
Chapter 7The Bright Side of HardnessSo saying she donned her beautiful, glittering golden{Ambrosialsandals, which carry her 
ying like the wind over the vast landand sea; she grasped the redoubtable bronze-shod spear, so stoutand sturdy and strong, wherewith she quells the ranks of heroeswho have displeased her, the [bright-eyed] daughter of her mightyfather. Homer, Odyssey, 1:96{101The existence of natural computational problems that are (or seem to be) in-feasible to solve is usually perceived as bad news, because it means that we cannotdo things we wish to do. But these bad news have a positive side, because hardproblem can be \put to work" to our bene�t, most notably in cryptography.It seems that utilizing hard problems requires the ability to e�ciently generatehard instances, which is not guaranteed by the notion of worst-case hardness. Inother words, we refer to the gap between \occasional" hardness (e.g., worst-casehardness or mild average-case hardness) and \typical" hardness (with respect tosome tractable distribution). Much of the current chapter is devoted to bridgingthis gap, which is known by the term hardness ampli�cation. The actual applica-tions of typical hardness are presented in Chapter 8 and Appendix C.Summary: We consider two conjectures that are related to P 6= NP .The �rst conjecture is that there are problems that are solvable inexponential-time (i.e., in E) but are not solvable by (non-uniform) fam-ilies of small (say polynomial-size) circuits. We show that this worst-case conjecture can be transformed into an average-case hardness result;speci�cally, we obtain predicates that are strongly \inapproximable" bysmall circuits. Such predicates are used towards derandomizing BPPin a non-trivial manner (see Section 8.3).The second conjecture is that there are problems in NP (i.e., searchproblems in PC) for which it is easy to generate (solved) instances that265



266 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSare typically hard to solve (for a party that did not generate theseinstances). This conjecture is captured in the formulation of one-wayfunctions, which are functions that are easy to evaluate but hard toinvert (in an average-case sense). We show that functions that are hardto invert in a relatively mild average-case sense yield functions thatare hard to invert in a strong average-case sense, and that the latteryield predicates that are very hard to approximate (called hard-corepredicates). Such predicates are useful for the construction of general-purpose pseudorandom generators (see Section 8.2) as well as for a hostof cryptographic applications (see Appendix C).In the rest of this chapter, the actual order of presentation of the two aforemen-tioned conjectures and their consequences is reversed: We start (in Section 7.1)with the study of one-way functions, and only later (in Section 7.2) turn to thestudy of problems in E that are hard for small circuits.Teaching note: We list several reasons for preferring the aforementioned order ofpresentation. First, we mention the great conceptual appeal of one-way functions andthe fact that they have very practical applications. Second, hardness ampli�cationin the context of one-way functions is technically simpler than the ampli�cation ofhardness in the context of E . (In fact, Section 7.2 is the most technical text in thisbook.) Third, some of the techniques that are shared by both treatments seem easier tounderstand �rst in the context of one-way functions. Last, the current order facilitatesthe possibility of teaching hardness ampli�cation only in one incarnation, where thecontext of one-way functions is recommended as the incarnation of choice (for theaforementioned reasons).If you wish to teach hardness ampli�cation and pseudorandomness in the two afore-mentioned incarnations, then we suggest following the order of the current text. Thatis, �rst teach hardness ampli�cation in its two incarnations, and only next teach pseu-dorandomness in the corresponding incarnations.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,standard conventions regarding random variables (presented in Appendix D.1.1)and various \laws of large numbers" (presented in Appendix D.1.2) will be exten-sively used.7.1 One-Way FunctionsLoosely speaking, one-way functions are functions that are easy to evaluate buthard (on the average) to invert. Thus, in assuming that one-way functions exist,we are postulating the existence of e�cient processes (i.e., the computation of thefunction in the forward direction) that are hard to reverse. Analogous phenomenain daily life are known to us in abundance (e.g., the lighting of a match). Thus,the assumption that one-way functions exist is a complexity theoretic analogue ofour daily experience.



7.1. ONE-WAY FUNCTIONS 267One-way functions can also be thought of as e�cient ways for generating \puz-zles" that are infeasible to solve; that is, the puzzle is a random image of thefunction and a solution is a corresponding preimage. Furthermore, the person gen-erating the puzzle knows a solution to it and can e�ciently verify the validity of(possibly other) solutions to the puzzle. In fact, as explained in Section 7.1.1, everymechanism for generating such puzzles can be converted to a one-way function.The reader may note that when presented in terms of generating hard puzzles,one-way functions have a clear cryptographic 
avor. Indeed, one-way functionsare central to cryptography, but we shall not explore this aspect here (and ratherrefer the reader to Appendix C). Similarly, one-way functions are closely related to(general-purpose) pseudorandom generators, but this connection will be exploredin Section 8.2. Instead, in the current section, we will focus on one-way functionsper se.Teaching note: While we recommend including a basic treatment of pseudorandom-ness within a course on complexity theory, we do not recommend doing so with respectto cryptography. The reason is that cryptography is far more complex than pseudo-randomness (e.g., compare the de�nition of secure encryption to the the de�nition ofpseudorandom generators). The extra complexity is due to conceptual richness, whichis something good, except that some of these conceptual issues are central to cryptog-raphy but not to complexity theory. Thus, teaching cryptography in the context of acourse on complexity theory is likely to either overload the course with material thatis not central to complexity theory or cause a super�cial and misleading treatment ofcryptography. We are not sure as to which of these two possibilities is worse. Still, forthe bene�t of the interested reader, we have included an overview of the foundations ofcryptography as an appendix to the main text (see Appendix C).7.1.1 Generating hard instances and one-way functionsLet us start by examining the prophecy, made in the preface to this chapter, bywhich intractable problems can be used to our bene�t. The basic idea is thatintractable problems o�er a way of generating an obstacle that stands in the wayof our opponents and thus protects our interests. These opponents may be eitherreal (e.g., in the context of cryptography) or imaginary (e.g., in the context ofderandomization), but in both cases we wish to prevent them from seeing somethingor doing something. Hard obstacles seems useful towards this goal.Let us assume that P 6= NP or even that NP is not contained in BPP. Can weuse this assumption to our bene�t? Not really: The NP 6� BPP assumption refersto the worst-case complexity of problems, while bene�ting from hard problemsseems to require the ability to generate hard instances. In particular, the generatedinstances should be typically hard and not merely occasionally hard; that is, weseek average-case hardness and not merely worst-case hardness.Taking a short digression, we mention that in Section 7.2 we shall see that worst-case hardness (of NP or even E) can be transformed into average-case hardnessof E . Such a transformation is not known for NP itself, and in some applications(e.g., in cryptography) we do need the hard-on-the-average problem to be in NP .



268 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSIn this case, we currently need to assume that, for some problem in NP , it is thecase that hard instances are easy to generate (and not merely exist). That is, weassume that NP is \hard on the average" with respect to a distribution that ise�ciently sampleable. This assumption will be further discussed in Section 10.2.However, for the aforementioned applications (e.g., in cryptography) this as-sumption does not seem to su�ce either: we know how to utilize such \hard onthe average" problems only when we can e�ciently generate hard instances coupledwith adequate solutions.1 That is, we assume that, for some search problem inPC (resp., decision problem in NP), we can e�ciently generate instance-solutionpairs (resp., yes-instances coupled with corresponding NP-witnesses) such that theinstance is hard to solve (resp., hard to verify as belonging to the set). Needless tosay, the hardness assumption refers to a person that does not get the solution (resp.,witness). Thus, we can e�ciently generate hard \puzzles" coupled with solutions,and so we may present to others hard puzzles for which we know a solution.Let us formulate the foregoing discussion. Referring to De�nition 2.3, we con-sider a relation R in PC (i.e., R is polynomially bounded and membership in R canbe determined in polynomial-time), and assume that there exists a probabilisticpolynomial-time algorithm G that satis�es the following two conditions:1. On input 1n, algorithm G always generates a pair in R such that the �rstelement has length n. That is, Pr[G(1n) 2 R \ (f0; 1gn � f0; 1g�)] = 1.2. It is typically infeasible to �nd solutions to instances that are generated byG; that is, when only given the �rst element of G(1n), it is infeasible to�nd an adequate solution. Formally, denoting the �rst element of G(1n) byG1(1n), for every probabilistic polynomial-time (solver) algorithm S, it holdsthat Pr[(G1(1n); S(G1(1n)) 2 R] = �(n), where � vanishes faster than anypolynomial fraction (i.e., for every positive polynomial p and all su�cientlylarge n it is the case that �(n) < 1=p(n)).We call G a generator of solved intractable instances for R. We will show that sucha generator exists if and only if one-way functions exist, where one-way functionsare functions that are easy to evaluate but hard (on the average) to invert. Thatis, a function f :f0; 1g�!f0; 1g� is called one-way if there is an e�cient algorithmthat on input x outputs f(x), whereas any feasible algorithm that tries to �nd apreimage of f(x) under f may succeed only with negligible probability (where theprobability is taken uniformly over the choices of x and the algorithm's coin tosses).Associating feasible computations with probabilistic polynomial-time algorithmsand negligible functions with functions that vanish faster than any polynomialfraction, we obtain the following de�nition.De�nition 7.1 (one-way functions): A function f :f0; 1g�!f0; 1g� is called one-way if the following two conditions hold:1We wish to stress the di�erence between the two gaps discussed here. Our feeling is thatthe non-usefulness of worst-case hardness (per se) is far more intuitive than the non-usefulness ofaverage-case hardness that does not correspond to an e�cient generation of \solved" instances.



7.1. ONE-WAY FUNCTIONS 2691. Easy to evaluate: There exist a polynomial-time algorithm A such that A(x) =f(x) for every x 2 f0; 1g�.2. Hard to invert: For every probabilistic polynomial-time algorithm A0, everypolynomial p, and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 2 f�1(f(x))] < 1p(n) (7.1)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0.Algorithm A0 is given the auxiliary input 1n so as to allow it to run in time poly-nomial in the length of x, which is important in case f drastically shrinks its input(e.g., jf(x)j = O(log jxj)). Typically (and, in fact, without loss of generality, seeExercise 7.1), f is length preserving, in which case the auxiliary input 1n is re-dundant. Note that A0 is not required to output a speci�c preimage of f(x); anypreimage (i.e., element in the set f�1(f(x))) will do. (Indeed, in case f is 1-1,the string x is the only preimage of f(x) under f ; but in general there may beother preimages.) It is required that algorithm A0 fails (to �nd a preimage) withoverwhelming probability, when the probability is also taken over the input distri-bution. That is, f is \typically" hard to invert, not merely hard to invert in some(\rare") cases.Proposition 7.2 The following two conditions are equivalent:1. There exists a generator of solved intractable instances for some R 2 NP.2. There exist one-way functions.Proof Sketch: Suppose that G is such a generator of solved intractable instancesfor some R 2 NP, and suppose that on input 1n it tosses `(n) coins. For simplicity,we assume that `(n) = n, and consider the function g(r) = G1(1jrj; r), whereG(1n; r) denotes the output of G on input 1n when using coins r (and G1 is asin the foregoing discussion). Then g must be one-way, because an algorithm thatinverts g on input x = g(r) obtains r0 such that G1(1n; r0) = x and G(1n; r0) mustbe in R (which means that the second element of G(1n; r0) is a solution to x). Incase `(n) 6= n (and assuming without loss of generality that `(n) � n), we de�neg(r) = G1(1n; s) where n is the largest integer such that `(n) � jrj and s is the`(n)-bit long pre�x of r.Suppose, on the other hand, that f is a one-way function (and that f islength preserving). Consider G(1n) that uniformly selects r 2 f0; 1gn and out-puts (f(r); r), and let R def= f(f(x); x) : x 2 f0; 1g�g. Then R is in PC and Gis a generator of solved intractable instances for R, because any solver of R (oninstances generated by G) is e�ectively inverting f on f(Un).



270 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSComments. Several candidates one-way functions and variation on the basicde�nition appear in Appendix C.2.1. Here, for the sake of future discussions, wede�ne a stronger version of one-way functions, which refers to the infeasibility ofinverting the function by non-uniform circuits of polynomial-size. We seize theopportunity and use an alternative technical formulation, which is based on theprobabilistic conventions in Appendix D.1.1.2De�nition 7.3 (one-way functions, non-uniformly hard): A one-way function f :f0; 1g� ! f0; 1g� is said to be non-uniformly hard to invert if for every family ofpolynomial-size circuits fCng, every polynomial p, and all su�ciently large n,Pr[Cn(f(Un); 1n) 2 f�1(f(Un))] < 1p(n)We note that if a function is infeasible to invert by polynomial-size circuits then it ishard to invert by probabilistic polynomial-time algorithms; that is, non-uniformity(more than) compensates for lack of randomness. See Exercise 7.2.7.1.2 Ampli�cation of Weak One-Way FunctionsIn the forgoing discussion we have interpreted \hardness on the average" in a verystrong sense. Speci�cally, we required that any feasible algorithm fails to solvethe problem (e.g., invert the one-way function) almost always (i.e., except withnegligible probability). This interpretation is indeed the one that is suitable forvarious applications. Still, a weaker interpretation of hardness on the average,which is also appealing, only requires that any feasible algorithm fails to solve theproblem often enough (i.e., with noticeable probability). The main thrust of thecurrent section is showing that the mild form of hardness on the average can betransformed into the strong form discussed in Section 7.1.1. Let us �rst de�ne themild form of hardness on the average, using the framework of one-way functions.Speci�cally, we de�ne weak one-way functions.De�nition 7.4 (weak one-way functions): A function f :f0; 1g�!f0; 1g� is calledweakly one-way if the following two conditions hold:1. Easy to evaluate: As in De�nition 7.1.2. Weakly hard to invert: There exists a positive polynomial p such that forevery probabilistic polynomial-time algorithm A0 and all su�ciently large n,Prx2f0;1gn [A0(f(x); 1n) 62 f�1(f(x))] > 1p(n) (7.2)where the probability is taken uniformly over all the possible choices of x 2f0; 1gn and all the possible outcomes of the internal coin tosses of algorithmA0. In such a case, we say that f is 1=p-one-way.2Speci�cally, letting Un denote a random variable uniformly distributed in f0; 1gn , we maywrite Eq. (7.1) as Pr[A0(f(Un); 1n) 2 f�1(f(Un))] < 1=p(n), recalling that both occurrences ofUn refer to the same sample.



7.1. ONE-WAY FUNCTIONS 271Here we require that algorithm A0 fails (to �nd an f -preimage for a random f -image) with noticeable probability, rather than with overwhelmingly high prob-ability (as in De�nition 7.1). For clarity, we will occasionally refer to one-wayfunctions as in De�nition 7.1 by the term strong one-way functions.We note that, assuming that one-way functions exist at all, there exists weakone-way functions that are not strongly one-way (see Exercise 7.3). Still, any weakone-way function can be transformed into a strong one-way function. This is indeedthe main result of the current section.Theorem 7.5 (ampli�cation of one-way functions): The existence of weak one-way functions implies the existence of strong one-way functions.Proof Sketch: The construction itself is straightforward. We just parse the argu-ment to the new function into su�ciently many blocks, and apply the weak one-wayfunction on the individual blocks. That is, suppose that f is 1=p-one-way, for somepolynomial p, and consider the following functionF (x1; :::; xt) = (f(x1); :::; f(xt)) (7.3)where t def= n � p(n) and x1; :::; xt 2 f0; 1gn.(Indeed F should be extended to strings of length outside fn2 � p(n) : n 2 Ng andthis extension must be hard to invert on all preimage lengths.)3We warn that the hardness of inverting the resulting function F is not estab-lished by mere \combinatorics" (i.e., considering, for any S � f0; 1gn, the relativevolume of St in (f0; 1gn)t, where S represents the set of f -preimages that aremapped by f to an image that is \easy to invert"). Speci�cally, one may not as-sume that the potential inverting algorithm works independently on each block.Indeed this assumption seems reasonable, but we do not know if nothing is lostby this restriction. (In fact, proving that nothing is lost by this restriction is aformidable research project.) In general, we should not make assumptions regard-ing the class of all e�cient algorithms (as underlying the de�nition of one-wayfunctions), unless we can actually prove that nothing is lost by such assumptions.The hardness of inverting the resulting function F is proved via a so called\reducibility argument" (which is used to prove all conditional results in the area).By a reducibility argument we actually mean a reduction, but one that is analyzedwith respect to average case complexity. Speci�cally, we show that any algorithmthat inverts the resulting function F with non-negligible success probability canbe used to construct an algorithm that inverts the original function f with successprobability that violates the hypothesis (regarding f). In other words, we reducethe task of \strongly inverting" f (i.e., violating its weak one-wayness) to the taskof \weakly inverting" F (i.e., violating its strong one-wayness). In particular, oninput y = f(x), the reduction invokes the F -inverter (polynomially) many times,each time feeding it with a sequence of random f -images that contains y at a3One simple extension is de�ning F (x) to equal F (x1; :::; xn�p(n)), where n is the largest integersatisfying n2p(n) � jxj and xi is the ith consecutive n-bit long string in x (i.e., x = x1 � � �xn�p(n)x0,where x1; :::; xn�p(n) 2 f0; 1gn).



272 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSrandom location. (Indeed such a sequence corresponds to a random image of F .)Details follow.Suppose towards the contradiction that F is not strongly one-way; that is, thereexists a probabilistic polynomial-time algorithm B0 and a polynomial q(�) so thatfor in�nitely many m'sPr[B0(F (Um))2F�1(F (Um))] > 1q(m) (7.4)Focusing on such a generic m and assuming (see Footnote 3) that m = n2p(n), wepresent the following probabilistic polynomial-time algorithm, A0, for inverting f .On input y and 1n (where supposedly y = f(x) for some x 2 f0; 1gn), algorithm A0proceeds by applying the following probabilistic procedure, denoted I , on input yfor t0(n) times, where t0(�) is a polynomial that depends on the polynomials p andq (speci�cally, we set t0(n) def= 2n2 � p(n) � q(n2p(n))).Procedure I (on input y and 1n):For i = 1 to t(n) def= n � p(n) do begin(1) Select uniformly and independently a sequence of strings x1; :::; xt(n) 2 f0; 1gn.(2) Compute (z1; :::; zt(n)) B0(f(x1); :::; f(xi�1); y; f(xi+1); :::; f(xt(n)))(Note that y is placed in the ith position instead of f(xi).)(3) If f(zi) = y then halt and output zi.(This is considered a success).endUsing Eq. (7.4), we now present a lower bound on the success probability of al-gorithm A0, deriving a contradiction to the theorem's hypothesis. To this end wede�ne a set, denoted Sn, that contains all n-bit strings on which the procedure Isucceeds with probability greater than n=t0(n). (The probability is taken only overthe coin tosses of procedure I). Namely,Sn def= �x2f0; 1gn : Pr[I(f(x))2f�1(f(x))] > nt0(n)�In the next two claims we shall show that Sn contains all but at most a 1=2p(n)fraction of the strings of length n, and that for each string x 2 Sn algorithm A0inverts f on f(x) with probability exponentially close to 1. It will follow that A0inverts f on f(Un) with probability greater than 1� (1=p(n)), in contradiction tothe theorem's hypothesis.Claim 7.5.1: For every x 2SnPr �A0(f(x))2f�1(f(x))� > 1� 2�nThis claim follows directly from the de�nitions of Sn and A0.Claim 7.5.2: jSnj > �1� 12p(n)� � 2n



7.1. ONE-WAY FUNCTIONS 273The rest of the proof is devoted to establishing this claim, and indeed combiningClaims 7.5.1 and 7.5.2, the theorem follows.The key observation is that, for every i 2 [t(n)] and every xi 2 f0; 1gn n Sn, itholds that Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ���U (i)n = xi i� Pr �I(f(xi)) 2 f�1(f(xi))� � nt0(n)where U (1)n ; :::; U (n�p(n))n denote the n-bit long blocks in the random variable Un2p(n).It follows that� def= Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ �9i s.t. U (i)n 2f0; 1gn n Sn�i� t(n)Xi=1 Pr hB0(F (Un2p(n)))2F�1(F (Un2p(n))) ^ U (i)n 2f0; 1gn n Sni� t(n) � nt0(n) = 12q(n2p(n))where the equality is due to t0(n) = 2n2 � p(n) � q(n2p(n)) and t(n) = n � p(n). Onthe other hand, using Eq. (7.4), we have� � Pr �B0(F (Un2p(n)))2F�1(F (Un2p(n)))� � Pr h(8i)U (i)n 2Sni� 1q(n2p(n)) � Pr [Un2Sn]t(n) :Using t(n) = n � p(n), we get Pr[Un 2 Sn] > (1=2q(n2p(n)))1=(n�p(n)), which impliesPr[Un 2 Sn] > 1 � (1=2p(n)) for su�ciently large n. Claim 7.5.2 follows, and sodoes the theorem.Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weakone-way function f , we �rst constructed a polynomial-time computable functionF with the intention of later proving that F is strongly one-way. To prove thatF is strongly one-way, we used a reducibility argument. The argument transformse�cient algorithms that supposedly contradict the strong one-wayness of F intoe�cient algorithms that contradict the hypothesis that f is weakly one-way. HenceF must be strongly one-way. We stress that our algorithmic transformation, whichis in fact a randomized Cook reduction, makes no implicit or explicit assumptionsabout the structure of the prospective algorithms for inverting F . Such assumptions(e.g., the \natural" assumption that the inverter of F works independently on eachblock) cannot be justi�ed (at least not at our current state of understanding of thenature of e�cient computations).We use the term a reducibility argument, rather than just saying a reductionso as to emphasize that we do not refer here to standard (worst-case complexity)reductions. Let us clarify the distinction: In both cases we refer to reducing the



274 CHAPTER 7. THE BRIGHT SIDE OF HARDNESStask of solving one problem to the task of solving another problem; that is, we usea procedure solving the second task in order to construct a procedure that solvesthe �rst task. However, in standard reductions one assumes that the second taskhas a perfect procedure solving it on all instances (i.e., on the worst-case), andconstructs such a procedure for the �rst task. Thus, the reduction may invoke thegiven procedure (for the second task) on very \non-typical" instances. This cannotbe allowed in our reducibility arguments. Here, we are given a procedure thatsolves the second task with certain probability with respect to a certain distribution.Thus, in employing a reducibility argument, we cannot invoke this procedure onany instance. Instead, we must consider the probability distribution, on instancesof the second task, induced by our reduction. In our case (as in many cases)the latter distribution equals the distribution to which the hypothesis (regardingsolvability of the second task) refers, but in general these distributions need onlybe \su�ciently close" in an adequate sense (which depends on the analysis). Inany case, a careful consideration of the distribution induced by the reducibilityargument is due. (Indeed, the same issue arises in the context of reductions among\distributional problems" considered in Section 10.2.)An information theoretic analogue. Theorem 7.5 (or rather its proof) has anatural information theoretic (or \probabilistic") analogue that refers to the am-pli�cation of the success probability by repeated experiments: If some event occurswith probability p in a single experiment, then the event will occur with very highprobability (i.e., 1�e�n) when the experiment is repeated n=p times. The analogyis to evaluating the function F at a random input, where each block of this inputmay be viewed as an attempt to hit the noticeable \hard region" of f . The readeris probably convinced at this stage that the proof of Theorem 7.5 is much morecomplex than the proof of the information theoretic analogue. In the informationtheoretic context the repeated experiments are independent by de�nition, whereasin the computational context no such independence can be guaranteed. (Indeed, theindependence assumption corresponds to the naive argument discussed at the be-ginning of the proof of Theorem 7.5.) Another indication to the di�erence betweenthe two settings follows. In the information theoretic setting, the probability thatthe event did not occur in any of the repeated trials decreases exponentially withthe number of repetitions. In contrast, in the computational setting we can onlyreach an unspeci�ed negligible bound on the inverting probabilities of polynomial-time algorithms. Furthermore, for all we know, it may be the case that F can bee�ciently inverted on F (Un2p(n)) with success probability that is sub-exponentiallydecreasing (e.g., with probability 2�(log2 n)3), whereas the analogous informationtheoretic bound is exponentially decreasing (i.e., e�n).7.1.3 Hard-Core PredicatesOne-way functions per se su�ce for one central application: the construction ofsecure signature schemes (see Appendix C.6). For other applications, one relies notmerely on the infeasibility of fully recovering the preimage of a one-way function,



7.1. ONE-WAY FUNCTIONS 275but rather on the infeasibility of meaningfully guessing bits in the preimage. Thelatter notion is captured by the de�nition of a hard-core predicate.Recall that saying that a function f is one-way means that given a typical y(in the range of f) it is infeasible to �nd a preimage of y under f . This does notmean that it is infeasible to �nd partial information about the preimage(s) of yunder f . Speci�cally, it may be easy to retrieve half of the bits of the preimage(e.g., given a one-way function f consider the function f 0 de�ned by f 0(x; r) def=(f(x); r), for every jxj= jrj). We note that hiding partial information (about thefunction's preimage) plays an important role in more advanced constructs (e.g.,pseudorandom generators and secure encryption). With this motivation in mind,we will show that essentially any one-way function hides speci�c partial informationabout its preimage, where this partial information is easy to compute from thepreimage itself. This partial information can be considered as a \hard core" of thedi�culty of inverting f . Loosely speaking, a polynomial-time computable (Boolean)predicate b, is called a hard-core of a function f if no feasible algorithm, given f(x),can guess b(x) with success probability that is non-negligibly better than one half.
f(x)

x

b(x)The solid arrows depict easily computable transformationwhile the dashed arrows depict infeasible transformations.Figure 7.1: The hard-core of a one-way function { an illustration.De�nition 7.6 (hard-core predicates): A polynomial-time computable predicateb : f0; 1g� ! f0; 1g is called a hard-core of a function f if for every probabilisticpolynomial-time algorithm A0, every positive polynomial p(�), and all su�cientlylarge n's Pr [A0(f(x))=b(x)] < 12 + 1p(n)where the probability is taken uniformly over all the possible choices of x 2 f0; 1gnand all the possible outcomes of the internal coin tosses of algorithm A0.



