
Computational Complexity:A Conceptual PerspectiveOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.October 28, 2006



1to Dana

cCopyright 2006 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom use isgranted without fee provided that copies are not made or distributed for pro�t or com-mercial advantage and that new copies bear this notice and the full citation on the �rstpage. Abstracting with credit is permitted.



2



PrefaceThe strive for e�ciency is ancient and universal, as time and other resources arealways in shortage. Thus, the question of which tasks can be performed e�cientlyis central to the human experience.A key step towards the systematic study of the aforementioned question is arigorous de�nition of the notion of a task and of procedures for solving tasks. Thesede�nitions were provided by computability theory, which emerged in the 1930's.This theory focuses on computational tasks, and considers automated procedures(i.e., computing devices and algorithms) that may solve such tasks.In focusing attention on computational tasks and algorithms, computabilitytheory has set the stage for the study of the computational resources (like time) thatare required by such algorithms. When this study focuses on the resources that arenecessary for any algorithm that solves a particular task (or a task of a particulartype), the study becomes part of the theory of Computational Complexity (alsoknown as Complexity Theory).1Complexity Theory is a central �eld of the theoretical foundations of ComputerScience. It is concerned with the study of the intrinsic complexity of computa-tional tasks. That is, a typical Complexity theoretic study looks at the computa-tional resources required to solve a a computational task (or a class of such tasks),rather than at a speci�c algorithm or an algorithmic schema. Actually, research inComplexity Theory tends to start with and focus on the computational resourcesthemselves, and addresses the e�ect of limiting these resources on the class of tasksthat can be solved. Thus, Computational Complexity is the study of the whatcan be achieved within limited time (and/or other limited natural computationalresources).The (half-century) history of Complexity Theory has witnessed two main re-search e�orts (or directions). The �rst direction is aimed towards actually estab-lishing concrete lower bounds on the complexity of problems, via an analysis ofthe evolution of the process of computation. Thus, in a sense, the heart of thisdirection is a \low-level" analysis of computation. Most research in circuit com-1In contrast, when the focus is on the design and analysis of speci�c algorithms (rather thanon the intrinsic complexity of the task), the study becomes part of a related sub�eld that maybe called Algorithmic Design and Analysis. Furthermore, Algorithmic Design and Analysis tendsto be sub-divided according to the domain of mathematics, science and engineering in which thecomputational tasks arise. In contrast, Complexity Theory typically maintains a unity of thestudy of tasks solveable within certain resources (regardless of the origins of these tasks).3



4plexity and in proof complexity falls within this category. In contrast, a secondresearch e�ort is aimed at exploring the connections among computational prob-lems and notions, without being able to provide absolute statements regarding theindividual problems or notions. This e�ort may be viewed as a \high-level" studyof computation. The theory of NP-completeness as well as the studies of approx-imation, probabilistic proof systems, pseudorandomness and cryptography all fallwithin this category.The current book focuses on the latter e�ort (or direction). We list severalreasons for our decision to focus on the \high-level" direction. The �rst is the greatconceptual signi�cance of the known results; that is, many known results (as well asopen problems) in this direction have an extremely appealing conceptual message,which can also be appreciated by non-experts. Furthermore, these conceptualaspects may be explained without entering excessive technical detail. Consequently,the \high-level" direction is more suitable for an exposition in a book of the currentnature. Finally, there is a subjective reason: the \high-level" direction is withinour own expertise, while this cannot be said about the \low-level" direction.The last paragraph brings us to a discussion of the nature of the current book,which is captured by the subtitle (i.e., \a conceptual perspective"). Our mainthesis is that complexity theory is extremely rich in conceptual content, and thatthis contents should be explicitly communicated in expositions and courses on thesubject. The desire to provide a corresponding textbook is indeed the motivationfor writing the current book and its main governing principle.This book o�ers a conceptual perspective on complexity theory, and the presen-tation is designed to highlight this perspective. It is intended mainly for studentsthat wish to learn complexity theory and for educators that intend to teach a courseon complexity theory. The book is also intended to promote interest in complexitytheory and make it accessible to general readers with adequate background (whichis mainly being comfortable with abstract discussions, de�nitions, and proofs). Weexpect most readers to have a basic knowledge of algorithms, or at least be fairlycomfortable with the notion of an algorithm.The book focuses on several sub-areas of complexity theory (see the followingorganization and chapter summaries). In each case, the exposition starts from theintuitive questions addresses by the sub-area, as embodied in the concepts that itstudies. The exposition discusses the fundamental importance of these questions,the choices made in the actual formulation of these questions and notions, theapproaches that underly the answers, and the ideas that are embedded in theseanswers. Our view is that these (\non-technical") aspects are the core of the �eld,and the presentation attempts to reect this view.We note that being guided by the conceptual contents of the material leads, insome cases, to technical simpli�cations. Indeed, for many of the results presentedin this book, the presentation of the proof is di�erent (and arguably easier tounderstand) than the standard presentations.



Organization and ChapterSummariesThis book consists of ten chapters and seven appendices. The chapters constitutethe core of this book and are written in a style adequate for a textbook, whereas theappendices provide additional perspective and are written in the style of a surveyarticle. The relative length and ordering of the chapters (and appendices) does notreect their relative importance, but rather an attempt at the best logical order(i.e., minimizing the number of forward pointers).Following are brief summaries of the book's chapters and appendices. Thesessummaries are more detailed than those provided in Section 1.1.3 but less detailedthan the summaries provided at the beginning of each chapter.Chapter 1: Introduction and Preliminaries. The introduction provides ahigh-level overview of some of the content of complexity theory as well as a discus-sion of some of the characteristic features of this �eld. The preliminaries providethe relevant background on computability theory, which is the setting in whichcomplexity theoretic questions are being studied. Most importantly, central no-tions such as search and decision problems, algorithms that solve such problems,and their complexity are de�ned. In addition, this part presents the basic notionsunderlying non-uniform models of computation (like Boolean circuits).Chapter 2: P, NP and NP-completeness. The P-vs-NP Question can bephrased as asking whether or not �nding solutions is harder than checking thecorrectness of solutions. An alternative formulation in terms of decision problemsasks whether or not discovering proofs is harder than verifying their correctness;that is, is proving harder than verifying. It is widely believed that the answerto the two equivalent formulation is that �nding (resp., proving) is harder thanchecking (resp., verifying); that is, that P is di�erent from NP. At present, whenfaced with a hard problem in NP, we can only hope to prove that it is not in Passuming that NP is di�erent from P. This is where the theory of NP-completeness,which is based on the notion of a reduction, comes into the picture. In general,one computational problem is reducible to another problem if it is possible toe�ciently solve the former when provided with an (e�cient) algorithm for solvingthe latter. A problem (in NP) is NP-complete if any problem in NP is reducible5



6to it. Amazingly enough, NP-complete problems exist, and furthermore hundredsof natural computational problems arising in many di�erent areas of mathematicsand science are NP-complete.Chapter 3: Variations on P and NP. Non-uniform polynomial-time (P/poly)captures e�cient computations that are carried out by devices that handle speci�cinput lengths. The basic formalism ignores the complexity of constructing such de-vices (i.e., a uniformity condition), but a �ner formalism (based on \machines thattake advice") allows to quantify the amount of non-uniformity. The Polynomial-time Hierarchy (PH) generalizes NP by considering statements expressed by aquanti�ed Boolean formula with a �xed number of alternations of existential anduniversal quanti�ers. It is widely believed that each quanti�er alternation adds ex-pressive power to the class of such formulae. The two di�erent classes are relatedby showing that if NP is contained in P/poly then the Polynomial-time Hierarchycollapses to its second level.Chapter 4: More Resources, More Power? When using \nice" functions todetermine the algorithm's resources, it is indeed the case that more resources allowfor more tasks to be performed. However, when \ugly" functions are used for thesame purpose, increasing the resources may have no e�ect. By nice functions wemean functions that can be computed without exceeding the amount of resourcesthat they specify. Thus, we get results asserting, for example, that there areproblems that are solvable in cubic-time but not in quadratic-time. In the case ofnon-uniform models of computation, the issue of \nicety" does not arise, and it iseasy to establish separations results.Chapter 5: Space Complexity. This chapter is devoted to the study of thespace complexity of computations, while focusing on two rather extreme cases.The �rst case is that of algorithms having logarithmic space complexity, whichseem a proper and natural subset of the set of polynomial-time algorithms. Thesecond case is that of algorithms having polynomial space complexity, which in turncan solve almost all computational problems considered in this book. Among theresults presented in this chapter are a log-space algorithm for exploring (undirected)graphs, a non-deterministic log-space procedure for recognizing directed graphsthat are not strongly connected, and complete problems for NL and PSPACE(under log-space and polynomial-time reductions, respectively).Chapter 6: Randomness and Counting. Various failure types of probabilis-tic polynomial-time algorithms give rise to complexity classes such as BPP, RP ,and ZPP. The results presented include the emulation of probabilistic choices bynon-uniform advice (i.e., BPP � P=poly) and the emulation of two-sided prob-abilistic error by an 98-sequence of quanti�ers (i.e., BPP � �2). Turning tocounting problems (i.e., counting the number of solutions for NP-type problems),we distinguish between exact counting and approximate counting (in the sense of



7relative approximation). While any problem in PH is reducible to the exact count-ing class #P, approximate counting (for #P) is (probabilisticly) reducible to NP .Additional related topics include #P-completeness, the complexity of searching forunique solutions, and the relation between approximate counting and generatingalmost uniformly distributed solutions.Chapter 7: The Bright Side of Hardness. It turns out that hard problem canbe \put to work" to our bene�t, most notably in cryptography. One key issue thatarises in this context is bridging the gap between \occasional" hardness (e.g., worst-case hardness or mild average-case hardness) and \typical" hardness (i.e., strongaverage-case hardness). We consider two conjectures that are related to P 6= NP .The �rst conjecture is that there are problems that are solvable in exponential-time but are not solvable by (non-uniform) families of small (say polynomial-size)circuits. We show that these types of worst-case conjectures can be transformedinto average-case hardness results that yield non-trivial derandomizations of BPP(and even BPP = P). The second conjecture is that there are problems in NPfor which it is easy to generate (solved) instances that are hard to solve for otherpeople. This conjecture is captured in the notion of one-way functions, which arefunctions that are easy to evaluate but hard to invert (in an average-case sense). Weshow that functions that are hard to invert in a relatively mild average-case senseyield functions that are hard to invert almost everywhere, and that the latter yieldpredicates that are very hard to approximate (called hard-core predicates). Thelatter are useful for the construction of general-purpose pseudorandom generatorsas well as for a host of cryptographic applications.Chapter 8: Pseudorandom Generators. A fresh view at the question of ran-domness was taken in the theory of computing: It has been postulated that adistribution is pseudorandom if it cannot be told apart from the uniform distri-bution by any e�cient procedure. The paradigm, originally associating e�cientprocedures with polynomial-time algorithms, has been applied also with respectto a variety of limited classes of such distinguishing procedures. The archetypicalcase of pseudorandom generators refers to e�cient generators that fool any feasibleprocedure; that is, the potential distinguisher is any probabilistic polynomial-timealgorithm, which may be more complex than the generator itself. These generatorsare called general-purpose, because their output can be safely used in any e�cientapplication. In contrast, for purposes of derandomization, one may use pseudoran-dom generators that are somewhat more complex than the potential distinguisher(which represents the algorithm to be derandomized). Following this approach andusing various hardness assumptions, one may obtain corresponding derandomiza-tions of BPP (including a full derandomization; i.e., BPP = P). Other forms ofpseudorandom generators include ones that fool space-bounded distinguishers, andeven weaker ones that only exhibit some limited random behavior (e.g., outputtinga pair-wise independent sequence).



8Chapter 9: Probabilistic Proof Systems. Randomized and interactive veri-�cation procedures, giving rise to interactive proof systems, seem much more pow-erful than their deterministic counterparts. In particular, interactive proof systemsexist for any set in PSPACE � coNP (e.g., for the set of unsatis�ed proposi-tional formulae), whereas it is widely believed that some sets in coNP do nothave NP-proof systems. Interactive proofs allow the meaningful conceptualizationof zero-knowledge proofs, which are interactive proofs that yield nothing (to theveri�er) beyond the fact that the assertion is indeed valid. Under reasonable com-plexity assumptions, every set in NP has a zero-knowledge proof system. (Thisresult has many applications in cryptography.) A third type of probabilistic proofsystems is the model of PCPs, standing for probabilistically checkable proofs. Theseare (redundant) NP-proofs that o�ers a trade-o� between the number of locations(randomly) examined in the proof and the con�dence in its validity. In particular,a small constant error probability can be obtained by reading a constant numberof bits in the redundant NP-proof. The PCP Theorem asserts that NP-proofs canbe e�ciently transformed into PCPs. The study of PCPs is closely related to thestudy of the complexity of approximation problems.Chapter 10: Relaxing the Requirement. In light of the apparent infeasibilityof solving numerous useful computational problems, it is natural to seek relaxationsof these problems that remain useful for the original applications and yet allowfor feasible solving procedures. Two such types of relaxations are provided byadequate notions of approximation and a theory of average-case complexity. Thenotions of approximation refer to the computational problems themselves; thatis, for each problem instance we extend the set of admissible solutions. In thecontext of search problems this means settling for solutions that have a valuethat is \su�ciently close" to the value of the optimal solution, whereas in thecontext of decision problems this means settling for procedures that distinguishyes-instances from instances that are \far" from any yes-instance. Turning toaverage-case complexity, we note that a systematic study of this notion requiresthe development of a non-trivial conceptual framework. A major aspect of thisframework is limiting the class of distributions in a way that, on one hand, allowsfor various types of natural distributions and, on the other hand, prevents thecollapse of average-case complexity to worst-case complexity.Appendix A: Glossary of Complexity Classes. The glossary provides self-contained de�nitions of most complexity classes mentioned in the book. The glos-sary is partitioned into two parts, dealing separately with complexity classes thatare de�ned in terms of algorithms and their resources (i.e., time and space com-plexity of Turing machines) and complexity classes de�ned in terms of non-uniformcircuit (and referring to their size and depth). The following classes are de�ned:P , NP , coNP , BPP, RP , coRP , ZPP, #P , PH, E , EXP , NEXP , L, NL, RL,PSPACE , P=poly, NCk, and ACk.



9Appendix B: On the Quest for Lower Bounds. This appendix surveys someattempts at proving lower bounds on the complexity of natural computational prob-lems. The �rst part, devoted to Circuit Complexity, reviews lower bounds for thesize of (restricted) circuits that solve natural computational problems. This repre-sents a program whose long-term goal is proving that P 6= NP . The second part,devoted to Proof Complexity, reviews lower bounds on the length of (restricted)propositional proofs of natural tautologies. This represents a program whose long-term goal is proving that NP 6= coNP .Appendix C: On the Foundations of Modern Cryptography. This ap-pendix surveys the foundations of cryptography, which are the paradigms, ap-proaches and techniques used to conceptualize, de�ne and provide solutions tonatural security concerns. It presents some of these conceptual tools as well assome of the fundamental results obtained using them. The appendix augmentsthe partial treatment of one-way functions, pseudorandom generators, and zero-knowledge proofs (which is included in Chapters 7{9). Using these basic tools, theappendix provides a treatment of basic cryptographic applications such as Encryp-tion, Signatures, and General Cryptographic Protocols.Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-domization. The probabilistic preliminaries include conventions regarding ran-dom variables and overviews of three useful inequalities (i.e., Markov Inequality,Chebyshev's Inequality, and Cherno� Bound). The advanced topics include con-structions and lemmas regarding families of hashing functions, a study of the sam-ple and randomness complexities of estimating the average value of an arbitraryfunction, and the problem of randomness extraction (i.e., procedures for extractingalmost perfect randomness from sources of weak or defected randomness).Appendix E: Explicit Constructions. Complexity theory provides a clearperspective on the intuitive notion of an explicit construction. This perspective isdemonstrated with respect to error correcting codes and expander graphs. On thetopic of codes, the appendix focuses on various computational aspects, containinga review of several popular constructions as well as a construction of a binary codeof constant rate and constant relative distance. Also included are a brief reviewof the notions of locally testable and locally decodable codes, and a useful upper-bound on the number of codewords that are close to any single word. Turningto expander graphs, the appendix contains a review of two standard de�nitions ofexpanders, two levels of explicitness, two properties of expanders that are related to(single-step and multi-step) random walks on them, and two explicit constructionsof expander graphs.Appendix F: Some Omitted Proofs. This appendix contains some proofs thatwere not included in the main text (for a variety of reasons) and still are bene�cialas alternatives to the original and/or standard presentations. Included are proofs



10that PH is reducible to #P via randomized Karp-reductions, and that IP(f) �AM(O(f)) � AM(f), for any function f such that f(n) 2 f2; :::; poly(n)g.Appendix G: Some Computational Problems. This appendix includes def-initions of most of the speci�c computational problems that are referred to in themain text. In particular, it contains a brief introduction to graph algorithms,boolean formulae and �nite �elds.



