Chapter 7

The Bright Side of Hardness

So saying she donned her beautiful, glittering golden—Ambrosial
sandals, which carry her flying like the wind over the vast land
and sea; she grasped the redoubtable bronze-shod spear, so stout
and sturdy and strong, wherewith she quells the ranks of heroes
who have displeased her, the [bright-eyed] daughter of her mighty
father.

Homer, Odyssey, 1:96-101

The existence of natural computational problems that are (or seem to be) in-
feasible to solve is usually perceived as bad news, because it means that we cannot
do things we wish to do. But these bad news have a positive side, because hard
problem can be “put to work” to our benefit, most notably in cryptography.

It seems that utilizing hard problems requires the ability to efficiently generate
hard instances, which is not guaranteed by the notion of worst-case hardness. In
other words, we refer to the gap between “occasional” hardness (e.g., worst-case
hardness or mild average-case hardness) and “typical” hardness (with respect to
some tractable distribution). Much of the current chapter is devoted to bridging
this gap, which is known by the term hardness amplification. The actual applica-
tions of typical hardness are presented in Chapter 8 and Appendix C.

Summary: We consider two conjectures that are related to P # NP.
The first conjecture is that there are problems that are solvable in
exponential-time (i.e., in £) but are not solvable by (non-uniform) fam-
ilies of small (say polynomial-size) circuits. We show that this worst-
case conjecture can be transformed into an average-case hardness result;
specifically, we obtain predicates that are strongly “inapproximable” by
small circuits. Such predicates are used towards derandomizing BPP
in a non-trivial manner (see Section 8.3).

The second conjecture is that there are problems in NP (i.e., search
problems in PC) for which it is easy to generate (solved) instances that

265

266 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

are typically hard to solve (for a party that did not generate these
instances). This conjecture is captured in the formulation of one-way
functions, which are functions that are easy to evaluate but hard to
invert (in an average-case sense). We show that functions that are hard
to invert in a relatively mild average-case sense yield functions that
are hard to invert in a strong average-case sense, and that the latter
yield predicates that are very hard to approximate (called hard-core
predicates). Such predicates are useful for the construction of general-
purpose pseudorandom generators (see Section 8.2) as well as for a host
of cryptographic applications (see Appendix C).

In the rest of this chapter, the actual order of presentation of the two aforemen-
tioned conjectures and their consequences is reversed: We start (in Section 7.1)
with the study of one-way functions, and only later (in Section 7.2) turn to the
study of problems in £ that are hard for small circuits.

Teaching note: We list several reasons for preferring the aforementioned order of
presentation. First, we mention the great conceptual appeal of one-way functions and
the fact that they have very practical applications. Second, hardness amplification
in the context of one-way functions is technically simpler than the amplification of
hardness in the context of £. (In fact, Section 7.2 is the most technical text in this
book.) Third, some of the techniques that are shared by both treatments seem easier to
understand first in the context of one-way functions. Last, the current order facilitates
the possibility of teaching hardness amplification only in one incarnation, where the
context of one-way functions is recommended as the incarnation of choice (for the
aforementioned reasons).

If you wish to teach hardness amplification and pseudorandomness in the two afore-
mentioned incarnations, then we suggest following the order of the current text. That
is, first teach hardness amplification in its two incarnations, and only next teach pseu-

dorandomness in the corresponding incarnations.

Prerequisites: We assume a basic familiarity with elementary probability theory
(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,
standard conventions regarding random variables (presented in Appendix D.1.1)
and various “laws of large numbers” (presented in Appendix D.1.2) will be exten-
sively used.

7.1 One-Way Functions

Loosely speaking, one-way functions are functions that are easy to evaluate but
hard (on the average) to invert. Thus, in assuming that one-way functions exist,
we are postulating the existence of efficient processes (i.e., the computation of the
function in the forward direction) that are hard to reverse. Analogous phenomena
in daily life are known to us in abundance (e.g., the lighting of a match). Thus,
the assumption that one-way functions exist is a complexity theoretic analogue of
our daily experience.

7.1. ONE-WAY FUNCTIONS 267

One-way functions can also be thought of as efficient ways for generating “puz-
zles” that are infeasible to solve; that is, the puzzle is a random image of the
function and a solution is a corresponding preimage. Furthermore, the person gen-
erating the puzzle knows a solution to it and can efficiently verify the validity of
(possibly other) solutions to the puzzle. In fact, as explained in Section 7.1.1, every
mechanism for generating such puzzles can be converted to a one-way function.

The reader may note that when presented in terms of generating hard puzzles,
one-way functions have a clear cryptographic flavor. Indeed, one-way functions
are central to cryptography, but we shall not explore this aspect here (and rather
refer the reader to Appendix C). Similarly, one-way functions are closely related to
(general-purpose) pseudorandom generators, but this connection will be explored
in Section 8.2. Instead, in the current section, we will focus on one-way functions
per se.

Teaching note: While we recommend including a basic treatment of pseudorandom-
ness within a course on complexity theory, we do not recommend doing so with respect
to cryptography. The reason is that cryptography is far more complex than pseudo-
randomness (e.g., compare the definition of secure encryption to the the definition of
pseudorandom generators). The extra complexity is due to conceptual richness, which
is something good, except that some of these conceptual issues are central to cryptog-
raphy but not to complexity theory. Thus, teaching cryptography in the context of a
course on complexity theory is likely to either overload the course with material that
is not central to complexity theory or cause a superficial and misleading treatment of
cryptography. We are not sure as to which of these two possibilities is worse. Still, for
the benefit of the interested reader, we have included an overview of the foundations of

cryptography as an appendix to the main text (see Appendix C).

7.1.1 Generating hard instances and one-way functions

Let us start by examining the prophecy, made in the preface to this chapter, by
which intractable problems can be used to our benefit. The basic idea is that
intractable problems offer a way of generating an obstacle that stands in the way
of our opponents and thus protects our interests. These opponents may be either
real (e.g., in the context of cryptography) or imaginary (e.g., in the context of
derandomization), but in both cases we wish to prevent them from seeing something
or doing something. Hard obstacles seems useful towards this goal.

Let us assume that P # NP or even that AP is not contained in BPP. Can we
use this assumption to our benefit? Not really: The NP € BPP assumption refers
to the worst-case complexity of problems, while benefiting from hard problems
seems to require the ability to generate hard instances. In particular, the generated
instances should be typically hard and not merely occasionally hard; that is, we
seek average-case hardness and not merely worst-case hardness.

Taking a short digression, we mention that in Section 7.2 we shall see that worst-
case hardness (of NP or even &) can be transformed into average-case hardness
of £. Such a transformation is not known for AP itself, and in some applications
(e.g., in cryptography) we do need the hard-on-the-average problem to be in A/P.

268 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

In this case, we currently need to assume that, for some problem in NP, it is the
case that hard instances are easy to generate (and not merely exist). That is, we
assume that AP is “hard on the average” with respect to a distribution that is
efficiently sampleable. This assumption will be further discussed in Section 10.2.

However, for the aforementioned applications (e.g., in cryptography) this as-
sumption does not seem to suffice either: we know how to utilize such “hard on
the average” problems only when we can efficiently generate hard instances coupled
with adequate solutions.® That is, we assume that, for some search problem in
PC (resp., decision problem in N'P), we can efficiently generate instance-solution
pairs (resp., yes-instances coupled with corresponding NP-witnesses) such that the
instance is hard to solve (resp., hard to verify as belonging to the set). Needless to
say, the hardness assumption refers to a person that does not get the solution (resp.,
witness). Thus, we can efficiently generate hard “puzzles” coupled with solutions,
and so we may present to others hard puzzles for which we know a solution.

Let us formulate the foregoing discussion. Referring to Definition 2.3, we con-
sider a relation R in PC (i.e., R is polynomially bounded and membership in R can
be determined in polynomial-time), and assume that there exists a probabilistic
polynomial-time algorithm G that satisfies the following two conditions:

1. On input 17, algorithm G always generates a pair in R such that the first
element has length n. That is, Pr[G(1") € RN ({0,1}" x {0,1}*)] = 1.

2. Tt is typically infeasible to find solutions to instances that are generated by
G; that is, when only given the first element of G(1™), it is infeasible to
find an adequate solution. Formally, denoting the first element of G(1™) by
G1(1™), for every probabilistic polynomial-time (solver) algorithm S, it holds
that Pr[(G1(1™),S(G1(1™)) € R] = u(n), where u vanishes faster than any
polynomial fraction (i.e., for every positive polynomial p and all sufficiently
large n it is the case that p(n) < 1/p(n)).

We call G a generator of solved intractable instances for R. We will show that such
a generator exists if and only if one-way functions exist, where one-way functions
are functions that are easy to evaluate but hard (on the average) to invert. That
is, a function f:{0,1}*—{0,1}* is called one-way if there is an efficient algorithm
that on input = outputs f(x), whereas any feasible algorithm that tries to find a
preimage of f(x) under f may succeed only with negligible probability (where the
probability is taken uniformly over the choices of and the algorithm’s coin tosses).
Associating feasible computations with probabilistic polynomial-time algorithms
and negligible functions with functions that vanish faster than any polynomial
fraction, we obtain the following definition.

Definition 7.1 (one-way functions): A function f:{0,1}*—{0,1}* is called one-
way if the following two conditions hold:

LWe wish to stress the difference between the two gaps discussed here. Our feeling is that
the non-usefulness of worst-case hardness (per se) is far more intuitive than the non-usefulness of
average-case hardness that does not correspond to an efficient generation of “solved” instances.

7.1. ONE-WAY FUNCTIONS 269

1. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =
f(z) for every x € {0,1}*.

2. Hard to invert: For every probabilistic polynomial-time algorithm A', every
polynomial p, and all sufficiently large n,

Proc oy [A'(f(2),1) € £ (f())] < ﬁ (7.1)

where the probability is taken uniformly over all the possible choices of x €
{0,1}" and all the possible outcomes of the internal coin tosses of algorithm
Al

Algorithm A’ is given the auxiliary input 1™ so as to allow it to run in time poly-
nomial in the length of x, which is important in case f drastically shrinks its input
(e.g., |f(z)| = O(log|z|)). Typically (and, in fact, without loss of generality, see
Exercise 7.1), f is length preserving, in which case the auxiliary input 1™ is re-
dundant. Note that A’ is not required to output a specific preimage of f(x); any
preimage (i.e., element in the set f~!(f(z))) will do. (Indeed, in case f is 1-1,
the string x is the only preimage of f(z) under f; but in general there may be
other preimages.) It is required that algorithm A’ fails (to find a preimage) with
overwhelming probability, when the probability is also taken over the input distri-
bution. That is, f is “typically” hard to invert, not merely hard to invert in some
(“rare”) cases.

Proposition 7.2 The following two conditions are equivalent:
1. There exists a generator of solved intractable instances for some R € N'P.

2. There exist one-way functions.

Proof Sketch: Suppose that G is such a generator of solved intractable instances
for some R € NP, and suppose that on input 1" it tosses £(n) coins. For simplicity,
we assume that £(n) = n, and consider the function g(r) = Gy(1I"l,r), where
G(1™,r) denotes the output of G on input 1™ when using coins 7 (and G, is as
in the foregoing discussion). Then g must be one-way, because an algorithm that
inverts g on input « = g(r) obtains 7’ such that G1(1",7') = and G(1™,r") must
be in R (which means that the second element of G(1™,+') is a solution to z). In
case £(n) # n (and assuming without loss of generality that £(n) > n), we define
g(r) = G1(1™, s) where n is the largest integer such that ¢(n) < |r| and s is the
£(n)-bit long prefix of r.

Suppose, on the other hand, that f is a one-way function (and that f is

length preserving). Consider G(1™) that uniformly selects r € {0,1}™ and out-

puts (f(r),r), and let R = {(f(x),z) : « € {0,1}*}. Then R is in PC and G

is a generator of solved intractable instances for R, because any solver of R (on
instances generated by G) is effectively inverting f on f(U,). O

270 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Comments. Several candidates one-way functions and variation on the basic
definition appear in Appendix C.2.1. Here, for the sake of future discussions, we
define a stronger version of one-way functions, which refers to the infeasibility of
inverting the function by non-uniform circuits of polynomial-size. We seize the
opportunity and use an alternative technical formulation, which is based on the
probabilistic conventions in Appendix D.1.1.2

Definition 7.3 (one-way functions, non-uniformly hard): A one-way function f:
{0,1}* — {0,1}* is said to be non-uniformly hard to invert if for every family of
polynomial-size circuits {Cy}, every polynomial p, and all sufficiently large n,

1
PriCo(f(Un), 1") € fFH(f(Un))] < —

[Cn(f(Un),17) (f(Un))] o)
We note that if a function is infeasible to invert by polynomial-size circuits then it is
hard to invert by probabilistic polynomial-time algorithms; that is, non-uniformity

(more than) compensates for lack of randomness. See Exercise 7.2.

7.1.2 Amplification of Weak One-Way Functions

In the forgoing discussion we have interpreted “hardness on the average” in a very
strong sense. Specifically, we required that any feasible algorithm fails to solve
the problem (e.g., invert the one-way function) almost always (i.e., except with
negligible probability). This interpretation is indeed the one that is suitable for
various applications. Still, a weaker interpretation of hardness on the average,
which is also appealing, only requires that any feasible algorithm fails to solve the
problem often enough (i.e., with noticeable probability). The main thrust of the
current section is showing that the mild form of hardness on the average can be
transformed into the strong form discussed in Section 7.1.1. Let us first define the
mild form of hardness on the average, using the framework of one-way functions.
Specifically, we define weak one-way functions.

Definition 7.4 (weak one-way functions): A function f:{0,1}*—{0,1}* is called
weakly one-way if the following two conditions hold:

1. Easy to evaluate: As in Definition 7.1.

2. Weakly hard to invert: There exists a positive polynomial p such that for
every probabilistic polynomial-time algorithm A' and all sufficiently large n,

1

Proefoay [4'(f(2),1") & 1 (f(2))] > prn) (7.2)
where the probability is taken uniformly over all the possible choices of x €
{0,1}" and all the possible outcomes of the internal coin tosses of algorithm

A'. In such a case, we say that f is 1/p-one-way.

28pecifically, letting U, denote a random variable uniformly distributed in {0,1}™, we may
write Eq. (7.1) as Pr[A'(f(Uxn),1™) € f~1(f(Un))] < 1/p(n), recalling that both occurrences of

U, refer to the same sample.

7.1. ONE-WAY FUNCTIONS 271

Here we require that algorithm A’ fails (to find an f-preimage for a random f-
image) with noticeable probability, rather than with overwhelmingly high prob-
ability (as in Definition 7.1). For clarity, we will occasionally refer to one-way
functions as in Definition 7.1 by the term strong one-way functions.

We note that, assuming that one-way functions exist at all, there exists weak
one-way functions that are not strongly one-way (see Exercise 7.3). Still, any weak
one-way function can be transformed into a strong one-way function. This is indeed
the main result of the current section.

Theorem 7.5 (amplification of one-way functions): The existence of weak one-
way functions implies the existence of strong one-way functions.

Proof Sketch: The construction itself is straightforward. We just parse the argu-
ment to the new function into sufficiently many blocks, and apply the weak one-way
function on the individual blocks. That is, suppose that f is 1/p-one-way, for some
polynomial p, and consider the following function

F(zy,..ywe) = (f(x1),..., f(xs)) (7.3)

where t <, -p(n) and 1, ...,z € {0,1}".

(Indeed F should be extended to strings of length outside {n? - p(n) : n € N} and
this extension must be hard to invert on all preimage lengths.)3

We warn that the hardness of inverting the resulting function F' is not estab-
lished by mere “combinatorics” (i.e., considering, for any S C {0,1}", the relative
volume of S* in ({0,1}")", where S represents the set of f-preimages that are
mapped by f to an image that is “easy to invert”). Specifically, one may not as-
sume that the potential inverting algorithm works independently on each block.
Indeed this assumption seems reasonable, but we do not know if nothing is lost
by this restriction. (In fact, proving that nothing is lost by this restriction is a
formidable research project.) In general, we should not make assumptions regard-
ing the class of all efficient algorithms (as underlying the definition of one-way
functions), unless we can actually prove that nothing is lost by such assumptions.

The hardness of inverting the resulting function F' is proved via a so called
“reducibility argument” (which is used to prove all conditional results in the area).
By a reducibility argument we actually mean a reduction, but one that is analyzed
with respect to average case complexity. Specifically, we show that any algorithm
that inverts the resulting function F' with non-negligible success probability can
be used to construct an algorithm that inverts the original function f with success
probability that violates the hypothesis (regarding f). In other words, we reduce
the task of “strongly inverting” f (i.e., violating its weak one-wayness) to the task
of “weakly inverting” F' (i.e., violating its strong one-wayness). In particular, on
input y = f(x), the reduction invokes the F-inverter (polynomially) many times,
each time feeding it with a sequence of random f-images that contains y at a

30ne simple extension is defining F(z) to equal F(z1, ..., Tp.p(n)), Where n is the largest integer

satisfying n?p(n) < |z| and z; is the i*" consecutive n-bit long string in z (i.e., z = 1 - - - Tpyp(n) T

where 1, ..., .5 (n) € {0, 1}7).

272 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

random location. (Indeed such a sequence corresponds to a random image of F'.)
Details follow.

Suppose towards the contradiction that F'is not strongly one-way; that is, there
exists a probabilistic polynomial-time algorithm B’ and a polynomial ¢(-) so that
for infinitely many m’s

1

Pr[B'(F(U,))€F~(F(Un))] > 2 (7.4)

Focusing on such a generic m and assuming (see Footnote 3) that m = n?p(n), we
present the following probabilistic polynomial-time algorithm, A’; for inverting f.
On input y and 1™ (where supposedly y = f(z) for some = € {0,1}"), algorithm A’
proceeds by applying the following probabilistic procedure, denoted I, on input y
for t'(n) times, where ¢'() is a polynomial that depends on the polynomials p and

q (specifically, we set ¢'(n) = 2n2 - p(n) - g(n?p(n))).

Procedure I (on input y and 1™):

For i =1 to t(n)) -p(n) do begin

(1) Select uniformly and independently a sequence of strings 1, ..., ¥,y € {0,1}".
(2) Compute (z1,..., 24(n)) — B'(f(21), -, [(@iz1),y, [(@it1), s [(@1(n))
(Note that y is placed in the ‘" position instead of f(x;).)
(3) If f(z;) =y then halt and output z;.
(This is considered a success).
end

Using Eq. (7.4), we now present a lower bound on the success probability of al-
gorithm A’, deriving a contradiction to the theorem’s hypothesis. To this end we
define a set, denoted S,,, that contains all n-bit strings on which the procedure I
succeeds with probability greater than n/¢'(n). (The probability is taken only over
the coin tosses of procedure I). Namely,

n

g, %f {xe {0,1}" : PrlI(f() € f7 (f(2))] > W}

In the next two claims we shall show that S,, contains all but at most a 1/2p(n)
fraction of the strings of length n, and that for each string x € S, algorithm A’
inverts f on f(z) with probability exponentially close to 1. It will follow that A’
inverts f on f(U,) with probability greater than 1 — (1/p(n)), in contradiction to
the theorem’s hypothesis.

Claim 7.5.1: For every z €5,

PridA'(f(e)€fH(f(x))] >1-27"

This claim follows directly from the definitions of S,, and A’.

Claim 7.5.2: 1
Sol > <1 - —> .on
15l 2p(n)

7.1. ONE-WAY FUNCTIONS 273

The rest of the proof is devoted to establishing this claim, and indeed combining
Claims 7.5.1 and 7.5.2, the theorem follows.

The key observation is that, for every ¢ € [t(n)] and every z; € {0,1}™\ Sy, it
holds that

Pr [B’(F(Unzp(n))) EF_I(F(Unzp(n))) Ur(j) = l‘l:I
< Pr{I(f@) € S (@) < g

where U,(Ll), s UT(L"'p(n)) denote the n-bit long blocks in the random variable U,z2(y,).
It follows that

£

E P [B(FWasy) € H(FUnsgi)) A (30 5:0. U 40,117\ 5,)]
t(n)
< P B (FUnap)) €F " (FUnyin)) A US) €40,137\ S

< t(n) 2 !
n)- = ‘
- t'(n) 2q(n*p(n))
where the equality is due to t'(n) = 2n? - p(n) - ¢(n?p(n)) and t(n) = n - p(n). On
the other hand, using Eq. (7.4), we have

§ 2 Pr[B(FUnyn) €F (FUnsym))] = Pr[(¥i) UL €S,

1 t(n)
> ——— — —Pr[U,ES,)
) R

Using t(n) = n-p(n), we get Pr[U, € S,] > (1/2¢(n*p(n)))*/("P(") which implies
Pr[U, € S,] > 1 —(1/2p(n)) for sufficiently large n. Claim 7.5.2 follows, and so
does the theorem. [

Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weak
one-way function f, we first constructed a polynomial-time computable function
F with the intention of later proving that F' is strongly one-way. To prove that
F is strongly one-way, we used a reducibility argument. The argument transforms
efficient algorithms that supposedly contradict the strong one-wayness of F' into
efficient algorithms that contradict the hypothesis that f is weakly one-way. Hence
F must be strongly one-way. We stress that our algorithmic transformation, which
is in fact a randomized Cook reduction, makes no implicit or explicit assumptions
about the structure of the prospective algorithms for inverting F'. Such assumptions
(e.g., the “natural” assumption that the inverter of F' works independently on each
block) cannot be justified (at least not at our current state of understanding of the
nature of efficient computations).

We use the term a reducibility argument, rather than just saying a reduction
so as to emphasize that we do not refer here to standard (worst-case complexity)
reductions. Let us clarify the distinction: In both cases we refer to reducing the

274 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

task of solving one problem to the task of solving another problem; that is, we use
a procedure solving the second task in order to construct a procedure that solves
the first task. However, in standard reductions one assumes that the second task
has a perfect procedure solving it on all instances (i.e., on the worst-case), and
constructs such a procedure for the first task. Thus, the reduction may invoke the
given procedure (for the second task) on very “non-typical” instances. This cannot
be allowed in our reducibility arguments. Here, we are given a procedure that
solves the second task with certain probability with respect to a certain distribution.
Thus, in employing a reducibility argument, we cannot invoke this procedure on
any instance. Instead, we must consider the probability distribution, on instances
of the second task, induced by our reduction. In our case (as in many cases)
the latter distribution equals the distribution to which the hypothesis (regarding
solvability of the second task) refers, but in general these distributions need only
be “sufficiently close” in an adequate sense (which depends on the analysis). In
any case, a careful consideration of the distribution induced by the reducibility
argument is due. (Indeed, the same issue arises in the context of reductions among
“distributional problems” considered in Section 10.2.)

An information theoretic analogue. Theorem 7.5 (or rather its proof) has a
natural information theoretic (or “probabilistic”) analogue that refers to the am-
plification of the success probability by repeated experiments: If some event occurs
with probability p in a single experiment, then the event will occur with very high
probability (i.e., 1 —e™™) when the experiment is repeated n/p times. The analogy
is to evaluating the function F' at a random input, where each block of this input
may be viewed as an attempt to hit the noticeable “hard region” of f. The reader
is probably convinced at this stage that the proof of Theorem 7.5 is much more
complex than the proof of the information theoretic analogue. In the information
theoretic context the repeated experiments are independent by definition, whereas
in the computational context no such independence can be guaranteed. (Indeed, the
independence assumption corresponds to the naive argument discussed at the be-
ginning of the proof of Theorem 7.5.) Another indication to the difference between
the two settings follows. In the information theoretic setting, the probability that
the event did not occur in any of the repeated trials decreases exponentially with
the number of repetitions. In contrast, in the computational setting we can only
reach an unspecified negligible bound on the inverting probabilities of polynomial-
time algorithms. Furthermore, for all we know, it may be the case that F' can be
efficiently inverted on F'(Up2p(,)) with success probability that is sub-exponentially

decreasing (e.g., with probability 2~ (log, ”)3), whereas the analogous information
theoretic bound is exponentially decreasing (i.e., e~ ™).

7.1.3 Hard-Core Predicates

One-way functions per se suffice for one central application: the construction of
secure signature schemes (see Appendix C.6). For other applications, one relies not
merely on the infeasibility of fully recovering the preimage of a one-way function,

7.1. ONE-WAY FUNCTIONS 275

but rather on the infeasibility of meaningfully guessing bits in the preimage. The
latter notion is captured by the definition of a hard-core predicate.

Recall that saying that a function f is one-way means that given a typical y
(in the range of f) it is infeasible to find a preimage of y under f. This does not
mean that it is infeasible to find partial information about the preimage(s) of y

under f. Specifically, it may be easy to retrieve half of the bits of the preimage

(e.g., given a one-way function f consider the function f’ defined by f'(z,r) def

(f(z),r), for every |z|=|r|). We note that hiding partial information (about the
function’s preimage) plays an important role in more advanced constructs (e.g.,
pseudorandom generators and secure encryption). With this motivation in mind,
we will show that essentially any one-way function hides specific partial information
about its preimage, where this partial information is easy to compute from the
preimage itself. This partial information can be considered as a “hard core” of the
difficulty of inverting f. Loosely speaking, a polynomial-time computable (Boolean)
predicate b, is called a hard-core of a function f if no feasible algorithm, given f(z),
can guess b(x) with success probability that is non-negligibly better than one half.

The solid arrows depict easily computable transformation
while the dashed arrows depict infeasible transformations.

Figure 7.1: The hard-core of a one-way function — an illustration.

Definition 7.6 (hard-core predicates): A polynomial-time computable predicate
b:{0,1}* — {0,1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A', every positive polynomial p(-), and all sufficiently
large n’s

PrIA'(f(2) =b(@)] < 3 + ——

2 p(n)

where the probability is taken uniformly over all the possible choices of x € {0,1}"
and all the possible outcomes of the internal coin tosses of algorithm A'.

276 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Note that for every b: {0,1}* — {0,1} and f : {0,1}* — {0, 1}*, there exist obvious
algorithms that guess b(z) from f(z) with success probability at least one half (e.g.,
the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if
b is a hard-core predicate (of any function) then it follows that b is almost unbiased
(i.e., for a uniformly chosen z, the difference |Pr[b(z)=0] — Pr[b(z)=1]| must be a
negligible function in n).

Since b itself is polynomial-time computable, the failure of efficient algorithms to
approximate b(z) from f(z) (with success probability that is non-negligibly higher
than one half) must be due either to an information loss of f (i.e., f not being

one-to-one) or to the difficulty of inverting f. For example, for o € {0,1} and

x' €{0,1}*, the predicate b(cx') = o is a hard-core of the function f(oz') N

Hence, in this case the fact that b is a hard-core of the function f is due to the fact
that f loses information (specifically, the first bit: o). On the other hand, in the
case that f loses no information (i.e., f is one-to-one) a hard-core for f may exist
ounly if f is hard to invert. In general, the interesting case is when being a hard-core
is a computational phenomenon rather than an information theoretic one (which
is due to “information loss” of f). It turns out that any one-way function has a
modified version that possesses a hard-core predicate.

Theorem 7.7 (a generic hard-core predicate): For any one-way function f, the
inner-product mod 2 of x and r, denoted b(x,r), is a hard-core of f'(xz,r) =

(f(z), 7).

In other words, Theorem 7.7 asserts that, given f(z) and a random subset S C [|z|],
it is infeasible to guess @;c sx; significantly better than with probability 1/2, where
T =T - - Ty is uniformly distributed in {0, 1}".

Proof Sketch: The proof is by a so-called “reducibility argument” (see Sec-
tion 7.1.2). Specifically, we reduce the task of inverting f to the task of predicting
the hard-core of f’, while making sure that the reduction (when applied to input
distributed as in the inverting task) generates a distribution as in the definition of
the predicting task. Thus, a contradiction to the claim that b is a hard-core of f’
yields a contradiction to the hypothesis that f is hard to invert. We stress that
this argument is far more complex than analyzing the corresponding “probabilis-
tic” situation (i.e., the distribution of (r,b(X,r)), where r € {0,1}" is uniformly
distributed and X is a random variable with super-logarithmic min-entropy (which
represents the “effective” knowledge of x, when given f(z))).

Our starting point is a probabilistic polynomial-time algorithm B that satisfies,
for some polynomial p and infinitely many n’s, Pr[B(f(X,),U,) = b(X,,U,)] >
(1/2) + (1/p(n)), where X,, and U,, are uniformly and independently distributed

over {0,1}". Using a simple averaging argument, we focus on a ¢ def 1/2p(n)

4The min-entropy of X is defined as min, {log,(1/Pr[X = v])}; that is, if X has min-entropy m
then max,{Pr[X = v]} = 27", The Leftover Hashing Lemma (see Appendix D.2) implies that,
in this case, Pr[b(X,Un) = 1|Un] = % + Z*Q(m), where U,, denotes the uniform distribution over

{0,1}".

7.1. ONE-WAY FUNCTIONS 277

fraction of the a’s for which Pr[B(f(z),U,) = b(z,U,)] > (1/2) + & holds. We will
show how to use B in order to invert f, on input f(z), provided that z is in this
good set (which has density ¢).

As a warm-up, suppose for a moment that, for the aforementioned x’s, algorithm
B succeeds with probability p such that p > % + 1/poly(|z|) rather than p >
1 4+ 1/poly(|z]). In this case, retrieving « from f(z) is quite easy: To retrieve the
i*" bit of z, denoted z;, we randomly select 7 € {0,1}!*!, and obtain B(f(z),r) and
B(f(z),r®e?), where e = 0°1101*/~* and v @ u denotes the addition mod 2 of the
binary vectors v and u. A key observation underlying the foregoing scheme as well
as the rest of the proof is that b(z,r@s) = b(z,r) ® b(z, s), which can be readily
verified by writing b(z,y) = > | #;y; mod 2 and noting that addition modulo 2
of bits corresponds to their XOR. Now, note that if both B(f(z),r) = b(x,r)
and B(f(z),r®e') = b(w,r®e’) hold, then B(f(z),r) ® B(f(z),r ®e') equals
b(z,7) ® b(z,rde’) = b(x,e') = x;. The probability that both B(f(z),r)="b(z,r)
and B(f(z),r®e')=b(x,r®e’) hold, for a random r, is at least 1 —2- (1 — p) >
% + m. Hence, repeating the foregoing procedure sufficiently many times
(using independent random choices of such 7’s) and ruling by majority, we retrieve
x; with very high probability. Similarly, we can retrieve all the bits of =, and
hence invert f on f(z). However, the entire analysis was conducted under (the
unjustifiable) assumption that p > %—l—m, whereas we only know that p > %—l—a
for e = 1/poly(|z|).

The problem with the foregoing procedure is that it doubles the original error
probability of algorithm B on inputs of the form (f(x),-). Under the unrealistic
(foregoing) assumption that B’s average error on such inputs is non-negligibly
smaller than %, the “error-doubling” phenomenon raises no problems. However, in
general (and even in the special case where B’s error is exactly i) the foregoing
procedure is unlikely to invert f. Note that the average error probability of B (for
a fixed f(z), when the average is taken over a random r) can not be decreased
by repeating B several times (e.g., for every xz, it may be that B always answer
correctly on three quarters of the pairs (f(z),r), and always err on the remaining
quarter). What is required is an alternative way of using the algorithm B, a way
that does not double the original error probability of B.

The key idea is generating the r’s in a way that allows applying algorithm
B only once per each r (and 4), instead of twice. Specifically, we will invoke B
on (f(z),r®e’) in order to obtain a “guess” for b(z,r De’), and obtain b(z,r)
in a different way (which does not involve using B). The good news is that the
error probability is no longer doubled, since we only use B to get a “guess” of
b(z,r ®e’). The bad news is that we still need to know b(z,r), and it is not
clear how we can know b(x,r) without applying B. The answer is that we can
guess b(x,7) by ourselves. This is fine if we only need to guess b(x,r) for one
r (or logarithmically in |z| many 7’s), but the problem is that we need to know
(and hence guess) the value of b(z,r) for polynomially many r’s. The obvious
way of guessing these b(z,r)’s yields an exponentially small success probability.
Instead, we generate these polynomially many 7’s such that, on one hand they are
“sufficiently random” whereas, on the other hand, we can guess all the b(x,r)’s

278 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

with noticeable success probability.® Specifically, generating the r’s in a specific
patrwise independent manner will satisfy both these (conflicting) requirements. We
stress that in case we are successful (in our guesses for all the b(x,r)’s), we can
retrieve x with high probability. Hence, we retrieve with noticeable probability.

A word about the way in which the pairwise independent r’s are generated
(and the corresponding b(z,r)’s are guessed) is indeed in place. To generate m =

poly(|z|) many r’s, we uniformly (and independently) select ¢ def log, (m+1) strings
in {0,1}/®. Let us denote these strings by s', ..., s*. We then guess b(x, s*) through
b(z,s"). Let us denote these guesses, which are uniformly (and independently)
chosen in {0,1}, by o' through o‘. Hence, the probability that all our guesses
for the b(w,s')’s are correct is 27¢ = m. The different 7’s correspond to
the different non-empty subsets of {1,2,...,¢}. Specifically, for every such subset
J, we let r/ def ®jess’. The reader can easily verify that the r/’s are pairwise
independent and each is uniformly distributed in {0, 1}"”‘; see Exercise 7.5. The
key observation is that b(z,r”) = b(z, ®jecs8’) = ®jcsb(x,s’). Hence, our guess
for b(z,r”) is ®je 07, and with noticeable probability all our guesses are correct.
Wrapping-up everything, we obtain the following procedure, where € = 1/poly(n)
represents a lower-bound on the advantage of B in guessing b(z,) for an ¢ fraction
of the z’s (i.e., for these good #’s it holds that Pr[B(f(z),U,) = b(z,U,)] > & +¢).

Inverting procedure (on input y = f(z) and parameters n and ¢):
Set £ = log,(n/e?) + O(1).
(1) Select uniformly and independently s, ...,s* € {0,1}".
Select uniformly and independently o', ...,0 € {0,1}.
(2) For every non-empty J C [{], compute 7/ = ®;cs87 and p/ = @jey07.
(3) For i =1, ...,n determine the bit z; according to the majority vote
of the (2 — 1)-long sequence of bits (p’ & B(f(x),r’ ®e'))pzsci-
(4) Output 23 - - zy,.

Note that the “voting scheme” employed in Step 3 uses pairwise independent sam-
ples (i.e., the r/’s), but works essentially as well as it would have worked with
independent samples (i.e., the independent 7’s).5 That is, for every 7 and J, it
holds that Pro o« [B(f(z),r’®e’) = b(z,r’®e')] > (1/2) +¢, where 1’/ = &je 87,
and (for every fixed) the events corresponding to different J’s are pairwise inde-
pendent. It follows that if for every j € [€] it holds that o7 = b(x,s’), then for
every ¢+ and J we have

Pro.. o’ ® B(f(z),r' ®e') = b(x,)] (7.5)

5 Alternatively, we can try all polynomially many possible guesses. In such a case, we shall
output a list of candidates that, with high probability, contains x. (See Exercise 7.6.)

60ur focus here is on the accuracy of the approximation obtained by the sample, and not so
much on the error probability. We wish to approximate Pr[b(z,r) ® B(f(z), r®e') = 1] up to
an additive term of ¢, because such an approximation allows to correctly determine b(z, ei). A
pairwise independent sample of O(t/£2) points allows for an approximation of a value in [0, 1] up
to an additive term of € with error probability 1/¢, whereas a totally random sample of the same
size yields error probability exp(—t). Since we can afford setting ¢ = poly(n) and having error
probability 1/2n, the difference in the error probability between the two approximation schemes
is not important here. For a wider perspective see Appendix D.1.2 and D.3.

7.1. ONE-WAY FUNCTIONS 279

. . 1
= Prs17m7sz[B(f(x),r‘]@el) = b(x,r‘]@e’)] > 3 +e

where the equality is due to p’ = @jcs07 = b(z,17) = b(z,r’ ®e’) B b(z,e'). Note
that Eq. (7.5) refers to the correctness of a single vote for b(z,e’). Using m =
2 —1 = O(n/£?) and noting that these (Boolean) votes are pairwise independent,
we infer that the probability that the majority of these votes is wrong is upper-
bounded by 1/2n. Using a union bound on all i’s, we infer that with probability at
least 1/2, all majority votes are correct and thus x is retrieved correctly. Recall that
the foregoing is conditioned on o7 = b(z, s’) for every j € [¢], which in turn holds
with probability 27¢ = (m + 1)~! = Q(¢?/n) = 1/poly(n). Thus, z is retrieved
correctly with probability 1/poly(n), and the theorem follows. [

Digest. Looking at the proof of Theorem 7.7, we note that it actually refers

to an arbitrary black-box B, (-) that approximates b(z,-); specifically, in the case

of Theorem 7.7 we used B,(r) def B(f(x),r). In particular, the proof does not

use the fact that we can verify the correctness of the preimage recovered by the
described process. Thus, the proof actually establishes the existence of a poly(n/e)-
time oracle machine that, for every x € {0,1}", given oracle access to any B, :
{0,1}™ — {0, 1} satisfying

1
Prrcqoys [Be(r) = bz,)] 2 5+ (76)

outputs x with probability at least poly(e/n). Specifically, z is output with proba-
bility at least p Lef Q(e?/n). Noting that z is merely a string for which Eq. (7.6)
holds, it follows that the number of strings that satisfy Eq. (7.6) is at most 1/p.

Furthermore, by iterating the foregoing procedure for O(1/p) times we can obtain
all these strings (see Exercise 7.7).

Theorem 7.8 (Theorem 7.7, revisited): There ezxists a probabilistic oracle ma-
chine that, given parameters n,e and oracle access to any function B : {0,1}" —
{0,1}, halts after poly(n/e) steps and with probability at least 1/2 outputs a list of
all strings © € {0,1}™ that satisfy

1
Prrcoaye[B(r) = bz, r)] > 5 +e,

where b(x,r) denotes the inner-product mod 2 of x and r.

This machine can be modified such that, with high probability, its output list does
not include any string « such that Pr.cgo13=[B(r) = b(z,r)] < 1 + £.

Theorem 7.8 means that if given some information about x it is hard to recover
x, then given the same information and a random r it is hard to predict b(z,r).
This assertion is proved by the counter-positive (see Exercise 7.14). Indeed, the
foregoing statement is in the spirit of Theorem 7.7 itself, except that it refers to any
“information about z” (rather than to the value f(z)). To demonstrate the point,

280 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

let us rephrase the foregoing statement as follows: for every randomized process I1,

if given s it is hard to obtain I1(s) then given s and a random r it is hard to predict
b(IL(s),7).T

A coding theory perspective. Theorem 7.8 can be viewed as a list decoding
procedure for the Hadamard Code, where the Hadamard encoding of a string « €
{0, 1}" is the 2™-bit long string containing b(zx,r) for every r € {0,1}"™. In contrast
to standard decoding in which the task is recovering the unique information that is
encoded in the codeword that is closest to the given string, in list decoding the task
is recovering all strings having encoding that is at a specified distance from the
given string.® We mention that list decoding is applicable and valuable in the case
that the specified distance does not allow for unique decoding (i.e., the specified
distance is greater than half the distance of the code).

Applications of hard-core predicates. Turning back to hard-core predicates,
we mention that they play a central role in the construction of general-purpose pseu-
dorandom generators (see Section 8.2), commitment schemes and zero-knowledge
proofs (see Sections 9.2.2 and C.4.3), and encryption schemes (see Appendix C.5).

7.1.4 Reflections on hardness amplification

Let us take notice that something truly amazing happens in Theorems 7.5 and 7.7.
We are not talking merely of using an assumption to derive some conclusion; this is
common practice in Mathematics and Science (and was indeed done several times
in previous chapters, starting with Theorem 2.28). The thing that is special about
Theorems 7.5 and 7.7 (and we shall see more of this in Section 7.2 as well as in
Sections 8.2 and 8.3) is that a relatively mild intractability assumption is shown to
imply a stronger intractability result.

This strengthening of an intractability phenomenon (a.k.a hardness amplifi-
cation) takes place while we admit that we do not understand the intractability
phenomenon (because we do not understand the nature of efficient computation).
Nevertheless, hardness amplification is enabled by the use of the counter-positive,
which in this case is called a reducibility argument. At this point things look less
miraculous: a reducibility argument calls for the design of a procedure (i.e., a re-
duction) and a probabilistic analysis of its behavior. The design and analysis of
such procedures may not be easy, but it is certainly within the standard exper-
tise of computer science. The fact that hardness amplification is achieved via this
counter-positive is best represented in the statement of Theorem 7.8.

"Indeed, Theorem 7.7 is obtained as a special case by letting II(s) be uniformly distributed in
7).

8Further discussion of error-correcting codes and list-decoding is provided in Appendix E.1.

7.2. HARD PROBLEMS IN E 281

7.2 Hard Problems in E

As in Section 7.1, we start with the assumption P # NP and seek to use it to
our benefit. Again, we shall actually use a seemingly stronger assumption; here
the strengthening is in requiring worst-case hardness with respect to non-uniform
models of computation (rather than average-case hardness with respect to the
standard uniform model). Specifically, we shall assume that A/P cannot be solved
by (non-uniform) families of polynomial-size circuits; that is, AP is not contained
in P/poly (even not infinitely often).