276 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSNote that for every b : f0; 1g� ! f0; 1g and f : f0; 1g� ! f0; 1g�, there exist obviousalgorithms that guess b(x) from f(x) with success probability at least one half (e.g.,the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, ifb is a hard-core predicate (of any function) then it follows that b is almost unbiased(i.e., for a uniformly chosen x, the di�erence jPr[b(x)=0]� Pr[b(x)=1]j must be anegligible function in n).Since b itself is polynomial-time computable, the failure of e�cient algorithms toapproximate b(x) from f(x) (with success probability that is non-negligibly higherthan one half) must be due either to an information loss of f (i.e., f not beingone-to-one) or to the di�culty of inverting f . For example, for � 2 f0; 1g andx0 2f0; 1g�, the predicate b(�x0) = � is a hard-core of the function f(�x0) def= 0x0.Hence, in this case the fact that b is a hard-core of the function f is due to the factthat f loses information (speci�cally, the �rst bit: �). On the other hand, in thecase that f loses no information (i.e., f is one-to-one) a hard-core for f may existonly if f is hard to invert. In general, the interesting case is when being a hard-coreis a computational phenomenon rather than an information theoretic one (whichis due to \information loss" of f). It turns out that any one-way function has amodi�ed version that possesses a hard-core predicate.Theorem 7.7 (a generic hard-core predicate): For any one-way function f , theinner-product mod 2 of x and r, denoted b(x; r), is a hard-core of f 0(x; r) =(f(x); r).In other words, Theorem 7.7 asserts that, given f(x) and a random subset S � [jxj],it is infeasible to guess �i2Sxi signi�cantly better than with probability 1=2, wherex = x1 � � �xn is uniformly distributed in f0; 1gn.Proof Sketch: The proof is by a so-called \reducibility argument" (see Sec-tion 7.1.2). Speci�cally, we reduce the task of inverting f to the task of predictingthe hard-core of f 0, while making sure that the reduction (when applied to inputdistributed as in the inverting task) generates a distribution as in the de�nition ofthe predicting task. Thus, a contradiction to the claim that b is a hard-core of f 0yields a contradiction to the hypothesis that f is hard to invert. We stress thatthis argument is far more complex than analyzing the corresponding \probabilis-tic" situation (i.e., the distribution of (r; b(X; r)), where r 2 f0; 1gn is uniformlydistributed and X is a random variable with super-logarithmic min-entropy (whichrepresents the \e�ective" knowledge of x, when given f(x))).4Our starting point is a probabilistic polynomial-time algorithm B that satis�es,for some polynomial p and in�nitely many n's, Pr[B(f(Xn); Un) = b(Xn; Un)] >(1=2) + (1=p(n)), where Xn and Un are uniformly and independently distributedover f0; 1gn. Using a simple averaging argument, we focus on a " def= 1=2p(n)4The min-entropy of X is de�ned as minvflog2(1=Pr[X = v])g; that is, if X has min-entropy mthen maxvfPr[X = v]g = 2�m. The Leftover Hashing Lemma (see Appendix D.2) implies that,in this case, Pr[b(X;Un) = 1jUn] = 12 � 2�
(m), where Un denotes the uniform distribution overf0; 1gn.



7.1. ONE-WAY FUNCTIONS 277fraction of the x's for which Pr[B(f(x); Un) = b(x; Un)] > (1=2) + " holds. We willshow how to use B in order to invert f , on input f(x), provided that x is in thisgood set (which has density ").As a warm-up, suppose for a moment that, for the aforementioned x's, algorithmB succeeds with probability p such that p > 34 + 1=poly(jxj) rather than p >12 + 1=poly(jxj). In this case, retrieving x from f(x) is quite easy: To retrieve theith bit of x, denoted xi, we randomly select r 2 f0; 1gjxj, and obtain B(f(x); r) andB(f(x); r�ei), where ei = 0i�110jxj�i and v�u denotes the addition mod 2 of thebinary vectors v and u. A key observation underlying the foregoing scheme as wellas the rest of the proof is that b(x; r�s) = b(x; r) � b(x; s), which can be readilyveri�ed by writing b(x; y) = Pni=1 xiyi mod 2 and noting that addition modulo 2of bits corresponds to their XOR. Now, note that if both B(f(x); r) = b(x; r)and B(f(x); r� ei) = b(x; r� ei) hold, then B(f(x); r) � B(f(x); r� ei) equalsb(x; r) � b(x; r�ei) = b(x; ei) = xi. The probability that both B(f(x); r)= b(x; r)and B(f(x); r�ei)= b(x; r�ei) hold, for a random r, is at least 1 � 2 � (1 � p) >12 + 1poly(jxj) . Hence, repeating the foregoing procedure su�ciently many times(using independent random choices of such r's) and ruling by majority, we retrievexi with very high probability. Similarly, we can retrieve all the bits of x, andhence invert f on f(x). However, the entire analysis was conducted under (theunjusti�able) assumption that p > 34+ 1poly(jxj) , whereas we only know that p > 12+"for " = 1=poly(jxj).The problem with the foregoing procedure is that it doubles the original errorprobability of algorithm B on inputs of the form (f(x); �). Under the unrealistic(foregoing) assumption that B's average error on such inputs is non-negligiblysmaller than 14 , the \error-doubling" phenomenon raises no problems. However, ingeneral (and even in the special case where B's error is exactly 14 ) the foregoingprocedure is unlikely to invert f . Note that the average error probability of B (fora �xed f(x), when the average is taken over a random r) can not be decreasedby repeating B several times (e.g., for every x, it may be that B always answercorrectly on three quarters of the pairs (f(x); r), and always err on the remainingquarter). What is required is an alternative way of using the algorithm B, a waythat does not double the original error probability of B.The key idea is generating the r's in a way that allows applying algorithmB only once per each r (and i), instead of twice. Speci�cally, we will invoke Bon (f(x); r� ei) in order to obtain a \guess" for b(x; r� ei), and obtain b(x; r)in a di�erent way (which does not involve using B). The good news is that theerror probability is no longer doubled, since we only use B to get a \guess" ofb(x; r� ei). The bad news is that we still need to know b(x; r), and it is notclear how we can know b(x; r) without applying B. The answer is that we canguess b(x; r) by ourselves. This is �ne if we only need to guess b(x; r) for oner (or logarithmically in jxj many r's), but the problem is that we need to know(and hence guess) the value of b(x; r) for polynomially many r's. The obviousway of guessing these b(x; r)'s yields an exponentially small success probability.Instead, we generate these polynomially many r's such that, on one hand they are\su�ciently random" whereas, on the other hand, we can guess all the b(x; r)'s



278 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSwith noticeable success probability.5 Speci�cally, generating the r's in a speci�cpairwise independent manner will satisfy both these (con
icting) requirements. Westress that in case we are successful (in our guesses for all the b(x; r)'s), we canretrieve x with high probability. Hence, we retrieve x with noticeable probability.A word about the way in which the pairwise independent r's are generated(and the corresponding b(x; r)'s are guessed) is indeed in place. To generate m =poly(jxj) many r's, we uniformly (and independently) select ` def= log2(m+1) stringsin f0; 1gjxj. Let us denote these strings by s1; :::; s`. We then guess b(x; s1) throughb(x; s`). Let us denote these guesses, which are uniformly (and independently)chosen in f0; 1g, by �1 through �`. Hence, the probability that all our guessesfor the b(x; si)'s are correct is 2�` = 1poly(jxj) . The di�erent r's correspond tothe di�erent non-empty subsets of f1; 2; :::; `g. Speci�cally, for every such subsetJ , we let rJ def= �j2Jsj . The reader can easily verify that the rJ 's are pairwiseindependent and each is uniformly distributed in f0; 1gjxj; see Exercise 7.5. Thekey observation is that b(x; rJ ) = b(x;�j2Jsj) = �j2Jb(x; sj). Hence, our guessfor b(x; rJ ) is �j2J�j , and with noticeable probability all our guesses are correct.Wrapping-up everything, we obtain the following procedure, where " = 1=poly(n)represents a lower-bound on the advantage of B in guessing b(x; �) for an " fractionof the x's (i.e., for these good x's it holds that Pr[B(f(x); Un) = b(x; Un)] > 12 +").Inverting procedure (on input y = f(x) and parameters n and "):Set ` = log2(n="2) +O(1).(1) Select uniformly and independently s1; :::; s` 2 f0; 1gn.Select uniformly and independently �1; :::; �` 2 f0; 1g.(2) For every non-empty J � [`], compute rJ = �j2Jsj and �J = �j2J�j .(3) For i = 1; :::; n determine the bit zi according to the majority voteof the (2` � 1)-long sequence of bits (�J�B(f(x); rJ�ei));6=J�[`].(4) Output z1 � � � zn.Note that the \voting scheme" employed in Step 3 uses pairwise independent sam-ples (i.e., the rJ 's), but works essentially as well as it would have worked withindependent samples (i.e., the independent r's).6 That is, for every i and J , itholds that Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > (1=2)+", where rJ = �j2Jsj ,and (for every �xed i) the events corresponding to di�erent J 's are pairwise inde-pendent. It follows that if for every j 2 [`] it holds that �j = b(x; sj), then forevery i and J we havePrs1;:::;s` [�J �B(f(x); rJ�ei) = b(x; ei)] (7.5)5Alternatively, we can try all polynomially many possible guesses. In such a case, we shalloutput a list of candidates that, with high probability, contains x. (See Exercise 7.6.)6Our focus here is on the accuracy of the approximation obtained by the sample, and not somuch on the error probability. We wish to approximate Pr[b(x; r) � B(f(x); r�ei) = 1] up toan additive term of ", because such an approximation allows to correctly determine b(x; ei). Apairwise independent sample of O(t="2) points allows for an approximation of a value in [0; 1] upto an additive term of " with error probability 1=t, whereas a totally random sample of the samesize yields error probability exp(�t). Since we can a�ord setting t = poly(n) and having errorprobability 1=2n, the di�erence in the error probability between the two approximation schemesis not important here. For a wider perspective see Appendix D.1.2 and D.3.



7.1. ONE-WAY FUNCTIONS 279= Prs1;:::;s` [B(f(x); rJ�ei) = b(x; rJ�ei)] > 12 + "where the equality is due to �J = �j2J�j = b(x; rJ ) = b(x; rJ�ei)� b(x; ei). Notethat Eq. (7.5) refers to the correctness of a single vote for b(x; ei). Using m =2` � 1 = O(n="2) and noting that these (Boolean) votes are pairwise independent,we infer that the probability that the majority of these votes is wrong is upper-bounded by 1=2n. Using a union bound on all i's, we infer that with probability atleast 1=2, all majority votes are correct and thus x is retrieved correctly. Recall thatthe foregoing is conditioned on �j = b(x; sj) for every j 2 [`], which in turn holdswith probability 2�` = (m + 1)�1 = 
("2=n) = 1=poly(n). Thus, x is retrievedcorrectly with probability 1=poly(n), and the theorem follows.Digest. Looking at the proof of Theorem 7.7, we note that it actually refersto an arbitrary black-box Bx(�) that approximates b(x; �); speci�cally, in the caseof Theorem 7.7 we used Bx(r) def= B(f(x); r). In particular, the proof does notuse the fact that we can verify the correctness of the preimage recovered by thedescribed process. Thus, the proof actually establishes the existence of a poly(n=")-time oracle machine that, for every x 2 f0; 1gn, given oracle access to any Bx :f0; 1gn ! f0; 1g satisfyingPrr2f0;1gn [Bx(r) = b(x; r)] � 12 + " (7.6)outputs x with probability at least poly("=n). Speci�cally, x is output with proba-bility at least p def= 
("2=n). Noting that x is merely a string for which Eq. (7.6)holds, it follows that the number of strings that satisfy Eq. (7.6) is at most 1=p.Furthermore, by iterating the foregoing procedure for eO(1=p) times we can obtainall these strings (see Exercise 7.7).Theorem 7.8 (Theorem 7.7, revisited): There exists a probabilistic oracle ma-chine that, given parameters n; " and oracle access to any function B : f0; 1gn !f0; 1g, halts after poly(n=") steps and with probability at least 1=2 outputs a list ofall strings x 2 f0; 1gn that satisfyPrr2f0;1gn [B(r) = b(x; r)] � 12 + ";where b(x; r) denotes the inner-product mod 2 of x and r.This machine can be modi�ed such that, with high probability, its output list doesnot include any string x such that Prr2f0;1gn [B(r) = b(x; r)] < 12 + "2 .Theorem 7.8 means that if given some information about x it is hard to recoverx, then given the same information and a random r it is hard to predict b(x; r).This assertion is proved by the counter-positive (see Exercise 7.14). Indeed, theforegoing statement is in the spirit of Theorem 7.7 itself, except that it refers to any\information about x" (rather than to the value f(x)). To demonstrate the point,



280 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSlet us rephrase the foregoing statement as follows: for every randomized process �,if given s it is hard to obtain �(s) then given s and a random r it is hard to predictb(�(s); r).7A coding theory perspective. Theorem 7.8 can be viewed as a list decodingprocedure for the Hadamard Code, where the Hadamard encoding of a string x 2f0; 1gn is the 2n-bit long string containing b(x; r) for every r 2 f0; 1gn. In contrastto standard decoding in which the task is recovering the unique information that isencoded in the codeword that is closest to the given string, in list decoding the taskis recovering all strings having encoding that is at a speci�ed distance from thegiven string.8 We mention that list decoding is applicable and valuable in the casethat the speci�ed distance does not allow for unique decoding (i.e., the speci�eddistance is greater than half the distance of the code).Applications of hard-core predicates. Turning back to hard-core predicates,we mention that they play a central role in the construction of general-purpose pseu-dorandom generators (see Section 8.2), commitment schemes and zero-knowledgeproofs (see Sections 9.2.2 and C.4.3), and encryption schemes (see Appendix C.5).7.1.4 Re
ections on hardness ampli�cationLet us take notice that something truly amazing happens in Theorems 7.5 and 7.7.We are not talking merely of using an assumption to derive some conclusion; this iscommon practice in Mathematics and Science (and was indeed done several timesin previous chapters, starting with Theorem 2.28). The thing that is special aboutTheorems 7.5 and 7.7 (and we shall see more of this in Section 7.2 as well as inSections 8.2 and 8.3) is that a relatively mild intractability assumption is shown toimply a stronger intractability result.This strengthening of an intractability phenomenon (a.k.a hardness ampli�-cation) takes place while we admit that we do not understand the intractabilityphenomenon (because we do not understand the nature of e�cient computation).Nevertheless, hardness ampli�cation is enabled by the use of the counter-positive,which in this case is called a reducibility argument. At this point things look lessmiraculous: a reducibility argument calls for the design of a procedure (i.e., a re-duction) and a probabilistic analysis of its behavior. The design and analysis ofsuch procedures may not be easy, but it is certainly within the standard exper-tise of computer science. The fact that hardness ampli�cation is achieved via thiscounter-positive is best represented in the statement of Theorem 7.8.7Indeed, Theorem 7.7 is obtained as a special case by letting �(s) be uniformly distributed inf�1(s).8Further discussion of error-correcting codes and list-decoding is provided in Appendix E.1.



7.2. HARD PROBLEMS IN E 2817.2 Hard Problems in EAs in Section 7.1, we start with the assumption P 6= NP and seek to use it toour bene�t. Again, we shall actually use a seemingly stronger assumption; herethe strengthening is in requiring worst-case hardness with respect to non-uniformmodels of computation (rather than average-case hardness with respect to thestandard uniform model). Speci�cally, we shall assume that NP cannot be solvedby (non-uniform) families of polynomial-size circuits; that is, NP is not containedin P=poly (even not in�nitely often).Our goal is to transform this worst-case assumption into an average-case con-dition, which is useful for our applications. Since the transformation will not yielda problem in NP but rather one in E , we might as well take the seemingly weakerassumption by which E is not contained in P=poly (see Exercise 7.9). That is,our starting point is actually that there exists an exponential-time solvable decisionproblem such that any family of polynomial-size circuit fails to solve it correctly onall but �nitely many input lengths.9A di�erent perspective on our assumption is provided by the fact that E con-tains problems that cannot be solved in polynomial-time (cf.. Section 4.2.1). Thecurrent assumption goes beyond this fact by postulating the failure of non-uniformpolynomial-time machines rather than the failure of (uniform) polynomial-timemachines.Recall that our goal is to obtain a predicate (i.e., a decision problem) that iscomputable in exponential-time but is inapproximable by polynomial-size circuits.For sake of later developments, we formulate a general notion of inapproximability.De�nition 7.9 (inapproximability, a general formulation): We say that f : f0; 1g� !f0; 1g is (S; �)-inapproximable if for every family of S-size circuits fCngn2N and allsu�ciently large n it holds thatPr[Cn(Un) 6= f(Un)] � �(n)2 (7.7)We say that f is T -inapproximable if it is (T; 1� (1=T ))-inapproximable.We chose the speci�c form of Eq. (7.7) such that the \level of inapproximability"represented by the parameter � will range in (0; 1) and increase with the valueof �. Speci�cally, (almost-everywhere) worst-case hardness for circuits of size Sis represented by (S; �)-inapproximability with �(n) = 2�n+1 (i.e., in this casePr[C(Un) 6= f(Un)] � 2�n for every circuit Cn of size S(n)). On the other hand, nopredicate can be (S; �)-inapproximable for �(n) = 1� 2�n even with S(n) = O(n)(i.e., Pr[C(Un) = f(Un)] � 0:5 + 2�n�1 holds for some linear-size circuit; seeExercise 7.10).We note that Eq. (7.7) can be interpreted as an upper-bound on the correlationof each adequate circuit with f (i.e., Eq. (7.7) is equivalent to E[�(C(Un); f(Un))] �9Note that our starting point is actually stronger than assuming the existence of a function fin E n P=poly. Such an assumption would mean that any family of polynomial-size circuit failsto compute f correctly on in�nitely many input lengths, whereas our starting point postulatesfailures on all but �nitely many lengths.



282 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS1 � �(n), where �(�; �) = 1 if � = � and �(�; �) = �1 otherwise).10 Thus, T -inapproximability means that no family of size T circuits can correlate f betterthan 1=T .We note that the existence of a non-uniformly hard one-way function (as inDe�nition 7.3) implies the existence of an exponential-time computable predicatethat is T -inapproximable for every polynomial T . (For details see Exercise 7.24.)However, our goal in this section is to establish this conclusion under a seeminglyweaker assumption.On almost everywhere hardness. We highlight the fact that both our as-sumptions and conclusions refer to almost everywhere hardness. For example, ourstarting point is not merely that E is not contained in P=poly (or in other circuitsize classes to be discussed), but rather that this is the case almost everywhere.Note that by saying that f has circuit complexity exceeding S, we merely meanthat there are in�nitely many n's such that no circuit of size S(n) can compute fcorrectly on all inputs of length n. In contrast, by saying that f has circuit com-plexity exceeding S almost everywhere, we mean that for all but �nite many n's nocircuit of size S(n) can computes f correctly on all inputs of length n. (Indeed, it isnot known whether an \in�nitely often" type of hardness implies a corresponding\almost everywhere" hardness.)The class E. Recall that E denote the class of exponential-time solvable decisionproblems (equivalently, exponential-time computable Boolean predicates); that is,E = ["Dtime(t"), where t"(n) def= 2"n.The rest of this section. We start (in Section 7.2.1) with a treatment of as-sumptions and hardness ampli�cation regarding polynomial-size circuits, whichsu�ce for non-trivial derandomization of BPP. We then turn (in Section 7.2.2) toassumptions and hardness ampli�cation regarding exponential-size circuits, whichyield a \full" derandomization of BPP (i.e., BPP = P). In fact, both sectionscontain material that is applicable to various other circuit-size bounds, but themotivational focus is as stated.Teaching note: Section 7.2.2 is advanced material, which is best left for independentreading. Furthermore, for one of the central results (i.e., Lemma 7.23) only an outlineis provided and the interested reader is referred to the original paper [127].7.2.1 Ampli�cation wrt polynomial-size circuitsOur goal here is to prove the following result.Theorem 7.10 Suppose that for every polynomial p there exists a problem in Ehaving circuit complexity that is almost-everywhere greater than p. Then there existpolynomial-inapproximable Boolean functions in E; that is, for every polynomial pthere exists a p-inapproximable Boolean function in E.10Indeed, E[�(X;Y )] = Pr[X=Y ]� Pr[X 6=Y ] = 1� 2Pr[X 6=Y ].



7.2. HARD PROBLEMS IN E 283Theorem 7.10 is used towards deriving a meaningful derandomization of BPPunder the aforementioned assumption (see Part 2 of Theorem 8.19). We presenttwo proofs of Theorem 7.10. The �rst proof proceeds in two steps:1. Starting from the worst-case hypothesis, we �rst establish some mild level ofaverage-case hardness (i.e., a mild level of inapproximability). Speci�cally,we show that for every polynomial p there exists a problem in E that is(p; ")-inapproximable for "(n) = 1=n3.2. Using the foregoing mild level of inapproximability, we obtain the desiredstrong level of inapproximability (i.e., p0-inapproximability for every polyno-mial p0). Speci�cally, for every two polynomials p1 and p2, we prove that if thefunction f is (p1; 1=p2)-inapproximable, then the function F (x1; :::; xt(n)) =�t(n)i=1 f(xi), where t(n) = n�p2(n) and x1; :::; xt(n) 2 f0; 1gn, is p0-inapproximablefor p0(t(n) � n) = p1(n)
(1)=poly(t(n)). This claim is known as Yao's XORLemma and its proof is far more complex than the proof of its informationtheoretic analogue (discussed at the beginning of x7.2.1.2).The second proof of Theorem 7.10 consists of showing that the construction em-ployed in the �rst step, when composed with Theorem 7.8, actually yields thedesired end result. This proof will uncover a connection between hardness ampli�-cation and coding theory. Our presentation will thus proceed in three correspondingsteps (presented in x7.2.1.1-7.2.1.3, and schematically depicted in Figure 7.2).
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Figure 7.2: Proofs of hardness ampli�cation: organization7.2.1.1 From worst-case hardness to mild average-case hardnessThe transformation of worst-case hardness into average-case hardness (even in amild sense) is indeed remarkable. Note that worst-case hardness may be due toa relatively small number of instances, whereas even mild forms of average-casehardness refer to a very large number of possible instances.11 In other words, weshould transform hardness that may occur on a negligible fraction of the instances11Indeed, worst-case hardness with respect to polynomial-size circuits cannot be due to a poly-nomial number of instances, because a polynomial number of instances can be hard-wired into



284 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSinto hardness that occurs on a noticeable fraction of the instances. Intuitively, weshould \spread" the hardness of few instances (of the original problem) over all (ormost) instances (of the transformed problem). The counter-positive view is thatcomputing the value of typical instances of the transformed problem should enablesolving the original problem on every instance.The aforementioned transformation is based on the self-correction paradigm,to be reviewed �rst. The paradigm refers to functions g that can be evaluatedat any desired point by using the value of g at a few random points, where eachof these points is uniformly distributed in the function's domain (but indeed thepoints are not independently distributed). The key observation is that if g(x) canbe reconstructed based on the value of g at t such random points, then such areconstruction can tolerate a 1=3t fraction of errors (regarding the values of g).Thus, if we can correctly obtain the value of g on all but at most a 1=3t fractionof its domain, then we can probabilistically recover the correct value of g at anypoint with very high probability. It follows that if no probabilistic polynomial-timealgorithm can correctly compute g in the worst-case sense, then every probabilisticpolynomial-time algorithm must fail to correctly compute g on more than a 1=3tfraction of its domain.The archetypical example of a self-correctable function is any m-variate poly-nomial of individual degree d over a �nite �eld F such that jF j > dm + 1. Thevalue of such a polynomial at any desired point x can be recovered based on thevalues of dm + 1 points (other than x) that reside on a random line that passesthrough x. Note that each of these points is uniformly distributed in Fm, which isthe function's domain. (For details, see Exercise 7.11.)Recall that we are given an arbitrary function f 2 E that is hard to computein the worst-case. Needless to say, this function is not necessarily self-correctable(based on relatively few points), but it can be extended into such a function.Speci�cally, we extend f : [N ]! f0; 1g (viewed as f : [N1=m]m ! f0; 1g) to an m-variate polynomial of individual degree d over a �nite �eld F such that jF j > dm+1and (d + 1)m = N . Intuitively, in terms of worst-case complexity, the extendedfunction is at least as hard as f , which means that it is hard (in the worst-case).The point is that the extended function is self-correctable and thus its worst-casehardness implies that it must be at least mildly hard in the average-case. Detailsfollow.Construction 7.11 (multi-variate extension)12: For any function fn : f0; 1gn !f0; 1g, a �nite �eld F , a set H � F and an integer m such that jH jm = 2n andjF j > (jH j � 1)m + 1, we consider the function f̂n : Fm ! F de�ned as the m-variate polynomial of individual degree jH j�1 that extends fn : Hm ! f0; 1g. Thatsuch circuits. Still, for all we know, worst-case hardness may be due to a small super-polynomialnumber of instances (e.g., nlog2 n instances). In contrast, even mild forms of average-case hardnessmust be due to an exponential number of instances (i.e., 2n=poly(n) instances).12The algebraic fact underlying this construction is that for any function f : Hm ! F thereexists a unique m-variate polynomial f̂ : Fm ! F of individual degree jHj�1 such that for everyx 2 Hm it holds that f̂(x) = f(x). This polynomial is called a multi-variate polynomial extensionof f , and it can be found in poly(jHjm log jF j)-time. For details, see Exercise 7.12.



