abilities (i.e., a computational task can be solved by a real-life computer if and only
if it can be solved by a Turing machine). In comparison to real-life computers, the
model of Turing machines is extremely over-simplified and abstract away many
issues that are of great concern to computer practice. However, these issues are
irrelevant to the higher-level questions addressed by complexity theory. Indeed, as
usual, good practice requires more refined understanding than the one provided by
a good theory, but one should first provide the latter.

Historically, the model of Turing machines was invented before modern com-
puters were even built, and was meant to provide a concrete model of computation
and a definition of computable functions.® Indeed, this concrete model clarified
fundamental properties of computable functions and plays a key role in defining
the complexity of computable functions.

The model of Turing machines was envisioned as an abstraction of the process
of an algebraic computation carried out by a human using a sheet of paper. In
such a process, at each time, the human looks at some location on the paper, and
depending on what he/she sees and what he/she has in mind (which is little...),

6In contrast, the abstract definition of “recursive functions” yields a class of “computable”
functions defined recursively in terms of the composition of such functions.

26 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

he/she modifies the contents of this location and shifts his/her look to an adjacent
location.

The actual model. Following is a high-level description of the model of Turing
machines; the interested reader is referred to standard textbooks (e.g., [198]) for
further details. Recall that we need to specify the set of possible environments, the
set of machines (or computation rules), and the effect of applying such a rule on
an environment.

e The main component in the environment of a Turing machine is an infinite
sequence of cells, each capable of holding a single symbol (i.e., member of
a finite set ¥ D {0,1}). In addition, the environment contains the current
location of the machine on this sequence, and the internal state of the machine
(which is a member of a finite set ()). The aforementioned sequence of cells
is called the tape, and its contents combined with the machine’s location and
its internal state is called the instantaneous configuration of the machine.

e The Turing machine itself consists of a finite rule (i.e., a finite function), called
the transition function, which is defined over the set of all possible symbol-
state pairs. Specifically, the transition function is a mapping from ¥ x @ to
YEx@Qx{-1,0,+1}, where {—1,+1,0} correspond to a movement instruction
(which is either “left” or “right” or “stay”, respectively). In addition, the
machine’s description specifies an initial state and a halting state, and the
computation of the machine halts when the machine enters its halting state.”

We stress that, in contrast to the finite description of the machine, the tape
has an a priori unbounded length (and is considered, for simplicity, as being
infinite).

e A single computation step of such a Turing machine depends on its current
location on the tape, on the contents of the corresponding cell and on the in-
ternal state of the machine. Based on the latter two elements, the transition
function determines a new symbol-state pair as well as a movement instruc-
tion (i.e., “left” or “right” or “stay”). The machine modifies the contents of
the said cell and its internal state accordingly, and moves as directed. That
is, suppose that the machine is in state ¢ and resides in a cell containing the
symbol o, and suppose that the transition function maps (o, q) to (¢’,q’, D).
Then, the machine modifies the contents of the said cell to ¢’, modifies its
internal state to ¢’, and moves one cell in direction D. Figure 1.2 shows a
single step of a Turing machine that, when in state ‘b’ and seeing a binary
symbol o, replaces o with the symbol o + 2, maintains its internal state, and
moves one position to the right.8

"Envisioning the tape as extending from left to right, we also use the convention by which if
the machine tries to move left of the end of the tape then it is considered to have halted.

8Figure 1.2 corresponds to a machine that, when in the initial state (i.e., ‘a’), replaces the
symbol o by o + 4, modifies its internal state to ‘b’, and moves one position to the right. Indeed,
“marking” the leftmost cell (in order to allow for recognizing it in the future), is a common

practice in the design of Turing machines.

1.2. COMPUTATIONAL TASKS AND MODELS 27

Formally, we define the successive configuration function that maps each in-
stantaneous configuration to the one resulting by letting the machine take a
single step. This function modifies its argument in a very minor manner, as
described in the foregoing; that is, the contents of at most one cell (i.e., at
which the machine currently resides) is changed, and in addition the internal
state of the machine and its location may change too.

e[efelelz s e o[- [-[-[-[-]-]-

©

(e[efefelz]s]sfo - [-[-[-[-[-]-]-

Figure 1.2: A single step by a Turing machine.

The initial environment (or configuration) of a Turing machine consists of the
machine residing in the first (i.e., left-most) cell and being in its initial state.
Typically, one also mandates that, in the initial configuration, a prefix of the tape’s
cells hold bit values, which concatenated together are considered the input, and the
rest of the tape’s cells hold a special symbol (which in Figure 1.2 is denoted by
-”). Once the machine halts, the output is defined as the contents of the cells that
are to the left of its location (at termination time).® Thus, each machine defines a
function mapping inputs to outputs, called the function computed by the machine.

Multi-tape Turing machines. We comment that in most expositions, one
refers to the location of the “head of the machine” on the tape (rather than to
the “location of the machine on the tape”). The standard terminology is more
intuitive when extending the basic model, which refers to a single tape, to a model
that supports a constant number of tapes. In the model of multi-tape machines,
each step of the machine depends and effects the cells that are at the head location
of the machine on each tape. As we shall see in Chapter 5 (and in §1.2.3.4), the
extension of the model to multi-tape Turing machines is crucial to the definition of
space complexity. A less fundamental advantage of the model of multi-tape Turing
machines is that it facilitates the design of machines that compute functions of
interest.

9By an alternative convention, the machine halts while residing in the left-most cell, and the
output is defined as the maximal prefix of the tape contents that contains only bit values.

28 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Teaching note: We strongly recommend avoiding the standard practice of teaching
the student to program with Turing machines. These exercises seem very painful and
pointless. Instead, one should prove that a function can be computed by a Turing
machine if and only if it is computable by a model that is closer to a real-life computer
(see the following “sanity check”). For starters, one should prove that a function can be
computed by a single-tape Turing machine if and only if it is computable by a multi-tape

(e.g., two-tape) Turing machine.

The Church-Turing Thesis: The entire point of the model of Turing machines
is its simplicity. That is, in comparison to more “realistic” models of computation,
it is simpler to formulate the model of Turing machines and to analyze machines in
this model. The Church-Turing Thesis asserts that nothing is lost by considering
the Turing machine model: A function can be computed by some Turing machine
if and only if it can be computed by some machine of any other “reasonable and
general” model of computation.

This is a thesis, rather than a theorem, because it refers to an intuitive notion
that is left undefined on purpose (i.e., the notion of a reasonable and general model
of computation). The model should be reasonable in the sense that it should refer
to computation rules that are “simple” in some intuitive sense. On the other hand,
the model should allow to compute functions that intuitively seem computable. At
the very least the model should allow to emulate Turing machines (i.e., compute
the function that given a description of a Turing machine and an instantaneous
configuration returns the successive configuration).