AcknowledgmentsMy perspective on complexity theory was most inuenced by Shimon Even andLeonid Levin. In fact, it was hard not to be inuenced by these two remarkable andhighly opinionated researchers (especially for somebody like me who was fortunateto spend a lot of time with them).2Shimon Even viewed complexity theory as the study of the limitations of al-gorithms, a study concerned with natural computational resources and naturalcomputational tasks. Complexity theory was there to guide the engineer and toaddress the deepest questions that bother an intellectually curious computer scien-tist. I believe that this book shares Shimon's view of complexity theory as evolvingaround such questions.Leonid Levin emphasized the general principles that underly complexity theory,rejecting any \model-dependent e�ects" as well as the common coupling of com-plexity theory with the theory of automata and formal languages. In my opinion,this book is greatly inuenced by these opinions of Levin.I wish to acknowledge the inuence of numerous other colleagues on my pro-fessional perspectives and attitudes. These include Sha� Goldwasser, Dick Karp,Silvio Micali, and Avi Wigderson. I also wish to thank many colleagues for theircomments and advice regarding earlier versions of this text. A partial list includesNoam Livne, Omer Reingold, Dana Ron, Ronen Shaltiel, Amir Shpilka, MadhuSudan, Salil Vadhan, and Avi Wigderson.Lastly, I am grateful to Mohammad Mahmoody Ghidary and Or Meir for theircareful reading of drafts of this manuscript and for the numerous corrections andsuggestions they have provided.Relation to previous texts of mine. Some of the text of this book has beenadapted from previous texts of mine. In particular, Chapters 8 and 9 were writtenbased on my surveys [87, Chap. 3] and [87, Chap. 2], respectively; but the expositionhas been extensively revised to �t the signi�cantly di�erent aims of the currentbook. Similarly, Section 7.1 and Appendix C were written based on my survey [87,Chap. 1] and books [88, 89]; but, again, the previous texts are very di�erent in manyways. In contrast, Appendix B was adapted with relatively little modi�cations froma section of an article by Avi Wigderson and myself [104].2Shimon Even was my graduate studies adviser (at the Technion, 1980-83); whereas I had alot of meetings with Leonid Levin during my post-doctoral period (at MIT, 1983-86).1



2



Chapter 1Introduction andPreliminariesYou can start by putting the do not disturb sign.Cay, in Desert Hearts (1985).The current chapter consists of two parts. The �rst part provides a high-levelintroduction to (computational) complexity theory. This introduction is muchmore detailed than the laconic statements made in the preface, but is quite sparsewhen compared to the richness of the �eld. In addition, the introduction containsseveral important comments regarding the contents, approach and style of thecurrent book.
P

BPP RP

average-case

IP ZK
PCP

approximation

pseudorandomness

PH

NP coNP

NL
L lower  bounds

PSPACE

The second part of this chapter provides the necessary preliminaries to the restof the book. It includes a discussion of computational tasks and computationalmodels, as well as natural complexity measures associated with the latter. Morespeci�cally, this part recalls the basic notions and results of computability theory(including the de�nition of Turing machines, some undecidability results, the notionof universal machines, and the de�nition of oracle machines). In addition, this partpresents the basic notions underlying non-uniform models of computation (likeBoolean circuits). 3



4 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.1 IntroductionThis section consists of two parts: the �rst part refers to the area itself, whereasthe second part refers to the current book. The �rst part provides a brief overviewof Complexity Theory (Section 1.1.1) as well as some reections about its char-acteristics (Section 1.1.2). The second part describes the contents of this book(Section 1.1.3), the considerations underlying the choice of topics as well as theway they are presented (Section 1.1.4), and various notations and conventions (Sec-tion 1.1.5).1.1.1 A brief overview of Complexity TheoryOut of the tough came forth sweetness1Judges, 14:14Complexity Theory is concerned with the study of the intrinsic complexity of com-putational tasks. Its \�nal" goals include the determination of the complexity ofany well-de�ned task. Additional goals include obtaining an understanding of therelations between various computational phenomena (e.g., relating one fact regard-ing computational complexity to another). Indeed, we may say that the formertype of goals is concerned with absolute answers regarding speci�c computationalphenomena, whereas the latter type is concerned with questions regarding the re-lation between computational phenomena.Interestingly, so far Complexity Theory has been more successful in coping withgoals of the latter (\relative") type. In fact, the failure to resolve questions of the\absolute" type, led to the ourishing of methods for coping with questions of the\relative" type. Musing for a moment, let us say that, in general, the di�cultyof obtaining absolute answers may naturally lead to seeking conditional answers,which may in turn reveal interesting relations between phenomena. Furthermore,the lack of absolute understanding of individual phenomena seems to facilitate thedevelopment of methods for relating di�erent phenomena. Anyhow, this is whathappened in Complexity Theory.Putting aside for a moment the frustration caused by the failure of obtainingabsolute answers, we must admit that there is something fascinating in the successto relate di�erent phenomena: in some sense, relations between phenomena aremore revealing than absolute statements about individual phenomena. Indeed, the�rst example that comes to mind is the theory of NP-completeness. Let us considerthis theory, for a moment, from the perspective of these two types of goals.Complexity theory has failed to determine the intrinsic complexity of tasks suchas �nding a satisfying assignment to a given (satis�able) propositional formula or�nding a 3-coloring of a given (3-colorable) graph. But it has established thatthese two seemingly di�erent computational tasks are in some sense the same (or,more precisely, are computationally equivalent). We �nd this success amazing1The quote is commonly used to mean that bene�t arose out of misfortune.



1.1. INTRODUCTION 5and exciting, and hopes that the reader shares these feelings. The same feeling ofwonder and excitement is generated by many of the other discoveries of Complexitytheory. Indeed, the reader is invited to join a fast tour of some of the other questionsand answers that make up the �eld of Complexity theory.We will indeed start with the \P versus NP Question". Our daily experience isthat it is harder to solve a problem than it is to check the correctness of a solution(e.g., think of either a puzzle or a research problem). Is this experience merelya coincidence or does it represent a fundamental fact of life (or a property of theworld)? Could you imagine a world in which solving any problem is not signi�cantlyharder than checking a solution to it? Would the term \solving a problem" notlose its meaning in such a hypothetical (and impossible in our opinion) world?The denial of the plausibility of such a hypothetical world (in which \solving" isnot harder than \checking") is what \P di�erent from NP" actually means, whereP represents tasks that are e�ciently solvable and NP represents tasks for whichsolutions can be e�ciently checked.The mathematically (or theoretically) inclined reader may also consider thetask of proving theorems versus the task of verifying the validity of proofs. Indeed,�nding proofs is a special type of the aforementioned task of \solving a problem"(and verifying the validity of proofs is a corresponding case of checking correctness).Again, \P di�erent from NP" means that there are theorems that are harder toprove than to be convinced of their correctness when presented with a proof. Thismeans that the notion of a proof is meaningful (i.e., that proofs do help whentrying to be convinced of the correctness of assertions). Here NP represents setsof assertions that can be e�ciently veri�ed with the help of adequate proofs, andP represents sets of assertions that can be e�ciently veri�ed from scratch (i.e.,without proofs).In light of the foregoing discussion it is clear that the P-versus-NP Question isa fundamental scienti�c question of far-reaching consequences. The fact that thisquestion seems beyond our current reach led to the development of the theory ofNP-completeness. Loosely speaking, this theory identi�es a set of computationalproblems that are as hard as NP. That is, the fate of the P-versus-NP Questionlies with each of these problems: if any of these problems is easy to solve thenso are all problems in NP. Thus, showing that a problem is NP-complete providesevidence to its intractability (assuming, of course, \P di�erent than NP"). Indeed,demonstrating NP-completeness of computational tasks is a central tool in indicat-ing hardness of natural computational problems, and it has been used extensivelyboth in computer science and in other disciplines. NP-completeness indicates notonly the conjectured intractability of a problem but rather also its \richness" in thesense that the problem is rich enough to \encode" any other problem in NP. Theuse of the term \encoding" is justi�ed by the exact meaning of NP-completeness,which in turn is based on establishing relations between di�erent computationalproblems (without referring to their \absolute" complexity).The foregoing discussion of the P-versus-NP Question also hints to the impor-tance of representation, a phenomenon that is central to complexity theory. Ingeneral, complexity theory is concerned with problems the solutions of which are



6 CHAPTER 1. INTRODUCTION AND PRELIMINARIESimplicit in the problem's statement (or rather in the instance). That is, the problem(or rather its instance) contains all necessary information, and one merely needs toprocess this information in order to supply the answer.2 Thus, complexity theory isconcerned with manipulation of information, and its transformation from one rep-resentation (in which the information is given) to another representation (whichis the one desired). Indeed, a solution to a computational problem is merely adi�erent representation of the information given; that is, a representation in whichthe answer is explicit rather than implicit. For example, the answer to the questionof whether or not a given Boolean formula is satis�able is implicit in the formulaitself (but the task is to make the answer explicit). Thus, complexity theory clari-�es a central issue regarding representation; that is, the distinction between whatis explicit and what is implicit in a representation. Furthermore, it even suggestsa quanti�cation of the level of non-explicitness.In general, complexity theory provides new viewpoints on various phenomenathat were considered also by past thinkers. Examples include the aforementionedconcepts of proofs and representation as well as concepts like randomness, knowl-edge, interaction, secrecy and learning. We next discuss some of these conceptsand the perspective o�ered by complexity theory.The concept of randomness has puzzled thinkers for ages. Their perspectivecan be described as ontological: they asked \what is randomness" and wonderedwhether it exist at all (or is the world deterministic). The perspective of complexitytheory is behavioristic: it is based on de�ning objects as equivalent if they cannotbe told apart by any e�cient procedure. That is, a coin toss is (de�ned to be)\random" (even if one believes that the universe is deterministic) if it is infeasibleto predict the coin's outcome. Likewise, a string (or a distribution of strings) is\random" if it is infeasible to distinguish it from the uniform distribution (regard-less of whether or not one can generate the latter). Interestingly, randomness (orrather pseudorandomness) de�ned this way is e�ciently expandable; that is, undera reasonable complexity assumption (to be discussed next), short pseudorandomstrings can be deterministically expanded into long pseudorandom strings. Indeed,it turns out that randomness is intimately related to intractability. Firstly, notethat the very de�nition of pseudorandomness refers to intractability (i.e., the infea-sibility of distinguishing a pseudorandomness object from a uniformly distributedobject). Secondly, as stated, a complexity assumption, which refers to the exis-tence of functions that are easy to evaluate but hard to invert (called one-wayfunctions), implies the existence of deterministic programs (called pseudorandomgenerators) that stretch short random seeds into long pseudorandom sequences. Infact, it turns out that the existence of pseudorandom generators is equivalent tothe existence of one-way functions.Complexity theory o�ers its own perspective on the concept of knowledge (anddistinguishes it from information). Speci�cally, complexity theory views knowledgeas the result of a hard computation. Thus, whatever can be e�ciently done by any-2In contrast, in other disciplines, solving a problem may require gathering information that isnot available in the problem's statement. This information may either be available from auxiliary(past) records or be obtained by conducting new experiments.



1.1. INTRODUCTION 7one is not considered knowledge. In particular, the result of an easy computationapplied to publicly available information is not considered knowledge. In contrast,the value of a hard to compute function applied to publicly available informationis knowledge, and if somebody provides you with such a value then it has providedyou with knowledge. This discussion is related to the notion of zero-knowledgeinteractions, which are interactions in which no knowledge is gained. Such inter-actions may still be useful, because they may convince a party of the correctnessof speci�c data that was provided beforehand.The foregoing paragraph has explicitly referred to interaction. It has pointedone possible motivation for interaction: gaining knowledge. It turns out that in-teraction may help in a variety of other contexts. For example, it may be easier toverify an assertion when allowed to interact with a prover rather than when readinga proof. Put di�erently, interaction with a good teacher may be more bene�cialthan reading any book. We comment that the added power of such interactiveproofs is rooted in their being randomized (i.e., the veri�cation procedure is ran-domized), because if the veri�er's questions can be determined beforehand then theprover may just provide the transcript of the interaction as a traditional writtenproof.Another concept related to knowledge is that of secrecy: knowledge is some-thing that one party has while another party does not have (and cannot feasiblyobtain by itself) { thus, in some sense knowledge is a secret. In general, complexitytheory is related to Cryptography, where the latter is broadly de�ned as the studyof systems that are easy to use but hard to abuse. Typically, such systems involvesecrets, randomness and interaction as well as a complexity gap between the easeof proper usage and the infeasibility of causing the system to deviate from its pre-scribed behavior. Thus, much of Cryptography is based on complexity theoreticassumptions and its results are typically transformations of relatively simple com-putational primitives (e.g., one-way functions) into more complex cryptographicapplications (e.g., secure encryption schemes).We have already mentioned the concept of learning when referring to learningfrom a teacher versus learning from a book. Recall that complexity theory providesevidence to the advantage of the former. This is in the context of gaining knowledgeabout publicly available information. In contrast, computational learning theoryis concerned with learning objects that are only partially available to the learner(i.e., learning a function based on its value at a few random locations or even atlocations chosen by the learner). Complexity theory sheds light on the intrinsiclimitations of learning (in this sense).Complexity theory deals with a variety of computational tasks. We have alreadymentioned two fundamental types of tasks: searching for solutions (or rather \�nd-ing solutions") and making decisions (e.g., regarding the validity of assertion). Wehave also hinted that in some cases these two types of tasks can be related. Nowwe consider two additional types of tasks: counting the number of solutions andgenerating random solutions. Clearly, both the latter tasks are at least as hard as�nding arbitrary solutions to the corresponding problem, but it turns out that forsome natural problems they are not signi�cantly harder. Speci�cally, under some



8 CHAPTER 1. INTRODUCTION AND PRELIMINARIESnatural conditions on the problem, approximately counting the number of solutionsand generating an approximately random solution is not signi�cantly harder than�nding an arbitrary solution.Having mentioned the notion of approximation, we note that the study of thecomplexity of �nding approximate solutions has also received a lot of attention.One type of approximation problems refers to an objective function de�ned on theset of potential solutions. Rather than �nding a solution that attains the optimalvalue, the approximation task consists of �nding a solution that attains an \almostoptimal" value, where the notion of \almost optimal" may be understood in dif-ferent ways giving rise to di�erent levels of approximation. Interestingly, in manycases, even a very relaxed level of approximation is as di�cult to obtain as solvingthe original (exact) search problem (i.e., �nding an approximate solution is as hardas �nding an optimal solution). Surprisingly, these hardness of approximation re-sults are related to the study of probabilistically checkable proofs, which are proofsthat allow for ultra-fast probabilistic veri�cation. Amazingly, every proof can bee�ciently transformed into one that allows for probabilistic veri�cation based onprobing a constant number of bits (in the alleged proof). Turning back to approx-imation problems, we note that in other cases a reasonable level of approximationis easier to achieve than solving the original (exact) search problem.Approximation is a natural relaxation of various computational problems. An-other natural relaxation is the study of average-case complexity, where the \aver-age" is taken over some \simple" distributions (representing a model of the prob-lem's instances that may occur in practice). We stress that, although it was notstated explicitly, the entire discussion so far has referred to \worst-case" analysisof algorithms. We mention that worst-case complexity is a more robust notionthan average-case complexity. For starters, one avoids the controversial questionof what are the instances that are \important in practice" and correspondinglythe selection of the class of distributions for which average-case analysis is to beconducted. Nevertheless, a relatively robust theory of average-case complexity hasbeen suggested, albeit it is less developed than the theory of worst-case complexity.In view of the central role of randomness in complexity theory (as evident, say,in the study of pseudorandomness, probabilistic proof systems, and cryptography),one may wonder as to whether the randomness needed for the various applicationscan be obtained in real-life. One speci�c question, which received a lot of atten-tion, is the possibility of \purifying" randomness (or \extracting good randomnessfrom bad sources"). That is, can we use \defected" sources of randomness in or-der to implement almost perfect sources of randomness. The answer depends, ofcourse, on the model of such defected sources. This study turned out to be relatedto complexity theory, where the most tight connection is between some type ofrandomness extractors and some type of pseudorandom generators.So far we have focused on the time complexity of computational tasks, whilerelying on the natural association of e�ciency with time. However, time is notthe only resource one should care about. Another important resource is space:the amount of (temporary) memory consumed by the computation. The studyof space complexity has uncovered several fascinating phenomena, which seem to