7.2. HARD PROBLEMS IN E 285is, we identify f0; 1gn with Hm, and de�ne f̂n as the unique m-variate polynomialof individual degree jH j � 1 that satis�es f̂n(x) = fn(x) for every x 2 Hm, wherewe view f0; 1g as a subset of F .Note that f̂n can be evaluated at any desired point, by evaluating fn on its entiredomain, and determining the unique m-variate polynomial of individual degreejH j�1 that agrees with fn onHm (see Exercise 7.12). Thus, for f : f0; 1g� ! f0; 1gin E , the corresponding f̂ (de�ned by separately extending the restriction of f toeach input length) is also in E . For the sake of preserving various complexitymeasures, we wish to have jFmj = poly(2n), which leads to setting m = n= log2 n(yielding jH j = n and jF j = poly(n)). In particular, in this case f̂n is de�ned overstrings of length O(n). The mild average-case hardness of f̂ follows by the forgoingdiscussion. In fact, we state and prove a more general result.Theorem 7.12 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S. Then, there exists anexponential-time computable function f̂ : f0; 1g� ! f0; 1g� such that jf̂(x)j � jxjand for every family of circuit fC 0n0gn02N of size S0(n0) = S(n0=O(1))=poly(n0) itholds that Pr[C 0n0(Un0) 6= f̂(Un0)] > (1=n0)2. Furthermore, f̂ does not depend on S.Theorem 7.12 seems to complete the �rst step of the proof of Theorem 7.10, ex-cept that we desire a Boolean function rather than a function that merely doesnot stretch its input. The extra step of obtaining a Boolean function that is(poly(n); n�3)-inapproximable is taken in Exercise 7.13.13 Essentially, if f̂ is hardto compute on a noticeable fraction of its inputs then the Boolean predicate thaton input (x; i) returns the ith bit of f̂(x) must be mildly inapproximable.Proof Sketch: Given f as in the hypothesis and for every n 2 N , we consider therestriction of f to f0; 1gn, denoted fn, and apply Construction 7.11 to it, whileusing m = n= logn, jH j = n and n2 < jF j = poly(n). Recall that the resultingfunction f̂n maps strings of length n0 = log2 jFmj = O(n) to strings of lengthlog2 jF j = O(log n). Following the foregoing discussion, we shall show that circuitsthat approximate f̂n too well yield circuits that compute fn correctly on each input.Using the hypothesis regarding the size of the latter, we shall derive a lower-boundon the size of the former. The actual (reducibility) argument proceeds as follows.We �x an arbitrary circuit C 0n0 that satis�esPr[C 0n0(Un0) = f̂n(Un0)] � 1� (1=n0)2 > 1� (1=3t); (7.8)where t def= (jH j � 1)m + 1 = o(n2) exceeds the total degree of f̂n. Using theself-correction feature of f̂n, we observe that by making t oracle calls to C 0n0 we canprobabilistically recover the value of (f̂n and thus of) fn on each input, with proba-bility at least 2=3. Using error-reduction and (non-uniform) derandomization as in13A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12actually establishes an error lower-bound of 
((log n0)=(n0)2) and that jf̂(x)j = O(log jxj).



286 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSthe proof of Theorem 6.3,14 we obtain a circuit of size n3 � jC 0n0 j that computes fn.By the hypothesis n3 � jC 0n0 j > S(n), and so jC 0n0 j > S(n0=O(1))=poly(n0). Recallingthat C 0n0 is an arbitrary circuit that satis�es Eq. (7.8), the theorem follows.Digest. The proof of Theorem 7.12 is actually a worst-case to average-case re-duction. That is, the proof consists of a self-correction procedure that allows forthe evaluation of f at any desired n-bit long point, using oracle calls to any circuitthat computes f̂ correctly on a 1� (1=n0)2 fraction of the n0-bit long inputs. Werecall that if f 2 E then f̂ 2 E , but we do not know how to preserve the complexityof f in case it is in NP . (Various indications to the di�culty of a worst-case toaverage-case reduction for NP are known; see, e.g., [42].)We mention that the ideas underlying the proof of Theorem 7.12 have beenapplied in a large variety of settings. For example, we shall see applications ofthe self-correction paradigm in x9.3.2.1 and in x9.3.2.2. Furthermore, in x9.3.2.2we shall re-encounter the very same multi-variate extension used in the proof ofTheorem 7.12.7.2.1.2 Yao's XOR LemmaHaving obtained a mildly inapproximable predicate, we wish to obtain a stronglyinapproximable one. The information theoretic context provides an appealing sug-gestion: Suppose that X is a Boolean random variable (representing the mildinapproximability of the aforementioned predicate) that equals 1 with probability". Then XORing the outcome of n=" independent samples of X yields a bit thatequals 1 with probability 0:5� exp(�
(n)). It is tempting to think that the sameshould happen in the computational setting. That is, if f is hard to approximatecorrectly with probability exceeding 1 � " then XORing the output of f on n="non-overlapping parts of the input should yield a predicate that is hard to approx-imate correctly with probability that is non-negligibly higher than 1=2. The latterassertion turns out to be correct, but (even more than in Section 7.1.2) the proofof the computational phenomenon is considerably more complex than the analysisof the information theoretic analogue.Theorem 7.13 (Yao's XOR Lemma): There exist a universal constant c > 0 suchthat the following holds. If, for some polynomials p1 and p2, the Boolean function fis (p1; 1=p2)-inapproximable, then the function F (x1; :::; xt(n)) = �t(n)i=1 f(xi), wheret(n) = n � p2(n) and x1; :::; xt(n) 2 f0; 1gn, is p0-inapproximable for p0(t(n) � n) =p1(n)c=t(n)1=c. Furthermore, the claim holds also if the polynomials p1 and p2 arereplaced by any integer functions.14First, we apply the foregoing probabilistic procedure O(n) times and take a majority vote.This yields a probabilistic procedure that, on input x 2 f0; 1gn, invokes C0n0 for o(n3) times andcomputes fn(x) correctly with probability greater than 1 � 2�n. Finally, we just �x a sequenceof random choices that is good for all 2n possible inputs, and obtain a circuit of size n3 � jC0n0 jthat computes fn correctly on every n-bit input.



7.2. HARD PROBLEMS IN E 287Combining Theorem 7.12 (and Exercise 7.13), and Theorem 7.13, we obtain a proofof Theorem 7.10. (Recall that an alternative proof is presented in x7.2.1.3.)We note that proving Theorem 7.13 seems more di�cult than proving Theo-rem 7.5 (i.e., the ampli�cation of one-way functions), due to two issues. Firstly,unlike in Theorem 7.5, the computational problems are not in PC and thus wecannot e�ciently recognize correct solutions to them. Secondly, unlike in Theo-rem 7.5, solutions to instances of the transformed problem do not correspond ofthe concatenation of solutions for the original instances, but are rather a functionof the latter that losses almost all the information about the latter. The proof ofTheorem 7.13 presented next deals with each of these two di�culties separately.Several di�erent proofs of Theorem 7.13 are known. As just stated, the proofthat we present is conceptually appealing because it deal separately with two unre-lated di�culties. Furthermore, this proof bene�ts most from the material alreadypresented in Section 7.1. The proof proceeds in two steps:1. First we prove that the corresponding \direct product" function P (x1; :::; xt(n)) =(f(x1); :::; f(xt(n))) is di�cult to compute in a strong average-case sense.2. Next we establish the desired result by an application of Theorem 7.8.Thus, given Theorem 7.8, our main focus is on the �rst step, which is of independentinterest (and is thus generalized from Boolean functions to arbitrary ones).Theorem 7.14 (The Direct Product Lemma): Let p1 and p2 be two polynomials,and suppose that f : f0; 1g� ! f0; 1g� is such that for every family of p1-sizecircuits, fCngn2N, and all su�ciently large n 2 N , it holds that Pr[Cn(Un) 6=f(Un)] > 1=p2(n). Let P (x1; :::; xt(n)) = (f(x1); :::; f(xt(n))), where x1; :::; xt(n) 2f0; 1gn and t(n) = n � p2(n). Then, for any "0 : N ! [0; 1], setting p0 such thatp0(t(n) � n) = p1(n)=poly(t(n)="0(t(n) � n)), it holds that every family of p0-sizecircuits, fC 0mgm2N, satis�es Pr[C 0m(Um) = P (Um)] < "0(m). Furthermore, theclaim holds also if the polynomials p1 and p2 are replaced by any integer functions.In particular, for an adequate constant c > 0, selecting "0(t(n) � n) = p1(n)�c, weobtain p0(t(n) � n) = p1(n)c=t(n)1=c, and so "0(m) � 1=p0(m).Deriving Theorem 7.13 from Theorem 7.14. Theorem 7.13 follows fromTheorem 7.14 by considering the function P 0(x1; :::; xt(n); r) = b(f(x1) � � � f(xt(n)); r),where f is a Boolean function, r 2 f0; 1gt(n), and b(y; r) is the inner-productmodulo 2 of the t(n)-bit long strings y and r. Note that, for the correspondingP , we have P 0(x1; :::; xt(n); r) � b(P (x1; :::; xt(n)); r), whereas F (x1; :::; xt(n)) =P 0(x1; :::; xt(n); 1t(n)). Intuitively, the inapproximability of P 0 should follow fromthe strong average-case hardness of P (via Theorem 7.8), whereas it should be pos-sible to reduce the approximation of P 0 to the approximation of F (and thus derivethe desired inapproximability of F ). Indeed, this intuition does not fail, but detail-ing the argument seems a bit cumbersome (and so we only provide the clues here).Assuming that f is (p1; 1=p2)-inapproximable, we �rst apply Theorem 7.14 (with"0(t(n) � n) = p1(n)�c) and then apply Theorem 7.8 (see Exercise 7.14), inferring



288 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSthat P 0 is p0-inapproximable for p0(t(n) � n) = p1(n)
(1)=poly(t(n)). The less obvi-ous part of the argument is reducing the approximation of P 0 to the approximationof F . The key observation is thatP 0(x1; :::; xt(n); r) = F (z1; :::; zt(n))� Mi:ri=0 f(zi) (7.9)where zi = xi if ri = 1 and is an arbitrary n-bit long string otherwise. Now, ifsomebody provides us with samples of the distribution (Un; f(Un)), then we canuse these samples in the role of the pairs (zi; f(zi)) for the indices i that satisfyri = 0. Considering a best choice of such samples (i.e., one for which we obtain thebest approximation of P 0), we obtain a circuit that approximates P 0 (by using acircuit that approximates F and the said choices of samples). (The details are leftfor Exercise 7.17.) Theorem 7.13 follows.Proving Theorem 7.14. Note that Theorem 7.14 is closely related to Theo-rem 7.5; see Exercise 7.20 for details. This suggests employing an analogous proofstrategy; that is, converting circuits that violate the theorem's conclusion into cir-cuits that violate the theorem's hypothesis. We note, however, that things weremuch simpler in the context of Theorem 7.5: there we could (e�ciently) checkwhether or not a value contained in the output of the circuit that solves the direct-product problem constitutes a correct answer for the corresponding instance of thebasic problem. Lacking such an ability in the current context, we shall have touse such values more carefully. Loosely speaking, we shall take a weighted ma-jority vote among various answers, where the weights re
ect our con�dence in thecorrectness of the various answers.We establish Theorem 7.14 by applying the following lemma that provides quan-titative bounds on the feasibility of computing the direct product of two functions.In this lemma, fYmgm2N and fZmgm2N are independent probability ensembles suchthat Ym; Zm 2 f0; 1gm, and Xn = (Y`(n); Zn�`(n)) for some function ` : N ! N .The lemma refers to the success probability of computing the direct product func-tion F : f0; 1g�! f0; 1g� de�ned by F (yz) = (F1(y); F2(z)), where jyj = `(jyzj),when given bounds on the success probability of computing F1 and F2 (separately).Needless to say, these probability bounds refer to circuits of certain sizes. We stressthat the lemma is not symmetric with respect to the two functions: it guarantees astronger (and in fact lossless) preservation of circuit sizes for one of the functions(which is arbitrarily chosen to be F1).Lemma 7.15 (Direct Product, a quantitative two argument version): For fYmg,fZmg, F1, F2, `, fXng and F as in the foregoing, let �1(�) be an upper-bound onthe success probability of s1(�)-size circuits in computing F1 over fYmg. That is,for every such circuit family fCmgPr[Cm(Ym)=F1(Ym)] � �1(m):Likewise, suppose that �2(�) is an upper-bound on the probability that s2(�)-sizecircuits compute F2 over fZmg. Then, for every function " :N!R , the function



7.2. HARD PROBLEMS IN E 289� de�ned as �(n) def= �1(`(n)) � �2(n� `(n)) + "(n)is an upper-bound on the probability that families of s(�)-size circuits correctly com-pute F over fXng, wheres(n) def= min�s1(`(n)) ; s2(n� `(n))poly(n="(n))�:Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, whichcapitalizes on the highly quantitative form of Lemma 7.15 and in particular on thefact that no loss is incurred for one of the two functions that are used. We �rstdetail this argument, and next establish Lemma 7.15 itself.Deriving Theorem 7.14 from Lemma 7.15. We write P (x1; x2; :::; xt(n)) asP (t(n))(x1; x2; :::; xt(n)), where P (i)(x1; :::; xi) = (f(x1); :::; f(xi)) and P (i)(x1; :::; xi) �(P (i�1)(x1; :::; xi�1); f(xi)). For any function ", we shall prove by induction on ithat circuits of size s(n) = p1(n)=poly(t(n)="(n)) cannot compute P (i)(Ui�n) withsuccess probability greater than (1�(1=p2(n))i+(i�1) �"(n), where p1 and p2 are asin Theorem 7.14. Thus, no s(n)-size circuit can compute P (t(n))(Ut(n)�n) with suc-cess probability greater than (1�(1=p2(n))t(n)+(t(n)�1)�"(n) = exp(�n)+(t(n)�1) � "(n). Recalling that this is established for any function ", Theorem 7.14 follows(by using "(n) = "0(t(n) �n)=t(n), and observing that the setting s(n) = p0(t(n) �n)satis�es s(n) = p1(n)=poly(t(n)="(n))).Turning to the induction itself, we �rst note that its basis (i.e., i = 1) isguaranteed by the theorem's hypothesis (i.e., the hypothesis of Theorem 7.14regarding f). The induction step (i.e., from i to i + 1) will be proved by us-ing Lemma 7.15 with F1 = P (i) and F2 = f , along with the parameter setting�(i)1 (i �n) = (1� (1=p2(n))i+(i� 1) � "(n), s(i)1 (i �n) = s(n), �(i)2 (n) = 1� (1=p2(n))and s(i)2 (n) = poly(n="(n)) � s(n) = p1(n). Details follow.Note that the induction hypothesis (regarding P (i)) implies that F1 satis�es thehypothesis of Lemma 7.15 (w.r.t size s(i)1 and success rate �(i)1 ), whereas the theo-rem's hypothesis regarding f implies that F2 satis�es the hypothesis of Lemma 7.15(w.r.t size s(i)2 and success rate �(i)2 ). Thus, F = P (i+1) satis�es the lemma's conclu-sion with respect to circuits of size min(s(i)1 (i �n); s(i)2 (n)=poly(n="(n))) = s(n) andsuccess rate �(i)1 (i �n) ��(i)2 (n)+"(n) which is upper-bounded by (1� (1=p2(n))i+1+i � "(n). This completes the induction step.We stress the fact that we used induction for a non-constant number of steps,and that this was enabled by the highly quantitative form of the inductive claim andthe small loss incurred by the inductive step. Speci�cally, the size bound did notdecrease during the induction (although we could a�ord a small additive loss in eachstep, but not a constant factor loss). Likewise, the success rate su�ered an additiveincrease of "(n) in each step, which was accommodated by the inductive claim.Thus, assuming the correctness of Lemma 7.15, we have established Theorem 7.14.



290 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSProof of Lemma 7.15: Proceeding (as usual) by the contrapositive, we considera family of s(�)-size circuits fCngn2N that violates the lemma's conclusion; that is,Pr[Cn(Xn) = F (Xn)] > �(n). We will show how to use such circuits in order toobtain either circuits that violate the lemma's hypothesis regarding F1 or circuitsthat violate the lemma's hypothesis regarding F2. Towards this end, it is instructiveto write the success probability of Cn in a conditional form, while denoting the ithoutput of Cn(x) by Cn(x)i (i.e., Cn(x) = (Cn(x)1; Cn(x)2)):Pr[Cn(Y`(n); Zn�`(n))=F (Y`(n); Zn�`(n))]= Pr[Cn(Y`(n); Zn�`(n))1=F1(Y`(n))]� Pr[Cn(Y`(n); Zn�`(n))2=F2(Zn�`(n)) jCn(Y`(n); Zn�`(n))1=F1(Y`(n))]:The basic idea is that if the �rst factor is greater than �1(`(n)) then we imme-diately derive a circuit (i.e., C 0n(y) = Cn(y; Zn�`(n))1) contradicting the lemma'shypothesis regarding F1, whereas if the second factor is signi�cantly greater than�2(n � `(n)) then we can obtain a circuit contradicting the lemma's hypothesisregarding F2. The treatment of the latter case is indeed not obvious. The ideais that a su�ciently large sample of (Y`(n); F1(Y`(n))), which may be hard-wiredinto the circuit, allows using the conditional probability space (in such a circuit)towards an attempt to approximate F2. That is, on input z, we select uniformly astring y satisfying Cn(y; z)1 = F1(y) (from the aforementioned sample), and out-put Cn(y; z)2. For a �xed z, sampling of the conditional space (i.e., y's satisfyingCn(y; z)1 = F1(y)) is possible provided that Pr[Cn(Y`(n); z)1=F1(Y`(n))] holds withnoticeable probability. The last caveat motivates a separate treatment of z's havinga noticeable value of Pr[Cn(Y`(n); z)1=F1(Y`(n))] and of the rest of z's (which areessentially ignored). Details follow.Let us �rst simplify the notations by �xing a generic n and using the abbre-viations C = Cn, " = "(n), ` = `(n), Y = Y`, and Z = Yn�`. We call z goodif Pr[C(Y; z)1 = F1(Y )] � "=2 and let G be the set of good z's. Next, ratherthan considering the event C(Y; Z) = F (Y; Z), we consider the combined eventC(Y; Z)=F (Y; Z) ^ Z2G, which occurs with almost the same probability (up toan additive error term of "=2). This is the case because, for any z 62 G, it holdsthat Pr[C(Y; z)=F (Y; z)] � Pr[C(Y; z)1=F1(Y )] < "=2and thus z's that are not good do not contribute much to Pr[C(Y; Z) =F (Y; Z)];that is, Pr[C(Y; Z)=F (Y; Z) ^ Z2G] is lower-bounded by Pr[C(Y; Z)=F (Y; Z)] �"=2. Using Pr[C(Y; z)=F (Y; z)] > �(n) = �1(`) � �2(n� `) + ", we havePr[C(Y; Z)=F (Y; Z) ^ Z2G] > �1(`) � �2(n� `) + "2 : (7.10)We proceed according to the forgoing outline, �rst showing that if Pr[C(Y; Z)1 =F1(Y )] > �1(`) then we immediately derive circuits violating the hypothesis con-cerning F1. Actually, we prove something stronger (which we will actually need forthe other case).Claim 7.15.1: For every z, it holds that Pr[C(Y; z)1=F1(Y )] � �1(`).



7.2. HARD PROBLEMS IN E 291Proof: Otherwise, using any z 2 f0; 1gn�` that satis�es Pr[C(Y; z)1 = F1(Y )] >�1(`), we obtain a circuit C 0(y) def= C(y; z)1 that contradicts the lemma's hypothesisconcerning F1. 2Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma'shypothesis concerning F2, and doing so we complete the proof of the lemma.Claim 7.15.2: There exists a circuit C 00 of size s2(n� `) such thatPr[C 00(Z)=F2(Z)] � Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2> �2(n� `)Proof: The second inequality is due to Eq. (7.10), and thus we focus on establish-ing the �rst inequality. We construct the circuit C 00 as suggested in the foregoingoutline. Speci�cally, we take a poly(n=")-large sample, denoted S, from the distri-bution (Y; F1(Y )) and let C 00(z) def= C(y; z)2, where (y; v) is a uniformly selectedamong the elements of S for which C(y; z)1 = v holds. Details follow.Let m be a su�ciently large number that is upper-bounded by a polynomialin n=", and consider a random sequence of m pairs, generated by taking m in-dependent samples from the distribution (Y; F1(Y )). We stress that we do notassume here that such a sample, denoted S, can be produced by an e�cient (uni-form) algorithm (but, jumping ahead, we remark that such a sequence can be�xed non-uniformly). For each z 2 G � f0; 1gn�`, we denote by Sz the set ofpairs (y; v) 2 S for which C(y; z)1 = v. Note that Sz is a random sample of theresidual probability space de�ned by (Y; F1(Y )) conditioned on C(Y; z)1 = F1(Y ).Also, with overwhelmingly high probability, jSzj = 
(n="2), because z 2 G im-plies Pr[C(Y; z)1=F1(Y )] � "=2 and m = 
(n="3).15 Thus, for each z 2 G, withoverwhelming probability (taken over the choices of S), the sample Sz providesa good approximation to the conditional probability space.16 In particular, withprobability greater than 1� 2�n, it holds thatjf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSz j � Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y )]� "2 :(7.11)Thus, with positive probability, Eq. (7.11) holds for all z 2 G � f0; 1gn�`. Thecircuit C 00 computing F2 is now de�ned as follows. The circuit will contain a setS = f(yi; vi) : i = 1; :::;mg (i.e., S is \hard-wired" into the circuit C 00) such thatthe following two conditions hold:1. For every i 2 [m] it holds that vi = F1(yi).2. For each good z the set Sz = f(y; v)2S : C(y; z)1=vg satis�es Eq. (7.11).(In particular, Sz is not empty for any good z.)15Note that the expected size of Sz is m � "=2 = 
(n="2). Using Cherno� Bound, we getPrS [jSzj < m"=4] = exp(�
(n="2)) < 2�n.16For Tz = fy : C(y; z)1 = F1(y)g, we are interested in a sample S0 of Tz such thatjfy 2 S0 : C(y; z)2=F2(z)gj=jS0j approximates Pr[C(Y; z)2 = F2(z) jY 2 Tz] up-to an additiveterm of "=2. Using Cherno� Bound again, we note that a random S0 � Tz of size 
(n="2)provides such an approximation with probability greater than 1� 2�n.