A philosophical comment. The fact that a thesis is used to link an intuitive
concept to a formal definition is common practice in any science (or, more broadly,
in any attempt to reason rigorously about intuitive concepts). The moment an
intuition is rigorously defined, it stops being an intuition and becomes a definition,
and the question of the correspondence between the original intuition and the
derived definition arises. This question can never be rigorously treated, because
it relates to two objects, where one of them is undefined. Thus, the question
of correspondence between the intuition and the definition always transcends a
rigorous treatment (i.e., it always belongs to the domain of the intuition).

A sanity check: Turing machines can emulate an abstract RAM. To gain
confidence in the Church-Turing Thesis, one may attempt to define an abstract
Random-Access Machine (RAM), and verify that it can be emulated by a Turing
machine. An abstract RAM consists of an infinite number of memory cells, each
capable of holding an integer, a finite number of similar registers, one designated
as program counter, and a program consisting of instructions selected from a finite
set. The set of possible instructions includes the following instructions:

e reset(r), where r is an index of a register, results in setting the value of
register r to zero.

e inc(r), where r is an index of a register, results in incrementing the content
of register 7. Similarly dec(r) causes a decrement.

1.2. COMPUTATIONAL TASKS AND MODELS 29

e load(ry,72), where 7 and ro are indices of registers, results in loading to
register r1 the contents of the memory location m, where m is the current
contents of register 7.

e store(r;,rs), stores the contents of register 71 in the memory, analogously
to load.

e cond-goto(r,), where r is an index of a register and ¢ does not exceed the
program length, results in setting the program counter to £ — 1 if the content
of register r is non-negative.

The program counter is incremented after the execution of each instruction, and
the next instruction to be executed by the machine is the one to which the program
counter points (and the machine halts if the program counter exceeds the program’s
length). The input to the machine may be defined as the contents of the first n
memory cells, where n is placed in a special input register. We note that the RAM
model satisfies the Church-Turing Thesis, but in order to make it closer to real-
life computers we may augment the model with additional instructions that are
available on such computers (e.g., the instruction add(ry,r2) (resp., mult(ry,r2))
that results in adding (resp., multiplying) the contents of registers r; and r, and
placing the result in register r1). We suggest proving that this abstract RAM can
be emulated by a Turing machine.!® (Hint: note that during the emulation, we
only need to hold the input, the contents of all registers, and the contents of the
memory cells that were accessed during the computation.)!?

Observe that the abstract RAM model is significantly more cumbersome than
the Turing machine model. Furthermore, seeking a sound choice of the instruc-
tion set (i.e., the instructions to be allowed in the model) creates a vicious cycle
(because the sound guideline would have been to allow only instructions that corre-
spond to “simple” operations, whereas the latter correspond to easily computable
functions...). This vicious cycle was avoided by trusting the reader to consider only
instructions that are available in some real-life computer. (We comment that this
empirical consideration is justifiable in the current context, because our current
goal is merely linking the Turing machine model with the reader’s experience of
real-life computers.)

1.2.3.2 Uncomputable functions

Strictly speaking, the current subsection is not necessary for the rest of this book,
but we feel that it provides a useful perspective.

10We emphasize this direction of the equivalence of the two models, because the RAM model is
introduced in order to convince the reader that Turing machines are not too weak (as a model of
general computation). The fact that they are not too strong seems self-evident. Thus, it seems
pointless to prove that the RAM model can emulate Turing machines. Still, note that this is
indeed the case, by using the RAM’s memory cells to store the contents of the cells of the Turing
machine’s tape.

HThus, at each time, the Turning machine’s tape contains a list of the RAM’s memory cells
that were accessed so far as well as their current contents. When we emulate a RAM instruction,
we first check whether the relevant RAM cell appears on this list, and augment the list by a
corresponding entry or modify this entry as needed.

30 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

In contrast to what every layman would think, we know that not all functions
are computable. Indeed, an important message to be communicated to the world
is that not every well-defined task can be solved by applying a “reasonable” pro-
cedure (i.e., a procedure that has a simple description that can be applied to any
instance of the problem at hand). Furthermore, not only is it the case that there
exist uncomputable functions, but it is rather the case that most functions are
uncomputable. In fact, only relatively few functions are computable.

Theorem 1.4 (on the scarcity of computable functions): The set of computable
functions is countable, whereas the set of all functions (from strings to string) has
cardinality N.

We stress that the theorem holds for any reasonable model of computation. In
fact, it only relies on the postulate that each machine in the model has a finite
description (i.e., can be described by a string).

Proof: Since each computable function is computable by a machine that has
a finite description, there is a 1-1 correspondence between the set of computable
functions and the set of strings (which in turn is in 1-1 correspondence to the
natural numbers). On the other hand, there is a 1-1 correspondence between the
set of Boolean functions (i.e., functions from strings to a bit) and the set of real
number in [0,1). This correspondence associates each real r € [0,1) to the function
f:N —{0,1} such that f(i) is the i*! bit in the binary expansion of r. [l

The Halting Problem: In contrast to the preliminary discussion, at this point
we consider also machines that may not halt on some inputs. (The functions
computed by such machines are partial functions that are defined only on inputs
on which the machine halts.) Again, we rely on the postulate that each machine
in the model has a finite description, and denote the description of machine M by
(M) € {0,1}*. The halting function, h : {0,1}* x {0,1}* — {0, 1}, is defined such
that h({M}), z) ' 1 if and only if M halts on input . The following result goes
beyond Theorem 1.4 by pointing to an explicit function (of natural interest) that
is not computable.

Theorem 1.5 (undecidability of the halting problem): The halting function is not
computable.

The term undecidability means that the corresponding decision problem cannot be
solved by an algorithm. That is, Theorem 1.5 asserts that the decision problem
associated with the set h=1(1) = {((M),z) : h({(M),z) = 1} is not solvable by
an algorithm (i.e., there exists no algorithm that, given a pair ((M),z), decides
whether or not M halts on input). Actually, the following proof shows that there
exists no algorithm that, given (M), decides whether or not M halts on input (M).

Proof: We will show that even the restriction of h to its “diagonal” (i.e., the

function d({M)) e h({M), (M))) is not computable. Note that the value of d({M})

refers to the question of what happens when we feed M with its own description,

1.2. COMPUTATIONAL TASKS AND MODELS 31

which is indeed a “nasty” (but legitimate) thing to do. We will actually do worse:
towards the contradiction, we will consider the value of d when evaluated at a
(machine that is related to a) machine that supposedly computes d.

We start by considering a related function, d’, and showing that this function
is uncomputable. This function is defined on purpose so to foil any attempt to
compute it; that is, for every machine M, the value d'({(M)) is defined to differ

from M((M)). Specifically, the function d' : {0,1}* — {0,1} is defined such

that d'({(M)) e if and only if M halts on input (M) with output 0. (That is,

d'((M)) = 0 if either M does not halt on input (M) or its output does not equal
the value 0.) Now, suppose, towards the contradiction, that d' is computable by
some machine, denoted Mg,. Note that machine My, is supposed to halt on every
input, and so Mg, halts on input (Mg,). But, by definition of d’, it holds that
d'((Mg,)) = 1if and only if My, halts on input (Mg,) with output O (i.e., if and
only if Mg, ((Mg,)) = 0). Thus, Mg, ((Mg,)) # d'({Mg,)) in contradiction to the
hypothesis that My, computes d'.