Our goal is to transform this worst-case assumption into an average-case con-
dition, which is useful for our applications. Since the transformation will not yield
a problem in AP but rather one in £, we might as well take the seemingly weaker
assumption by which £ is not contained in P/poly (see Exercise 7.9). That is,
our starting point is actually that there exists an exponential-time solvable decision
problem such that any family of polynomial-size circuit fails to solve it correctly on
all but finitely many input lengths.®

A different perspective on our assumption is provided by the fact that £ con-
tains problems that cannot be solved in polynomial-time (cf.. Section 4.2.1). The
current assumption goes beyond this fact by postulating the failure of non-uniform
polynomial-time machines rather than the failure of (uniform) polynomial-time
machines.

Recall that our goal is to obtain a predicate (i.e., a decision problem) that is
computable in exponential-time but is inapproximable by polynomial-size circuits.
For sake of later developments, we formulate a general notion of inapproximability.

Definition 7.9 (inapproximability, a general formulation): We say that f : {0,1}* —
{0,1} is (S, p)-inapproximable if for every family of S-size circuits {Cr},en and all
sufficiently large n it holds that

PrICA(U) # (U] 2 22 (7.7

We say that f is T-inapproximable if it is (T,1 — (1/T))-inapprozimable.

We chose the specific form of Eq. (7.7) such that the “level of inapproximability”
represented by the parameter p will range in (0,1) and increase with the value
of p. Specifically, (almost-everywhere) worst-case hardness for circuits of size S
is represented by (S, p)-inapproximability with p(n) = 27"*! (i.e., in this case
Pr[C(U,) # f(U,)] > 2~ for every circuit C,, of size S(n)). On the other hand, no
predicate can be (S, p)-inapproximable for p(n) =1 — 27" even with S(n) = O(n)
(ie., PrlC(U,) = f(Uy,)] > 0.5+ 27! holds for some linear-size circuit; see
Exercise 7.10).

We note that Eq. (7.7) can be interpreted as an upper-bound on the correlation
of each adequate circuit with f (i.e., Eq. (7.7) is equivalent to E[x(C(Uy,), f(U,))] <

9Note that our starting point is actually stronger than assuming the existence of a function f
in £\ P/poly. Such an assumption would mean that any family of polynomial-size circuit fails
to compute f correctly on infinitely many input lengths, whereas our starting point postulates
failures on all but finitely many lengths.

282 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

1 — p(n), where x(o,7) = 1 if ¢ = 7 and x(o,7) = —1 otherwise).!® Thus, T-
inapproximability means that no family of size T circuits can correlate f better
than 1/T.

We note that the existence of a non-uniformly hard one-way function (as in
Definition 7.3) implies the existence of an exponential-time computable predicate
that is T-inapproximable for every polynomial T'. (For details see Exercise 7.24.)
However, our goal in this section is to establish this conclusion under a seemingly
weaker assumption.

On almost everywhere hardness. We highlight the fact that both our as-
sumptions and conclusions refer to almost everywhere hardness. For example, our
starting point is not merely that £ is not contained in P/poly (or in other circuit
size classes to be discussed), but rather that this is the case almost everywhere.
Note that by saying that f has circuit complexity exceeding S, we merely mean
that there are infinitely many n’s such that no circuit of size S(n) can compute f
correctly on all inputs of length n. In contrast, by saying that f has circuit com-
plexity exceeding S almost everywhere, we mean that for all but finite many n’s no
circuit of size S(n) can computes f correctly on all inputs of length n. (Indeed, it is
not known whether an “infinitely often” type of hardness implies a corresponding
“almost everywhere” hardness.)

The class £. Recall that £ denote the class of exponential-time solvable decision

problems (equivalently, exponential-time computable Boolean predicates); that is,

€ = U.DTIME(t.), where t.(n) el gen

The rest of this section. We start (in Section 7.2.1) with a treatment of as-
sumptions and hardness amplification regarding polynomial-size circuits, which
suffice for non-trivial derandomization of BPP. We then turn (in Section 7.2.2) to
assumptions and hardness amplification regarding exponential-size circuits, which
yield a “full” derandomization of BPP (i.e., BPP = P). In fact, both sections
contain material that is applicable to various other circuit-size bounds, but the
motivational focus is as stated.

Teaching note: Section 7.2.2 is advanced material, which is best left for independent
reading. Furthermore, for one of the central results (i.e., Lemma 7.23) only an outline
is provided and the interested reader is referred to the original paper [127].

7.2.1 Amplification wrt polynomial-size circuits
Our goal here is to prove the following result.

Theorem 7.10 Suppose that for every polynomial p there exists a problem in £
having circuit complexity that is almost-everywhere greater than p. Then there exist
polynomial-inapproximable Boolean functions in E; that is, for every polynomial p
there exists a p-inapprozimable Boolean function in &.

0Tndeed, E[x(X,Y)] =PriX=Y] —Pr[X#Y] =1 - 2Pr[X #Y].

7.2. HARD PROBLEMS IN E 283

Theorem 7.10 is used towards deriving a meaningful derandomization of BPP
under the aforementioned assumption (see Part 2 of Theorem 8.19). We present
two proofs of Theorem 7.10. The first proof proceeds in two steps:

1. Starting from the worst-case hypothesis, we first establish some mild level of
average-case hardness (i.e., a mild level of inapproximability). Specifically,
we show that for every polynomial p there exists a problem in & that is
(p,€)-inapproximable for e(n) = 1/n3.

2. Using the foregoing mild level of inapproximability, we obtain the desired
strong level of inapproximability (i.e., p’-inapproximability for every polyno-
mial p'). Specifically, for every two polynomials p; and p,, we prove that if the
function f is (p1,1/p2)-inapprozimable, then the function F(x1,...,Tyn)) =
69:(:"1)]‘(3:1-), where t(n) = n-pa(n) and Ty, ..., Tyn) € {0,1}", is p'-inapprozimable
for p'(t(n) - n) = p1(n)*D) /poly(t(n)). This claim is known as Yao's XOR
Lemma and its proof is far more complex than the proof of its information
theoretic analogue (discussed at the beginning of §7.2.1.2).

The second proof of Theorem 7.10 consists of showing that the construction em-
ployed in the first step, when composed with Theorem 7.8, actually yields the
desired end result. This proof will uncover a connection between hardness amplifi-
cation and coding theory. Our presentation will thus proceed in three corresponding
steps (presented in §7.2.1.1-7.2.1.3, and schematically depicted in Figure 7.2).

vialist decoding (7.2.1.3)

mild
_ Yao's XOR .
worst-case average-case Inappr ox.
HARDNESS HARDNESS 7212
derandomized

Yao's XOR (7.2.2)

Figure 7.2: Proofs of hardness amplification: organization

7.2.1.1 From worst-case hardness to mild average-case hardness

The transformation of worst-case hardness into average-case hardness (even in a
mild sense) is indeed remarkable. Note that worst-case hardness may be due to
a relatively small number of instances, whereas even mild forms of average-case
hardness refer to a very large number of possible instances.!! In other words, we
should transform hardness that may occur on a negligible fraction of the instances

HIndeed, worst-case hardness with respect to polynomial-size circuits cannot be due to a poly-
nomial number of instances, because a polynomial number of instances can be hard-wired into

284 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

into hardness that occurs on a noticeable fraction of the instances. Intuitively, we
should “spread” the hardness of few instances (of the original problem) over all (or
most) instances (of the transformed problem). The counter-positive view is that
computing the value of typical instances of the transformed problem should enable
solving the original problem on every instance.

The aforementioned transformation is based on the self-correction paradigm,
to be reviewed first. The paradigm refers to functions g that can be evaluated
at any desired point by using the value of ¢ at a few random points, where each
of these points is uniformly distributed in the function’s domain (but indeed the
points are not independently distributed). The key observation is that if g(z) can
be reconstructed based on the value of g at ¢ such random points, then such a
reconstruction can tolerate a 1/3t fraction of errors (regarding the values of g).
Thus, if we can correctly obtain the value of g on all but at most a 1/3t fraction
of its domain, then we can probabilistically recover the correct value of g at any
point with very high probability. It follows that if no probabilistic polynomial-time
algorithm can correctly compute g in the worst-case sense, then every probabilistic
polynomial-time algorithm must fail to correctly compute g on more than a 1/3t
fraction of its domain.

The archetypical example of a self-correctable function is any m-variate poly-
nomial of individual degree d over a finite field F' such that |F| > dm + 1. The
value of such a polynomial at any desired point x can be recovered based on the
values of dm + 1 points (other than z) that reside on a random line that passes
through x. Note that each of these points is uniformly distributed in F™, which is
the function’s domain. (For details, see Exercise 7.11.)

Recall that we are given an arbitrary function f € £ that is hard to compute
in the worst-case. Needless to say, this function is not necessarily self-correctable
(based on relatively few points), but it can be extended into such a function.
Specifically, we extend f : [N] — {0, 1} (viewed as f : [NY/™]™ — {0,1}) to an m-
variate polynomial of individual degree d over a finite field F' such that |F| > dm+1
and (d + 1)™ = N. Intuitively, in terms of worst-case complexity, the extended
function is at least as hard as f, which means that it is hard (in the worst-case).
The point is that the extended function is self-correctable and thus its worst-case
hardness implies that it must be at least mildly hard in the average-case. Details
follow.

Construction 7.11 (multi-variate extension)'?: For any function f, : {0,1}" —
{0,1}, a finite field F', a set H C F and an integer m such that |[H|™ = 2™ and
|F| > (JH| — 1)m + 1, we consider the function f, : F™ — F defined as the m-
variate polynomial of individual degree |H|—1 that extends f, : H™ — {0,1}. That

such circuits. Still, for all we know, worst-case hardness may be due to a small super-polynomial
number of instances (e.g., nlog2n instances). In contrast, even mild forms of average-case hardness
must be due to an exponential number of instances (i.e., 2™ /poly(n) instances).

12The algebraic fact underlying this construction is that for any function f : H™ — F there
exists a unique m-variate polynomial f : F™ — F of individual degree |H| —1 such that for every
x € H™ it holds that f(:c) = f(«). This polynomial is called a multi-variate polynomial extension
of f, and it can be found in poly(|H|™ log |F’|)-time. For details, see Exercise 7.12.

7.2. HARD PROBLEMS IN E 285

is, we identify {0,1}™ with H™, and define fn as the unique m-variate polynomaial
of individual degree |H| — 1 that satisfies fn(z) = fn(x) for every x € H™, where
we view {0,1} as a subset of F.

Note that fn can be evaluated at any desired point, by evaluating f, on its entire
domain, and determining the unique m-variate polynomial of individual degree
|H|—1 that agrees with f,, on H™ (see Exercise 7.12). Thus, for f : {0,1}* — {0, 1}
in &, the corresponding f (defined by separately extending the restriction of f to
each input length) is also in £. For the sake of preserving various complexity
measures, we wish to have |F™| = poly(2"), which leads to setting m = n/log, n
(yielding |H| = n and |F| = poly(n)). In particular, in this case f, is defined over
strings of length O(n). The mild average-case hardness of f follows by the forgoing
discussion. In fact, we state and prove a more general result.

Theorem 7.12 Suppose that there exists a Boolean function f in € having cir-
cust complexity that is almost-everywhere greater than S. Then, there exists an
exponential-time computable function f : {0,1}* — {0,1}* such that |f(z)| < |z|
and for every family of circuit {C),},cn of size S'(n') = S(n'/O(1))/poly(n') it
holds that Pr[C!, (U,) # F(U.)] > (1/n')2. Furthermore, f does not depend on S.

Theorem 7.12 seems to complete the first step of the proof of Theorem 7.10, ex-
cept that we desire a Boolean function rather than a function that merely does
not stretch its input. The extra step of obtaining a Boolean function that is
(poly(n),n~3)-inapproximable is taken in Exercise 7.13.13 Essentially, if f is hard
to compute on a noticeable fraction of its inputs then the Boolean predicate that
on input (z,i) returns the i*" bit of f(z) must be mildly inapproximable.

Proof Sketch: Given f as in the hypothesis and for every n € N, we consider the
restriction of f to {0,1}", denoted f,, and apply Construction 7.11 to it, while
using m = n/logn, |H| = n and n? < |F| = poly(n). Recall that the resulting
function f, maps strings of length n’ = log, |[F™| = O(n) to strings of length
log, |F'| = O(log n). Following the foregoing discussion, we shall show that circuits
that approximate fn too well yield circuits that compute f,, correctly on each input.
Using the hypothesis regarding the size of the latter, we shall derive a lower-bound
on the size of the former. The actual (reducibility) argument proceeds as follows.
We fix an arbitrary circuit C, that satisfies

Pr[C;L’(Un’) = fn(Un’)] >1- (]_/’I’L,)Z >1- (1/3t)7 (78)

where t & (JH| — 1)m + 1 = o(n?) exceeds the total degree of f,. Using the
self-correction feature of f,, we observe that by making ¢ oracle calls to C!, we can

probabilistically recover the value of (f,, and thus of) f, on each input, with proba-
bility at least 2/3. Using error-reduction and (non-uniform) derandomization as in

13 A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12
actually establishes an error lower-bound of Q((logn')/(n')?) and that |f(z)| = O(log |z|).

286 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

the proof of Theorem 6.3,'* we obtain a circuit of size n® - |C!,| that computes f,.
By the hypothesis n?-|C!,| > S(n), and so |C!,| > S(n'/O(1))/poly(n’). Recalling
that C7, is an arbitrary circuit that satisfies Eq. (7.8), the theorem follows. [

Digest. The proof of Theorem 7.12 is actually a worst-case to average-case re-
duction. That is, the proof consists of a self-correction procedure that allows for
the evaluation of f at any desired n-bit long point, using oracle calls to any circuit
that computes f correctly on a 1 — (1/n")? fraction of the n'-bit long inputs. We
recall that if f € £ then f € &, but we do not know how to preserve the complexity
of f in case it is in A"P. (Various indications to the difficulty of a worst-case to
average-case reduction for NP are known; see, e.g., [42].)

We mention that the ideas underlying the proof of Theorem 7.12 have been
applied in a large variety of settings. For example, we shall see applications of
the self-correction paradigm in §9.3.2.1 and in §9.3.2.2. Furthermore, in §9.3.2.2
we shall re-encounter the very same multi-variate extension used in the proof of
Theorem 7.12.

7.2.1.2 Yao’s XOR Lemma

Having obtained a mildly inapproximable predicate, we wish to obtain a strongly
inapproximable one. The information theoretic context provides an appealing sug-
gestion: Suppose that X is a Boolean random variable (representing the mild
inapproximability of the aforementioned predicate) that equals 1 with probability
e. Then XORing the outcome of n/e independent samples of X yields a bit that
equals 1 with probability 0.5 & exp(—Q(n)). It is tempting to think that the same
should happen in the computational setting. That is, if f is hard to approximate
correctly with probability exceeding 1 — ¢ then XORing the output of f on n/e
non-overlapping parts of the input should yield a predicate that is hard to approx-
imate correctly with probability that is non-negligibly higher than 1/2. The latter
assertion turns out to be correct, but (even more than in Section 7.1.2) the proof
of the computational phenomenon is considerably more complex than the analysis
of the information theoretic analogue.

Theorem 7.13 (Yao’s XOR Lemma): There ezxist a universal constant ¢ > 0 such
that the following holds. If, for some polynomials py; and ps, the Boolean function f
is (p1,1/p2)-inapprozimable, then the function F(xy, ..., Tyn)) = 692(:”1)]”(%), where
t(n) = n-pa(n) and w1, ..., 44, € {0,1}", is p'-inapprozimable for p'(t(n) -n) =
p1(n)¢/t(n)'/¢. Furthermore, the claim holds also if the polynomials py and py are
replaced by any integer functions.

LM Pirst, we apply the foregoing probabilistic procedure O(n) times and take a majority vote.
This yields a probabilistic procedure that, on input = € {0,1}", invokes C’, for o(n?) times and
computes f(x) correctly with probability greater than 1 — 27 ™. Finally, we just fix a sequence
of random choices that is good for all 2" possible inputs, and obtain a circuit of size n® - |C:L,\

that computes f, correctly on every n-bit input.

7.2. HARD PROBLEMS IN E 287

Combining Theorem 7.12 (and Exercise 7.13), and Theorem 7.13, we obtain a proof
of Theorem 7.10. (Recall that an alternative proof is presented in §7.2.1.3.)

We note that proving Theorem 7.13 seems more difficult than proving Theo-
rem 7.5 (i.e., the amplification of one-way functions), due to two issues. Firstly,
unlike in Theorem 7.5, the computational problems are not in PC and thus we
cannot efficiently recognize correct solutions to them. Secondly, unlike in Theo-
rem 7.5, solutions to instances of the transformed problem do not correspond of
the concatenation of solutions for the original instances, but are rather a function
of the latter that losses almost all the information about the latter. The proof of
Theorem 7.13 presented next deals with each of these two difficulties separately.

Several different proofs of Theorem 7.13 are known. As just stated, the proof
that we present is conceptually appealing because it deal separately with two unre-
lated difficulties. Furthermore, this proof benefits most from the material already
presented in Section 7.1. The proof proceeds in two steps:

1. First we prove that the corresponding “direct product” function P(x1, ..., Zyn)) =
(f(w1), ..., f(my(n))) is difficult to compute in a strong average-case sense.

2. Next we establish the desired result by an application of Theorem 7.8.

Thus, given Theorem 7.8, our main focus is on the first step, which is of independent
interest (and is thus generalized from Boolean functions to arbitrary ones).

Theorem 7.14 (The Direct Product Lemma): Let p; and py be two polynomials,
and suppose that f : {0,1}* — {0,1}* is such that for every family of p;-size
circuits, {Cn},en, and all sufficiently large n € N, it holds that Pr[C,(U,) #
f(UR)] > 1/p2(n). Let P(z1,...,Ty(n)) = (f(71), ., [(Te(n))), where T1,..., 24(n) €
{0,1}™ and t(n) = n - pa(n). Then, for any ' : N — [0,1], setting p' such that
p'(t(n) - n) = pi(n)/poly(t(n)/e'(t(n) - n)), it holds that every family of p'-size
circuits, {C),} e, satisfies Pr[C) (Un) = P(Un)| < €'(m). Furthermore, the
claim holds also if the polynomials py and py are replaced by any integer functions.

In particular, for an adequate constant ¢ > 0, selecting &'(¢(n) - n) = p1(n) ¢

obtain p'(t(n) - n) = py(n)/t(n)*/¢, and so &'(m) < 1/p'(m).

, we

Deriving Theorem 7.13 from Theorem 7.14. Theorem 7.13 follows from
Theorem 7.14 by considering the function P'(z1, ..., Ty(n),7) = b(f(w1) -+ f(T4(n)), 7),
where f is a Boolean function, r € {0,1}*™ and b(y,r) is the inner-product
modulo 2 of the ¢(n)-bit long strings y and r. Note that, for the corresponding
P, we have P'(71,...,Zyn),7) = b(P(Z1,...,T4(n)),7), Whereas F(z1,...,Tyn)) =
P'(x1, . Ty(n) 14")). Intuitively, the inapproximability of P’ should follow from
the strong average-case hardness of P (via Theorem 7.8), whereas it should be pos-
sible to reduce the approximation of P’ to the approximation of F' (and thus derive
the desired inapproximability of F'). Indeed, this intuition does not fail, but detail-
ing the argument seems a bit cumbersome (and so we only provide the clues here).
Assuming that f is (p1,1/p2)-inapproximable, we first apply Theorem 7.14 (with
e'(t(n) -m) = p1(n)~¢) and then apply Theorem 7.8 (see Exercise 7.14), inferring

288 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

that P’ is p/-inapproximable for p'(t(n) - n) = p1(n)?™) /poly(t(n)). The less obvi-
ous part of the argument is reducing the approximation of P’ to the approximation
of F'. The key observation is that

P21,y Ty, 1) = F21, 000 20m) @ @D f(21) (7.9)

2r; =0

where z; = x; if 1, = 1 and is an arbitrary n-bit long string otherwise. Now, if
somebody provides us with samples of the distribution (U,, f(U,)), then we can
use these samples in the role of the pairs (z;, f(z;)) for the indices 7 that satisfy
r; = 0. Considering a best choice of such samples (i.e., one for which we obtain the
best approximation of P'), we obtain a circuit that approximates P’ (by using a
circuit that approximates F' and the said choices of samples). (The details are left
for Exercise 7.17.) Theorem 7.13 follows.

Proving Theorem 7.14. Note that Theorem 7.14 is closely related to Theo-
rem 7.5; see Exercise 7.20 for details. This suggests employing an analogous proof
strategy; that is, converting circuits that violate the theorem’s conclusion into cir-
cuits that violate the theorem’s hypothesis. We note, however, that things were
much simpler in the context of Theorem 7.5: there we could (efficiently) check
whether or not a value contained in the output of the circuit that solves the direct-
product problem constitutes a correct answer for the corresponding instance of the
basic problem. Lacking such an ability in the current context, we shall have to
use such values more carefully. Loosely speaking, we shall take a weighted ma-
jority vote among various answers, where the weights reflect our confidence in the
correctness of the various answers.

We establish Theorem 7.14 by applying the following lemma that provides quan-
titative bounds on the feasibility of computing the direct product of two functions.
In this lemma, {Y, },,en and {Z,, },,, v are independent probability ensembles such
that Yo, Z, € {0,1}™, and X,, = (Yy(n), Zn—¢(n)) for some function £: N — N.
The lemma refers to the success probability of computing the direct product func-
tion F':{0,1}* — {0,1}* defined by F(yz) = (Fi(y), F>(2)), where |y| = ¢(Jyz|),
when given bounds on the success probability of computing F; and F» (separately).
Needless to say, these probability bounds refer to circuits of certain sizes. We stress
that the lemma is not symmetric with respect to the two functions: it guarantees a
stronger (and in fact lossless) preservation of circuit sizes for one of the functions
(which is arbitrarily chosen to be Fy).

Lemma 7.15 (Direct Product, a quantitative two argument version): For {Y,,},
{Zn}, Fi, Fa, £, {X,,} and F as in the foregoing, let pi(-) be an upper-bound on
the success probability of s1(-)-size circuits in computing Fy over {Y,,}. That is,
for every such circuit family {Cy,}

PrCom(Yim)=F1(Ym)] < pr(m).

Likewise, suppose that p2(-) is an upper-bound on the probability that so(-)-size
circuits compute Fy over {Z,,}. Then, for every function ¢ : N— R, the function

7.2. HARD PROBLEMS IN E 289

p defined as
p(n) = p1(E(n)) - pa(n — €(n)) + e(n)

is an upper-bound on the probability that families of s(-)-size circuits correctly com-
pute F' over {X,,}, where

s(n) = min {Sl(ﬁ(n)) , M}

poly(n/e(n))

Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, which
capitalizes on the highly quantitative form of Lemma 7.15 and in particular on the
fact that no loss is incurred for one of the two functions that are used. We first
detail this argument, and next establish Lemma 7.15 itself.

Deriving Theorem 7.14 from Lemma 7.15. We write P(z1, 2, ..., Ty(n)) as
P (g1, 2o, ..., Ty(n)), Where PO(zy, ... x5) = (f(x1), ..., f(2:)) and PO (zq, ..., 2;)
(P Y (xy,...,2; 1), f(x;)). For any function e, we shall prove by induction on i
that circuits of size s(n) = py(n)/poly(t(n)/e(n)) cannot compute P (U;.,,) with
success probability greater than (1—(1/p2(n))'+(i—1)-2(n), where p; and p are as
in Theorem 7.14. Thus, no s(n)-size circuit can compute P(t("))(Ut(n).n) with suc-
cess probability greater than (1—(1/p2(n))™) +(t(n)—1)-e(n) = exp(—n)+(t(n)—
1)-e(n). Recalling that this is established for any function e, Theorem 7.14 follows
(by using e(n) = €'(t(n) -n)/t(n), and observing that the setting s(n) = p'(¢(n) -n)
satisfies s(n) = py(n)/poly(t(n)/e(n))).

Turning to the induction itself, we first note that its basis (i.e., ¢ = 1) is
guaranteed by the theorem’s hypothesis (i.e., the hypothesis of Theorem 7.14
regarding f). The induction step (i.e., from ¢ to ¢ + 1) will be proved by us-
ing Lemma 7.15 with F; = P® and F, = f, along with the parameter setting
AV () = (1= (1/pa(n)) + (i = 1) -£(n), s (i n) = s(n), py’(n) = 1 (1/pa(n))
and sgz) (n) = poly(n/e(n)) - s(n) = p1(n). Details follow.

Note that the induction hypothesis (regarding P(i)) implies that F) satisfies the
hypothesis of Lemma 7.15 (w.r.t size ng) and success rate pgl)), whereas the theo-
rem’s hypothesis regarding f implies that F, satisfies the hypothesis of Lemma 7.15

(w.r.tsize s and success rate p\)). Thus, F' = P(i+D) satisfies the lemma’s conclu-

sion with respect to circuits of size min(sgl)(i-n), séz)(n)/poly(n/s(n))) = s(n) and
success rate p\” (i-n) - p{”) (n) + £(n) which is upper-bounded by (1— (1/ps(n))i+! +
i-&(n). This completes the induction step.

We stress the fact that we used induction for a non-constant number of steps,
and that this was enabled by the highly quantitative form of the inductive claim and
the small loss incurred by the inductive step. Specifically, the size bound did not
decrease during the induction (although we could afford a small additive loss in each
step, but not a constant factor loss). Likewise, the success rate suffered an additive
increase of €(n) in each step, which was accommodated by the inductive claim.
Thus, assuming the correctness of Lemma 7.15, we have established Theorem 7.14.

O

290 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Proof of Lemma 7.15: Proceeding (as usual) by the contrapositive, we consider
a family of s(-)-size circuits {Cy},,en that violates the lemma’s conclusion; that is,
Pr[Cn(X,) = F(X,)] > p(n). We will show how to use such circuits in order to
obtain either circuits that violate the lemma’s hypothesis regarding F} or circuits
that violate the lemma’s hypothesis regarding F>. Towards this end, it is instructive
to write the success probability of C,, in a conditional form, while denoting the 7*!
output of Cn(x) by Cn(x)z (i'e-; Cn(w) = (Cn(x)hcn(w)z))

Pr[cn(}fl(n)a anl(n)) :F(Ye(n), anl(n))]
= Pr[Cn(n(n)a Z’nfl(n))l :Fl ()/l(n))]
Pr(Cn(Yen), Zn—t(n))2 = F2(Zn—t(n)) | Cr(Ye(n), Zn—t(n))1 =F1(Ye(n))]-

The basic idea is that if the first factor is greater than p;(¢(n)) then we imme-
diately derive a circuit (i.e., C},(y) = Cn(¥y, Zn—g(n))1) contradicting the lemma’s
hypothesis regarding F7, whereas if the second factor is significantly greater than
p2(n — £(n)) then we can obtain a circuit contradicting the lemma’s hypothesis
regarding F». The treatment of the latter case is indeed not obvious. The idea
is that a sufficiently large sample of (Yy(n), F1(Yy(n))), which may be hard-wired
into the circuit, allows using the conditional probability space (in such a circuit)
towards an attempt to approximate F,. That is, on input z, we select uniformly a
string y satisfying Cp,(y, 2z)1 = Fi(y) (from the aforementioned sample), and out-
put Cp(y, z)2. For a fixed z, sampling of the conditional space (i.e., y’s satisfying
Cn(y,2)1 = F1(y)) is possible provided that Pr[C,,(Yy(n), 2)1 = F1(Yi(n))] holds with
noticeable probability. The last caveat motivates a separate treatment of z’s having
a noticeable value of Pr[Cy,(Yy(n), 2)1 = F1(Yy(n))] and of the rest of 2’s (which are
essentially ignored). Details follow.

Let us first simplify the notations by fixing a generic » and using the abbre-
viations C = Cp,, ¢ = ¢(n), £ = £€(n), Y =Y, and Z = Y,,_,. We call z good
it PriC(Y,2)1 = Fi(Y)] > ¢/2 and let G be the set of good z’s. Next, rather
than considering the event C(Y,Z) = F(Y, Z), we consider the combined event
CY,Z)=F(Y,Z) A Z€@, which occurs with almost the same probability (up to
an additive error term of £/2). This is the case because, for any z ¢ G, it holds
that

PriC(Y,z)=F(Y,z)] < PriC(Y,z)1=F1(Y)] < ¢/2

and thus 2’s that are not good do not contribute much to Pr[C(Y,Z)=F(Y, Z)];
that is, Pr[C(Y, Z)=F(Y,Z) A Z €G] is lower-bounded by Pr[C(Y, Z)=F (Y, Z)] —
e/2. Using Pr[C(Y,2)=F(Y, z)] > p(n) = p1(€) - p2(n — €) + €, we have

PrC(Y, Z)=F(Y,Z) A Z€G] > pr(0) - pa(n — €) + % (7.10)
We proceed according to the forgoing outline, first showing that if Pr[C(Y, Z); =
F1(Y)] > p1(£) then we immediately derive circuits violating the hypothesis con-
cerning F). Actually, we prove something stronger (which we will actually need for
the other case).

Claim 7.15.1: For every z, it holds that Pr[C(Y, 2)1 =F1(Y)] < p1(£).

7.2. HARD PROBLEMS IN E 291

Proof: Otherwise, using any z € {0,1}"* that satisfies Pr[C(Y,2);, = F1(Y)] >
p1(£), we obtain a circuit C'(y) def C(y, z)1 that contradicts the lemma’s hypothesis
concerning F}. O

Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma’s
hypothesis concerning F5, and doing so we complete the proof of the lemma.

Claim 7.15.2: There exists a circuit C" of size ss(n — £) such that

PrC(Y,2)=F(Y,Z) A Z€G] =
p1(€) 2

PriC"(2)=F(Z2))
> pa(n—10)

Proof: The second inequality is due to Eq. (7.10), and thus we focus on establish-
ing the first inequality. We construct the circuit C" as suggested in the foregoing

outline. Specifically, we take a poly(n/e)-large sample, denoted S, from the distri-

bution (Y, F1(Y)) and let C"(z) = C(y, z)2, where (y,v) is a uniformly selected

among the elements of S for which C(y, z); = v holds. Details follow.

Let m be a sufficiently large number that is upper-bounded by a polynomial
in n/e, and consider a random sequence of m pairs, generated by taking m in-
dependent samples from the distribution (Y, Fi(Y)). We stress that we do not
assume here that such a sample, denoted S, can be produced by an efficient (uni-
form) algorithm (but, jumping ahead, we remark that such a sequence can be
fixed non-uniformly). For each z € G C {0,1}" ¢, we denote by S, the set of
pairs (y,v) € S for which C(y,z); = v. Note that S, is a random sample of the
residual probability space defined by (Y, F1(Y)) conditioned on C(Y,z2); = F1(Y).
Also, with overwhelmingly high probability, |S.| = Q(n/e?), because z € G im-
plies Pr[C(Y,z)1 =F1(Y)] > ¢/2 and m = Q(n/e?).!> Thus, for each z € G, with
overwhelming probability (taken over the choices of S), the sample S, provides
a good approximation to the conditional probability space.!® In particular, with
probability greater than 1 — 27", it holds that

M) €5 L0 2BEN 5 o =R | C =R - 5.

(7.11)

Thus, with positive probability, Eq. (7.11) holds for all z € G C {0,1}"~*. The

circuit C" computing F is now defined as follows. The circuit will contain a set

S ={(yi,vi) 14 =1,....,m} (ie., S is “hard-wired” into the circuit C"") such that
the following two conditions hold:

1. For every i € [m] it holds that v; = Fi (y;).

2. For each good z the set S, = {(y,v)€S : C(y, z)1 =v} satisfies Eq. (7.11).

(In particular, S, is not empty for any good z.)

15Note that the expected size of S, is m -¢/2 = Q(n/e?). Using Chernoff Bound, we get
Prs[|Sz| < me/4] = exp(—Q(n/e2)) <277,

OFor T, = {y : C(y,z)1 = Fi(y)}, we are interested in a sample S’ of 7. such that
{y € S’ : C(y,z)2=F>(z)}|/|S'| approximates Pr[C(Y,z)2 = F2(z)|Y € T.] up-to an additive
term of £/2. Using Chernoff Bound again, we note that a random S’ C T, of size 2(n/c?)
provides such an approximation with probability greater than 1 —27™.

292 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

On input z, the circuit C" first determines the set S,, by running C for m times and
checking, for each ¢ = 1,...,m, whether or not C(y;,z) = v;. In case S, is empty,
the circuit returns an arbitrary value. Otherwise, the circuit selects uniformly a
pair (y,v) € S, and outputs C(y, z)2. (The latter random choice can be eliminated
by an averaging argument; see Exercise 7.16.) Using the definition of C" and
Eq. (7.11), we have:

PriC"(Z)=Fy(2)] > Y PriZ=2z]-Pr[C"(z)=Fy(2)]

2€G
_ 7=, K@:v) €. : Cly,2): = Fo(2)}]
- 2 Pl -]

> Y Priz=z] (PO, 22 =Fo(2) | OV, 2) =R (V)] - 5)

ze@

—.. PriC(Y,2)2=Fy(2) A C(Y, 21 =F1(Y)]
Y piz=: (PAC(Y, 2 = Fi (V)

zeCG

Next, using Claim 7.15.1, we have:

"oy L PI[C(Y,2)=F(Y,2)] e
PriC"(Z2)=Fx(Z)] = (;Pr[Z_z]- 0) - <
_ PIC(YV,Z)=F(Y,Z) A ZeG] ¢
B p1(€) 2

Finally, using Eq. (7.10), the claim follows. O
This completes the proof of the lemma. [

Comments. Firstly, we wish to call attention to the care with which an inductive
argument needs to be carried out in the computational setting, especially when a
non-constant number of inductive steps is concerned. Indeed, our inductive proof
of Theorem 7.14 involves invoking a quantitative lemma (i.e., Lemma 7.15) that
allows to keep track of the relevant quantities (e.g., success probability and circuit
size) throughout the induction process. Secondly, we mention that Lemma 7.15
(as well as Theorem 7.14) has a uniform complexity version that assumes that one
can efficiently sample the distribution (Yy(n), F1(Yy(n))) (resp., (Un, f(Un))). For
details see [101]. Indeed, a good lesson from the proof of Lemma 7.15 is that non-
uniform circuits can “effectively sample” any distribution. Lastly, we mention that
Theorem 7.5 (the amplification of one-way functions) and Theorem 7.13 (Yao’s
XOR Lemma) also have (tight) quantitative versions (see, e.g., [90, Sec. 2.3.2] and
[101, Sec. 3], respectively).

7.2.1.3 List decoding and hardness amplification

Recall that Theorem 7.10 was proved in §7.2.1.1-7.2.1.2, by first constructing a
mildly inapproximable predicate via Construction 7.11, and then amplifying its

2

)

7.2. HARD PROBLEMS IN E 293

hardness via Yao’s XOR Lemma. In this subsection we show that the construc-
tion used in the first step (i.e., Construction 7.11) actually yields a strongly in-
approximable predicate. Thus, we provide an alternative proof of Theorem 7.10.
Specifically, we show that a strongly inapproximable predicate (as asserted in The-
orem 7.10) can be obtained by combining Construction 7.11 (with a suitable choice
of parameters) and the inner-product construction (of Theorem 7.8). The main
ingredient of this argument is captured by the following result.

Proposition 7.16 Suppose that there exists a Boolean function f in € having cir-
cuit complexity that is almost-everywhere greater than S, and let ¢ : N — [0,1] sat-
isfying e(n) > 2™, Let f,, be the restriction of f to {0,1}", and let f,, be the func-
tion obtained from f, when applying Construction 7.11'7 with |H| = n/e(n) and
|F| = |H|?. Then, the function f : {0,1}* — {0,1}*, defined by f(z) = fm/g(:ﬂ),
is computable in exponential-time and for every family of circuit {C], }, cn of size
S'(n') = poly(e(n'/3)/n') - S(n'/3) it holds that Pr[C", (Un) = f(Un)] < £'(n') <
e(n'/3).

Before turning to the proof of Proposition 7.16, let us describe how it yields an
alternative proof of Theorem 7.10. Firstly, for some v > 0, Proposition 7.16 yields
an exponential-time computable function f such that |f(z)| < |z| and for ev-
ery family of circuit {C], }, en of size S'(n') = S(n'/3)7/poly(n') it holds that
Pr[C!, (Up) = f(Un)] < 1/8'(n'). Combining this with Theorem 7.8 (cf. Ex-
ercise 7.14), we infer that P(z,r) = b(f(z),r), where |r| = |f(z)] < |z, is S"-
inapproximable for S”(n'") = S'(n" /2)?(") /poly(n''). In particular, for every poly-
nomial p, we obtain a p-inapproximable predicate in £ by applying the foregoing
with S(n) = poly(n,p(n)). Thus, Theorem 7.10 follows.

Teaching note: The following material is very advanced and is best left for indepen-
dent reading. Furthermore, its understanding requires being comfortable with basic

notions of error-correcting codes (as presented in Appendix E.1).

Proposition 7.16 is proven by observing that the transformation of f,, to fn
counstitutes a “good” code (see §E.1.1.4) and that any such code provides a worst-
case to (strongly) average-case reduction. We start by defining the class of codes
that suffices for the latter reduction, while noting that the code underlying the
mapping f, — fn is actually stronger than needed.

Definition 7.17 (efficient codes supporting implicit decoding): For fized functions
¢,0: N - Nand o : N — [0,1], the mapping T : {0,1}* — {0,1}* is said to
be efficient and supports implicit decoding with parameters ¢, ¢, « if it satisfies the
following two conditions:

I7Recall that in Construction 7.11 we have |H|™ = 2™, which may yield a non-integer m if we
insist on |H| = n/e(n). This problem was avoided in the proof of Theorem 7.12 (where |H| =n
was used), but is more acute in the current context because of € (e.g., we may have e(n) = 2=27/7),
Thus, we should either relax the requirement |H|™ = 27 (e.g., allow 2" < |H|™ < 22™) or relax
the requirement |H| = n/e(n). However, for the sake of simplicity, we ignore this issue in the
presentation.

294 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

1. Encoding (or efficiency): The mapping I is polynomial-time computable.

It is instructive to view I' as mapping N-bit long strings to sequences of
length £(N) over [¢(N)], and to view each (codeword) T'(z) € [q(|z])]*I=D as
a mapping from [€(|z])] to [g(|x])].

2. Decoding (in implicit form): There ezists a polynomial p such that the fol-
lowing holds. For every w:[{(N)]— [g(N)] and every x € {0,1}" such that
['(z) is (1 — a(N))-close to w, there exists an oracle-aided'® circuit C of size
p((log N)/a(N)) such that, for every i € [N], it holds that C*(i) equals the
it bit of x.

The encoding condition implies that ¢ is polynomially bounded. The decoding
condition refers to any I'-codeword that agrees with the oracle w : [¢{(N)] — [g(V)]
on an «(N) fraction of the £(N) coordinates, where a(N) may be very small.
We highlight the non-triviality of the decoding condition: There are N bits of
information in z, while the size of the circuit C is only p((log N)/a(N)) and yet C
should be able to recover any desired entry of z by making queries to w, which may
be a highly corrupted version of I'(x). Needless to say, the number of queries made
by C is upper-bounded by its size (i.e.,p((log N)/a(N))). On the other hand, the
decoding condition does not refer to the complexity of obtaining the aforementioned
oracle-aided circuits.

Let us relate the transformation of f,, to fn, which underlies Proposition 7.16,
to Definition 7.17. We view f,, as a binary string of length N = 2™ (representing
the truth-table of f,, : H™ — {0,1}) and analogously view fn:F™ — F as an
element of FI¥1™ = FN° (or as a mapping from [N3] to [|[F|]).1* Recall that the
transformation of f,, to fn is efficient. We mention that this transformation also
supports implicit decoding with parameters q,f,a such that £(N) = N3, a(N) =
e(n), and q(N) = (n/e(n))3, where N = 2. The latter fact is highly non-trivial,
but establishing it is beyond the scope of the current text (and the interested reader
is referred to [217]).

We mention that the transformation of f, to fn enjoys additional features,
which are not required in Definition 7.17 and will not be used in the current context.
For example, there are at most O(1/a(2")?) codewords (i.e., f,’s) that are (1 —
a(2™))-close to any fixed w : [¢(2™)] — [g(2™)], and the corresponding oracle-aided
circuits can be constructed in probabilistic p(n/a(2"))-time.2’ These results are

80racle-aided circuits are defined analogously to oracle Turing machines. Alternatively, we
may consider here oracle machines that take advice such that both the advice length and the
machine’s running time are upper-bounded by p((log N)/a(N)). The relevant oracles may be
viewed either as blocks of binary strings that encode sequences over [¢(IN)] or as sequences over
[g(N)]. Indeed, in the latter case we consider non-binary oracles, which return elements in [g(N)].

YRecall that N = 2" = |H|™ and |F| = |H|?. Hence, |F|™ = N3.

20T he construction may yield also oracle-aided circuits that compute the decoding of codewords
that are almost (1 — «(2™))-close to w. That is, there exists a probabilistic p(n/a(2™))-time
algorithm that outputs a list of circuits that, with high probability, contains an oracle-aided
circuit for the decoding of each codeword that is (1 — @(2™))-close to w. Furthermore, with high
probability, the list contains only circuits that decode codewords that are (1 — «(2™)/2)-close to
w.