292 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSOn input z, the circuit C 00 �rst determines the set Sz, by running C form times andchecking, for each i = 1; :::;m, whether or not C(yi; z) = vi. In case Sz is empty,the circuit returns an arbitrary value. Otherwise, the circuit selects uniformly apair (y; v) 2 Sz and outputs C(y; z)2. (The latter random choice can be eliminatedby an averaging argument; see Exercise 7.16.) Using the de�nition of C 00 andEq. (7.11), we have:Pr[C 00(Z)=F2(Z)] � Xz2GPr[Z=z] � Pr[C 00(z)=F2(z)]= Xz2GPr[Z=z] � jf(y; v) 2 Sz : C(y; z)2=F2(z)gjjSzj� Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) jC(Y; z)1=F1(Y )] � "2�= Xz2GPr[Z=z] � �Pr[C(Y; z)2=F2(z) ^ C(Y; z)1=F1(Y )]Pr[C(Y; z)1=F1(Y )] � "2�Next, using Claim 7.15.1, we have:Pr[C 00(Z)=F2(Z)] �  Xz2GPr[Z=z] � Pr[C(Y; z)=F (Y; z)]�1(`) ! � "2= Pr[C(Y; Z)=F (Y; Z) ^ Z2G]�1(`) � "2Finally, using Eq. (7.10), the claim follows. 2This completes the proof of the lemma.Comments. Firstly, we wish to call attention to the care with which an inductiveargument needs to be carried out in the computational setting, especially when anon-constant number of inductive steps is concerned. Indeed, our inductive proofof Theorem 7.14 involves invoking a quantitative lemma (i.e., Lemma 7.15) thatallows to keep track of the relevant quantities (e.g., success probability and circuitsize) throughout the induction process. Secondly, we mention that Lemma 7.15(as well as Theorem 7.14) has a uniform complexity version that assumes that onecan e�ciently sample the distribution (Y`(n); F1(Y`(n))) (resp., (Un; f(Un))). Fordetails see [101]. Indeed, a good lesson from the proof of Lemma 7.15 is that non-uniform circuits can \e�ectively sample" any distribution. Lastly, we mention thatTheorem 7.5 (the ampli�cation of one-way functions) and Theorem 7.13 (Yao'sXOR Lemma) also have (tight) quantitative versions (see, e.g., [90, Sec. 2.3.2] and[101, Sec. 3], respectively).7.2.1.3 List decoding and hardness ampli�cationRecall that Theorem 7.10 was proved in x7.2.1.1-7.2.1.2, by �rst constructing amildly inapproximable predicate via Construction 7.11, and then amplifying its



7.2. HARD PROBLEMS IN E 293hardness via Yao's XOR Lemma. In this subsection we show that the construc-tion used in the �rst step (i.e., Construction 7.11) actually yields a strongly in-approximable predicate. Thus, we provide an alternative proof of Theorem 7.10.Speci�cally, we show that a strongly inapproximable predicate (as asserted in The-orem 7.10) can be obtained by combining Construction 7.11 (with a suitable choiceof parameters) and the inner-product construction (of Theorem 7.8). The mainingredient of this argument is captured by the following result.Proposition 7.16 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1] sat-isfying "(n) > 2�n. Let fn be the restriction of f to f0; 1gn, and let f̂n be the func-tion obtained from fn when applying Construction 7.1117 with jH j = n="(n) andjF j = jH j3. Then, the function f̂ : f0; 1g� ! f0; 1g�, de�ned by f̂(x) = f̂jxj=3(x),is computable in exponential-time and for every family of circuit fC 0n0gn02N of sizeS0(n0) = poly("(n0=3)=n0) � S(n0=3) it holds that Pr[C 0n0(Un0) = f̂(Un0)] < "0(n0) def="(n0=3).Before turning to the proof of Proposition 7.16, let us describe how it yields analternative proof of Theorem 7.10. Firstly, for some 
 > 0, Proposition 7.16 yieldsan exponential-time computable function f̂ such that jf̂(x)j � jxj and for ev-ery family of circuit fC 0n0gn02N of size S0(n0) = S(n0=3)
=poly(n0) it holds thatPr[C 0n0(Un0) = f̂(Un0)] < 1=S0(n0). Combining this with Theorem 7.8 (cf. Ex-ercise 7.14), we infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, is S00-inapproximable for S00(n00) = S0(n00=2)
(1)=poly(n00). In particular, for every poly-nomial p, we obtain a p-inapproximable predicate in E by applying the foregoingwith S(n) = poly(n; p(n)). Thus, Theorem 7.10 follows.Teaching note: The following material is very advanced and is best left for indepen-dent reading. Furthermore, its understanding requires being comfortable with basicnotions of error-correcting codes (as presented in Appendix E.1).Proposition 7.16 is proven by observing that the transformation of fn to f̂nconstitutes a \good" code (see xE.1.1.4) and that any such code provides a worst-case to (strongly) average-case reduction. We start by de�ning the class of codesthat su�ces for the latter reduction, while noting that the code underlying themapping fn 7! f̂n is actually stronger than needed.De�nition 7.17 (e�cient codes supporting implicit decoding): For �xed functionsq; ` : N ! N and � : N ! [0; 1], the mapping � : f0; 1g� ! f0; 1g� is said tobe e�cient and supports implicit decoding with parameters q; `; � if it satis�es thefollowing two conditions:17Recall that in Construction 7.11 we have jHjm = 2n, which may yield a non-integer m if weinsist on jHj = n="(n). This problem was avoided in the proof of Theorem 7.12 (where jHj = nwas used), but is more acute in the current context because of " (e.g., we may have "(n) = 2�2n=7).Thus, we should either relax the requirement jHjm = 2n (e.g., allow 2n � jHjm < 22n) or relaxthe requirement jHj = n="(n). However, for the sake of simplicity, we ignore this issue in thepresentation.



294 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS1. Encoding (or e�ciency): The mapping � is polynomial-time computable.It is instructive to view � as mapping N-bit long strings to sequences oflength `(N) over [q(N)], and to view each (codeword) �(x) 2 [q(jxj)]`(jxj) asa mapping from [`(jxj)] to [q(jxj)].2. Decoding (in implicit form): There exists a polynomial p such that the fol-lowing holds. For every w : [`(N)]! [q(N)] and every x2 f0; 1gN such that�(x) is (1��(N))-close to w, there exists an oracle-aided18 circuit C of sizep((logN)=�(N)) such that, for every i 2 [N ], it holds that Cw(i) equals theith bit of x.The encoding condition implies that ` is polynomially bounded. The decodingcondition refers to any �-codeword that agrees with the oracle w : [`(N)]! [q(N)]on an �(N) fraction of the `(N) coordinates, where �(N) may be very small.We highlight the non-triviality of the decoding condition: There are N bits ofinformation in x, while the size of the circuit C is only p((logN)=�(N)) and yet Cshould be able to recover any desired entry of x by making queries to w, which maybe a highly corrupted version of �(x). Needless to say, the number of queries madeby C is upper-bounded by its size (i.e.,p((logN)=�(N))). On the other hand, thedecoding condition does not refer to the complexity of obtaining the aforementionedoracle-aided circuits.Let us relate the transformation of fn to f̂n, which underlies Proposition 7.16,to De�nition 7.17. We view fn as a binary string of length N = 2n (representingthe truth-table of fn : Hm ! f0; 1g) and analogously view f̂n : Fm ! F as anelement of F jF jm = FN3 (or as a mapping from [N3] to [jF j]).19 Recall that thetransformation of fn to f̂n is e�cient. We mention that this transformation alsosupports implicit decoding with parameters q; `; � such that `(N) = N3, �(N) ="(n), and q(N) = (n="(n))3, where N = 2n. The latter fact is highly non-trivial,but establishing it is beyond the scope of the current text (and the interested readeris referred to [217]).We mention that the transformation of fn to f̂n enjoys additional features,which are not required in De�nition 7.17 and will not be used in the current context.For example, there are at most O(1=�(2n)2) codewords (i.e., f̂n's) that are (1 ��(2n))-close to any �xed w : [`(2n)]! [q(2n)], and the corresponding oracle-aidedcircuits can be constructed in probabilistic p(n=�(2n))-time.20 These results are18Oracle-aided circuits are de�ned analogously to oracle Turing machines. Alternatively, wemay consider here oracle machines that take advice such that both the advice length and themachine's running time are upper-bounded by p((logN)=�(N)). The relevant oracles may beviewed either as blocks of binary strings that encode sequences over [q(N)] or as sequences over[q(N)]. Indeed, in the latter case we consider non-binary oracles, which return elements in [q(N)].19Recall that N = 2n = jHjm and jF j = jHj3. Hence, jF jm = N3.20The construction may yield also oracle-aided circuits that compute the decoding of codewordsthat are almost (1 � �(2n))-close to w. That is, there exists a probabilistic p(n=�(2n))-timealgorithm that outputs a list of circuits that, with high probability, contains an oracle-aidedcircuit for the decoding of each codeword that is (1� �(2n))-close to w. Furthermore, with highprobability, the list contains only circuits that decode codewords that are (1 � �(2n)=2)-close tow.



7.2. HARD PROBLEMS IN E 295termed \list decoding with implicit representations" (and we refer the interestedreader again to [217]).Our focus is on showing that e�cient codes that supports implicit decodingsu�ce for worst-case to (strongly) average-case reductions. We state and prove ageneral result, noting that in the special case of Proposition 7.16 gn = f̂n (and`(2n) = 23n).Theorem 7.18 Suppose that there exists a Boolean function f in E having cir-cuit complexity that is almost-everywhere greater than S, and let " : N ! [0; 1].Consider a polynomial ` : N ! N such that n 7! log2 `(2n) is a 1-1 map of theintegers, and let m(n) = log2 `(2n); e.g., if `(N) = N3 then m(n) = 3n. Supposethat the mapping � : f0; 1g� ! f0; 1g� is e�cient and supports implicit decodingwith parameters q; `; � such that �(N) = "(blog2Nc). De�ne gn : [`(2n)]! [q(2n)]such that gn(i) equals the ith element of �(hfni) 2 [q(2n)]`(2n), where hfni denotesthe 2n-bit long description of the truth-table of fn. Then, the function g : f0; 1g� !f0; 1g�, de�ned by g(z) = gm�1(jzj)(z), is computable in exponential-time and forevery family of circuit fC 0n0gn02N of size S0(n0) = poly("(m�1(n0))=n0) �S(m�1(n0))it holds that Pr[C 0n0(Un0) = g(Un0)] < "0(n0) def= "(m�1(n0)).Proof Sketch: First note that we can generate the truth-table of fn in exponential-time, and by the encoding condition of � it follows that gn can be evaluated inexponential-time. The average-case hardness of g is established via a reducibil-ity argument as follows. We consider a circuit C 0 = C 0n0 of size S0 such thatPr[C 0n0(Un0) = g(Un0)] < "0(n0), let n = m�1(n0), and recall that "0(n0) = "(n) =�(2n). Then, C 0 : f0; 1gn0 ! f0; 1g (viewed as a function) is (1 � �(2n))-close tothe function gn, which in turn equals �(hfni). The decoding condition of � assertsthat we can recover each bit of hfni (i.e., evaluate fn) by an oracle-aided circuitD of size p(n=�(2n)) that uses (the function) C 0 as an oracle. Combining (thecircuit C 0) with the oracle-aided circuit D, we obtain a (standard) circuit of sizep(n=�(2n)) � S0(n0) < S(n) that computes fn. The theorem follows (i.e., the viola-tion of the conclusion regarding g implies the violation of the hypothesis regardingf).Advanced comment. For simplicity, we formulated De�nition 7.17 in a crudemanner that su�ces for the proving Proposition 7.16, where q(N) = ((log2N)=�(N))3.The issue is the existence of codes that satisfy De�nition 7.17: In general, suchcodes may exist only when using a more careful formulation of the decoding condi-tion that refers to codewords that are (1� ((1=q(N)) + �(N)))-close to the oraclew : [`(N)]! [q(N)] rather than being (1� �(N))-close to it.21 Needless to say, thedi�erence is insigni�cant in the case that �(N)� 1=q(N) (as in Proposition 7.16),21Note that this is the \right" formulation, because in the case that �(N) < 1=q(N) it seemsimpossible to satisfy the decoding condition (as stated in De�nition 7.17). Speci�cally, a random`(N)-sequence over [q(N)] is expected to be (1 � (1=q(N)))-close to any �xed codeword, andwith overwhelmingly high probability it will be (1 � ((1 � o(1))=q(N)))-close to almost all thecodewords, provided `(N) � q(N)2. But in case N > poly(q(N)), we cannot hope to recoveralmost all N-bit long strings based on poly(q(N) logN) bits of advice (per each of them).



296 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSbut it is signi�cant in case we care about binary codes (i.e., q(N) = 2, or codesover other small alphabets). We mention that Theorem 7.18 can be adapted tothis context (of q(N) = 2), and directly yields strongly inapproximable predicates.For details, see Exercise 7.21.7.2.2 Ampli�cation wrt exponential-size circuitsFor the purpose of stronger derandomization of BPP, we start with a stronger as-sumption regarding the worst-case circuit complexity of E and turn it to a strongerinapproximability result.Theorem 7.19 Suppose that there exists a Boolean function f in E having almost-everywhere exponential circuit complexity; that is, there exists a constant b > 0 suchthat, for all but �nitely many n's, any circuit that correctly computes f on f0; 1gnhas size at least 2b�n. Then, for some constant c > 0 and T (n) def= 2c�n, there existsa T -inapproximable Boolean function in E.Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP =P) under the aforementioned assumption (see Part 1 of Theorem 8.19).Theorem 7.19 follows as a special case of Proposition 7.16 (combined with The-orem 7.8; see Exercise 7.22). An alternative proof, which uses di�erent ideas thatare of independent interest, will be brie
y reviewed next. The starting point of thelatter proof is a mildly inapproximable predicate, as provided by Theorem 7.12.However, here we cannot a�ord to apply Yao's XOR Lemma (i.e., Theorem 7.13),because the latter relates the size of circuits that strongly fail to approximate apredicate de�ned over poly(n)-bit long strings to the size of circuits that fail tomildly approximate a predicate de�ned over n-bit long strings. That is, Yao'sXOR Lemma asserts that if f : f0; 1gn ! f0; 1g is mildly inapproximable bySf -size circuits then F : f0; 1gpoly(n) ! f0; 1g is strongly inapproximable by SF -size circuits, where SF (poly(n)) is polynomially related to Sf (n). In particular,SF (poly(n)) < Sf (n) seems inherent in this reasoning. For the case of polynomiallower-bounds, this is good enough (i.e., if Sf can be an arbitrarily large polynomialthen so can SF ), but for Sf (n) = exp(
(n)) we cannot obtain SF (m) = exp(
(m))(but rather only obtain SF (m) = exp(m
(1))).The source of trouble is that ampli�cation of inapproximability was achievedby taking a polynomial number of independent instances. Indeed, we cannot hopeto amplify hardness without applying f on many instances, but these instancesneed not be independent. Thus, the idea is to de�ne F (r) = �poly(n)i=1 f(xi), wherex1; :::; xpoly(n) 2 f0; 1gn are generated from r and still jrj = O(n). That is, weseek a \derandomized" version of Yao's XOR Lemma. In other words, we seek a\pseudorandom generator" of a type appropriate for expanding r to dependent xi'ssuch that the XOR of the f(xi)'s is as inapproximable as it would have been forindependent xi's.2222Indeed, this falls within the general paradigm discussed in Section 8.1. Furthermore, this sug-gestion provides another perspective on the connection between randomness and computationaldi�culty, which is the focus of much discussion in Chapter 8 (see, e.g., x8.2.7.2).



7.2. HARD PROBLEMS IN E 297Teaching note: In continuation to Footnote 22, we note that there is a strong con-nection between the rest of this section and Chapter 8. On top of the aforementionedconceptual aspect, we will use technical tools from Chapter 8 towards establishing thederandomized version of the XOR Lemma. These tools include pairwise independencegenerators (see Section 8.5.1), random walks on expanders (see Section 8.5.3), and theNisan-Wigderson Construction (Construction 8.17). Indeed, recall that Section 7.2.2 isadvanced material, which is best left for independent reading.The pivot of the proof is the notion of a hard region of a Boolean function.Loosely speaking, S is a hard region of a Boolean function f if f is strongly inap-proximable on a random input in S; that is, for every (relatively) small circuit Cn,it holds that Pr[Cn(Un) = f(Un)jUn 2 S] � 1=2. By de�nition, f0; 1g� is a hardregion of any strongly inapproximable predicate. As we shall see, any mildly inap-proximable predicate has a hard region of density related to its inapproximabilityparameter. Loosely speaking, hardness ampli�cation will proceed via methods forgenerating related instances that hit the hard region with su�ciently high proba-bility. But, �rst let us study the notion of a hard region.7.2.2.1 Hard regionsWe actually generalize the notion of hard regions to arbitrary distributions. Theimportant special case of uniform distributions (on n-bit long strings) is obtainedfrom De�nition 7.20 by letting Xn equal Un (i.e., the uniform distribution overf0; 1gn). In general, we only assume that Xn 2 f0; 1gn.De�nition 7.20 (hard region relative to arbitrary distribution): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXngn2N be a probability ensemble, s :N !N and" :N! [0; 1].� We say that a set S is a hard region of f relative to fXngn2N with respectto s(�)-size circuits and advantage "(�) if for every n and every circuit Cn ofsize at most s(n), it holds thatPr[Cn(Xn)=f(Xn)jXn2S] � 12 + "(n):� We say that f has a hard region of density �(�) relative to fXngn2N (withrespect to s(�)-size circuits and advantage "(�)) if there exists a set S thatis a hard region of f relative to fXngn2N (with respect to the foregoingparameters) such that Pr[Xn2Sn] � �(n).Note that a Boolean function f is (s; 1� 2")-inapproximable if and only if f0; 1g�is a hard region of f relative to fUngn2N with respect to s(�)-size circuits andadvantage "(�). Thus, strongly inapproximable predicates (e.g., S-inapproximablepredicates for super-polynomial S) have a hard region of density 1 (with respect toa negligible advantage).23 But this trivial observation does not provide hard regions23Likewise, mildly inapproximable predicates have a hard region of density 1 with respect toan advantage that is noticeably smaller than 1=2.



298 CHAPTER 7. THE BRIGHT SIDE OF HARDNESS(with respect to a small (i.e., close to zero) advantage) for mildly inapproximablepredicates. Providing such hard regions is the contents of the following theorem.Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f :f0; 1g�!f0; 1g be a Boolean predicate, fXngn2N be a probability ensemble, s :N! N , and� : N ! [0; 1] such that �(n) > 1=poly(n). Suppose that, for every circuit Cn ofsize at most s(n), it holds that Pr[Cn(Xn) = f(Xn)] � 1 � �(n). Then, for every" :N! [0; 1], the function f has a hard region of density �0(�) relative to fXngn2Nwith respect to s0(�)-size circuits and advantage "(�), where �0(n) def= (1�o(1)) ��(n)and s0(n) def= s(n)=poly(n="(n)).In particular, if f is (s; 2�)-inapproximable then f has a hard region of density�0(�) � �(�) relative to the uniform distribution (with respect to s0(�)-size circuitsand advantage "(�)).Proof Sketch:24 The proof proceeds by �rst establishing that fXng is \related" to(or rather \dominates") an ensemble fYng such that f is strongly inapproximableon fYng, and next showing that this implies the claimed hard region. Indeed, thisnotion of \related ensembles" plays a central role in the proof.For � :N! [0; 1], we say that fXng �-dominates fYng if for every x it holds thatPr[Xn= x] � �(n) � Pr[Yn = x]. In this case we also say that fYng is �-dominatedby fXng. We say that fYng is critically �-dominated by fXng if for every x eitherPr[Yn=x] = (1=�(n)) � Pr[Xn=x] or Pr[Yn=x] = 0.25The notions of domination and critical domination play a central role in theproof, which consists of two parts. In the �rst part (Claim 7.21.1), we provethat, for fXng and � as in the theorem's hypothesis, there exists a ensemble fYngthat is �-dominated by fXng such that f is strongly inapproximable on fYng. Inthe second part (Claim 7.21.2), we prove that the existence of such a dominatedensemble implies the existence of an ensemble fZng that is critically �0-dominatedby fXng such that f is strongly inapproximable on fZng. Finally, we note thatsuch a critically dominated ensemble yields a hard region of f relative to fXng,and the theorem follows.Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists aprobability ensemble fYng that is �-dominated by fXng such that, for every s0(n)-size circuit Cn, it holds thatPr[Cn(Yn)=f(Yn)] � 12 + "(n)2 : (7.12)Proof: We start by assuming, towards the contradiction, that for every distri-bution Yn that is �-dominated by Xn there exists a s0(n)-size circuits Cn suchthat Pr[Cn(Yn) = f(Yn)] > 0:5 + "0(n), where "0(n) = "(n)=2. One key observa-tion is that there is a correspondence between the set of all distributions that are24See details in [101, Apdx. A].25Actually, we should allow one point of exception; that is, relax the requirement by sayingthat for at most one string x 2 f0; 1gn it holds that 0 < Pr[Yn=x] < Pr[Xn=x]=�(n). This pointhas little e�ect on the proof, and is ignored in our presentation.



7.2. HARD PROBLEMS IN E 299each �-dominated by Xn and the set of all the convex combinations of critically �-dominated (by Xn) distributions; that is, each �-dominated distribution is a convexcombinations of critically �-dominated distributions and vice versa (cf., a specialcase in xD.4.1.1). Thus, considering an enumeration Y (1)n ; :::; Y (t)n of the critically�-dominated (by Xn) distributions, we conclude that for every distribution � on[t] there exists a s0(n)-size circuits Cn such thattXi=1 �(i) � Pr[Cn(Y (i)n ) = f(Y (i)n )] > 0:5 + "0(n): (7.13)Now, consider a �nite game between two players, where the �rst player selects a crit-ically �-dominated (by Xn) distribution, and the second player selects a s0(n)-sizecircuit and obtains a payo� as determined by the corresponding success probability;that is, if the �rst player selects the ith critically dominated distribution and thesecond player selects the circuit C then the payo� equals Pr[C(Y (i)n ) = f(Y (i)n )].Eq. (7.13) may be interpreted as saying that for any randomized strategy for the�rst player there exists a deterministic strategy for the second player yielding aver-age payo� greater than 0:5+"0(n). The Min-Max Principle (cf. von Neumann [233])asserts that in such a case there exists a randomized strategy for the second playerthat yields average payo� greater than 0:5 + "0(n) no matter what strategy is em-ployed by the �rst player. This means that there exists a distribution, denoted Dn,on s0(n)-size circuits such that for every i it holds thatPr[Dn(Y (i)n ) = f(Y (i)n )] > 0:5 + "0(n); (7.14)where the probability refers both to the choice of the circuit Dn and to the randomvariable Yn. Let Bn = fx : Pr[Dn(x) = f(x)] � 0:5 + "0(n)g. Then, Pr[Xn 2Bn] < �(n), because otherwise we reach a contradiction to Eq. (7.14) by de�ningYn such that Pr[Yn= x] = Pr[Xn=x]=Pr[Xn 2 Bn] if x 2 Bn and Pr[Yn =x] = 0otherwise.26 By employing standard ampli�cation to Dn, we obtain a distributionD0n over poly(n="0(n)) � s0(n)-size circuits such that for every x 2 f0; 1gn n Bn itholds that Pr[D0n(x) = f(x)] > 1 � 2�n. It follows that there exists a s(n)-sizedcircuit Cn such that Cn(x) = f(x) for every x 2 f0; 1gn n Bn, which implies thatPr[Cn(Xn) = f(Xn)] � Pr[Xn 2 f0; 1gn n Bn] > 1 � �(n), in contradiction to thetheorem's hypothesis. The claim follows. 2We next show that the conclusion of Claim 7.21.1 (which was stated for ensemblesthat are �-dominated by fXng) essentially holds also when allowing only critically�-dominated (by fXng) ensembles. The following precise statement involves someloss in the domination parameter � (as well as in the advantage ").Claim 7.21.2: If there exists a probability ensemble fYng that is �-dominatedby fXng such that for every s0(n)-size circuit Cn it holds that Pr[Cn(Yn) =26Note that Yn is �-dominated by Xn, whereas by the hypothesis Pr[Dn(Yn) = f(Yn)] �0:5+"0(n). Using the fact that any �-dominated distribution is a convex combination of critically�-dominated distributions, it follows that Pr[Dn(Y (i)n ) = f(Y (i)n )] � 0:5 + "0(n) holds for somecritically �-dominated Y (i)n .