We next prove that d is uncomputable, and thus h is uncomputable (because
d(z) = h(z, z) for every z). To prove that d is uncomputable, we show that if d is
computable then so is d' (which we already know not to be the case). Indeed, let
A be an algorithm for computing d (i.e., A((M)) = d((M)) for every machine M).
Then we construct an algorithm for computing d', which given (M'), invokes A on
(M"y, where M" is defined to operate as follows:

1. On input z, machine M" emulates M' on input z.
2. If M’ halts on input x with output 0 then M" halts.

3. If M’ halts on input z with an output different from O then M" enters an
infinite loop (and thus does not halt).

4. Otherwise (i.e., M’ does not halt on input z), then machine M" does not
halt (because it just stays stuck in Step 1 forever).

Note that the mapping from (M') to (M") is easily computable (by augmenting
M'" with instructions to test its output and enter an infinite loop if necessary), and
that d((M")) = d'((M')), because M" halts on z if and only if M" halts on z with
output 0. We thus derived an algorithm for computing d' (i.e., transform the input
(M') into (M") and output A((M"))), which contradicts the already established
fact by which d’ is uncomputable. i

Turing-reductions. The core of the second part of the proof of Theorem 1.5 is
an algorithm that solves one problem (i.e., computes d’) by using as a subroutine
an algorithm that solves another problem (i.e., computes d (or h)). In fact, the
first algorithm is actually an algorithmic scheme that refers to a “functionally spec-
ified” subroutine rather than to an actual (implementation of such a) subroutine,
which may not exist. Such an algorithmic scheme is called a Turing-reduction (see
formulation in §1.2.3.5). Hence, we have Turing-reduced the computation of d’ to
the computation of d, which in turn Turing-reduces to h. The “natural” (“posi-
tive”) meaning of a Turing-reduction of f' to f is that when given an algorithm for

32 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

computing f we obtain an algorithm for computing f'. In contrast, the proof of
Theorem 1.5 uses the “unnatural” (“negative”) counter-positive: if (as we know)
there exists no algorithm for computing f' = d’ then there exists no algorithm for
computing f = d (which is what we wanted to prove). Jumping ahead, we mention
that resource-bounded Turing-reductions (e.g., polynomial-time reductions) play a
central role in complexity theory itself, and again they are used mostly in a “nega-
tive” way. We will define such reductions and extensively use them in subsequent
chapters.

Rice’s Theorem. The undecidability of the halting problem (or rather the fact
that the function d is uncomputable) is a special case of a more general phe-
nomenon: Every non-trivial decision problem regarding the function computed by
a given Turing machine has no algorithmic solution. We state this fact next, clar-
ifying what is the aforementioned class of problems. (Again, we refer to Turing
machines that may not halt on all inputs.)

Theorem 1.6 (Rice’s Theorem): Let F be a non-trivial subset'? of the set of all
computable partial functions, and let Sx be the set of strings that describe machines
that compute functions in F. Then deciding membership in Sz cannot be solved by
an algorithm.

Theorem 1.6 can be proved by a Turing-reduction from d. We do not provide
a proof because this is too remote from the main subject matter of the book.
We stress that Theorems 1.5 and 1.6 hold for any reasonable model of computation
(referring both to the potential solvers and to the machines the description of which
is given as input to these solvers). Thus, Theorem 1.6 means that no algorithm can
determine any non-trivial property of the function computed by a given computer
program (written in any programming language). For example, no algorithm can
determine whether or not a given computer program halts on each possible input.
The relevance of this assertion to the project of program verification is obvious.

The Post Correspondence Problem. We mention that undecidability arises
also outside of the domain of questions regarding computing devices (given as
input). Specifically, we consider the Post Correspondence Problem in which the
input consists of two sequences of strings, («,...,ax) and (B, ..., B), and the
question is whether or not there exists a sequence of indices iy, ...,i¢ € {1,....k}
such that o, -+ -ay, = B4, -+ Bi,- (We stress that the length of this sequence is not
bounded.)*?

Theorem 1.7 The Post Correspondence Problem is undecidable.

12The set S is called a non-trivial subset of U if both S and U \ S are non-empty. Clearly, if F
is a trivial set of computable functions then the corresponding decision problem can be solved by
a “trivial” algorithm that outputs the corresponding constant bit.

13In contrast, the existence of an adequate sequence of a specified length can be determined in
time that is exponential in this length.

1.2. COMPUTATIONAL TASKS AND MODELS 33

Again, the omitted proof is by a Turing-reduction from d (or h).*

1.2.3.3 Universal algorithms

So far we have used the postulate that, in any reasonable model of computation,
each machine (or computation rule) has a finite description. Furthermore, we
also used the fact that such model should allow for the easy modification of such
descriptions such that the resulting machine computes an easily related function
(see the proof of Theorem 1.5). Here we go one step further and postulate that the
description of machines (in this model) is “effective” in the following natural sense:
there exists an algorithm that, given a description of a machine (resp., computation
rule) and a corresponding environment, determines the environment that results
from performing a single step of this machine on this environment (resp. the effect
of a single application of the computation rule). This algorithm can, in turn, be
implemented in the said model of computation (assuming this model is general; see
the Church-Turing Thesis). Successive applications of this algorithm leads to the
notion of a universal machine, which (for concreteness) is formulated next in terms
of Turing machines.

Definition 1.8 (universal machines): A universal Turing machine is a Turing ma-
chine that on input a description of a machine M and an input x returns the value
of M(x) if M halts on x and otherwise does not halt.

That is, a universal Turing machine computes the partial function u that is defined
over pairs ((M),x) such that M halts on input z, in which case it holds that
u((M),x) = M(x). We note that if M halts on all possible inputs then u({M), z)
is defined for every x. We stress that the mere fact that we have defined something
does not mean that it exists. Yet, as hinted in the foregoing discussion and obvious
to anyone who has written a computer program (and thought about what he/she
was doing), universal Turing machines do exist.

Theorem 1.9 There exists a universal Turing machine.

Theorem 1.9 asserts that the partial function u is computable. In contrast, it can
be shown that any extension of u to a total function is uncomputable. That is, for
any total function 4 that agrees with the partial function u on all the inputs on
which the latter is defined, it holds that @ is uncomputable.t®

Proof: Given a pair ((M),z), we just emulate the computation of machine M
on input . This emulation is straightforward, because (by the effectiveness of the

14We mention that the reduction maps an instance ((M),z) of h to a pair of sequences such
that only the first string in each sequence depends on x, whereas the other strings as well as their
number depend only on M.

15The claim is easy to prove for the total function @ that extends u and assigns the special

symbol L to inputs on which u is undefined (i.e., a({(M), z) 2" | ifu is not defined on (M), z)

and 4((M), x) def u((M),) otherwise). In this case h((M),z) = 1 if and only if 4((M),z) # L,

and so the halting function h is Turing-reducible to 4. In the general case, we may adapt the
proof of Theorem 1.5 by using the fact that, for a machine M that halts on every input, it holds
that 4((M),z) = u({(M), z) for every z (and in particular for x = (M)).