1.1. INTRODUCTION 9indicate a fundamental di�erence between space complexity and time complexity.For example, in the context of space complexity, verifying proofs of validity ofassertions (of any speci�c type) has the same complexity as verifying proofs ofinvalidity for the same type of assertions.In case the reader feels dizzy, it is no wonder. We took an ultra-fast air-tour ofsome mountain tops, and dizziness is to be expected. Needless to say, the rest ofthe book o�ers a totally di�erent touring experience. We will climb some of thesemountains by foot, step by step, and will often stop to look around and reect.Absolute Results (a.k.a. Lower-Bounds). As stated up-front, absolute re-sults are not known for many of the \big questions" of complexity theory (mostnotably the P-versus-NP Question). However, several highly non-trivial absoluteresults have been proved. For example, it was shown that using negation canspeed-up the computation of monotone functions (which do not require negationfor their mere computation). In addition, many promising techniques were intro-duced and employed with the aim of providing a low-level analysis of the progress ofcomputation. However, as stated in the preface, the focus of this book is elsewhere.1.1.2 Characteristics of Complexity TheoryWe are successful because we use the right level of abstractionAvi Wigderson (1996)Using the \right level of abstraction" seems to be a main characteristic of the The-ory of Computation at large. The right level of abstraction means abstracting awaysecond-order details, which tend to be context-dependent, while using de�nitionsthat reect the main issues (rather than abstracting them away too). Indeed, usingthe right level of abstraction calls for an extensive exercising of good judgment, andone indication for having chosen the right abstractions is the result of their study.One major choice of the theory of computation, which is currently taken forgranted, is the choice of a model of computation and corresponding complexitymeasures and classes. Two extreme choices that were avoided are a too realisticmodel and a too abstract model. On the one hand, the main model of computationused in complexity theory does not try to reect (or mirror) the speci�c operationof real-life computers used at a speci�c historical time. Such a choice would havemade it very hard to develop complexity theory as we know it and to uncoverthe fundamental relations discussed in this book: the mass of details would haveobscured the view. On the other hand, avoiding any reference to any concretemodel (like in the case of recursive function theory) does not encourage the intro-duction and study of natural measures of complexity. Indeed, as we shall see inSection 1.2.3, the choice was (and is) to use a simple model of computation (whichdoes not mirror real-life computers), while avoiding any e�ects that are speci�c tothat model (by keeping a eye on a host of variants and alternative models). Thefreedom from the speci�cs of the basic model is obtained by considering complexity



10 CHAPTER 1. INTRODUCTION AND PRELIMINARIESclasses that are invariant under a change of model (as long as the alternative modelis \reasonable").Another major choice is the use of asymptotic analysis. Speci�cally, we con-sider the complexity of an algorithm as a function of its input length, and studythe asymptotic behavior of this function. It turns out that structure that is hiddenby concrete quantities appears at the limit. Furthermore, depending on the case,we classify functions according to di�erent criteria. For example, in case of timecomplexity we consider classes of functions that are closed under multiplication,whereas in case of space complexity we consider closure under addition. In eachcase, the choice is governed by the nature of the complexity measure being consid-ered. Indeed, one could have developed a theory without using these conventions,but this would have resulted in a far more cumbersome theory. For example, ratherthan saying that �nding a satisfying assignment for a given formula is polynomial-time reducible to deciding the satis�ability of some other formulae, one could havestated the exact functional dependence of the complexity of the search problem onthe complexity of the decision problem.Both the aforementioned choices are common to other branches of the theory ofcomputation. One aspect that makes complexity theory unique is its perspectiveon the most basic question of the theory of computation; that is, the way it studiesthe question of what can be e�ciently computed. The perspective of complexitytheory is general in nature. This is reected in its primary focus on the relevantnotion of e�ciency (captured by corresponding resource bounds) rather than onspeci�c computational problems. In most cases, complexity theoretic studies donot refer to any speci�c computational problems or refer to such problems merelyas an illustration. Furthermore, even when speci�c computational problems arestudied, this study is (explicitly or at least implicitly) aimed at understanding thecomputational limitations of certain resource bounds.The aforementioned general perspective seems linked to the signi�cant role ofconceptual considerations in the �eld: The rigorous study of an intuitive notion ofe�ciency must be initiated with an adequate choice of de�nitions. Since this studyrefers to any possible (relevant) computation, the de�nitions cannot be derived byabstracting some concrete reality. Indeed, the de�nitions attempt to capture anypossible reality, which means that the choice of de�nitions is governed by conceptualprinciples and not merely by empirical observations.1.1.3 Contents of this bookThis book consists of ten chapters and seven appendices. The chapters constitutethe core of this book and are written in a style adequate for a textbook, whereas theappendices provide additional perspective and are written in the style of a surveyarticle.Section 1.2 and Chapter 2 are a prerequisite to the rest of the book. Technically,it is the case that notions and results that appear in these parts are extensivelyused in the rest of the book. More importantly, the former parts are the conceptualframework that shapes the �eld and provides a good perspective on the questionsand answers provided. Indeed, Section 1.2 and Chapter 2 provide the very basic



1.1. INTRODUCTION 11material that must be understood by anybody having an interest in complexitytheory.In contrast, the rest of the book covers more advanced material, which meansthat none of it can be claimed to be absolutely necessary for a basic understandingof complexity theory. Indeed, although some advanced chapters refer to material inother advanced chapters, the relation between these chapters is not a fundamentalone. Thus, one may choose to read and/or teach an arbitrary subset of the advancedchapters and do it in an arbitrary order, provided one is willing to follow therelevant references to some parts of other chapters (see Figure 1.1). Needless tosay, we recommend reading and/or teaching all the advanced chapters, and doingso by following the order presented in this book.

6.1 6.2

7.1 7.2

in E

8.2 8.3 8.4 8.5

8.1    paragidm

de-ran. space
gen.
pur.

OWF

  case

10.1.1

prop.
test.

10.1.2

9.1   IP

9.2  ZK

PCP

9.3

average

10.2

rand. count.

6.1.4

7.1.3

5.2
L

5.4

4.1  advice

4.3   space
3.1

PHP/poly

5.3
NL PSPACE

5.1   general
3.2.3

3.2
4.2  TIME

5.2.4

(of opt.)
approx.

Solid arrows indicate the use of speci�c results that are stated in thesection to which the arrow points. Dashed lines (and arrows) indicatean important conceptual connection; the wider the line, the tighterthe connection. When relations are only between subsections, theirindex is indicated.Figure 1.1: Dependencies among the advanced chapters.The rest of this section provides a brief summary of the contents of the various



12 CHAPTER 1. INTRODUCTION AND PRELIMINARIESchapters and appendices. This summary is intended for the teacher and/or theexpert, whereas the student is referred to the more reader-friendly summaries thatappear in the book's pre�x.Section 1.2: Preliminaries. This section provides the relevant background oncomputability theory, which is the basis for the rest of this book (as well as forcomplexity theory at large). Most importantly, it contains a discussion of centralnotions such as search and decision problems, algorithms that solve such problems,and their complexity. In addition, this section presents non-uniform models ofcomputation (e.g., Boolean circuits).Chapter 2: P, NP and NP-completeness. This chapter presents the P-vs-NPQuestion both in terms of search problems and in terms of decision problems. Thesecond main topic of this chapter is the theory of NP-completeness. The chapteralso provides a treatment of the general notion of a (polynomial-time) reduction,with special emphasis on self-reducibility. Additional topics include the existence ofproblems in NP that are neither NP-complete nor in P, optimal search algorithms,the class coNP, and promise problems.Chapter 3: Variations on P and NP. This chapter provides a treatmentof non-uniform polynomial-time (P/poly) and of the Polynomial-time Hierarchy(PH). Each of the two classes is de�ned in two equivalent ways (e.g., P/poly isde�ned both in terms of circuits and in terms of \machines that take advice"). Inaddition, it is shown that if NP is contained in P/poly then PH collapses to itssecond level (i.e., �2).Chapter 4: More Resources, More Power? The focus of this chapter ison Hierarchy Theorems, which assert that typically more resources allow for solv-ing more problems. These results depend on using bounding functions that canbe computed without exceeding the amount of resources that they specify, andotherwise Gap Theorems may apply.Chapter 5: Space Complexity. Among the results presented in this chapterare a log-space algorithm for testing connectivity of (undirected) graphs, a proofthat NL = coNL, and complete problems for NL and PSPACE (under log-spaceand poly-time reductions, respectively).Chapter 6: Randomness and Counting. This chapter focuses on variousrandomized complexity classes (i.e., BPP, RP , and ZPP) and the counting class#P . The results presented in this chapter include BPP � P=poly and BPP ��2, the #P-completeness of the Permanent, the connection between approximatecounting and uniform generation of solutions, and the randomized reductions ofapproximate counting to NP and ofNP to solving problems with unique solutions.



1.1. INTRODUCTION 13Chapter 7: The Bright Side of Hardness. This chapter deals with two con-jectures that are related to P 6= NP . The �rst conjecture is that there are problemsin E that are not solvable by (non-uniform) families of small (say polynomial-size)circuits, whereas the second conjecture is equivalent to the notion of one-way func-tions. Most of this chapter is devoted to \hardness ampli�cation" results thatconvert these conjectures into tools that can be used for non-trivial derandomiza-tions of BPP (resp., for a host of cryptographic applications).Chapter 8: Pseudorandom Generators. The pivot of this chapter is the no-tion of computational indistinguishability and corresponding notions of pseudoran-domness. The de�nition of general-purpose pseudorandom generators (running inpolynomial-time and withstanding any polynomial-time distinguisher) is presentedas a special case of a general paradigm. The chapter also contains a presentationof other instantiations of the latter paradigm, including generators aimed at deran-domizing complexity classes such as BPP, generators withstanding space-boundeddistinguishers, and some special-purpose generators.Chapter 9: Probabilistic Proof Systems. This chapter provides a treatmentof three types of probabilistic proof systems: interactive proofs, zero-knowledgeproofs, and probabilistic checkable proofs. The results presented include IP =PSPACE , zero-knowledge proofs for any NP-set, and the PCP Theorem. For thelatter, only overviews of the two di�erent known proofs are provided.Chapter 10: Relaxing the Requirement. This chapter provides a treatmentof two types of approximation problems and a theory of average-case (or rathertypical-case) complexity. The traditional type of approximation problems refersto search problems and consists of a relaxation of standard optimization prob-lems. The second type is known as \property testing" and consists of a relaxationof standard decision problems. The theory of average-case complexity involvesseveral non-trivial de�nitional choices (e.g., an adequate choice of the class of dis-tributions).Appendix A: Glossary of Complexity Classes. The glossary provides self-contained de�nitions of most complexity classes mentioned in the book.Appendix B: On the Quest for Lower Bounds. The �rst part, devotedto Circuit Complexity, reviews lower bounds for the size of (restricted) circuitsthat solve natural computational problems. The second part, devoted to ProofComplexity, reviews lower bounds on the length of (restricted) propositional proofsof natural tautologies.Appendix C: On the Foundations of Modern Cryptography. The �rstpart of this appendix augments the partial treatment of one-way functions, pseu-dorandom generators, and zero-knowledge proofs (which is included in Chapters



14 CHAPTER 1. INTRODUCTION AND PRELIMINARIES7{9). Using these basic tools, the second part provides a treatment of basic cryp-tographic applications such as Encryption, Signatures, and General CryptographicProtocols.Appendix D: Probabilistic Preliminaries and Advanced Topics in Ran-domization. The probabilistic preliminaries include conventions regarding ran-dom variables and overviews of three useful inequalities (i.e., Markov Inequality,Chebyshev's Inequality, and Cherno� Bound). The advanced topics include con-structions of hashing functions and variants of the Leftover Hashing Lemma, andoverviews of samplers and extractors (i.e., the problem of randomness extraction).Appendix E: Explicit Constructions. This appendix focuses on various com-putational aspects of error correcting codes and expander graphs. On the topicof codes, the appendix contains a review of the Hadamard code, Reed-Solomoncodes, Reed-Muller codes, and a construction of a binary code of constant rate andconstant relative distance. Also included are a brief review of the notions of locallytestable and locally decodable codes, and a list-decoding bound. On the topic ofexpander graphs, the appendix contains a review of the standard de�nitions andproperties as well as a presentation of the Margulis-Gabber-Galil and the Zig-Zagconstructions.Appendix F: Some Omitted Proofs. This appendix contains some proofsthat are bene�cial as alternatives to the original and/or standard presentations.Included are proofs that PH is reducible to #P via randomized Karp-reductions,and that IP(f) � AM(O(f)) � AM(f).Appendix G: Some Computational Problems. This appendix contains abrief introduction to graph algorithms, Boolean formulae, and �nite �elds.Bibliography. As stated in Section 1.1.4, we tried to keep the bibliographic listas short as possible (and still reached a couple of hundreds of entries). As a resultmany relevant references were omitted. In general, our choice of references wasbiased in favor of textbooks and survey articles. We tried, however, not to omitreferences to key papers in an area.Absent from this book. As stated in the preface, the current book does notprovide a uniform cover of the various areas of complexity theory. Notable omis-sions include the areas of circuit complexity (cf. [43, 223]) and proof complexity(cf. [25]), which are briey reviewed in Appendix B. Additional topics that arecommonly covered in complexity theory courses but omitted here include the studyof branching programs and decision trees (cf. [224]), parallel computation [133], andcommunication complexity [141]. We mention that the recent textbook of Aroraand Barak [13] contains a treatment of all these topics. Finally, we mention a twoareas that we consider related to complexity theory, although this view is not very



1.1. INTRODUCTION 15common. These areas are distributed computing [16] and computational learningtheory [135].1.1.4 Approach and style of this bookAccording to a common opinion, the most important aspect of a scienti�c work isthe technical result that it achieves and the rest is redundancy introduced for thesake of \error correction" and/or comfort. It is further believed that, like in a workof art, the interpretation of the work should be left with the reader (or viewer orlistener).The author disagrees with the aforementioned opinions, and argues that thereis a fundamental di�erence between art and science, and that this di�erence refersexactly to the meaning of a piece of work. Science is concerned with meaning(and not with form), and in its quest for truth and/or understanding it followsphilosophy (and not art). The author holds the opinion that the most importantaspects of a scienti�c work are the intuitive question that it addresses, the reasonthat it addresses this question, the way it phrases the question, the approach thatunderlies its answer, and the ideas that are embedded in the answer. Following thisview, it is important to communicate these aspects of the work, and the currentbook is written accordingly.The foregoing issues are even more acute when it comes to complexity theory,�rstly because conceptual considerations seems to play an even more central role incomplexity theory (as opposed to other �elds; cf., Section 1.1.2). Furthermore (ormaybe consequently), complexity theory is extremely rich in conceptual content.Unfortunately, this content is rarely communicated (explicitly) in books and/orsurveys of the area.3 The annoying (and quite amazing) consequences are studentsthat have only a vague understanding of the meaning and general relevance of thefundamental notions and results that they were taught. The author's view is thatthese consequences are easy to avoid by taking the time to explicitly discuss themeaning of de�nitions and results. A related issue is using the \right" de�nitions(i.e., those that reect better the fundamental nature of the notion being de�ned)and teaching things in the (conceptually) \right" order.1.1.4.1 The general principleIn accordance with the foregoing, the focus of this book is on the conceptual aspectsof the technical material. Whenever presenting a subject, the starting point is theintuitive questions being addressed. The presentation explains the importance ofthese questions, the speci�c ways that they are phrased (i.e., the choices made inthe actual formulation), the approaches that underly the answers, and the ideasthat are embedded in these answers. Thus, a signi�cant portion of the text is3It is tempting to speculate on the reasons for this phenomenon. One speculation is thatcommunicating the conceptual content of complexity theory involves making bold philosophicalassertions that are technically straightforward, whereas this combination does not �t the characterof most researchers in complexity theory.