300 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSf(Yn)] � 0:5 + ("(n)=2), then there exists a probability ensemble fZng that iscritically �0-dominated by fXng such that for every s0(n)-size circuit Cn it holdsthat Pr[Cn(Zn) = f(Zn)] � 0:5 + "(n).In other words, Claim 7.21.2 asserts that the function f has a hard region ofdensity �0(�) relative to fXng with respect to s0(�)-size circuits and advantage "(�),thus establishing the theorem. The proof of Claim 7.21.2 uses the ProbabilisticMethod (cf. [10]). Speci�cally, we select a set Sn at random by including eachn-bit long string x with probabilityp(x) def= �(n) � Pr[Yn=x]Pr[Xn=x] � 1 (7.15)independently of the choice of all other strings. It can be shown that, with highprobability over the choice of Sn, it holds that Pr[Xn 2 Sn] � �(n) and thatPr[Cn(Xn) = f(Xn)jXn 2Sn] < 0:5 + "(n) for every circuit Cn of size s0(n). Thelatter assertion is proved by a union bound on all relevant circuits, while showingthat for each such circuit Cn, with probability 1� exp(�s0(n)2) over the choice ofSn, it holds that jPr[Cn(Xn) = f(Xn)jXn 2 Sn] � Pr[Cn(Yn) = f(Yn)]j < "(n)=2.For details, see [101, Apdx. A]. (This completes the proof of the theorem.)7.2.2.2 Hardness ampli�cation via hard regionsBefore showing how to use the notion of a hard region in order to prove a deran-domized version of Yao's XOR Lemma, we show how to use it in order to provethe original version of Yao's XOR Lemma (i.e., Theorem 7.13).An alternative proof of Yao's XOR Lemma. Let f , p1, and p2 be asin Theorem 7.13. Then, by Theorem 7.21, for �0(n) = 1=3p2(n) and s0(n) =p1(n)
(1)=poly(n), the function f has a hard region S of density �0 (relative tofUng) with respect to s0(�)-size circuits and advantage 1=s0(�). Thus, for t(n) =n � p2(n) and F as in Theorem 7.13, with probability at least 1� (1� �0(n))t(n) =1 � exp(�
(n)), one of the t(n) random (n-bit long) blocks of F resides in S(i.e., the hard region of f). Intuitively, this su�ces for establishing the stronginapproximability of F . Indeed, suppose towards the contradiction that a small(i.e., p0(t(n) � n)-size) circuit Cn can approximate F (over Ut(n)�n) with advantage"(n) + exp(�
(n)), where "(n) > 1=s0(n). Then, the "(n) term must be due tot(n) �n-bit long inputs that contain a block in S. Using an averaging argument, wecan �rst �x the index of this block and then the contents of the other blocks, andinfer the following: for some i 2 [t(n)] and x1; :::; xt(n) 2 f0; 1gn it holds thatPr[Cn(x0; Un; x00) = F (x0; Un; x00) jUn 2 S] � 12 + "(n)where x0 = (x1; :::; xi�1) 2 f0; 1g(i�1)�n and x00 = (xi+1; :::; xt(n)) 2 f0; 1g(t(n)�i)�n.Hard-wiring i 2 [t(n)], x0 = (x1; :::; xi�1) and x00 = (xi+1; :::; xt(n)) as well as� def= �j 6=if(xj) in Cn, we obtain a contradiction to the (established) fact that



7.2. HARD PROBLEMS IN E 301S is a hard region of f (by using the circuit C 0n(z) = Cn(x0; z; x00) � �). Thus,Theorem 7.13 follows (for any p0(t(n) � n) � s0(n)� 1).Derandomized versions of Yao's XOR Lemma. We �rst show how to usethe notion of a hard region in order to amplify very mild inapproximability toa constant level of inapproximability. Recall that our goal is to obtain such anampli�cation while applying the given function on many (related) instances, whereeach instance has length that is linearly related to the length of the input of theresulting function. Indeed, these related instances are produced by applying anadequate \pseudorandom generator" (see Chapter 8). The following ampli�cationutilizes a pairwise independence generator (see Section 8.5.1), denoted G, thatstretches 2n-bit long seeds to sequences of n strings, each of length n.Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability):Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for �(n) > 1=poly(n),and assume for simplicity that �(n) � 1=n. Let b denote the inner-product mod 2predicate, and G be the aforementioned pairwise independence generator. ThenF1(s; r) = b(f(x1) � � � f(xn); r), where jrj = n = jsj=2 and (x1; :::; xn) = G(s), is(T 0; �0)-inapproximable for T 0(n0) = T (n0=3)=poly(n0) and �0(n0) = 
(n0 � �(n0=3)).Needless to say, if f 2 E then F1 2 E . By applying Lemma 7.22 for a constantnumber of times, we may transform an (T; 1=poly)-inapproximable predicate intoan (T 00;
(1))-inapproximable one, where T 00(n00) = T (n00=O(1))=poly(n00).Proof Sketch: As in the foregoing proof (of the original version of Yao's XORLemma), we �rst apply Theorem 7.21. This time we set the parameters so to inferthat, for �(n) = �(n)=3 and t0(n) = T (n)=poly(n), the function f has a hard regionS of density � (relative to fUng) with respect to t0(�)-size circuits and advantage0.01. Next, as in x7.2.1.2, we shall consider the corresponding (derandomized)direct product problem; that is, the function P1(s) = (f(x1); :::; f(xn)), wherejsj = 2n and (x1; :::; xn) = G(s). We will �rst show that P1 is hard to computeon an 
(n � �(n)) fraction of the domain, and the quanti�ed inapproximality of F1will follow.One key observation is that, by Exercise 7.23, with probability at least �(n) def=n � �(n)=2, at least one of the n strings output by G(U2n) resides in S. Intuitively,we expect every t0(n)-sized circuit to fail in computing P1(U2n) with probabilityat least 0:49�(n), because with probability �(n) the sequence G(U2n) contains anelement in the hard region of f (and in this case the value can be guessed correctlywith probability at most 0:51). The actual proof relies on a reducibility argument,which is less straightforward than the argument used in the non-derandomized case.For technical reasons27, we use the condition �(n) < 1=2n (which is guaranteedby the hypothesis that �(n) � 1=n and our setting of �(n) = �(n)=3). In thiscase Exercise 7.23 implies that, with probability at least �(n) def= 0:75 � n � �(n),at least one of the n strings output by G(U2n) resides in S. We shall show that27The following argument will rely on the fact that �(n) � 
(n) > 0:51n � �(n), where 
(n) =
(�(n)).



302 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSevery (t0(n)� poly(n))-sized circuit fails in computing P1 with probability at least
(n) = 0:3�(n). As usual, the claim is proved by a reducibility argument. Let G(s)idenote the ith string in the sequence G(s) (i.e., G(s) = (G(s)1; :::; G(s)n)), and notethat given i and x we can e�ciently sample G�1i (x) def= fs2f0; 1g2n : G(s)i=xg.Given a circuit Cn that computes P1(U2n) correctly with probability 1� 
(n), weconsider the circuit C 0n that, on input x, uniformly selects i 2 [n] and s 2 G�1i (x),and outputs the ith bit in Cn(s). Then, by the construction (of C 0n) and thehypothesis regarding Cn, it holds thatPr[C 0n(Un)=f(Un)jUn2S] � nXi=1 1n � Pr[Cn(U2n)=P1(U2n)jG(U2n)i2S]� Pr[Cn(U2n)=P1(U2n) ^ 9iGi(U2n)i2S]n �maxifPr[G(U2n)i2S]g� (1� 
(n))� (1� �(n))n � �(n)= 0:7�(n)n � �(n) > 0:52 :This contradicts the fact that S is a hard region of f with respect to t0(�)-size circuitsand advantage 0:01. Thus, we have established that every (t0(n) � poly(n))-sizedcircuit fails in computing P1 with probability at least 
(n) = 0:3�(n).Having established the hardness of P1, we now infer the mild inapproximabilityof F1, where F1(s; r) = b(P1(s); r). It su�ces to employ the simple (warm-up)case discussed at the beginning of the proof of Theorem 7.7 (where the predic-tor errs with probability less than 1=4, rather than the full-
edged result thatrefers to prediction error that is only smaller than 1=2). Denoting by �C(s) =Prr2f0;1gn [C(s; r) 6=b(P1(s); r)] the prediction error of the circuit C, we recall thatif �C(s) � 0:24 then C can be used to recover P1(s). Thus, for circuits C of sizeT 0(3n) = t0(n)=poly(n) it must hold that Prs[�C(s)>0:24] � 
(n). It follows thatEs[�C(s)] > 0:24
(n), which means that every T 0(3n)-sized circuits fails to com-pute (s; r) 7! b(P1(s); r) with probability at least �(jsj+ jrj) def= 0:24 � 
(jrj). Thismeans that F1 is (T 0; 2�)-inapproximable, and the lemma follows (when noting that�(n0) = 
(n0 � �(n0=3))).The next lemma o�ers an ampli�cation of constant inapproximability to stronginapproximability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23,yields Theorem 7.19 (as a special case).Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-bility): Suppose that f : f0; 1g� ! f0; 1g is (T; �)-inapproximable, for some con-stant �, and let b denote the inner-product mod 2 predicate. Then there exists anexponential-time computable function G such that F2(s; r) = b(f(x1) � � � f(xn); r),where (x1; :::; xn) = G(s) and n = 
(jsj) = jrj = jx1j = � � � = jxnj, is T 0-inapproximable for T 0(n0) = T (n0=O(1))
(1)=poly(n0).



7.2. HARD PROBLEMS IN E 303Again, if f 2 E then F2 2 E .Proof Outline:28 As in the proof of Lemma 7.22, we start by establishinga hard region of density �=3 for f (this time with respect to circuits of sizeT (n)
(1)=poly(n) and advantage T (n)�
(1)), and focus on the analysis of the(derandomized) direct product problem corresponding to computing the functionP2(s) = (f(x1); :::; f(xn)), where jsj = O(n) and (x1; :::; xn) = G(s). The \gen-erator" G is de�ned such that G(s0s00) = G1(s0) � G2(s00), where js0j = js00j,jG1(s0)j = jG2(s00)j, and the following conditions hold:1. G1 is the Expander Random Walk Generator discussed in Section 8.5.3. Itcan be shown that G1(UO(n)) outputs a sequence of n strings such that forany set S of density �, with probability 1 � exp(�
(�n)), at least 
(�n)of the strings hit S. Note that this property is inherited by G, providedjG1(s0)j = jG2(s00)j for any js0j = js00j. It follows that, with probability1 � exp(�
(�n)), a constant fraction of the xi's in the de�nition of P2 hitthe hard region of f .It is tempting to say that small circuits cannot compute P2 better than withprobability exp(�
(�n)), but this is clear only in the case that the xi's thathit the hard region are distributed independently (and uniformly) in it, whichis hardly the case here. Indeed, G2 is used to handle this problem.2. G2 is the \set projection" system underlying Construction 8.17; speci�cally,G2(s) = (sS1 ; :::; sSn), where each Si is an n-subset of [jsj] and the Si's havepairwise intersections of size at most n=O(1).29 An analysis as in the proofof Theorem 8.18 can be employed for showing that the dependency amongthe xi's does not help for computing a particular f(xi) when given xi as wellas all the other f(xj)'s. (Note that this property of G2 is inherited by G.)The actual analysis of the construction (via a guessing game presented in [127,Sec. 3]), links the success probability of computing P2 to the advantage of guessingf on its hard region. The interested reader is referred to [127].Digest. Both Lemmas 7.22 and 7.23 are proved by �rst establishing correspond-ing derandomized versions of the \direct product" lemma (Theorem 7.14); in fact,the core of these proofs is proving adequate derandomized \direct product" lemmas.We call the reader's attention to the seemingly crucial role of this step (especiallyin the proof of Lemma 7.23): We cannot treat the values f(x1); :::f(xn) as if theywere independent (at least not for the generator G as postulated in these lemmas),and so we seek to avoid analyzing the probability of correctly computing the XORof all these values. In contrast, we have established that it is very hard to correctlycompute all n values, and thus XORing a random subset of these values yields astrongly inapproximable predicate. (Note that the argument used in Exercise 7.1728For details, see [127].29Recall that sS denotes the projection of s on coordinates S � [jsj]; that is, for s = �1 � � ��kand S = fij : j = 1; :::; ng, we have sS = �i1 � � ��in .



304 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSfails here, because the xi's are not independent, which is the reason that we XORa random subset of these values rather than all of them.)Chapter NotesThe notion of a one-way function was suggested by Di�e and Hellman [65]. Thenotion of weak one-way functions as well as the ampli�cation of one-way functions(i.e., Theorem 7.5) were suggested by Yao [237]. A proof of Theorem 7.5 has �rstappeared in [86].The concept of hard-core predicates was suggested by Blum and Micali [39].They also proved that a particular predicate constitutes a hard-core for the \DLPfunction" (i.e., exponentiation in a �nite �eld), provided that the latter functionis one-way. The generic hard-core predicate (of Theorem 7.7) was suggested byLevin, and proven as such by Goldreich and Levin [98]. The proof presented herewas suggested by Racko�. We comment that the original proof has its own merits(cf., e.g., [104]).The construction of canonical derandomizers (see Section 8.3) and, speci�cally,the Nisan-Wigderson framework (i.e., Construction 8.17) has been the driving forcebehind the study of inapproximable predicates in E . Theorem 7.10 is due to [21],whereas Theorem 7.19 is due to [127]. Both results rely heavily of variants of Yao'sXOR Lemma, to be reviewed next.Like several other fundamental insights30 attributed to Yao's paper [237], Yao'sXOR Lemma (i.e., Theorem 7.13) is not even stated in [237] but is rather dueto Yao's oral presentations of his work. The �rst published proof of Yao's XORLemma was given by Levin (see [101, Sec. 3]). The proof presented in x7.2.1.2 is dueto Goldreich, Nisan and Wigderson [101, Sec. 5]. For a recent (but brief) reviewof other proofs of Yao's XOR Lemma (as well as of variants of it), the interestedreader is referred to [222].The notion of a hard region and its applications to proving the original versionof Yao's XOR Lemma are due to Impagliazzo [125] (see also [101, Sec. 4]). The �rstderandomization of Yao's XOR Lemma (i.e., Lemma 7.22) also originates in [125],while the second derandomization (i.e., Lemma 7.23) as well as Theorem 7.19 aredue to Impagliazzo and Wigderson [127].The worst-case to average-case reduction (i.e., x7.2.1.1, yielding Theorem 7.12)is due to [21]. This reduction follows the self-correction paradigm of Blum, Lubyand Rubinfeld [40], which was �rst employed in the context of a (strict)31 worst-caseto average-case reduction by Lipton [156].3230Most notably, the equivalence of pseudorandomness and unpredictability (see Section 8.2.5).31Earlier uses of the self-correction paradigm referred to \two argument problems" and consistedof �xing one argument and randomizing the other (see, e.g., [107]); consider, for example, thedecision problem in which given (N; r) the task is to determine whether x2 � r (mod N) has aninteger solution, and the randomized process mapping (N; r) to (N; r0), where r0 = r � !2 mod Nand ! is uniformly distibuted in [N ]. Loosely speaking, such a process yields a reduction fromworst-case complexity to \mixed worst/average-case" complexity (or from \mixed average/worst-case" to pure average-case).32An earlier use of the self-correction paradigm for a strict worst-case to average-case reduction



7.2. HARD PROBLEMS IN E 305The connection between list decoding and hardness ampli�cation (i.e., x7.2.1.3),yielding alternative proofs of Theorems 7.10 and 7.19, is due to Sudan, Trevisan,and Vadhan [217].Hardness ampli�cation for NP has been the subject of recent attention: Anampli�cation of mild inapproximability to strong inapproximability is providedin [120], and an indication to the impossibility of a worst-case to average-casereductions (at least non-adaptive ones) is provided in [42].ExercisesExercise 7.1 Prove that if one way-functions exist then there exists one-way func-tions that are length preserving (i.e., jf(x)j = jxj for every x 2 f0; 1gn).Guideline: Clearly, for some polynomial p, it holds that jf(x)j < p(jxj) for all x. Assume,without loss of generality that n 7! p(n) is 1-1 and increasing, and let p�1(m) = n ifp(n) � m < p(n + 1). De�ne f 0(z) = f(x)01jzj�jf(x)j�1, where x is the p�1(jzj)-bit longpre�x of z.Exercise 7.2 Prove that if a function f is hard to invert in the sense of De�ni-tion 7.3 then it is hard to invert in the sense of De�nition 7.1.Guideline: Consider a sequence of internal coin tosses that maximizes the probabilityin Eq. (7.1).Exercise 7.3 Assuming the existence of one-way functions, prove that there existsa weak one-way function that is not strongly one-way.Exercise 7.4 (a universal one-way function (by L. Levin)) Using the notionof a universal machine, present a polynomial-time computable function that is hardto invert (in the sense of De�nition 7.1) if and only if there exist one-way functions.Guideline: Consider the function F that parses its input into a pair (M;x) and emulatesjxj3 steps of M on input x. Note that if there exists a one-way function that can beevaluated in cubic time then F is a weak one-way function. Using padding, prove thatthere exists a one-way function that can be evaluated in cubic time if and only if thereexist one-way functions.Exercise 7.5 For ` > 1, prove that the following 2` � 1 samples are pairwiseindependent and uniformly distributed in f0; 1gn. The samples are generated byuniformly and independently selecting ` strings in f0; 1gn. Denoting these stringsby s1; :::; s`, we generate 2` � 1 samples corresponding to the di�erent non-emptysubsets of f1; 2; :::; `g such that for subset J we let rJ def= �j2Jsj .appears in [18], but it refers to very low complexity classes. Speci�cally, this reduction refers tothe parity function and is computable in AC0 (implying that parity cannot be approximated inAC0, since it cannot be computed in that class (see [82, 238, 114])). The reduction (randomly)maps x 2 f0; 1gn, viewed as a sequence (x1; x2; x3; :::; xn), to the sequence x0 = (x1 � r1; r1 �x2�r2; r2�x3�r3; :::; rn�1�xn�rn), where r1; :::; rn 2 f0; 1g are uniformly and independentlydistributed. Note that x0 is uniformly distributed in f0; 1gn and that parity(x) = parity(x0)�rn.



306 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSGuideline: For J 6= J 0, it holds that rJ�rJ0 = �j2Ksj , where K denotes the symmetricdi�erence of J and J 0. See related material in Section 8.5.1.Exercise 7.6 (a variant on the proof of Theorem 7.7) Provide a detailed pre-sentation of the alternative procedure outlined in Footnote 5. That is, prove thatfor every x 2 f0; 1gn, given oracle access to any Bx : f0; 1gn ! f0; 1g that satis�esEq. (7.6), this procedure makes poly(n=") steps and outputs a list of strings that,with probability at least 1=2, contains x.Exercise 7.7 (proving Theorem 7.8) Recall that the proof of Theorem 7.7 es-tablishes the existence of a poly(n=")-time oracle machine M such that, for everyB : f0; 1gn ! f0; 1g and every x 2 f0; 1gn that satisfy Prr[B(r) = b(x; r)] � 12 + ",it holds that Pr[MB(n; ") = x] = 
("2=n). Show that this implies Theorem 7.8.(Indeed, an alternative proof can be derived by adapting Exercise 7.6.)Guideline: Apply a \coupon collector" argument.Exercise 7.8 A polynomial-time computable predicate b :f0; 1g�!f0; 1g is calleda universal hard-core predicate if for every one-way function f , the predicate b isa hard-core of f . Note that the predicate presented in Theorem 7.7 is \almostuniversal" (i.e., for every one-way function f , that predicate is a hard-core off 0(x; r) = (f(x); r), where jxj = jrj). Prove that there exist no universal hard-core predicate.Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitraryone-way function. Then consider the function f 0(x) = (f(x); b(x)).Exercise 7.9 Prove that if NP is not contained in P=poly then neither is E .Furthermore, for every S : N ! N , if some problem in NP does not have circuitsof size S then for some constant " > 0 there exists a problem in E that does nothave circuits of size S0, where S0(n) = S(n"). Repeat the exercise for the \almosteverywhere" case.Guideline: Although NP is not known to be in E , it is the case that SAT is in E , whichimplies that NP is reducible to a problem in E . For the \almost everywhere" case, addressthe fact that the said reduction may not preserve the length of the input.Exercise 7.10 For every function f : f0; 1gn ! f0; 1g, present a linear-size circuitCn such that Pr[C(Un) = f(Un)] � 0:5 + 2�n. Furthermore, for every t � 2n�1,present a circuit Cn of size O(t � n) such that Pr[C(Un) = f(Un)] � 0:5 + t � 2�n.Warning: you may not assume that Pr[f(Un) = 1] = 0:5.Exercise 7.11 (self-correction of low-degree polynomials) Let d;m be in-tegers, and F be a �nite �eld of cardinality greater than t def= dm + 1. Letp : Fm ! F be a polynomial of individual degree d, and �1; :::; �t be t distinctnon-zero elements of F .1. Show that, for every x; y 2 Fm, the value of p(x) can be e�ciently computedfrom the values of p(x + �1y); :::; p(x + �ty), where x and y are viewed asm-ary vectors over F .



7.2. HARD PROBLEMS IN E 3072. Show that, for every x 2 Fm and � 2 F n f0g, if we uniformly select r 2 Fmthen the point x+ �r is uniformly distributed in Fm.Conclude that p(x) can be recovered based on t random points, where each pointis uniformly distributed in Fm.Exercise 7.12 (low degree extension) Prove that for any H � F and everyfunction f : Hm ! F there exists an m-variate polynomial f̂ : Fm ! F ofindividual degree jH j � 1 such that for every x 2 Hm it holds that f̂(x) = f(x).Guideline: De�ne f̂(x) = Pa2Hm �a(x) � f(a), where �a is an m-variate of individualdegree jHj�1 such that �a(a) = 1 whereas �a(x) = 0 for every x 2 Hm nfag. Speci�cally,�a1;:::;am(x1; :::; xm) =Qmi=1Qb2Hnfaig((xi � b)=(ai � b)).Exercise 7.13 Suppose that f̂ and S0 are as in the conclusion of Theorem 7.12.Prove that there exists a Boolean function g in E that is (S00; ")-inapproximablefor S00(n0 +O(log n0)) = S0(n0)=n0 and "(m) = 1=m3.Guideline: Consider the function g de�ned such that g(x; i) equals the ith bit of f̂(x).Exercise 7.14 (a generic application of Theorem 7.8) For any ` : N!N ,let h : f0; 1g� ! f0; 1g� be a function such that jh(x)j = `(jxj) for every x 2 f0; 1g�,and fXngn2N be a probability ensemble. Suppose that, for some s : N ! N and" : N ! [0; 1], for every family of s-size circuits fCngn2N and all su�ciently large nit holds that Pr[Cn(Xn) = h(Xn)] � "(n). Suppose that s0 : N ! N and "0 : N ![0; 1] satisfy s0(n + `(n)) � s(n)=poly(n="0(n + `(n))) and "0(n + `(n)) � 2"(n).Show that Theorem 7.8 implies that for every family of s0-size circuits fC 0n0gn02Nand all su�ciently large n0 = n+ `(n) it holds thatPr[C 0n+`(n)(Xn; U`(n)) = b(h(Xn); U`(n))] � 12 + "0(n+ `(n));where b(y; r) denotes the inner-product mod 2 of y and r. Note that if Xn isuniform over f0; 1gn then the predicate h0(x; r) = b(h(x); r), where jrj = jh(x)j,is (s0; 1 � 2"0)-inapproximable. Conclude that, in this case, if "(n) = 1=s(n) ands0(n+ `(n)) = s(n)
(1)=poly(n), then h0 is s0-inapproximable.Exercise 7.15 (reversing Exercise 7.14 (by Viola and Wigderson)) Let ` :N!N , h : f0; 1g� ! f0; 1g�, fXngn2N, and b be as in Exercise 7.14. Let H(x; r) =b(h(x); r) and recall that in Exercise 7.14 we reduced guessing h to approximat-ing H . Present a reduction in the opposite direction. That is, show that if H is(s; 1�")-inapproximable (over fXngn2N) then every s0-size circuit succeeds in com-puting h (over fXngn2N) with probability at most ", where s0(n) = s(n)�O(`(n)).Guideline: As usual, start by assuming the existence of a s0-size circuit that computes hwith success probability exceeding ". Consider two correlated random variables X and Y ,each distributed over f0; 1g`(n), where X represents the value of h(Un) and Y representsthe circuit's guess for this value. Prove that, for a uniformly distributed r 2 f0; 1g`(n), itholds that Pr[b(X; r) = b(Y; r)] = (1 + p)=2, where p def= Pr[X = Y ].



308 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSExercise 7.16 (derandomization via averaging arguments) Let C : f0; 1gn�f0; 1gm ! f0; 1g` be a circuit, which may represent a \probabilistic circuit" thatprocesses the �rst input using a sequence of choices that are given as a secondinput. Let X and Z be two independent random variables distributed over f0; 1gnand f0; 1gm, respectively, and let � be a Boolean predicate (which may representa success event regarding the behavior of C). Prove that there exists a stringz 2 f0; 1gm such that for Cz(x) def= C(x; z) it holds that Pr[�(X;Cz(X)) = 1] �Pr[�(X;C(X;Z))=1].Exercise 7.17 (reducing \selective XOR" to \standard XOR") Let f bea Boolean function, and b(y; r) denote the inner-product modulo 2 of the equal-length strings y and r. Suppose that F 0(x1; :::; xt(n); r) def= b(f(x1) � � � f(xt(n)); r),where x1; :::; xt(n) 2 f0; 1gn and r 2 f0; 1gt(n), is T 0-inapproximable. Assumingthat n 7! t(n) � n is 1-1, prove that F (x) def= F 0(x; 1t0(jxj)), where t0(t(n) � n) = t(n),is T -inapproximable for T (m) = T 0(m+ t0(m))�O(m).Guideline: Reduce the approximation of F 0 to the approximation of F . An importantobservation is that for any x = (x1; :::; xt(n)), x0 = (x01; :::; x0t(n)), and r = r1 � � � rt(n) suchthat x0i = xi if ri = 1, it holds that F 0(x; r) = F (x0) � �i:ri=0f(x0i). This suggests anon-uniform reduction of F 0 to F , which uses \adequate" z1; :::; zt(n) 2 f0; 1gn as well asthe corresponding values f(zi)'s as advice. On input x1; :::; xt(n); r1 � � � rt(n), the reductionsets x0i = xi if ri = 1 and x0i = zi otherwise, makes the query x0 = (x01; :::; x0t(n)) to F ,and returns F (x0) �i:ri=0 f(zi). Analyze this reduction in the case that z1; :::; zt(n) 2f0; 1gn are uniformly distributed, and infer that they can be set to some �xed values (seeExercise 7.16).33Exercise 7.18 (reducing \standard XOR" to \selective XOR") In contin-uation to Exercise 7.17, show a reduction in the opposite direction. That is, forF and F 0 as in Exercise 7.17, show that if F is T -inapproximable then F 0 is T 0-inapproximable, where T 0(m+ t0(m)) = min(T (m)�O(m); exp(t0(m)=O(1)))1=3.Guideline: Reduce the approximation of F to the approximation of F 0, using the factthat for any x = (x1; :::; xt(n)) and r = r1 � � � rt(n) it holds that �i2Srf(xi) = F 0(x; r),where Sr = fi2 [t(n)] : ri=1g. Note that, with probability 1� exp(�
(t(n)), the set Srcontains at least t(n)=3 indices. Thus, the XOR of t(n)=3 values of f can be reduced tothe selective XOR of t(n) such values (by using some of the ideas used in Exercise 7.17for handling the case that jSrj > t(n)=3). The XOR of t(n) values can be obtained bythree XORs (of t(n)=3 values each), at the cost of decreasing the advantage by raising itto a power of three.Exercise 7.19 (reducing \selective XOR" to direct product) Recall that, inx7.2.1.2, the approximation of the \selective XOR" predicate P 0 was reduced to33That is, assume �rst that the reduction is given t(n) samples of the distribution(Un; f(Un)), and analyze its success probability on a uniformly distributed input (x; r) =(x1; :::; xt(n); r1 � � � rt(n)). Next, apply Exercise 7.16 when X represents the distribution of theactual input (x; r), and Z represents the the distribution of the auxiliary sequence of samples.