34 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

description of M) we can iteratively determine the next instantaneous configuration
of the computation of M on input z. If the said computation halts then we will
obtain its output and can output it (and so, on input ((M),z), our algorithm
returns M (x)). Otherwise, we turn out emulating an infinite computation, which
means that our algorithm does not halt on input ({(M),z). Thus, the foregoing
emulation procedure constitutes a universal machine (i.e., yields an algorithm for
computing u). W

As hinted already, the existence of universal machines is the fundamental fact
underlying the paradigm of general-purpose computers. Indeed, a specific Turing
machine (or algorithm) is a device that solves a specific problem. A priori, solving
each problem would have required building a new physical device that allows for this
problem to be solved in the physical world (rather than as a thought experiment).
The existence of a universal machine asserts that it is enough to build one physical
device; that is, a general purpose computer. Any specific problem can then be
solved by writing a corresponding program to be executed (or emulated) by the
general purpose computer. Thus, universal machines correspond to general purpose
computers, and provide the basis for separating hardware from software. In other
words, the existence of universal machines says that software can be viewed as
(part of the) input.

In addition to their practical importance, the existence of universal machines
(and their variants) has important consequences in the theories of computability
and computational complexity. Here we merely note that Theorem 1.9 implies that
many questions about the behavior of a universal machine on certain input types are
undecidable. For example, it follows that, for some fixed machines (i.e., universal
ones), there is no algorithm that determines whether or not the (fixed) machine
halts on a given input. Revisiting the proof of Theorem 1.7 (see Footunote 14),
it follows that the Post Correspondence Problem remains undecidable even if the
input sequences are restricted to have a specific length (i.e., k is fixed). A more
important application of universal machines to the theory of computability follows.

A detour: Kolmogorov Complexity. The existence of universal machines,
which may be viewed as universal languages for writing effective and succinct
descriptions of objects, plays a central role in Kolmogorov Complexity. Loosely
speaking, the latter theory is concerned with the length of (effective) descriptions
of objects, and views the minimum such length as the inherent “complexity” of the
object; that is, “simple” objects (or phenomena) are those having short description
(resp., short explanation), whereas “complex” objects have no short description.
Needless to say, these (effective) descriptions have to refer to some fixed “language”
(i-e., to a fixed machine that, given a succinct description of an object, produces
its explicit description). Fixing any machine M, a string z is called a description
of s with respect to M if M(xz) = s. The complexity of s with respect to M, de-
noted Kj(s), is the length of the shortest description of s with respect to M.
Certainly, we want to fix M such that every string has a description with respect
to M, and furthermore such that this description is not “significantly” longer than

1.2. COMPUTATIONAL TASKS AND MODELS 35

the description with respect to a different machine M'. The following theorem
make it natural to use a universal machine as the “point of reference” (i.e., as the
aforementioned M).

Theorem 1.10 (complexity w.r.t a universal machine): Let U be a universal ma-
chine. Then, for every machine M', there exists a constant ¢ such that Ky(s) <
Ky (s) + ¢ for every string s.

The theorem follows by (setting ¢ = O(|(M')]|) and) observing that if z is a de-
scription of s with respect to M’ then ((M'),z) is a description of s with respect
to U. Here it is important to use an adequate encoding of pairs of strings (e.g.,
the pair (oq -+ -0k, 71 -+ 7¢) is encoded by the string o107 - - 0,0(017 - - - 7). Fix-

ing any universal machine U, we define the Kolmogorov Complexity of a string s as

K(s) LK v(s). The reader may easily verify the following facts:

1. K(s) < |s| + O(1), for every s.

(Hint: apply Theorem 1.10 to a machine that computes the identity map-
ping.)

2. There exist infinitely many strings s such that K(s) < |s].

(Hint: consider s = 1™. Alternatively, consider any machine M such that
|M(z)| > |z| for every z.)

3. Some strings of length n have complexity at least n. Furthermore, for every
n and 1,

s € {0,1}": K(s) <m —i}| < 2" !

(Hint: different strings must have different descriptions with respect to U.)

It can be shown that the function K is uncomputable. The proof is related to the
paradox captured by the following “description” of a natural number: the largest
natural number that can be described by an English sentence of up-to a
thousand letters. (The paradox amounts to observing that if the above num-
ber is well-defined then so is the integer-successor of the largest natural
number that can be described by an English sentence of up-to a thousand
letters.) Needless to say, the foregoing sentences presuppose that any English sen-
tence is a legitimate description in some adequate sense (e.g., in the sense captured
by Kolmogorov Complexity). Specifically, the foregoing sentences presuppose that
we can determine the Kolmogorov Complexity of each natural number, and fur-
thermore that we can effectively produce the largest number that has Kolmogorov
Complexity not exceeding some threshold. Indeed, the paradox provides a proof
to the fact that the latter task cannot be performed; that is, there exists no algo-
rithm that given ¢ produces the lexicographically last string s such that K(s) <,
because if such an algorithm A would have existed then K(s) < O(|(A)|) + logt
and K(s0) < K(s)+ O(1) < t in contradiction to the definition of s.

36 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

1.2.3.4 Time and space complexity

Fixing a model of computation (e.g., Turing machines) and focusing on algorithms
that halt on each input, we consider the number of steps (i.e., applications of
the computation rule) taken by the algorithm on each possible input. The latter
function is called the time complexity of the algorithm (or machine); that is, ¢4 :
{0,1}* — N is called the time complexity of algorithm A if, for every x, on input
x algorithm A halts after exactly ta(z) steps.

We will be mostly interested in the dependence of the time complexity on the

input length, when taking the maximum over all inputs of the relevant length.

That is, for t4 as above, we will consider T4 : N — N defined by Ta(n) def

max,e{o,1}»{ta(z)}. Abusing terminology, we sometimes refer to T4 as the time
complexity of A.

The time complexity of a problem. As stated in the preface and in the intro-
duction, typically is complexity theory not concerned with the (time) complexity
of a specific algorithm. It is rather concerned with the (time) complexity of a
problem, assuming that this problem is solvable at all (by some algorithm). Intu-
itively, the time complexity of such a problem is defined as the time complexity
of the fastest algorithm that solves this problem (assuming that the latter term is
well-defined).!® Actually, we shall be interested in upper and lower bounds on the
(time) complexity of algorithms that solve the problem. However, the complexity
of a problem may depend on the specific model of computation in which algorithms
that solve it are implemented. The following Cobham-Edmonds Thesis asserts that
the variation (in the time complexity) is not too big, and in particular is irrelevant
to much of the current focus of complexity theory (e.g., for the P-vs-NP Question).