16 CHAPTER 1. INTRODUCTION AND PRELIMINARIESdevoted to motivating discussions that refer to the concepts and ideas that underlythe actual de�nitions and results.The material is organized around conceptual themes, which reect fundamen-tal notions and/or general questions. Speci�c computational problems are rarelyreferred to, with exceptions that are used either for sake of clarity or because thespeci�c problem happens to capture a general conceptual phenomenon. For exam-ple, in this book, complete problems are always secondary to the class for whichthey are complete.41.1.4.2 On a few speci�c choicesOur technical presentation often di�ers from the standard one. In many casesthis is due to conceptual considerations. At times, this leads to some technicalsimpli�cations. In this section we only discuss general themes and/or choices thathave a global impact on much of the presentation.Avoiding non-deterministic machines. We try to avoid non-deterministicmachines as much as possible. As argued in several places (e.g., Section 2.1.4),we believe that these �ctitious \machines" have a negative e�ect both from aconceptual and technical point of view. The conceptual damage caused by usingnon-deterministic machines is that it is unclear why one should care about whatsuch machines can do. Needless to say, the reason to care is clear when noting thatthese �ctitious \machines" o�er a (convenient or rather slothful) way of phrasingfundamental issues. The technical damage caused by using non-deterministic ma-chines is that they tend to confuse the students. Furthermore, they do not o�erthe best way to handle more advanced issues (e.g., counting classes).In contrast, we use search problems as the basis for much of the presentation.Speci�cally, the class PC (see De�nition 2.3), which consists of search problemshaving e�ciently checkable solutions, plays a central role in our presentation. In-deed, de�ning this class is slightly more complicated than the standard de�nitionof NP (based on non-deterministic machines), but the technical bene�ts start ac-cumulating as we proceed. Needless to say, the class PC is a fundamental classof computational problems and this fact is the main motivation to its presenta-tion. (Indeed, the most conceptually appealing phrasing of the P-vs-NP Questionconsists of asking whether every search problem in PC can be solved e�ciently.)Avoiding model-dependent e�ects. Our focus is on the notion of e�cientcomputation. A rigorous de�nition of this notion seems to require reference tosome concrete model of computation; however, all questions and answers considered4We admit that a very natural computational problem can give rise to a class of problems thatare computationally equivalent to it, and that in such a case the class may be less interestingthan the original problem. This is not the case for any of the complexity classes presented inthis book. Still, in some cases (e.g., NP and #P), the historical evolution actually went from aspeci�c computational problem to a class of problems that are computationally equivalent to it.However, in all cases presented in this book, a retrospective evaluation suggests that the class isactually more important than the original problem.



1.1. INTRODUCTION 17in this book are invariant under the choice of such a concrete model, providedof course that the model is \reasonable" (which, needless to say, is a matter ofintuition). Indeed, the foregoing text reects the tension between the need tomake rigorous de�nitions and the desire to be independent of technical choices,which are unavoidable when making such de�nitions. Furthermore, in contrast tocommon beliefs, the foregoing comments refer not only to time-complexity but alsoto space-complexity. However, in both cases, the claim of invariance may not holdfor marginally small resources (e.g., linear-time or sub-logarithmic space).In contrast to the foregoing paragraph, in some cases we choose to be speci�c.The most notorious case is the association of e�ciency with polynomial-time (seex1.2.3.4). Indeed, all the questions and answers regarding e�cient computation canbe phrased without referring to polynomial-time (i.e., by stating explicit functionalrelations between the complexities of the problems involved), but such a generalizedtreatment will be painful to follow.1.1.4.3 On the presentation of technical materialIn general, the more complex the technical material is, the more levels of exposi-tions we employ (starting from the most high-level exposition, and when necessaryproviding more than one level of details). In particular, whenever a proof is notvery simple, we try to present the key ideas �rst, and postpone implementationdetails to later. We also try to clearly indicate the passage from a high-level presen-tation to its implementation details (e.g., by using phrases such as \details follow").In some cases, especially in the case of advanced results, only proof sketches areprovided and the implication is that the reader should be able to �ll-up the missingdetails.Few results are stated without a proof. In some of these cases the proof ideaor a proof overview is provided, but the reader is not expected to be able to �ll-upthe highly non-trivial details. (In these cases, the text clearly indicates this stateof a�airs.) One notable example is the proof of the PCP Theorem (Theorem 9.16).We tried to avoid the presentation of material that, in our opinion, is neitherthe \last word" on the subject nor represents the \right" way of approaching thesubject. Thus, we do not always present the \best" known result.1.1.4.4 Organizational principlesEach of the main chapters starts with a high-level summary and ends with chapternotes and exercises. The latter are not aimed at testing or inspiring creativity, butare rather designed to help and verify the basic understanding of the main text.As stated in the preface, this book focuses on the high-level approach to com-plexity theory and the low-level approach (i.e., lower bounds) is briey reviewed inAppendix B. Other appendices contain material that is closely related to complex-ity theory but is not an integral part of it (e.g., the Foundations of Cryptography).55As further articulated in Section 7.1, we recommend not including a basic treatment of cryp-tography within a course on complexity theory. Indeed, cryptography may be claimed to bethe most appealing application of complexity theory, but a super�cial treatment of cryptography



18 CHAPTER 1. INTRODUCTION AND PRELIMINARIESIn an attempt to keep the bibliographic list from becoming longer than anaverage chapter, we omitted many relevant references. One trick used towards thisend is referring to lists of references in other texts, especially when these texts arecited anyhow. Indeed, our choices of references were biased in favor of textbooksand survey articles, because we believe that they provide the best way to furtherlearn about a research direction and/or approach. We tried, however, not to omitreferences to key papers in an area. In some cases, when we needed a reference fora result of interest and could not resort to the aforementioned trick, we cited alsoless central work.As a matter of policy, we tried to avoid credits in the main text. The fewexceptions are either pointers to texts that provide details that we chose to omitor usage of terms (bearing researchers' names) that are too popular to avoid.Teaching note: The text also includes some teaching notes, which are typeset as thisone. Some of these notes express quite opinionated recommendations and/or justifyvarious expositional choices made in the text.1.1.4.5 Additional notesThe author's guess is that the text will be criticized for lengthy discussions of tech-nically trivial issues. Indeed, most researchers dismiss various conceptual clari�ca-tions as being trivial and devote all their attention to the technically challengingparts of the material. The consequence is students that master the technical ma-terial but are confused about its meaning. In contrast, the author recommendsnot being embarrassed of devoting time to conceptual clari�cations, even if somestudents may view them as obvious.The motivational discussions presented in the text do not necessarily representthe original motivation of the researchers that pioneered a speci�c study and/orcontributed greatly to it. Instead, these discussions provide what the author con-siders to be a good motivation and/or perspective on the corresponding concepts.1.1.5 Standard notations and other conventionsFollowing are some notations and conventions that are freely used in this book.Standard asymptotic notation: When referring to integral functions, we usethe standard asymptotic notation; that is, for f; g : N ! N , we write f = O(g)(resp., f = 
(g)) if there exists a constant c > 0 such that f(n) � c � g(n) (resp.,f(n) � c � g(n)) holds for all n 2 N . We usually denote by \poly" an unspeci�edpolynomial, and write f(n) = poly(n) instead of \there exists a polynomial p suchthat f(n) � p(n) for all n 2 N ." We also use the notation f = eO(g) that meanf(n) = poly(logn) � g(n), and f = o(g) (resp., f = !(g)) that mean f(n) < c � g(n)(resp., f(n) > c � g(n)) for every constant c > 0 and all su�ciently large n.(from this perspective) is likely to be misleading and cause more harm than good.



1.2. COMPUTATIONAL TASKS AND MODELS 19Integrality issues: Typically, we ignore integrality issues. This means that wemay assume that log2 n is an integer rather than using a more cumbersome form asblog2 nc. Likewise, we may assume that various equalities are satis�ed by integers(e.g., 2n = mm), even when this cannot possibly be the case (e.g., 2n = 3m). Inall these cases, one should consider integers that approximately satisfy the relevantequations (and deal with the problems that emerge by such approximations, whichwill be ignored in the current text).Standard combinatorial and graph theory terms and notation: For anyset S, we denote by 2S the set of all subsets of S (i.e., 2S = fS0 : S0 � Sg). Fora natural number n 2 N , we denote [n] def= f1; :::; ng. Many of the computationalproblems refer to �nite (undirected) graphs. Such a graph, denoted G = (V;E),consists of a set of vertices, denoted V , and a set of edges, denoted E, which areunordered pairs of vertices. By default, graphs are undirected, whereas directedgraphs consists of vertices and directed edges, where a directed edge is an orderpair of vertices. We also refer to other graph theoretic terms such as connectivity,being acyclic (i.e., having no simple cycles), being a tree (i.e., being connected andacyclic), k-colorability, etc. For further background on graphs and computationalproblems regarding graphs, the reader is referred to Appendix G.1.Typographic conventions: We denote formally de�ned complexity classes bycalligraphic letters (e.g., NP), but we do so only after de�ning these classes. Fur-thermore, when we wish to maintain some ambiguity regarding the speci�c formu-lation of a class of problems we use Roman font (e.g., NP may denote either a classof search problems or a class of decision problems). Likewise, we denote formallyde�ned computational problems by typewriter font (e.g., SAT). In contrast, genericproblems and algorithms will be denoted by italic font.1.2 Computational Tasks and ModelsWe start by introducing the general framework for our discussion of computationaltasks (or problems) This framework refers to the representation of instances andto two types of tasks (i.e., searching for solutions and making decisions). Once thestage is set, we consider two types of models of computation: uniform models thatcorrespond to the intuitive notion of an algorithm, and non-uniform models (e.g.,Boolean circuits) that facilitates a closer look at the way computation progresses.Contents of Section 1.2. The contents of Sections 1.2.1{1.2.3 corresponds to atraditional Computability course, except that it includes a keen interest in universalmachines (see x1.2.3.3), a discussion of the association of e�cient computation withpolynomial-time algorithm (x1.2.3.4), and a de�nition of oracle machines (x1.2.3.5).This material (with the exception of Kolmogorov Complexity) is taken for grantedin the rest of the current book. (We also call the reader's attention to the dis-cussion of generic complexity classes in Section 1.2.5.) In contrast, Section 1.2.4



20 CHAPTER 1. INTRODUCTION AND PRELIMINARIESpresents basic preliminaries regarding non-uniform models of computation (i.e.,various types of Boolean circuits), and these are only used lightly in the rest of thebook. Thus, whereas Sections 1.2.1{1.2.3 (and 1.2.5) are absolute prerequisites forthe rest of this book, Section 1.2.4 is not.Teaching note: The author believes that there is no real need for a semester-longcourse in Computability (i.e., a course that focuses on what can be computed ratherthan on what can be computed e�ciently). Instead, undergraduates should take acourse in Computational Complexity, which should contain the computability aspectsthat serve as a basis for the rest of the course. Speci�cally, the former aspects shouldoccupy at most 25% of the course, and the focus should be on basic complexity issues(captured by P, NP, and NP-completeness) augmented by a selection of some moreadvanced material. Indeed, such a course can be based on Chapters 1 and 2 of thecurrent book (augmented by a selection of some topics from other chapters).1.2.1 RepresentationIn Mathematics and related sciences, it is customary to discuss objects withoutspecifying their representation. This is not possible in the theory of computation,where the representation of objects plays a central role. In a sense, a computationmerely transforms one representation of an object to another representation of thesame object. In particular, a computation designed to solve some problem merelytransforms the problem instance to its solution, where the latter can be though ofas a (possibly partial) representation of the instance. Indeed, the answer to anyfully speci�ed question is implicit in the question itself.Computation refers to objects that are represented in some canonical way, wheresuch canonical representation provides an \explicit" and \full" (but not \overlyredundant") description of the corresponding object. We will consider only �niteobjects like sets, graphs, numbers, and functions (and keep distinguishing thesetypes of objects although, actually, they are all equivalent). (For example, seeAppendix G.1 for a discussion of the representation of graphs.)Strings. We consider �nite objects, each represented by a �nite binary sequence,called a string. For a natural number n, we denote by f0; 1gn the set of all stringsof length n, hereafter referred to as n-bit strings. The set of all strings is denotedf0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn. For x2f0; 1g�, we denote by jxj the lengthof x (i.e., x2f0; 1gjxj), and often denote by xi the ith bit of x (i.e., x = x1x2 � � �xjxj).For x; y 2 f0; 1g�, we denote by xy the string resulting from concatenation of thestrings x and y.At times, we associate f0; 1g��f0; 1g� with f0; 1g�; the reader should merelyconsider an adequate encoding (e.g., the pair (x1 � � �xm; y1 � � � yn)2f0; 1g��f0; 1g�may be encoded by the string x1x1 � � �xmxm01y1 � � � yn 2 f0; 1g�). Likewise, wemay represent sequences of strings (of �xed or varying length) as single strings.When we wish to emphasize that such a sequence (or some other object) is to beconsidered as a single object we use the notation h�i (e.g., \the pair (x; y) is encodedas the string hx; yi").



1.2. COMPUTATIONAL TASKS AND MODELS 21Numbers. Unless stated di�erently, natural numbers will be encoded by theirbinary expansion; that is, the string bn�1 � � � b1b0 2 f0; 1gn encodes the numberPn�1i=0 bi � 2i, where typically we assume that this representation has no leadingzeros (i.e., bn�1 = 1). Rational numbers will be represented as pairs of naturalnumbers. In the rare cases in which one considers real numbers as part of theinput to a computational problem, one actually mean rational approximations ofthese real numbers.Special symbols. We denote the empty string by � (i.e., � 2 f0; 1g� and j�j = 0),and the empty set by ;. It will be convenient to use some special symbols thatare not in f0; 1g�. One such symbol is ?, which typically denotes an indication bysome algorithm that something is wrong.1.2.2 Computational TasksTwo fundamental types of computational tasks are so-called search problems anddecision problems. In both cases, the key notions are the problem's instances andthe problem's speci�cation.1.2.2.1 Search problemsA search problem consists of a speci�cation of a set of valid solutions (possibly anempty one) for each possible instance. That is, given an instance, one is requiredto �nd a corresponding solution (or to determine that no such solution exists).For example, consider the problem in which one is given a system of equationsand is asked to �nd a valid solution. Needless to say, much of computer scienceis concerned with solving various search problems (e.g., �nding shortest paths ina graph, sorting a list of numbers, �nding an occurrence of a given pattern in agiven string, etc). Furthermore, search problems correspond to the daily notionof \solving a problem" (e.g., �nding one's way between two locations), and thus adiscussion of the possibility and complexity of solving search problems correspondsto the natural concerns of most people.In the following de�nition of solving search problems, the potential solver is afunction (which may be thought of as a solving strategy), and the sets of possiblesolutions associated with each of the various instances are \packed" into a singlebinary relation.De�nition 1.1 (solving a search problem): Let R � f0; 1g��f0; 1g� and R(x) def=fy : (x; y) 2 Rg denote the set of solutions for the instance x. A function f :f0; 1g� ! f0; 1g� [ f?g solves the search problem of R if for every x the followingholds: if R(x) 6= ; then f(x) 2 R(x) and otherwise f(x) = ?.Indeed, R = f(x; y) : y2R(x)g, and the solver f is required to �nd a solution (i.e.,given x output y 2 R(x)) whenever one exists (i.e., the set R(x) is not empty). Itis also required that the solver f never outputs a wrong solution (i.e., if R(x) 6= ;



22 CHAPTER 1. INTRODUCTION AND PRELIMINARIESthen f(x) 2 R(x) and if R(x) = ; then f(x) = ?), which in turn means that findicates whether x has any solution.A special case of interest is the case of search problems having a unique solution(for each possible instance); that is, the case that jR(x)j = 1 for every x. In thiscase, R is essentially a (total) function, and solving the search problem of R meanscomputing (or evaluating) the function R (or rather the function R0 de�ned byR0(x) def= y where R(x) = fyg). Popular examples include sorting a sequenceof numbers, multiplying integers, �nding the prime factorization of a compositenumber, etc.1.2.2.2 Decision problemsA decision problem consists of a speci�cation of a subset of the possible instances.Given an instance, one is required to determine whether the instance is in thespeci�ed set (e.g., the set of prime numbers, the set of connected graphs, or theset of sorted sequences). For example, consider the problem where one is given anatural number, and is asked to determine whether or not the number is a prime.One important case, which corresponds to the aforementioned search problems, isthe case of the set of instances having a solution; that is, for any binary relationR � f0; 1g� � f0; 1g� we consider the set fx : R(x) 6= ;g. Indeed, being ableto determine whether or not a solution exists is a prerequisite to being able tosolve the corresponding search problem (as per De�nition 1.1). In general, decisionproblems refer to the natural task of making binary decision, a task that is notuncommon in daily life (e.g., determining whether a tra�c light is red). In anycase, in the following de�nition of solving decision problems, the potential solveris again a function (i.e., in this case it is a Boolean function that is supposed toindicate membership in the said set).De�nition 1.2 (solving a decision problem): Let S � f0; 1g�. A function f :f0; 1g� ! f0; 1g solves the decision problem of S (or decides membership in S) if forevery x it holds that f(x) = 1 if and only if x 2 S.We often identify the decision problem of S with S itself, and identify S with itscharacteristic function (i.e., with �S : f0; 1g� ! f0; 1g de�ned such that �S(x) = 1if and only if x 2 S). Note that if f solves the search problem of R then theBoolean function f 0 : f0; 1g� ! f0; 1g de�ned by f 0(x) def= 1 if and only if f(x) 6= ?solves the decision problem of fx : R(x) 6= ;g.Most people would consider search problems to be more natural than decisionproblems: typically, people seeks solutions more than they stop to wonder whetheror not solutions exist. De�nitely, search problems are not less important thandecision problems, it is merely that their study tends to require more cumbersomeformulations. This is the main reason that most expositions choose to focus ondecision problems. The current book attempts to devote at least a signi�cantamount of attention also to search problems.