7.2. HARD PROBLEMS IN E 309the guessing of the value of the direct product function P . Present a reduction inthe opposite direction. That is, for P and P 0 as in x7.2.1.2, show that if P 0 is T 0-inapproximable then every T -size circuit succeeds in computing P with probabilityat most 1=T , where T = 
(T 0).Guideline: Use Exercise 7.15.Exercise 7.20 (Theorem 7.14 versus Theorem 7.5) Consider a generalizationof Theorem 7.14 in which f and P are functions from strings to sets of strings suchthat P (x1; :::; xt) = f(x1)� � � � � f(xt).1. Prove that if for every family of p1-size circuits, fCngn2N, and all su�cientlylarge n 2 N , it holds that Pr[Cn(Un) 62 f(Un)] > 1=p2(n) then for everyfamily of p0-size circuits, fC 0mgm2N, it holds that Pr[C 0m(Um) 2 P (Um)] <"0(m), where "0 and p0 are as in Theorem 7.14. Further generalize the claimby replacing fUngn2N with an arbitrary distribution ensemble fXngn2N, andreplacing Um by a t(n)-fold Cartesian product of Xn (where m = t(n) � n).2. Show that the foregoing generalizes both Theorem 7.14 and a non-uniformcomplexity version of Theorem 7.5.Exercise 7.21 (re�nement of the main theme of x7.2.1.3) Consider the fol-lowing modi�cation of De�nition 7.17, in which the decoding condition refers toan agreement threshold of (1=q(N)) + �(N) rather than to a threshold of �(N).The modi�ed de�nition reads as follows (where p is a �xed polynomial): For everyw : [`(N)]! [q(N)] and x2f0; 1gN such that �(x) is (1� ((1=q(N)) +�(N)))-closeto w, there exists an oracle-aided circuit C of size p((logN)=�(N)) such that Cw(i)yields the ith bit of x for every i 2 [N ].1. Formulate and prove a version of Theorem 7.18 that refers to the modi�edde�nition (rather than to the original one).Guideline: The modi�ed version should refer to computing g(Um(n)) with successprobability greater than (1=q(n)) + "(n) (rather than greater than "(n)).2. Prove that, when applied to binary codes (i.e., q � 2), the version in Item 1yields S00-inapproximable predicates, for S00(n0) = S(m�1(n0))
(1)=poly(n0).3. Prove that the Hadamard Code allows implicit decoding under the modi�edde�nition (but not according to the original one).34Guideline: This is the actual contents of Theorem 7.8.Show that if � : f0; 1gN ! [q(N)]`(N) is a (non-binary) code that allows implicitdecoding then encoding its symbols by the Hadamard code yields a binary code(f0; 1gN ! f0; 1g`(N)�2dlog2 q(N)e) that allows implicit decoding. Note that e�cientencoding is preserved only if q(N) � poly(N).34Needless to say, the Hadamard Code is not e�cient (for the trivial reason that its codewordshave exponential length).



310 CHAPTER 7. THE BRIGHT SIDE OF HARDNESSExercise 7.22 (using Proposition 7.16 to prove Theorem 7.19) Prove The-orem 7.19 by combining Proposition 7.16 and Theorem 7.8.Guideline: Note that, for some 
 > 0, Proposition 7.16 yields an exponential-time com-putable function f̂ such that jf̂(x)j � jxj and for every family of circuit fC0n0gn02N ofsize S0(n0) = S(n0=3)
=poly(n0) it holds that Pr[C0n0(Un0 ) = f̂(Un0 )] < 1=S0(n0). Com-bining this with Theorem 7.8, infer that P (x; r) = b(f̂(x); r), where jrj = jf̂(x)j � jxj, isS00-inapproximable for S00(n00) = S(n00=2)
(1)=poly(n00). Note that if S(n) = 2
(n) thenS00(n00) = 2
(n00).Exercise 7.23 LetG be a pairwise independent generator (i.e., as in Lemma 7.22),S � f0; 1gn and � def= jSj=2n. Prove that, with probability at least min(n��; 1)=2, atleast one of the n strings output by G(U2n) resides in S. Furthermore, if � � 1=2nthen this probability is at least 0:75 � n � �.Guideline: Using the pairwise independence property and employing the Inclusion-Exclusion formula, we lower-bound the aforementioned probability by n � � � �n2� � �2.If � � 1=n then the claim follows, otherwise we employ the same reasoning to the �rst1=� elements in the output of G(U2n).Exercise 7.24 (one-way functions versus inapproximable predicates) Provethat the existence of a non-uniformly hard one-way function (as in De�nition 7.3)implies the existence of an exponential-time computable predicate that is T -inapproximable(as per De�nition 7.9), for every polynomial T .Guideline: Suppose �rst that the one-way function f is length-preserving and 1-1. Con-sider the hard-core predicate b guaranteed by Theorem 7.7 for g(x; r) = (f(x); r), de�nethe Boolean function h such that h(z) = b(g�1(z)), and show that h is T -inapproximablefor every polynomial T . For the general case a di�erent approach seems needed. Specif-ically, given a (length preserving) one-way function f , consider the Boolean function hde�ned as h(z; i; �) = 1 if and only if the ith bit of the lexicographically �rst element inf�1(z) = fx : f(x) = zg equals �. (In particular, if f�1(z) = ; then h(z; i; �) = 0 forevery i and �.)35 Note that h is computable in exponential-time, but is not (worst-case)computable by polynomial-size circuits. Applying Theorem 7.10, we are done.
35Thus, h may be easy to computed in the average-case sense (e.g., if f(x) = 0jxjf 0(x) for someone-way function f 0).



Chapter 8Pseudorandom GeneratorsIndistinguishable things are identical.1G.W. Leibniz (1646{1714)A fresh view at the question of randomness has been taken by complexity theory:it has been postulated that a distribution is random (or rather pseudorandom) ifit cannot be told apart from the uniform distribution by any e�cient procedure.Thus, (pseudo)randomness is not an inherent property of an object, but is rathersubjective to the observer.At the extreme, this approach says that the question of whether the worldis deterministic or allows for some free choice (which may be viewed as sources ofrandomness) is irrelevant. What matters is how the world looks to us and to variouscomputationally bounded devices. That is, if some phenomenon looks random thenwe may just treat it as if it were random. Likewise, if we can generate sequencesthat cannot be told apart from the uniform distribution by any e�cient procedure,then we can use these sequences in any e�cient randomized application instead ofthe ideal coin tosses that are postulated in the design of this application.The pivot of the foregoing approach is the notion of computational indistin-guishability, which refers to pairs of distributions that cannot be told apart bye�cient procedures. The most fundamental incarnation of this notion associatese�cient procedures with polynomial-time algorithms, but other incarnations thatrestrict attention to other classes of distinguishing procedures also lead to impor-tant insights. Likewise, the e�ective generation of pseudorandom objects, whichis of major concern, is actually a general paradigm with numerous useful incar-nations (which di�er in the computational complexity limitations imposed on thegeneration process).1This is Leibniz's Principle of Identity of Indiscernibles. Leibniz admits that counterexamplesto this principle are conceivable but will not occur in real life because God is much too benevolent.We thus believe that he would have agreed to the theme of this chapter, which asserts thatindistinguishable things should be considered as if they were identical.311



312 CHAPTER 8. PSEUDORANDOM GENERATORSSummary: Pseudorandom generators are e�cient deterministic pro-cedures that stretch short random seeds into longer pseudorandom se-quences. Thus, a generic formulation of pseudorandom generators con-sists of specifying three fundamental aspects { the stretch measure of thegenerators; the class of distinguishers that the generators are supposedto fool (i.e., the algorithms with respect to which the computational in-distinguishability requirement should hold); and the resources that thegenerators are allowed to use (i.e., their own computational complexity).The archetypical case of pseudorandom generators refers to e�cientgenerators that fool any feasible procedure; that is, the potential dis-tinguisher is any probabilistic polynomial-time algorithm, which maybe more complex than the generator itself (which, in turn, has time-complexity bounded by a �xed polynomial). These generators are calledgeneral-purpose, because their output can be safely used in any e�cientapplication. Such (general-purpose) pseudorandom generators exist ifand only if one-way functions exist.For purposes of derandomization one may use pseudorandom genera-tors that are somewhat more complex than the potential distinguisher(which represents the algorithm to be derandomized). Following thisapproach, suitable pseudorandom generators, which can be constructedassuming the existence of problems in E that have no sub-exponentialsize circuits, yield a full derandomization of BPP (i.e., BPP = P).It is also bene�cial to consider pseudorandom generators that fool space-bounded distinguishers and generators that exhibit some limited ran-dom behavior (e.g., outputting a pair-wise independent or a small-biassequence). Such (special-purpose) pseudorandom generators can beconstructed without relying on any computational complexity assump-tion.IntroductionThe \question of randomness" has been puzzling thinkers for ages. Aspects of thisquestion range from philosophical doubts regarding the existence of randomness(in the world) and re
ections on the meaning of randomness (in our thinking) totechnical questions regarding the measuring of randomness. Among many otherthings, the second half of the 20th century has witnessed the development of threetheories of randomness, which address di�erent aspects of the foregoing question.The �rst theory (cf., [62]), initiated by Shannon [202], views randomness asrepresenting lack of information, which in turn is modeled by a probability distri-bution on the possible values of the missing data. Indeed, Shannon's InformationTheory is rooted in probability theory and is focused at distributions that are notperfectly random. It characterizes perfect randomness as the extreme case in whichthe information contents is maximized (i.e., in this case there is no redundancy at



313all). Thus, perfect randomness is associated with a unique distribution { the uni-form one. In particular, by de�nition, one cannot (deterministically) generate suchperfect random strings from shorter random seeds.The second theory (cf., [152, 155]), initiated by Solomonov [209], Kolmogorov [146],and Chaitin [50], views randomness as representing lack of structure, which in turnis re
ected in the length of the most succinct and e�ective description of the object.The notion of a succinct and e�ective description refers to a process that transformsthe succinct description to an explicit one. Indeed, this theory of randomness isrooted in computability theory and speci�cally in the notion of a universal language(equiv., universal machine or computing device; see x1.2.3.4). It measures the ran-domness (or complexity) of objects in terms of the shortest program (for a �xeduniversal machine) that generates the object.2 Like Shannon's theory, KolmogorovComplexity is quantitative and perfect random objects appear as an extreme case.However, following Kolmogorov's approach one may say that a single object, ratherthan a distribution over objects, is perfectly random. Still, by de�nition, one can-not (deterministically) generate strings of high Kolmogorov Complexity from shortrandom seeds.The third theory, which is the focus of the current chapter, views randomnessas an e�ect on an observer and thus as being relative to the observer's abilities(of analysis). The observer's abilities are modeled as its computational abilities(i.e., the complexity of the processes that the observer may apply), and hence thistheory of randomness is rooted in complexity theory. This theory of randomnessis explicitly aimed at providing a notion of randomness that, unlike the previoustwo notions, allows for an e�cient (and deterministic) generation of random stringsfrom shorter random seeds. The heart of this theory is the suggestion to view ob-jects as equal if they cannot be told apart by any e�cient procedure. Consequently,a distribution that cannot be e�ciently distinguished from the uniform distributionwill be considered random (or rather called pseudorandom). Thus, randomness isnot an \inherent" property of objects (or distributions) but is rather relative toan observer (and its computational abilities). To illustrate this approach, let usconsider the following mental experiment.Alice and Bob play \head or tail" in one of the following four ways. Ineach of them Alice 
ips an unbiased coin and Bob is asked to guess itsoutcome before the coin hits the 
oor. The alternative ways di�er bythe knowledge Bob has before making his guess.In the �rst alternative, Bob has to announce his guess before Alice 
ipsthe coin. Clearly, in this case Bob wins with probability 1=2.In the second alternative, Bob has to announce his guess while the coinis spinning in the air. Although the outcome is determined in principleby the motion of the coin, Bob does not have accurate information onthe motion. Thus we believe that, also in this case, Bob wins withprobability 1=2.2We mention that Kolmogorov's approach is inherently intractable (i.e., Kolmogorov Com-plexity is uncomputable).



314 CHAPTER 8. PSEUDORANDOM GENERATORSThe third alternative is similar to the second, except that Bob hasat his disposal sophisticated equipment capable of providing accurateinformation on the coin's motion as well as on the environment e�ectingthe outcome. However, Bob cannot process this information in time toimprove his guess.In the fourth alternative, Bob's recording equipment is directly con-nected to a powerful computer programmed to solve the motion equa-tions and output a prediction. It is conceivable that in such a case Bobcan improve substantially his guess of the outcome of the coin.We conclude that the randomness of an event is relative to the information andcomputing resources at our disposal. At the extreme, even events that are fullydetermined by public information may be perceived as random events by an ob-server that lacks the relevant information and/or the ability to process it. Ourfocus will be on the lack of su�cient processing power, and not on the lack of su�-cient information. The lack of su�cient processing power may be due either to theformidable amount of computation required (for analyzing the event in question)or to the fact that the observer happens to be very limited.A natural notion of pseudorandomness arises { a distribution is pseudorandomif no e�cient procedure can distinguish it from the uniform distribution, where ef-�cient procedures are associated with (probabilistic) polynomial-time algorithms.This speci�c notion of pseudorandomness is indeed the most fundamental one, andmuch of this chapter is focused on it. Weaker notions of pseudorandomness ariseas well { they refer to indistinguishability by weaker procedures such as space-bounded algorithms, constant-depth circuits, etc. Stretching this approach evenfurther one may consider algorithms that are designed on purpose so not to distin-guish even weaker forms of \pseudorandom" sequences from random ones (wheresuch algorithms arise naturally when trying to convert some natural randomizedalgorithm into deterministic ones; see Section 8.5).The foregoing discussion has focused at one aspect of the pseudorandomnessquestion { the resources or type of the observer (or potential distinguisher). An-other important aspect is whether such pseudorandom sequences can be generatedfrom much shorter ones, and at what cost (or complexity). A natural approachrequires the generation process to be e�cient, and furthermore to be �xed be-fore the speci�c observer is determined. Coupled with the aforementioned strongnotion of pseudorandomness, this yields the archetypical notion of pseudorandomgenerators { these operating in (�xed) polynomial-time and producing sequencesthat are indistinguishable from uniform ones by any polynomial-time observer. Inparticular, this means that the distinguisher is allowed more resources than the gen-erator. Such (general-purpose) pseudorandom generators (discussed in Section 8.2)allow to decrease the randomness complexity of any e�cient application, and arethus of great relevance to randomized algorithms and cryptography. The termgeneral-purpose is meant to emphasize the fact that the same generator is goodfor all e�cient applications, including those that consume more resources than thegenerator itself.
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?Figure 8.1: Pseudorandom generators { an illustration.Although general-purpose pseudorandom generators are very appealing, thereare important reasons for considering also the opposite relation between the com-plexities of the generation and distinguishing tasks; that is, allowing the pseudo-random generator to use more resources (e.g., time or space) than the observer ittries to fool. This alternative is natural in the context of derandomization (i.e.,converting randomized algorithms to deterministic ones), where the crucial step isreplacing the random input of an algorithm by a pseudorandom input, which in turncan be generated based on a much shorter random seed. In particular, when de-randomizing a probabilistic polynomial-time algorithm, the observer (to be fooledby the generator) is a �xed algorithm. In this case employing a more complexgenerator merely means that the complexity of the derived deterministic algorithmis dominated by the complexity of the generator (rather than by the complexity ofthe original randomized algorithm). Needless to say, allowing the generator to usemore resources than the observer that it tries to fool makes the task of designingpseudorandom generators potentially easier, and enables derandomization resultsthat are not known when using general-purpose pseudorandom generators. Theusefulness of this approach is demonstrated in Sections 8.3 through 8.5.We note that the goal of all types of pseudorandom generators is to allow thegeneration of \su�ciently random" sequences based on much shorter random seeds.Thus, pseudorandom generators o�er signi�cant saving in the randomness complex-ity of various applications (and in some cases eliminating randomness altogether).Saving on randomness is valuable because many applications are severely limited intheir ability to generate or obtain truly random bits. Furthermore, typically, gener-ating truly random bits is signi�cantly more expensive than standard computationsteps. Thus, randomness is a computational resource that should be considered ontop of time complexity (analogously to the consideration of space complexity).Organization. In Section 8.1 we present the general paradigm underlying thevarious notions of pseudorandom generators. The archetypical case of general-purpose pseudorandom generators is presented in Section 8.2. We then turn toalternative notions of pseudorandom generators: generators that su�ce for thederandomization of complexity classes such as BPP are discussed in Section 8.3;pseudorandom generators in the domain of space-bounded computations are dis-



316 CHAPTER 8. PSEUDORANDOM GENERATORScussed in Section 8.4; and special-purpose generators are discussed in Section 8.5.Teaching note: If you can a�ord teaching only one of the alternative notions of pseu-dorandom generators, then we suggest teaching the notion of general-purpose pseudo-random generators (presented in Section 8.2). This notion is more relevant to computerscience at large and the technical material is relatively simpler. The chapter is organizedto facilitate this option.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1). In particular,standard conventions regarding random variables (presented in Appendix D.1.1)will be extensively used. We shall also apply a couple of results from Chapter 7,but these applications will be self-contained.8.1 The General ParadigmTeaching note: We advocate a uni�ed view of various notions of pseudorandom gener-ators. That is, we view these notions as incarnations of a general abstract paradigm, tobe presented in this section. A teacher that wishes to focus on one of these incarnationsmay still use this section as a general motivation towards the speci�c de�nitions usedlater. On the other hand, some students may prefer reading this section after studyingone of the speci�c incarnations.A generic formulation of pseudorandom generators consists of specifying three fun-damental aspects { the stretch measure of the generators; the class of distinguishersthat the generators are supposed to fool (i.e., the algorithms with respect to whichthe computational indistinguishability requirement should hold); and the resourcesthat the generators are allowed to use (i.e., their own computational complexity).Let us elaborate.Stretch function: A necessary requirement from any notion of a pseudorandomgenerator is that the generator is a deterministic algorithm that stretches shortstrings, called seeds, into longer output sequences.3 Speci�cally, this algorithmstretches k-bit long seeds into `(k)-bit long outputs, where `(k) > k. The function` : N ! N is called the stretch measure (or stretch function) of the generator. Insome settings the speci�c stretch measure is immaterial (e.g., see Section 8.2.4).Computational Indistinguishability: A necessary requirement from any no-tion of a pseudorandom generator is that the generator \fools" some non-trivialalgorithms. That is, it is required that any algorithm taken from a predeterminedclass of interest cannot distinguish the output produced by the generator (when thegenerator is fed with a uniformly chosen seed) from a uniformly chosen sequence.3Indeed, the seed represents the randomness that is used in the generation of the outputsequences; that is, the randomized generation process is decoupled into a deterministic algorithmand a random seed. This decoupling facilitates the study of such processes.



8.1. THE GENERAL PARADIGM 317Thus, we consider a class D of distinguishers (e.g., probabilistic polynomial-timealgorithms) and a class F of (threshold) functions (e.g., reciprocals of positive poly-nomials), and require that the generator G satis�es the following: For any D 2 D,any f 2 F , and for all su�ciently large k's it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k) ; (8.1)where Un denotes the uniform distribution over f0; 1gn and the probability is takenover Uk (resp., U`(k)) as well as over the coin tosses of algorithm D in case it isprobabilistic. The reader may think of such a distinguisher, D, as trying to tellwhether the \tested string" is a random output of the generator (i.e., distributedas G(Uk)) or is a truly random string (i.e., distributed as U`(k)). The condition inEq. (8.1) requires that D cannot make a meaningful decision; that is, ignoring anegligible di�erence (represented by f(k)), D's verdict is the same in both cases.4The archetypical choice is that D is the set of all probabilistic polynomial-timealgorithms, and F is the set of all functions that are the reciprocal of some positivepolynomial.Complexity of Generation: The archetypical choice is that the generator hasto work in polynomial-time (in length of its input { the seed). Other choices willbe discussed as well. We note that placing no computational requirements on thegenerator (or, alternatively, putting very mild requirements such as upper-boundingthe running-time by a double-exponential function), yields \generators" that canfool any subexponential-size circuit family (see Exercise 8.1).Notational conventions. We will consistently use k for denoting the length ofthe seed of a pseudorandom generator, and `(k) for denoting the length of thecorresponding output. In some cases, this makes our presentation a little morecumbersome (since a more natural presentation may specify some other parametersand let the seed-length be a function of the latter). However, our choice has theadvantage of focusing attention on the fundamental parameter of pseudorandomgeneration process { the length of the random seed. We note that whenever apseudorandom generator is used to \derandomize" an algorithm, n will denote thelength of the input to this algorithm, and k will be selected as a function of n.Some instantiations of the general paradigm. Two important instantiationsof the notion of pseudorandom generators relate to polynomial-time distinguishers.1. General-purpose pseudorandom generators correspond to the case that thegenerator itself runs in polynomial-time and needs to withstand any prob-abilistic polynomial-time distinguisher, including distinguishers that run for4The class of threshold functions F should be viewed as determining the class of noticeableprobabilities (as a function of k). Thus, we require certain functions (i.e., those presented at thel.h.s of Eq. (8.1)) to be smaller than any noticeable function on all but �nitely many integers. Wecall the former functions negligible. Note that a function may be neither noticeable nor negligible(e.g., it may be smaller than any noticeable function on in�nitely many values and yet larger thansome noticeable function on in�nitely many other values).



318 CHAPTER 8. PSEUDORANDOM GENERATORSmore time than the generator. Thus, the same generator may be used safelyin any e�cient application. (This notion is treated in Section 8.2.)2. In contrast, pseudorandom generators intended for derandomization may runmore time than the distinguisher, which is viewed as a �xed circuit havingsize that is upper-bounded by a �xed polynomial. (This notion is treated inSection 8.3.)In addition, the general paradigm may be instantiated by focusing on the space-complexity of the potential distinguishers (and the generator), rather than on theirtime-complexity. Furthermore, one may also consider distinguishers that merelyre
ect probabilistic properties such as pair-wise independence, small-bias, and hit-ting frequency.8.2 General-Purpose Pseudorandom GeneratorsRandomness is playing an increasingly important role in computation: It is fre-quently used in the design of sequential, parallel and distributed algorithms, andit is of course central to cryptography. Whereas it is convenient to design such al-gorithms making free use of randomness, it is also desirable to minimize the usageof randomness in real implementations. Thus, general-purpose pseudorandom gen-erators (as de�ned next) are a key ingredient in an \algorithmic tool-box" { theyprovide an automatic compiler of programs written with free usage of randomnessinto programs that make an economical use of randomness.Organization of this section. Since this is a relatively long section, a shortroad-map seems in place. In Section 8.2.1 we provide the basic de�nition of general-purpose pseudorandom generators, and in Section 8.2.2 we describe their archetyp-ical application (which was eluded to in the former paragraph). In Section 8.2.3we provide a wider perspective on the notion of computational indistinguishabil-ity that underlies the basic de�nition, and in Section 8.2.4 we justify the littleconcern (shown in Section 8.2.1) regarding the speci�c stretch function. In Sec-tion 8.2.5 we address the existence of general-purpose pseudorandom generators.In Section 8.2.6 we motivate and discuss a non-uniform version of computationalindistinguishability. We conclude in Section 8.2.7 by reviewing other variants andre
ecting on various conceptual aspects of the notions discussed in this section.8.2.1 The basic de�nitionLoosely speaking, general-purpose pseudorandom generators are e�cient determin-istic programs that expand short randomly selected seeds into longer pseudorandombit sequences, where the latter are de�ned as computationally indistinguishablefrom truly random sequences by any e�cient algorithm. Identifying e�ciency withpolynomial-time operation, this means that the generator (being a �xed algorithm)works within some �xed polynomial-time, whereas the distinguisher may be anyalgorithm that runs in polynomial-time. Thus, the distinguisher is potentially more



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 319complex than the generator; for example, the distinguisher may run in time thatis cubic in the running-time of the generator. Furthermore, to facilitate the de-velopment of this theory, we allow the distinguisher to be probabilistic (whereasthe generator remains deterministic as stated previously). We require that suchdistinguishers cannot tell the output of the generator from a truly random string ofsimilar length, or rather that the di�erence that such distinguishers may detect (or\sense") is negligible. Here a negligible function is a function that vanishes fasterthan the reciprocal of any positive polynomial.5De�nition 8.1 (general-purpose pseudorandom generator): A deterministic polynomial-time algorithm G is called a pseudorandom generator if there exists a stretch func-tion, ` : N!N (satisfying `(k) > k for all k), such that for any probabilisticpolynomial-time algorithm D, for any positive polynomial p, and for all su�cientlylarge k's it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < 1p(k) (8.2)where Un denotes the uniform distribution over f0; 1gn and the probability is takenover Uk (resp., U`(k)) as well as over the internal coin tosses of D.Thus, De�nition 8.1 is derived from the generic framework (presented in Sec-tion 8.1) by taking the class of distinguishers to be the set of all probabilisticpolynomial-time algorithms, and taking the class of (noticeable) threshold functionsto be the set of all functions that are the reciprocals of some positive polynomial.6Indeed, the principles underlying De�nition 8.1 were discussed in Section 8.1 (andwill be further discussed in Section 8.2.3).We note that De�nition 8.1 does not make any requirement regarding the stretchfunction ` : N!N , except for the generic requirement that `(k) > k for all k.Needless to say, the larger ` is the more useful is the pseudorandom generator. Ofcourse, ` is upper-bounded by the running-time of the generator (and hence by apolynomial). In Section 8.2.4 we show that any pseudorandom generator (even onehaving minimal stretch `(k) = k+1) can be used for constructing a pseudorandomgenerator having any desired (polynomial) stretch function. But before doing so, werigorously discuss the \saving in randomness" o�ered by pseudorandom generators,and provide a wider perspective on the notion of computational indistinguishabilitythat underlies De�nition 8.1.5De�nition 8.1 requires that the functions representing the distinguishing gap of certain al-gorithms should be smaller than the reciprocal of any positive polynomial for all but �nitelymany k's. The former functions are called negligible (cf. Footnote 4, when identifying noticeablefunctions with the reciprocals of any positive polynomial). The notion of negligible probability isrobust in the sense that any event that occurs with negligible probability will occur with negligibleprobability also when the experiment is repeated a \feasible" (i.e., polynomial) number of times.6The latter choice is naturally coupled with the association of e�cient computation withpolynomial-time algorithms: An event that occurs with noticeable probability occurs almostalways when the experiment is repeated a \feasible" (i.e., polynomial) number of times.