The Cobham-Edmonds Thesis. As just stated, the time complexity of a prob-
lem may depend on the model of computation. For example, deciding membership
in the set {zx : ¢ € {0,1}*} can be done in linear-time on a two-tape Turing ma-
chine, but requires quadratic-time on a single-tape Turing machine.!” On the other
hand, any problem that has time complexity ¢ in the model of multi-tape Turing
machines, has complexity O(#?) in the model of single-tape Turing machines. The
Cobham-Edmonds Thesis asserts that the time complexities in any two “reasonable
and general” models of computation are polynomially related. That is, a problem

16 Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assump-
tion that a “fastest algorithm” for solving a problem exists is not always justified. On the other
hand, the assumption is essentially justified in some important cases (see, e.g., Theorem 2.31).
But even in these case the said algorithm is “fastest” (or “optimal”) only up to a constant factor.

TProving the latter fact is quite non-trivial. One proof is by a “reduction” from a communica-
tion complexity problem [141, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides
membership in the aforementioned set can be viewed as a channel of communication between the
two parts of the input. Focusing our attention on inputs of the form y0™z0™, for y,z € {0,1}",
each time the machine passes from the first part to the second part it carries O(1) bits of infor-
mation (in its internal state) while making at least n steps. The proof is completed by invoking
the linear lower bound on the communication complexity of the (two-argument) identity function
(i.e, id(y,z) = 1 if y = z and id(y, z) = 0 otherwise, cf. [141, Chap. 1]).

1.2. COMPUTATIONAL TASKS AND MODELS 37

has time complexity t in some “reasonable and general” model of computation if
and only if it has time complezity poly(t) in the model of (single-tape) Turing
machines.

Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis.
It asserts not only that the class of solvable problems is invariant as far as “rea-
sonable and general” models of computation are concerned, but also that the time
complexity (of the solvable problems) in such models is polynomially related.

Efficient algorithms. As hinted in the foregoing discussions, much of complexity
theory is concerned with efficient algorithms. The latter are defined as polynomial-
time algorithms (i.e., algorithms that have a time complexity that is bounded by
a polynomial in the length of the input). By the Cobham-Edmonds Thesis, the
choice of a “reasonable and general” model of computation is irrelevant to the
definition of this class. The association of efficient algorithms with polynomial-
time computation is grounded in the following two considerations:

e Philosophical consideration: Intuitively, efficient algorithms are those that
can be implemented within a number of steps that is a moderately growing
function of the input length. To allow for reading the entire input, at least
linear time complexity should be allowed, whereas exponential time (as in
“exhaustive search”) must be avoided. Furthermore, a good definition of
the class of efficient algorithms should be closed under natural composition
of algorithms (as well as be robust with respect to reasonable models of
computation and with respect to simple changes in the encoding of problems’
instances).

Selecting polynomials as the set of time-bounds for efficient algorithms sat-
isfy all the foregoing requirements: polynomials constitute a “closed” set of
moderately growing functions, where “closure” means closure under addition,
multiplication and functional composition. These closure properties guaran-
tee the closure of the class of efficient algorithm under natural composition
of algorithms (as well as its robustness with respect to any reasonable and
general model of computation). Furthermore, polynomial-time algorithms
can conduct computations that are intuitively simple (although not necessar-
ily trivial), and on the other hand they do not include algorithms that are
intuitively inefficient (like exhaustive search).

o Empirical consideration: It is clear that algorithms that are considered effi-
cient in practice have running-time that is bounded by a small polynomial
(at least on the inputs that occur in practice). The question is whether any
polynomial-time algorithm can be considered efficient in an intuitive sense.
The belief, which is supported by past experience, is that every natural prob-
lem that can be solved in polynomial-time also has “reasonably efficient”
algorithms.

We stress that the association of efficient algorithms with polynomial-time compu-
tation is not essential to most of the notions, results and questions of complexity

38 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

theory. Any other class of algorithms that supports the aforementioned closure
properties and allows to conduct some simple computations but not overly com-
plex ones gives rise to a similar theory, albeit the formulation of such a theory may
be much more complicated. Specifically, all results and questions treated in this
book are concerned with the relation among the complexities of different computa-
tional tasks (rather than with providing absolute assertions about the complexity
of some computational tasks). These relations can be stated explicitly, by stating
how any upper-bound on the time complexity of one task gets translated to an
upper-bound on the time complexity of another task.'® Such cumbersome state-
ments will maintain the contents of the standard statements; they will merely be
much more complicated. Thus, we follow the tradition of focusing on polynomial-
time computations, while stressing that this focus is both natural and provides the
simplest way of addressing the fundamental issues underlying the nature of efficient
computation.

Universal machines, revisited. The notion of time complexity gives rise to a

time-bounded version of the universal function u (presented in §1.2.3.3). Specifi-

cally, we define u'((M), z,t) def y if on input z machine M halts within ¢ steps and

outputs the string y, and v'({M), x,t) 4 | ifon input machine M makes more

than ¢ steps. Unlike u, the function u’ is a total function. Furthermore, unlike
any extension of u to a total function the function u’ is computable. Moreover, u’
is computable by a machine U’ that on input X = ((M),z,t) halts after poly(¢)
steps. Indeed, machine U’ is a variant of a universal machine (i.e., on input X, ma-
chine U’ merely emulates M for ¢ steps rather than emulating M till it halts (and
potentially indefinitely)). Note that the number of steps taken by U’ depends on
the specific model of computation (and that some overhead is unavoidable because
emulating each step of M requires reading the relevant portion of the description
of M).

Space complexity. Another natural measure of the “complexity” of an algo-
rithm (or a task) is the amount of memory consumed by the computation. We
refer to the memory used for storing some intermediate results of the computation.
Since much of our focus will be on using memory that is sub-linear in the input
length, it is important to use a model in which one can differentiate memory used
for computation from memory used for storing the initial input or the final output.
In the context of Turing machines, this is done by considering multi-tape Turing
machines such that the input is presented on a special read-only tape (called the
input tape), the output is written on a special write-only tape (called the output
tape), and intermediate results are stored on a work-tape. Thus, the input and
output tapes cannot be used for storing intermediate results. The space complexity

18For example, the NP-completeness of SAT (cf. Theorem 2.21) implies that any algorithm
solving SAT in time T yields an algorithm that factors composite numbers in time T such that
T'(n) = poly(n) - (1 + T'(poly(n))). (More generally, if the correctness of solutions for n-bit
instances of some search problem can be verified in time ¢(n) then such solutions can be found in
time T such that 77(n) = t(n) - (1 + T(O(t(n))2)))

1.2. COMPUTATIONAL TASKS AND MODELS 39

of such a machine M is defined as a function sy; such that sy (z) is the number of
cells of the work-tape that are scanned by M on input z. As in the case of time

complexity, we will usually refer to S4(n) Lef max,e{o,13»{sa()}.

1.2.3.5 Oracle machines

The notion of Turing-reductions, which was discussed in §1.2.3.2, is captured by
the following definition of so-called oracle machines. Loosely speaking, an oracle
machine is a machine that is augmented such that it may pose questions to the
outside. (A rigorous formulation of this notion is provided below.) We consider
the case in which these questions, called queries, are answered consistently by some
function f : {0,1}* — {0,1}*, called the oracle. That is, if the machine makes a
query ¢ then the answer it obtains is f(g). In such a case, we say that the oracle
machine is given access to the oracle f. For an oracle machine M, a string « and a
function f, we denote by M/ (z) the output of M on input # when given access to
the oracle f. (Re-examining the second part of the proof of Theorem 1.5, observe
that we have actually described an oracle machine that computes d' when given
access to the oracle d.)