1.2. COMPUTATIONAL TASKS AND MODELS 231.2.2.3 Promise problems (an advanced comment)Many natural search and decision problems are captured more naturally by theterminology of promise problems, where the domain of possible instances is a subsetof f0; 1g� rather than f0; 1g� itself. In particular, note that the natural formulationof many search and decision problems refers to instances of a certain types (e.g., asystem of equations, a pair of numbers, a graph), whereas the natural representationof these objects uses only a strict subset of f0; 1g�. For the time being, we ignorethis issue, but we shall re-visit it in Section 2.4.1. Here we just note that, in typicalcases, the issue can be ignored by postulating that every string represents somelegitimate object (i.e., each string that is not used in the natural representation ofthese objects is postulated as a representation of some �xed object).1.2.3 Uniform Models (Algorithms)We are all familiar with computers and with the ability of computer programsto manipulate data. This familiarity seems to be rooted in the positive side ofcomputing; that is, we have some experience regarding some things that computerscan do. In contrast, complexity theory is focused at what computers cannot do, orrather with drawing the line between what can be done and what cannot be done.Drawing such a line requires a precise formulation of all possible computationalprocesses; that is, we should have a clear model of all possible computationalprocesses (rather than some familiarity with some computational processes).Before being formal, let we o�er a general and abstract description, whichis aimed at capturing any arti�cial as well as natural process. Indeed, arti�cialprocesses will be associated with computers, whereas by natural processes we mean(attempts to model) the \mechanical" aspects the natural reality (be it physical,biological, or even social).A computation is a process that modi�es an environment via repeated applica-tions of a predetermined rule. The key restriction is that this rule is simple: in eachapplication it depends and a�ects only a (small) portion of the environment, calledthe active zone. We contrast the a-priori bounded size of the active zone (and ofthe modi�cation rule) with the a-priori unbounded size of the entire environment.We note that, although each application of the rule has a very limited e�ect, thee�ect of many applications of the rule may be very complex. Put in other words, acomputation may modify the relevant environment in a very complex way, althoughit is merely a process of repeatedly applying a simple rule.As hinted, the notion of computation can be used to model the \mechanical"aspects of the natural reality; that is, the rules that determine the evolution ofthe reality (rather than the speci�cs of reality itself). In this case, the evolutionprocess that takes place in the natural reality is the starting point of the study, andthe goal of the study is �nding the (computation) rule that underlies this naturalprocess. In a sense, the goal of Science at large can be phrased as �nding (simple)rules that govern various aspects of reality (or rather one's abstraction of theseaspects of reality).Our focus, however, is on arti�cial computation rules designed by humans in



24 CHAPTER 1. INTRODUCTION AND PRELIMINARIESorder to achieve speci�c desired e�ects on a corresponding arti�cial environment.Thus, our starting point is a desired functionality, and our aim is to design compu-tation rules that e�ect it. Such a computation rule is referred to as an algorithm.Loosely speaking, an algorithm corresponds to a computer program written in ahigh-level (abstract) programming language. Let us elaborate.We are interested in the transformation of the environment a�ected by thecomputational process (or the algorithm). Throughout (most of) this book, wewill assume that, when invoked on any �nite initial environment, the computationhalts after a �nite number of steps. Typically, the initial environment to whichthe computation is applied encodes an input string, and the end environment (i.e.,at termination of the computation) encodes an output string. We consider themapping from inputs to outputs induced by the computation; that is, for eachpossible input x, we consider the output y obtained at the end of a computationinitiated with input x, and say that the computation maps input x to output y.Thus, a computation rule (or an algorithm) determines a function (computed byit): this function is exactly the aforementioned mapping of inputs to outputs.In the rest of this book (i.e., outside the current chapter), we will also considerthe number of steps (i.e., applications of the rule) taken by the computation oneach possible input. The latter function is called the time complexity of the com-putational process (or algorithm). While time complexity is de�ned per input, wewill often considers it per input length, taking the maximum over all inputs of thesame length.In order to de�ne computation (and computation time) rigorously, one needsto specify some model of computation; that is, provide a concrete de�nition ofenvironments and a class of rules that may be applied to them. Such a modelcorresponds to an abstraction of a real computer (be it a PC, mainframe or net-work of computers). One simple abstract model that is commonly used is that ofTuring machines (see, x1.2.3.1). Thus, speci�c algorithms are typically formalizedby corresponding Turing machines (and their time complexity is represented by thetime complexity of the corresponding Turing machines). We stress, however, thatmost results in the Theory of Computation hold regardless of the speci�c compu-tational model used, as long as it is \reasonable" (i.e., satis�es the aforementionedsimplicity condition and can perform some obviously simple computations).What is being computed? The forgoing discussion has implicitly referred toalgorithms (i.e., computational processes) as means of computing functions. Specif-ically, an algorithm A computes the function fA : f0; 1g� ! f0; 1g� de�ned byfA(x)=y if, when invoked on input x, algorithm A halts with output y. However,algorithms can also serve as means of \solving search problems" or \making de-cisions" (as in De�nitions 1.1 and 1.2). Speci�cally, we will say that algorithm Asolves the search problem of R (resp., decides membership in S) if fA solves thesearch problem of R (resp., decides membership in S). In the rest of this expositionwe associate the algorithm A with the function fA computed by it; that is, we writeA(x) instead of fA(x). For sake of future reference, we summarize the foregoingdiscussion.



1.2. COMPUTATIONAL TASKS AND MODELS 25De�nition 1.3 (algorithms as problem-solvers): We denote by A(x) the outputof algorithm A on input x. Algorithm A solves the search problem R (resp., thedecision problem S) if A, viewed as a function, solves R (resp., S).Organization of the rest of Section 1.2.3. In x1.2.3.1 we provide a sketchydescription of the model of Turing machines. This is done merely for sake of pro-viding a concrete model that supports the study of computation and its complexity,whereas most of the material in this book will not depend on the speci�cs of thismodel. In x1.2.3.2 and x1.2.3.2 we discuss two fundamental properties of any rea-sonable model of computation: the existence of uncomputable functions and theexistence of universal computations. The time (and space) complexity of compu-tation is de�ned in x1.2.3.4. We also discuss oracle machines and restricted modelsof computation (in x1.2.3.5 and x1.2.3.6, respectively).1.2.3.1 Turing machinesThe model of Turing machines o�er a relatively simple formulation of the notionof an algorithm. The fact that the model is very simple complicates the design ofmachines that solve problems of interest, but makes the analysis of such machinessimpler. Since the focus of complexity theory is on the analysis of machines and noton their design, the trade-o� o�ers by this model is suitable for our purposes. Westress again that the model is merely used as a concrete formulation of the intuitivenotion of an algorithm, whereas we actually care about the intuitive notion andnot about its formulation. In particular, all results mentioned in this book hold forany other \reasonable" formulation of the notion of an algorithm.The model of Turing machines is not meant to provide an accurate (or \tight")model of real-life computers, but rather to capture their inherent limitations andabilities (i.e., a computational task can be solved by a real-life computer if and onlyif it can be solved by a Turing machine). In comparison to real-life computers, themodel of Turing machines is extremely over-simpli�ed and abstract away manyissues that are of great concern to computer practice. However, these issues areirrelevant to the higher-level questions addressed by complexity theory. Indeed, asusual, good practice requires more re�ned understanding than the one provided bya good theory, but one should �rst provide the latter.Historically, the model of Turing machines was invented before modern com-puters were even built, and was meant to provide a concrete model of computationand a de�nition of computable functions.6 Indeed, this concrete model clari�edfundamental properties of computable functions and plays a key role in de�ningthe complexity of computable functions.The model of Turing machines was envisioned as an abstraction of the processof an algebraic computation carried out by a human using a sheet of paper. Insuch a process, at each time, the human looks at some location on the paper, anddepending on what he/she sees and what he/she has in mind (which is little...),6In contrast, the abstract de�nition of \recursive functions" yields a class of \computable"functions de�ned recursively in terms of the composition of such functions.



26 CHAPTER 1. INTRODUCTION AND PRELIMINARIEShe/she modi�es the contents of this location and shifts his/her look to an adjacentlocation.The actual model. Following is a high-level description of the model of Turingmachines; the interested reader is referred to standard textbooks (e.g., [198]) forfurther details. Recall that we need to specify the set of possible environments, theset of machines (or computation rules), and the e�ect of applying such a rule onan environment.� The main component in the environment of a Turing machine is an in�nitesequence of cells, each capable of holding a single symbol (i.e., member ofa �nite set � � f0; 1g). In addition, the environment contains the currentlocation of the machine on this sequence, and the internal state of the machine(which is a member of a �nite set Q). The aforementioned sequence of cellsis called the tape, and its contents combined with the machine's location andits internal state is called the instantaneous con�guration of the machine.� The Turing machine itself consists of a �nite rule (i.e., a �nite function), calledthe transition function, which is de�ned over the set of all possible symbol-state pairs. Speci�cally, the transition function is a mapping from ��Q to��Q�f�1; 0;+1g, where f�1;+1; 0g correspond to a movement instruction(which is either \left" or \right" or \stay", respectively). In addition, themachine's description speci�es an initial state and a halting state, and thecomputation of the machine halts when the machine enters its halting state.7We stress that, in contrast to the �nite description of the machine, the tapehas an a priori unbounded length (and is considered, for simplicity, as beingin�nite).� A single computation step of such a Turing machine depends on its currentlocation on the tape, on the contents of the corresponding cell and on the in-ternal state of the machine. Based on the latter two elements, the transitionfunction determines a new symbol-state pair as well as a movement instruc-tion (i.e., \left" or \right" or \stay"). The machine modi�es the contents ofthe said cell and its internal state accordingly, and moves as directed. Thatis, suppose that the machine is in state q and resides in a cell containing thesymbol �, and suppose that the transition function maps (�; q) to (�0; q0; D).Then, the machine modi�es the contents of the said cell to �0, modi�es itsinternal state to q0, and moves one cell in direction D. Figure 1.2 shows asingle step of a Turing machine that, when in state `b' and seeing a binarysymbol �, replaces � with the symbol �+2, maintains its internal state, andmoves one position to the right.87Envisioning the tape as extending from left to right, we also use the convention by which ifthe machine tries to move left of the end of the tape then it is considered to have halted.8Figure 1.2 corresponds to a machine that, when in the initial state (i.e., `a'), replaces thesymbol � by �+4, modi�es its internal state to `b', and moves one position to the right. Indeed,\marking" the leftmost cell (in order to allow for recognizing it in the future), is a commonpractice in the design of Turing machines.



1.2. COMPUTATIONAL TASKS AND MODELS 27Formally, we de�ne the successive con�guration function that maps each in-stantaneous con�guration to the one resulting by letting the machine take asingle step. This function modi�es its argument in a very minor manner, asdescribed in the foregoing; that is, the contents of at most one cell (i.e., atwhich the machine currently resides) is changed, and in addition the internalstate of the machine and its location may change too.
3 32 2 2 0

3 32 2 2 1 0

b

3

b

5

5

- - - - - - - -

----- - - -Figure 1.2: A single step by a Turing machine.The initial environment (or con�guration) of a Turing machine consists of themachine residing in the �rst (i.e., left-most) cell and being in its initial state.Typically, one also mandates that, in the initial con�guration, a pre�x of the tape'scells hold bit values, which concatenated together are considered the input, and therest of the tape's cells hold a special symbol (which in Figure 1.2 is denoted by`-'). Once the machine halts, the output is de�ned as the contents of the cells thatare to the left of its location (at termination time).9 Thus, each machine de�nes afunction mapping inputs to outputs, called the function computed by the machine.Multi-tape Turing machines. We comment that in most expositions, onerefers to the location of the \head of the machine" on the tape (rather than tothe \location of the machine on the tape"). The standard terminology is moreintuitive when extending the basic model, which refers to a single tape, to a modelthat supports a constant number of tapes. In the model of multi-tape machines,each step of the machine depends and e�ects the cells that are at the head locationof the machine on each tape. As we shall see in Chapter 5 (and in x1.2.3.4), theextension of the model to multi-tape Turing machines is crucial to the de�nition ofspace complexity. A less fundamental advantage of the model of multi-tape Turingmachines is that it facilitates the design of machines that compute functions ofinterest.9By an alternative convention, the machine halts while residing in the left-most cell, and theoutput is de�ned as the maximal pre�x of the tape contents that contains only bit values.



28 CHAPTER 1. INTRODUCTION AND PRELIMINARIESTeaching note: We strongly recommend avoiding the standard practice of teachingthe student to program with Turing machines. These exercises seem very painful andpointless. Instead, one should prove that a function can be computed by a Turingmachine if and only if it is computable by a model that is closer to a real-life computer(see the following \sanity check"). For starters, one should prove that a function can becomputed by a single-tape Turing machine if and only if it is computable by a multi-tape(e.g., two-tape) Turing machine.The Church-Turing Thesis: The entire point of the model of Turing machinesis its simplicity. That is, in comparison to more \realistic" models of computation,it is simpler to formulate the model of Turing machines and to analyze machines inthis model. The Church-Turing Thesis asserts that nothing is lost by consideringthe Turing machine model: A function can be computed by some Turing machineif and only if it can be computed by some machine of any other \reasonable andgeneral" model of computation.This is a thesis, rather than a theorem, because it refers to an intuitive notionthat is left unde�ned on purpose (i.e., the notion of a reasonable and general modelof computation). The model should be reasonable in the sense that it should referto computation rules that are \simple" in some intuitive sense. On the other hand,the model should allow to compute functions that intuitively seem computable. Atthe very least the model should allow to emulate Turing machines (i.e., computethe function that given a description of a Turing machine and an instantaneouscon�guration returns the successive con�guration).A philosophical comment. The fact that a thesis is used to link an intuitiveconcept to a formal de�nition is common practice in any science (or, more broadly,in any attempt to reason rigorously about intuitive concepts). The moment anintuition is rigorously de�ned, it stops being an intuition and becomes a de�nition,and the question of the correspondence between the original intuition and thederived de�nition arises. This question can never be rigorously treated, becauseit relates to two objects, where one of them is unde�ned. Thus, the questionof correspondence between the intuition and the de�nition always transcends arigorous treatment (i.e., it always belongs to the domain of the intuition).A sanity check: Turing machines can emulate an abstract RAM. To gaincon�dence in the Church-Turing Thesis, one may attempt to de�ne an abstractRandom-Access Machine (RAM), and verify that it can be emulated by a Turingmachine. An abstract RAM consists of an in�nite number of memory cells, eachcapable of holding an integer, a �nite number of similar registers, one designatedas program counter, and a program consisting of instructions selected from a �niteset. The set of possible instructions includes the following instructions:� reset(r), where r is an index of a register, results in setting the value ofregister r to zero.� inc(r), where r is an index of a register, results in incrementing the contentof register r. Similarly dec(r) causes a decrement.