320 CHAPTER 8. PSEUDORANDOM GENERATORS8.2.2 The archetypical applicationWe note that \pseudo-random number generators" appeared with the �rst com-puters, and have been used ever since for generating random choices (or samples)for various applications. However, typical implementations use generators that arenot pseudorandom according to De�nition 8.1. Instead, at best, these generatorsare shown to pass some ad-hoc statistical test (cf., [145]). We warn that the factthat a \pseudo-random number generator" passes some statistical tests, does notmean that it will pass a new test and that it will be good for a future (untested)application. Needless to say, the approach of subjecting the generator to somead-hoc tests fails to provide general results of the form \for all practical purposesusing the output of the generator is as good as using truly unbiased coin tosses." Incontrast, the approach encompassed in De�nition 8.1 aims at such generality, andin fact is tailored to obtain it: The notion of computational indistinguishability,which underlines De�nition 8.1, covers all possible e�cient applications and guar-antees that for all of them pseudorandom sequences are as good as truly randomones. Indeed, any e�cient randomized algorithm maintains its performance whenits internal coin tosses are substituted by a sequence generated by a pseudorandomgenerator. This substitution is spell-out next.Construction 8.2 (typical application of pseudorandom generators): Let G be apseudorandom generator with stretch function ` :N!N . Let A be a probabilisticpolynomial-time algorithm, and � :N!N denote its randomness complexity. De-note by A(x; r) the output of A on input x and coin tosses sequence r 2 f0; 1g�(jxj).Consider the following randomized algorithm, denoted AG:On input x, set k = k(jxj) to be the smallest integer such that `(k) ��(jxj), uniformly select s 2 f0; 1gk, and output A(x; r), where r is the�(jxj)-bit long pre�x of G(s).That is, AG(x; s) = A(x;G0(s)), for jsj = k(jxj) = argminif`(i) � �(jxj)g, whereG0(s) is the �(jxj)-bit long pre�x of G(s).Thus, using AG instead of A, the randomness complexity is reduced from � to`�1 ��, while (as we show next) it is infeasible to �nd inputs (i.e., x's) on which thenoticeable behavior of AG is di�erent from the one of A. For example, if `(k) = k2,then the randomness complexity is reduced from � to p�. We stress that thepseudorandom generator G is universal; that is, it can be applied to reduce therandomness complexity of any probabilistic polynomial-time algorithm A.Proposition 8.3 Let A, � and G be as in Construction 8.2, and suppose that� : N ! N is 1-1. Then, for every pair of probabilistic polynomial-time algorithms,a �nder F and a tester T , every positive polynomial p and all su�ciently long n'sXx2f0;1gn Pr[F (1n) = x] � j�A;T (x) j < 1p(n) (8.3)



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 321where �A;T (x) def= Pr[T (x;A(x; U�(jxj))) = 1] � Pr[T (x;AG(x; Uk(jxj))) = 1], andthe probabilities are taken over the Um's as well as over the internal coin tosses ofthe algorithms F and T .Algorithm F represents a potential attempt to �nd an input x on which the outputof AG is distinguishable from the output of A. This \attempt" may be benignas in the case that a user employs algorithm AG on inputs that are generatedby some probabilistic polynomial-time application. However, the attempt mayalso be adversarial as in the case that a user employs algorithm AG on inputsthat are provided by a potentially malicious party. The potential tester, denotedT , represents the potential use of the output of algorithm AG, and captures therequirement that this output be as good as a corresponding output produced by A.Thus, T is given x as well as the corresponding output produced either by AG(x) def=A(x; Uk(jxj)) or by A(x) = A(x; U�(jxj)), and it is required that T cannot tell thedi�erence. In the case that A is a probabilistic polynomial-time decision procedure,this means that it is infeasible to �nd an x on which AG decides incorrectly (i.e.,di�erently than A). In the case that A is a search procedure for some NP-relation,it is infeasible to �nd an x on which AG outputs a wrong solution. For details, seeExercise 8.2.Proof: The proposition is proven by showing that any triple (A;F; T ) violating theclaim can be converted into an algorithm D that distinguishes the output of G fromthe uniform distribution, in contradiction to the hypothesis. The key observationis that for every x 2 f0; 1gn it holds that�A;T (x) = Pr[T (x;A(x; U�(n)))=1]� Pr[T (x;A(x;G0(Uk(n))))=1]; (8.4)where G0(s) is the �(n)-bit long pre�x of G(s). Thus, a method for �nding a stringx such that j�A;T (x)j is large yields a way of distinguishing U`(k(n)) from G(Uk(n));that is, given a sample r 2 f0; 1g`(k(n)) and using such a string x 2 f0; 1gn, thedistinguisher outputs T (x;A(x; r0)), where r0 is the �(n)-bit long pre�x of r. Indeed,we shall show that the violation of Eq. (8.3), which refers to Ex F (1n)[j�A;T (x)j],yields a violation of the hypothesis that G is a pseudorandom generator (by �ndingan adequate string x and using it). This intuitive argument requires a slightlycareful implementation, which is provided next.As a warm-up, consider the following algorithm D. On input r (taken fromeither U`(k(n)) or G(Uk(n))), algorithm D �rst obtains x F (1n), where n can beobtained easily from jrj (because � is 1-1 and 1n 7! �(n) is computable via A).Next, D obtains y = A(x; r0), where r0 is the �(jxj)-bit long pre�x of r. Finally Doutputs T (x; y). Note that D is implementable in probabilistic polynomial-time,and that D(U`(k(n))) � T (Xn; A(Xn; U�(n))) ; where Xn def= F (1n)D(G(Uk(n))) � T (Xn; A(Xn; G0(Uk(n)))) ; where Xn def= F (1n).Using Eq. (8.4), it follows that Pr[D(U`(k(n))) = 1] � Pr[D(G(Uk(n))) = 1] equalsE[�A;T (F (1n))], which implies that E[�A;T (F (1n))] must be negligible (because



322 CHAPTER 8. PSEUDORANDOM GENERATORSotherwise we derive a contradiction to the hypothesis that G is a pseudoran-dom generator). This yields a weaker version of the proposition asserting thatE[�A;T (F (1n))] is negligible (rather than that E[j�A;T (F (1n))j] is negligible).In order to prove that E[j�A;T (F (1n))j] (rather than to E[�A;T (F (1n))]) isnegligible, we need to modify D a little. Note that the source of trouble is that�A;T (�) may be positive on some x's and negative on others, and thus it may be thecase that E[�A;T (F (1n))] is small (due to cancelations) even if E[j�A;T (F (1n))j]is large. This di�culty can be overcome by determining the sign of �A;T (�) onx = F (1n) and changing the outcome of D accordingly; that is, the modi�ed Dwill output T (x;A(x; r0)) if �A;T (x) > 0 and 1�T (x;A(x; r0)) otherwise. Thus, ineach case, the contribution of x to the distinguishing gap of the modi�ed D will bej�A;T (x)j. We further note that if j�A;T (x)j is small then it does not matter muchwhether we act as in the case of �A;T (x) > 0 or in the case of �A;T (x) � 0. Thus,it su�ces to correctly determine the sign of �A;T (x) in the case that j�A;T (x)j islarge, which is certainly a feasible (approximation) task. Details follow.We start by assuming, towards the contradiction, that E[j�A;T (F (1n))j] > "(n)for some non-negligible function ". On input r (taken from either U`(k(n)) orG(Uk(n))), the modi�ed algorithm D �rst obtains x  F (1n), just as the basicversion. Next, using a sample of size poly(n="(n)), it approximates pU (x) def=Pr[T (x;A(x; U�(n)) = 1] and pG(x) def= Pr[T (x;A(x;G0(Uk(n))) = 1] such that eachprobability is approximated to within a deviation of "(n)=8 with negligible errorprobability (say, exp(�n)). (Note that, so far, the actions of D only depend on thelength of its input r, which determines n.)7 If these approximations indicate thatpU (x) � pG(x) (equiv., that �A;T (x) � 0) then D outputs T (x;A(x; r0)) else itoutputs 1�T (x;A(x; r0)), where r0 is the �(jxj)-bit long pre�x of r and we assumewithout loss of generality that the output of T is in f0; 1g.The analysis of the modi�ed distinguisher D is based on the fact that if theapproximations yield a correct decision regarding the relation between pU (x) andpG(x), then the contribution of x to the distinguishing gap of D is jpU (x)�pG(x)j.8We also note that if jpU (x) � pG(x)j > "(n)=4, then with overwhelmingly highprobability (i.e., 1 � exp(�n)) the approximation of pU (x) � pG(x) maintains thesign of pU (x)�pG(x) (because each of the two quantities is approximated to withinan additive error of "(n)=8). Finally, we note that if jpU (x)�pG(x)j � "(n)=4 thenwe may often err regarding the sign of pU (x) � pG(x) but the damage caused (tothe distinguishing gap of D) by this error is at most 2jpU (x) � pG(x)j � "(n)=2.Combining all these observations, we get:Pr[D(U`(k(n)))=1jF (1n)=x] � Pr[D(G(Uk(n)))=1jF (1n)=x]7Speci�cally, the approximation to pU (x) (resp., pG(x)) is obtained by generating a sample ofU�(n) (resp., G0(Uk(n))) and invoking the algorithms A and T ; that is, given a sample r1; :::; rtof U�(n) (resp., G0(Uk(n))), where t = O(n="(n)2), we approximate pU (x) (resp., pG(x)) byjfi2 [t] : T (x;A(x; ri)=1gj=t.8Indeed, if pU (x) � pG(x) then the contribution is pU (x)� pG(x) = jpU(x)� pG(x)j, whereasif pU(x) < pG(x) then the contribution is (1 � pU (x))� (1� pG(x)) = �(pU (x)� pG(x)), whichalso equals jpU(x)� pG(x)j.



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 323� jpU (x)� pG(x)j � �(x); (8.5)where �(x) = "(n)=2 if jpU (x) � pG(x)j � "(n)=4 and �(x) = exp(�n) otherwise.(Indeed, �(x) represents the expected damage due to an error in determining thesign of pU (x)�pG(x), where "(n)=2 upper-bounds the damage caused (by a wrongdecision) in the case that jpU (x)�pG(x)j � "(n)=4 and exp(�n) upper-bounds theprobability of a wrong decision in the case that jpU (x) � pG(x)j > "(n)=4.) Thus,Pr[D(U`(k(n)))= 1] � Pr[D(G(Uk(n))) =1] is lower-bounded by the expectation ofEq. (8.5), which equals E[j�A;T (F (1n))j]�E[�(F (1n))]. Combining the hypothesisthat E[j�A;T (F (1n))j] > "(n) and the fact that maxx2f0;1gnf�(x)g � "(n)=2, weinfer that Pr[D(U`(k(n))) = 1] � Pr[D(G(Uk(n))) = 1] > "(n)=2. Recalling thatD runs in time poly(n="(n)), this contradicts the pseudorandomness of G. Theproposition follows.Conclusion. Although the foregoing refers to standard probabilistic polynomial-time algorithms, a similar construction and analysis applied to any e�cient ran-domized process (i.e., any e�cient multi-party computation). Any such processpreserves its behavior when replacing its perfect source of randomness (postulatedin its analysis) by a pseudorandom sequence (which may be used in the implemen-tation). Thus, given a pseudorandom generator with a large stretch function, onecan considerably reduce the randomness complexity of any e�cient application.8.2.3 Computational IndistinguishabilityIn this section we spell-out (and study) the de�nition of computational indistin-guishability that underlies De�nition 8.1.8.2.3.1 The general formulationThe (general formulation of the) de�nition of computational indistinguishabilityrefers to arbitrary probability ensembles. Here a probability ensemble is an in�nitesequence of random variables fZngn2N such that each Zn ranges over strings oflength that is polynomially related to n (i.e., there exists a polynomial p such thatfor every n it holds that jZnj � p(n) and p(jZnj) � n). We say that fXngn2N andfYngn2N are computationally indistinguishable if for every feasible algorithm A thedi�erence dA(n) def= jPr[A(Xn) = 1] � Pr[A(Yn) = 1]j is a negligible function in n.That is:De�nition 8.4 (computational indistinguishability): The probability ensemblesfXngn2N and fYngn2N are computationally indistinguishable if for every probabilis-tic polynomial-time algorithm D, every positive polynomial p, and all su�cientlylarge n, jPr[D(Xn)=1]� Pr[D(Yn)=1]j < 1p(n) (8.6)where the probabilities are taken over the relevant distribution (i.e., either Xn orYn) and over the internal coin tosses of algorithm D. The l.h.s. of Eq. (8.6), when



324 CHAPTER 8. PSEUDORANDOM GENERATORSviewed as a function of n, is often called the distinguishing gap ofD, where fXngn2Nand fYngn2N are understood from the context.We can think of D as representing somebody who wishes to distinguish two distri-butions (based on a given sample drawn from one of the distributions), and thinkof the output \1" as representing D's verdict that the sample was drawn accordingto the �rst distribution. Saying that the two distributions are computationally in-distinguishable means that if D is a feasible procedure then its verdict is not reallymeaningful (because the verdict is almost as often 1 when the sample is drawn fromthe �rst distribution as when the sample is drawn from the second distribution).We comment that the absolute value in Eq. (8.6) can be omitted without a�ectingthe de�nition (see Exercise 8.3), and we will often do so without warning.In De�nition 8.1, we required that the probability ensembles fG(Uk)gk2N andfU`(k)gk2N be computationally indistinguishable. Indeed, an important specialcase of De�nition 8.4 is when one ensemble is uniform, and in such a case we callthe other ensemble pseudorandom.8.2.3.2 Relation to statistical closenessTwo probability ensembles, fXngn2N and fYngn2N, are said to be statistically close(or statistically indistinguishable) if for every positive polynomial p and all su�cientlarge n the variation distance between Xn and Yn (i.e., 12Pz jPr[Xn=z]�Pr[Yn=z]j) is bounded above by 1=p(n). Clearly, any two probability ensembles that arestatistically close are computationally indistinguishable. Needless to say, this isa trivial case of computational indistinguishability, which is due to informationtheoretic reasons. In contrast, we shall be interested in non-trivial cases (of com-putational indistinguishability), which correspond to probability ensembles thatare statistically far apart.Indeed, as noted in Section 8.1, there exist probability ensembles that are sta-tistically far apart and yet are computationally indistinguishable (see Exercise 8.1).However, at least one of the probability ensembles in Exercise 8.1 is not polynomial-time constructible.9 We shall be much more interested in non-trivial cases of com-putational indistinguishability in which both ensembles are polynomial-time con-structible. An important example is provided by the de�nition of pseudorandomgenerators (see Exercise 8.7). As we shall see (in Theorem 8.11), the existenceof one-way functions implies the existence of pseudorandom generators, which inturn implies the existence of polynomial-time constructible probability ensemblesthat are statistically far apart and yet are computationally indistinguishable. Wemention that this su�cient condition is also necessary (see Exercise 8.9).8.2.3.3 Indistinguishability by Multiple SamplesThe de�nition of computational indistinguishability (i.e., De�nition 8.4) refers todistinguishers that obtain a single sample from one of the two relevant probability9We say that fZngn2N is polynomial-time constructible if there exists a polynomial-timealgorithm S such that S(1n) and Zn are identically distributed.



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 325ensembles (i.e., fXngn2N and fYngn2N). A very natural generalization of De�ni-tion 8.4 refers to distinguishers that obtain several independent samples from suchan ensemble.De�nition 8.5 (indistinguishability by multiple samples): Let s :N!N be polynomially-bounded. Two probability ensembles, fXngn2N and fYngn2N, are computationallyindistinguishable by s(�) samples if for every probabilistic polynomial-time algorithm,D, every positive polynomial p(�), and all su�ciently large n's���Pr hD(X(1)n ; :::; X(s(n))n )=1i� Pr hD(Y (1)n ; :::; Y (s(n))n )=1i��� < 1p(n)where X(1)n through X(s(n))n and Y (1)n through Y (s(n))n are independent random vari-ables such that each X(i)n is identical to Xn and each Y (i)n is identical to Yn.It turns out that in the most interesting cases, computational indistinguishabilityby a single sample implies computational indistinguishability by any polynomialnumber of samples. One such case is the case of polynomial-time constructibleensembles. We say that the ensemble fZngn2N is polynomial-time constructible ifthere exists a polynomial-time algorithm S such that S(1n) and Zn are identicallydistributed.Proposition 8.6 Suppose that X def= fXngn2N and Y def= fYngn2N are both polynomial-time constructible, and s be a polynomial. Then, X and Y are computationallyindistinguishable by a single sample if and only if they are computationally indis-tinguishable by s(�) samples.Clearly, for every polynomial s, computational indistinguishability by s(�) samplesimplies computational indistinguishability by a single sample (see Exercise 8.5).We now prove that, for e�ciently constructible ensembles, indistinguishability by asingle sample implies indistinguishability by multiple samples.10 The proof providesa simple demonstration of a central proof technique, known as the hybrid technique.Proof Sketch:11 Again, the proof uses the counter-positive, which in such settingsis called a reducibility argument (see Section 7.1.2 onwards). Speci�cally, we showthat the existence of an e�cient algorithm that distinguishes the ensembles X andY using several samples, implies the existence of an e�cient algorithm that distin-guishes the ensembles X and Y using a single sample. The implication is provenusing the following argument, which will be latter called a \hybrid argument".To prove that a sequence of s(n) samples drawn independently from Xn isindistinguishable from a sequence of s(n) samples drawn independently from Yn,we consider hybrid sequences such that the ith hybrid consists of i samples of Xnfollowed by s(n)� i samples of Yn. The \homogeneous" sequences (which we wish10The requirement that both ensembles are polynomial-time constructible is essential; see,Exercise 8.10.11For more details see [90, Sec. 3.2.3].



326 CHAPTER 8. PSEUDORANDOM GENERATORSto prove to be computational indistinguishable) are the extreme hybrids (i.e., the�rst and last hybrids). The key observation is that distinguishing the extremehybrids (towards the contradiction hypothesis) implies distinguishing neighboringhybrids, which in turn yields a procedure for distinguishing single samples of thetwo original distributions (contradicting the hypothesis that these two distributionsare indistinguishable by a single sample). Details follow.Suppose, towards the contradiction, that D distinguishes s(n) samples of Xnfrom s(n) samples of Yn, with a distinguishing gap of �(n). Denoting the ithhybrid by H in (i.e., H in = (X(1)n ; :::; X(i)n ; Y (i+1)n ; :::; Y (s(n))n )), this means that Ddistinguishes the extreme hybrids (i.e., H0n and Hs(n)n ) with gap �(n). It followsthat D distinguishes a random pair of neighboring hybrids (i.e., D distinguishesH in from H i+1n , for a randomly selected i) with gap at least �(n)=s(n): the reasonbeing that Ei2f0;:::;s(n)�1g �Pr[D(H in) = 1]� Pr[D(H i+1n ) = 1]�= 1s(n) � s(n)�1Xi=0 �Pr[D(H in) = 1]� Pr[D(H i+1n ) = 1]� (8.7)= 1s(n) � �Pr[D(H0n) = 1]� Pr[D(Hs(n)n ) = 1]� = �(n)s(n) :The key step in the argument is transforming the distinguishability of neighbor-ing hybrids into distinguishability of single samples of the original ensembles (thusderiving a contradiction). Indeed, using D, we obtain a distinguisher D0 of singlesamples: Given a single sample, algorithm D0 selects i 2 f0; :::; s(n) � 1g at ran-dom, generates i samples from the �rst distribution and s(n)� i� 1 samples fromthe second distribution, invokes D with the s(n)-samples sequence obtained whenplacing the input sample in location i+1, and answers whatever D does. That is,on input z and when selecting the index i, algorithm D0 invokes D on a samplefrom the distribution (X(1)n ; :::; X(i)n ; z; Y (i+2)n ; :::; Y (s(n))n ). Thus, the constructionof D0 relies on the hypothesis that both probability ensembles are polynomial-timeconstructible. The analysis of D0 is based on the following two facts:1. When invoked on an input that is distributed according to Xn and selectingthe index i 2 f0; :::; s(n) � 1g, algorithm D0 behaves like D(H i+1n ), because(X(1)n ; :::; X(i)n ; Xn; Y (i+2)n ; :::; Y (s(n))n ) � H i+1n .2. When invoked on an input that is distributed according to Yn and selectingthe index i 2 f0; :::; s(n) � 1g, algorithm D0 behaves like D(H in), because(X(1)n ; :::; X(i)n ; Yn; Y (i+2)n ; :::; Y (s(n))n ) � H in.Thus, the distinguishing gap of D0 (between Yn and Xn) is captured by Eq. (8.7),and the claim follows (because assuming towards the contradiction that the propo-sition's conclusion does not hold leads to a contradiction of the proposition's hy-pothesis).



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 327The hybrid technique { a digest: The hybrid technique constitutes a specialtype of a \reducibility argument" in which the computational indistinguishabilityof complex ensembles is proved using the computational indistinguishability of basicensembles. The actual reduction is in the other direction: e�ciently distinguishingthe basic ensembles is reduced to e�ciently distinguishing the complex ensembles,and hybrid distributions are used in the reduction in an essential way. The followingthree properties of the construction of the hybrids play an important role in theargument:1. The complex ensembles collide with the extreme hybrids. This property isessential because our aim is proving something that relates to the complexensembles (i.e., their indistinguishability), while the argument itself refers tothe extreme hybrids.In the proof of Proposition 8.6 the extreme hybrids (i.e., Hs(n)n andH0n) collidewith the complex ensembles that represent s(n)-ary sequences of samples ofone of the basic ensembles.2. The basic ensemble are e�ciently mapped to neighboring hybrids. This prop-erty is essential because our starting hypothesis relates to the basic ensem-bles (i.e., their indistinguishability), while the argument itself refers directlyto the neighboring hybrids. Thus, we need to translate our knowledge (i.e.,computational indistinguishability) of the basic ensembles to knowledge (i.e.,computational indistinguishability) of any pair of neighboring hybrids. Typ-ically, this is done by e�ciently transforming strings in the range of a basicdistribution into strings in the range of a hybrid such that the transforma-tion maps the �rst basic distribution to one hybrid and the second basicdistribution to the neighboring hybrid.In the proof of Proposition 8.6 the basic ensembles (i.e., Xn and Yn) weree�ciently transformed into neighboring hybrids (i.e., H i+1n and H in, respec-tively). Recall that, in this case, the e�ciency of this transformation reliedon the hypothesis that both the basic ensembles are polynomial-time con-structible.3. The number of hybrids is small (i.e., polynomial). This property is essentialin order to deduce the computational indistinguishability of extreme hybridsfrom the computational indistinguishability of each pair of neighboring hy-brids. Typically, the \distinguishability gap" established in the argumentlosses a factor that is proportional to the number of hybrids. This is due tothe fact that the gap between the extreme hybrids is upper-bounded by thesum of the gaps between neighboring hybrids.In the proof of Proposition 8.6 the number of hybrids equals s(n) and theaforementioned loss is re
ected in Eq. (8.7).We remark that in the course of an hybrid argument, a distinguishing algorithmreferring to the complex ensembles is being analyzed and even invoked on arbi-trary hybrids. The reader may be annoyed of the fact that the algorithm \was



328 CHAPTER 8. PSEUDORANDOM GENERATORSnot designed to work on such hybrids" (but rather only on the extreme hybrids).However, an algorithm is an algorithm: once it exists we can invoke it on inputs ofour choice, and analyze its performance on arbitrary input distributions.8.2.4 Amplifying the stretch functionRecall that the de�nition of pseudorandom generators (i.e., De�nition 8.1) makesa minimal requirement regarding their stretch; that is, it is only required thatthe length of the output of such generators is longer than their input. Needlessto say, we seek pseudorandom generators with a much more signi�cant stretch,�rstly because the stretch determines the saving in randomness obtained via Con-struction 8.2. It turns out (see Construction 8.7) that pseudorandom generatorsof any stretch function (and in particular of minimal stretch `1(k) def= k + 1) canbe easily converted into pseudorandom generators of any desired (polynomiallybounded) stretch function, `. (On the other hand, since pseudorandom generatorsare required (in De�nition 8.1) to run in polynomial time, their stretch must bepolynomially bounded.)Construction 8.7 Let G1 be a pseudorandom generator with stretch function`1(k) = k+1, and ` be any polynomially bounded stretch function that is polynomial-time computable. Let G(s) def= �1�2 � � ��`(jsj) (8.8)where x0 = s and xi�i = G1(xi�1), for i = 1; :::; `(jsj). (That is, �i is the last bitof G1(xi�1) and xi is the jsj-bit long pre�x of G1(xi�1).)Needless to say, G is polynomial-time computable and has stretch `. An alternativeconstruction is considered in Exercise 8.11.
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Figure 8.2: Analysis of stretch ampli�cation { the ith hybrid.Proposition 8.8 Let G1 and G be as in Construction 8.7. Then G constitutes apseudorandom generator.