The notion of an oracle machine extends the notion of a standard computing
device (machine), and thus a rigorous formulation of the former extends a formal
model of the latter. Specifically, extending the model of Turing machines, we derive
the following model of oracle Turing machines.

Definition 1.11 (using an oracle):

e An oracle machine is a Turing machine with an additional tape, called the
oracle tape, and two special states, called oracle invocation and oracle spoke.

e The computation of the oracle machine M on input = and access to the oracle
f:{0,1}* — {0,1}* is defined based on the successive configuration function.
For configurations with state different from oracle invocation the next config-
uration is defined as usual. Let v be a configuration in which the machine’s
state is oracle invocation and suppose that the actual contents of the oracle
tape is q (i.e., q is the contents of the mazimal prefiz of the tape that holds bit
values).'® Then, the configuration following ~ is identical to v, except that
the state is oracle spoke, and the actual contents of the oracle tape is f(q)-
The string q is called M ’s query and f(q) is called the oracle's reply.

e The output of M on input © when given oracle access to f is denote M/ (z).

We stress that the running time of an oracle machine is the number of steps made
during its computation, and that the oracle’s reply on each query is obtained in a
single step.

19This fits the definition of the actual contents of a tape of a Turing machine (cf. §1.2.3.1).
A common convention is that the oracle can be invoked only when the machine’s head resides at
the left-most cell of the oracle tape. We comment that, in the context of space complexity, one
uses two oracle tapes: a write-only tape for the query and a read-only tape for the answer.

40 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

1.2.3.6 Restricted models

We mention that restricted models of computation are often mentioned in the
context of a course on computability, but they will play no role in the current book.
One such model is the model of finite automata, which in some variant coincides
with Turing machines that have space-complexity zero (equiv., constant).

In our opinion, the most important motivation for the study of these restricted
models of computation is that they provide simple models for some natural (or
artificial) phenomena. This motivation, however, seems only remotely related to
the study of the complexity of various computational tasks. Thus, in our opinion,
the study of these restricted models (e.g., any of the lower levels of Chomsky’s
Hierarchy [118, Chap. 9]) should be decoupled from the study of computability
theory (let alone the study of complexity theory).

Teaching note: Indeed, we reject the common coupling of computability theory with
the theory of automata and formal languages. Although the historical links between
these two theories (at least in the West) can not be denied, this fact cannot justify

coupling two fundamentally different theories (especially when such a coupling promotes

a wrong perspective on computability theory).

1.2.4 Non-uniform Models (Circuits and Advice)

By a non-uniform model of computation we mean a model in which for each possible
input length one considers a different computing device. That is, there is no “uni-
formity” requirement relating devices that correspond to different input lengths.
Furthermore, this collection of devices is infinite by nature, and (in absence of
a uniformity requirement) this collection may not even have a finite description.
Nevertheless, each device in the collection has a finite description. In fact, the
relationship between the size of the device (resp., the length of its description) and
the length of the input that it handles will be of major concern. The hope is that
the finiteness of all parameters (which refer to a single device in such a collection)
will allow for the application of combinatorial techniques to analyze the limitations
of certain settings of parameters.

In complexity theory, non-uniform models of computation are studied either
towards the development of lower-bound techniques or as simplified upper-bounds
on the ability of efficient algorithms. In both cases, the uniformity condition is
eliminated in the interest of simplicity and with the hope (and belief) that nothing
substantial is lost as far as the issues at hand are concerned.

We will focus on two related models of non-uniform computing devices: Boolean
circuits (§1.2.4.1) and “machines that take advice” (§1.2.4.2). The former model is
more adequate for the study of the evolution of computation (i.e., development of
lower-bound techniques), whereas the latter is more adequate for modeling purposes
(e.g., upper-bounding the ability of efficient algorithms). (These models will be
further studied in Sections 3.1 and 4.1.)

1.2. COMPUTATIONAL TASKS AND MODELS 41

1.2.4.1 Boolean Circuits

The most popular model of non-uniform computation is the one of Boolean circuits.
Historically, this model was introduced for the purpose of describing the “logic
operation” of real-life electronic circuits. Ironically, nowadays this model provides
the stage for some of the most practically removed studies in complexity theory
(which aim at developing methods that may eventually lead to an understanding
of the inherent limitations of efficient algorithms).

A Boolean circuit is a directed acyclic graph?® with labels on the vertices, to be
discussed shortly. For sake of simplicity, we disallow isolated vertices (i.e., vertices
with no in-going or out-going edges), and thus the graph’s vertices are of three
types: sources, sinks, and internal vertices.

1. Internal vertices are vertices having in-coming and out-going edges (i.e., they
have in-degree and out-degree at least 1). In the context of Boolean cir-
cuits, internal vertices are called gates. Each gate is labeled by a Boolean
operation, where the operations that are typically considered are A, V and
- (corresponding to and, or and neg). In addition, we require that gates
labeled — have in-degree 1. (The in-coming degree of A-gates and V-gates
may be any number greater than zero, and the same holds for the out-degree
of any gate.)

2. The graph sources (i.e., vertices with no in-going edges) are called input ter-
minals. Each input terminal is labeled by a natural number (which is to be
thought of the index of an input variable). (For sake of defining formulae
(see §1.2.4.3), we allow different input terminals to be labeled by the same
number.)?!

3. The graph sinks (i.e., vertices with no out-going edges) are called output ter-
minals, and we require that they have in-degree 1. Each output terminal is
labeled by a natural number such that if the circuit has m output terminals
then they are labeled 1,2,...,m. That is, we disallow different output ter-
minals to be labeled by the same number, and insist that the labels of the
output terminals are consecutive numbers. (Indeed, the labels of the output
terminals will correspond to the indices of locations in the circuit’s output.)

For sake of simplicity, we also mandate that the labels of the input terminals are
consecutive numbers.??

20See Appendix G.1.

21This is not needed in case of general circuits, because we can just feed out-going edges of the
same input terminal to many gates. Note, however, that this is not allowed in case of formulae,
where all non-sinks are required to have out-degree exactly 1.

22T his convention slightly complicates the construction of circuits that ignore some of the input
values. Specifically, we use artificial gadgets that have in-coming edges from the corresponding
input terminals, and compute an adequate constant. To avoid having this constant as an output
terminal, we feed it into an auxiliary gate such that the value of the latter is determined by the
other in-going edge (e.g., a constant 0 fed into an V-gate). See example of dealing with x3 in
Figure 1.3.

42 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

(g

o ©

Figure 1.3: A circuit computing f(z1,z2,x3,24) = (T1 D T2, 21 A ~Z2 A T4).