7.2. HARD PROBLEMS IN E 295

termed “list decoding with implicit representations” (and we refer the interested
reader again to [217]).

Our focus is on showing that efficient codes that supports implicit decoding
suffice for worst-case to (strongly) average-case reductions. We state and prove a

general result, noting that in the special case of Proposition 7.16 ¢, = fn (and
((2m) = 23m).

Theorem 7.18 Suppose that there exists a Boolean function f in £ having cir-
cuit complexity that is almost-everywhere greater than S, and let ¢ : N — [0,1].
Consider a polynomial £ : N — N such that n — log, £(2") is a 1-1 map of the
integers, and let m(n) = log, £(2"); e.g., if {(N) = N3 then m(n) = 3n. Suppose
that the mapping I' : {0,1}* — {0,1}* is efficient and supports implicit decoding
with parameters q,, o such that a(N) = e(|logy, N|). Define g, : [£(2")] — [¢(2™)]
such that g, (i) equals the i*™ element of T((fn)) € [q(2™)]*®"), where (f,) denotes
the 2™-bit long description of the truth-table of f,. Then, the function g : {0,1}* —
{0,1}*, defined by g(z) = gm-1(j-))(2), is computable in exponential-time and for
every family of circuit {C!,}, cn of size S'(n') = poly(e(m~t(n'))/n')-S(m~1(n'))
it holds that Pr[C!,(Uy) = g(Up)] < €'(n') = e(m~t(n')).

Proof Sketch: First note that we can generate the truth-table of f,, in exponential-
time, and by the encoding condition of T" it follows that g, can be evaluated in
exponential-time. The average-case hardness of ¢ is established via a reducibil-
ity argument as follows. We consider a circuit C' = CJ, of size S’ such that
Pr[C!,(Up) = g(Un)] < €'(n'), let n = m™*(n'), and recall that &'(n') = e(n) =
a(2"). Then, C' : {0,1}" — {0,1} (viewed as a function) is (1 — a(2"))-close to
the function g,, which in turn equals I'((f,,)). The decoding condition of I" asserts
that we can recover each bit of (f,) (i.e., evaluate f,) by an oracle-aided circuit
D of size p(n/a(2™)) that uses (the function) C’ as an oracle. Combining (the
circuit C') with the oracle-aided circuit D, we obtain a (standard) circuit of size
p(n/a(2™)) - S'(n') < S(n) that computes f,,. The theorem follows (i.e., the viola-
tion of the conclusion regarding ¢ implies the violation of the hypothesis regarding

=

Advanced comment. For simplicity, we formulated Definition 7.17 in a crude
manner that suffices for the proving Proposition 7.16, where ¢(IN) = ((logy N)/a(N))3.
The issue is the existence of codes that satisfy Definition 7.17: In general, such
codes may exist only when using a more careful formulation of the decoding condi-
tion that refers to codewords that are (1 — ((1/¢(IV)) + a(V)))-close to the oracle
w:[¢(N)]—[q(N)] rather than being (1 — a(N))-close to it.2! Needless to say, the
difference is insignificant in the case that a(N) > 1/¢(N) (as in Proposition 7.16),

21Note that this is the “right” formulation, because in the case that «(N) < 1/q(N) it seems
impossible to satisfy the decoding condition (as stated in Definition 7.17). Specifically, a random
£(N)-sequence over [g(N)] is expected to be (1 — (1/q(N)))-close to any fixed codeword, and
with overwhelmingly high probability it will be (1 — ((1 — o(1))/q(IN)))-close to almost all the
codewords, provided £(N) > ¢(N)2. But in case N > poly(g(N)), we cannot hope to recover
almost all N-bit long strings based on poly(q(IN)log N) bits of advice (per each of them).

296 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

but it is significant in case we care about binary codes (i.e., g(N) = 2, or codes
over other small alphabets). We mention that Theorem 7.18 can be adapted to
this context (of ¢(N) = 2), and directly yields strongly inapproximable predicates.
For details, see Exercise 7.21.

7.2.2 Amplification wrt exponential-size circuits

For the purpose of stronger derandomization of BPP, we start with a stronger as-
sumption regarding the worst-case circuit complexity of £ and turn it to a stronger
inapproximability result.

Theorem 7.19 Suppose that there exists a Boolean function f in £ having almost-
everywhere exponential circuit complexity; that is, there exists a constantb > 0 such

that, for all but finitely many n’s, any circuit that correctly computes f on {0,1}"

has size at least 2°™. Then, for some constant ¢ > 0 and T'(n) def 2¢™ there exists

a T-inapproximable Boolean function in £.

Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP =
P) under the aforementioned assumption (see Part 1 of Theorem 8.19).

Theorem 7.19 follows as a special case of Proposition 7.16 (combined with The-
orem 7.8; see Exercise 7.22). An alternative proof, which uses different ideas that
are of independent interest, will be briefly reviewed next. The starting point of the
latter proof is a mildly inapproximable predicate, as provided by Theorem 7.12.
However, here we cannot afford to apply Yao’s XOR Lemma (i.e., Theorem 7.13),
because the latter relates the size of circuits that strongly fail to approximate a
predicate defined over poly(n)-bit long strings to the size of circuits that fail to
mildly approximate a predicate defined over n-bit long strings. That is, Yao’s
XOR Lemma asserts that if f : {0,1}" — {0,1} is mildly inapproximable by
S¢-size circuits then F : {0,1}P°(") — {0,1} is strongly inapproximable by Sp-
size circuits, where Sr(poly(n)) is polynomially related to Sy(n). In particular,
Sr(poly(n)) < Sf(n) seems inherent in this reasoning. For the case of polynomial
lower-bounds, this is good enough (i.e., if Sy can be an arbitrarily large polynomial
then so can Sr), but for Sy(n) = exp(Q2(n)) we cannot obtain Sg(m) = exp(Q2(m))
(but rather only obtain Sx(m) = exp(m®?1))).

The source of trouble is that amplification of inapproximability was achieved
by taking a polynomial number of independent instances. Indeed, we cannot hope
to amplify hardness without applying f on many instances, but these instances
need not be independent. Thus, the idea is to define F(r) = @P°Y™ f(x,), where
L1, Tpoly(n) € 10,1} are generated from r and still |r| = O(n). That is, we
seek a “derandomized” version of Yao’s XOR Lemma. In other words, we seek a
“pseudorandom generator” of a type appropriate for expanding r to dependent z;’s
such that the XOR of the f(z;)’s is as inapproximable as it would have been for
independent z;’s.??

22Indeed, this falls within the general paradigm discussed in Section 8.1. Furthermore, this sug-
gestion provides another perspective on the connection between randomness and computational
difficulty, which is the focus of much discussion in Chapter 8 (see, e.g., §8.2.7.2).

7.2. HARD PROBLEMS IN E 297

Teaching note: In continuation to Footnote 22, we note that there is a strong con-
nection between the rest of this section and Chapter 8. On top of the aforementioned
conceptual aspect, we will use technical tools from Chapter 8 towards establishing the
derandomized version of the XOR Lemma. These tools include pairwise independence
generators (see Section 8.5.1), random walks on expanders (see Section 8.5.3), and the
Nisan-Wigderson Construction (Construction 8.17). Indeed, recall that Section 7.2.2 is
advanced material, which is best left for independent reading.

The pivot of the proof is the notion of a hard region of a Boolean function.
Loosely speaking, S is a hard region of a Boolean function f if f is strongly inap-
prozimable on a random input in S; that is, for every (relatively) small circuit C,,,
it holds that Pr[C,(U,) = f(U,)|U, € S] = 1/2. By definition, {0,1}* is a hard
region of any strongly inapproximable predicate. As we shall see, any mildly inap-
proximable predicate has a hard region of density related to its inapproximability
parameter. Loosely speaking, hardness amplification will proceed via methods for
generating related instances that hit the hard region with sufficiently high proba-
bility. But, first let us study the notion of a hard region.

7.2.2.1 Hard regions

We actually generalize the notion of hard regions to arbitrary distributions. The
important special case of uniform distributions (on n-bit long strings) is obtained
from Definition 7.20 by letting X,, equal U,, (i.e., the uniform distribution over
{0,1}"). In general, we only assume that X,, € {0,1}™.

Definition 7.20 (hard region relative to arbitrary distribution): Let f:{0,1}* —
{0,1} be a Boolean predicate, {X,},cn be a probability ensemble, s: N — N and
e:N—[0,1].

o We say that a set S is a hard region of f relative to {X,},cn with respect
to s(-)-size circuits and advantage €(-) if for every n and every circuit C,, of
size at most s(n), it holds that

PrICH (Xa) = f(Xo)| X0 €5] < 5 +e(n).

o We say that f has a hard region of density p(-) relative to {X,},cn (with
respect to s(-)-size circuits and advantage £(-)) if there ewists a set S that
is a hard region of f relative to {X,},en (with respect to the foregoing
parameters) such that Pr[X, €S,] > p(n).

Note that a Boolean function f is (s,1 — 2¢)-inapproximable if and only if {0,1}*
is a hard region of f relative to {U,}, cy with respect to s(-)-size circuits and
advantage (). Thus, strongly inapproximable predicates (e.g., S-inapproximable
predicates for super-polynomial S) have a hard region of density 1 (with respect to
anegligible advantage).?* But this trivial observation does not provide hard regions

23Likewise, mildly inapproximable predicates have a hard region of density 1 with respect to
an advantage that is noticeably smaller than 1/2.

298 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

(with respect to a small (i.e., close to zero) advantage) for mildly inapproximable
predicates. Providing such hard regions is the contents of the following theorem.

Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f:{0,1}* —
{0,1} be a Boolean predicate, {X,},cn be a probability ensemble, s:N— N, and
p: N —10,1] such that p(n) > 1/poly(n). Suppose that, for every circuit C,, of
size at most s(n), it holds that Pr[Cp(X,) = f(X,)] <1 —p(n). Then, for every
e:N—10,1], the function f has a hard region of density p'(-) relative to {X,},eN
with respect to s'(-)-size circuits and advantage £(-), where p'(n) def (1—-0(1))-p(n)
and s'(n) ef s(n)/poly(n/e(n)).

In particular, if f is (s,2p)-inapproximable then f has a hard region of density
P’ () = p(-) relative to the uniform distribution (with respect to s'(-)-size circuits
and advantage e()).

Proof Sketch:?* The proof proceeds by first establishing that {X,,} is “related” to
(or rather “dominates”) an ensemble {Y;,} such that f is strongly inapproximable
on {Y,}, and next showing that this implies the claimed hard region. Indeed, this
notion of “related ensembles” plays a central role in the proof.

For p:N— |0, 1], we say that {X,,} p-dominates {Y,,} if for every x it holds that
Pr[X,=x] > p(n) - Pr[Y,, =z]. In this case we also say that {Y,,} is p-dominated
by {X,.}. We say that {Y,,} is critically p-dominated by {X,,} if for every x either
Pr[Y,,=z] = (1/p(n)) - Pr|X,,=z] or Pr[Y,,=x] = 0.2

The notions of domination and critical domination play a central role in the
proof, which consists of two parts. In the first part (Claim 7.21.1), we prove
that, for {X,,} and p as in the theorem’s hypothesis, there exists a ensemble {Y;,}
that is p-dominated by {X,} such that f is strongly inapproximable on {¥;,}. In
the second part (Claim 7.21.2), we prove that the existence of such a dominated
ensemble implies the existence of an ensemble {Z,} that is critically p'-dominated
by {X,} such that f is strongly inapproximable on {Z,}. Finally, we note that
such a critically dominated ensemble yields a hard region of f relative to {X,},
and the theorem follows.

Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists a
probability ensemble {Y;,} that is p-dominated by {X,,} such that, for every s'(n)-
size circuit C},, it holds that

L) (7.12)

PrCW(Ya) = F(Ya)] < 5 + 5~

N —

Proof: We start by assuming, towards the contradiction, that for every distri-
bution Y;, that is p-dominated by X,, there exists a s'(n)-size circuits C,, such
that Pr[Cp(Yy) = f(Yn)] > 0.5+ ¢'(n), where €'(n) = ¢(n)/2. One key observa-
tion is that there is a correspondence between the set of all distributions that are

24Gee details in [101, Apdx. A].

25 Actually, we should allow one point of exception; that is, relax the requirement by saying
that for at most one string @ € {0, 1}"™ it holds that 0 < Pr[Y, =z] < Pr[X,, =z]/p(n). This point
has little effect on the proof, and is ignored in our presentation.

7.2. HARD PROBLEMS IN E 299

each p-dominated by X,, and the set of all the convex combinations of critically p-
dominated (by X,,) distributions; that is, each p-dominated distribution is a convex
combinations of critically p-dominated distributions and vice versa (cf., a special
case in §D.4.1.1). Thus, considering an enumeration erl), e ert) of the critically
p-dominated (by X,,) distributions, we conclude that for every distribution 7 on

[t] there exists a s'(n)-size circuits C,, such that

> ow(@) - PriC. (V) = F(VIN] > 0.5 +¢'(n). (7.13)

=1

Now, consider a finite game between two players, where the first player selects a crit-
ically p-dominated (by X,,) distribution, and the second player selects a s'(n)-size
circuit and obtains a payoff as determined by the corresponding success probability;
that is, if the first player selects the i*® critically dominated distribution and the
second player selects the circuit C then the payoff equals Pr[C’(YTEl)) = f(YTEZ))].
Eq. (7.13) may be interpreted as saying that for any randomized strategy for the
first player there exists a deterministic strategy for the second player yielding aver-
age payoff greater than 0.54¢'(n). The Min-Max Principle (cf. von Neumann [233])
asserts that in such a case there exists a randomized strategy for the second player
that yields average payoff greater than 0.5 + &'(n) no matter what strategy is em-
ployed by the first player. This means that there exists a distribution, denoted D,,,
on s'(n)-size circuits such that for every 7 it holds that

PrD, (YY) = f(V)] > 0.5+ '(n), (7.14)

where the probability refers both to the choice of the circuit D,, and to the random
variable Y,,. Let B,, = {x : Pr[D,(z) = f(z)] < 0.5 + ¢'(n)}. Then, Pr[X, €
B,] < p(n), because otherwise we reach a contradiction to Eq. (7.14) by defining
Y, such that Pr[Y,, =z] = Pr[X,,=z]/Pr[X,, € B,] if x € B,, and Pr[Y,,=2] =0
otherwise.?S By employing standard amplification to D,,, we obtain a distribution
D!, over poly(n/e'(n)) - s'(n)-size circuits such that for every z € {0,1}"\ B, it
holds that Pr[D] (z) = f(z)] > 1 — 2™ It follows that there exists a s(n)-sized
circuit Cp, such that Cp(z) = f(z) for every z € {0,1}"\ B,, which implies that
Pr[Cn(X,) = f(X,)] > Pr[X,, € {0,1}™\ B,] > 1 — p(n), in contradiction to the
theorem’s hypothesis. The claim follows. O

We next show that the conclusion of Claim 7.21.1 (which was stated for ensembles
that are p-dominated by {X,,}) essentially holds also when allowing only critically
p-dominated (by {X,}) ensembles. The following precise statement involves some
loss in the domination parameter p (as well as in the advantage €).

Claim 7.21.2: If there exists a probability ensemble {Y,} that is p-dominated
by {X,} such that for every s'(n)-size circuit C,, it holds that Pr[C,(Y,) =

26Note that Y, is p-dominated by X, whereas by the hypothesis Pr[D,(Yn) = f(Yn)] <
0.5+4¢'(n). Using the fact that any p-dominated distribution is a convex combination of critically
p-dominated distributions, it follows that Pr[Dn(YTgl)) = f(YTEl))} < 0.5 + ¢'(n) holds for some

critically p-dominated Y,Ei) .

300 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

f(Y)] < 0.5+ (e(n)/2), then there exists a probability ensemble {Z,} that is
critically p’-dominated by {X,,} such that for every s'(n)-size circuit C, it holds
that Pr[C,,(Z,) = f(Z,)] £ 0.5+ &(n).

In other words, Claim 7.21.2 asserts that the function f has a hard region of
density p'(+) relative to {X,} with respect to s'(-)-size circuits and advantage ¢(-),
thus establishing the theorem. The proof of Claim 7.21.2 uses the Probabilistic
Method (cf. [10]). Specifically, we select a set S, at random by including each
n-bit long string « with probability

p(x) def pn) - Pri¥y =] <1 (7.15)

independently of the choice of all other strings. It can be shown that, with high
probability over the choice of S, it holds that Pr[X, € S,] = p(n) and that
PriCn(X,) = f(Xn)| X, € Sn] < 0.5+ e(n) for every circuit C,, of size s'(n). The
latter assertion is proved by a union bound on all relevant circuits, while showing
that for each such circuit C,, with probability 1 — exp(—s’(n)?) over the choice of
Sy, it holds that |Pr[C,(X,) = f(X,)|Xn € Sp] — Pr[Ch(Yy) = f(YR)]] < e(n)/2.
For details, see [101, Apdx. A]. (This completes the proof of the theorem.) O

7.2.2.2 Hardness amplification via hard regions

Before showing how to use the notion of a hard region in order to prove a deran-
domized version of Yao’s XOR Lemma, we show how to use it in order to prove
the original version of Yao’s XOR Lemma (i.e., Theorem 7.13).

An alternative proof of Yao’s XOR Lemma. Let f, p;, and p2 be as
in Theorem 7.13. Then, by Theorem 7.21, for p'(n) = 1/3pa(n) and s'(n) =
p1(n)?*") /poly(n), the function f has a hard region S of density p' (relative to
{U,}) with respect to s'(-)-size circuits and advantage 1/s'(-). Thus, for t(n) =
n - po(n) and F as in Theorem 7.13, with probability at least 1 — (1 — p/(n))"™) =
1 — exp(—Q(n)), one of the ¢(n) random (n-bit long) blocks of F' resides in S
(i.e., the hard region of f). Intuitively, this suffices for establishing the strong
inapproximability of F. Indeed, suppose towards the contradiction that a small
(i-e., p'(t(n) - n)-size) circuit C, can approximate F' (over Uy(,).,) With advantage
e(n) + exp(—(n)), where e(n) > 1/s'(n). Then, the e(n) term must be due to
t(n)-n-bit long inputs that contain a block in S. Using an averaging argument, we
can first fix the index of this block and then the contents of the other blocks, and
infer the following: for some i € [t(n)] and 1, ..., Ty(n) € {0, 1}" it holds that

1
PriCn(z',Up,2") = F(2',U,,2")| U, € S] > 5 +¢e(n)

where 2’ = (21, ..., 7,-1) € {0, 1}V and 2" = (@41, ..., By(ny) € {0, 1},
Hard-wiring i € [t(n)], 2’ = (21,...,mi—1) and 2" = (@iy1,..., Ty(n)) as well as

i ®,2:f(z;) in C,,, we obtain a contradiction to the (established) fact that

7.2. HARD PROBLEMS IN E 301

S is a hard region of f (by using the circuit C) (z) = C,(2',2,2") & o). Thus,
Theorem 7.13 follows (for any p'(t(n) -n) < s'(n) —1).

Derandomized versions of Yao’s XOR Lemma. We first show how to use
the notion of a hard region in order to amplify very mild inapproximability to
a constant level of inapproximability. Recall that our goal is to obtain such an
amplification while applying the given function on many (related) instances, where
each instance has length that is linearly related to the length of the input of the
resulting function. Indeed, these related instances are produced by applying an
adequate “pseudorandom generator” (see Chapter 8). The following amplification
utilizes a pairwise independence generator (see Section 8.5.1), denoted G, that
stretches 2n-bit long seeds to sequernces of n strings, each of length n.

Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability):
Suppose that f : {0,1}* — {0,1} is (T, p)-inapprozimable, for p(n) > 1/poly(n),
and assume for simplicity that p(n) < 1/n. Let b denote the inner-product mod 2
predicate, and G be the aforementioned pairwise independence generator. Then
Fi(s,r) = b(f(z1)--- f(zn),r), where |r| = n = |s|/2 and (z1,...,z,) = G(s), is
(T", p")-inapprozimabdle for T'(n') = T'(n'/3)/poly(n') and p'(n') = Q(n'- p(n'/3)).

Needless to say, if f € £ then Fy € £. By applying Lemma 7.22 for a constant
number of times, we may transform an (7', 1/poly)-inapproximable predicate into
an (T",Q(1))-inapproximable one, where T"(n"") = T'(n" /O(1))/poly(n").

Proof Sketch: As in the foregoing proof (of the original version of Yao’s XOR
Lemma), we first apply Theorem 7.21. This time we set the parameters so to infer
that, for a(n) = p(n)/3 and t'(n) = T'(n)/poly(n), the function f has a hard region
S of density a (relative to {U,}) with respect to t'(-)-size circuits and advantage
0.01. Next, as in §7.2.1.2, we shall consider the corresponding (derandomized)
direct product problem; that is, the function Pi(s) = (f(z1),..., f(z,)), where
|s|] = 2n and (z1,...,z,) = G(s). We will first show that P is hard to compute
on an Q(n - a(n)) fraction of the domain, and the quantified inapproximality of F}
will follow.

Oune key observation is that, by Exercise 7.23, with probability at least 5(n) def
n-a(n)/2, at least one of the n strings output by G(Us,,) resides in S. Intuitively,
we expect every t'(n)-sized circuit to fail in computing P; (Us,) with probability
at least 0.495(n), because with probability 3(n) the sequence G(Us,) contains an
element in the hard region of f (and in this case the value can be guessed correctly
with probability at most 0.51). The actual proof relies on a reducibility argument,
which is less straightforward than the argument used in the non-derandomized case.

For technical reasons?”, we use the condition a(n) < 1/2n (which is guaranteed

by the hypothesis that p(n) < 1/n and our setting of a(n) = p(n)/3). In this

case Exercise 7.23 implies that, with probability at least 5(n) 0750 a(n),

at least one of the n strings output by G(Usz,) resides in S. We shall show that

27The following argument will rely on the fact that 8(n) — v(n) > 0.51n - a(n), where y(n) =
Q(B(n))-

302 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

every (t'(n) — poly(n))-sized circuit fails in computing P, with probability at least
v(n) = 0.38(n). As usual, the claim is proved by a reducibility argument. Let G(s);
denote the i'! string in the sequence G(s) (i.e., G(s) = (G(5)1, .., G(s)n)), and note
that given i and = we can efficiently sample G *(z) = = {s€{0,1}*" : G(s); =x}.
Given a circuit C,, that computes P; (Us,) correctly with probability 1 —y(n), we
consider the circuit C!, that, on input x, uniformly selects i € [n] and s € G; *(z),
and outputs the ¢t bit in C,(s). Then, by the construction (of C!) and the
hypothesis regarding C,,, it holds that

PHCL(U) = fUIUNES] 2 3 = PrlCo(Usn) = A (Uan)[G(Uan): €5]

Pr[Cp(Uan) = PL(Uzpn) A 3i G4(Us): € S]

= - max, {Pr[G(Uan): € 51}
> (1—’7("))—((1)—ﬁ(n))
_0.78(n)

= na(n) > 0.52.

This contradicts the fact that .S is a hard region of f with respect to ¢'(-)-size circuits
and advantage 0.01. Thus, we have established that every (¢'(n) — poly(n))-sized
circuit fails in computing P1 with probability at least v(n) = 0.38(n).

Having established the hardness of P;, we now infer the mild inapproximability
of Fi, where Fi(s,r) = b(Pi(s),r). It suffices to employ the simple (warm-up)
case discussed at the beginning of the proof of Theorem 7.7 (where the predic-
tor errs with probability less than 1/4, rather than the full-fledged result that
refers to prediction error that is only smaller than 1/2). Denoting by nc(s) =
Prreqo,132[C(s,7) #b(P1(s),7)] the prediction error of the circuit C, we recall that
if ne(s) < 0.24 then C can be used to recover P;(s). Thus, for circuits C of size
T'(3n) = t'(n)/poly(n) it must hold that Prs[nc(s)>0.24] > v(n). It follows that

Es[nc(s)] > 0.24y(n), which means that every T"(3n)-sized circuits fails to com-

pute (s,7) — b(Pi(s),r) with probability at least 6(|s| + |r|) < 0.24 - ~(|r[)- This

means that F is (17", 26)-inapproximable, and the lemma follows (when noting that

s(n') = Qn' - a(n'/3))). O

The next lemma offers an amplification of constant inapproximability to strong
inapproximability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23,
yields Theorem 7.19 (as a special case).

Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-
bility): Suppose that f : {0,1}* — {0,1} is (T, p)-inapprozimable, for some con-
stant p, and let b denote the inner-product mod 2 predicate. Then there exists an
exponential-time computable function G such that Fy(s,r) = b(f(x1)--- f(zn),7),
where (x1,...,T,) = G(s) and n = Q(|s]) = |r] = |z1| = -+ = |xnu|, s T'-
inapprozimable for T'(n') = T(n'/O(1))*M) /poly(n').

7.2. HARD PROBLEMS IN E 303

Again, if f € £ then F; € €.

Proof Outline:?® As in the proof of Lemma 7.22, we start by establishing
a hard region of density p/3 for f (this time with respect to circuits of size
T(n)*® /poly(n) and advantage T'(n) ?(1)), and focus on the analysis of the
(derandomized) direct product problem corresponding to computing the function
Py(s) = (f(z1), ..., f(zn)), where |s| = O(n) and (z1,...,z,) = G(s). The “gen-
erator” G is defined such that G(s's") = Gi(s') ® Ga(s"), where |s'| = [s"],
|G1(s")] = |G2(s")|, and the following conditions hold:

1. G, is the Expander Random Walk Generator discussed in Section 8.5.3. It
can be shown that G;(Up(n)) outputs a sequence of n strings such that for
any set S of density p, with probability 1 — exp(—Q(pn)), at least Q(pn)
of the strings hit S. Note that this property is inherited by G, provided
|G1(s")| = |Ga(s")| for any |s'| = |s”|. It follows that, with probability
1 —exp(—Q(pn)), a constant fraction of the x;’s in the definition of P, hit
the hard region of f.

It is tempting to say that small circuits cannot compute P, better than with
probability exp(—§(pn)), but this is clear only in the case that the z;’s that
hit the hard region are distributed independently (and uniformly) in it, which
is hardly the case here. Indeed, G5 is used to handle this problem.

2. G is the “set projection” system underlying Construction 8.17; specifically,
Ga(s) = (ssy,---, S5,), where each S; is an n-subset of [|s|] and the S;’s have
pairwise intersections of size at most n/O(1).2? An analysis as in the proof
of Theorem 8.18 can be employed for showing that the dependency among
the z;’s does not help for computing a particular f(z;) when given z; as well
as all the other f(z;)’s. (Note that this property of G is inherited by G.)

The actual analysis of the construction (via a guessing game presented in [127,
Sec. 3]), links the success probability of computing P, to the advantage of guessing
f on its hard region. The interested reader is referred to [127]. O

Digest. Both Lemmas 7.22 and 7.23 are proved by first establishing correspond-
ing derandomized versions of the “direct product” lemma (Theorem 7.14); in fact,
the core of these proofs is proving adequate derandomized “direct product” lemmas.
We call the reader’s attention to the seemingly crucial role of this step (especially
in the proof of Lemma 7.23): We cannot treat the values f(z1),...f(z,) as if they
were independent (at least not for the generator G as postulated in these lemmas),
and so we seek to avoid analyzing the probability of correctly computing the XOR
of all these values. In contrast, we have established that it is very hard to correctly
compute all n values, and thus XORing a random subset of these values yields a
strongly inapproximable predicate. (Note that the argument used in Exercise 7.17

28For details, see [127].
29Recall that sg denotes the projection of s on coordinates S C [|s|]; that is, for s = o1 --- 0o},

and S = {4; : j =1,...,n}, we have sg =04, -+ -0y, .

304 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

fails here, because the x;’s are not independent, which is the reason that we XOR
a random subset of these values rather than all of them.)

Chapter Notes

The notion of a one-way function was suggested by Diffie and Hellman [65]. The
notion of weak one-way functions as well as the amplification of one-way functions
(i.e., Theorem 7.5) were suggested by Yao [237]. A proof of Theorem 7.5 has first
appeared in [86].

The concept of hard-core predicates was suggested by Blum and Micali [39].
They also proved that a particular predicate constitutes a hard-core for the “DLP
function” (i.e., exponentiation in a finite field), provided that the latter function
is one-way. The generic hard-core predicate (of Theorem 7.7) was suggested by
Levin, and proven as such by Goldreich and Levin [98]. The proof presented here
was suggested by Rackoff. We comment that the original proof has its own merits
(cf., e.g., [104]).

The construction of canonical derandomizers (see Section 8.3) and, specifically,
the Nisan-Wigderson framework (i.e., Construction 8.17) has been the driving force
behind the study of inapproximable predicates in £. Theorem 7.10 is due to [21],
whereas Theorem 7.19 is due to [127]. Both results rely heavily of variants of Yao’s
XOR Lemma, to be reviewed next.

Like several other fundamental insights®° attributed to Yao’s paper [237], Yao’s
XOR Lemma (i.e., Theorem 7.13) is not even stated in [237] but is rather due
to Yao’s oral presentations of his work. The first published proof of Yao’s XOR
Lemma was given by Levin (see [101, Sec. 3]). The proof presented in §7.2.1.2 is due
to Goldreich, Nisan and Wigderson [101, Sec. 5]. For a recent (but brief) review
of other proofs of Yao’s XOR Lemma (as well as of variants of it), the interested
reader is referred to [222].

The notion of a hard region and its applications to proving the original version
of Yao’s XOR Lemma are due to Impagliazzo [125] (see also [101, Sec. 4]). The first
derandomization of Yao’s XOR Lemma (i.e., Lemma 7.22) also originates in [125],
while the second derandomization (i.e., Lemma 7.23) as well as Theorem 7.19 are
due to Impagliazzo and Wigderson [127].

The worst-case to average-case reduction (i.e., §7.2.1.1, yielding Theorem 7.12)
is due to [21]. This reduction follows the self-correction paradigm of Blum, Luby
and Rubinfeld [40], which was first employed in the context of a (strict)3! worst-case
to average-case reduction by Lipton [156].3?

30Most notably, the equivalence of pseudorandomness and unpredictability (see Section 8.2.5).

31 Barlier uses of the self-correction paradigm referred to “two argument problems” and consisted
of fixing one argument and randomizing the other (see, e.g., [107]); consider, for example, the
decision problem in which given (N, r) the task is to determine whether > =r (mod N) has an
integer solution, and the randomized process mapping (N,r) to (N,r'), where r' = r - w? mod N
and w is uniformly distibuted in [N]. Loosely speaking, such a process yields a reduction from
worst-case complexity to “mixed worst/average-case” complexity (or from “mixed average/worst-
case” to pure average-case).

32 An earlier use of the self-correction paradigm for a strict worst-case to average-case reduction

7.2. HARD PROBLEMS IN E 305

The connection between list decoding and hardness amplification (i.e., §7.2.1.3),
yielding alternative proofs of Theorems 7.10 and 7.19, is due to Sudan, Trevisan,
and Vadhan [217].

Hardness amplification for AP has been the subject of recent attention: An
amplification of mild inapproximability to strong inapproximability is provided
in [120], and an indication to the impossibility of a worst-case to average-case
reductions (at least non-adaptive ones) is provided in [42].

Exercises

Exercise 7.1 Prove that if one way-functions exist then there exists one-way func-
tions that are length preserving (i.e., | f(x)| = || for every z € {0,1}").

Guideline: Clearly, for some polynomial p, it holds that | f(z)| < p(|z|) for all z. Assume,
without loss of generality that n +— p(n) is 1-1 and increasing, and let p~'(m) = n if
p(n) < m < p(n+1). Define f'(z) = f(2)01*=F®I=1 where z is the p~'(]z|)-bit long
prefix of z.

Exercise 7.2 Prove that if a function f is hard to invert in the sense of Defini-
tion 7.3 then it is hard to invert in the sense of Definition 7.1.

Guideline: Consider a sequence of internal coin tosses that maximizes the probability
in Eq. (7.1).

Exercise 7.3 Assuming the existence of one-way functions, prove that there exists
a weak one-way function that is not strongly one-way.

Exercise 7.4 (a universal one-way function (by L. Levin)) Using the notion
of a universal machine, present a polynomial-time computable function that is hard
to invert (in the sense of Definition 7.1) if and only if there exist one-way functions.

Guideline: Consider the function F' that parses its input into a pair (M, z) and emulates
|z|®> steps of M on input z. Note that if there exists a one-way function that can be
evaluated in cubic time then F' is a weak one-way function. Using padding, prove that
there exists a one-way function that can be evaluated in cubic time if and only if there

exist one-way functions.

Exercise 7.5 For ¢ > 1, prove that the following 2° — 1 samples are pairwise
independent and uniformly distributed in {0,1}™. The samples are generated by
uniformly and independently selecting £ strings in {0,1}". Denoting these strings
by s, ...,s¢, we generate 2° — 1 samples corresponding to the different non-empty

subsets of {1,2, ..., £} such that for subset J we let 7/ def Djess’.

appears in [18], but it refers to very low complexity classes. Specifically, this reduction refers to
the parity function and is computable in AC® (implying that parity cannot be approximated in
ACY, since it cannot be computed in that class (see [82, 238, 114])). The reduction (randomly)
maps z € {0,1}", viewed as a sequence (z1,x2,x3,...,Tn), to the sequence =’ = (z1 G r1,71 ®
To®Dre, T2 T3 DT3, ..., o1 DTn Dry), where r1,...,7n € {0, 1} are uniformly and independently
distributed. Note that ' is uniformly distributed in {0, 1}™ and that parity(z) = parity(z')®r,.

306 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Guideline: For J # J', it holds that r’ or! = ®jexs’, where K denotes the symmetric
difference of J and J'. See related material in Section 8.5.1.

Exercise 7.6 (a variant on the proof of Theorem 7.7) Provide a detailed pre-
sentation of the alternative procedure outlined in Footnote 5. That is, prove that
for every x € {0,1}", given oracle access to any B, : {0,1}"™ — {0, 1} that satisfies
Eq. (7.6), this procedure makes poly(n/e) steps and outputs a list of strings that,
with probability at least 1/2, contains z.

Exercise 7.7 (proving Theorem 7.8) Recall that the proof of Theorem 7.7 es-
tablishes the existence of a poly(n/e)-time oracle machine M such that, for every
B:{0,1}" — {0,1} and every = € {0,1}" that satisfy Pr,[B(r) = b(z,r)] > 1 +¢,
it holds that Pr[M®Z(n,e) = 2] = Q(¢2/n). Show that this implies Theorem 7.8.
(Indeed, an alternative proof can be derived by adapting Exercise 7.6.)

Guideline: Apply a “coupon collector” argument.

Exercise 7.8 A polynomial-time computable predicate b : {0,1}*— {0, 1} is called
a universal hard-core predicate if for every one-way function f, the predicate b is
a hard-core of f. Note that the predicate presented in Theorem 7.7 is “almost
universal” (i.e., for every one-way function f, that predicate is a hard-core of
f'(z,7) = (f(z),r), where |z| = |r|). Prove that there exist no universal hard-
core predicate.

Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitrary
one-way function. Then consider the function f'(z) = (f(z),b(z)).

Exercise 7.9 Prove that if NP is not contained in P/poly then neither is £.
Furthermore, for every S : N — N, if some problem in NP does not have circuits
of size S then for some constant £ > 0 there exists a problem in £ that does not
have circuits of size S', where S'(n) = S(nf). Repeat the exercise for the “almost
everywhere” case.

Guideline: Although AP is not known to be in £, it is the case that SAT is in £, which
implies that /P is reducible to a problem in £. For the “almost everywhere” case, address
the fact that the said reduction may not preserve the length of the input.

Exercise 7.10 For every function f : {0,1}" — {0,1}, present a linear-size circuit
C,, such that Pr[C(U,) = f(U,)] > 0.5+ 27". Furthermore, for every ¢t < 21,
present a circuit C,, of size O(t - n) such that Pr[C(U,) = f(U,)] > 0.54+t-2"™.
Warning: you may not assume that Pr[f(U,) = 1] = 0.5.

Exercise 7.11 (self-correction of low-degree polynomials) Let d,m be in-
tegers, and F' be a finite field of cardinality greater than ¢ L dm + 1. Let
p: F™ — F be a polynomial of individual degree d, and g, ...,a; be t distinct
non-zero elements of F.

1. Show that, for every x,y € F™, the value of p(z) can be efficiently computed
from the values of p(z + a1y),...,p(x + azy), where x and y are viewed as
m-ary vectors over F'.

7.2. HARD PROBLEMS IN E 307

2. Show that, for every z € F™ and « € F'\ {0}, if we uniformly select r € F'™
then the point = + ar is uniformly distributed in F™.

Conclude that p(z) can be recovered based on ¢ random points, where each point
is uniformly distributed in F™.

Exercise 7.12 (low degree extension) Prove that for any H C F and every
function f : H™ — F there exists an m-variate polynomial f : F™ — F of
individual degree |H| — 1 such that for every x € H™ it holds that f(z) = f(z).

Guideline: Define f(z) = > 8a(z) - f(a), where 64 is an m-variate of individual

aeH’”L a
degree |H| —1 such that 64(a) = 1 whereas 64(x) = 0 for every z € H™ \ {a}. Specifically,

6111 ----- am (-73'1, HaS) .Z'm) = :;1 HbeH\{ai}((CEi - b)/(a'z - b))

Exercise 7.13 Suppose that f and S’ are as in the conclusion of Theorem 7.12.
Prove that there exists a Boolean function g in £ that is (S”,¢)-inapproximable
for S”(n' + O(logn')) = S'(n')/n' and e(m) = 1/m3.

Guideline: Consider the function g defined such that g(z,i) equals the i*® bit of f(z).

Exercise 7.14 (a generic application of Theorem 7.8) For any ¢ : N> N,
let h: {0,1}* — {0, 1}* be a function such that |h(x)| = £(|z|) for every z € {0,1}*,
and {X,},cn be a probability ensemble. Suppose that, for some s : N — N and
e : N — [0,1], for every family of s-size circuits {C, }, ey and all sufficiently large n
it holds that Pr[C,,(X,,) = h(X,)] < e(n). Suppose that s’ : N - N and &' : N —
[0,1] satisfy s'(n 4+ £(n)) < s(n)/poly(n/e'(n + £(n))) and &'(n + £(n)) > 2¢(n).
Show that Theorem 7.8 implies that for every family of s'-size circuits {C], }, N
and all sufficiently large n’ = n + £(n) it holds that

1
Pr(Cto(n) (X, Us(n)) = b(R(X0), Uny)] < 5t e'(n + (n)),

where b(y,r) denotes the inner-product mod 2 of y and r. Note that if X, is
uniform over {0,1}" then the predicate h'(z,r) = b(h(x),r), where |r| = |h(x)],
is (s’,1 — 2¢')-inapproximable. Conclude that, in this case, if e(n) = 1/s(n) and
s'(n + €(n)) = s(n)*V) /poly(n), then A’ is s'-inapproximable.

Exercise 7.15 (reversing Exercise 7.14 (by Viola and Wigderson)) Let ¢ :
N-N, h:{0,1}* - {0,1}*, {X,}.cn, and b be as in Exercise 7.14. Let H(z,7) =
b(h(x),r) and recall that in Exercise 7.14 we reduced guessing h to approximat-
ing H. Present a reduction in the opposite direction. That is, show that if H is
(s,1—¢)-inapproximable (over {X,}, cry) then every s'-size circuit succeeds in com-
puting h (over {X,},cn) with probability at most ¢, where s'(n) = s(n) —O({(n)).

Guideline: As usual, start by assuming the existence of a s'-size circuit that computes h
with success probability exceeding €. Consider two correlated random variables X and Y,
each distributed over {0,1}*("), where X represents the value of h(U,) and Y represents
the circuit’s guess for this value. Prove that, for a uniformly distributed r € {0, 1}“"), it

holds that Pr[b(X,r) = b(Y,r)] = (1 + p)/2, where p Lof Pr[X =Y].

308 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Exercise 7.16 (derandomization via averaging arguments) Let C : {0,1}"x
{0,1}™ — {0,1}* be a circuit, which may represent a “probabilistic circuit” that
processes the first input using a sequence of choices that are given as a second
input. Let X and Z be two independent random variables distributed over {0,1}"
and {0,1}™, respectively, and let x be a Boolean predicate (which may represent

a success event regarding the behavior of C). Prove that there exists a string

z € {0,1}™ such that for C,(x) = C(z,z) it holds that Pr[x(X,C.(X))=1] >

Prix(X,C(X,Z))=1].

Exercise 7.17 (reducing “selective XOR” to “standard XOR”) Let f be
a Boolean function, and b(y,r) denote the inner-product modulo 2 of the equal-

length strings y and r. Suppose that F'(z1, ..., Zyn),7) def b(f(x1) - f(@ym)),),
where z1, ..., 7yn) € {0,1}" and r € {0, 134 is T'-inapproximable. Assuming

that n — t(n)-n is 1-1, prove that F'(z) Lef F'(z,1"U2D) where #'(t(n) -n) = t(n),
is T-inapproximable for T'(m) = T'(m + t'(m)) — O(m).