1.2. COMPUTATIONAL TASKS AND MODELS 29� load(r1; r2), where r1 and r2 are indices of registers, results in loading toregister r1 the contents of the memory location m, where m is the currentcontents of register r2.� store(r1; r2), stores the contents of register r1 in the memory, analogouslyto load.� cond-goto(r; `), where r is an index of a register and ` does not exceed theprogram length, results in setting the program counter to `� 1 if the contentof register r is non-negative.The program counter is incremented after the execution of each instruction, andthe next instruction to be executed by the machine is the one to which the programcounter points (and the machine halts if the program counter exceeds the program'slength). The input to the machine may be de�ned as the contents of the �rst nmemory cells, where n is placed in a special input register. We note that the RAMmodel satis�es the Church-Turing Thesis, but in order to make it closer to real-life computers we may augment the model with additional instructions that areavailable on such computers (e.g., the instruction add(r1; r2) (resp., mult(r1; r2))that results in adding (resp., multiplying) the contents of registers r1 and r2 andplacing the result in register r1). We suggest proving that this abstract RAM canbe emulated by a Turing machine.10 (Hint: note that during the emulation, weonly need to hold the input, the contents of all registers, and the contents of thememory cells that were accessed during the computation.)11Observe that the abstract RAM model is signi�cantly more cumbersome thanthe Turing machine model. Furthermore, seeking a sound choice of the instruc-tion set (i.e., the instructions to be allowed in the model) creates a vicious cycle(because the sound guideline would have been to allow only instructions that corre-spond to \simple" operations, whereas the latter correspond to easily computablefunctions...). This vicious cycle was avoided by trusting the reader to consider onlyinstructions that are available in some real-life computer. (We comment that thisempirical consideration is justi�able in the current context, because our currentgoal is merely linking the Turing machine model with the reader's experience ofreal-life computers.)1.2.3.2 Uncomputable functionsStrictly speaking, the current subsection is not necessary for the rest of this book,but we feel that it provides a useful perspective.10We emphasize this direction of the equivalence of the two models, because the RAM model isintroduced in order to convince the reader that Turing machines are not too weak (as a model ofgeneral computation). The fact that they are not too strong seems self-evident. Thus, it seemspointless to prove that the RAM model can emulate Turing machines. Still, note that this isindeed the case, by using the RAM's memory cells to store the contents of the cells of the Turingmachine's tape.11Thus, at each time, the Turning machine's tape contains a list of the RAM's memory cellsthat were accessed so far as well as their current contents. When we emulate a RAM instruction,we �rst check whether the relevant RAM cell appears on this list, and augment the list by acorresponding entry or modify this entry as needed.



30 CHAPTER 1. INTRODUCTION AND PRELIMINARIESIn contrast to what every layman would think, we know that not all functionsare computable. Indeed, an important message to be communicated to the worldis that not every well-de�ned task can be solved by applying a \reasonable" pro-cedure (i.e., a procedure that has a simple description that can be applied to anyinstance of the problem at hand). Furthermore, not only is it the case that thereexist uncomputable functions, but it is rather the case that most functions areuncomputable. In fact, only relatively few functions are computable.Theorem 1.4 (on the scarcity of computable functions): The set of computablefunctions is countable, whereas the set of all functions (from strings to string) hascardinality @.We stress that the theorem holds for any reasonable model of computation. Infact, it only relies on the postulate that each machine in the model has a �nitedescription (i.e., can be described by a string).Proof: Since each computable function is computable by a machine that hasa �nite description, there is a 1-1 correspondence between the set of computablefunctions and the set of strings (which in turn is in 1-1 correspondence to thenatural numbers). On the other hand, there is a 1-1 correspondence between theset of Boolean functions (i.e., functions from strings to a bit) and the set of realnumber in [0; 1). This correspondence associates each real r 2 [0; 1) to the functionf : N ! f0; 1g such that f(i) is the ith bit in the binary expansion of r.The Halting Problem: In contrast to the preliminary discussion, at this pointwe consider also machines that may not halt on some inputs. (The functionscomputed by such machines are partial functions that are de�ned only on inputson which the machine halts.) Again, we rely on the postulate that each machinein the model has a �nite description, and denote the description of machine M byhMi 2 f0; 1g�. The halting function, h : f0; 1g� � f0; 1g� ! f0; 1g, is de�ned suchthat h(hMi; x) def= 1 if and only if M halts on input x. The following result goesbeyond Theorem 1.4 by pointing to an explicit function (of natural interest) thatis not computable.Theorem 1.5 (undecidability of the halting problem): The halting function is notcomputable.The term undecidability means that the corresponding decision problem cannot besolved by an algorithm. That is, Theorem 1.5 asserts that the decision problemassociated with the set h�1(1) = f(hMi; x) : h(hMi; x) = 1g is not solvable byan algorithm (i.e., there exists no algorithm that, given a pair (hMi; x), decideswhether or notM halts on input x). Actually, the following proof shows that thereexists no algorithm that, given hMi, decides whether or notM halts on input hMi.Proof: We will show that even the restriction of h to its \diagonal" (i.e., thefunction d(hMi) def= h(hMi; hMi)) is not computable. Note that the value of d(hMi)refers to the question of what happens when we feed M with its own description,



1.2. COMPUTATIONAL TASKS AND MODELS 31which is indeed a \nasty" (but legitimate) thing to do. We will actually do worse:towards the contradiction, we will consider the value of d when evaluated at a(machine that is related to a) machine that supposedly computes d.We start by considering a related function, d0, and showing that this functionis uncomputable. This function is de�ned on purpose so to foil any attempt tocompute it; that is, for every machine M , the value d0(hMi) is de�ned to di�erfrom M(hMi). Speci�cally, the function d0 : f0; 1g� ! f0; 1g is de�ned suchthat d0(hMi) def= 1 if and only if M halts on input hMi with output 0. (That is,d0(hMi) = 0 if either M does not halt on input hMi or its output does not equalthe value 0.) Now, suppose, towards the contradiction, that d0 is computable bysome machine, denoted Md0 . Note that machine Md0 is supposed to halt on everyinput, and so Md0 halts on input hMd0i. But, by de�nition of d0, it holds thatd0(hMd0i) = 1 if and only if Md0 halts on input hMd0i with output 0 (i.e., if andonly if Md0(hMd0i) = 0). Thus, Md0(hMd0i) 6= d0(hMd0i) in contradiction to thehypothesis that Md0 computes d0.We next prove that d is uncomputable, and thus h is uncomputable (becaused(z) = h(z; z) for every z). To prove that d is uncomputable, we show that if d iscomputable then so is d0 (which we already know not to be the case). Indeed, letA be an algorithm for computing d (i.e., A(hMi) = d(hMi) for every machine M).Then we construct an algorithm for computing d0, which given hM 0i, invokes A onhM 00i, where M 00 is de�ned to operate as follows:1. On input x, machine M 00 emulates M 0 on input x.2. If M 0 halts on input x with output 0 then M 00 halts.3. If M 0 halts on input x with an output di�erent from 0 then M 00 enters anin�nite loop (and thus does not halt).4. Otherwise (i.e., M 0 does not halt on input x), then machine M 00 does nothalt (because it just stays stuck in Step 1 forever).Note that the mapping from hM 0i to hM 00i is easily computable (by augmentingM 0 with instructions to test its output and enter an in�nite loop if necessary), andthat d(hM 00i) = d0(hM 0i), because M 00 halts on x if and only if M 00 halts on x withoutput 0. We thus derived an algorithm for computing d0 (i.e., transform the inputhM 0i into hM 00i and output A(hM 00i)), which contradicts the already establishedfact by which d0 is uncomputable.Turing-reductions. The core of the second part of the proof of Theorem 1.5 isan algorithm that solves one problem (i.e., computes d0) by using as a subroutinean algorithm that solves another problem (i.e., computes d (or h)). In fact, the�rst algorithm is actually an algorithmic scheme that refers to a \functionally spec-i�ed" subroutine rather than to an actual (implementation of such a) subroutine,which may not exist. Such an algorithmic scheme is called a Turing-reduction (seeformulation in x1.2.3.5). Hence, we have Turing-reduced the computation of d0 tothe computation of d, which in turn Turing-reduces to h. The \natural" (\posi-tive") meaning of a Turing-reduction of f 0 to f is that when given an algorithm for



32 CHAPTER 1. INTRODUCTION AND PRELIMINARIEScomputing f we obtain an algorithm for computing f 0. In contrast, the proof ofTheorem 1.5 uses the \unnatural" (\negative") counter-positive: if (as we know)there exists no algorithm for computing f 0 = d0 then there exists no algorithm forcomputing f = d (which is what we wanted to prove). Jumping ahead, we mentionthat resource-bounded Turing-reductions (e.g., polynomial-time reductions) play acentral role in complexity theory itself, and again they are used mostly in a \nega-tive" way. We will de�ne such reductions and extensively use them in subsequentchapters.Rice's Theorem. The undecidability of the halting problem (or rather the factthat the function d is uncomputable) is a special case of a more general phe-nomenon: Every non-trivial decision problem regarding the function computed bya given Turing machine has no algorithmic solution. We state this fact next, clar-ifying what is the aforementioned class of problems. (Again, we refer to Turingmachines that may not halt on all inputs.)Theorem 1.6 (Rice's Theorem): Let F be a non-trivial subset12 of the set of allcomputable partial functions, and let SF be the set of strings that describe machinesthat compute functions in F . Then deciding membership in SF cannot be solved byan algorithm.Theorem 1.6 can be proved by a Turing-reduction from d. We do not providea proof because this is too remote from the main subject matter of the book.We stress that Theorems 1.5 and 1.6 hold for any reasonable model of computation(referring both to the potential solvers and to the machines the description of whichis given as input to these solvers). Thus, Theorem 1.6 means that no algorithm candetermine any non-trivial property of the function computed by a given computerprogram (written in any programming language). For example, no algorithm candetermine whether or not a given computer program halts on each possible input.The relevance of this assertion to the project of program veri�cation is obvious.The Post Correspondence Problem. We mention that undecidability arisesalso outside of the domain of questions regarding computing devices (given asinput). Speci�cally, we consider the Post Correspondence Problem in which theinput consists of two sequences of strings, (�1; :::; �k) and (�1; :::; �k), and thequestion is whether or not there exists a sequence of indices i1; :::; i` 2 f1; :::; kgsuch that �i1 � � ��i` = �i1 � � ��i` . (We stress that the length of this sequence is notbounded.)13Theorem 1.7 The Post Correspondence Problem is undecidable.12The set S is called a non-trivial subset of U if both S and U n S are non-empty. Clearly, if Fis a trivial set of computable functions then the corresponding decision problem can be solved bya \trivial" algorithm that outputs the corresponding constant bit.13In contrast, the existence of an adequate sequence of a speci�ed length can be determined intime that is exponential in this length.



1.2. COMPUTATIONAL TASKS AND MODELS 33Again, the omitted proof is by a Turing-reduction from d (or h).141.2.3.3 Universal algorithmsSo far we have used the postulate that, in any reasonable model of computation,each machine (or computation rule) has a �nite description. Furthermore, wealso used the fact that such model should allow for the easy modi�cation of suchdescriptions such that the resulting machine computes an easily related function(see the proof of Theorem 1.5). Here we go one step further and postulate that thedescription of machines (in this model) is \e�ective" in the following natural sense:there exists an algorithm that, given a description of a machine (resp., computationrule) and a corresponding environment, determines the environment that resultsfrom performing a single step of this machine on this environment (resp. the e�ectof a single application of the computation rule). This algorithm can, in turn, beimplemented in the said model of computation (assuming this model is general; seethe Church-Turing Thesis). Successive applications of this algorithm leads to thenotion of a universal machine, which (for concreteness) is formulated next in termsof Turing machines.De�nition 1.8 (universal machines): A universal Turing machine is a Turing ma-chine that on input a description of a machine M and an input x returns the valueof M(x) if M halts on x and otherwise does not halt.That is, a universal Turing machine computes the partial function u that is de�nedover pairs (hMi; x) such that M halts on input x, in which case it holds thatu(hMi; x) = M(x). We note that if M halts on all possible inputs then u(hMi; x)is de�ned for every x. We stress that the mere fact that we have de�ned somethingdoes not mean that it exists. Yet, as hinted in the foregoing discussion and obviousto anyone who has written a computer program (and thought about what he/shewas doing), universal Turing machines do exist.Theorem 1.9 There exists a universal Turing machine.Theorem 1.9 asserts that the partial function u is computable. In contrast, it canbe shown that any extension of u to a total function is uncomputable. That is, forany total function û that agrees with the partial function u on all the inputs onwhich the latter is de�ned, it holds that û is uncomputable.15Proof: Given a pair (hMi; x), we just emulate the computation of machine Mon input x. This emulation is straightforward, because (by the e�ectiveness of the14We mention that the reduction maps an instance (hMi; x) of h to a pair of sequences suchthat only the �rst string in each sequence depends on x, whereas the other strings as well as theirnumber depend only on M .15The claim is easy to prove for the total function û that extends u and assigns the specialsymbol ? to inputs on which u is unde�ned (i.e., û(hMi; x) def= ? if u is not de�ned on (hMi; x)and û(hMi; x) def= u(hMi; x) otherwise). In this case h(hMi; x) = 1 if and only if û(hMi; x) 6= ?,and so the halting function h is Turing-reducible to û. In the general case, we may adapt theproof of Theorem 1.5 by using the fact that, for a machine M that halts on every input, it holdsthat û(hMi; x) = u(hMi; x) for every x (and in particular for x = hMi).