A Boolean circuit with n different input labels and m output terminals induces
(and indeed computes) a function from {0,1}" to {0,1}™ defined as follows. For
any fixed string = € {0,1}", we iteratively define the value of vertices in the circuit
such that the input terminals are assigned the corresponding bits in z = z; - - -z,
and the values of other vertices are determined in the natural manner. That is:

e An input terminal with label ¢ € {1,...,n} is assigned the i*® bit of z (i.e.,
the value ;).

e If the children of a gate (of in-degree d) that is labeled A have values vy, vs, ..., Vg,
then the gate is assigned the value AZ_,v;. The value of a gate labeled V (or
—) is determined analogously.

Indeed, the hypothesis that the circuit is acyclic implies that the process
of determining values for the circuit’s vertices is well-defined: As long as the
value of some vertex is undetermined, there exists a vertex such that its value
is undetermined but the values of all its children are determined. Thus, the
process can make progress, and terminates when the values of all vertices
(including the output terminals) are determined.

The value of the circuit on input z (i.e., the output computed by the circuit on
input z) is y = y1 - - - Ym, where y; is the value assigned by the foregoing process
to the output terminal labeled 2. We note that there ewists a polynomial-time
algorithm that, given a circuit C' and a corresponding input x, outputs the value of
C on input . This algorithm determines the values of the circuit’s vertices, going
from the circuit’s input terminals to its output terminals.

We say that a family of circuits (Cy,),,en computes a function f : {0,1}* — {0,1}*
if for every n the circuit C,, computes the restriction of f to strings of length n. In
other words, for every x € {0,1}*, it must hold that C|;|(z) = f(z).

1.2. COMPUTATIONAL TASKS AND MODELS 43

Bounded and unbounded fan-in. We will be most interested in circuits in
which each gate has at most two in-coming edges. In this case, the types of (two-
argument) Boolean operations that we allow is immaterial (as long as we consider
a “full basis” of such operations; i.e., a set of operations that can implement any
other two-argument Boolean operation). Such circuits are called circuits of bounded
fan-in. In contrast, other studies are concerned with circuits of unbounded fan-in,
where each gate may have an arbitrary number of in-going edges. Needless to say,
in the case of circuits of unbounded fan-in, the choice of allowed Boolean operations
is important and one focuses on operations that are “uniform” (across the number
of operants; e.g., A and V).

Circuit size as a complexity measure. The size of a circuit is the number of
its edges. When considering a family of circuits (C.,),cn that computes a function
f :{0,1}* — {0,1}*, we are interested in the size of C,, as a function of n.
Specifically, we say that this family has size complexity s : N — N if for every n the
size of Cy, is s(n). The circuit complexity of a function f, denoted sy, is the infimum
of the size complexity of all families of circuits that compute f. Alternatively, for
each n we may consider the size of the smallest circuit that computes the restriction
of f to n-bit strings (denoted f,,), and set s¢(n) accordingly. We stress that non-
uniformity is implicit in this definition, because no conditions are made regarding
the relation between the various circuits used to compute the function on different
input lengths.

The circuit complexity of functions. We highlight some simple facts about
the circuit complexity of functions. (These facts are in clear correspondence to
facts regarding Kolmogorov Complexity mentioned in §1.2.3.3.)

1. Most importantly, any Boolean function can be computed by some family
of circuits, and thus the circuit complexity of any function is well-defined.
Furthermore, each function has at most exponential circuit complexity.

(Hint: f,, : {0,1}™ — {0,1} can be computed by a circuit of size O(n2") that
implements a look-up table.)

2. Some functions have polynomial circuit complexity. In particular, any func-
tion that has time complexity ¢ (i.e., is computed by an algorithm of time
complexity ¢) has circuit complexity poly(¢). Furthermore, the correspond-
ing circuit family is uniform (in a natural sense to be discussed in the next
paragraph).

(Hint: consider a Turing machine that computes the function, and consider
its computation on a generic n-bit long input. The corresponding compu-
tation can be emulated by a circuit that consists of ¢(n) layers such that
each layer represents an instantaneous configuration of the machine, and the
relation between consecutive configurations is captured by (“uniform”) local
gadgets in the circuit. For further details see the proof of Theorem 2.20,
which presents a similar emulation.)

44 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

3. Almost all Boolean functions have exponential circuit complexity. Specifi-
cally, the number of functions mapping {0,1}™ to {0, 1} that can be computed
by some circuit of size s is at most s2°.

(Hint: the number of circuits having v vertices and s edges is at most 2°+(3)".)
Note that the first fact implies that families of circuits can compute functions that
are uncomputable by algorithms. Furthermore, this phenomenon occurs also when
restricting attention to families of polynomial-size circuits. See further discussion
in §1.2.4.2.

Uniform families. A family of polynomial-size circuits (Cy,),, ¢y is called uniform
if given n one can construct the circuit C, in poly(n)-time. Note that if a function
is computable by a uniform family of polynomial-size circuits then it is computable
by a polynomial-time algorithm. This algorithm first constructs the adequate cir-
cuit (which can be done in polynomial-time by the uniformity hypothesis), and
then evaluate this circuit on the given input (which can be done in time that is
polynomial in the size of the circuit).

Note that limitations on the computing power of arbitrary families of polynomial-
size circuits certainly hold for uniform families (of polynomial-size), which in turn
yield limitations on the computing power of polynomial-time algorithms. Thus,
lower bounds on the circuit complexity of functions yield analogous lower bounds
on their time complexity. Furthermore, as is often the case in mathematics and
Science, disposing of an auxiliary condition that is not well-understood (i.e., uni-
formity) may turn out fruitful. Indeed, this has occured in the study of classes of
restricted circuits, which is reviewed in §1.2.4.3 (and Appendix B).

1.2.4.2 Machines that take advice

General (non-uniform) circuit families and uniform circuit families are two extremes
with respect to the “amounts of non-uniformity” in the computing device. Intu-
itively, in the former, non-uniformity is only bounded by the size of the device,
whereas in the latter the amounts of non-uniformity is zero. Here we consider a
model that allows to decouple the size of the computing device from the amount
of non-uniformity, which may range from zero to the device’s size. Specifically, we
consider algorithms that “take a non-uniform advice” that depends only on the
input length. The amount of non-uniformity will be defined to equal the length of
the corresponding advice (as a function of the input length).

Definition 1.12 (taking advice): We say that algorithm A computes the function
[using advice of length ¢ : N — N if there exists an infinite sequence (an)neN Such
that

1. For every x € {0,1}*, it holds that A(a,),z) = f(z).
2. For every n € N, it holds that |a,| = {(n).

The sequence (an)nen s called the advice sequence.

1.2. COMPUTATIONAL TASKS AND MODELS 45

Note that any function having circuit complexity s can be computed using advice
of length O(slogs), where the log factor is due to the fact that a graph with v
vertices and e edges can be described by a string of length 2elog, v. Note that the
model of machines that use advice allows for some sharper bounds than the ones
stated in §1.2.4.1: every function can be computed using advice of length ¢ such
that £(n) = 2", and some uncomputable functions can be computed using advice
of length 1.

Theorem 1.13 (the power of advice): There exist functions that can be computed
using one-bit advice but cannot be computed without advice.