Guideline: Reduce the approximation of F’ to the approximation of F. An important
observation is that for any « = (x1, ..., Tyn)), « = (@1, ..., w;(n)), and 7 =1y -+ Ty, such
that ; = x; if r; = 1, it holds that F'(z,r) = F(z') ® ®i.r;=0f(z}). This suggests a
non-uniform reduction of ¥’ to ¥, which uses “adequate” z1, ..., z;(,) € {0,1}" as well as
the corresponding values f(z;)’s as advice. On input 1, ..., Ty(n), 71 - - * T¢(n), the reduction
sets ; = z; if r; = 1 and @ = 2; otherwise, makes the query z' = (1, ...,w;(n)) to F,
and returns F(w’) @ir;=0 f(zi). Analyze this reduction in the case that 21y .00 Ze(n) €
{0,1}™ are uniformly distributed, and infer that they can be set to some fixed values (see
Exercise 7.16).%3

Exercise 7.18 (reducing “standard XOR” to “selective XOR”) In contin-
uation to Exercise 7.17, show a reduction in the opposite direction. That is, for
F and F' as in Exercise 7.17, show that if F' is T-inapproximable then F' is T"-
inapproximable, where T"(m + t/(m)) = min(T(m) — O(m), exp(t'(m)/O(1)))*/3.

Guideline: Reduce the approximation of F' to the approximation of F', using the fact
that for any @ = (1,...,@¢(n)) and 7 = 71 -+ 7¢(n) it holds that @®ics, f(zi) = F'(=,7),
where S, = {i€[t(n)] : ri=1}. Note that, with probability 1 — exp(—Q(t(n)), the set S,
contains at least ¢(n)/3 indices. Thus, the XOR of ¢(n)/3 values of f can be reduced to
the selective XOR of ¢(n) such values (by using some of the ideas used in Exercise 7.17
for handling the case that |S.| > t(n)/3). The XOR of ¢(n) values can be obtained by
three XORs (of t(n)/3 values each), at the cost of decreasing the advantage by raising it
to a power of three.

Exercise 7.19 (reducing “selective XOR” to direct product) Recall that, in
§7.2.1.2, the approximation of the “selective XOR” predicate P’ was reduced to

33That is, assume first that the reduction is given t(n) samples of the distribution
(Un, f(Un)), and analyze its success probability on a uniformly distributed input (z,r) =
(21, oy (), T1 --rt(n)). Next, apply Exercise 7.16 when X represents the distribution of the

actual input (x,r), and Z represents the the distribution of the auxiliary sequence of samples.

7.2. HARD PROBLEMS IN E 309

the guessing of the value of the direct product function P. Present a reduction in
the opposite direction. That is, for P and P’ as in §7.2.1.2, show that if P’ is T'-
inapproximable then every T'-size circuit succeeds in computing P with probability
at most 1/T', where T' = Q(T").

Guideline: Use Exercise 7.15.

Exercise 7.20 (Theorem 7.14 versus Theorem 7.5) Consider a generalization
of Theorem 7.14 in which f and P are functions from strings to sets of strings such
that P(xy,...,xz¢) = f(z1) X --- X f(z).

1. Prove that if for every family of p;-size circuits, {Cy },,cn, and all sufficiently
large n € N, it holds that Pr[C,(U,) € f(U,)] > 1/pa(n) then for every
family of p'-size circuits, {C},}nen, it holds that Pr[C}, (U,,) € P(U,)] <
e'(m), where ¢’ and p’ are as in Theorem 7.14. Further generalize the claim
by replacing {U,}, ey with an arbitrary distribution ensemble {X,}, <N, and
replacing U,, by a t(n)-fold Cartesian product of X,, (where m = t(n) - n).

2. Show that the foregoing generalizes both Theorem 7.14 and a non-uniform
complexity version of Theorem 7.5.

Exercise 7.21 (refinement of the main theme of §7.2.1.3) Consider the fol-
lowing modification of Definition 7.17, in which the decoding condition refers to
an agreement threshold of (1/¢(N)) + «a(N) rather than to a threshold of a(NV).
The modified definition reads as follows (where p is a fixed polynomial): For every
w:[l(N)]—[g(N)] and x€{0,1}" such that T'(x) is (1 — ((1/q(N)) + a(N)))-close
to w, there exists an oracle-aided circuit C of size p((log N)/a(N)) such that C* (i)
yields the i*® bit of x for every i € [N].

1. Formulate and prove a version of Theorem 7.18 that refers to the modified
definition (rather than to the original one).

Guideline: The modified version should refer to computing g(U,,(n)) with success
probability greater than (1/¢(n)) + e(n) (rather than greater than e(n)).

2. Prove that, when applied to binary codes (i.e., ¢ = 2), the version in Item 1
yields S”-inapproximable predicates, for S”(n') = S(m~*(n'))*® /poly(n').

3. Prove that the Hadamard Code allows implicit decoding under the modified
definition (but not according to the original one).3*

Guideline: This is the actual contents of Theorem 7.8.

Show that if T': {0,1}Y — [¢(NV)]*™) is a (non-binary) code that allows implicit
decoding then encoding its symbols by the Hadamard code yields a binary code
({0, 13N — {0, 134025271y ot allows implicit decoding. Note that efficient
encoding is preserved only if g(N) < poly(N).

34Needless to say, the Hadamard Code is not efficient (for the trivial reason that its codewords
have exponential length).

310 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS

Exercise 7.22 (using Proposition 7.16 to prove Theorem 7.19) Prove The-
orem 7.19 by combining Proposition 7.16 and Theorem 7.8.

Guideline: Note that, for some v > 0, Proposition 7.16 yields an exponential-time com-
putable function f such that |f(:c)| < |z| and for every fa.mily of circuit {C],/}, N of
size S'(n') = S(n'/3)7 /poly(n') it holds that Pr[C!,(U,) = f(Uu)] < 1/5'(n'). Com-
bining this with Theorem 7.8, infer that P(x,r) = b(f(z),r), where |r| = |f(x)| < ||, is
S"-inapproximable for S”(n") = S(n" /2)?® /poly(n"). Note that if S(n) = 2*™) then
S”(n”) — 29(71,”).

Exercise 7.23 Let G be a pairwise independent generator (i.e., as in Lemma 7.22),

S C{0,1}"and « = |S|/2™. Prove that, with probability at least min(n-a,1)/2, at

least one of the n strings output by G(Us,) resides in S. Furthermore, if « < 1/2n
then this probability is at least 0.75-n - a.

Guideline: Using the pairwise independence property and employing the Inclusion-
Exclusion formula, we lower-bound the aforementioned probability by n - o — (72’) -a?.
If @ < 1/n then the claim follows, otherwise we employ the same reasoning to the first

1/« elements in the output of G(Usy).

Exercise 7.24 (one-way functions versus inapproximable predicates) Prove
that the existence of a non-uniformly hard one-way function (as in Definition 7.3)
implies the existence of an exponential-time computable predicate that is T-inapproximable
(as per Definition 7.9), for every polynomial T'.

Guideline: Suppose first that the one-way function f is length-preserving and 1-1. Con-
sider the hard-core predicate b guaranteed by Theorem 7.7 for g(z,r) = (f(z),r), define
the Boolean function h such that h(z) = b(g~*(z)), and show that h is T-inapproximable
for every polynomial T'. For the general case a different approach seems needed. Specif-
ically, given a (length preserving) one-way function f, consider the Boolean function h
defined as h(z,i,0) = 1 if and only if the i*® bit of the lexicographically first element in
f7Hz) = {2 : f(z) = 2} equals 0. (In particular, if f7'(z) = @ then h(z,i,0) = 0 for
every i and 0.)%® Note that h is computable in exponential-time, but is not (worst-case)
computable by polynomial-size circuits. Applying Theorem 7.10, we are done.

35Thus, h may be easy to computed in the average-case sense (e.g., if f(z) = 01*! f'(z) for some
one-way function f').

Chapter 8

Pseudorandom Generators

Indistinguishable things are identical.*

G.W. Leibniz (1646-1714)

A fresh view at the question of randomness has been taken by complexity theory:
it has been postulated that a distribution is random (or rather pseudorandom) if
it cannot be told apart from the uniform distribution by any efficient procedure.
Thus, (pseudo)randomness is not an inherent property of an object, but is rather
subjective to the observer.

At the extreme, this approach says that the question of whether the world
is deterministic or allows for some free choice (which may be viewed as sources of
randomness) is irrelevant. What matters is how the world looks to us and to various
computationally bounded devices. That is, if some phenomenon looks random then
we may just treat it as if it were random. Likewise, if we can generate sequences
that cannot be told apart from the uniform distribution by any efficient procedure,
then we can use these sequences in any efficient randomized application instead of
the ideal coin tosses that are postulated in the design of this application.

The pivot of the foregoing approach is the notion of computational indistin-
guishability, which refers to pairs of distributions that cannot be told apart by
efficient procedures. The most fundamental incarnation of this notion associates
efficient procedures with polynomial-time algorithms, but other incarnations that
restrict attention to other classes of distinguishing procedures also lead to impor-
tant insights. Likewise, the effective generation of pseudorandom objects, which
is of major concern, is actually a general paradigm with numerous useful incar-
nations (which differ in the computational complexity limitations imposed on the
generation process).

I This is Leibniz’s Principle of Identity of Indiscernibles. Leibniz admits that counterexamples
to this principle are conceivable but will not occur in real life because God is much too benevolent.
We thus believe that he would have agreed to the theme of this chapter, which asserts that
indistinguishable things should be considered as if they were identical.

311

312 CHAPTER 8. PSEUDORANDOM GENERATORS

Summary: Pseudorandom generators are efficient deterministic pro-
cedures that stretch short random seeds into longer pseudorandom se-
quences. Thus, a generic formulation of pseudorandom generators con-
sists of specifying three fundamental aspects — the stretch measure of the
generators; the class of distinguishers that the generators are supposed
to fool (i.e., the algorithms with respect to which the computational in-
distinguishability requirement should hold); and the resources that the
generators are allowed to use (i.e., their own computational complexity).

The archetypical case of pseudorandom generators refers to efficient
generators that fool any feasible procedure; that is, the potential dis-
tinguisher is any probabilistic polynomial-time algorithm, which may
be more complex than the generator itself (which, in turn, has time-
complexity bounded by a fixed polynomial). These generators are called
general-purpose, because their output can be safely used in any efficient
application. Such (general-purpose) pseudorandom generators exist if
and only if one-way functions exist.

For purposes of derandomization one may use pseudorandom genera-
tors that are somewhat more complex than the potential distinguisher
(which represents the algorithm to be derandomized). Following this
approach, suitable pseudorandom generators, which can be constructed
assuming the existence of problems in £ that have no sub-exponential
size circuits, yield a full derandomization of BPP (i.e., BPP = P).

It is also beneficial to consider pseudorandom generators that fool space-
bounded distinguishers and generators that exhibit some limited ran-
dom behavior (e.g., outputting a pair-wise independent or a small-bias
sequence). Such (special-purpose) pseudorandom generators can be
constructed without relying on any computational complexity assump-
tion.

Introduction

The “question of randomness” has been puzzling thinkers for ages. Aspects of this
question range from philosophical doubts regarding the existence of randomness
(in the world) and reflections on the meaning of randomness (in our thinking) to
technical questions regarding the measuring of randomness. Among many other
things, the second half of the 20th century has witnessed the development of three
theories of randomness, which address different aspects of the foregoing question.

The first theory (cf., [62]), initiated by Shannon [202], views randomness as
representing lack of information, which in turn is modeled by a probability distri-
bution on the possible values of the missing data. Indeed, Shannon’s Information
Theory is rooted in probability theory and is focused at distributions that are not
perfectly random. It characterizes perfect randomness as the extreme case in which
the information contents is maximized (i.e., in this case there is no redundancy at

313

all). Thus, perfect randomness is associated with a unique distribution — the uni-
form one. In particular, by definition, one cannot (deterministically) generate such
perfect random strings from shorter random seeds.

The second theory (cf., [152, 155]), initiated by Solomonov [209], Kolmogorov [146],
and Chaitin [50], views randomness as representing lack of structure, which in turn
is reflected in the length of the most succinct and effective description of the object.
The notion of a succinct and effective description refers to a process that transforms
the succinct description to an explicit one. Indeed, this theory of randomness is
rooted in computability theory and specifically in the notion of a universal language
(equiv., universal machine or computing device; see §1.2.3.4). It measures the ran-
domness (or complexity) of objects in terms of the shortest program (for a fixed
universal machine) that generates the object.? Like Shannon’s theory, Kolmogorov
Complexity is quantitative and perfect random objects appear as an extreme case.
However, following Kolmogorov’s approach one may say that a single object, rather
than a distribution over objects, is perfectly random. Still, by definition, one can-
not (deterministically) generate strings of high Kolmogorov Complexity from short
random seeds.

The third theory, which is the focus of the current chapter, views randomness
as an effect on an observer and thus as being relative to the observer’s abilities
(of analysis). The observer’s abilities are modeled as its computational abilities
(i.e., the complexity of the processes that the observer may apply), and hence this
theory of randomness is rooted in complexity theory. This theory of randomness
is explicitly aimed at providing a notion of randomness that, unlike the previous
two notions, allows for an efficient (and deterministic) generation of random strings
from shorter random seeds. The heart of this theory is the suggestion to view ob-
jects as equal if they cannot be told apart by any efficient procedure. Consequently,
a distribution that cannot be efficiently distinguished from the uniform distribution
will be considered random (or rather called pseudorandom). Thus, randomness is
not an “inherent” property of objects (or distributions) but is rather relative to
an observer (and its computational abilities). To illustrate this approach, let us
consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In
each of them Alice flips an unbiased coin and Bob is asked to guess its
outcome before the coin hits the floor. The alternative ways differ by
the knowledge Bob has before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips
the coin. Clearly, in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin
is spinning in the air. Although the outcome is determined in principle
by the motion of the coin, Bob does not have accurate information on
the motion. Thus we believe that, also in this case, Bob wins with
probability 1/2.

2We mention that Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov Com-
plexity is uncomputable).

314 CHAPTER 8. PSEUDORANDOM GENERATORS

The third alternative is similar to the second, except that Bob has
at his disposal sophisticated equipment capable of providing accurate
information on the coin’s motion as well as on the environment effecting
the outcome. However, Bob cannot process this information in time to
improve his guess.

In the fourth alternative, Bob’s recording equipment is directly con-
nected to a powerful computer programmed to solve the motion equa-
tions and output a prediction. It is conceivable that in such a case Bob
can improve substantially his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and
computing resources at our disposal. At the extreme, even events that are fully
determined by public information may be perceived as random events by an ob-
server that lacks the relevant information and/or the ability to process it. Our
focus will be on the lack of sufficient processing power, and not on the lack of suffi-
cient information. The lack of sufficient processing power may be due either to the
formidable amount of computation required (for analyzing the event in question)
or to the fact that the observer happens to be very limited.

A natural notion of pseudorandomness arises — a distribution is pseudorandom
if no efficient procedure can distinguish it from the uniform distribution, where ef-
ficient procedures are associated with (probabilistic) polynomial-time algorithms.
This specific notion of pseudorandomness is indeed the most fundamental one, and
much of this chapter is focused on it. Weaker notions of pseudorandomness arise
as well — they refer to indistinguishability by weaker procedures such as space-
bounded algorithms, constant-depth circuits, etc. Stretching this approach even
further one may consider algorithms that are designed on purpose so not to distin-
guish even weaker forms of “pseudorandom” sequences from random ones (where
such algorithms arise naturally when trying to convert some natural randomized
algorithm into deterministic ones; see Section 8.5).

The foregoing discussion has focused at one aspect of the pseudorandomness
question — the resources or type of the observer (or potential distinguisher). An-
other important aspect is whether such pseudorandom sequences can be generated
from much shorter ones, and at what cost (or complexity). A natural approach
requires the generation process to be efficient, and furthermore to be fixed be-
fore the specific observer is determined. Coupled with the aforementioned strong
notion of pseudorandomness, this yields the archetypical notion of pseudorandom
generators — these operating in (fixed) polynomial-time and producing sequences
that are indistinguishable from uniform ones by any polynomial-time observer. In
particular, this means that the distinguisher is allowed more resources than the gen-
erator. Such (general-purpose) pseudorandom generators (discussed in Section 8.2)
allow to decrease the randomness complexity of any efficient application, and are
thus of great relevance to randomized algorithms and cryptography. The term
general-purpose is meant to emphasize the fact that the same generator is good
for all efficient applications, including those that consume more resources than the
generator itself.

315

seed output sequence

a truly random sequence

Figure 8.1: Pseudorandom generators — an illustration.

Although general-purpose pseudorandom generators are very appealing, there
are important reasons for considering also the opposite relation between the com-
plexities of the generation and distinguishing tasks; that is, allowing the pseudo-
random generator to use more resources (e.g., time or space) than the observer it
tries to fool. This alternative is natural in the context of derandomization (i.e.,
converting randomized algorithms to deterministic ones), where the crucial step is
replacing the random input of an algorithm by a pseudorandom input, which in turn
can be generated based on a much shorter random seed. In particular, when de-
randomizing a probabilistic polynomial-time algorithm, the observer (to be fooled
by the generator) is a fixed algorithm. In this case employing a more complex
generator merely means that the complexity of the derived deterministic algorithm
is dominated by the complexity of the generator (rather than by the complexity of
the original randomized algorithm). Needless to say, allowing the generator to use
more resources than the observer that it tries to fool makes the task of designing
pseudorandom generators potentially easier, and enables derandomization results
that are not known when using general-purpose pseudorandom generators. The
usefulness of this approach is demonstrated in Sections 8.3 through 8.5.

We note that the goal of all types of pseudorandom generators is to allow the
generation of “sufficiently random” sequences based on much shorter random seeds.
Thus, pseudorandom generators offer significant saving in the randomness complex-
ity of various applications (and in some cases eliminating randomness altogether).
Saving on randomness is valuable because many applications are severely limited in
their ability to generate or obtain truly random bits. Furthermore, typically, gener-
ating truly random bits is significantly more expensive than standard computation
steps. Thus, randomness is a computational resource that should be considered on
top of time complexity (analogously to the consideration of space complexity).

Organization. In Section 8.1 we present the general paradigm underlying the
various notions of pseudorandom generators. The archetypical case of general-
purpose pseudorandom generators is presented in Section 8.2. We then turn to
alternative notions of pseudorandom generators: generators that suffice for the
derandomization of complexity classes such as BPP are discussed in Section 8.3;
pseudorandom generators in the domain of space-bounded computations are dis-

316 CHAPTER 8. PSEUDORANDOM GENERATORS

cussed in Section 8.4; and special-purpose generators are discussed in Section 8.5.

Teaching note: If you can afford teaching only one of the alternative notions of pseu-
dorandom generators, then we suggest teaching the notion of general-purpose pseudo-
random generators (presented in Section 8.2). This notion is more relevant to computer
science at large and the technical material is relatively simpler. The chapter is organized

to facilitate this option.

Prerequisites: We assume a basic familiarity with elementary probability theory
(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,
standard conventions regarding random variables (presented in Appendix D.1.1)
will be extensively used. We shall also apply a couple of results from Chapter 7,
but these applications will be self-contained.

8.1 The General Paradigm

Teaching note: We advocate a unified view of various notions of pseudorandom gener-
ators. That is, we view these notions as incarnations of a general abstract paradigm, to
be presented in this section. A teacher that wishes to focus on one of these incarnations
may still use this section as a general motivation towards the specific definitions used
later. On the other hand, some students may prefer reading this section after studying

one of the specific incarnations.

A generic formulation of pseudorandom generators consists of specifying three fun-
damental aspects — the stretch measure of the generators; the class of distinguishers
that the generators are supposed to fool (i.e., the algorithms with respect to which
the computational indistinguishability requirement should hold); and the resources
that the generators are allowed to use (i.e., their own computational complezity).
Let us elaborate.

Stretch function: A necessary requirement from any notion of a pseudorandom
generator is that the generator is a deterministic algorithm that stretches short
strings, called seeds, into longer output sequences.® Specifically, this algorithm
stretches k-bit long seeds into £(k)-bit long outputs, where £(k) > k. The function
¢:N — N is called the stretch measure (or stretch function) of the generator. In
some settings the specific stretch measure is immaterial (e.g., see Section 8.2.4).

Computational Indistinguishability: A necessary requirement from any no-
tion of a pseudorandom generator is that the generator “fools” some non-trivial
algorithms. That is, it is required that any algorithm taken from a predetermined
class of interest cannot distinguish the output produced by the generator (when the
generator is fed with a uniformly chosen seed) from a uniformly chosen sequence.

3Indeed, the seed represents the randomness that is used in the generation of the output
sequences; that is, the randomized generation process is decoupled into a deterministic algorithm
and a random seed. This decoupling facilitates the study of such processes.

8.1. THE GENERAL PARADIGM 317

Thus, we consider a class D of distinguishers (e.g., probabilistic polynomial-time
algorithms) and a class F of (threshold) functions (e.g., reciprocals of positive poly-
nomials), and require that the generator G satisfies the following: For any D € D,
any f € F, and for all sufficiently large k’s it holds that

|PriD(G(UR)) = 1] = Pr[D(Ugry) = 1]| < f(k), (8.1)

where U,, denotes the uniform distribution over {0, 1}" and the probability is taken
over Uy (resp., Uy)) as well as over the coin tosses of algorithm D in case it is
probabilistic. The reader may think of such a distinguisher, D, as trying to tell
whether the “tested string” is a random output of the generator (i.e., distributed
as G(Uy)) or is a truly random string (i.e., distributed as Uy)). The condition in
Eq. (8.1) requires that D cannot make a meaningful decision; that is, ignoring a
negligible difference (represented by f(k)), D’s verdict is the same in both cases.*
The archetypical choice is that D is the set of all probabilistic polynomial-time
algorithms, and F is the set of all functions that are the reciprocal of some positive
polynomial.

Complexity of Generation: The archetypical choice is that the generator has
to work in polynomial-time (in length of its input — the seed). Other choices will
be discussed as well. We note that placing no computational requirements on the
generator (or, alternatively, putting very mild requirements such as upper-bounding
the running-time by a double-exponential function), yields “generators” that can
fool any subexponential-size circuit family (see Exercise 8.1).

Notational conventions. We will consistently use k for denoting the length of
the seed of a pseudorandom generator, and ¢(k) for denoting the length of the
corresponding output. In some cases, this makes our presentation a little more
cumbersome (since a more natural presentation may specify some other parameters
and let the seed-length be a function of the latter). However, our choice has the
advantage of focusing attention on the fundamental parameter of pseudorandom
generation process — the length of the random seed. We note that whenever a
pseudorandom generator is used to “derandomize” an algorithm, n will denote the
length of the input to this algorithm, and k will be selected as a function of n.

Some instantiations of the general paradigm. Two important instantiations
of the notion of pseudorandom generators relate to polynomial-time distinguishers.

1. General-purpose pseudorandom generators correspond to the case that the
generator itself runs in polynomial-time and needs to withstand any prob-
abilistic polynomial-time distinguisher, including distinguishers that run for

4The class of threshold functions F should be viewed as determining the class of noticeable
probabilities (as a function of k). Thus, we require certain functions (i.e., those presented at the
Lh.s of Eq. (8.1)) to be smaller than any noticeable function on all but finitely many integers. We
call the former functions negligible. Note that a function may be neither noticeable nor negligible
(e.g., it may be smaller than any noticeable function on infinitely many values and yet larger than
some noticeable function on infinitely many other values).

318 CHAPTER 8. PSEUDORANDOM GENERATORS

more time than the generator. Thus, the same generator may be used safely
in any efficient application. (This notion is treated in Section 8.2.)

2. In contrast, pseudorandom generators intended for derandomization may run
more time than the distinguisher, which is viewed as a fixed circuit having
size that is upper-bounded by a fixed polynomial. (This notion is treated in
Section 8.3.)

In addition, the general paradigm may be instantiated by focusing on the space-
complexity of the potential distinguishers (and the generator), rather than on their
time-complexity. Furthermore, one may also consider distinguishers that merely
reflect probabilistic properties such as pair-wise independence, small-bias, and hit-
ting frequency.

8.2 (General-Purpose Pseudorandom Generators

Randomness is playing an increasingly important role in computation: It is fre-
quently used in the design of sequential, parallel and distributed algorithms, and
it is of course central to cryptography. Whereas it is convenient to design such al-
gorithms making free use of randomness, it is also desirable to minimize the usage
of randomness in real implementations. Thus, general-purpose pseudorandom gen-
erators (as defined next) are a key ingredient in an “algorithmic tool-box” — they
provide an automatic compiler of programs written with free usage of randomness
into programs that make an economical use of randomness.

Organization of this section. Since this is a relatively long section, a short
road-map seems in place. In Section 8.2.1 we provide the basic definition of general-
purpose pseudorandom generators, and in Section 8.2.2 we describe their archetyp-
ical application (which was eluded to in the former paragraph). In Section 8.2.3
we provide a wider perspective on the notion of computational indistinguishabil-
ity that underlies the basic definition, and in Section 8.2.4 we justify the little
concern (shown in Section 8.2.1) regarding the specific stretch function. In Sec-
tion 8.2.5 we address the existence of general-purpose pseudorandom generators.
In Section 8.2.6 we motivate and discuss a non-uniform version of computational
indistinguishability. We conclude in Section 8.2.7 by reviewing other variants and
reflecting on various conceptual aspects of the notions discussed in this section.

8.2.1 The basic definition

Loosely speaking, general-purpose pseudorandom generators are efficient determin-
istic programs that expand short randomly selected seeds into longer pseudorandom
bit sequences, where the latter are defined as computationally indistinguishable
from truly random sequences by any efficient algorithm. Identifying efficiency with
polynomial-time operation, this means that the generator (being a fixed algorithm)
works within some fized polynomial-time, whereas the distinguisher may be any
algorithm that runs in polynomial-time. Thus, the distinguisher is potentially more

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 319

complex than the generator; for example, the distinguisher may run in time that
is cubic in the running-time of the generator. Furthermore, to facilitate the de-
velopment of this theory, we allow the distinguisher to be probabilistic (whereas
the generator remains deterministic as stated previously). We require that such
distinguishers cannot tell the output of the generator from a truly random string of
similar length, or rather that the difference that such distinguishers may detect (or
“sense”) is negligible. Here a negligible function is a function that vanishes faster
than the reciprocal of any positive polynomial.®

Definition 8.1 (general-purpose pseudorandom generator): A deterministic polynomial-
time algorithm G is called o pseudorandom generator if there exists a stretch func-

tion, £ : N—=N (satisfying ¢(k) > k for all k), such that for any probabilistic
polynomial-time algorithm D, for any positive polynomial p, and for all sufficiently

large k’s it holds that

L

D) (8.2)

|Pr[D(G(Uy)) = 1] = PriD(Uyy) = 1]| <

where Uy, denotes the uniform distribution over {0,1}" and the probability is taken
over Uy (resp., Uyy)) as well as over the internal coin tosses of D.

Thus, Definition 8.1 is derived from the generic framework (presented in Sec-
tion 8.1) by taking the class of distinguishers to be the set of all probabilistic
polynomial-time algorithms, and taking the class of (noticeable) threshold functions
to be the set of all functions that are the reciprocals of some positive polynomial.’
Indeed, the principles underlying Definition 8.1 were discussed in Section 8.1 (and
will be further discussed in Section 8.2.3).

We note that Definition 8.1 does not make any requirement regarding the stretch
function £ : N— N, except for the generic requirement that ¢(k) > k for all k.
Needless to say, the larger ¢ is the more useful is the pseudorandom generator. Of
course, ¢ is upper-bounded by the running-time of the generator (and hence by a
polynomial). In Section 8.2.4 we show that any pseudorandom generator (even one
having minimal stretch £(k) = k+ 1) can be used for constructing a pseudorandom
generator having any desired (polynomial) stretch function. But before doing so, we
rigorously discuss the “saving in randomness” offered by pseudorandom generators,
and provide a wider perspective on the notion of computational indistinguishability
that underlies Definition 8.1.

5Definition 8.1 requires that the functions representing the distinguishing gap of certain al-
gorithms should be smaller than the reciprocal of any positive polynomial for all but finitely
many k’s. The former functions are called negligible (cf. Footnote 4, when identifying noticeable
functions with the reciprocals of any positive polynomial). The notion of negligible probability is
robust in the sense that any event that occurs with negligible probability will occur with negligible
probability also when the experiment is repeated a “feasible” (i.e., polynomial) number of times.

6The latter choice is naturally coupled with the association of efficient computation with
polynomial-time algorithms: An event that occurs with noticeable probability occurs almost
always when the experiment is repeated a “feasible” (i.e., polynomial) number of times.

320 CHAPTER 8. PSEUDORANDOM GENERATORS

8.2.2 The archetypical application

We note that “pseudo-random number generators” appeared with the first com-
puters, and have been used ever since for generating random choices (or samples)
for various applications. However, typical implementations use generators that are
not pseudorandom according to Definition 8.1. Instead, at best, these generators
are shown to pass some ad-hoc statistical test (cf., [145]). We warn that the fact
that a “pseudo-random number generator” passes some statistical tests, does not
mean that it will pass a new test and that it will be good for a future (untested)
application. Needless to say, the approach of subjecting the generator to some
ad-hoc tests fails to provide general results of the form “for all practical purposes
using the output of the generator is as good as using truly unbiased coin tosses.” In
contrast, the approach encompassed in Definition 8.1 aims at such generality, and
in fact is tailored to obtain it: The notion of computational indistinguishability,
which underlines Definition 8.1, covers all possible efficient applications and guar-
antees that for all of them pseudorandom sequences are as good as truly random
ones. Indeed, any efficient randomized algorithm maintains its performance when
its internal coin tosses are substituted by a sequence generated by a pseudorandom
generator. This substitution is spell-out next.

Construction 8.2 (typical application of pseudorandom generators): Let G be a
pseudorandom generator with stretch function ¢: N—N. Let A be a probabilistic
polynomial-time algorithm, and p: N—N denote its randomness complexity. De-
note by A(x,r) the output of A on input x and coin tosses sequence r € {0,1}7(1).
Consider the following randomized algorithm, denoted Ag:

On input x, set k = k(|z|) to be the smallest integer such that ((k) >
p(|z|), uniformly select s € {0,1}*, and output A(x,r), where r is the

p(|x])-bit long prefiz of G(s).

That is, Ag(z,s) = A(z,G'(s)), for |s| = k(Jz|) = argmin,{¢(¢) > p(|z|)}, where
G'(s) is the p(|z|)-bit long prefiz of G(s).

Thus, using Ag instead of A, the randomness complexity is reduced from p to
¢~1op, while (as we show next) it is infeasible to find inputs (i.e., #’s) on which the
noticeable behavior of Ag is different from the one of A. For example, if £(k) = k2,
then the randomness complexity is reduced from p to \/p. We stress that the
pseudorandom generator G is universal; that is, it can be applied to reduce the
randomness complexity of any probabilistic polynomial-time algorithm A.

Proposition 8.3 Let A, p and G be as in Construction 8.2, and suppose that
p: N — Nis 1-1. Then, for every pair of probabilistic polynomial-time algorithms,
a finder F' and a tester T', every positive polynomial p and all sufficiently long n’s

> PIFQAY) =a] | Axz(z)| < o) (8.3)
xe{0,1}n pn

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 321

where A r(z) € PrT(a, A(z, Upyap)) = 1] — Pr{T(z, Ag(z, Ug(jap)) = 1], and
the probabilities are taken over the U,,’s as well as over the internal coin tosses of
the algorithms F' and T'.

Algorithm F' represents a potential attempt to find an input x on which the output
of Ag is distinguishable from the output of A. This “attempt” may be benign
as in the case that a user employs algorithm Ag on inputs that are generated
by some probabilistic polynomial-time application. However, the attempt may
also be adversarial as in the case that a user employs algorithm Ag on inputs
that are provided by a potentially malicious party. The potential tester, denoted
T, represents the potential use of the output of algorithm Ag, and captures the
requirement that this output be as good as a corresponding output produced by A.
Thus, T is given z as well as the corresponding output produced either by Ag(z) def
A, Ug(je)) or by A(z) = A(z,Up(|)), and it is required that T' cannot tell the
difference. In the case that A is a probabilistic polynomial-time decision procedure,
this means that it is infeasible to find an « on which Ag decides incorrectly (i.e.,
differently than A). In the case that A is a search procedure for some NP-relation,
it is infeasible to find an z on which Ag outputs a wrong solution. For details, see
Exercise 8.2.

Proof: The proposition is proven by showing that any triple (A, F, T') violating the
claim can be converted into an algorithm D that distinguishes the output of G from
the uniform distribution, in contradiction to the hypothesis. The key observation
is that for every z € {0,1}™ it holds that

Apr(x) =Pr[T(z, A(z, Uyn))) =1] — Pr[T(z, A(z, G'(Ukn)))) =11, (8.4)

where G'(s) is the p(n)-bit long prefix of G(s). Thus, a method for finding a string
o such that |A 4 7(x)] is large yields a way of distinguishing Uy(k(n)) from G (Ug(n));
that is, given a sample r € {0, 1}*(*(") and using such a string 2 € {0,1}", the
distinguisher outputs T'(z, A(z, ")), where 7’ is the p(n)-bit long prefix of 7. Indeed,
we shall show that the violation of Eq. (8.3), which refers to E,p(1n)[|Aa,r(2)]],
yields a violation of the hypothesis that G is a pseudorandom generator (by finding
an adequate string x and using it). This intuitive argument requires a slightly
careful implementation, which is provided next.

As a warm-up, consider the following algorithm D. On input r (taken from
either Uy((n)) Or G(Ug(n))), algorithm D first obtains x « F(1"), where n can be
obtained easily from |r| (because p is 1-1 and 1™ +— p(n) is computable via A).
Next, D obtains y = A(xz,r"), where 7' is the p(|z|)-bit long prefix of . Finally D
outputs T'(z,y). Note that D is implementable in probabilistic polynomial-time,
and that

DWUyiny) = T(Xn, A(Xn,Uy(n))), where X, & F(17)

D(G(Ugn))) = T(Xn, A(Xn, G (Ug(n)))), where X,, € F(17).

Using Eq. (8.4), it follows that Pr[D(Uyk(ny)) = 1] — Pr[D(G(Ukn))) = 1] equals
E[AA4,7(F(1™))], which implies that E[A4 7(F(1™))] must be negligible (because

322 CHAPTER 8. PSEUDORANDOM GENERATORS

otherwise we derive a contradiction to the hypothesis that G is a pseudoran-
dom generator). This yields a weaker version of the proposition asserting that
E[A4,7(F(1™))] is negligible (rather than that E[|A4 7(F(1™))]] is negligible).

In order to prove that E[|A4 r(F(1™))|] (rather than to E[Aa r(F(1™))]) is
negligible, we need to modify D a little. Note that the source of trouble is that
A 4,7 (-) may be positive on some z’s and negative on others, and thus it may be the
case that E[A4 r(F(1™))] is small (due to cancelations) even if E[|A4,r(F(1™))]]
is large. This difficulty can be overcome by determining the sign of A4 7(-) on
x = F(1") and changing the outcome of D accordingly; that is, the modified D
will output T'(z, A(z,r")) if Aa r(x) > 0and 1 —T(x, A(z,r")) otherwise. Thus, in
each case, the contribution of z to the distinguishing gap of the modified D will be
|Aa,r(z)|. We further note that if |A4 ()| is small then it does not matter much
whether we act as in the case of Ay r(z) > 0 or in the case of A4 r(z) < 0. Thus,
it suffices to correctly determine the sign of Ay r(x) in the case that |[Aa r(x)]| is
large, which is certainly a feasible (approximation) task. Details follow.

We start by assuming, towards the contradiction, that E[|A4 ¢ (F(1™))]] > e(n)
for some non-negligible function e. On input r (taken from either Upg(n)) or

G(Uk(n))), the modified algorithm D first obtains = « F(1"), just as the basic

version. Next, using a sample of size poly(n/e(n)), it approximates py(z) def

Pr[T(z, A(%,Upy(ny) = 1] and pg(z) Lef Pr[T'(z, A(x, G'(Uk(n))) = 1] such that each
probability is approximated to within a deviation of €(n)/8 with negligible error
probability (say, exp(—n)). (Note that, so far, the actions of D only depend on the
length of its input 7, which determines n.)” If these approximations indicate that
pu(z) > pg(x) (equiv., that Ay r(x) > 0) then D outputs T'(x, A(z,7")) else it
outputs 1 —7T'(z, A(z,r")), where 7' is the p(|z|)-bit long prefix of r and we assume
without loss of generality that the output of T" is in {0, 1}.

The analysis of the modified distinguisher D is based on the fact that if the
approzimations yield a correct decision regarding the relation between py(x) and
pa(x), then the contribution of x to the distinguishing gap of D is |py(z) — pe(z)|-3
We also note that if |py(z) — pg(x)] > e(n)/4, then with overwhelmingly high
probability (i.e., 1 — exp(—n)) the approximation of py(z) — pe(x) maintains the
sign of py () —pa(z) (because each of the two quantities is approximated to within
an additive error of (n)/8). Finally, we note that if |py(z) — pe(z)| < e(n)/4 then
we may often err regarding the sign of py(z) — pg(z) but the damage caused (to
the distinguishing gap of D) by this error is at most 2|py(z) — pa(z)| < &(n)/2.
Combining all these observations, we get:

PrD(Us(k(ny)) =11F(1")=2] — Pr[D(G(Uk(n)))=1|F(1")=2]

7Specifically, the approximation to py(z) (resp., pg(x)) is obtained by generating a sample of
Upy(n) (resp., G'(Ug(n))) and invoking the algorithms A and T'; that is, given a sample r1,...,7¢
of U,(n) (resp., G'(Uk(n))), where t = O(n/e(n)?), we approximate py(z) (resp., pg(z)) by
H{ie(t] : T(z, A(z,r;)=1}|/t.

81Indeed, if py(x) > pg(z) then the contribution is py(z) — pa(z) = |pr(z) — pa ()|, whereas
if py(z) < pg(x) then the contribution is (1 — py(x)) — (1 — pg(x)) = —(pv(z) — pg(z)), which
also equals |py(z) — pa(x)|-

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 323

> |pu(z) — pa(z)| —n(x), (8.5)

where n(z) = ¢(n)/2 if |py(z) — pa(x)| < e(n)/4 and n(z) = exp(—n) otherwise.
(Indeed, n(z) represents the expected damage due to an error in determining the
sign of py(z) — pa(x), where €(n)/2 upper-bounds the damage caused (by a wrong
decision) in the case that |py(x) — pe(z)| < e(n)/4 and exp(—n) upper-bounds the
probability of a wrong decision in the case that |py(z) — pg(z)| > e(n)/4.) Thus,
PrID(Us(k(n))) = 1] — Pr[D(G(Ug(n))) =1] is lower-bounded by the expectation of
Eq. (8.5), which equals E[|A 4 7(F(1™))]] — E[n(F(1™))]. Combining the hypothesis
that E[[A4,7(F(1"))]] > e(n) and the fact that max,cfo,13{n(x)} < e(n)/2, we
infer that Pr{D(Uyk(n))) = 1] — Pr[D(G(Uk(n))) = 1] > £(n)/2. Recalling that
D runs in time poly(n/e(n)), this contradicts the pseudorandomness of G. The
proposition follows.

Conclusion. Although the foregoing refers to standard probabilistic polynomial-
time algorithms, a similar construction and analysis applied to any efficient ran-
domized process (i.e., any efficient multi-party computation). Any such process
preserves its behavior when replacing its perfect source of randomness (postulated
in its analysis) by a pseudorandom sequence (which may be used in the implemen-
tation). Thus, given a pseudorandom generator with a large stretch function, one
can considerably reduce the randomness complezity of any efficient application.

8.2.3 Computational Indistinguishability

In this section we spell-out (and study) the definition of computational indistin-
guishability that underlies Definition 8.1.

8.2.3.1 The general formulation

The (general formulation of the) definition of computational indistinguishability
refers to arbitrary probability ensembles. Here a probability ensemble is an infinite
sequence of random variables {Z,}, cy such that each Z, ranges over strings of
length that is polynomially related to n (i.e., there exists a polynomial p such that
for every n it holds that |Z,| < p(n) and p(|Z,|) > n). We say that {X,}, cn and
{Y,}..en are computationally indistinguishable if for every feasible algorithm A the
difference da(n) = |Pr[A(X,) =1] — Pr[A(Y,) =1]| is a negligible function in n.
That is:

Definition 8.4 (computational indistinguishability): The probability ensembles
{X.o} nen and {Y,.},en are computationally indistinguishable if for every probabilis-
tic polynomial-time algorithm D, every positive polynomial p, and all sufficiently

large n,
1
Pr[D(X,)=1] — Pr[D(Y,)=1]| < — 8.6
|PrD(Xy)=1] = Pr[D(Yy)=1]| o) (8.6)
where the probabilities are taken over the relevant distribution (i.e., either X, or
Y,.) and over the internal coin tosses of algorithm D. The Lh.s. of Eq. (8.6), when

324 CHAPTER 8. PSEUDORANDOM GENERATORS

viewed as o function of n, is often called the distinguishing gap of D, where {X,},cN
and {Y,},.cn are understood from the context.