34 CHAPTER 1. INTRODUCTION AND PRELIMINARIESdescription ofM) we can iteratively determine the next instantaneous con�gurationof the computation of M on input x. If the said computation halts then we willobtain its output and can output it (and so, on input (hMi; x), our algorithmreturns M(x)). Otherwise, we turn out emulating an in�nite computation, whichmeans that our algorithm does not halt on input (hMi; x). Thus, the foregoingemulation procedure constitutes a universal machine (i.e., yields an algorithm forcomputing u).As hinted already, the existence of universal machines is the fundamental factunderlying the paradigm of general-purpose computers. Indeed, a speci�c Turingmachine (or algorithm) is a device that solves a speci�c problem. A priori, solvingeach problem would have required building a new physical device that allows for thisproblem to be solved in the physical world (rather than as a thought experiment).The existence of a universal machine asserts that it is enough to build one physicaldevice; that is, a general purpose computer. Any speci�c problem can then besolved by writing a corresponding program to be executed (or emulated) by thegeneral purpose computer. Thus, universal machines correspond to general purposecomputers, and provide the basis for separating hardware from software. In otherwords, the existence of universal machines says that software can be viewed as(part of the) input.In addition to their practical importance, the existence of universal machines(and their variants) has important consequences in the theories of computabilityand computational complexity. Here we merely note that Theorem 1.9 implies thatmany questions about the behavior of a universal machine on certain input types areundecidable. For example, it follows that, for some �xed machines (i.e., universalones), there is no algorithm that determines whether or not the (�xed) machinehalts on a given input. Revisiting the proof of Theorem 1.7 (see Footnote 14),it follows that the Post Correspondence Problem remains undecidable even if theinput sequences are restricted to have a speci�c length (i.e., k is �xed). A moreimportant application of universal machines to the theory of computability follows.A detour: Kolmogorov Complexity. The existence of universal machines,which may be viewed as universal languages for writing e�ective and succinctdescriptions of objects, plays a central role in Kolmogorov Complexity. Looselyspeaking, the latter theory is concerned with the length of (e�ective) descriptionsof objects, and views the minimum such length as the inherent \complexity" of theobject; that is, \simple" objects (or phenomena) are those having short description(resp., short explanation), whereas \complex" objects have no short description.Needless to say, these (e�ective) descriptions have to refer to some �xed \language"(i.e., to a �xed machine that, given a succinct description of an object, producesits explicit description). Fixing any machine M , a string x is called a descriptionof s with respect to M if M(x) = s. The complexity of s with respect to M , de-noted KM (s), is the length of the shortest description of s with respect to M .Certainly, we want to �x M such that every string has a description with respectto M , and furthermore such that this description is not \signi�cantly" longer than



1.2. COMPUTATIONAL TASKS AND MODELS 35the description with respect to a di�erent machine M 0. The following theoremmake it natural to use a universal machine as the \point of reference" (i.e., as theaforementioned M).Theorem 1.10 (complexity w.r.t a universal machine): Let U be a universal ma-chine. Then, for every machine M 0, there exists a constant c such that KU (s) �KM 0(s) + c for every string s.The theorem follows by (setting c = O(jhM 0ij) and) observing that if x is a de-scription of s with respect to M 0 then (hM 0i; x) is a description of s with respectto U . Here it is important to use an adequate encoding of pairs of strings (e.g.,the pair (�1 � � ��k ; �1 � � � �`) is encoded by the string �1�1 � � ��k�k01�1 � � � �`). Fix-ing any universal machine U , we de�ne the Kolmogorov Complexity of a string s asK(s) def= KU (s). The reader may easily verify the following facts:1. K(s) � jsj+O(1), for every s.(Hint: apply Theorem 1.10 to a machine that computes the identity map-ping.)2. There exist in�nitely many strings s such that K(s)� jsj.(Hint: consider s = 1n. Alternatively, consider any machine M such thatjM(x)j � jxj for every x.)3. Some strings of length n have complexity at least n. Furthermore, for everyn and i, jfs 2 f0; 1gn : K(s) � n� igj < 2n�i+1(Hint: di�erent strings must have di�erent descriptions with respect to U .)It can be shown that the function K is uncomputable. The proof is related to theparadox captured by the following \description" of a natural number: the largestnatural number that can be described by an English sentence of up-to athousand letters. (The paradox amounts to observing that if the above num-ber is well-de�ned then so is the integer-successor of the largest naturalnumber that can be described by an English sentence of up-to a thousandletters.) Needless to say, the foregoing sentences presuppose that any English sen-tence is a legitimate description in some adequate sense (e.g., in the sense capturedby Kolmogorov Complexity). Speci�cally, the foregoing sentences presuppose thatwe can determine the Kolmogorov Complexity of each natural number, and fur-thermore that we can e�ectively produce the largest number that has KolmogorovComplexity not exceeding some threshold. Indeed, the paradox provides a proofto the fact that the latter task cannot be performed; that is, there exists no algo-rithm that given t produces the lexicographically last string s such that K(s) � t,because if such an algorithm A would have existed then K(s) � O(jhAij) + log tand K(s0) < K(s) +O(1) < t in contradiction to the de�nition of s.



36 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.2.3.4 Time and space complexityFixing a model of computation (e.g., Turing machines) and focusing on algorithmsthat halt on each input, we consider the number of steps (i.e., applications ofthe computation rule) taken by the algorithm on each possible input. The latterfunction is called the time complexity of the algorithm (or machine); that is, tA :f0; 1g� ! N is called the time complexity of algorithm A if, for every x, on inputx algorithm A halts after exactly tA(x) steps.We will be mostly interested in the dependence of the time complexity on theinput length, when taking the maximum over all inputs of the relevant length.That is, for tA as above, we will consider TA : N ! N de�ned by TA(n) def=maxx2f0;1gnftA(x)g. Abusing terminology, we sometimes refer to TA as the timecomplexity of A.The time complexity of a problem. As stated in the preface and in the intro-duction, typically is complexity theory not concerned with the (time) complexityof a speci�c algorithm. It is rather concerned with the (time) complexity of aproblem, assuming that this problem is solvable at all (by some algorithm). Intu-itively, the time complexity of such a problem is de�ned as the time complexityof the fastest algorithm that solves this problem (assuming that the latter term iswell-de�ned).16 Actually, we shall be interested in upper and lower bounds on the(time) complexity of algorithms that solve the problem. However, the complexityof a problem may depend on the speci�c model of computation in which algorithmsthat solve it are implemented. The following Cobham-Edmonds Thesis asserts thatthe variation (in the time complexity) is not too big, and in particular is irrelevantto much of the current focus of complexity theory (e.g., for the P-vs-NP Question).The Cobham-Edmonds Thesis. As just stated, the time complexity of a prob-lem may depend on the model of computation. For example, deciding membershipin the set fxx : x 2 f0; 1g�g can be done in linear-time on a two-tape Turing ma-chine, but requires quadratic-time on a single-tape Turing machine.17 On the otherhand, any problem that has time complexity t in the model of multi-tape Turingmachines, has complexity O(t2) in the model of single-tape Turing machines. TheCobham-Edmonds Thesis asserts that the time complexities in any two \reasonableand general" models of computation are polynomially related. That is, a problem16Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assump-tion that a \fastest algorithm" for solving a problem exists is not always justi�ed. On the otherhand, the assumption is essentially justi�ed in some important cases (see, e.g., Theorem 2.31).But even in these case the said algorithm is \fastest" (or \optimal") only up to a constant factor.17Proving the latter fact is quite non-trivial. One proof is by a \reduction" from a communica-tion complexity problem [141, Sec. 12.2]. Intuitively, a single-tape Turing machine that decidesmembership in the aforementioned set can be viewed as a channel of communication between thetwo parts of the input. Focusing our attention on inputs of the form y0nz0n, for y; z 2 f0; 1gn,each time the machine passes from the �rst part to the second part it carries O(1) bits of infor-mation (in its internal state) while making at least n steps. The proof is completed by invokingthe linear lower bound on the communication complexity of the (two-argument) identity function(i.e, id(y; z) = 1 if y = z and id(y; z) = 0 otherwise, cf. [141, Chap. 1]).



1.2. COMPUTATIONAL TASKS AND MODELS 37has time complexity t in some \reasonable and general" model of computation ifand only if it has time complexity poly(t) in the model of (single-tape) Turingmachines.Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis.It asserts not only that the class of solvable problems is invariant as far as \rea-sonable and general" models of computation are concerned, but also that the timecomplexity (of the solvable problems) in such models is polynomially related.E�cient algorithms. As hinted in the foregoing discussions, much of complexitytheory is concerned with e�cient algorithms. The latter are de�ned as polynomial-time algorithms (i.e., algorithms that have a time complexity that is bounded bya polynomial in the length of the input). By the Cobham-Edmonds Thesis, thechoice of a \reasonable and general" model of computation is irrelevant to thede�nition of this class. The association of e�cient algorithms with polynomial-time computation is grounded in the following two considerations:� Philosophical consideration: Intuitively, e�cient algorithms are those thatcan be implemented within a number of steps that is a moderately growingfunction of the input length. To allow for reading the entire input, at leastlinear time complexity should be allowed, whereas exponential time (as in\exhaustive search") must be avoided. Furthermore, a good de�nition ofthe class of e�cient algorithms should be closed under natural compositionof algorithms (as well as be robust with respect to reasonable models ofcomputation and with respect to simple changes in the encoding of problems'instances).Selecting polynomials as the set of time-bounds for e�cient algorithms sat-isfy all the foregoing requirements: polynomials constitute a \closed" set ofmoderately growing functions, where \closure" means closure under addition,multiplication and functional composition. These closure properties guaran-tee the closure of the class of e�cient algorithm under natural compositionof algorithms (as well as its robustness with respect to any reasonable andgeneral model of computation). Furthermore, polynomial-time algorithmscan conduct computations that are intuitively simple (although not necessar-ily trivial), and on the other hand they do not include algorithms that areintuitively ine�cient (like exhaustive search).� Empirical consideration: It is clear that algorithms that are considered e�-cient in practice have running-time that is bounded by a small polynomial(at least on the inputs that occur in practice). The question is whether anypolynomial-time algorithm can be considered e�cient in an intuitive sense.The belief, which is supported by past experience, is that every natural prob-lem that can be solved in polynomial-time also has \reasonably e�cient"algorithms.We stress that the association of e�cient algorithms with polynomial-time compu-tation is not essential to most of the notions, results and questions of complexity



38 CHAPTER 1. INTRODUCTION AND PRELIMINARIEStheory. Any other class of algorithms that supports the aforementioned closureproperties and allows to conduct some simple computations but not overly com-plex ones gives rise to a similar theory, albeit the formulation of such a theory maybe much more complicated. Speci�cally, all results and questions treated in thisbook are concerned with the relation among the complexities of di�erent computa-tional tasks (rather than with providing absolute assertions about the complexityof some computational tasks). These relations can be stated explicitly, by statinghow any upper-bound on the time complexity of one task gets translated to anupper-bound on the time complexity of another task.18 Such cumbersome state-ments will maintain the contents of the standard statements; they will merely bemuch more complicated. Thus, we follow the tradition of focusing on polynomial-time computations, while stressing that this focus is both natural and provides thesimplest way of addressing the fundamental issues underlying the nature of e�cientcomputation.Universal machines, revisited. The notion of time complexity gives rise to atime-bounded version of the universal function u (presented in x1.2.3.3). Speci�-cally, we de�ne u0(hMi; x; t) def= y if on input x machine M halts within t steps andoutputs the string y, and u0(hMi; x; t) def= ? if on input x machine M makes morethan t steps. Unlike u, the function u0 is a total function. Furthermore, unlikeany extension of u to a total function the function u0 is computable. Moreover, u0is computable by a machine U 0 that on input X = (hMi; x; t) halts after poly(t)steps. Indeed, machine U 0 is a variant of a universal machine (i.e., on input X , ma-chine U 0 merely emulates M for t steps rather than emulating M till it halts (andpotentially inde�nitely)). Note that the number of steps taken by U 0 depends onthe speci�c model of computation (and that some overhead is unavoidable becauseemulating each step of M requires reading the relevant portion of the descriptionof M).Space complexity. Another natural measure of the \complexity" of an algo-rithm (or a task) is the amount of memory consumed by the computation. Werefer to the memory used for storing some intermediate results of the computation.Since much of our focus will be on using memory that is sub-linear in the inputlength, it is important to use a model in which one can di�erentiate memory usedfor computation from memory used for storing the initial input or the �nal output.In the context of Turing machines, this is done by considering multi-tape Turingmachines such that the input is presented on a special read-only tape (called theinput tape), the output is written on a special write-only tape (called the outputtape), and intermediate results are stored on a work-tape. Thus, the input andoutput tapes cannot be used for storing intermediate results. The space complexity18For example, the NP-completeness of SAT (cf. Theorem 2.21) implies that any algorithmsolving SAT in time T yields an algorithm that factors composite numbers in time T 0 such thatT 0(n) = poly(n) � (1 + T (poly(n))). (More generally, if the correctness of solutions for n-bitinstances of some search problem can be veri�ed in time t(n) then such solutions can be found intime T 0 such that T 0(n) = t(n) � (1 + T (O(t(n))2)).)



1.2. COMPUTATIONAL TASKS AND MODELS 39of such a machine M is de�ned as a function sM such that sM (x) is the number ofcells of the work-tape that are scanned by M on input x. As in the case of timecomplexity, we will usually refer to SA(n) def= maxx2f0;1gnfsA(x)g.1.2.3.5 Oracle machinesThe notion of Turing-reductions, which was discussed in x1.2.3.2, is captured bythe following de�nition of so-called oracle machines. Loosely speaking, an oraclemachine is a machine that is augmented such that it may pose questions to theoutside. (A rigorous formulation of this notion is provided below.) We considerthe case in which these questions, called queries, are answered consistently by somefunction f : f0; 1g� ! f0; 1g�, called the oracle. That is, if the machine makes aquery q then the answer it obtains is f(q). In such a case, we say that the oraclemachine is given access to the oracle f . For an oracle machine M , a string x and afunction f , we denote by Mf (x) the output of M on input x when given access tothe oracle f . (Re-examining the second part of the proof of Theorem 1.5, observethat we have actually described an oracle machine that computes d0 when givenaccess to the oracle d.)The notion of an oracle machine extends the notion of a standard computingdevice (machine), and thus a rigorous formulation of the former extends a formalmodel of the latter. Speci�cally, extending the model of Turing machines, we derivethe following model of oracle Turing machines.De�nition 1.11 (using an oracle):� An oracle machine is a Turing machine with an additional tape, called theoracle tape, and two special states, called oracle invocation and oracle spoke.� The computation of the oracle machine M on input x and access to the oraclef : f0; 1g� ! f0; 1g� is de�ned based on the successive con�guration function.For con�gurations with state di�erent from oracle invocation the next con�g-uration is de�ned as usual. Let  be a con�guration in which the machine'sstate is oracle invocation and suppose that the actual contents of the oracletape is q (i.e., q is the contents of the maximal pre�x of the tape that holds bitvalues).19 Then, the con�guration following  is identical to , except thatthe state is oracle spoke, and the actual contents of the oracle tape is f(q).The string q is called M 's query and f(q) is called the oracle's reply.� The output of M on input x when given oracle access to f is denote Mf (x).We stress that the running time of an oracle machine is the number of steps madeduring its computation, and that the oracle's reply on each query is obtained in asingle step.19This �ts the de�nition of the actual contents of a tape of a Turing machine (cf. x1.2.3.1).A common convention is that the oracle can be invoked only when the machine's head resides atthe left-most cell of the oracle tape. We comment that, in the context of space complexity, oneuses two oracle tapes: a write-only tape for the query and a read-only tape for the answer.



40 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.2.3.6 Restricted modelsWe mention that restricted models of computation are often mentioned in thecontext of a course on computability, but they will play no role in the current book.One such model is the model of �nite automata, which in some variant coincideswith Turing machines that have space-complexity zero (equiv., constant).In our opinion, the most important motivation for the study of these restrictedmodels of computation is that they provide simple models for some natural (orarti�cial) phenomena. This motivation, however, seems only remotely related tothe study of the complexity of various computational tasks. Thus, in our opinion,the study of these restricted models (e.g., any of the lower levels of Chomsky'sHierarchy [118, Chap. 9]) should be decoupled from the study of computabilitytheory (let alone the study of complexity theory).Teaching note: Indeed, we reject the common coupling of computability theory withthe theory of automata and formal languages. Although the historical links betweenthese two theories (at least in the West) can not be denied, this fact cannot justifycoupling two fundamentally di�erent theories (especially when such a coupling promotesa wrong perspective on computability theory).1.2.4 Non-uniform Models (Circuits and Advice)By a non-uniform model of computation we mean a model in which for each possibleinput length one considers a di�erent computing device. That is, there is no \uni-formity" requirement relating devices that correspond to di�erent input lengths.Furthermore, this collection of devices is in�nite by nature, and (in absence ofa uniformity requirement) this collection may not even have a �nite description.Nevertheless, each device in the collection has a �nite description. In fact, therelationship between the size of the device (resp., the length of its description) andthe length of the input that it handles will be of major concern. The hope is thatthe �niteness of all parameters (which refer to a single device in such a collection)will allow for the application of combinatorial techniques to analyze the limitationsof certain settings of parameters.In complexity theory, non-uniform models of computation are studied eithertowards the development of lower-bound techniques or as simpli�ed upper-boundson the ability of e�cient algorithms. In both cases, the uniformity condition iseliminated in the interest of simplicity and with the hope (and belief) that nothingsubstantial is lost as far as the issues at hand are concerned.We will focus on two related models of non-uniform computing devices: Booleancircuits (x1.2.4.1) and \machines that take advice" (x1.2.4.2). The former model ismore adequate for the study of the evolution of computation (i.e., development oflower-bound techniques), whereas the latter is more adequate for modeling purposes(e.g., upper-bounding the ability of e�cient algorithms). (These models will befurther studied in Sections 3.1 and 4.1.)