Proof: Starting with any uncomputable Boolean function f : N — {0,1}, consider
the function f’ defined as f'(x) = f(|z|). Note that f is Turing-reducible to f’ (e.g.,
on input n make any n-bit query to f’, and return the answer).?3 Thus, f’ cannot be
computed without advice. On the other hand, f' can be easily computed by using
the advice sequence (an),cn such that a, = f(n); that is, the algorithm merely
outputs the advice bit (and indeed aj;| = f(|z|) = f'(x), for every x € {0,1}*).
|

1.2.4.3 Restricted models

As noted in §1.2.4.1, the model of Boolean circuits allows for the introduction of
many natural subclasses of computing devices. Following is a laconic review of a
few of these subclasses. For more detail, see Appendix B.2. Since we shall refer to
various types of Boolean formulae in the rest of this book, we suggest not to skip
the following two paragraphs.

Boolean formulae. In general Boolean circuits the non-sink vertices are allowed
arbitrary out-degree. This means that the same intermediate value can be re-used
(without being re-computed (and while increasing the size complexity by only one
unit)). Such “free” re-usage of intermediate values is disallowed in Boolean formu-
lae, which corresponds to a Boolean expression over Boolean variables. Formally,
a Boolean formula is a circuit in which all non-sink vertices have out-degree 1,
which means that the underlying graph is a tree (see §G.2) and the formula as
an expression can be read by traversing the tree (and registering the vertices’ la-
bels in the order traversed). Indeed, we have allowed different input terminals to
be assigned the same label in order to allow formulae in which the same variable
occurs multiple times. As in case of general circuits, one is interested in the size
of these restricted circuits (i.e., the size of families of formulae computing various
functions). We mention that quadratic lower bounds are known for the formula
size of simple functions (e.g., parity), whereas these functions have linear circuit
complexity. This discrepancy is depicted in Figure 1.4.

23Indeed, this Turing-reduction is not efficient (i.e., it runs in exponential time in |n| = log, n),
but this is immaterial in the current context.

46 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

PARITY PARITY PARITY PARITY PARITY PARITY
of X ..X of x of X ...X of x X of X ...X of x
1 n 1 n+1""2n 1

n+1%on n n+ 2 %on

ViRV
& /@ /

Figure 1.4: Recursive construction of parity circuits and formulae.

& I
@ c

Formulae in CNF and DNF. A restricted type of Boolean formulae consists
of formulae that are in conjunctive normal form (CNF). Such a formula consists of
a conjunction of clauses, where each clause is a disjunction of literals each being
either a variable or its negation. That is, such formulae are represented by layered
circuits of unbounded fan-in in which the first layer consists of neg-gates that
compute the negation of input variables, the second layer consist of or-gates that
compute the logical-or of subsets of inputs and negated inputs, and the third layer
consists of a single and-gate that computes the logical-and of the values computed
in the second layer. Note that each Boolean function can be computed by a family
of CNF formulae of exponential size, and that the size of CNF formulae may be
exponentially larger than the size of ordinary formulae computing the same function
(e.g., parity). For a constant k, a formula is said to be in k-CNF if its CNF has
disjunctions of size at most k. An analogous restricted type of Boolean formulae
refers to formulae that are in disjunctive normal form (DNF). Such a formula consists
of a disjunction of a conjunctions of literals, and when each conjunction has at most
k literals we say that the formula is in k-DNF.

Constant-depth circuits. Circuits have a “natural structure” (i.e., their struc-
ture as graphs). One natural parameter regarding this structure is the depth of a
circuit, which is defined as the longest directed path from any source to any sink. Of
special interest are constant-depth circuits of unbounded fan-in. We mention that
sub-exponential lower bounds are known for the size of such circuits that compute
a simple function (e.g., parity).

Monotone circuits. The circuit model also allows for the consideration of mono-
tone computing devices: a monotone circuit is one having only monotone gates
(e.g., gates computing A and V, but no negation gates (i.e., —-gates)). Needless
to say, monotone circuits can only compute monotone functions, where a function
f:{0,1}™ — {0, 1} is called monotone if for any = < y it holds that f(z) < f(y)
(where x1 -+, < y1-- -y, if and only if for every bit position ¢ it holds that
x; < y;)- One natural question is whether, as far as monotone functions are con-

1.2. COMPUTATIONAL TASKS AND MODELS 47

cerned, there is a substantial loss in using only monotone circuits. The answer is
yes: there exist monotone functions that have polynomial circuit complexity but
require sub-exponential size monotone circuits.

1.2.5 Complexity Classes

Complexity classes are sets of computational problems. Typically, such classes are
defined by fixing three parameters:

1. A type of computational problems (see Section 1.2.2). Indeed, most classes
refer to decision problems, but classes of search problems, promise problems,
and other types of problems will also be considered.

2. A model of computation, which may be either uniform (see Section 1.2.3) or
non-uniform (see Section 1.2.4).

3. A complexity measure and a function (or a set of functions), which put to-
gether limit the class of computations of the previous item; that is, we refer
to the class of computations that have complexity not exceeding the speci-
fied function (or set of functions). For example, in §1.2.3.4, we mentioned
time complexity and space complexity, which apply to any uniform model of
computation. We also mentioned polynomial-time computations, which are
computations in which the time complexity (as a function) does not exceed
some polynomial (i.e., a member of the set of polynomial functions).

The most common complexity classes refer to decision problems, and are sometimes
defined as classes of sets rather than classes of the corresponding decision problems.
That is, one often says that a set S C {0,1}* is in the class C rather than saying
that the problem of deciding membership in S is in the class C. Likewise, one talks
of classes of relations rather than classes of the corresponding search problems (i.e.,
saying that R C {0,1}* x {0,1}* is in the class C means that the search problem of
R is in the class C).

Chapter Notes

It is quite remarkable that the theories of uniform and non-uniform computational
devices have emerged in two single papers. We refer to Turing’s paper [214], which
introduced the model of Turing machines, and to Shannon’s paper [192], which
introduced Boolean circuits.

In addition to introducing the Turing machine model and arguing that it cor-
responds to the intuitive notion of computability, Turing’s paper [214] introduces
universal machines and contains proofs of undecidability (e.g., of the Halting Prob-
lem).

The Church-Turing Thesis is attributed to the works of Church [53] and Tur-
ing [214]. In both works, this thesis is invoked for claiming that the fact that
Turing machines cannot solve some problem implies that this problem cannot be

48 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

solved in any “reasonable” model of computation. The RAM model is attributed
to von Neumann’s report [221].

The association of efficient computation with polynomial-time algorithms is
attributed to the papers of Cobham [54] and Edmonds [66]. It is interesting to
note that Cobham’s starting point was his desire to present a philosophically sound
concept of efficient algorithms, whereas Edmonds’s starting point was his desire to
articulate why certain algorithms are “good” in practice.

Rice’s Theorem is proven in [183], and the undecidability of the Post Correspon-
dence Problem is proven in [172]. The formulation of machines that take advice
(as well as the equivalence to the circuit model) originates in [131].