We can think of D as representing somebody who wishes to distinguish two distri-
butions (based on a given sample drawn from one of the distributions), and think
of the output “1” as representing D’s verdict that the sample was drawn according
to the first distribution. Saying that the two distributions are computationally in-
distinguishable means that if D is a feasible procedure then its verdict is not really
meaningful (because the verdict is almost as often 1 when the sample is drawn from
the first distribution as when the sample is drawn from the second distribution).
We comment that the absolute value in Eq. (8.6) can be omitted without affecting
the definition (see Exercise 8.3), and we will often do so without warning.

In Definition 8.1, we required that the probability ensembles {G(Ui)}1en and
{Uur) }ren be computationally indistinguishable. Indeed, an important special
case of Definition 8.4 is when one ensemble is uniform, and in such a case we call
the other ensemble pseudorandom.

8.2.3.2 Relation to statistical closeness

Two probability ensembles, {X,},.cy and {Y, }, N, are said to be statistically close
(or statistically indistinguishable) if for every positive polynomial p and all sufficient
large n the variation distance between X,, and Y,, (i.e., 2 > |Pr[X,, =z] — Pr[Y,, =
z]|) is bounded above by 1/p(n). Clearly, any two probability ensembles that are
statistically close are computationally indistinguishable. Needless to say, this is
a trivial case of computational indistinguishability, which is due to information
theoretic reasons. In contrast, we shall be interested in non-trivial cases (of com-
putational indistinguishability), which correspond to probability ensembles that
are statistically far apart.

Indeed, as noted in Section 8.1, there exist probability ensembles that are sta-
tistically far apart and yet are computationally indistinguishable (see Exercise 8.1).
However, at least one of the probability ensembles in Exercise 8.1 is not polynomial-
time constructible.” We shall be much more interested in non-trivial cases of com-
putational indistinguishability in which both ensembles are polynomial-time con-
structible. An important example is provided by the definition of pseudorandom
generators (see Exercise 8.7). As we shall see (in Theorem 8.11), the existence
of one-way functions implies the existence of pseudorandom generators, which in
turn implies the existence of polynomial-time constructible probability ensembles
that are statistically far apart and yet are computationally indistinguishable. We
mention that this sufficient condition is also necessary (see Exercise 8.9).

8.2.3.3 Indistinguishability by Multiple Samples

The definition of computational indistinguishability (i.e., Definition 8.4) refers to
distinguishers that obtain a single sample from one of the two relevant probability

9We say that {Z"}neN is polynomial-time constructible if there exists a polynomial-time
algorithm S such that S(1™) and Z,, are identically distributed.

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 325

ensembles (Le., {Xn},cny and {Y,},crn). A very natural generalization of Defini-
tion 8.4 refers to distinguishers that obtain several independent samples from such
an ensemble.

Definition 8.5 (indistinguishability by multiple samples): Let s:N— N be polynomially-
bounded. Two probability ensembles, {X,},en and {Yn},cn, are computationally
indistinguishable by s(-) samples if for every probabilistic polynomial-time algorithm,

D, every positive polynomial p(-), and all sufficiently large n’s

1
‘Pr (DD, ., X(0)=1] - Pr [D(erl),...,y,ﬁs(””)zl]‘ < o

where Xr(bl) through XT(LS(_H)) and Y,El) through Yés(n)) are independent random vari-
ables such that each X,(f) 1s identical to X,, and each Y,EZ) 1s identical to Y,,.

It turns out that in the most interesting cases, computational indistinguishability
by a single sample implies computational indistinguishability by any polynomial
number of samples. One such case is the case of polynomial-time constructible
ensembles. We say that the ensemble {Z,,},cn is polynomial-time constructible if
there exists a polynomial-time algorithm S such that S(1™) and Z,, are identically
distributed.

Proposition 8.6 Suppose that X Lef {Xn}lpeny andY = {Yo}hen are both polynomial-
time constructible, and s be a polynomial. Then, X and Y are computationally
indistinguishable by a single sample if and only if they are computationally indis-
tinguishable by s(-) samples.

Clearly, for every polynomial s, computational indistinguishability by s(-) samples
implies computational indistinguishability by a single sample (see Exercise 8.5).
We now prove that, for efficiently constructible ensembles, indistinguishability by a
single sample implies indistinguishability by multiple samples.'® The proof provides
a simple demonstration of a central proof technique, known as the hybrid technique.

Proof Sketch:'! Again, the proof uses the counter-positive, which in such settings
is called a reducibility argument (see Section 7.1.2 onwards). Specifically, we show
that the existence of an efficient algorithm that distinguishes the ensembles X and
Y using several samples, implies the existence of an efficient algorithm that distin-
guishes the ensembles X and Y using a single sample. The implication is proven
using the following argument, which will be latter called a “hybrid argument”.
To prove that a sequence of s(n) samples drawn independently from X, is
indistinguishable from a sequence of s(n) samples drawn independently from Y,
we consider hybrid sequences such that the i*" hybrid consists of i samples of X,
followed by s(n) — ¢ samples of Y;,. The “homogeneous” sequences (which we wish

10The requirement that both ensembles are polynomial-time constructible is essential; see,
Exercise 8.10.
HFor more details see [90, Sec. 3.2.3].

326 CHAPTER 8. PSEUDORANDOM GENERATORS

to prove to be computational indistinguishable) are the extreme hybrids (i.e., the
first and last hybrids). The key observation is that distinguishing the extreme
hybrids (towards the contradiction hypothesis) implies distinguishing neighboring
hybrids, which in turn yields a procedure for distinguishing single samples of the
two original distributions (contradicting the hypothesis that these two distributions
are indistinguishable by a single sample). Details follow.

Suppose, towards the contradiction, that D distinguishes s(n) samples of X,
from s(n) samples of Y,, with a distinguishing gap of §(n). Denoting the ‘"
hybrid by H: (ie., H: = (X3, ., X v v*))) this means that D
distinguishes the extreme hybrids (i.e., H? and Hs(n)) with gap 6(n). It follows
that D distinguishes a random pair of neighboring hybrids (i.e., D distinguishes
H} from H:', for a randomly selected 7) with gap at least §(n)/s(n): the reason
being that

Eicqo,....s(n)_13 [PrID(HL) = 1] — Pr[D(HL™) = 1]]
s(n)—1
= ﬁ . (Pr[D(HfL) =1] - Pr[D(HIY) = 1)) (8.7)
i=0

‘ -

= (Pr[D(HS) =1] - PriD(H:™) = 1]) _) _

)

»
—~~

The key step in the argument is transforming the distinguishability of neighbor-
ing hybrids into distinguishability of single samples of the original ensembles (thus
deriving a contradiction). Indeed, using D, we obtain a distinguisher D’ of single
samples: Given a single sample, algorithm D’ selects ¢ € {0,...,s(n) — 1} at ran-
dom, generates ¢ samples from the first distribution and s(n) —i — 1 samples from
the second distribution, invokes D with the s(n)-samples sequence obtained when
placing the input sample in location ¢ 4+ 1, and answers whatever D does. That is,
on input z and when selecting the index ¢, algorithm D' invokes D on a sample
from the distribution (Xle), oy Xy) ...,YTES(”))). Thus, the construction
of D' relies on the hypothesis that both probability ensembles are polynomial-time
constructible. The analysis of D’ is based on the following two facts:

1. When invoked on an input that is distributed according to X,, and selecting
the index i € {0, ...,s(n) — 1}, algorithm D’ behaves like D(H:!), because
(X, LX) X, v L)y = g

2. When invoked on an input that is distributed according to Y;, and selecting
the index i € {0,...,s(n) — 1}, algorithm D’ behaves like D(H}), because

(X, XY, v vy = mi

Thus, the distinguishing gap of D’ (between Y,, and X,,) is captured by Eq. (8.7),
and the claim follows (because assuming towards the contradiction that the propo-
sition’s conclusion does not hold leads to a contradiction of the proposition’s hy-
pothesis). O

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 327

The hybrid technique — a digest: The hybrid technique constitutes a special
type of a “reducibility argument” in which the computational indistinguishability
of complex ensembles is proved using the computational indistinguishability of basic
ensembles. The actual reduction is in the other direction: efficiently distinguishing
the basic ensembles is reduced to efficiently distinguishing the complex ensembles,
and hybrid distributions are used in the reduction in an essential way. The following
three properties of the construction of the hybrids play an important role in the
argument:

1. The complexr ensembles collide with the extreme hybrids. This property is
essential because our aim is proving something that relates to the complex
ensembles (i.e., their indistinguishability), while the argument itself refers to
the extreme hybrids.

In the proof of Proposition 8.6 the extreme hybrids (i.e., Hs™ and H®) collide
with the complex ensembles that represent s(n)-ary sequences of samples of
one of the basic ensembles.

2. The basic ensemble are efficiently mapped to neighboring hybrids. This prop-
erty is essential because our starting hypothesis relates to the basic ensem-
bles (i.e., their indistinguishability), while the argument itself refers directly
to the neighboring hybrids. Thus, we need to translate our knowledge (i.e.,
computational indistinguishability) of the basic ensembles to knowledge (i.e.,
computational indistinguishability) of any pair of neighboring hybrids. Typ-
ically, this is done by efficiently transforming strings in the range of a basic
distribution into strings in the range of a hybrid such that the transforma-
tion maps the first basic distribution to one hybrid and the second basic
distribution to the neighboring hybrid.

In the proof of Proposition 8.6 the basic ensembles (i.e., X, and Y,,) were
efficiently transformed into neighboring hybrids (i.e., H."' and H, respec-
tively). Recall that, in this case, the efficiency of this transformation relied
on the hypothesis that both the basic ensembles are polynomial-time con-
structible.

3. The number of hybrids is small (i.e., polynomial). This property is essential
in order to deduce the computational indistinguishability of extreme hybrids
from the computational indistinguishability of each pair of neighboring hy-
brids. Typically, the “distinguishability gap” established in the argument
losses a factor that is proportional to the number of hybrids. This is due to
the fact that the gap between the extreme hybrids is upper-bounded by the
sum of the gaps between neighboring hybrids.

In the proof of Proposition 8.6 the number of hybrids equals s(n) and the
aforementioned loss is reflected in Eq. (8.7).

We remark that in the course of an hybrid argument, a distinguishing algorithm
referring to the complex ensembles is being analyzed and even invoked on arbi-
trary hybrids. The reader may be annoyed of the fact that the algorithm “was

328 CHAPTER 8. PSEUDORANDOM GENERATORS

not designed to work on such hybrids” (but rather only on the extreme hybrids).
However, an algorithm is an algorithm: once it exists we can invoke it on inputs of
our choice, and analyze its performance on arbitrary input distributions.

8.2.4 Amplifying the stretch function

Recall that the definition of pseudorandom generators (i.e., Definition 8.1) makes
a minimal requirement regarding their stretch; that is, it is only required that
the length of the output of such generators is longer than their input. Needless
to say, we seek pseudorandom generators with a much more significant stretch,
firstly because the stretch determines the saving in randomness obtained via Con-

struction 8.2. It turns out (see Construction 8.7) that pseudorandom generators

of any stretch function (and in particular of minimal stretch ¢, (k) 4+ 1) can

be easily converted into pseudorandom generators of any desired (polynomially
bounded) stretch function, £. (On the other hand, since pseudorandom generators
are required (in Definition 8.1) to run in polynomial time, their stretch must be
polynomially bounded.)

Construction 8.7 Let G, be a pseudorandom generator with stretch function
(k) = k+1, and € be any polynomially bounded stretch function that is polynomial-
time computable. Let

G(s) © 0102 " 0g(|s]) (8.8)

where xo = s and z;0; = G1(z;_1), for i =1,...,£(]s|). (That is, o; is the last bit
of G1(z;—1) and z; is the |s|-bit long prefix of G1(z;—1).)

Needless to say, G is polynomial-time computable and has stretch £. An alternative
construction is considered in Exercise 8.11.

Hi

Q
Q
-Q

T

Figure 8.2: Analysis of stretch amplification — the i*® hybrid.

Proposition 8.8 Let G and G be as in Construction 8.7. Then G constitutes a
pseudorandom generator.

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 329

Proof Sketch:'? The proposition is proven using the hybrid technique, presented
and discussed in Section 8.2.3. Here (for i = 0,...,{(k)) we consider the hybrid
distributions Hy,, depicted in Figure 8.2 and defined by

Hy Z UM - gy (U7),

where - denotes the concatenation of strings, g;(z) denotes the j-bit long prefix of
G(z), and Ui(l) and U,£2) are independent uniform distributions (over {0,1}* and
{0,1}*, respectively). The extreme hybrids (i.e., HY and H}) correspond to G(Uy,)
and Ujy), whereas distinguishability of neighboring hybrids can be worked into
distinguishability of G1(Uy) and Ug41. Details follow.

We shall focus on proving the indistinguishability of neighboring hybrids.!?
Suppose, towards the contradiction, that algorithm D distinguishes H}, from H,i"’l.
We first take a closer look at these hybrids. Note that, for j > 1, it holds that
gi(s) = (0,9;-1(z)), where zo = G1(s). Denoting the first |z| —1 bits of x by F(z)
and the last bit of z by L(z), we may write g;(s) = (L(G1(s)), gj—1(F(G1(s))))
and (UM, UP) = (L(Uks1), F(Uk11)). Tt follows that

H = U gy-U)
= (UY, LGUP)), giuy—i -1 (F(GL(UP))))
H = Ufil)-gg(k)_i_l(U,?))

oW, L(U,Eii); g([(k)—i)—l(F(Ulg?l—;)))'

Now, combining the generation of UZ-(l) and the evaluation of gy(x)—;—1 with the dis-
tinguisher D, we distinguish the distribution (F(G1 (U\?)), L(G1(U?))) = G1(Uy)
from the distribution (F(U,gi;),L(U,gii)) = Uk41, in contradiction to the pseu-
dorandomness of G;. Specifically, on input z € {0,1}**!, we uniformly select
r € {0,1}* and output D(r - L() - ge(r)—i—1(F(z))). The analysis of the resulting
distinguisher is based on the following two facts:

L. When given an input that is distributed according to G1(Uy), we invoke
algorithm D on input (U, L(G1(Uk)), ge(k)—i—1(F(G1(Ur)))) = Hy.

2. When given an input that is distributed according to U1, we invoke algo-
rithm D on input (U}, L(Uk+1), geck)—i—1 (F(Ury1))) = HyH

Thus, the probability that we output 1 on input G(Uy) (resp., Ugy1) equals
Pr[D(H;}) = 1] (resp., Pr[D(H;™) = 1]). Hence the distinguishability of neigh-
boring hybrids implies the distinguishability of G;(U) and Ugyq. O

2For more details see [90, Sec. 3.3.3].

13As usual (when the hybrid technique is used), the distinguishability of the extreme hybrids
(which collide with G(Uy) and Uy, respectively) implies the distinguishability of a random pair
of neighboring hybrids. Thus, the following analysis will be applied to a random ¢ (in {0, ...,k—1}),
and the full analysis will refer to an expression analogous to Eq. (8.7).

330 CHAPTER 8. PSEUDORANDOM GENERATORS

Conclusion. In view of the foregoing, when talking about the mere existence of
pseudorandom generators, in the sense of Definition 8.1, we may ignore the specific
stretch function.

8.2.5 Counstructions

The constructions surveyed in this section “transform” computational difficulty, in
the form of one-way functions, into generators of pseudorandomness. Recall that
a polynomial-time computable function is called one-way if any efficient algorithm
can invert it only with negligible success probability (see Definition 7.1 and Sec-
tion 7.1 for further discussion). We will actually use hard-core predicates of such
functions, and refer the reader to their treatment in Section 7.1.3. Loosely speak-
ing, a polynomial-time computable predicate b is called a hard-core of a function f
if any efficient algorithm, given f(z), can guess b(z) with success probability that
is only negligibly higher than half. Recall that (by Theorem 7.7), for any one-way
function f, the inner-product mod 2 of z and r is a hard-core of f'(z,r) = (f(z), 7).

8.2.5.1 A simple construction

Intuitively, the definition of a hard-core predicate implies a potentially interesting
case of computational indistinguishability. Specifically, as will be shown implicitly
in Proposition 8.9 and explicitly in Exercise 8.8, if b is a hard-core of the function
f, then the ensemble {f(U,.)-b(U,)},.cn is computationally indistinguishable from
the ensemble { f(U,)-Uj },,en- Furthermore, if f is 1-1 then the foregoing ensembles
are statistically far apart, and thus constitute a non-trivial case of computational
indistinguishability. If f is also polynomial-time computable and length-preserving,
then this yields a construction of a pseudorandom generator.

Proposition 8.9 (A simple construction of pseudorandom generators): Let b be

a hard-core predicate of a polynomial-time computable 1-1 and length-preserving
def

function f. Then, G(s) = f(s) - b(s) is a pseudorandom generator.

Proof Sketch:'* Considering a uniformly distributed s € {0,1}", we first note
that the n-bit long prefix of G(s) is uniformly distributed in {0,1}", because f
induces a permutation on the set {0,1}"™. Hence, the proof boils down to showing
that distinguishing f(s)-b(s) from f(s)-o, where o is a random bit, yields contra-
diction to the hypothesis that b is a hard-core of f (i.e., that b(s) is unpredictable
from f(s)). Intuitively, the reason is that such a hypothetical distinguisher also

distinguishes f(s) - b(s) from f(s) -b(s), where @ = 1 — o, whereas distinguishing

f(s) - b(s) from f(s) - b(s) yields an algorithm for predicting b(s) based on f(s).
Details follow. We start with any potential distinguisher D, and let

§(k) < Pr[D(G(Uy)) = 1] — Pr[D(Ug41) = 1].

We may assume, without loss of generality, that 6(k) is non-negative (for infinitely
many k’s). Observing that G(Uy) = f(Uyx) - b(Uy) and that Ugyq is distributed

MFor more details see [90, Sec. 3.3.4].

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 331

identically to a random variable that equals f(Uy)b(Uy) with probability 1/2 and
f(Ur)b(Uy,) otherwise, we have

PrD(f(Ur)b(Uk)) = 1] = Pr[D(f(Ur)b(Uk)) = 1] = 26(k).

The key observation is that D effectively distinguishes (with gap 26(k)) the case
that the last bit is b(Uy,) from the case that the last bit is b(Uy). This distinguishing
ability can be transformed to predicting the value of b(Uy), when given the value
f(Ug). Indeed, consider an algorithm A that, on input y, uniformly selects o €
{0,1}, invokes D(yo), and outputs ¢ if D(yo) = 1 and 7 otherwise. Then

PrlA(f(Ux)) = b(Us)] -
= Pr[D(f(Uk)o') = lAUZb(Uk)] + Pr[D(f(Uk)U) ZO/\U'Zb(Uk)]
_ %-(PF[D(f(Uk)-b(Uk)) 1] + (1 — PUD(f(UL) - BOW)) = 1]))

which equals (1 + 26(k))/2. This contradicts the hypothesis that b is a hard-core
of f, and the proposition follows. O

Combining Theorem 7.7, Proposition 8.9 and Construction 8.7, we obtain the fol-
lowing corollary.

Theorem 8.10 (A sufficient condition for the existence of pseudorandom gener-
ators): If there exists 1-1 and length-preserving one-way function then, for every
polynomially bounded stretch function £, there exists a pseudorandom generator of
stretch .

Digest. The main part of the proof of Proposition 8.9 is showing that the (next
bit) unpredictability of G(Uy) implies the pseudorandomness of G(Uy). The fact
that (next bit) unpredictability and pseudorandomness are equivalent, in general,
is proven explicitly in the alternative proof of Theorem 8.10 provided next.

8.2.5.2 An alternative presentation

Let us take a closer look at the pseudorandom generators obtained by combining
Construction 8.7 and Proposition 8.9. For a stretch function £ : N—N, a 1-1
one-way function f with a hard-core b, we obtain

G(s) © 102" 0g(]s]) 5 (8.9)

where 1o = s and z;0; = f(wi—1)b(x;—1) for i = 1,...,4(|s|). Denoting by f'(x)

the value of f iterated i times on z (i.e., fi(z) = f=(f(x)) and fO(z) = z), we
rewrite Eq. (8.9) as follows

G(s) = b(s) - b(f(s)) - b(f*D71(s)). (8.10)

332 CHAPTER 8. PSEUDORANDOM GENERATORS

The pseudorandomness of G is established in two steps, using the notion of (next
bit) unpredictability. An ensemble {Z}},cn is called unpredictable if any probabilis-
tic polynomial-time machine obtaining a (random)!® prefix of Zj fails to predict
the next bit of Zj, with probability non-negligibly higher than 1/2. Specifically, we
establish the following two results.

1. A general result asserting that an ensemble is pseudorandom if and only if
it is unpredictable. Recall that an ensemble is pseudorandom if it is compu-
tationally indistinguishable from a uniform distribution (over bit strings of
adequate length).

Clearly, pseudorandomness implies polynomial-time unpredictability, but here
we actually need the other direction, which is less obvious. Still, using a
hybrid argument, one can show that (next-bit) unpredictability implies in-
distinguishability from the uniform ensemble. For details see Exercise 8.12.

2. A specific result asserting that the ensemble {G(Uy)} e is unpredictable
from right to left. Equivalently, G'(U,) is polynomial-time unpredictable
(from left to right (as usual)), where G'(s) = b(f*UsD=1(s))---b(f(s)) - b(s)
is the reverse of G(s).

Using the fact that f induces a permutation over {0, 1}", observe that the (j+
1)-bit long prefix of G'(Uy,) is distributed identically to b(f7(Uy)) - - - b(f(Ug))-
b(Uk). Thus, an algorithm that predicts the j + 1 bit of G'(U,,) based on
the j-bit long prefix of G'(U,,) yields an algorithm that guesses b(U,,) based
on f(Uy,). For details see Exercise 8.14.

Needless to say, G is a pseudorandom generator if and only if G' is a pseudorandom
generator (see Exercise 8.13). We mention that Eq. (8.10) is often referred to as
the Blum-Micali Construction.!®

8.2.5.3 A general condition for the existence of pseudorandom gener-
ators

Recall that given any one-way 1-1 length-preserving function, we can easily con-
struct a pseudorandom generator. Actually, the 1-1 (and length-preserving) re-
quirement may be dropped, but the currently known construction — for the general
case — is quite complex.

Theorem 8.11 (On the existence of pseudorandom generators): Pseudorandom
generators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators imply the existence of
one-way functions, consider a pseudorandom generator G with stretch function

5 For simplicity, we define unpredictability as referring to prefixes of a random length (dis-
tributed uniformly in {0, ..., |Zx|—1}). A more general definition allows the predictor to determine
the length of the prefix that it reads on the fly. This seemingly stronger notion of unpredictability
is actually equivalent to the one we use, because both notions are equivalent to pseudorandomness.

16Given the popularity of the term, we deviate from our convention of not specifying credits in
the main text. Indeed, this construction originates in [39].

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 333

{(k) = 2k. For z,y € {0,1}*, define f(z,y) e G(z), and so f is polynomial-time
computable (and length-preserving). It must be that f is one-way, or else one can
distinguish G(Uy) from Uy by trying to invert and checking the result: inverting
f on the distribution f(Usg) corresponds to operating on the distribution G(Uy),
whereas the probability that Us has inverse under f is negligible.

The interesting direction of the proof of Theorem 8.11 is the construction of
pseudorandom generators based on any one-way function. Since the known proof is
quite complex, we only provide a very rough overview of some of the ideas involved.
We mention that these ideas make extensive use of adequate hashing functions (e.g.,
pairwise independent hashing functions, see Appendix D.2).

We first note that, in general (when f may not be 1-1), the ensemble f(Uy)
may not be pseudorandom, and so Construction 8.9 (i.e., G(s) = f(s)b(s), where
b is a hard-core of f) cannot be used directly. One idea underlying the known
construction is hashing f(Uj) to an almost uniform string of length related to its
entropy, using adequate hashing functions.'” But “hashing f(Uz) down to length
comparable to the entropy” means shrinking the length of the output to, say,
k' < k. This foils the entire point of stretching the k-bit seed. Thus, a second idea
underlying the construction is compensating for the loss of k — k' bits by extracting
these many bits from the seed Uy itself. This is done by hashing Uy, and the point
is that the (k — k’)-bit long hash value does not make the inverting task any easier.
Implementing these ideas turns out to be more difficult than it seems, and indeed
an alternative construction would be most appreciated.

8.2.6 Non-uniformly strong pseudorandom generators

Recall that we said that truly random sequences can be replaced by pseudorandom
sequences without affecting any efficient computation that uses these sequences.
The specific formulation of this assertion, presented in Proposition 8.3, refers to
randomized algorithms that take a “primary input” and use a secondary “random
input” in their computation. Proposition 8.3 asserts that it is infeasible to find
a primary input for which the replacement of a truly random secondary input
by a pseudorandom one affects the final output of the algorithm in a noticeable
way. This, however, does not mean that such primary inputs do not exist (but
rather that they are hard to find). Consequently, Proposition 8.3 falls short of
yielding a (worst-case)!® “derandomization” of a complexity class such as BPP.

L7This is done after guaranteeing that the logarithm of the probability mass of a value of f(Ug)
is typically close to the entropy of f(Uyg). Specifically, given an arbitrary one-way function f’,
one first constructs f by taking a “direct product” of sufficiently many copies of f’. For example,
for x1,...,x,2/3 € {0, l}kl/s, we let f(z1,...,%;2/3) def F(x1), -y f1(wh273)-

8Indeed, Proposition 8.3 yields an average-case derandomization of BPP. In particular, for
every polynomial-time constructible ensemble {X”}neN7 every Boolean function f € BPP, and
every € > 0, there exists a randomized algorithm A’ of randomness complexity 7<(n) = n® such
that the probability that A’(X,) # f(X») is negligible. A corresponding deterministic (exp(7e)-
time) algorithm A’ can be obtained, as in the proof of Theorem 8.13, and again the probability
that A"(X,) # f(Xn) is negligible, where here the probability is taken only over the distribution
of the primary input (represented by X,). In contrast, worst-case derandomization, as captured
by the assertion BPP C DTIME(2"¢), requires that the probability that A" (X,) # f(X.) is zero.

334 CHAPTER 8. PSEUDORANDOM GENERATORS

To obtain such results, we need a stronger notion of pseudorandom generators,
presented next. Specifically, we need pseudorandom generators that can fool all
polynomial-size circuits (cf. §1.2.4.1), and not merely all probabilistic polynomial-
time algorithms.?

Definition 8.12 (strong pseudorandom generator — fooling circuits): A determin-
istic polynomial-time algorithm G is called a non-uniformly strong pseudorandom
generator if there exists a stretch function, ¢ : N—N, such that for any family
{Cr}ren of polynomial-size circuits, for any positive polynomial p, and for all suf-
ficiently large k’s

1
p(k)
An alternative formulation is obtained by referring to polynomial-time machines

that take advice (Section 3.1.2). Using such pseudorandom generators, we can
“derandomize” BPP.

|PriCe(G(Ur)) = 1] = PriCe(Usry) =1]| <

Theorem 8.13 (derandomization of BPP): If there exists non-uniformly strong
pseudorandom generators then BPP is contained in N.>oDTIME(t.), where t.(n) e

on°

Proof Sketch: For any S € BPP and any € > 0, we let A denote the decision
procedure for S and G denote a non-uniformly strong pseudorandom generator
stretching n-bit long seeds into poly(n)-long sequences (to be used by A as sec-
ondary input when processing a primary input of length n). Combining A and G,
we obtain an algorithm A’ = Ag (as in Construction 8.2). We claim that A and A’
may significantly differ in their (expected probabilistic) decision on at most finitely
many inputs, because otherwise we can use these inputs (together with A) to derive
a (non-uniform) family of polynomial-size circuits that distinguishes G(U,¢) and
Upoly(n), contradicting the the hypothesis regarding G. Specifically, an input z on
which A and A’ differ significantly yields a circuit C, that distinguishes G(U|,-)
and Upely(|2|), by letting Co(r) = A(z,r).2° Incorporating the finitely many “bad”
inputs into A’, we derive a probabilistic polynomial-time algorithm that decides S
while using randomness complexity n®.

Finally, emulating A’ on each of the 2" possible random sequences (i.e., seeds
to G) and ruling by majority, we obtain a deterministic algorithm A" as required.
That is, let A'(x,r) denote the output of algorithm A’ on input = when using coins
r € {0,1}™. Then A”(x) invokes A'(z,7) on every r € {0,1}", and outputs 1 if
and only if the majority of these 2" invocations have returned 1. O

9Needless to say, strong pseudorandom generators in the sense of Definition 8.12 satisfy the
basic definition of a pseudorandom generator (i.e., Definition 8.1); see Exercise 8.15. We com-
ment that the underlying notion of computational indistinguishability (by circuits) is strictly
stronger than Definition 8.4, and that it is invariant under multiple samples (regardless of the
constructibility of the underlying ensembles); for details, see Exercise 8.16.

20Indeed, in terms of the proof of Proposition 8.3, the finder F' consists of a non-uniform family
of polynomial-size circuits that print the “problematic” primary inputs that are hard-wired in
them, and the corresponding distinguisher D is thus also non-uniform.

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 335

We comment that stronger results regarding derandomization of BPP are pre-
sented in Section 8.3.

On constructing non-uniformly strong pseudorandom generators. Non-
uniformly strong pseudorandom generators (as in Definition 8.12) can be con-
structed using any one-way function that is hard to invert by any non-uniform
family of polynomial-size circuits (as in Definition 7.3), rather than by probabilis-
tic polynomial-time machines. In fact, the construction in this case is simpler than
the one employed in the uniform case (i.e., the construction underlying the proof
of Theorem 8.11).

8.2.7 Stronger notions and conceptual reflections

We first mention two stronger variants on the definition of pseudorandom genera-
tors, and conclude this section by highlighting various conceptual issues.

8.2.7.1 Stronger (uniform-complexity) notions

The following two notions represent strengthening of the standard definition of
pseudorandom generators (as presented in Definition 8.1). Non-uniform versions
of these notions (strengthening Definition 8.12) are also of interest.

Fooling stronger distinguishers. One strengthening of Definition 8.1 amounts
to explicitly quantifying the resources (and success gaps) of distinguishers. We
choose to bound these quantities as a function of the length of the seed (i.e.,
k), rather than as a function of the length of the string that is being examined

(i.e., £(k)). For a class of time bounds 7 (e.g., 7 = {t(k) = ZCﬁ}ceN) and a

class of noticeable functions (e.g., F = {f(k) = 1/t(k) : t € T}), we say that a

pseudorandom generator, G, is (7, F)-strong if for any probabilistic algorithm D
having running-time bounded by a function in 7 (applied to k)2!, for any function
f in F, and for all sufficiently large k’s, it holds that

|PrD(G(UR)) = 1] = Pr[D(Uyry) = 1]| < f(k).

An analogous strengthening may be applied to the definition of one-way functions.
Doing so reveals the weakness of the known construction that underlies the proof
of Theorem 8.11: It only implies that for some ¢ > 0 (¢ = 1/8 will do), for any
7T and F, the existence of “(7, F)-strong one-way functions” implies the existence

of (7', F')-strong pseudorandom generators, where 7' = {t'(k) Lef t(k%)/poly(k) :

teTYyand F' = {f'(k) < poly(k) - f(k%) : f € F}. What we would like to
have is an analogous result with 7' = {t'(k) Lef t(Q2(k))/poly(k) : t € T} and

def

7' =A{f"(k) = poly(k) - f(UK)) : f € F}.

21That is, when examining a sequence of length £(k) algorithm D makes at most t(k) steps,
where t € 7.

336 CHAPTER 8. PSEUDORANDOM GENERATORS

Pseudorandom Functions. Recall that pseudorandom generators allow to ef-
ficiently generate long pseudorandom sequences from short random seeds. Pseu-
dorandom functions (defined in Appendix C.3.3) are even more powerful: They
allow efficient direct access to a huge pseudorandom sequence, which is not even
feasible to scan bit-by-bit. Specifically, based on a (random) k-bit long seed, they
allow direct access to a sequence of length 2¥. Put in other words, pseudorandom
functions are deterministic polynomial-time algorithms that map a k-bit long seed
s and a k-bit long argument z to a value fs(x) such that, for a uniformly dis-
tributed s € {0,1}*, the function f, looks random to any poly(k)-time observer
that may query fs at arguments of its choice. Thus, pseudorandom functions can
replace truly random functions in any efficient application (e.g., most notably in
cryptography). We mention that pseudorandom functions can be constructed from
any pseudorandom generator (see Theorem C.8), and that they found many appli-
cations in cryptography (see Appendices C.3.3, C.5.2, and C.6.2). Pseudorandom
functions were also used to derive negative results in computational learning the-
ory [230] and in the study of circuit complexity (cf., Natural Proofs [188]).

8.2.7.2 Conceptual reflections

We highlight several conceptual aspects of the foregoing computational approach
to randomness. Some of these aspects are common to other instantiation of the
general paradigm (esp., the one presented in Section 8.3).

Behavioristic versus Ontological. The behavioristic nature of the computa-
tional approach to randomness is best demonstrated by confronting this approach
with the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a string
is Kolmogorov-random if its length equals the length of the shortest program pro-
ducing it. This shortest program may be considered the “true explanation” to
the phenomenon described by the string. A Kolmogorov-random string is thus a
string that does not have a substantially simpler (i.e., shorter) explanation than
itself. Considering the simplest explanation of a phenomenon may be viewed as an
ontological approach. In contrast, considering the effect of phenomena on certain
devices (or observations), as underlying the definition of pseudorandomness, is a
behavioristic approach. Furthermore, there exist probability distributions that are
not uniform (and are not even statistically close to a uniform distribution) and nev-
ertheless are indistinguishable from a uniform distribution (by any efficient device).
Thus, distributions that are ontologically very different, are considered equivalent
by the behavioristic point of view taken in the definition of computational indistin-
guishability.

A relativistic view of randomness. We have defined pseudorandomness in
terms of its observer. Specifically, we have considered the class of efficient (i.e.,
polynomial-time) observers and defined as pseudorandom objects that look ran-
dom to any observer in that class. In subsequent sections, we shall consider re-
stricted classes of such observers (e.g., space-bounded polynomial-time observers
and even very restricted observers that merely apply specific tests such as linear

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 337

tests or hitting tests). Each such class of observers gives rise to a different notion
of pseudorandomness. Furthermore, the general paradigm (of pseudorandomness)
explicitly aims at distributions that are not uniform and yet are considered as such
from the point of view of certain observers. Thus, our entire approach to pseu-
dorandomuess is relativistic and subjective (i.e., depending on the abilities of the
observer).

Randomness and Computational Difficulty. Pseudorandomness and com-
putational difficulty play dual roles: The general paradigm of pseudorandomness
relies on the fact that placing computational restrictions on the observer gives rise
to distributions that are not uniform and still cannot be distinguished from uni-
form distributions. Thus, the pivot of the entire approach is the computational
difficulty of distinguishing pseudorandom distributions from truly random ones.
Furthermore, many of the constructions of pseudorandom generators rely either on
conjectures or on facts regarding computational difficulty (i.e., that certain com-
putations that are hard for certain classes). For example, one-way functions were
used to construct general-purpose pseudorandom generators (i.e., those working
in polynomial-time and fooling all polynomial-time observers). Analogously, as
we shall see in §8.3.3.1, the fact that parity function is hard for polynomial-size
constant-depth circuits can be used to generate (highly non-uniform) sequences
that fool such circuits.

Randomness and Predictability. The connection between pseudorandomness
and unpredictability (by efficient procedures) plays an important role in the analysis
of several constructions (cf. Sections 8.2.5 and 8.3.2). We wish to highlight the
intuitive appeal of this connection.

8.3 Derandomization of time-complexity classes

Let us take a second look at the process of derandomization that underlies the
proof of Theorem 8.13. First, a pseudorandom generator was used to shrink
the randomness-complexity of a BPP-algorithm, and then derandomization was
achieved by scanning all possible seeds to this generator. A key observation re-
garding this process is that there is no point in insisting that the pseudorandom
generator runs in time that is polynomial in its seed length. Instead, it suffices
to require that the generator runs in time that is exponential in its seed length,
because we are incurring such an overhead anyhow due to the scanning of all pos-
sible seeds. Furthermore, in this context, the running-time of the generator may
be larger than the running time of the algorithm, which means that the genera-
tor need only fool distinguishers that take less steps than the generator. These
considerations motivate the following definition of canonical derandomizers.

338 CHAPTER 8. PSEUDORANDOM GENERATORS

8.3.1 Defining canonical derandomizers

Recall that in order to “derandomize” a probabilistic polynomial-time algorithm A,
we first obtain a functionally equivalent algorithm A¢ (as in Construction 8.2) that
has (significantly) smaller randomness-complexity. Algorithm A has to maintain
A’s input-output behavior on all (but finitely many) inputs. Thus, the set of the
relevant distinguishers (considered in the proof of Theorem 8.13) is the set of all
possible circuits obtained from A by hard-wiring any of the possible inputs. Such a
circuit, denoted C,, emulates the execution of algorithm A on input x, when using
the circuit’s input as the algorithm’s internal coin tosses (i.e., C.(r) = A(z,T)).
Furthermore, the size of C, is quadratic in the running-time of A on input z, and
the length of the input to C, equals the running-time of A (on input x).?2 Thus,
the size of C, is quadratic in the length of its own input, and the pseudorandom
generator in use (i.e., G) needs to fool each such circuit. Recalling that we may
allow the generator to run in exponential-time (i.e., time that is exponential in the
length of its own input (i.e., the seed))?3, we arrive at the following definition.

Definition 8.14 (pseudorandom generator for derandomizing BPTIME(+))?*: Let
¢ : N=N be a monotonically increasing function. A canonical derandomizer of
stretch £ is a deterministic algorithm G that satisfies the following two conditions.

1. On input a k-bit long seed, G makes at most poly(2F - £(k)) steps and outputs
a string of length (k).

2. For every circuit Dy, of size ((k)? it holds that

IPADUGE) = 1] = PADWUia) = 11| < 5. (81)

The circuit Dy, represents a potential distinguisher, which is given an £(k)-bit long
string (sampled either from G(Uy) or from Uy)). When seeking to derandomize

22Indeed, we assume that algorithm A is represented as a Turing machine and refer to the
standard emulation of Turing machines by circuits (as underlying the proof of Theorem 2.21).
Thus, the aforementioned circuit C; has size that is at most quadratic in the running-time of A
on input x, which in turn means that C, has size that is at most quadratic in the length of its
own input. (In fact, the circuit size can be made almost-linear in the running-time of A, by using
a better emulation [179].) We note that many sources use the fictitious convention by which the
circuit size equals the length of its input; this fictitious convention can be justified by considering
a (suitably) padded input.

23 Actually, in Definition 8.14 we allow the generator to run in time poly(2F£(k)), rather than
in time poly(Zk). This is done in order not to trivially rule out generators of super-exponential
stretch (i.e., £(k) = 2¢(*)). However (see Exercise 8.18), the condition in Eq. (8.11) does not allow
for super-exponential stretch (or even for £(k) = w(2*)). Thus, in retrospect, the two formulations
are equivalent (because poly(2¥4(k)) = poly(2F) for £(k) = 20(k)).

24Fixing a model of computation, we denote by BPTIME(t) the class of decision problems that are
solvable by a randomized algorithm of time complexity ¢ that has two-sided error 1/3. Using 1/6
as the “threshold distinguishing gap” (in Eq. (8.11)) guarantees that if Pr[Dy(Upr)) = 1] > 2/3
(resp., PriDy(Ugxy) = 1] < 1/3) then Pr[Dy(G(Ug)) = 1] > 1/2 (resp., Pr{Dy(G(Uy)) = 1] <
1/2). As we shall see, this suffices for a derandomization of BPTIME(t) in time T, where T'(n) =
poly(ZZ_l(t(")) -t(n)) (and we use a seek of length k = £71(t(n))).

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 339

an algorithm A of time-complexity ¢, the aforementioned £(k)-bit long string repre-
sents a possible sequence of coin tosses of A, when invoked on a generic (primary)
input of length n = t=*(¢(k)). Thus, for any z € {0,1}", considering the circuit
Dy(r) = A(x,r), where |r| = t(n) = £(k), we note that Eq. (8.11) implies that
Ag(z) = A(w, G(Uy)) maintains the magjority vote of A(w) = A(z,Uyy)). On the
other hand, the time-complexity of G implies that the straightforward deterministic
emulation of Ag(z) takes time 2% - (poly(2* - £(k)) +t(n)), which is upper-bounded
by poly(2* - ¢(k)) = poly(2r1(t(”)) -t(n)). This yields the following (conditional)
derandomization result.

Proposition 8.15 Let £,t: N— N be monotonically increasing functions and let
(=Y(t(n)) denote the smallest integer k such that ((k) > t(n). If there exists a
canonical derandomizer of stretch ¢ then, for every time-constructible t :N—IN, 4t
holds that BPTIME(t) C DTIME(T), where T'(n) = poly(2¢ (") . ¢(n)).