1.2. COMPUTATIONAL TASKS AND MODELS 411.2.4.1 Boolean CircuitsThe most popular model of non-uniform computation is the one of Boolean circuits.Historically, this model was introduced for the purpose of describing the \logicoperation" of real-life electronic circuits. Ironically, nowadays this model providesthe stage for some of the most practically removed studies in complexity theory(which aim at developing methods that may eventually lead to an understandingof the inherent limitations of e�cient algorithms).A Boolean circuit is a directed acyclic graph20 with labels on the vertices, to bediscussed shortly. For sake of simplicity, we disallow isolated vertices (i.e., verticeswith no in-going or out-going edges), and thus the graph's vertices are of threetypes: sources, sinks, and internal vertices.1. Internal vertices are vertices having in-coming and out-going edges (i.e., theyhave in-degree and out-degree at least 1). In the context of Boolean cir-cuits, internal vertices are called gates. Each gate is labeled by a Booleanoperation, where the operations that are typically considered are ^, _ and: (corresponding to and, or and neg). In addition, we require that gateslabeled : have in-degree 1. (The in-coming degree of ^-gates and _-gatesmay be any number greater than zero, and the same holds for the out-degreeof any gate.)2. The graph sources (i.e., vertices with no in-going edges) are called input ter-minals. Each input terminal is labeled by a natural number (which is to bethought of the index of an input variable). (For sake of de�ning formulae(see x1.2.4.3), we allow di�erent input terminals to be labeled by the samenumber.)213. The graph sinks (i.e., vertices with no out-going edges) are called output ter-minals, and we require that they have in-degree 1. Each output terminal islabeled by a natural number such that if the circuit has m output terminalsthen they are labeled 1; 2; :::;m. That is, we disallow di�erent output ter-minals to be labeled by the same number, and insist that the labels of theoutput terminals are consecutive numbers. (Indeed, the labels of the outputterminals will correspond to the indices of locations in the circuit's output.)For sake of simplicity, we also mandate that the labels of the input terminals areconsecutive numbers.2220See Appendix G.1.21This is not needed in case of general circuits, because we can just feed out-going edges of thesame input terminal to many gates. Note, however, that this is not allowed in case of formulae,where all non-sinks are required to have out-degree exactly 1.22This convention slightly complicates the construction of circuits that ignore some of the inputvalues. Speci�cally, we use arti�cial gadgets that have in-coming edges from the correspondinginput terminals, and compute an adequate constant. To avoid having this constant as an outputterminal, we feed it into an auxiliary gate such that the value of the latter is determined by theother in-going edge (e.g., a constant 0 fed into an _-gate). See example of dealing with x3 inFigure 1.3.



42 CHAPTER 1. INTRODUCTION AND PRELIMINARIES
1 2

1 2

0

4 3

and and

and

and

or
or

negneg neg

Figure 1.3: A circuit computing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4).A Boolean circuit with n di�erent input labels and m output terminals induces(and indeed computes) a function from f0; 1gn to f0; 1gm de�ned as follows. Forany �xed string x 2 f0; 1gn, we iteratively de�ne the value of vertices in the circuitsuch that the input terminals are assigned the corresponding bits in x = x1 � � �xnand the values of other vertices are determined in the natural manner. That is:� An input terminal with label i 2 f1; :::; ng is assigned the ith bit of x (i.e.,the value xi).� If the children of a gate (of in-degree d) that is labeled ^ have values v1; v2; :::; vd,then the gate is assigned the value ^di=1vi. The value of a gate labeled _ (or:) is determined analogously.Indeed, the hypothesis that the circuit is acyclic implies that the processof determining values for the circuit's vertices is well-de�ned: As long as thevalue of some vertex is undetermined, there exists a vertex such that its valueis undetermined but the values of all its children are determined. Thus, theprocess can make progress, and terminates when the values of all vertices(including the output terminals) are determined.The value of the circuit on input x (i.e., the output computed by the circuit oninput x) is y = y1 � � � ym, where yi is the value assigned by the foregoing processto the output terminal labeled i. We note that there exists a polynomial-timealgorithm that, given a circuit C and a corresponding input x, outputs the value ofC on input x. This algorithm determines the values of the circuit's vertices, goingfrom the circuit's input terminals to its output terminals.We say that a family of circuits (Cn)n2N computes a function f : f0; 1g� ! f0; 1g�if for every n the circuit Cn computes the restriction of f to strings of length n. Inother words, for every x 2 f0; 1g�, it must hold that Cjxj(x) = f(x).



1.2. COMPUTATIONAL TASKS AND MODELS 43Bounded and unbounded fan-in. We will be most interested in circuits inwhich each gate has at most two in-coming edges. In this case, the types of (two-argument) Boolean operations that we allow is immaterial (as long as we considera \full basis" of such operations; i.e., a set of operations that can implement anyother two-argument Boolean operation). Such circuits are called circuits of boundedfan-in. In contrast, other studies are concerned with circuits of unbounded fan-in,where each gate may have an arbitrary number of in-going edges. Needless to say,in the case of circuits of unbounded fan-in, the choice of allowed Boolean operationsis important and one focuses on operations that are \uniform" (across the numberof operants; e.g., ^ and _).Circuit size as a complexity measure. The size of a circuit is the number ofits edges. When considering a family of circuits (Cn)n2N that computes a functionf : f0; 1g� ! f0; 1g�, we are interested in the size of Cn as a function of n.Speci�cally, we say that this family has size complexity s : N ! N if for every n thesize of Cn is s(n). The circuit complexity of a function f , denoted sf , is the in�mumof the size complexity of all families of circuits that compute f . Alternatively, foreach n we may consider the size of the smallest circuit that computes the restrictionof f to n-bit strings (denoted fn), and set sf (n) accordingly. We stress that non-uniformity is implicit in this de�nition, because no conditions are made regardingthe relation between the various circuits used to compute the function on di�erentinput lengths.The circuit complexity of functions. We highlight some simple facts aboutthe circuit complexity of functions. (These facts are in clear correspondence tofacts regarding Kolmogorov Complexity mentioned in x1.2.3.3.)1. Most importantly, any Boolean function can be computed by some familyof circuits, and thus the circuit complexity of any function is well-de�ned.Furthermore, each function has at most exponential circuit complexity.(Hint: fn : f0; 1gn ! f0; 1g can be computed by a circuit of size O(n2n) thatimplements a look-up table.)2. Some functions have polynomial circuit complexity. In particular, any func-tion that has time complexity t (i.e., is computed by an algorithm of timecomplexity t) has circuit complexity poly(t). Furthermore, the correspond-ing circuit family is uniform (in a natural sense to be discussed in the nextparagraph).(Hint: consider a Turing machine that computes the function, and considerits computation on a generic n-bit long input. The corresponding compu-tation can be emulated by a circuit that consists of t(n) layers such thateach layer represents an instantaneous con�guration of the machine, and therelation between consecutive con�gurations is captured by (\uniform") localgadgets in the circuit. For further details see the proof of Theorem 2.20,which presents a similar emulation.)



44 CHAPTER 1. INTRODUCTION AND PRELIMINARIES3. Almost all Boolean functions have exponential circuit complexity. Speci�-cally, the number of functions mapping f0; 1gn to f0; 1g that can be computedby some circuit of size s is at most s2s.(Hint: the number of circuits having v vertices and s edges is at most 2v ��v2�s.)Note that the �rst fact implies that families of circuits can compute functions thatare uncomputable by algorithms. Furthermore, this phenomenon occurs also whenrestricting attention to families of polynomial-size circuits. See further discussionin x1.2.4.2.Uniform families. A family of polynomial-size circuits (Cn)n2N is called uniformif given n one can construct the circuit Cn in poly(n)-time. Note that if a functionis computable by a uniform family of polynomial-size circuits then it is computableby a polynomial-time algorithm. This algorithm �rst constructs the adequate cir-cuit (which can be done in polynomial-time by the uniformity hypothesis), andthen evaluate this circuit on the given input (which can be done in time that ispolynomial in the size of the circuit).Note that limitations on the computing power of arbitrary families of polynomial-size circuits certainly hold for uniform families (of polynomial-size), which in turnyield limitations on the computing power of polynomial-time algorithms. Thus,lower bounds on the circuit complexity of functions yield analogous lower boundson their time complexity. Furthermore, as is often the case in mathematics andScience, disposing of an auxiliary condition that is not well-understood (i.e., uni-formity) may turn out fruitful. Indeed, this has occured in the study of classes ofrestricted circuits, which is reviewed in x1.2.4.3 (and Appendix B).1.2.4.2 Machines that take adviceGeneral (non-uniform) circuit families and uniform circuit families are two extremeswith respect to the \amounts of non-uniformity" in the computing device. Intu-itively, in the former, non-uniformity is only bounded by the size of the device,whereas in the latter the amounts of non-uniformity is zero. Here we consider amodel that allows to decouple the size of the computing device from the amountof non-uniformity, which may range from zero to the device's size. Speci�cally, weconsider algorithms that \take a non-uniform advice" that depends only on theinput length. The amount of non-uniformity will be de�ned to equal the length ofthe corresponding advice (as a function of the input length).De�nition 1.12 (taking advice): We say that algorithm A computes the functionf using advice of length ` : N ! N if there exists an in�nite sequence (an)n2N suchthat1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).The sequence (an)n2N is called the advice sequence.



1.2. COMPUTATIONAL TASKS AND MODELS 45Note that any function having circuit complexity s can be computed using adviceof length O(s log s), where the log factor is due to the fact that a graph with vvertices and e edges can be described by a string of length 2e log2 v. Note that themodel of machines that use advice allows for some sharper bounds than the onesstated in x1.2.4.1: every function can be computed using advice of length ` suchthat `(n) = 2n, and some uncomputable functions can be computed using adviceof length 1.Theorem 1.13 (the power of advice): There exist functions that can be computedusing one-bit advice but cannot be computed without advice.Proof: Starting with any uncomputable Boolean function f : N ! f0; 1g, considerthe function f 0 de�ned as f 0(x) = f(jxj). Note that f is Turing-reducible to f 0 (e.g.,on input nmake any n-bit query to f 0, and return the answer).23 Thus, f 0 cannot becomputed without advice. On the other hand, f 0 can be easily computed by usingthe advice sequence (an)n2N such that an = f(n); that is, the algorithm merelyoutputs the advice bit (and indeed ajxj = f(jxj) = f 0(x), for every x 2 f0; 1g�).1.2.4.3 Restricted modelsAs noted in x1.2.4.1, the model of Boolean circuits allows for the introduction ofmany natural subclasses of computing devices. Following is a laconic review of afew of these subclasses. For more detail, see Appendix B.2. Since we shall refer tovarious types of Boolean formulae in the rest of this book, we suggest not to skipthe following two paragraphs.Boolean formulae. In general Boolean circuits the non-sink vertices are allowedarbitrary out-degree. This means that the same intermediate value can be re-used(without being re-computed (and while increasing the size complexity by only oneunit)). Such \free" re-usage of intermediate values is disallowed in Boolean formu-lae, which corresponds to a Boolean expression over Boolean variables. Formally,a Boolean formula is a circuit in which all non-sink vertices have out-degree 1,which means that the underlying graph is a tree (see xG.2) and the formula asan expression can be read by traversing the tree (and registering the vertices' la-bels in the order traversed). Indeed, we have allowed di�erent input terminals tobe assigned the same label in order to allow formulae in which the same variableoccurs multiple times. As in case of general circuits, one is interested in the sizeof these restricted circuits (i.e., the size of families of formulae computing variousfunctions). We mention that quadratic lower bounds are known for the formulasize of simple functions (e.g., parity), whereas these functions have linear circuitcomplexity. This discrepancy is depicted in Figure 1.4.23Indeed, this Turing-reduction is not e�cient (i.e., it runs in exponential time in jnj = log2 n),but this is immaterial in the current context.



46 CHAPTER 1. INTRODUCTION AND PRELIMINARIES
1 n

of  x  .... x
1 n

of  x  .... x
1 n

of  x  .... x
2n

of  x    ...x
n+1 2n

of  x    ...x
n+12n

of  x    ...x
n+1

PARITY PARITY PARITY PARITY PARITY PARITY

and

or
or

and
and and

neg neg neg neg

Figure 1.4: Recursive construction of parity circuits and formulae.Formulae in CNF and DNF. A restricted type of Boolean formulae consistsof formulae that are in conjunctive normal form (CNF). Such a formula consists ofa conjunction of clauses, where each clause is a disjunction of literals each beingeither a variable or its negation. That is, such formulae are represented by layeredcircuits of unbounded fan-in in which the �rst layer consists of neg-gates thatcompute the negation of input variables, the second layer consist of or-gates thatcompute the logical-or of subsets of inputs and negated inputs, and the third layerconsists of a single and-gate that computes the logical-and of the values computedin the second layer. Note that each Boolean function can be computed by a familyof CNF formulae of exponential size, and that the size of CNF formulae may beexponentially larger than the size of ordinary formulae computing the same function(e.g., parity). For a constant k, a formula is said to be in k-CNF if its CNF hasdisjunctions of size at most k. An analogous restricted type of Boolean formulaerefers to formulae that are in disjunctive normal form (DNF). Such a formula consistsof a disjunction of a conjunctions of literals, and when each conjunction has at mostk literals we say that the formula is in k-DNF.Constant-depth circuits. Circuits have a \natural structure" (i.e., their struc-ture as graphs). One natural parameter regarding this structure is the depth of acircuit, which is de�ned as the longest directed path from any source to any sink. Ofspecial interest are constant-depth circuits of unbounded fan-in. We mention thatsub-exponential lower bounds are known for the size of such circuits that computea simple function (e.g., parity).Monotone circuits. The circuit model also allows for the consideration of mono-tone computing devices: a monotone circuit is one having only monotone gates(e.g., gates computing ^ and _, but no negation gates (i.e., :-gates)). Needlessto say, monotone circuits can only compute monotone functions, where a functionf : f0; 1gn ! f0; 1g is called monotone if for any x � y it holds that f(x) � f(y)(where x1 � � �xn � y1 � � � yn if and only if for every bit position i it holds thatxi � yi). One natural question is whether, as far as monotone functions are con-



1.2. COMPUTATIONAL TASKS AND MODELS 47cerned, there is a substantial loss in using only monotone circuits. The answer isyes: there exist monotone functions that have polynomial circuit complexity butrequire sub-exponential size monotone circuits.1.2.5 Complexity ClassesComplexity classes are sets of computational problems. Typically, such classes arede�ned by �xing three parameters:1. A type of computational problems (see Section 1.2.2). Indeed, most classesrefer to decision problems, but classes of search problems, promise problems,and other types of problems will also be considered.2. A model of computation, which may be either uniform (see Section 1.2.3) ornon-uniform (see Section 1.2.4).3. A complexity measure and a function (or a set of functions), which put to-gether limit the class of computations of the previous item; that is, we referto the class of computations that have complexity not exceeding the speci-�ed function (or set of functions). For example, in x1.2.3.4, we mentionedtime complexity and space complexity, which apply to any uniform model ofcomputation. We also mentioned polynomial-time computations, which arecomputations in which the time complexity (as a function) does not exceedsome polynomial (i.e., a member of the set of polynomial functions).The most common complexity classes refer to decision problems, and are sometimesde�ned as classes of sets rather than classes of the corresponding decision problems.That is, one often says that a set S � f0; 1g� is in the class C rather than sayingthat the problem of deciding membership in S is in the class C. Likewise, one talksof classes of relations rather than classes of the corresponding search problems (i.e.,saying that R � f0; 1g��f0; 1g� is in the class C means that the search problem ofR is in the class C).Chapter NotesIt is quite remarkable that the theories of uniform and non-uniform computationaldevices have emerged in two single papers. We refer to Turing's paper [214], whichintroduced the model of Turing machines, and to Shannon's paper [192], whichintroduced Boolean circuits.In addition to introducing the Turing machine model and arguing that it cor-responds to the intuitive notion of computability, Turing's paper [214] introducesuniversal machines and contains proofs of undecidability (e.g., of the Halting Prob-lem).The Church-Turing Thesis is attributed to the works of Church [53] and Tur-ing [214]. In both works, this thesis is invoked for claiming that the fact thatTuring machines cannot solve some problem implies that this problem cannot be



48 CHAPTER 1. INTRODUCTION AND PRELIMINARIESsolved in any \reasonable" model of computation. The RAM model is attributedto von Neumann's report [221].The association of e�cient computation with polynomial-time algorithms isattributed to the papers of Cobham [54] and Edmonds [66]. It is interesting tonote that Cobham's starting point was his desire to present a philosophically soundconcept of e�cient algorithms, whereas Edmonds's starting point was his desire toarticulate why certain algorithms are \good" in practice.Rice's Theorem is proven in [183], and the undecidability of the Post Correspon-dence Problem is proven in [172]. The formulation of machines that take advice(as well as the equivalence to the circuit model) originates in [131].