Proof Sketch: Just mimic the proof of Theorem 8.13, which in turn uses Con-
struction 8.2. (Recall that given any randomized algorithm A and generator G,
Construction 8.2 yields an algorithm Ag of randomness-complexity £~' o ¢ and
time-complexity poly(2¢” °!) + £.)25 Observe that the complexity of the result-
ing deterministic procedure is dominated by the 2% = 207" (t(=D) invocations of
Ag(z,s) = A(z,G(s)), where s € {0,1}*, and each of these invocations takes time
poly(2‘3_1(t(|z|)) + t(]z|). Thus, on input an n-bit long string, the deterministic
procedure runs in time poly(2rl(t(”)) -t(n)). The correctness of this procedure
(which takes a majority vote among the 2* invocations of Ag) follows by combin-
ing Eq. (8.11) with the hypothesis that Pr[A(z) = 1] is bounded-away from 1/2.
Specifically, using the hypothesis |Pr[A(z) =1] — (1/2)| > 1/6, it follows that the
majority vote of (Ag (7, s))«qo,13+ equals 1 (equiv., Pr[A(z,G(Uy)) =1] > 1/2) if
and only if Pr{A(z) =1] > 1/2 (equiv., Pr[A(x, Uyy)) =1] > 1/2) Indeed, the im-
plication is due to Eq. (8.11), when applied to the circuit C,(r) = A(z,r) (which
has size at most |r|?). O

The goal. In light of Proposition 8.15, we seek canonical derandomizers with
stretch that is as large as possible. The stretch cannot be super-exponential (i.e.,
it must hold that £(k) = O(2%)), because there exists a circuit of size O(2* - £(k))
that violates Eq. (8.11) (see Exercise 8.18) whereas for £(k) = w(2*) it holds that
O(2% - £(k)) < £(k)?. Thus, our goal is to construct a canonical derandomizer
with stretch £(k) = 2%(®). Such a canonical derandomizer will allow for a “full
derandomization of BPP”:

Theorem 8.16 If there exists a canonical derandomizer of stretch ((k) = 2%,
then BPP =P.

25 Actually, given any randomized algorithm A and generator G, Construction 8.2 yields an
algorithm Ag that is defined such that Ag(z,s) = A(z, G'(s)), where |s| = £71(t(]z|)) and G'(s)
denotes the t(|z|)-bit long prefix of G(s). For simplicity, we shall assume here that £(|s|) = t(|z|),
and thus use G rather than G'. Note that given n we can find k = £~1(t(n)) by invoking

G(1%) for i = 1,...,k (using the fact that £:IN- N is monotonically increasing). Also note that
£(k) = O(2*) must hold (see Footnote 23), and thus we may replace poly(2* - £(k)) by poly(2*).

340 CHAPTER 8. PSEUDORANDOM GENERATORS

Proof: Using Proposition 8.15, we get BPTIME(¢) C DTIME(T'), where T'(n) =
poly(27 (") - ¢(n)) = poly(t(n)). W

Reflections: Recall that a canonical derandomizer G was defined in a way that
allows it to have time-complexity t¢ that is larger than the size of the circuits that
it fools (i.e., tg(k) > €(k)? is allowed). Furthermore, tg(k) > 2* was also allowed.
Thus, if indeed to(k) = 2% (as is the case in Section 8.3.2), then G(Uy) can
be distinguished from Uy in time 2% -t (k) = poly(tc(k)) by trying all possible
seeds.?® We stress that the latter distinguisher is a uniform algorithm (and it
works by invoking G on all possible seeds). In contrast, for a general-purpose
pseudorandom generator G (as discussed in Section 8.2) it holds that tg(k) =
poly(k), while for every polynomial p it holds that G(Uy) is indistinguishable from
Ugcry in time p(ta(k)).

8.3.2 Constructing canonical derandomizers

The fact that canonical derandomizers are allowed to be more complex than the
corresponding distinguisher makes some of the techniques of Section 8.2 inapplica-
ble in the current context. For example, the stretch function cannot be amplified as
in Section 8.2.4 (see Exercise 8.17). On the other hand, the techniques developed
in the current section are inapplicable to Section 8.2. For example, the pseudoran-
domness of some canonical derandomizers (i.e., the generators of Construction 8.17)
holds even when the potential distinguisher is given the seed itself. This amazing
phenomenon capitalizes on the fact that the distinguisher’s time-complexity does
not allow for running the generator on the given seed.

8.3.2.1 The construction and its consequences

As in Section 8.2.5, the construction presented next transforms computational dif-
ficulty into pseudorandomness, except that here both computational difficulty and
pseudorandomness are of a somewhat different form than in Section 8.2.5. Specif-
ically, here we use Boolean predicates that are computable in exponential-time
but are T-inapproximable for some exponential function 7' (see Definition 7.9 re-
capitulated next). That is, we assume the ezistence of a Boolean predicate and
constants c,e > 0 such that for all but finitely many m, the (residual) predicate
f:{0,1}™ — {0,1} is computable in time 2°™ but for any circuit C' of size 2°™
it holds that Pr[C(Uy) = f(Um)] < 1 +27°™. (Needless to say, ¢ < c.) Recall
that such predicates exist under the assumption that £ has (almost-everywhere)
exponential circuit complexity (see Theorem 7.19). With these preliminaries, we
turn to the construction of canonical derandomizers with exponential stretch.

26We note that this distinguisher does not contradict the hypothesis that G is a canonical
derandomizer, because tg(k) > £(k) definitely holds whereas £(k) < 2* typically holds (and so
2kt (k) > £(k)?).

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 341

Construction 8.17 (The Nisan-Wigderson Construction):?” Let f : {0,1}™ —
{0,1} and Sy, ..., S¢ be a sequence of m-subsets of {1,...,k}. Then, for s € {0,1}F,

we let
def

G(s) = f(ss1) - f(ss,) (8.12)
where ss denotes the projection of s on the bit locations in S C {1,...,|s|}; that is,
fors=o01---0o and S = {i1,...,im}, we have sg =04y -+ -0y, .

Letting k vary and £,m : N — N be functions of k, we wish G to be a canonical
derandomizer and (k) = 2%(*). One (obvious) necessary condition for this to
happen is that the sets must be distinct, and hence m(k) = Q(k); consequently,
f must be computable in exponential-time. Furthermore, the sequence of sets
S1, .., Se(r) must be constructible in poly(2*) time. Intuitively, the function f
should be strongly inapproximable (i.e., T-inapproximable for some exponential
function T"), and furthermore it seems desirable to use a set system with small
pairwise intersections (because this restricts the overlap among the various inputs
to which f is applied). Interestingly, these conditions are essentially sufficient.

Theorem 8.18 (analysis of Construction 8.17): Let «, 8,7, > 0 be constants
satisfying € > (2a/B) + v, and consider the functions ¢, m,T : N—N such that
(k) = 2% m(k) = Bk, and T'(n) = 2°™. Suppose that the following two conditions
hold:

1. There ezists an exponential-time computable function f:{0,1}* —{0,1} that
is T-inapprozimable. (See Definition 7.9.)

2. There exists an exponential-time computable function S: NxN — 2N such
that

(a) For every k and i € [€(k)], it holds that S(k,i) C [k] and |S(k,i)| =
m(k).
(b) For every k and i # j, it holds that |S(k,i) N S(k,j)| <~ -m(k).

Then, using G as defined in Construction 8.17 with S; = S(k, i), yields a canonical
derandomizer with stretch €.

Before proving Theorem 8.18 we note that, for any v > 0, a function S as in
Condition 2 does exist with some m(k) = Q(k) and (k) = 2%(®); see Exercise 8.19.
Combining such a function S with Theorems 7.19 and 8.18, we obtain a canonical
derandomizer with exponential stretch based on the assumption that £ has (almost-
everywhere) exponential circuit complexity.?® Combining this with Theorem 8.16,
we get the first part of the following theorem.

27Given the popularity of the term, we deviate from our convention of not specifying credits in
the main text. This construction originates in [172, 175].

288pecifically, starting with a function having circuit complexity at least exp(eom), we apply
Theorem 7.19 and obtain a T-inapproximable predicate for T'(m) = 2™, where the constant
¢ € (0,e0) depends on the constant £9. Next, we set v = ¢/2 and invoke Exercise 8.19, which
determines «, 8 > 0 such that £(k) = 2** and m(k) = Bk. Note that (by possibly decreasing)
we get (2a/B8) +7 < e.

342 CHAPTER 8. PSEUDORANDOM GENERATORS

Theorem 8.19 (derandomization of BPP, revisited):

1. Suppose that € contains a decision problem that has almost-everywhere expo-
nential circuit complexity (i.e., there exists a constant g9 > 0 such that, for
all but finitely many m’s, any circuit that correctly decides this problem on
{0,1}™ has size at least 2°°™). Then, BPP =P.

2. Suppose that, for every polynomial p, the class £ contains a decision problem
that has circuit complexity that is almost-everywhere greater than p. Then

BPP is contained in N.>oDTIME(t.), where t.(n) el gn®,

Part 2 is proved (in Exercise 8.23) by using a generalization of Theorem 8.18, which
in turn is provided in Exercise 8.22. We note that Part 2 of Theorem 8.19 supersedes
Theorem 8.13 (see Exercise 7.24). As in the case of general-purpose pseudorandom
generators, the hardness hypothesis made in each part of Theorem 8.19 is necessary
for the existence of a corresponding canonical derandomizer (see Exercise 8.24).

The two parts of Theorem 8.19 exhibit two extreme cases: Part 1 (often referred
to as the “high end”) assumes an extremely strong circuit lower-bound and yields
“full derandomization” (i.e., BPP = P), whereas Part 2 (often referred to as the
“low end”) assumes an extremely weak circuit lower-bound and yields weak but
meaningful derandomization. Intermediate results (relying on intermediate lower-
bound assumptions) can be obtained analogous to Exercise 8.23, but tight trade-offs
are obtained differently (cf., [225]).

8.3.2.2 Analyzing the construction (i.e., proof of Theorem 8.18)

Using the time complexity upper-bounds on f and S, it follows that G can be
computed in exponential time. Thus, our focus is on showing that {G(Uy)} cannot
be distinguished from {Uy)} by circuits of size 0(k)?%; specifically, that G satisfies
Eq. (8.11). In fact, we will prove that this holds for G'(s) = s - G(s); that is, G
fools such circuits even if they are given the seed as auxiliary input. (Indeed, these
circuits are smaller than the running time of GG, and so they cannot just evaluate
G on the given seed.)

We start by presenting the intuition underlying the proof. As a warm-up sup-
pose that the sets (i.e., S(k,i)’s) used in the construction are disjoint. In such a
case (which is indeed impossible because k < £(k)-m(k)), the pseudorandomness of
G(Uy) would follow easily from the inapproximability of f, because in this case G
consists of applying f to non-overlapping parts of the seed (see Exercise 8.21). In
the actual construction being analyzed here, the sets (i.e., S(k,)’s) are not disjoint
but have relatively small pairwise intersection, which means that G applies f on
parts of the seed that have relatively small overlap. Intuitively, such small overlaps
guarantee that the values of f on the corresponding inputs are “computationally
independent” (i.e., having the value of f at some inputs 1, ..., ; does not help in
approximating the value of f at another input x;;). This intuition will be backed
by showing that, when fixing all bits that do not appear in the target input (i.e.,
in x;41), the former values (i.e., f(x1),..., f(x;)) can be computed at a relatively
small computational cost. Thus, the values f(z1),..., f(z;) do not (significantly)

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 343

facilitate the task of approximating f(z;+1). With the foregoing intuition in mind,
we now turn to the actual proof.

As usual, the actual proof employs a reducibility argument; that is, assuming
towards the contradiction that G’ does not fool some circuit of size £(k)?, we de-
rive a contradiction to the hypothesis that the predicate f is T-inapproximable.
The argument utilizes the relation between pseudorandomness and unpredictability
(cf. Section 8.2.5). Specifically, as detailed in Exercise 8.20, any circuit that distin-
guishes G'(Ug) from Uy)4r with gap 1/6, yields a next-bit predictor of similar size
that succeeds in predicting the next bit with probability at least %—}— 62,1(,6) > %—l— %k),
where the factor of £'(k) = {(k) + k < (1 + o(1)) - £(k) is introduced by the hybrid
technique (cf. Eq. (8.7)). Furthermore, given the non-uniform setting of the cur-
rent proof, we may fix a bit location ¢ + 1 for prediction, rather than analyzing the
prediction at a random bit location. Indeed, ¢ > k& must hold, because the first &
bits of G'(U}) are uniformly distributed. In the rest of the proof, we transform the
foregoing predictor into a circuit that approximates f better than allowed by the
hypothesis (regarding the inapproximability of f).

Assuming that a small circuit C' can predict the i41%¢ bit of G'(Uy), when given
the previous 4 bits, we construct a small circuit C' for approximating f(Upx)) on
input Uy, (k). The point is that the i+ 1° bit of G'(s) equals f(sg(k,j41)), where j =
i—k >0, and so C" approximates f(ss(k,;j+1)) based on s, f(s5(k,1))s -+ f(85(k,5))5
where s € {0, 1}* is uniformly distributed. Note that this is the type of thing that
we are after, except that the circuit we seek may only get sg(x j41) as input.

The first observation is that C’ maintains its advantage when we fix the best
choice for the bits of s that are not at bit locations S;j11 = S(k,j + 1) (i.e., the
bits s(x)\s,,,)- That is, by an averaging argument, it holds that

sz6{0?11}2}3(_1”(1»-){Pr56{0:1}k[Cl(s7 JACER I f(Ssj)) = f(SS,-+1) | SkN\Sj41 = s'l}

> L Procoapr[C(s, £(85)); s (55,)) = f(55,0)].

Recall that by the hypothesis p’ > 1+ %k) Hard-wiring the fixed string s’ into C’,
and letting 7(z) denote the (unique) string s satisfying ss,,, = and sy s

we obtain a circuit C" that satisfies

Proc(o,13n[C" (2, f(7(2)s,), .., f(m(2)s;)) = f(2)] = p'.

—_—
i1 = 55

The circuit C" is almost what we seek. The only problem is that C" gets as input
not only z, but also f(7(x)s,), ..., f(7(x)s,), whereas we seek an approximator of
f(z) that only gets z.

The key observation is that each of the “missing” values f(7(2)s,), ..., f(7(2)s;)
depend only on a relatively small number of the bits of . This fact is due to the
hypothesis that [S; N S;41| < v-m(k) for t = 1,..., 7, which means that 7(z)g, is an
m(k)-bit long string in which m; def |S: NSj11] bits are projected from z and the
rest are projected from the fized string s'. Thus, given x, the value f(7(z)s,) can
be computed by a (trivial) circuit of size O(2™*); that is, by a circuit implementing

344 CHAPTER 8. PSEUDORANDOM GENERATORS

a look-up table on m; bits. Using all these circuits (together with C"), we will
obtain the desired approximator of f. Details follow.

We obtain the desired circuit, denoted C, that T-approximates f as follows. The
circuit C depends on the index j and the string s’ that are fixed as in the foregoing
analysis. Recall that C incorporates (O(27%)-size) circuits for computing z
f(r(x)s,), for t = 1,...,5. On input = € {0,1}™*), the circuit C' computes the
values f(m(z)s,), .., f(7(x)s,), invokes C" on input « and these values, and outputs
the answer as a guess for f(z). That is,

Clz) = C"(x, f(x(2)s,), -, f(w(2)s,)) = C'(w(x), f(w(2)s,), oy f((2)s)))-

By the foregoing analysis, Pr,[C(z) = f(z)] > p' > £ + ﬁ, which is lower-
bounded by 1 + m, because T(m(k)) = 2k) = 29k > 220k 5 7/(F),
where the first inequality is due to ¢ > 2a/f and second inequality is due to
(k) = 2°* The size of C is upper-bounded by £(k)? +£(k)-O(27 ™)) < O(L(k)? -
2vm(k)y = (22 (m(k)/B)+7m(k)) « T(m(k)), where the last inequality is due to
T(m(k)) = 22m(*) > O(2(2a/8)m(k)+y-m(k)) (which in turn uses e > (2a/3) + 7).
Thus, we derived a contradiction to the hypothesis that f is 7T-inapproximable.
This completes the proof of Theorem 8.18.

8.3.3 Technical variations and conceptual reflections

We start this section by discussing a general framework that emerges from Con-
struction 8.17, and end this section with a conceptual discussion regarding deran-
domization.

8.3.3.1 Construction 8.17 as a general framework

The Nisan-Wigderson Construction (i.e., Construction 8.17) is actually a general
framework, which can be instantiated in various ways. Some of these instantiations,
which are based on an abstraction of the construction as well as of its analysis, are
briefly reviewed next,

We first note that the generator described in Construction 8.17 consists of a
generic algorithmic scheme that can be instantiated with any predicate f. Fur-
thermore, this algorithmic scheme, denoted G, is actually an oracle machine that
makes (non-adaptive) queries to the function f, and thus the combination may be
written as G/. Likewise, the proof of pseudorandomness of G/ (i.e., the bulk of
the proof of Theorem 8.18) is actually a general scheme that, for every f, yields a
(non-uniform) oracle-aided circuit C' that approximates f by using an oracle call
to any distinguisher for G/ (i.e., C' uses the distinguisher as a black-box). The
circuit C' does depends on f (but in a restricted way). Specifically, C' contains
look-up tables for computing functions obtained from f by fixing some of the input
bits (i.e., look-up tables for the functions f(w(-)s,)’s). The foregoing abstractions
facilitate the presentation of the following instantiations of the general framework
underlying Construction 8.17

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 345

Derandomization of constant-depth circuits. In this case we instantiate
Construction 8.17 using the parity function in the role of the inapproximable
predicate f, noting that parity is indeed inapproximable by “small” constant-
depth circuits. With an adequate setting of parameters we obtain pseudorandom
generators with stretch ¢(k) = exp(k'/9™)) that fool “small” constant-depth cir-
cuits (see [172]). The analysis of this construction proceeds very much like the proof
of Theorem 8.18. One important observation is that incorporating the (straightfor-
ward) circuits that compute f(7(x)s,) into the distinguishing circuit only increases
its depth by two levels. Specifically, the circuit C uses depth-two circuits that com-
pute the values f(m(x)s,)’s, and then obtains a prediction of f(z) by using these
values in its (single) invocation of the (given) distinguisher.

The resulting pseudorandom generator, which use a seed of polylogarithmic
length (equiv., £(k) = exp(k'/9(M)), can be used for derandomizing RAC° (i.e.,
random .AC°), analogously to Theorem 8.16. Thus, we can deterministically ap-
proximate, in quasi-polynomial-time and up-to an additive error, the fraction of
inputs that satisfy a given (constant-depth) circuit. Specifically, for any constant
d, given a depth-d circuit C, we can deterministically approximate the fraction of
the inputs that satisfy C' (i.e., cause C to evaluate to 1) to within any additive
constant error®® in time exp((log |C])°(?). Providing a deterministic polynomial-
time approximation, even in the case d = 2 (i.e., CNF/DNF formulae) is an open
problem.

Derandomization of probabilistic proof systems. A different (and more
surprising) instantiation of Construction 8.17 utilizes predicates that are inapprox-
imable by small circuits having oracle access to N'P. The result is a pseudorandom
generator robust against two-move public-coin interactive proofs (which are as pow-
erful as constant-round interactive proofs (see §9.1.3.1)). The key observation is
that the analysis of Construction 8.17 provides a black-box procedure for approx-
imating the underlying predicate when given oracle access to a distinguisher (and
this procedure is valid also in case the distinguisher is a non-deterministic machine).
Thus, under suitably strong (and yet plausible) assumptions, constant-round inter-
active proofs collapse to NP. We note that a stronger result, which deviates from
the foregoing framework, has been subsequently obtained (cf. [166]).

Construction of randomness extractors. An even more radical instantiation
of Construction 8.17 was used to obtain explicit constructions of randomness ex-
tractors (see Appendix D.4). In this case, the predicate f is viewed as (an error
correcting encoding of) a somewhat random function, and the construction makes
sense because it refers to f in a black-box manner. In the analysis we rely on the
fact that f can be approximated by combining relatively little information (regard-

29We mention that in the special case of approximating the number of satisfying assignment
of a DNF formula, relative error approximations can be obtained by employing a deterministic
reduction to the case of additive constant error (see §6.2.2.1). Thus, using a pseudorandom gen-
erator that fools DNF formulae, we can deterministically obtain a relative (rather than additive)
error approximation to the number of satisfying assignment in a given DNF formula.

346 CHAPTER 8. PSEUDORANDOM GENERATORS

ing f) with (black-box access to) a distinguisher for G/. For further details see
§D.4.2.2.

8.3.3.2 Reflections regarding derandomization

Part 1 of Theorem 8.19 is often summarized by saying that (under some reasonable
assumptions) randomness is useless. We believe that this interpretation is wrong
even within the restricted context of traditional complexity classes, and is bluntly
wrong if taken outside of the latter context. Let us elaborate.

Taking a closer look at the proof of Theorem 8.16 (which underlies Theo-
rem 8.19), we note that a randomized algorithm A of time-complexity ¢ is emulated
by a deterministic algorithm A’ of time complexity ¢ = poly(t). Further noting
that A" = A invokes A (as well as the canonical derandomizer G) for Q(t) times
(because £(k) = O(2*) implies 2¥ = Q(t)), we infer that ¢ = Q(¢?) must hold.
Thus, derandomization via (Part 1 of) Theorem 8.19 is not really for free.

More importantly, we note that derandomization is not possible in various dis-
tributed settings, when both parties may protect their conflicting interests by em-
ploying randomization. Notable examples include most cryptographic primitives
(e.g., encryption) as well as most types of probabilistic proof systems (e.g., PCP).
For further discussion see Chapter 9 and Appendix C. Additional settings where
randomness makes a difference (either between impossibility and possibility or be-
tween formidable and affordable cost) include distributed computing (see [16]),
communication complexity (see [147]), parallel architectures (see [150]), sampling
(see Appendix D.3), and property testing (see Section 10.1.2).

8.4 Space-Bounded Distinguishers

In the previous two sections we have considered generators that output sequences
that look random to any efficient procedures, where the latter were modeled by
time-bounded computations. Specifically, in Section 8.2 we considered indistin-
guishability by polynomial-time procedures. A finer classification of time-bounded
procedures is obtained by considering their space-complerity; that is, restricting
the space-complexity of time-bounded computations. This restriction, which is the
focus of Chapter 5, leads to the notion of pseudorandom generators that fool space-
bounded distinguishers. Interestingly, in contrast to the notions of pseudorandom
generators that were considered in Sections 8.2 and 8.3, the existence of pseudoran-
dom generators that fool space-bounded distinguishers can be established without
relying on computational assumptions.

Prerequisites: Technically speaking, the current section is self-contained, but
various definitional choices are justified by reference to §6.1.5.1. Thus, we recom-
mend Section 6.1.5 as general background for the current section.

8.4. SPACE-BOUNDED DISTINGUISHERS 347

8.4.1 Definitional issues

Unfortunately, natural notions of space-bounded computations are quite subtle,
especially when non-determinism or randomization are concerned (see Sections 5.3
and 6.1.5, respectively). Two major definitional issues regarding randomized space-
bounded computations are the need for imposing explicit time bounds and the type
of access to the random tape.

1. Time bounds: The question is whether or not the space-bounded machines
are restricted to time-complexity that is at most exponential in their space-
complexity.” Recall that such an upper-bound follows automatically in the
deterministic case (Theorem 5.3), and can be assumed without loss of gen-
erality in the non-deterministic case (see Section 5.3.2), but it does not nec-
essarily hold in the randomized case (see §6.1.5.1). Furthermore, failing to
restrict the time-complexity of randomized space-bounded machines makes
them unnatural and unintentionally too strong (see §6.1.5.1 again).

As in Section 6.1.5, seeking a natural model of randomized space-bounded
algorithms, we postulate that their time-complexity must be at most expo-
nential in their space-complexity.

2. Access to the random tape: Recall that randomized algorithms may be mod-
eled as machines that are provided with the necessary randomness via a spe-
cial random-tape. The question is whether the space-bounded machine has
uni-directional or bi-directional (i.e., unrestricted) access to its random-tape.
(Allowing bi-directional access means that the randomness is recorded “for
free”; that is, without being accounted for in the space-bound (see discussions
in Sections 5.3 and 6.1.5).)

Recall that uni-directional access to the random-tape corresponds to the nat-
ural model of an on-line randomized machine, which determines its moves
based on its internal coin tosses (and thus cannot store its past coin tosses
“for free”). Thus, as in Section 6.1.5, we consider uni-directional access.3!

Hence, we focus on randomized space-bounded computation that have time-complexity
that is at most exponential in their space-complexity and access their random-
tape in a uni-directional manner. In accordance with this definition of randomized
space-bounded computation, we consider space-bounded distinguishers that have a
uni-directional access to the input sequence that they examine. Let us consider the
type of algorithms that arise.

We consider space-bounded algorithms that have a uni-directional access to their
input. At each step, based on the contents of its temporary storage, such an

30 Alternatively, one can ask whether these machines must always halt or only halt with prob-
ability approaching 1. It can be shown that the only way to ensure “absolute halting” is to have
time-complexity that is at most exponential in the space-complexity. (In the current discussion
as well as throughout this section, we assume that the space-complexity is at least logarithmic.)

31'We note that the fact that we restrict our attention to uni-directional access is instrumen-
tal in obtaining space-robust generators without making intractability assumptions. Analogous
generators for bi-directional space-bounded computations would imply hardness results of a break-
through nature in the area.

348 CHAPTER 8. PSEUDORANDOM GENERATORS

algorithm may either read the next input bit or stay at the current location on the
input, where in either case the algorithm may modify its temporary storage. To
simplify our analysis of such algorithms, we consider a corresponding non-uniform
model in which, at each step, the algorithm reads the next input bit and update
its temporary storage according to an arbitrary function applied to the previous
contents of that storage (and to the new bit). Note that we have strengthened the
model by allowing arbitrary (updating) functions, which can be implemented by
(non-uniform) circuits having size that is exponential in the space-bound, rather
than using (updating) functions that can be (uniformly) computed in time that is
exponential in the space-bound. This strengthening is motivated by the fact that
the known constructions of pseudorandom generators remain valid also when the
space-bounded distinguishers are non-uniform and by the fact that non-uniform
distinguishers arise anyhow in derandomization.

The computation of the foregoing non-uniform space-bounded algorithms (or
automata)3? can be represented by directed layered graphs, where the vertices in
each layer correspond to possible contents of the temporary storage and transition
between neighboring layers corresponds to a step of the computation. Foreseeing
the application of this model for the description of potential distinguishers, we
parameterize these layered graphs based on the index, denoted k, of the relevant
ensembles (e.g., {G(Uk)}ren and {Ugg) fren). That is, we present both the input
length, denoted ¢ = ¢(k), and the space-bound, denoted s(k), as functions of the
parameter k. Thus, we define a non-uniform automaton of space s : N—N as
a family, {D},en, of directed layered graphs with labeled edges such that the
following conditions hold:

e The digraph Dy consists of £(k) + 1 layers, each containing at most 2°(¥)

vertices. The first layer contains a single vertex, which is the digraph’s (single)
source (i.e., a vertex with no incoming edges), and the last layer contains all
the digraph’s sinks (i.e., vertices with no outgoing edges).

e The only directed edges in Dy, are between adjacent layers, going from layer
i to layer i + 1, for ¢ < (k). These edges are labeled such that each (non-
sink) vertex of Dy has two (possibly parallel) outgoing directed edges, one
labeled 0 and the other labeled 1.

The result of the computation of such an automaton, on an input of adequate length
(i-e., length ¢ where Dy, has ¢ + 1 layers), is defined as the vertex (in last layer)
reached when following the sequence of edges that are labeled by the corresponding
bits of the input. That is, on input = x; - - -z, in the i*" step (fori = 1,...,£) we
move from the current vertex (which resides in the 7** layer) to one of its neighbors

32We use the term automaton (rather than algorithm or machine) in order to remind the reader
that this computing device reads its input in a uni-directional manner. Alternative terms that may
be used are “real-time” or “on-line” machines. We prefer not using the term “on-line” machine
in order to keep a clear distinction from randomized (on-line) algorithms that have free access
to their input (and on-line access to a source of randomness). Indeed, the automata consider
here arise from the latter algorithms by fixing their primary input and considering the random
source as their (only) input. We also note that the automata considered here are a special case
of Ordered Binary Decision Diagrams (OBDDs; see [235]).

8.4. SPACE-BOUNDED DISTINGUISHERS 349

(which resides in the i 4 1% layer) by following the outgoing edge labeled z;. Using
a fixed partition of the vertices of the last layer, this defines a natural notion of
a decision (by Dy); that is, we write Dg(z) = 1 if on input = the automaton Dy
reached a vertex that belongs to the first part of the aforementioned partition.

Definition 8.20 (Indistinguishability by space-bounded automata):

o For a non-uniform automaton, { Dy }rcn, and two probability ensembles, { Xk }reN
and {Yi }ren, the function d:N—[0,1] defined as

d(k) < |Pr[Dy(Xy) = 1] — Pr[Dy (V) = 1]]

is called the distinguishability-gap of {Dy} between the two ensembles.

o Let s : NoN and e : N — [0,1]. A probability ensemble, {Xy}pen, i8
called (s,e)-pseudorandom if for any non-uniform automaton of space s(-),
the distinguishability-gap of the automaton between {X}reN and the corre-
sponding uniform ensemble (i.e., {U|x,|}ren) is at most (-).

o A deterministic algorithm G of stretch function £ is called an (s, £)-pseudorandom
generator if the ensemble {G(Ur)}ren is (s,€)-pseudorandom. That is, every
non-uniform automaton of space s(-) has a distinguishing-gap of at most &(-)

between {G(Ur)}ren and {Ug(k)}kEN.

Thus, when using a random seed of length k, an (s,z)-pseudorandom generator
outputs a sequence of length ¢(k) that looks random to observers having space
s(k). Note that s(k) < k is a necessary condition for the existence of (s,0.5)-
pseudorandom generators, because a non-uniform automaton of space s(k) > k
can recognize the image of a generator (which contains at most 2* strings of length
L(k) > k). More generally, there is a trade-off between s(k) — k and the stretch of
(s,e)-pseudorandom generators; for details see Exercises 8.25 and 8.26.

Note: Recall that we stated the space-bound of the potential distinguisher (as
well as the stretch function) in terms of the seed-length, denoted k, of the generator.
In contrast, other sources present a parameterization in terms of the space-bound
of the potential distinguisher, denoted m. The translation is obtained by using
m = s(k), and we shall provide it following the main statements of Theorems 8.21
and 8.22.

8.4.2 Two Constructions

In contrast to the case of pseudorandom generators that fool time-bounded distin-
guishers, pseudorandom generators that fool space-bounded distinguishers can be
constructed without relying on any computational assumption. The following two
theorems exhibit two rather extreme cases of a general trade-off between the space-
bound of the potential distinguisher and the stretch function of the generator.3?

33These two results have been “interpolated” in [11]: There exists a parameterized family of
“space fooling” pseudorandom generators that includes both results as extreme special cases.

350 CHAPTER 8. PSEUDORANDOM GENERATORS

We stress that both theorems fall short of providing parameters as in Exercise 8.26,
but they refer to relatively efficient constructions. We start with an attempt to
maximize the stretch.

Theorem 8.21 (stretch exponential in the space-bound for s(k) = Vk): For every
space constructible function s:N— N, there exists an (s,27%)-pseudorandom gen-
erator of stretch function ((k) = min(2*/96() 25(k) - Fyrthermore, the generator
works in space that is linear in the length of the seed, and in time that is linear in
the stretch function.

In other words, for every ¢ < m, we have a generator that takes a random seed
of length & = O(¢ - m) and produce a sequence of length 2¢ that looks random to
any (non-uniform) automaton of space m (up to a distinguishing-gap of 27™). In
particular, using a random seed of length k = O(m?), one can produce a sequence of
length 2™ that looks random to any (non-uniform) automaton of space m. Thus,
one may replace random sequences used by any space-bounded computation, by
sequences that are efficiently generated from random seeds of length quadratic in
the space bound. The common instantiation of the latter assertion is for log-space
algorithms. In §8.4.2.2, we apply Theorem 8.21 (and its underlying ideas) for
the derandomization of space-complexity classes such as BPL (i.e., the log-space
analogue of BPP). Theorem 8.21 itself is proved in §8.4.2.1.

We now turn to the case where one wishes to maximize the space-bound of po-
tential distinguishers. We warn that Theorem 8.22 only guarantees a subexponen-
tial distinguishing gap (rather than the exponential distinguishing gap guaranteed
in Theorem 8.21). This warning is voiced because failing to recall this limitation
has led to errors in the past.

Theorem 8.22 (polynomial stretch and linear space-bound): For any polynomial
p and for some s(k) = k/O(1), there exists an (s,2~V®)-pseudorandom genera-
tor of stretch function p. Furthermore, the gemerator works in linear-space and
polynomial-time (both stated in terms of the length of the seed).

In other words, we have a generator that takes a random seed of length & = O(m)
and produce a sequence of length poly(m) that looks random to any (non-uniform)
automaton of space m. Thus, one may convert any randomized computation wti-
lizing polynomial-time and linear-space into a functionally equivalent randomized
computation of similar time and space complezities that uses only a linear number
of coin tosses.

8.4.2.1 Sketches of the proofs of Theorems 8.21 and 8.22

In both cases, we start the proof by considering a generic space-bounded distin-
guisher and show that the input distribution that this distinguisher examines can
be modified (from the uniform distribution into a pseudorandom one) without hav-
ing the distinguisher notice the difference. This modification (or rather a sequence
of modifications) yields a construction of a pseudorandom generator, which is only
spelled-out at the end of the argument.

8.4. SPACE-BOUNDED DISTINGUISHERS 351

Sketch of the proof of Theorem 8.21.3* The main technical tool used in this
proof is the “mixing property” of pairwise independent hash functions (see Ap-
pendix D.2). A family of functions H,,, which map {0,1}™ to itself, is called mixing
if for every pair of subsets A, B C {0,1}™ for all but very few (i.e., exp(—£(n))
fraction) of the functions h € H,,, it holds that

PrilU, € AANK(U,) € Bl ~ |2£n| . % (8.13)
where the approximation is up to an additive term of exp(—§(n)). (See the gener-
alization of Lemma, D.4, which implies that exp(—Q(n)) can be set to 27"/3.)

We may assume, without loss of generality, that s(k) = Q(vk), and thus £(k) <
25(k) holds. For any s(k)-space distinguisher Dy, as in Definition 8.20, we consider
an auxiliary “distinguisher” Dj that is obtained by “contracting” every block of

def ©(s(k)) consecutive layers in Dy, yielding a directed layered graph with

ot ((k)/n < 25 layers (and 2°(%) vertices in each layer). Specifically,

e each vertex in Dj has 2" (possibly parallel) directed edges going to various
vertices of the next level; and

e each such edge is labeled by an n-bit long string such that the directed edge
(u,v) labeled o102 - -0y, in Dj replaces the n-edge directed path between u
and v in Dy that consists of edges labeled 01,09,, 04,

The graph D}, simulates Dy, in the obvious manner; that is, the computation of Dj,
on an input of length ¢(k) = ¢' - n is defined by breaking the input into consecutive
substrings of length n and following the path of edges that are labeled by the
corresponding n-bit long substrings.

The key observation is that D}, cannot distinguish between a random ¢’ - n-bit
long input (i.e., Up.,, = Ur(bl)U,(f) e U,(fl)) and a “pseudorandom” input of the form
UM UDYUPhUP) - U P WU ?), where h € H, is a (suitably fixed)
hash function. To prove this claim, we consider an arbitrary pair of neighboring
vertices, w and v (in layers ¢ and ¢ + 1, respectively), and denote by L, , € {0,1}"
the set of the labels of the edges going from « to ». Similarly, for a vertex w at
layer i + 2, we let L;, ,, denote the set of the labels of the edges going from v to w.
By Eq. (8.13), for all but very few of the functions h € H,, it holds that

Pr{Un € Luy A(U,) € LY,] = Pr[Uy, € LyJ] - Pr[U, € L),], (8.14)

where “very few” and = are as in Eq. (8.13). Thus, for all but exp(—Q(n)) fraction
of the choices of h € H,, replacing the coins in the second transition (i.e., the
transition from layer i+ 1 to layer i +2) with the value of h applied to the outcomes
of the coins used in the first transition (i.e., the transition from layer ¢ to ¢ + 1),
approzimately maintains the probability that D} moves from u to w vie v. Using a
union bound (on all triples (u,v,w) as in the foregoing), we note that, for all but

34 A detailed proof appears in [173].

352 CHAPTER 8. PSEUDORANDOM GENERATORS

235(k) . ¢" . exp(—Q(n)) fraction of the choices of h € H,, the foregoing replacement
approximately maintains the probability that D} moves through any specific two-
edge path of Dj.

Using ¢' < 2°(®) and a suitable choice of n = O(s(k)), it holds that 23s(*) . ¢ .
exp(—(n)) < exp(—(n)), and thus all but “few” functions h € H,, are good for
approximating all these transition probabilities. (We stress that the same h can be
used in all these approximations.) Thus, at the cost of extra |h| random bits, we
can reduce the number of true random coins used in transitions on D}, by a factor
of two, without significantly affecting the final decision of D}, (where again we use
the fact that ¢' - exp(—Q(n)) < exp(—(n)), which implies that the approximation
errors do not accumulate to too much). In other words, at the cost of extra |h]
random bits, we can effectively contract the distinguisher to half its length while
approximately maintaining the probability that the distinguisher accepts a random
input. That is, fixing a good h (i.e., one that provides a good approximation to
the transition probability over all 235(%) . ¢/ two-edge paths), we can replace the
two-edge paths in Dj by edges in a new distinguisher D} (which depends on h)
such that an edge (u,w) labeled r € {0,1}" appears in D} if and only if, for some
v, the path (w,v,w) appears in D} with the first edge (i.e., (u,v)) labeled r and
the second edge (i.e., (v,w)) labeled h(r). Needless to say, the crucial point is that
Pr[D} (U j2).n) =1] approximates Pr[D} (Up.,)=1].

0 1 (possible) application of hY

(possible) apphcatlon
of h®

K (possible)

application
7 7/ ! of h”
@

The output of the generator (on seed a, AV h(t)) consists of the concate-
nation of the strings denoted ayt, ...,a1t, appearing in the leaves of the tree.
For every x € {0,1}" it holds that a0 = o, and ag = h(t"””')(ozz). In par-
ticular, for t = 3, we have ap11 = h" (1), which equals h™(h*)(ay)) =
R (W) (), where o = ay.

Figure 8.3: The first generator that “fools” space-bounded automata.

The forgoing process can be applied to D}/ resulting in a distinguisher D}’ of
half the length, and so on. Each time we contract the current distinguisher by a

8.4. SPACE-BOUNDED DISTINGUISHERS 353

factor of two, and do so by randomly selecting (and fixing) a new hash function.
Thus, repeating the process for a logarithmic (in the depth of D}) number of times
we obtain a distinguisher that only examines n bits, at which point we stop. In

total, we have used ¢ < log,(¢'/n) < log, ¢(k) random hash functions, denoted
R, ... A This means that we can generate a (pseudorandom) sequence that
fools the original Dy, by using a seed of length n + ¢ - log, | H,,| (see Figure 8.3 and
Exercise 8.28). Using n = ©(s(k)) and an adequate family H,, (e.g., Construc-
tion D.3), we obtain the desired (s,2~°)-pseudorandom generator, which indeed
uses a seed of length O(s(k) -log, £(k)) =k. O

Rough sketch of the proof of Theorem 8.22.3° The main technical tool used
in this proof is a suitable randomness extractor (as defined in §D.4.1.1), which is
indeed a much more powerful tool than hashing functions. The basic idea is that
when the distinguisher Dy is at some “distant” layer, say at layer t = Q(s(k)), it
typically “knows” little about the random choices that led it there. That is, Dy
has ounly s(k) bits of memory, which leaves out ¢t — s(k) bits of “uncertainty” (or
randomness) regarding the previous moves. Thus, much of the randomness that
led Dy, to its current state may be “re-used” (or “recycled”). To re-use these bits
we need to extract almost uniform distribution on strings of sufficient length out
of the aforementioned distribution over {0,1}! that has entropy3® at least t — s(k).
Furthermore, such an extraction requires some additional truly random bits, yet
relatively few such bits. In particular, using k&' = Q(logt) bits towards this end,
the extracted bits are exp(—Q(k")) away from uniform.

The gain from the aforementioned recycling is significant if recycling is repeated
sufficiently many times. Towards this end, we break the k-bit long seed into two
parts, denoted r' € {0,1}*/? and (ry, oy T3/) Where [r;| = Vk/6, and set n = k/3.
Intuitively, 7" will be used for determining the first n steps, and it will be re-used
(or recycled) together with r; for determining the steps i -n + 1 through (i + 1) - n.
Looking at layer i - n, we consider the information regarding r' that is “known”
to Dy (when reaching a specific vertex at layer ¢ - n). Typically, the conditional
distribution of 7', given that we reached a specific vertex at layer ¢ - n, has (min-
Jentropy greater than 0.99 - ((k/2) — s(k)). Using r; (as a seed of an extractor
applied to 7'), we can extract 0.9 - ((k/2) — s(k) — o(k)) > k/3 = n bits that are
almost-random (i.e., 2-UVE)_close to U,) with respect to Dy, and use these bits
for determining the next n steps. Hence, using k£ random bits we are produce
a sequence of length (1 + 3v/k) - n > k3/2 that fools automata of space bound,
say, s(k) = k/10. Specifically, using an extractor of the form Ext : {0, 1}\/E/6 X
{0,1}*/2 — {0,1}*/3, we map the seed (r',71, .., 75 5) to the output sequence
(r', Ext(r1,7'), ..., Ext(ry 7, 7")). Thus, we obtained an (5,27 V%)) _pseudorandom

35 A detailed proof appears in [176].

36 Actually, a stronger technical condition needs and can be imposed on the latter distribution.
Specifically, with overwhelmingly high probability, at layer ¢, automaton Dy, is at a vertex that can
be reached in more than 20-99'(t=s(k)) different ways. In this case, the distribution representing
a random walk that reaches this vertex has min-entropy greater than 0.99 - (¢t — s(k)). The reader
is referred to §D.4.1.1 for definitions of min-entropy and extractors.

354 CHAPTER 8. PSEUDORANDOM GENERATORS

generator of stretch function (k) = k*/2.

In order to obtain an arbitrary polynomial stretch rather than a specific poly-
nomial stretch (i.e., £(k) = k*/?), we repeatedly apply an adequate composition,
to be outlined next. Suppose that Gy is an (s1,e1)-pseudorandom generator of
stretch function ¢; that works in linear space, and similarly for G2 with respect to
(s1,e1) and £5. Then, we consider the following construction of a generator G:

1. On input s € {0,1}*, compute Gy (s), and parse it into consecutive blocks,
each of length k' = s1(k)/O(1), denoted ry, ..., 1, where t = ¢1(k)/k'.

2. Compute and output the t - £2(k')-bit long sequence Go(ry) - - - Ga(re).

Note that |G(s)| = l1(k) - L2(k")/k', where k' = s1(k)/O(1) and k = |s|. For
s1(k) = O(k), we have |G(s)| = €1(k) - €2(Q2(k))/O(k), which for polynomials
¢y and ¢y yields |G(s)| = £i(]|s]) - €2(]s])/O(|s]). We claim that G is an (s,¢)-
pseudorandom generator, for s(k) = min(s;(k)/2, s2(Q(s1(k))) and e(k) =1 (k) +
l1(k) - e2(Q(s1(k)). The proof uses a hybrid argument, which refers to the natural

distributions G(Uy) and Uy.pyxr) = Ug()k,) W

Lo(k
hybrid distribution Iy, def G2(U,5,1)) . "Gg(U,E,t)). The reader can verify that I}, is
(s2(k'),t-e2(k"))-pseudorandom (see Exercise 8.27), and so we focus on proving that
I, is indistinguishable from G(Uj) by automata of space s;(k)/2 (with respect to
distinguishing-gap e1(k)). This is proved by converting a potential distinguisher
(of I, and G(Ug)) into a distinguisher of Uy)y = Upp and G1(Ug), where the
new distinguisher parses the ¢1(k)-bit long input into ¢ blocks (each of length k'),
invokes G2 on the corresponding k’-bit long blocks, and feeds the resulting sequence
of ¢1 (k')-bit long blocks to the original distinguisher. For this end, it is crucial that
G4 can be evaluate on k'-bit long strings using space at most s;(k)/2, which is
guaranteed by our setting of k' = s1(k)/O(1) and the hypothesis that G2 works in
linear space. O

) as well as to the intermediate

8.4.2.2 Derandomization of space-complexity classes

As a direct application of Theorem 8.21, we obtain that BPL C Dspraci(log?),
where BPL denotes the log-space analogue of BPP (see Definition 6.11). (Recall
that V'L C Dspack(log?), but it is not known whether or not BPL C N'£.)37 A
stronger derandomization result can be obtained by a finer analysis of the proof of
Theorem 8.21.

Theorem 8.23 BPL C SC, where SC denotes the class of decision problems
that can be solved by a deterministic algorithm that runs in polynomial-time and
polylogarithmic-space.

Thus, BPL (and in particular RL C BPL) is placed in a class not known to
contain AN'L. Another such result was subsequently obtained in [195]: Randomized

37Indeed, the log-space analogue of RP, denoted RL, is contained in N'L C DSPACE(logQ), and
thus the fact that Theorem 8.21 implies RL C DspacCE(log?) is of no interest.

8.4. SPACE-BOUNDED DISTINGUISHERS 355

log-space can be simulated in deterministic space 0(10g2); specifically, in space

10g3/ 2. We mention that the archetypical problem of RL has been recently proved
to be in £ (see Section 5.2).

Sketch of the proof of Theorem 8.23.3% We are going to use the generator
construction provided in the proof of Theorem 8.21, but show that the main part
of the seed (i.e., the sequence of hash functions) can be fixed (depending on the
distinguisher at hand). Furthermore, this fixing can be performed in polyloga-
rithmic space and polynomial-time. Specifically, wishing to derandomize a specific
log-space computation (which refers to a specific input), we first obtain the corre-
sponding distinguisher, denoted Dj, that represents this computation (as a function
of the outcomes of the internal coin tosses of the log-space algorithm). The key
observation is that the question of whether or not a specific hash function h € H,
is good for a specific D}, can be determined in space that is linear in n = |h|/2
and logarithmic in the size of Dj. Indeed, the time-complexity of this decision
procedure is exponential in its space-complexity. It follows that we can find a good
h € H,, for a given Dj, within these complexities (by scanning through all pos-
sible h € H,,). Once a good h is found, we can also construct the corresponding
graph D}/ (in which edges represent two-edge paths in D}), again within the same
complexity. Actually, it will be more instructive to note that we can determine a
step (i.e., an edge-traversal) in D} by making two steps (edge-traversals) in Dj.
This will allow to fix a hash function for D}/, and so on. Details follow.

The main claim is that the entire process of finding a sequence of ¢ e log, ¢/ (k)
good hash functions can be performed in space t-O(n+log|Dk|) = O(n+log|Dy|)?
and time poly(2™-|Dy|); that is, the time-complexity is sub-exponential in the space-
complexity (i.e., the time-complexity is significantly smaller than than the generic
bound of exp(O(n + log|Dy|)?)). Starting with D,(cl) = Dy, we find a good (for
D,(cl)) hashing function h") € H,, which defines D,(f) = Dj. Having found (and
stored) rY ... h() € H,, which determine D,(fﬂ), we find a good hashing function

rU+Y € H, for D,(:H) by emulating pairs of edge-traversals on D,(fﬂ). Indeed,

a key point is that we do not construct the sequence of graphs D,(f),...,D,(:H),

but rather emulate an edge-traversal in D,(;H) by making 2° edge-traversals in DY,
using AV, ..., h(): The (edge-traversal) move o € {0,1}" starting at vertex v of
DSH) translates to a sequence of 2° moves starting at vertex v of D}, where the
moves are determined by the 2i-long sequence (of n-bit strings)

0°~201) 0°=210) 0i211)

(0, B (@), B @), 5 (@), B (),

where E(Jimol) is the function obtained by the composition of a subsequence of the
functions k(Y ..., h(}) determined by o; - --o. Specifically, Rl equals k(%) o

-0 hl2) o h(1) where i) < iy < -+ < iy and {i; : j=1,..t'} ={j:0,=1}.
Recall that the ability to perform edge-traversals on D,E,ZH) allows to determine
whether a specific function h € H,, is good for D,(CZ-H). This is done by considering

38 A detailed proof appears in [174].

356 CHAPTER 8. PSEUDORANDOM GENERATORS

all the relevant triples (u, v, w) in D,(:H), computing for each such (u, v, w) the three
quantities (i.e., probabilities) appearing in Eq. (8.14), and deciding accordingly.
Trying all possible h € H,,, we find a function (to be denoted R(**1)) that is good
for D,(CZH). This is done while using an additional storage of s’ = O(n + log|Dj|)
(on top of the storage used to record A N h(i)), and in time that is exponential
in s'. Thus, given D}, we find a good sequence of hash functions, AN {OR)

time exponential in s' and while using space s' +t - log, |H,| = O(t - s'). Such
a sequence of functions allows us to emulate edge-traversals on D,(:H), which in

turn allows to (deterministically) approximate the probability that Dj accepts a
random input (i.e., the probability that, starting at the single source vertex of the
first layer, automaton D) reaches some accepting vertex at the last layer). This

approximation is obtained by computing the corresponding probability in Dsfﬂ)
by traversing all 2™ edges.

To summarize, given D}, we can (deterministically) approximate the probabil-
ity that D} accepts a random input in O(t - s')-space and exp(O(s' + n))-time,
where s’ = O(n + log |D}|) and ¢t < log, |Dy|- For n = ©(log|Dj|), this means
O(log | D},])?-space and poly(]D}|)-time. We comment that the approximation can
be made accurate up to an additive term of 1/poly(|Dj|), but an additive term of
1/6 suffices here.

We conclude the proof by recalling the connection between such an approxima-
tion and the derandomization of BPL (indeed, note the analogy to the proof of
Theorem 8.13). The computation of a log-space probabilistic machine M on input
x, can be represented by a directed layer graph G . of size poly(|z|). Specifically,
the vertices of each layer represent possible configurations of the computation of
M (z), and the edges between the it layer and the 7 + 1 layer represent the i‘"
move of such a computation, which depends on the i*" bit of the random-tape of
M (or, equivalently, on the i*! internal coin toss of M).3° Thus, the probabil-
ity that M accepts x equals the probability that a random walk starting at the
single vertex of the first layer of Gjs ., reaches some vertex in the last layer that
represents an accepting configuration. Setting k = ©(log|z|) and n = O(k), the
graph G, coincides with the graph D, referred to at the beginning of the proof
of Theorem 8.21, and Dj, is obtained from Dj by an “n-layer contraction” (see
ibid.). Furthermore, Dy and Dj can be constructed (from z) in logarithmic-space
(and by using the emulative composition of Lemma 5.2 we may just proceed as
it Dj is given as input). Combining this with the foregoing analysis, we conclude
that the probability that M accepts x can be deterministically approximated in
O(log |z|)?-space and poly(|z|)-time. The theorem follows. O

39Note that Gpr,, is a “layered version” of the graph that was considered (and denoted G)
in the proof of Theorem 5.11. Furthermore, while in the proof of Theorem 5.11 we cared about
the existence of certain paths, here we care about their quantity (or rather the probability of
traversing one of them).

8.5. SPECIAL PURPOSE GENERATORS 357

8.5 Special Purpose Generators

In this section we consider even weaker types of pseudorandom generators, pro-
ducing sequences that can fool only very restricted types of distinguishers. Still,
such generators have many applications in complexity theory and in the design of
algorithms. (These applications will only be mentioned briefly.)

We start with the simplest of these generators: the pairwise-independence gen-
erator, and its generalization to ¢-wise independence for any ¢>2. Such generators
perfectly fool any distinguisher that only observe ¢ locations in the output sequence.
This leads naturally to almost pairwise (or t-wise) independence generators, which
also fool such distinguishers (albeit non-perfectly). The latter generators are im-
plied by a stronger class of generators, which is of independent interest: the small-
bias generators. Small-bias generators fool any linear test (i.e., any distinguisher
that merely considers the XOR of some fixed locations in the input sequence). We
then turn to the Expander Random Walk Generator: this generator produces a
sequence of strings that hit any dense subset of strings with probability that is
close to the hitting probability of a truly random sequence. Related notions such
as samplers, dispersers, and extractors are treated in Appendix D.

Teaching note: Unlike the constructions presented in previous sections, the construc-
tions presented in this section do not utilize any insight into the nature of (time- or
space-bounded) computation. Instead, they are based on various purely mathematical

facts, and their analysis is deferred to exercises.

Comment regarding our parameterization: To maintain consistency with
prior sections, we continue to present the generators in terms of the seed length,
denoted k. Since this is not the common presentation for most results presented in
the sequel, we provide (in footnotes) the common presentation in which the seed
length is determined as a function of other parameters.

8.5.1 Pairwise-Independence Generators

Pairwise (resp., t-wise) independence generators fool tests that inspect only two
(resp., t) elements in the output sequence of the generator. Such local tests are
indeed very restricted, yet they arise naturally in many settings. For example,
such a test corresponds to a probabilistic analysis (of a procedure) that only relies
on the pairwise independence of certain choices made by the procedure. We also
mention that, in some natural range of parameters, pairwise independent sampling
is as good as sampling by totally independent sample points; see Appendices D.1.2
and D.3.

A t-wise independence generator of block-length b:N— N (and stretch function
?) is a relatively efficient deterministic algorithm (e.g., one that works in time poly-
nomial in the output length) that expands a k-bit long random seed into a sequence
of £(k)/b(k) blocks, each of length b(k), such that any ¢ blocks are uniformly and
independently distributed in {0,1}**(¥). That is, denoting the i*" block of the gen-
erator’s output (on seed s) by G(s);, we requite that for every iy < is < -+ < 44

358 CHAPTER 8. PSEUDORANDOM GENERATORS

(in [¢(k)/b(k)]) it holds that
G(Uk‘)i17G(Uk‘)iQ7"'7G(Uk)’if, = Ut-b(k:)- (815)

We note that this condition holds even if the inspected t blocks are selected adap-
tively (see Exercise 8.29). In case t = 2, we call the generator pairwise independent.

8.5.1.1 Constructions

In the first construction, we refer to GF(2°(*)), the finite field of 2°(*) elements,
and associate its elements with {0, 1}%(%),

Proposition 8.24 (t-wise independence generator):4’ Let t be a fized integer and
b, 0,0 :N—=N such that b(k) = k/t, £'(k) = £(k)/b(k) > t and €'(k) < 2°(%). Let
Qt, .., Q) be fized distinct elements of the field GF(2b(k)). For sg,81,...,81_1 €
{0,1}2(F) | [et

t—1 t—1 t—1
G(50, 51,y St—1) = E sjaq , E s ..., E 85 (1) (8.16)
Jj=0 Jj=0 Jj=0

where the arithmetic is that of GF(2Y(F). Then, G is a t-wise independence gen-
erator of block-length b and stretch €.

That is, given a seed that consists of ¢ elements of GF(2b(k)), the generator outputs
a sequence of £'(k) such elements. To make the foregoing generator totally explicit,
we need an explicit representation of GF(2"(’“)), which requires an irreducible poly-
nomial of degree b(k) over GF(2). For specific values of b(k), a good representation
does exist: For example, for d Lef b(k) = 2-3° (with e being an integer), the
polynomial z¢ + 2%/? + 1 is irreducible over GF(2). The proof of Proposition 8.24
is left as an exercise (see Exercise 8.30). It is based on the observation that, for
any fixed v, vy, ...,v;—1, the condition {G(so,s1,...,51—1)i; = vj};_; constitutes a
system of t linear equations over GF(2°(®)) (in the variables sg, s, ...,5; 1) such
that the equations are linearly-independent. (Thus, linear independence of certain
expressions yields statistical independence of the corresponding random variables.)

We note that a construction analogous to Eq. (8.16) works for every finite field
(e.g., a finite field of any prime cardinality), but the problem of providing an explicit
representation of such a field remains non-trivial also in other cases (e.g., consider
the problem of finding a prime of size approximately 2b(k)). The latter fact is the
main motivation for considering the following alternative construction for the case
of t =2.

The following construction uses (random) affine transformations (as possible
seeds). In fact, better performance (i.e., shorter seed length) is obtained by us-
ing affine transformations affected by Toeplitz matrices. A Toeplitz matrix is a

40In the common presentation of this t-wise independence generator, the length of the seed is
determined as a function of the desired block-length and stretch. That is, given the parameters
b and £’ < 2% the seed length is set to ¢ - b.

8.5. SPECIAL PURPOSE GENERATORS 359

matrix with all diagonals being homogeneous (see Figure 8.4); that is, T = (¢; ;)
is a Toeplitz matrix if ¢; ; = t;41,j41 for all 4,j. Note that a Toeplitz matrix is
determined by its first row and first column (i.e., the values of ¢; ;’s and t;1’s).

- mK) -

b(K) +

Figure 8.4: An affine transformation affected by a Toeplitz matrix.

Proposition 8.25 (alternative pairwise independence generator, see Figure 8.4):4!

Let b,0,0',m : N> N such that ¢'(k) = ((k)/b(k) and m(k) = [log, l'(k)] =
k —2b(k) + 1. Associate {0,1}™ with the n-dimensional vector space over GF(2),
and let vy, ..., v () be fized distinct vectors in the m(k)-dimensional vector space
over GF(2). For s € {0,1}P(R+mF)=1 gnd r € {0,1}(F) et

G(s,r) def (Tovy + 7, Tova + 1, ..., Tsvg gy + 1) (8.17)

where Ts is an b(k)-by-m(k) Toeplitz matriz specified by the string s. Then G is a
pairwise independence generator of block-length b and stretch .

That is, given a seed that represents an affine transformation defined by an b(k)-
by-m(k) Toeplitz matrix and a b(k)-dimensional vector, the generator outputs a
sequence of ¢'(k) < 2™*) strings, each of length b(k). Note that k = 2b(k) +
m(k) — 1, and that the stretching property requires ¢'(k) > k/b(k). The proof of
Proposition 8.25 is left as an exercise (see Exercise 8.31). This proof is also based
on the observation that linear independence of certain expressions yields statistical
independence of the corresponding random variables: here {G(s,7);; = v;}i_, is
a system of 2b(k) linear equations over GF(2) (in Boolean variables representing
the bits of s and) such that the equations are linearly-independent. We mention
that a construction analogous to Eq. (8.17) works for every finite field.

A stronger notion of efficient generation. Ignoring the issue of finding a
representation for a large finite field, both the foregoing constructions are efficient
in the sense that the generator’s output can be produced in time that is polynomial

4lIn the common presentation of this pairwise independence generator, the length of the seed
is determined as a function of the desired block-length and stretch. That is, given the parameters
b and ¢, the seed length is set to 2b + [log, £'] — 1.

360 CHAPTER 8. PSEUDORANDOM GENERATORS

in its length. Actually, the aforementioned constructions satisfy a stronger notion
of efficient generation, which is useful in several applications. Specifically, there
exists a polynomial-time algorithm that given a seed, s € {0,1}*, and a block
location i € [¢'(k)] (in binary), outputs the i*® block of the corresponding output
(ie., the i*" block of G(s)). Note that, in the case of the first construction (captured
by Eq. (8.16)), this stronger notion depends on the ability to find a representation
of GF(2°(%)) in poly(k)-time.*? Recall that this is possible in the case that b(k) is
of the form 2 - 3°.

8.5.1.2 Applications (a brief review)

Pairwise independence generators do suffice for a variety of applications (cf., [236,
160]). In particular, we mention the application to sampling discussed in Ap-
pendix D.3, and the derandomization of the fast parallel algorithm for the Maximal
Independent Set problem. This derandomization relies on the fact that the analysis
of the randomized algorithm only relies on the hypothesis that some objects are
distributed in pairwise independent manner. Thus, this analysis holds also when
these objects are selected using a pairwise independence generator. In general,
pairwise independence generators do suffice to fool distinguishers that are derived
from some natural and interesting randomized algorithms.

Referring to Eq. (8.16), we remark that, for any constant ¢ > 2, the cost of
derandomization (i.e., going over all 2F possible seeds) is exponential in the block-
length (because b(k) = k/t). On the other hand, the number of blocks is at most
exponential in the block-length (because ¢/ (k) < 2°(%)), and so if a larger number
of blocks is needed, then we can artificially increase the block-length in order to
accommodate this (i.e., set (k) = log, ¢'(k)). Thus, the cost of derandomization is

polynomial in max(¢(k), 2" (®)), where ¢'(k) denotes the desired number of blocks
and b'(k) the desired block-length. It follows that whenever the analysis of a
randomized algorithm can be based on a constant amount of independence between
feasibly-many random choices, each taken within a domain of feasible size, then o
feasible derandomization is possible.

8.5.2 Small-Bias Generators

As stated in §8.5.1.2, O(1)-wise independence generators allow for the efficient de-
randomization of any efficient randomized algorithm the analysis of which is only
based on a constant amount of independence between the bits of its random-tape.
This restriction is due to the fact that ¢-wise independence generators of stretch
¢ require a seed of length Q(t - log £). Trying to go beyond constant-independence
in such derandomizations (while using seeds of length that is logarithmic in the
length of the pseudorandom sequence) was the original motivation of the notion
of small-bias generators. Specifically, as we shall see in §8.5.2.2, small-bias genera-
tors yield meaningful approximations of t-wise independence sequences (based on
logarithmic-length seeds).

42For the basic notion of efficiency, it suffices to find a representation of GF(2°(F)) in poly(£(k))-
time, which can be done by an exhaustive search in the case that b(k) = O(log£(k)).

8.5. SPECIAL PURPOSE GENERATORS 361

While the aforementioned type of derandomizations remains an important ap-
plication of small-bias generators, the latter are of independent interest and have
found numerous other applications. In particular, small-bias generators fool “global
tests” that examine the entire output sequence and not merely a fixed number of
positions in it (as in the case of limited independence generators). Specifically, a
small-bias generator produces a sequence of bits that fools any linear test (i.e., a
test that computes a fixed linear combination of the bits).

For ¢ : N — [0,1], an e-bias generator with stretch function £ is a relatively
efficient deterministic algorithm (e.g., working in poly(¢(k)) time) that expands a
k-bit long random seed into a sequence of £(k) bits such that for any fixed non-
empty set S C {1,...,4(k)} the bias of the output sequence over S is at most
e(k). The bias of a sequence of n (possibly dependent) Boolean random variables
C1y-yCn € {0,1} over aset S C {1,..,n} is defined as

2.

Pr(®icsC = 1] — %‘ = |Pr[®iesC = 1] = Pr[Dies¢ = 0]] (8.18)

The factor of 2 was introduced so to make these biases correspond to the Fourier co-
efficients of the distribution (viewed as a function from {0, 1}" to the reals). To see
the correspondence replace {0,1} by {£1}, and substitute XOR by multiplication.
The bias with respect to a set .S is thus written as

Pr [HQ:+1 —Pr lHQ:_ll

€S €S

(8.19)

118]

i€S

which is merely the (absolute value of the) Fourier coefficient corresponding to S.

8.5.2.1 Constructions

Relatively efficient small-bias generators with exponential stretch and exponentially
vanishing bias are known.

Theorem 8.26 (small-bias generators):*> For some universal constant ¢ > 0, let
0:N—N and e :N—10,1] such that £(k) < (k) - exp(k/c). Then, there exists an
e-bias generator with stretch function £ operating in time that is polynomial in the
length of its output.

In particular, we may have ¢(k) = exp(k/2c¢) and e(k) = exp(—k/2c¢). Three simple
constructions of small-bias generators that satisfy Theorem 8.26 are known (see [9]).
One of these constructions is based on Linear Feedback Shift Registers (LFSRs),
where the seed of the generator is used to determine both the “feedback rule” and
the “start sequence” of the LFSR. Specifically, a feedback rule of a ¢-long LFSR is
an irreducible polynomial of degree t over GF(2), denoted f(z) = z* + Zﬁ;[l) fia?

43In the common presentation of this generator, the length of the seed is determined as a
function of the desired bias and stretch. That is, given the parameters € and ¢, the seed length
is set to ¢ -log(¢/e). We comment that using [9] the constant ¢ is merely 2 (i.e., k ~ 2logy(¢/¢)),
whereas using [169] k ~ log, £ + 41og,(1/¢).

362 CHAPTER 8. PSEUDORANDOM GENERATORS

where fy = 1, and the (¢-bit long) sequence produced by the corresponding LESR
based on the start sequence sgs; -5 1 € {0,1}! is defined as rory - --7¢_1, where

; if i€ {0,1,..,t—1
riz{ : ifi e { } (8.20)

ST i ricesy i€ {ht 10— 1)

(see Figure 8.5). As stated previously, in the corresponding small-bias generator
the k-bit long seed is used for selecting an almost uniformly distributed feedback
rule f (i.e., a random irreducible polynomial of degree t = k/2) and a uniformly
distributed start sequence s (i.e., a random ¢-bit string).** The corresponding
{(k)-bit long output 7 = rory -+ - Te(r)—1 is computed as in Eq. (8.20).

Figure 8.5: The LFSR small-bias generator (for ¢t = k/2).

A stronger notion of efficient generation. Asin Section 8.5.1.1, we note that
the aforementioned constructions satisfy a stronger notion of efficient generation,
which is useful in several applications. That is, there exists a polynomial-time
algorithm that given a k-bit long seed and a bit location ¢ € [¢(k)] (in binary),
outputs the i*" bit of the corresponding output. Specifically, in case of the LESR
construction, given a seed fo, ..., f(k/2)—1, 50, ---, S(k/2)—1 and a bit location i € [((k)]
(in binary), the algorithm outputs the i*" bit of the corresponding output (i.e., r;).*>

44Note that an implementation of this generator requires an algorithm for selecting an almost
random irreducible polynomial of degree t = Q(k). A simple algorithm proceeds by enumerating
all irreducible polynomials of degree t, and selecting one of them at random. This algorithm can
be implemented (using ¢ random bits) in exp(t)-time, which is poly(4(k)) if £(k) = exp(Q2(k)). A
poly(t)-time algorithm that uses O(t) random bits is described in [9, Sec. 8|.

45The assertion is based on the fact that

Ti_t41 0 1 0o - 0 Ti—t 0 1 0o - 0
Ti—t4+2 0 1] 1 0 Ti—t4+1 0 0 1 0
Ti_1 0 0 0 1 Ti_2 0 0 0 1

i fo fr f2 - fi—1 Ti1 fo fr f2 - fi—1

8.5. SPECIAL PURPOSE GENERATORS 363

8.5.2.2 Applications (a brief review)

An archetypical application of small-bias generators is for producing short and ran-
dom “fingerprints” (or “digests”) of strings such that equality/inequality among
strings is (probabilistically) reflected in equality/inequality between their corre-
sponding fingerprints. The key observation is that checking whether or not z =y
is probabilistically reducible to checking whether the inner product modulo 2 of z
and r equals the inner product modulo 2 of y and 7, where r is produced by a small-
bias generator G. Thus, the pair (s,v), where s is a random seed to G and v equals
the inner product modulo 2 of z and G(s), serves as the randomized fingerprint of
the string z. One advantage of this reduction is that only few bits (i.e., the seed
of the generator and the result of the inner product) needs to be “communicated
between z and y” in order to enable the checking (see Exercise 8.33). A related
advantage is the low randomness complexity of this reduction, which uses |s| rather
than |G(s)| random bits, where |s| may be O(log|G(s)|). This low (i.e., logarith-
mic) randomness-complexity underlies the application of small-bias generators to
the construction of PCP systems (see, e.g., §9.3.2.2) and amplifying reductions of
gap problems regarding the satisfiability of systems of equations (see Section 9.3.3
and Exercise 10.6).

Small-bias generators have been used in a variety of areas (e.g., inapproxima-
tion, structural complexity, and applied cryptography; see references in [89, Sec
3.6.2]). In addition, as shown next, small-bias generators seem an important tool
in the design of various types of “pseudorandom” objects.

Approximate independence generators. As hinted at the beginning of this
section, small-bias is related to approximate versions of limited independence.*®
Actually, even a restricted type of e-bias (in which only subsets of size t(k) are
required to have bias upper-bounded by ¢) implies that any ¢(k) bits in the said
sequence are 2¢(%)/2 . ¢(k)-close to Uy(ky, where here we refer to the variation dis-
tance (i.e., Norm-1 distance) between the two distributions. (The max-norm of
the difference is bounded by ¢(k).)*” Combining Theorem 8.26 and the forego-
ing upper-bound, and relying on the linearity of the construction presented in
Proposition 8.24, we obtain generators with double-exponential stretch (i.e., £(k) =
exp(2%(F)) rather than £(k) = exp(Q(k))) that are approximately ¢(k)-independent,
for some non-constant t(k); see Exercise 8.40. Specifically, we may obtain genera-
tors with stretch £(k) = 22" producing bit sequences in which any t(k) = Q(k)
positions have variation distance at most e(k) = 2=k from uniform; that is,
such generators may have seed-length k& = O(t(k) + log(1/e(k)) + loglog ¢(k)).
In the corresponding result for the max-norm distance, it suffices to have k¥ =
O(log(t(k)/e(k)) + loglog €(k)). Thus, whenever the analysis of a randomized al-
gorithm can be based on a logarithmic amount of (almost) independence between

46We warn that, unlike in the case of perfect independence, here we refer only to the distribution
on fixed bit locations. See Exercise 8.32 for further discussion.

47Both bounds are derived from the Norm2 bound on the difference vector (i.e., the difference
between the two probability vectors). For details, see Exercise 8.34.

364 CHAPTER 8. PSEUDORANDOM GENERATORS

feasibly-many binary random choices, a feasible derandomization is possible (by
using an adequate generator of logarithmic seed length).

Extensions to non-binary choices were considered in various works (see refer-
ences in [89, Sec 3.6.2]). Some of these works also consider the related problem of
constructing small “discrepancy sets” for geometric and combinatorial rectangles.

t-universal set generators. Using the aforementioned upper-bound on the max-
norm (of the deviation from uniform of any ¢ locations), any e-bias generator yields
a t-universal set generator, provided that e < 27t. The latter generator outputs
sequences such that in every subsequence of length ¢ all possible 2! patterns occur
(i.e., each for at least one possible seed). Such generators have many applications.

8.5.2.3 Generalization

In this subsection, we outline a generalization of the treatment of small-bias gen-
erators to the generation of sequences over an arbitrary finite field. Focusing on
the case of a field of prime characteristic, denoted GF(p), we first define an ade-
quate notion of bias. Generalizing Eq. (8.19), we define the bias of a sequence of
n (possibly dependent) random variables (i, ..., (, € GF(p) with respect to the lin-

ear combination (cy, ...,¢,) € GF(p)" as HE [wzm%l Ci(i] H, where w denotes the pt"

(complex) root of unity (i.e., w = —1 if p = 2). Referring to Exercise 8.42, we note
that upper-bounds on the biases of (1, ...,(, (with respect to any non-zero linear
combinations) yield upper-bounds on the distance of > .- | ¢;¢; from the uniform
distribution over GF(p).

We say that S C GF(p)™ is an e-bias probability space if a uniformly selected
sequence in S has bias at most £ with respect to any non-zero linear combination
over GF(p). (Whenever such a space is efficiently constructible, it yields a corre-
sponding e-biased generator.) We mention that the LESR construction, outlined
in §8.5.2.1 and analyzed in Exercise 8.36, generalizes to GF(p) and yields an e-bias
probability space of size (at most) p**, where e = [log,(n/e)]. Such constructions
can be used in applications that generalize those in §8.5.2.2.

8.5.3 Random Walks on Expanders

In this section we review generators that produce a sequence of values by taking a
random walk on a large graph that has a small degree but an adequate “mixing”
property. Such a graph is called an expander, and by taking a random walk on it
we may generate a sequence of £' values over its vertex set, while using a random
seed of length b+ (¢’ — 1) - log, d, where 2° denotes the number of vertices in the
graph and d denotes its degree. This seed length should be compared against the
¢' - b random bits required for generating a sequence of ¢’ independent samples
from {0,1}" (or taking a random walk on a clique of size 2°). Interestingly, as we
shall see, the pseudorandom sequence (generated by the said random walk on an
expander) behaves similarly to a truly random sequence with respect to hitting any

8.5. SPECIAL PURPOSE GENERATORS 365

fized subset of {0,1}". Let us start by defining this property (or rather by defining
the corresponding hitting problem).

Definition 8.27 (the hitting problem): A sequence of (possibly dependent) ran-
dom variables, denoted (X1, ..., Xy), over {0,1}° is (g, 8)-hitting if for any (target)
set T C {0,1}° of cardinality at least € - 2°, with probability at least 1 — &, at least
one of these variables hits T'; that is, Pr[3i s.t. X, €T] > 1— 6.

Clearly, a truly random sequence of length ¢ over {0,1}® is (g, §)-hitting for § =
(1- s)"ﬂ. The aforementioned “expander random walk generator” (to be described
next) achieves similar behavior. Specifically, for arbitrary small ¢ > 0 (which
depends on the degree and the mixing property of the expander), the generator’s
output is (e, 8)-hitting for § = (1 — (1 — ¢) - €)*". To describe this generator, we
need to discuss expanders.

Expanders. By expander graphs (or expanders) of degree d and eigenvalue bound
A < d, we actually mean an infinite family of d-regular graphs, {Gn}ycs (S C N),
such that G is a d-regular graph over N vertices and the absolute value of all
eigenvalues, save the biggest one, of the adjacency matrix of G is upper-bounded
by A. For simplicity, we shall assume that the vertex set of G is [N] (although
in some cases a somewhat more redundant representation is more convenient). We
will refer to such a family as to a (d, A)-expander (for S). This technical definition
is related to the aforementioned notion of “mixing” (which refers to the rate at
which a random walk starting at a fixed vertex reaches uniform distribution over
the graph’s vertices). For further detail, see Appendix E.2.

We are interested in explicit constructions of such graphs, by which we mean that
there exists a polynomial-time algorithm that on input N (in binary), a vertex v
in Gy and an index i € {1,...,d}, returns the 7*! neighbor of v. (We also require
that the set S for which G'x’s exist is sufficiently “tractable” — say that given any
n € N one may efficiently find an s €S such that n < s < 2n.) Several explicit
constructions of expanders are known (see Appendix E.2.2). Below, we rely on the
fact that for every A > 0, there exist d and an explicit construction of a (d, \ - d)-
expander over {2° : b € N}.#® The relevant (to us) fact about expanders is stated
next.

Theorem 8.28 (Expander Random Walk Theorem): Let G = (V, E) be an ex-

pander graph of degree d and eigenvalue bound \. Let W be a subset of V and

p Lef IW|/|V|, and consider walks on G that start from a uniformly chosen vertex

and take ¢! — 1 additional random steps, where in each such step one uniformly
selects one out of the d edges incident at the current verter and traverses it. Then
the probability that such a random walk stays in W is at most

P <p+(1—p) : %)Zl_l (8.21)

48This can be obtained with d = poly(1/A). In fact d = 0(1/X2), which is optimal, can be
obtained too, albeit with graphs of sizes that are only approximately close to powers of two.

366 CHAPTER 8. PSEUDORANDOM GENERATORS

Thus, a random walk on an expander is “pseudorandom” with respect to the hitting
property (i.e., when we consider hitting the set V'\ W and use £ = 1 — p); that is, a
set of density ¢ is hit with probability 1—6, where 6§ = (1—¢)-(1—e+(\/d)-)* ' <
(1—(1—(\/d))-€)". A proof of Theorem 8.28 is given in [134], while a proof of
an upper-bound that is weaker than Eq. (8.21) is outlined in Exercise 8.43. Using
Theorem 8.28 and an explicit (2¢, X - 2¢)-expander, we obtain a generator that
produces sequences that are (g,6)-hitting for 6 that is almost optimal.

Proposition 8.29 (The Expander Random Walk Generator):%?

e For every constant X > 0, consider an explicit construction of (2¢, X - 2t)-
expanders for {2 : n € N}, where t e N is a sufficiently large constant. For
v € [2"] = {0,1}" and i € [2'] = {0,1}", denote by T;(v) the vertex of the
corresponding 2"™-vertex graph that is reached from vertex v when following
its ith edge.

o For b,0' :N—N such that k = b(k) + (¢'(k) — 1) -t < ¢'(k) - b(k), and for
vy € {0,].}b(k) and il;---,il’(k)fl € [2t], let

. . def
G(’Uo,h,....,wr(k),l) = (UO:'UI:----:UZ’(k)fl)a (8.22)
where v; =1 (vj_1).

Then G has stretch €(k) = U'(k) - b(k), and G(Uy) is (e,0)-hitting for any ¢ > 0
and 6 = (1 — (1= X)-)t' k),

The stretch of G is maximized at b(k) =~ k/2 (and ¢'(k) = k/2t), but maximizing
the stretch is not necessarily the goal in all applications. In many applications,
the parameters n, € and § are given, and the goal is to derive a generator that
produces (e, 6)-hitting sequences over {0,1}" while minimizing both the length
of the sequence and the amount of randomness used by the generator (i.e., the
seed length). Indeed, Proposition 8.29 suggests using sequences of length ¢' =
e 1log,(1/6) that are generated based on a random seed of length n + O(¢').

Expander random-walk generators have been used in a variety of areas (e.g.,
PCP and inapproximability (see [28, Sec. 11.1]), cryptography (see [90, Sec. 2.6]),
and the design of various types of “pseudorandom” objects (see, in particular,
Appendix D.3)).

Chapter Notes

Figure 8.6 depicts some of the notions of pseudorandom generators discussed in
this chapter. We highlight a key distinction between the case of general-purpose
pseudorandom generators (treated in Section 8.2) and the other cases (cf. Sec-
tions 8.3 and 8.4): in the former case the distinguisher is more complex than the

49In the common presentation of this generator, the length of the seed is determined as a
function of the desired block-length and stretch. That is, given the parameters b and £, the seed
length is set to b+ O(¢' — 1).

8.5. SPECIAL PURPOSE GENERATORS 367

distinguisher’s generator’s stretch comments

TYPE resources resources (i.e., Lk))

[gen.-purpose | p(k)-time, V poly. p | poly(k)-time | poly(k) | Assumes OW?°

| canon. derandom. | 2F70M) _time | 20(F)_time | 2k/70() | Assumes EvEC?Y
space-bounded s(k)-space, s(k) < k | O(k)-space 2k/0(s(k)) runs in time
robustness k/O(1)-space O(k)-space poly(k) poly(k) - £(k)
t-wise independ. inspect t positions poly(k) - £(k)-time | 2F/00) (e.g., pairwise)
small bias linear tests poly(k) - £(k)-time | 2F/0M) . ¢(k)
expander “hitting” poly(k) - £(k)-time | ¢'(k) - b(k)
random walk (0.5,2~ ' (K)/OM))_hitting for {0, 1}°®*), with £'(k) = ((k — b(k))/O(1)) + 1.

Figure 8.6: Pseudorandom generators at a glance

generator, whereas in the latter cases the generator is more complex than the dis-
tinguisher. Specifically, in the general-purpose case the generator runs in (some
fized) polynomial-time and needs to withstand any probabilistic polynomial-time
distinguisher. In fact, some of the proofs presented in Section 8.2 utilize the fact
that the distinguisher can invoke the generator on seeds of its choice. In contrast,
the Nisan-Wigderson Generator, analyzed in Theorem 8.18 (of Section 8.3), runs
more time than the distinguishers that it tries to fool, and the proof relies on this
fact in an essential manner. Similarly, the space-complexity of the space-resilient
generators presented in Section 8.4 is higher than the space-bound of the distin-
guishers that they fool.

The general paradigm of pseudorandom generators. Our presentation,
which views vastly different notions of pseudorandom generators as incarnations
of a general paradigm, has emerged mostly in retrospect. We note that, while the
historical study of the various notions was mostly unrelated at a technical level,
the case of general-purpose pseudorandom generators served as a source of inspi-
ration to most of the other cases. In particular, the concept of computational
indistinguishability, the connection between hardness and pseudorandomness, and
the equivalence between pseudorandomness and unpredictability, appeared first in
the context of general-purpose pseudorandom generators (and inspired the devel-
opment of “generators for derandomization” and “generators for space bounded
machines”). Indeed, the study of the special-purpose generators (see Section 8.5)
was unrelated to all of these.

General-purpose pseudorandom generators. The concept of computational
indistinguishability, which underlies the entire computational approach to random-
ness, was suggested by Goldwasser and Micali [107] in the context of defining secure
encryption schemes. Indeed, computational indistinguishability plays a key role in
cryptography (see Appendix C). The general formulation of computational indis-
tinguishability is due to Yao [237]. Using the hybrid technique of [107], Yao also

50By the OW we denote the assumption that one-way functions exists. By EVEC we denote the
assumption that the class £ has (almost-everywhere) exponential circuit complexity.

368 CHAPTER 8. PSEUDORANDOM GENERATORS

observed that defining pseudorandom generators as producing sequences that are
computationally indistinguishable from the corresponding uniform distribution is
equivalent to defining such generators as producing unpredictable sequences. The
latter definition originates in the earlier work of Blum and Micali [39].

Blum and Micali [39] pioneered the rigorous study of pseudorandom generators
and, in particular, the construction of pseudorandom generators based on some
simple intractability assumption. In particular, they constructed pseudorandom
generators assuming the intractability of Discrete Logarithm problem over prime
fields. Their work also introduces basic paradigms that were used in all subsequent
improvements (cf., e.g., [237, 117]). We refer to the transformation of compu-
tational difficulty into pseudorandomness, the use of hard-core predicates (also
defined in [39]), and the iteration paradigm (cf. Eq. (8.10)).

Theorem 8.11 (by which pseudorandom generators exist if and only if one-way
functions exist) is due to Hastad, Impagliazzo, Levin and Luby [117], building on
the hard-core predicate of [98] (see Theorem 7.7). Unfortunately, the current proof
of Theorem 8.11 is very complicated and unfit for presentation in a book of the
current nature. Presenting a simpler and tighter (cf. §8.2.7.1) proof is indeed an
important research project.

Pseudorandom functions (further discussed in Appendix C.3.3) were defined
and first constructed by Goldreich, Goldwasser and Micali [94]. We also mention
(and advocate) the study of a general theory of pseudorandom objects initiated
in [95]. Finally, we mention that a more detailed treatment of general-purpose
pseudorandom generators is provided in [90, Chap. 3].

Derandomization of time-complexity classes. As observed by Yao [237], a
non-uniformly strong notion of pseudorandom generators yields improved deran-
domization of time-complexity classes. A key observation of Nisan [172, 175] is that
whenever a pseudorandom generator is used in this way, it suffices to require that
the generator runs in time that is exponential in its seed length, and so the generator
may have running-time greater than the distinguisher (representing the algorithm
to be derandomized). This observation motivates the definition of canonical de-
randomizers as well as the construction of Nisan and Wigderson [172, 175], which
is the basis for further improvements culminating in [127]. Part 1 of Theorem 8.19
(i.e., the so-called “high end” derandomization of BPP) is due to Impagliazzo and
Wigderson [127], whereas Part 2 (the “low end”) is from [175].

The Nisan—-Wigderson Generator [175] was subsequently used in several ways
transcending its original presentation. We mention its application towards fooling
non-deterministic machines (and thus derandomizing constant-round interactive
proof systems) and to the construction of randomness extractors [221] (see overview
in §D.4.2.2).

In contrast to the aforementioned derandomization results, which place BPP in
some worst-case deterministic complexity class based on some non-uniform (worst-
case) assumption, we now mention a result that places BPP in an average-case
deterministic complexity class (cf. Section 10.2) based on a uniform-complexity
(worst-case) assumption. We refer specifically to a theorem, which is due to Im-

8.5. SPECIAL PURPOSE GENERATORS 369

pagliazzo and Wigderson [128] (but is not presented in the main text), that asserts
the following: if BPP is not contained in EXP (almost everywhere) then BPP has
deterministic sub-exponential time algorithms that are correct on all typical cases
(i.e., with respect to any polynomial-time sampleable distribution).

Pseudorandom with respect to space-bounded distinguishers. As stated
in the first paper on the subject of “space-resilient pseudorandom generators” [4]°!,
this research direction was inspired by the derandomization result obtained via the
use of general-purpose pseudorandom generators. The latter result (necessarily)
depends on intractability assumptions, and so the objective was identifying natu-
ral classes of algorithms for which derandomization is possible without relying on
intractability assumptions (but rather by relying on intractability results that are
known for the corresponding classes of distinguishers). This objective was achieved
before for the case of constant-depth (randomized) circuits, but space-bounded
(randomized) algorithms offer a more appealing class that refers to natural al-
gorithms. Fundamentally different constructions of space-resilient pseudorandom
generators were given in several works, but are superseded by the two incomparable
results mentioned in Section 8.4.2: Theorem 8.21 (a.k.a Nisan’s Generator [173])
and Theorem 8.22 (a.k.a the Nisan—Zuckerman Generator [176]). These two re-
sults have been “interpolated” in [11]. Theorem 8.23 (BPL C SC) was proved by
Nisan [174].

Special Purpose Generators. The various generators presented in Section 8.5
were not inspired by any of the other types of pseudorandom generator (nor even by
the generic notion of pseudorandomness). Pairwise-independence generator were
explicitly suggested in [53] (and are implicit in [49]). The generalization to t-wise
independence (for ¢t > 2) is due to [6]. Small-bias generators were first defined and
constructed by Naor and Naor [169], and three simple constructions were subse-
quently given in [9]. The Expander Random Walk Generator was suggested by
Ajtai, Komlos, and Szemerédi [4], who discovered that random walks on expander
graphs provide a good approximation to repeated independent attempts with re-
spect to hitting any fixed subset of sufficient density (within the vertex set). The
analysis of the hitting property of such walks was subsequently improved, culmi-
nating in the bound cited in Theorem 8.28, which is taken from [134, Cor. 6.1].

(The foregoing historical notes do not mention several technical contributions that
played an important role in the development of the area. For further details, the
reader is referred to [89, Chap. 3]. In fact, the current chapter is a revision of [89,
Chap. 3], providing significantly more details for the main topics, and omitting rela-
tively secondary material (a revision of which appears in Appendices D.3 and D.4.)

We mention that an alternative treatment of pseudorandomness, which puts
more emphasis on the relation between various techniques, is provided in [228]. In
particular, the latter text highlights the connections between information theoretic

51This paper is more frequently cited for the Expander Random Walk technique, which it has
introduced.

370 CHAPTER 8. PSEUDORANDOM GENERATORS

and computational phenomena (e.g., randomness extractors and canonical deran-
domizers), while the current text tends to decouple the two (see, e.g., Section 8.3
and Appendix D.4).

Exercises

Exercise 8.1 Show that placing no computational requirements on the genera-
tor enables unconditional results regarding “generators” that fool any family of
subexponential-size circuits. That is, making no computational assumptions, prove
that there exist functions G : {0,1}* — {0, 1}* such that {G(Uk)}ren is (strongly)
pseudorandom, while |G(s)| = 2|s| for every s € {0,1}*. Furthermore, show that
G can be computed in double-exponential time.

Guideline: Use the Probabilistic Method (cf. [10]). First, for any fixed circuit C :
{0,1}™ — {0, 1}, upper-bound the probability that for a random set S C {0,1}" of size
2"/2 the absolute value of Pr[C(U,) = 1] — (|{z € S : C(z) = 1}|/|S]) is larger than
27"/8 Next, using a union bound, prove the existence of a set S C {0,1}™ of size on/?
such that no circuit of size 2% can distinguish a uniformly distributed element of S from
a uniformly distributed element of {0, 1}", where distinguishing means with a probability

gap of at least 27 "/%.

Exercise 8.2 Prove the following corollaries to Proposition 8.3.

1. Let A be a probabilistic polynomial-time algorithm solving a decision problem
x :{0,1}* — {0,1} (in BPP), and let Ag be as in Construction 8.2. Prove
that it is infeasible to find an x on which Ag errs with probability that is
significantly higher than the error probability of A; that is, prove that on
input 1™ it is infeasible to find an z € {0,1}" such that PrlAq(z) # x(z)] <
Pr[A(z)=x(z)] + 0.01.

2. Let A be a probabilistic polynomial-time algorithm solving the search as-
sociated with the NP-relation R, and let As be as in Construction 8.2.
Prove that it is infeasible to find an = on which Ag outputs a wrong so-
lution; that is, assuming for simplicity that A has error probability 1/3,

prove that on input 1™ it is infeasible to find an = € {0,1}" N Sk such that

Pri(z,Ag(x)) ¢ R] > 0.4, where Sg Lef {z : Jy(z,y) € R}. Likewise, it is

infeasible to find an = € {0,1}™\ Sg such that Pr[Ag(z) # L] > 0.4.

Exercise 8.3 Prove that omitting the absolute value in Eq. (8.6) keeps Defini-
tion 8.4 intact.
(Hint: consider D'(z) defy D(z).)

Exercise 8.4 Prove that computational indistinguishability is an equivalence re-
lation (defined over pair of probability ensembles). Specifically, prove that this
relation is transitive (i.e., X =Y and ¥V = Z implies X = 2).

8.5. SPECIAL PURPOSE GENERATORS 371

Exercise 8.5 Prove that if {X,},cn and {Y,},.cn are computationally indistin-
guishable and A is a probabilistic polynomial-time algorithm then {A(X,)},cn and
{A(Y) }nen are computationally indistinguishable.

Guideline: If D distinguishes the latter ensembles, then D’ such that D'(z) Lot D(A(z))

distinguishes the former.

Exercise 8.6 In contrast to Exercise 8.5, show that the conclusion may not hold
in case A is not computationally bounded. That is, show that there exists computa-
tionally indistinguishable ensembles, {X,, },cn and {Y,,},en, and an exponential-
time algorithm A such that {A(X,)},cy and {A(Y%)} e are not computationally
indistinguishable.

Guideline: For any pair of ensembles {X,}, N and {Y.}, N, consider the Boolean
function f such that f(z) = 1 if and only if Pr[X, = z] > Pr[Y, = z]. Show that
|Pr[f(Xn) = 1] — Pr[f(Yn) = 1]| equals the statistical difference between X, and Y.
Consider an adequate (approximate) implementation of f (e.g., approximate Pr[X, = z]
and Pr[Y, = z] up to £272%1).

Exercise 8.7 Show that the existence of pseudorandom generators implies the ex-
istence of polynomial-time constructible probability ensembles that are statistically
far apart and yet are computationally indistinguishable.

Guideline: Lower-bound the statistical distance between G'(Uy) and Uy, where G is a
pseudorandom generator with stretch 4.

Exercise 8.8 Relying on Theorem 7.7, provide a self-contained proof of the fact
that the existence of one-way 1-1 functions implies the existence of polynomial-
time constructible probability ensembles that are statistically far apart and yet are
computationally indistinguishable.

Guideline: Assuming that b is a hard-core of the function f, consider the ensembles
{f(Un)-0(Un)}, cn and {f(Un)- Ui}, cN- Prove that these ensembles are computationally
indistinguishable by using the main ideas of the proof of Proposition 8.9. Show that if f
is 1-1 then these ensembles are statistically far apart.

Exercise 8.9 (following [87]) Prove that the sufficient condition in Exercise 8.7
is in fact necessary. Recall that {X,},en and {Y,,},en are said to be statistically
far apart if, for some positive polynomial p and all sufficiently large n, the variation
distance between X,, and Y, is greater than 1/p(n). Using the following three steps,
prove that the existence of polynomial-time constructible probability ensembles that
are statistically far apart and yet are computationally indistinguishable implies the
existence of pseudorandom generators.

1. Show that, without loss of generality, we may assume that the variation
distance between X, and Y,, is greater than 1 — exp(—n).

Guideline: For X, and Y, as in the forgoing, consider X, = (X,(Ll), ...,X,(f(")))
andY, = (Yn(l), vy Yn(t("))), where the X")’s (resp., Yn(l)’s) are independent copies

372 CHAPTER 8. PSEUDORANDOM GENERATORS

of X, (resp., Y»), and t(n) = O(n-p(n)?). To lower-bound the statistical difference
between X,, and Y, consider the set S, Lef {z : Pr[Xn =z] > Pr[Y, =z]} and the

random variable representing the number of copies in X, (resp., Y) that reside in

Sh.

2. Using {X,},,eny and {Y, },en as in Step 1, prove the existence of a false en-
tropy generator, where a false entropy generator is a deterministic polynomial-
time algorithm G such that G(Uy) has entropy e(k) but {G(U)} e is com-
putationally indistinguishable from a polynomial-time constructible ensemble
that has entropy greater than e(-) + (1/2).

Guideline: Let Sy and S1 be sampling algorithms such that X, = So(Upoly(n))
and Y, = S1(Upoly(n))- Consider the generator G(o,7) = (0, S-(r)), and the distri-
bution Z, that equals (U1, X,) with probability 1/2 and (Ui, Y,) otherwise. Note
that in G (U1, Upoly(n)) the first bit is almost determined by the rest, whereas in Z,
the first bit is statistically independent of the rest.

3. Using a false entropy generator, obtain one in which the excess entropy is
Vk, and using the latter construct a pseudorandom generator.

Guideline: Use the ideas presented in §8.2.5.3 (i.e., the discussion of the inter-
esting direction of the proof of Theorem 8.11).

Exercise 8.10 (multiple samples vs single sample, a separation) In contrast
to Proposition 8.6, prove that there exist two probability ensembles that are com-
putational indistinguishable by a single sample, but are efficiently distinguishable
by two samples. Furthermore, one of these ensembles is the uniform ensemble and
the other has a sparse support (i.e., only poly(n) many strings are assigned a non-
zero probability weight by the second distribution). Indeed, the second ensemble
is not polynomial-time constructible.

Guideline: Prove that, for every function d : {0,1}" — [0, 1], there exists two strings, =,
and y,, (in {0,1}"), and a number p € [0, 1] such that Pr[d(U,)=1] = p-Pr[d(z,)=1]+(1—
p) - Pr{d(y.) =1]. Generalize this claim to m functions, using m + 1 strings and a convex
combination of the corresponding probabilities.>> Conclude that there exists a distribution
Z, with a support of size at most m + 1 such that for each of the first (in lexicographic
order) m (randomized) algorithms A it holds that Pr[A(U,) =1] = Pr[A(Z,) =1]. Note
that with probability at least 1/(m + 1), two independent samples of Z,, are assigned the

same value, yielding a simple two-sample distinguisher of U,, from Z,.

Exercise 8.11 (amplifying the stretch function, an alternative construction)

For G; and ¢ as in Construction 8.7, consider G(s) Lef Gf(ls‘)_‘sl(s), where G (z)
denotes G iterated i times on z (i.e., Gi(z) = GV }(Gi(x)) and GY(z) = =).
Prove that G is a pseudorandom generator of stretch £. Reflect on the advantages
of Construction 8.7 over the current construction (e.g., consider generation time).

52That is, prove that for every m functions dy, ..., dm : {0, 1}™ — [0, 1] there exist m + 1 strings

z,g), ey z,(lm+1) and m+ 1 non-negative numbers p1, ..., pm+1 that sum-up to 1 such that for every

i € [m] it holds that Pr[d;(Un)=1] =Y p; - Prld;i(z9))=1].

8.5. SPECIAL PURPOSE GENERATORS 373

Guideline: Use a hybrid argument, with the i*" hybrid being Gﬁ(UZ(k),i), for i =
0,....,¢(k) — k. Note that Gy (Usry-(i+1)) = G1(G1(Uery—i-1)) and Gi(Usqry—s)
G1(UiGy Uy y—i—1)1); and use Exercise 8.5.

Exercise 8.12 (pseudorandom versus unpredictability) Prove that a prob-
ability ensemble {Z},cn is pseudorandom if and only if it is unpredictable. For
simplicity, we say that {Zj}cn is (next-bit) unpredictable if for every probabilis-
tic polynomial-time algorithm A it holds that Pr;[A(F;(Zk)) = Biy1(Zk)] — (1/2)
is negligible, where i € {0,...,|Z| — 1} is uniformly distributed, and F;(z) (resp.,
Bi11(z)) denotes the i-bit prefix (resp., 7 + 1 bit) of z.

Guideline: Show that pseudorandomness implies polynomial-time unpredictability; that
is, polynomial-time predictability violates pseudorandomness (because the uniform ensem-
ble is unpredictable regardless of computing power). Use a hybrid argument to prove that
unpredictability implies pseudorandomness. Specifically, the i** hybrid consists of the i-
bit long prefix of Zj, followed by |Zi| — ¢ uniformly distributed bits. Thus, distinguishing
the extreme hybrids (which correspond to Zj, and Uz, |) implies distinguishing a random
pair of neighboring hybrids, which in turn implies next-bit predictability. For the last

step, use an argument as in the proof of Proposition 8.9.

Exercise 8.13 Prove that a probability ensemble is unpredictable (from left to
right) if and only if it is unpredictable from right to left (or in any other canonical
order).

Guideline: Use Exercise 8.12, and note that an ensemble is pseudorandom if and only
if its reverse is pseudorandom.

Exercise 8.14 Let f be 1-1 and length preserving, and b be a hard-core predicate

of f. For any polynomial ¢, letting G'(s) Lef b(fEUsD=1(s))---b(f(s)) - b(s), prove

that {G'(Ux)} is unpredictable (in the sense of Exercise 8.12).

Guideline: Suppose towards the contradiction that, for a uniformly distributed j €
{0,...,£(k) — 1}, given the j-bit long prefix of G'(U;) an algorithm A’ can predict the
j 4 1°* bit of G'(Ux). That is, given b(f*®=1(s))---b(f**) =9 (s)), algorithm A’ predicts
b(f® =0+ (5)), where s is uniformly distributed in {0,1}*. Consider an algorithm A
that given y = f(z) approximates b(x) by invoking A’ on input b(f71(y))---b(y), where
J is uniformly selected in {0, ..., £(k) — 1}. Analyze the success probability of A using the
fact that f induces a permutation over {0,1}", and thus b(f(Uy))---b(f(Us)) - b(Uy) is
distributed identically to b(f*® =1 (Uy))---b(F* ™7 (Uy)) - b(f®O =0T ().

Exercise 8.15 Prove that if G is a strong pseudorandom generator in the sense
of Definition 8.12 then it a pseudorandom generator in the sense of Definition 8.1.

Guideline: Consider a sequence of internal coin tosses that maximizes the probability
in Eq. (8.2).

Exercise 8.16 (strong computational indistinguishability) Provide a defi-
nition of the notion of computational indistinguishability that underlies Defini-
tion 8.12 (i.e., indistinguishability with respect to (non-uniform) polynomial-size
circuits). Prove the following two claims:

374 CHAPTER 8. PSEUDORANDOM GENERATORS

1. Computational indistinguishability with respect to (non-uniform) polynomial-
size circuits is strictly stronger than Definition 8.4.

2. Computational indistinguishability with respect to (non-uniform) polynomial-
size circuits is invariant under (polynomially-many) multiple samples, even if
the underlying ensembles are not polynomial-time constructible.

Guideline: For Part 1, see the solution to Exercise 8.10. For Part 2 note that samples
as generated in the proof of Proposition 8.6 can be hard-wired into the distinguishing

circuit.

Exercise 8.17 Show that Construction 8.7 may fail in the context of canonical
derandomizers. Specifically, prove that it fails for the canonical derandomizer G’
that is presented in the proof of Theorem 8.18.

Exercise 8.18 In relation to Definition 8.14 (and assuming ¢(k) > k), show that
there exists a circuit of size O(2* - £(k)) that violates Eq. (8.11).

Guideline: The circuit may incorporate all values in the range of G and decide by

comparing its input to these values.

Exercise 8.19 (constructing a set system for Theorem 8.18) Forevery v >
0, show a construction of a set system S as in Condition 2 of Theorem 8.18, with
m(k) = Q(k) and £(k) = 2%(F).

Guideline: We assume, without loss of generality, that v < 1, and set m(k) = (v/2) - k
and £(k) = 27m(k)/6 We construct the set system Si, .., Sg(x) 1n iterations, selecting
Si as the first m(k)-subset of [k] that has sufficiently small intersections with each of
the previous sets Si,...,5i—1. The existence of such a set S; can be proved using the
Probabilistic Method (cf. [10]). Specifically, for a fixed m(k)-subset S’, the probability
that a random m(k)-subset has intersection greater than ym(k) with S’ is smaller than
277m(R)/6 hecause the expected intersection size is (v/2) - m(k). Thus, with positive
probability a random m(k)-subset has intersection at most ym(k) with each of the previous
i—1 < £(k) = 27F)/¢ subsets. Note that we construct S; in time (ml(ck)) ~(i—1)-m(k) <
2% . ¢(k) - k, and thus S is computable in time k2" - £(k)* < 2%*.

Exercise 8.20 (pseudorandom versus unpredictability, by circuits) In con-
tinuation to Exercise 8.12, show that if there exists a circuit of size s that distin-
guishes Z,, from U, with gap 6, then there exists an i < £ = |Z,| and a circuit
of size s + O(1) that given an i-bit long prefix of Z,, guesses the 7 + 15 bit with
success probability at least % + %.

Guideline: Defining hybrids as in Exercise 8.12, note that, for some i, the given circuit
distinguishes the i*" hybrid from the 7 + 1°* hybrid with gap at least 5/¢.

Exercise 8.21 Suppose that the sets S;’s in Construction 8.17 are disjoint and
that f : {0,1} — {0,1} is T-inapproximable. Prove that for every circuit C of
size T — O(1) it holds that |Pr[C(G(Uy)) = 1] — Pr[C(U,) = 1]| < ¢/T.

8.5. SPECIAL PURPOSE GENERATORS 375

Guideline: Prove the contrapositive using Exercise 8.20. Note that the value of the
i+ 1°* bit of G(Uy) is statistically independent of the values of the first i bits of G(Uy),
and thus predicting it yields an approximator for f. Indeed, such an approximator can
be obtained by fixing the the first ¢ bits of G(Uy) via an averaging argument.

Exercise 8.22 (Theorem 8.18, generalized) Let £,m,m',T : N — N satisfy
0(k)? + O(€(k)2™ ®)) < T(m(k)). Suppose that the following two conditions hold:

1. There exists an exponential-time computable function f:{0,1}*— {0,1} that
is T-inapproximable.

2. There exists an exponential-time computable function S : NxN — 2N such that
for every k and ¢ =1, ..., (k) it holds that S(k,) C [k] and |S(k,7)| = m(k),
and |S(k,i) N S(k,)| < m'(k) for every k and i # j.

Prove that using G as defined in Construction 8.17, with S; = S(k,i), yields a
canonical derandomizer with stretch /.

Guideline: Following the proof of Theorem 8.18, just note that the circuit constructed
for approximating f(U,.()) has size £(k)* + (k) - O(2™ ™) and success probability at
least (1/2) + (1/7€(k)).

Exercise 8.23 (Part 2 of Theorem 8.19) Prove that if for every polynomial T
there exists a T-inapproximable predicate in £ then BPP C N.~oDTIME(¢.), where
t.(n) % 2n"

Guideline: Using Proposition 8.15, it suffices to present, for every polynomial p and every
constant £ > 0, a canonical derandomizer of stretch £(k) = p(k'/¥). Such a derandomizer
can be presented by applying Exercise 8.22 using m(k) = vk, m'(k) = O(log k), and
T(m(k)) = £(k)* + 6(€(k)2ml(k)). Note that T is a polynomial, revisit Exercise 8.19 in
order to obtain a set system as required in Exercise 8.22 (for these parameters), and use
Theorem 7.10.

Exercise 8.24 (canonical derandomizers imply hard problems) Prove that
the hardness hypothesis made in each part of Theorem 8.19 is essential for the ex-
istence of a corresponding canonical derandomizer. More generally, prove that the
existence of a canonical derandomizer with stretch ¢ implies the existence of a
predicate in £ that is T-inapproximable for T'(n) = £(n)/O(),

Guideline: We focus on obtaining a predicate in £ that cannot be computed by circuits
of size ¢, and note that the claim follows by applying the techniques in §7.2.1.3. Given a
canonical derandomizer G : {0,1}* — {0,1}*® we consider the predicate f : {0, 1}**! —
{0,1} that satisfies f(z) = 1 if and only if there exists s € {0, 1}!*I=! such that z is a prefix
of G(s). Note that f is in £ and that an algorithm computing f yields a distinguisher of
G(Uk) and Ug(k).

Exercise 8.25 (limitations on the stretch of (s, ¢)-pseudorandom generators)
Referring to Definition 8.20, establish the following upper-bounds on the stretch ¢
of (s,¢)-pseudorandom generators.

376 CHAPTER 8. PSEUDORANDOM GENERATORS

1. If s(k) > 2 and (k) < 1/2 then £(k) < (k) - (k + 2) - 2k+2=5(0),
2. For every s(k) > 1 and (k) < 1 it holds that £(k) < 2*.

Guideline: Part 2 follows by combining Exercises 8.37 and 8.38. For Part 1, consider
towards the contradiction a generator of stretch £(k) = e(k) - (k +2) - 2°727*(*) and an
enumeration, o ..., a®") € {0, l}l(k), of all 2* outputs of the generator (on k-bit long
seeds). Construct a non-uniform automaton of space s that accepts 1 - - - z4x) € {0, 1}“’“)
if for some i € [¢(k)/(k + 2)] it holds that ©(;_1).(k+2)+1 " " Ti-(k+2) €quals some string in
S;, where S; contains the projection of the strings a((i_l)'Qs(k)il"'l),...,a(i'zs(mil) on
the coordinates (¢ —1)-(k+2)+1,...,7- (k + 2). Note that such an automaton accepts
at least (£(k)/(k + 2)) - 2°")~1 = 2¢(k) - 2 of the possible outputs of the generator,
whereas a random (¢(k)-bit long) string is accepted with probability at most (¢(k)/(k +
2)) - 9(s(k)—1)—(k+2) _ e(k)/2.

Exercise 8.26 (on the existence of (s, ¢)-pseudorandom generators) In con-
trast to Exercise 8.25, for any s and € such that s(k) < k — 2log,(k/e(k)) — O(1),
prove the existence of (non-efficient) (s,e)-pseudorandom generators of stretch
(k) = Q(e(k)? - 27 /5(k)).

Guideline: Use the Probabilistic Method as in Exercise 8.1. Note that non-uniform
automata of space s and time £ can be described by strings of length ¢ - 2s2°.

Exercise 8.27 (multiple samples and space-bounded distinguishers) Suppose
that two probability ensembles, { X },cn and {Yi}ren, are (s, €)-indistinguishable

by non-uniform automata (i.e., the distinguishability-gap of any non-uniform au-
tomaton of space s is bounded by the function ¢). For any function ¢ : N— N,
prove that the ensembles {(X,gl),...,X,gt(k)))}kEN and {(Yk(l),...,X,gt(k)))}kEN are

(s, te)-indistinguishable, where X,El) through X,Et(k)) and Yk(l) through Yk(t(k)) are
independent random variables, with each X ,(f) identical to X} and each Yk(l) iden-
tical to Y.

Guideline: Use the hybrid technique. When distinguishing the i*" and (i 4+ 1)** hybrids,
note that the first ¢ blocks (i.e., copies of X}) as well as the last ¢(k) — (+ 1) blocks (i.e.,
copies of Y}) can be fixed and hard-wired into the non-uniform distinguisher.

Exercise 8.28 Provide a more explicit description of the generator outlined in the
proof of Theorem 8.21.

Guideline: for » € {0,1}" and R, hY e H,, the generator outputs a 2‘-long
sequence of n-bit strings such that the i*® string in this sequence equals h'(r), where h'
is a composition of some of the RU)s,

Exercise 8.29 (adaptive ¢-wise independence tests) Recall that a generator
G :{0,1}* — {0, l}lr(k)'b(k) is called t-wise independent if for any t fixed block posi-
tions, the distribution G(U}) restricted to these ¢ blocks is uniform over {0, 1}¢0(%),
Prove that the output of a ¢-wise independence generator is (perfectly) indistin-
guishable from the uniform distribution by any test that examines t of the blocks,

8.5. SPECIAL PURPOSE GENERATORS 377

even if the examined blocks are selected adaptively (i.e., the location of the i*® block
to be examined is determined based on the contents of the previously inspected
blocks).

Guideline: First show that, without loss of generality, it suffices to consider deterministic
(adaptive) testers. Next, show that the probability that such a tester sees any fixed
sequence of ¢ values at the locations selected adaptively (in the generator’s output) equals
2788 wwhere b(k) is the block length.

Exercise 8.30 (a t-wise independence generator) Prove that G as defined in
Proposition 8.24 produces a t-wise independent sequence over GF(20(*)).

Guideline: For every ¢ fixed indices i1,...,7¢ € [¢'(k)], consider the distribution of
G(Ug)i,,....i; (i-e., the projection of G(Ui) on locations i1,...,i;). Show that for every
sequence of ¢ possible values v1,...,v: € GF(?b(k)), there exists a unique seed s € {0, l}k
such that G(s)i,,....i; = (V1, .., Vt).

Exercise 8.31 (pairwise independence generators) As a warm-up, consider
a construction analogous to the one in Proposition 8.25, except that here the

seed specifies an arbitrary affine b(k)-by-m(k) transformation. That is, for s €
{0,132 m(k) and r € {0,1}°®) where k = b(k) - m(k) + b(k), let

G(s,T) Lef (Asvr +71, Agva + 7,0y Agvp(ry + 1) (8.23)

where A, is an b(k)-by-m(k) matrix specified by the string s. Show that G as
in Eq. (8.23) is a pairwise independence generator of block-length b and stretch
£. (Note that a related construction appears in the proof of Theorem 7.7; see
also Exercise 7.5.) Next, show that G as in Eq. (8.17) is a pairwise independence
generator of block-length b and stretch /.

Guideline: The following description applies to both constructions. First note that for
every fixed i € [¢'(k)], the i*" element in the sequence G(Uy), denoted G/(Uy);, is uniformly
distributed in {0, 1}b(k). Actually, show that for every fixed s € {0, 1}’”‘4’('“)7 it holds that
G (s, Up(r))i is uniformly distributed in {0, 1} Next note that it suffices to show that,
for every j # 4, conditioned on the value of G(Uy):, the value of G(Uyi); is uniformly
distributed in {0, 1}b(k). The key technical detail is showing that, for any non-zero vector
v € {0,1}™™ and a uniformly selected s € {0,1}*~*") it holds that Asv (resp., Tv) is
uniformly distributed in {0,1}*®). This is easy in case of a random b(k)-by-m (k) matrix,
and can be proven also for a random Toeplitz matrix.

Exercise 8.32 (adaptive t-wise independence tests, revisited) Note that in
contrast to Exercise 8.29, with respect to non-perfect indistinguishability, there is
a discrepancy between adaptive and non-adaptive tests that inspects ¢ locations.

1. Present a distribution over 2!~ !-bit long strings in which every t fixed bit
positions are t - 27 t-close to uniform, but there exists a test that adaptively
inspects t positions and distinguish this distribution from the uniform one
with gap 1/2.

378 CHAPTER 8. PSEUDORANDOM GENERATORS

Guideline: Modify the uniform distribution over ((t — 1) + 2°7')-bit long strings
such that the first ¢ — 1 locations indicate a bit position (among the rest) that is
set to zero.

2. On the other hand, prove that if every ¢ fixed bit positions in a distribution
X are e-close to uniform, then every test that adaptively inspects ¢ positions
can distinguish X the uniform distribution with gap at most 2¢ - ¢.

Guideline: See Exercise 8.29.

Exercise 8.33 Suppose that G is an e-bias generator with stretch ¢. Show that
equality between the £(k)-bit strings = and y can be probabilistically checked (with
error probability (1 + €)/2) by comparing the inner product modulo 2 of z and
G(s) to the inner product modulo 2 of y and G(s), where s € {0,1}* is selected
uniformly.

(Hint: reduce the problem to the special case in which y = Oz(k).)

Exercise 8.34 (bias versus statistical difference from uniform) Let X be
a random variable assuming values in {0,1}¢. Prove that if X has bias at most €
over any non-empty set then the statistical difference between X and Uy is at most
2!/2 . ¢, and that for every x € {0,1}" it holds that Pr[X =] =2~ .

Guideline: Consider the probability function p : {0,1}* — [0, 1] defined by p(z) Lof
Pr[X = z], and let 6(z) Lof p(x) — 27 denote the deviation of p from the uniform proba-
bility function. Viewing the set of real functions over {0,1}" as a 2‘-dimensional vector
space, consider two orthonormal bases for this space. The first basis consists of the
(Kroniker) functions {ka}acyo,13¢ such that ko(z) = 1 if © = o and ko(z) = 0 other-
wise. The second basis consists of the (normalize Fourier) functions {fs}sc[defined by
fs(xy---x) def g-t/2 [[,cs(=1)" (where fp = 274/2) 53 Note that the bias of X over any
S # 0 equals |)~ p(z) - 2¢/2 fs(x)|, which in turn equals 2¢/?| >, 0(x)fs(z)|. Thus, for
every S (including the empty set), we have | >~ 6(x)fs(x)| < 27%2¢, which means that
the representation of ¢ in the normalize Fourier basis is by coefficients that have each an
absolute value of at most 27%/2¢. It follows that the Norm-2 of this vector of coefficients
is upper-bounded by /2t - (2-%/2¢)2 = ¢, and the two claims follow by noting that they
refer to norms of ¢ according to the Kroniker basis. In particular, Norm-2 is preserved
under orthonormal bases, the max-norm is upper-bounded by Norm-2, and Norm-1 is
upper-bounded by v/2¢ times the value of the Norm-2.

Exercise 8.35 (on the existence of (non-explicit) small-bias generators)
Prove that, for k = log,(¢(k)/e(k)?) + O(1), there exists a function G : {0,1}* —
{0,1}*%) such that G(U) has bias at most (k) over any non-empty subset of

[£(k)]-

Guideline: Use the Probabilistic Method as in Exercise 8.1.

53Verify that both bases are indeed orthogonal (i.e., Zm ko (x)kg(x) = 0 for every o # (and
ZI fs(z)fr(z) =0 for every S # T') and normal (i.e., Zz ko(z)? =1 and ZI fs(z)? =1).

8.5. SPECIAL PURPOSE GENERATORS 379

Exercise 8.36 (The LFSR small-bias generator (following [9])) Using the
following guidelines (and letting ¢ = k/2), analyze the construction outlined fol-
lowing Theorem 8.26 (and depicted in Figure 8.5):

(f%) (£9)

1. Prove that r; equals Zﬁ;[l) ¢’ - 85, where ¢;

(degree t — 1) polynomial obtained by reducing z* modulo the polynomial
£(2) (e, 22 =270 elP29 (mod f(2)).
Guideline: Recall that 2 = '~ ;27 (mod f(z)), and thus for every i > ¢
it holds that z' = Zj;(l) fiz' =t (mod f(z)). Note the correspondence to r; =
Z;;; fj Ti—t4j-

2. For any non-empty S C {0,...,£(k) — 1}, evaluate the bias of the sequence

T0, . Te(k)—1 OVer S, where f is a random irreducible polynomial of degree ¢
and s = (g, ...,5;_1) € {0,1}* is uniformly distributed. Specifically:

is the coefficient of z7 in the

(a) For a fixed f and random s € {0,1}, prove that), ¢ 7; has non-zero
bias if and only if f(z) divides), g 2".
(Hint: Note that Zies T = Z;;é Zies cgf’i)s]-7 and use Item 1.)

(b) Prove that the probability that a random irreducible polynomial of de-
gree t divides), ¢ 2" is O(¢(k)/2").
(Hint: A polynomial of degree n can be divided by at most n/d different irreducible

polynomials of degree d. On the other hand, the number of irreducible polynomials
of degree d over GF(2) is ©(2¢/d).)

Conclude that for random f and s, the sequence 7o, ..., 7¢(r)—1 has bias O(£(k)/2").

Note that an implementation of the LESR generator requires a mapping of random
k/2-bit long string to almost random irreducible polynomials of degree k/2. Such a
mapping can be constructed in exp(k) time, which is poly(¢(k)) if £(k) = exp(Q2(k)).
A more efficient mapping that uses a O(k)-bit long seek is described in [9, Sec. 8].

Exercise 8.37 (limitations on small-bias generators) Let G be an e-bias gen-
erator with stretch £, and view G as a mapping from GF(2)* to GF(2)“*). As such,
each bit in the output of G' can be viewed as a polynomial®* in the k input variables
(each ranging in GF(2)). Prove that if £(k) < 1 and each of these polynomials has
total degree at most d, then £(k) < 2?21 (k) Derive the following corollaries:

i

1. If e(k) < 1 then (k) < 2% (regardless of d).5®

2. If (k) < 1 and (k) > k then G cannot be a linear transformation.?®

54Recall that every Boolean function over GF(p) can be expressed as a polynomial of individual
degree at most p — 1.

55This upper-bound is optimal, because (efficient) e-bias generators of stretch £(k) = poly(e(k))-
2% do exists (see [169]).

56In contrast, bilinear e-bias generators do exist; for example, G(s) = (s,b(s)), where
b(s1,...,55) = Zfli 5i8(k/2)+i mod 2, is an e-bias generator with (k) = exp(—Q(k)). (Hint:
Focusing on bias over sets that include the last output bit, prove that without loss of generality
it suffices to analyze the bias of b(U}).)

380 CHAPTER 8. PSEUDORANDOM GENERATORS

Guideline (for the main claim): Note that, without loss of generality, all the afore-
mentioned polynomials have a free term equal to zero (and have individual degree at
most 1 in each variable). Next, consider the vector space spanned by all d-monomials
over k variables (i.e., monomial having at most d variables). Since (k) < 1, the poly-
nomials representing the output bits of G must correspond to a sequence of independent
vectors in this space.

Exercise 8.38 (a sanity check for space-bounded pseudorandomness) The
following fact is suggested as a sanity check for candidate pseudorandom genera-
tors with respect to space-bounded automata. The fact (to be proven as an ex-
ercise) is that, for every e(-) and s(-) such that s(k) > 1 for every k, if G is
(s,e)-pseudorandom (as per Definition 8.20), then G is an e-bias generator.

Exercise 8.39 In contrast to Exercise 8.38, prove that there exist exp(—Q(n))-
bias distributions over {0,1}" that are not (2,0.666)-pseudorandom.

Guideline: Show that the uniform distribution over the set

{01---an:iai50 (mod 3)}

has bias exp(—Q(n)).

Exercise 8.40 (approximate t-wise independence generators (following [169]))
Combining a small-bias generator as in Theorem 8.26 with the ¢-wise indepen-
dence generator of Eq. (8.16), and relying on the linearity of the latter, con-
struct a generator producing ¢-bit long sequences in which any ¢ positions are

at most e-away from uniform (in variation distance), while using a seed of length

O(t + log(1/e) + loglog £). (For max-norm a seed of length O(log(t/e) + loglog¢)
suffices.)

Guideline: First note that, for any ¢,¢ and b > log, ¢', the transformation of Eq. (8.16)
can be implemented by a fixed linear (over GF(2)) transformation of a ¢ - b-bit seed into
an {-bit long sequence, where £ = £’ - b. It follows that, for b = log, ', there exists a fixed
GF(2)-linear transformation T of a random seed of length ¢ - b into a t-wise independent
bit sequence of the length £ (i.e., T' Uy is t-wise independent over {0,1}¢). Thus, every
t rows of 1" are linearly independent. The key observation is that when we replace the
aforementioned random seed by an &'-bias sequence, every i < t positions in the output
sequence have bias at most £’ (because they define a non-zero linear test on the bits of the
¢'-bias sequence). Note that the length of the new seed (used to produce &'-bias sequence
of length ¢-b) is O(log tb/e'). Applying Exercise 8.34, we conclude that any ¢ positions are
at most 22 . &'-away from uniform (in variation distance). Recall that this was obtained
using a seed of length O(log(t/<") +loglog £), and the claim follows by using &’ = 27"/%.¢.

Exercise 8.41 (small-bias generator and error-correcting codes) Show a cor-
respondence between e-bias generators of stretch £ and binary linear error-correcting
codes (cf. Appendix E.1) mapping £(k)-bit long strings to 2*-bit long strings such
that every two codewords are at distance (1 £ e(k)) - 28! apart.

8.5. SPECIAL PURPOSE GENERATORS 381

Guideline: Associate {0,1}* with [2*]. Then, a generator G : [2¥] — {0,1}**®) corre-
sponds to the code C : {0,1}¢®) — o, 1}2k such that, for every i € [£(k)] and j € [2"],
the i*" bit of G(j) equals the j** bit of C(0°"110¢*)~%),

Exercise 8.42 (on the bias of sequences over a finite field) For a prime p,
let ¢ be a random variable assigned values in GF(p) and 6(v) Lef Pr[¢ =v] — (1/p).

Prove that max,cqp(p){|6(v)|} is upper-bounded by b def maxXeeqi,..p—13 1l E[we]I},
where w denotes the p'" (complex) root of unity, and that ZveGF(p) |6(v)] is upper-
bounded by /p - b.

Guideline: Analogously to Exercise 8.34, view probability distributions over GF(p) as
p-dimensional vectors, and consider two bases for the set of complex functions over GF(p):
the Kroniker basis (i.e., ki(z) = 1 if # = ¢ and k;(z) = 0) and the (normalize) Fourier
basis (i.e., fi(z) = p~/2-w'). Note that the biases of ¢ corresponds to the inner products
of 6 with the non-constant Fourier functions, whereas the distances of ¢ from the uniform
distribution correspond to the inner products of 6 with the Kroniker functions.

Exercise 8.43 (a version of the Expander Random Walk Theorem) Using
notations as in Theorem 8.28, prove that the probability that a random walk of

length ¢ stays in W is at most (p + (A/d)?)*/2. In fact, prove a more general

claim that refers to the probability that a random walk of length ¢ intersects

Wo x Wy x -+ X Wy 1. The claimed upper-bound is

£'—1
Voo [T o+ a)’, (8.24)

where p; = (Wil /IV].

Guideline: View the random walk as the evolution of a corresponding probability vector
under suitable transformations. The transformations correspond to taking a random step
in the graph and to passing through a “sieve” that keeps only the entries that correspond
to the current set W;. The key observation is that the first transformation shrinks the
component that is orthogonal to the uniform distribution (which is the first eigenvalue
of the adjacency matrix of the expander), whereas the second transformation shrinks the
component that is in the direction of the uniform distribution. For further details, see

§E.2.1.3.

Exercise 8.44 Using notations as in Theorem 8.28, prove that the probability

that a random walk of length ¢' visits W more than af' times is smaller than
(L) (p+ (A\/d)?)**' /2. For example, for « = 1/2 and \/d < /P, We get an upper-

bound of (32p)¢'/%. We comment that much better bounds can be obtained (cf.,
e.g., [119]).

Guideline: Use a union bound on all possible sequences of m = «f' visits, and upper-
bound the probability of visiting W in steps j1, ..., Jm by applying Eq. (8.24) with W; = W
ifi € {j1,...., jm } and W =V otherwise.

382 CHAPTER 8. PSEUDORANDOM GENERATORS