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 329Proof Sketch:12 The proposition is proven using the hybrid technique, presentedand discussed in Section 8.2.3. Here (for i = 0; :::; `(k)) we consider the hybriddistributions H ik, depicted in Figure 8.2 and de�ned byH ik def= U (1)i � g`(k)�i(U (2)k );where � denotes the concatenation of strings, gj(x) denotes the j-bit long pre�x ofG(x), and U (1)i and U (2)k are independent uniform distributions (over f0; 1gi andf0; 1gk, respectively). The extreme hybrids (i.e., H0k and Hkk ) correspond to G(Uk)and U`(k), whereas distinguishability of neighboring hybrids can be worked intodistinguishability of G1(Uk) and Uk+1. Details follow.We shall focus on proving the indistinguishability of neighboring hybrids.13Suppose, towards the contradiction, that algorithm D distinguishes H ik from H i+1k .We �rst take a closer look at these hybrids. Note that, for j � 1, it holds thatgj(s) � (�; gj�1(x)), where x� = G1(s). Denoting the �rst jxj�1 bits of x by F (x)and the last bit of x by L(x), we may write gj(s) � (L(G1(s)); gj�1(F (G1(s))))and (U (1)1 ; U (2)k ) � (L(Uk+1); F (Uk+1)). It follows thatH ik = U (1)i � g`(k)�i(U (2)k )� (U (1)i ; L(G1(U (2)k )); g(`(k)�i)�1(F (G1(U (2)k ))))H i+1k = U (10)i+1 � g`(k)�i�1(U (2)k )� (U (1)i ; L(U (20)k+1); g(`(k)�i)�1(F (U (20)k+1))):Now, combining the generation of U (1)i and the evaluation of g`(k)�i�1 with the dis-tinguisherD, we distinguish the distribution (F (G1(U (2)k )); L(G1(U (2)k ))) � G1(Uk)from the distribution (F (U (20)k+1); L(U (20)k+1)) � Uk+1, in contradiction to the pseu-dorandomness of G1. Speci�cally, on input x 2 f0; 1gk+1, we uniformly selectr 2 f0; 1gi and output D(r � L(x) � g`(k)�i�1(F (x))). The analysis of the resultingdistinguisher is based on the following two facts:1. When given an input that is distributed according to G1(Uk), we invokealgorithm D on input (U 0i ; L(G1(Uk)); g`(k)�i�1(F (G1(Uk)))) � H ik.2. When given an input that is distributed according to Uk+1, we invoke algo-rithm D on input (U 0i ; L(Uk+1); g`(k)�i�1(F (Uk+1))) � H i+1k .Thus, the probability that we output 1 on input G1(Uk) (resp., Uk+1) equalsPr[D(H ik) = 1] (resp., Pr[D(H i+1k ) = 1]). Hence the distinguishability of neigh-boring hybrids implies the distinguishability of G1(Uk) and Uk+1.12For more details see [90, Sec. 3.3.3].13As usual (when the hybrid technique is used), the distinguishability of the extreme hybrids(which collide with G(Uk) and U`(k), respectively) implies the distinguishability of a random pairof neighboring hybrids. Thus, the following analysis will be applied to a random i (in f0; :::; k�1g),and the full analysis will refer to an expression analogous to Eq. (8.7).



330 CHAPTER 8. PSEUDORANDOM GENERATORSConclusion. In view of the foregoing, when talking about the mere existence ofpseudorandom generators, in the sense of De�nition 8.1, we may ignore the speci�cstretch function.8.2.5 ConstructionsThe constructions surveyed in this section \transform" computational di�culty, inthe form of one-way functions, into generators of pseudorandomness. Recall thata polynomial-time computable function is called one-way if any e�cient algorithmcan invert it only with negligible success probability (see De�nition 7.1 and Sec-tion 7.1 for further discussion). We will actually use hard-core predicates of suchfunctions, and refer the reader to their treatment in Section 7.1.3. Loosely speak-ing, a polynomial-time computable predicate b is called a hard-core of a function fif any e�cient algorithm, given f(x), can guess b(x) with success probability thatis only negligibly higher than half. Recall that (by Theorem 7.7), for any one-wayfunction f , the inner-product mod 2 of x and r is a hard-core of f 0(x; r) = (f(x); r).8.2.5.1 A simple constructionIntuitively, the de�nition of a hard-core predicate implies a potentially interestingcase of computational indistinguishability. Speci�cally, as will be shown implicitlyin Proposition 8.9 and explicitly in Exercise 8.8, if b is a hard-core of the functionf , then the ensemble ff(Un) � b(Un)gn2N is computationally indistinguishable fromthe ensemble ff(Un)�U 01gn2N. Furthermore, if f is 1-1 then the foregoing ensemblesare statistically far apart, and thus constitute a non-trivial case of computationalindistinguishability. If f is also polynomial-time computable and length-preserving,then this yields a construction of a pseudorandom generator.Proposition 8.9 (A simple construction of pseudorandom generators): Let b bea hard-core predicate of a polynomial-time computable 1-1 and length-preservingfunction f . Then, G(s) def= f(s) � b(s) is a pseudorandom generator.Proof Sketch:14 Considering a uniformly distributed s 2 f0; 1gn, we �rst notethat the n-bit long pre�x of G(s) is uniformly distributed in f0; 1gn, because finduces a permutation on the set f0; 1gn. Hence, the proof boils down to showingthat distinguishing f(s) � b(s) from f(s) ��, where � is a random bit, yields contra-diction to the hypothesis that b is a hard-core of f (i.e., that b(s) is unpredictablefrom f(s)). Intuitively, the reason is that such a hypothetical distinguisher alsodistinguishes f(s) � b(s) from f(s) � b(s), where � = 1 � �, whereas distinguishingf(s) � b(s) from f(s) � b(s) yields an algorithm for predicting b(s) based on f(s).Details follow. We start with any potential distinguisher D, and let�(k) def= Pr[D(G(Uk)) = 1]� Pr[D(Uk+1) = 1]:We may assume, without loss of generality, that �(k) is non-negative (for in�nitelymany k's). Observing that G(Uk) = f(Uk) � b(Uk) and that Uk+1 is distributed14For more details see [90, Sec. 3.3.4].



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 331identically to a random variable that equals f(Uk)b(Uk) with probability 1=2 andf(Uk)b(Uk) otherwise, we havePr[D(f(Uk)b(Uk)) = 1]� Pr[D(f(Uk)b(Uk)) = 1] = 2�(k):The key observation is that D e�ectively distinguishes (with gap 2�(k)) the casethat the last bit is b(Uk) from the case that the last bit is b(Uk). This distinguishingability can be transformed to predicting the value of b(Uk), when given the valuef(Uk). Indeed, consider an algorithm A that, on input y, uniformly selects � 2f0; 1g, invokes D(y�), and outputs � if D(y�) = 1 and � otherwise. ThenPr[A(f(Uk)) = b(Uk)]= Pr[D(f(Uk) � �) = 1 ^ � = b(Uk)] + Pr[D(f(Uk) � �) = 0 ^ � = b(Uk)]= 12 � �Pr[D(f(Uk) � b(Uk)) = 1] + �1 � Pr[D(f(Uk) � b(Uk)) = 1]��which equals (1 + 2�(k))=2. This contradicts the hypothesis that b is a hard-coreof f , and the proposition follows.Combining Theorem 7.7, Proposition 8.9 and Construction 8.7, we obtain the fol-lowing corollary.Theorem 8.10 (A su�cient condition for the existence of pseudorandom gener-ators): If there exists 1-1 and length-preserving one-way function then, for everypolynomially bounded stretch function `, there exists a pseudorandom generator ofstretch `.Digest. The main part of the proof of Proposition 8.9 is showing that the (nextbit) unpredictability of G(Uk) implies the pseudorandomness of G(Uk). The factthat (next bit) unpredictability and pseudorandomness are equivalent, in general,is proven explicitly in the alternative proof of Theorem 8.10 provided next.8.2.5.2 An alternative presentationLet us take a closer look at the pseudorandom generators obtained by combiningConstruction 8.7 and Proposition 8.9. For a stretch function ` : N!N , a 1-1one-way function f with a hard-core b, we obtainG(s) def= �1�2 � � ��`(jsj) ; (8.9)where x0 = s and xi�i = f(xi�1)b(xi�1) for i = 1; :::; `(jsj). Denoting by f i(x)the value of f iterated i times on x (i.e., f i(x) = f i�1(f(x)) and f0(x) = x), werewrite Eq. (8.9) as followsG(s) def= b(s) � b(f(s)) � � � b(f `(jsj)�1(s)) : (8.10)



332 CHAPTER 8. PSEUDORANDOM GENERATORSThe pseudorandomness of G is established in two steps, using the notion of (nextbit) unpredictability. An ensemble fZkgk2N is called unpredictable if any probabilis-tic polynomial-time machine obtaining a (random)15 pre�x of Zk fails to predictthe next bit of Zk with probability non-negligibly higher than 1=2. Speci�cally, weestablish the following two results.1. A general result asserting that an ensemble is pseudorandom if and only ifit is unpredictable. Recall that an ensemble is pseudorandom if it is compu-tationally indistinguishable from a uniform distribution (over bit strings ofadequate length).Clearly, pseudorandomness implies polynomial-time unpredictability, but herewe actually need the other direction, which is less obvious. Still, using ahybrid argument, one can show that (next-bit) unpredictability implies in-distinguishability from the uniform ensemble. For details see Exercise 8.12.2. A speci�c result asserting that the ensemble fG(Uk)gk2N is unpredictablefrom right to left. Equivalently, G0(Un) is polynomial-time unpredictable(from left to right (as usual)), where G0(s) = b(f `(jsj)�1(s)) � � � b(f(s)) � b(s)is the reverse of G(s).Using the fact that f induces a permutation over f0; 1gn, observe that the (j+1)-bit long pre�x of G0(Uk) is distributed identically to b(f j(Uk)) � � � b(f(Uk))�b(Uk). Thus, an algorithm that predicts the j + 1st bit of G0(Un) based onthe j-bit long pre�x of G0(Un) yields an algorithm that guesses b(Un) basedon f(Un). For details see Exercise 8.14.Needless to say, G is a pseudorandom generator if and only if G0 is a pseudorandomgenerator (see Exercise 8.13). We mention that Eq. (8.10) is often referred to asthe Blum-Micali Construction.168.2.5.3 A general condition for the existence of pseudorandom gener-atorsRecall that given any one-way 1-1 length-preserving function, we can easily con-struct a pseudorandom generator. Actually, the 1-1 (and length-preserving) re-quirement may be dropped, but the currently known construction { for the generalcase { is quite complex.Theorem 8.11 (On the existence of pseudorandom generators): Pseudorandomgenerators exist if and only if one-way functions exist.To show that the existence of pseudorandom generators imply the existence ofone-way functions, consider a pseudorandom generator G with stretch function15For simplicity, we de�ne unpredictability as referring to pre�xes of a random length (dis-tributed uniformly in f0; :::; jZkj�1g). A more general de�nition allows the predictor to determinethe length of the pre�x that it reads on the 
y. This seemingly stronger notion of unpredictabilityis actually equivalent to the one we use, because both notions are equivalent to pseudorandomness.16Given the popularity of the term, we deviate from our convention of not specifying credits inthe main text. Indeed, this construction originates in [39].



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 333`(k) = 2k. For x; y 2 f0; 1gk, de�ne f(x; y) def= G(x), and so f is polynomial-timecomputable (and length-preserving). It must be that f is one-way, or else one candistinguish G(Uk) from U2k by trying to invert and checking the result: invertingf on the distribution f(U2k) corresponds to operating on the distribution G(Uk),whereas the probability that U2k has inverse under f is negligible.The interesting direction of the proof of Theorem 8.11 is the construction ofpseudorandom generators based on any one-way function. Since the known proof isquite complex, we only provide a very rough overview of some of the ideas involved.We mention that these ideas make extensive use of adequate hashing functions (e.g.,pairwise independent hashing functions, see Appendix D.2).We �rst note that, in general (when f may not be 1-1), the ensemble f(Uk)may not be pseudorandom, and so Construction 8.9 (i.e., G(s) = f(s)b(s), whereb is a hard-core of f) cannot be used directly. One idea underlying the knownconstruction is hashing f(Uk) to an almost uniform string of length related to itsentropy, using adequate hashing functions.17 But \hashing f(Uk) down to lengthcomparable to the entropy" means shrinking the length of the output to, say,k0 < k. This foils the entire point of stretching the k-bit seed. Thus, a second ideaunderlying the construction is compensating for the loss of k�k0 bits by extractingthese many bits from the seed Uk itself. This is done by hashing Uk, and the pointis that the (k�k0)-bit long hash value does not make the inverting task any easier.Implementing these ideas turns out to be more di�cult than it seems, and indeedan alternative construction would be most appreciated.8.2.6 Non-uniformly strong pseudorandom generatorsRecall that we said that truly random sequences can be replaced by pseudorandomsequences without a�ecting any e�cient computation that uses these sequences.The speci�c formulation of this assertion, presented in Proposition 8.3, refers torandomized algorithms that take a \primary input" and use a secondary \randominput" in their computation. Proposition 8.3 asserts that it is infeasible to �nda primary input for which the replacement of a truly random secondary inputby a pseudorandom one a�ects the �nal output of the algorithm in a noticeableway. This, however, does not mean that such primary inputs do not exist (butrather that they are hard to �nd). Consequently, Proposition 8.3 falls short ofyielding a (worst-case)18 \derandomization" of a complexity class such as BPP.17This is done after guaranteeing that the logarithm of the probability mass of a value of f(Uk)is typically close to the entropy of f(Uk). Speci�cally, given an arbitrary one-way function f 0,one �rst constructs f by taking a \direct product" of su�ciently many copies of f 0. For example,for x1; :::; xk2=3 2 f0; 1gk1=3 , we let f(x1; :::; xk2=3) def= f 0(x1); :::; f 0(xk2=3).18Indeed, Proposition 8.3 yields an average-case derandomization of BPP . In particular, forevery polynomial-time constructible ensemble fXngn2N, every Boolean function f 2 BPP , andevery " > 0, there exists a randomized algorithm A0 of randomness complexity r"(n) = n" suchthat the probability that A0(Xn) 6= f(Xn) is negligible. A corresponding deterministic (exp(r")-time) algorithm A00 can be obtained, as in the proof of Theorem 8.13, and again the probabilitythat A00(Xn) 6= f(Xn) is negligible, where here the probability is taken only over the distributionof the primary input (represented by Xn). In contrast, worst-case derandomization, as capturedby the assertion BPP � Dtime(2r" ), requires that the probability that A00(Xn) 6= f(Xn) is zero.



334 CHAPTER 8. PSEUDORANDOM GENERATORSTo obtain such results, we need a stronger notion of pseudorandom generators,presented next. Speci�cally, we need pseudorandom generators that can fool allpolynomial-size circuits (cf. x1.2.4.1), and not merely all probabilistic polynomial-time algorithms.19De�nition 8.12 (strong pseudorandom generator { fooling circuits): A determin-istic polynomial-time algorithm G is called a non-uniformly strong pseudorandomgenerator if there exists a stretch function, ` : N!N , such that for any familyfCkgk2N of polynomial-size circuits, for any positive polynomial p, and for all suf-�ciently large k'sjPr[Ck(G(Uk)) = 1] � Pr[Ck(U`(k)) = 1] j < 1p(k)An alternative formulation is obtained by referring to polynomial-time machinesthat take advice (Section 3.1.2). Using such pseudorandom generators, we can\derandomize" BPP.Theorem 8.13 (derandomization of BPP): If there exists non-uniformly strongpseudorandom generators then BPP is contained in \">0Dtime(t"), where t"(n) def=2n" .Proof Sketch: For any S 2 BPP and any " > 0, we let A denote the decisionprocedure for S and G denote a non-uniformly strong pseudorandom generatorstretching n"-bit long seeds into poly(n)-long sequences (to be used by A as sec-ondary input when processing a primary input of length n). Combining A and G,we obtain an algorithm A0 = AG (as in Construction 8.2). We claim that A and A0may signi�cantly di�er in their (expected probabilistic) decision on at most �nitelymany inputs, because otherwise we can use these inputs (together with A) to derivea (non-uniform) family of polynomial-size circuits that distinguishes G(Un") andUpoly(n), contradicting the the hypothesis regarding G. Speci�cally, an input x onwhich A and A0 di�er signi�cantly yields a circuit Cx that distinguishes G(Ujxj")and Upoly(jxj), by letting Cx(r) = A(x; r).20 Incorporating the �nitely many \bad"inputs into A0, we derive a probabilistic polynomial-time algorithm that decides Swhile using randomness complexity n".Finally, emulating A0 on each of the 2n" possible random sequences (i.e., seedsto G) and ruling by majority, we obtain a deterministic algorithm A00 as required.That is, let A0(x; r) denote the output of algorithm A0 on input x when using coinsr 2 f0; 1gn". Then A00(x) invokes A0(x; r) on every r 2 f0; 1gn" , and outputs 1 ifand only if the majority of these 2n" invocations have returned 1.19Needless to say, strong pseudorandom generators in the sense of De�nition 8.12 satisfy thebasic de�nition of a pseudorandom generator (i.e., De�nition 8.1); see Exercise 8.15. We com-ment that the underlying notion of computational indistinguishability (by circuits) is strictlystronger than De�nition 8.4, and that it is invariant under multiple samples (regardless of theconstructibility of the underlying ensembles); for details, see Exercise 8.16.20Indeed, in terms of the proof of Proposition 8.3, the �nder F consists of a non-uniform familyof polynomial-size circuits that print the \problematic" primary inputs that are hard-wired inthem, and the corresponding distinguisher D is thus also non-uniform.



8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS 335We comment that stronger results regarding derandomization of BPP are pre-sented in Section 8.3.On constructing non-uniformly strong pseudorandom generators. Non-uniformly strong pseudorandom generators (as in De�nition 8.12) can be con-structed using any one-way function that is hard to invert by any non-uniformfamily of polynomial-size circuits (as in De�nition 7.3), rather than by probabilis-tic polynomial-time machines. In fact, the construction in this case is simpler thanthe one employed in the uniform case (i.e., the construction underlying the proofof Theorem 8.11).8.2.7 Stronger notions and conceptual re
ectionsWe �rst mention two stronger variants on the de�nition of pseudorandom genera-tors, and conclude this section by highlighting various conceptual issues.8.2.7.1 Stronger (uniform-complexity) notionsThe following two notions represent strengthening of the standard de�nition ofpseudorandom generators (as presented in De�nition 8.1). Non-uniform versionsof these notions (strengthening De�nition 8.12) are also of interest.Fooling stronger distinguishers. One strengthening of De�nition 8.1 amountsto explicitly quantifying the resources (and success gaps) of distinguishers. Wechoose to bound these quantities as a function of the length of the seed (i.e.,k), rather than as a function of the length of the string that is being examined(i.e., `(k)). For a class of time bounds T (e.g., T = ft(k) def= 2cpkgc2N) and aclass of noticeable functions (e.g., F = ff(k) def= 1=t(k) : t 2 T g), we say that apseudorandom generator, G, is (T ;F)-strong if for any probabilistic algorithm Dhaving running-time bounded by a function in T (applied to k)21, for any functionf in F , and for all su�ciently large k's, it holds thatjPr[D(G(Uk)) = 1] � Pr[D(U`(k)) = 1] j < f(k):An analogous strengthening may be applied to the de�nition of one-way functions.Doing so reveals the weakness of the known construction that underlies the proofof Theorem 8.11: It only implies that for some " > 0 (" = 1=8 will do), for anyT and F , the existence of \(T ;F)-strong one-way functions" implies the existenceof (T 0;F 0)-strong pseudorandom generators, where T 0 = ft0(k) def= t(k")=poly(k) :t 2 T g and F 0 = ff 0(k) def= poly(k) � f(k") : f 2 Fg. What we would like tohave is an analogous result with T 0 = ft0(k) def= t(
(k))=poly(k) : t 2 T g andF 0 = ff 0(k) def= poly(k) � f(
(k)) : f 2 Fg.21That is, when examining a sequence of length `(k) algorithm D makes at most t(k) steps,where t 2 T .



336 CHAPTER 8. PSEUDORANDOM GENERATORSPseudorandom Functions. Recall that pseudorandom generators allow to ef-�ciently generate long pseudorandom sequences from short random seeds. Pseu-dorandom functions (de�ned in Appendix C.3.3) are even more powerful: Theyallow e�cient direct access to a huge pseudorandom sequence, which is not evenfeasible to scan bit-by-bit. Speci�cally, based on a (random) k-bit long seed, theyallow direct access to a sequence of length 2k. Put in other words, pseudorandomfunctions are deterministic polynomial-time algorithms that map a k-bit long seeds and a k-bit long argument x to a value fs(x) such that, for a uniformly dis-tributed s 2 f0; 1gk, the function fs looks random to any poly(k)-time observerthat may query fs at arguments of its choice. Thus, pseudorandom functions canreplace truly random functions in any e�cient application (e.g., most notably incryptography). We mention that pseudorandom functions can be constructed fromany pseudorandom generator (see Theorem C.8), and that they found many appli-cations in cryptography (see Appendices C.3.3, C.5.2, and C.6.2). Pseudorandomfunctions were also used to derive negative results in computational learning the-ory [230] and in the study of circuit complexity (cf., Natural Proofs [188]).8.2.7.2 Conceptual re
ectionsWe highlight several conceptual aspects of the foregoing computational approachto randomness. Some of these aspects are common to other instantiation of thegeneral paradigm (esp., the one presented in Section 8.3).Behavioristic versus Ontological. The behavioristic nature of the computa-tional approach to randomness is best demonstrated by confronting this approachwith the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a stringis Kolmogorov-random if its length equals the length of the shortest program pro-ducing it. This shortest program may be considered the \true explanation" tothe phenomenon described by the string. A Kolmogorov-random string is thus astring that does not have a substantially simpler (i.e., shorter) explanation thanitself. Considering the simplest explanation of a phenomenon may be viewed as anontological approach. In contrast, considering the e�ect of phenomena on certaindevices (or observations), as underlying the de�nition of pseudorandomness, is abehavioristic approach. Furthermore, there exist probability distributions that arenot uniform (and are not even statistically close to a uniform distribution) and nev-ertheless are indistinguishable from a uniform distribution (by any e�cient device).Thus, distributions that are ontologically very di�erent, are considered equivalentby the behavioristic point of view taken in the de�nition of computational indistin-guishability.A relativistic view of randomness. We have de�ned pseudorandomness interms of its observer. Speci�cally, we have considered the class of e�cient (i.e.,polynomial-time) observers and de�ned as pseudorandom objects that look ran-dom to any observer in that class. In subsequent sections, we shall consider re-stricted classes of such observers (e.g., space-bounded polynomial-time observersand even very restricted observers that merely apply speci�c tests such as linear



8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 337tests or hitting tests). Each such class of observers gives rise to a di�erent notionof pseudorandomness. Furthermore, the general paradigm (of pseudorandomness)explicitly aims at distributions that are not uniform and yet are considered as suchfrom the point of view of certain observers. Thus, our entire approach to pseu-dorandomness is relativistic and subjective (i.e., depending on the abilities of theobserver).Randomness and Computational Di�culty. Pseudorandomness and com-putational di�culty play dual roles: The general paradigm of pseudorandomnessrelies on the fact that placing computational restrictions on the observer gives riseto distributions that are not uniform and still cannot be distinguished from uni-form distributions. Thus, the pivot of the entire approach is the computationaldi�culty of distinguishing pseudorandom distributions from truly random ones.Furthermore, many of the constructions of pseudorandom generators rely either onconjectures or on facts regarding computational di�culty (i.e., that certain com-putations that are hard for certain classes). For example, one-way functions wereused to construct general-purpose pseudorandom generators (i.e., those workingin polynomial-time and fooling all polynomial-time observers). Analogously, aswe shall see in x8.3.3.1, the fact that parity function is hard for polynomial-sizeconstant-depth circuits can be used to generate (highly non-uniform) sequencesthat fool such circuits.Randomness and Predictability. The connection between pseudorandomnessand unpredictability (by e�cient procedures) plays an important role in the analysisof several constructions (cf. Sections 8.2.5 and 8.3.2). We wish to highlight theintuitive appeal of this connection.8.3 Derandomization of time-complexity classesLet us take a second look at the process of derandomization that underlies theproof of Theorem 8.13. First, a pseudorandom generator was used to shrinkthe randomness-complexity of a BPP-algorithm, and then derandomization wasachieved by scanning all possible seeds to this generator. A key observation re-garding this process is that there is no point in insisting that the pseudorandomgenerator runs in time that is polynomial in its seed length. Instead, it su�cesto require that the generator runs in time that is exponential in its seed length,because we are incurring such an overhead anyhow due to the scanning of all pos-sible seeds. Furthermore, in this context, the running-time of the generator maybe larger than the running time of the algorithm, which means that the genera-tor need only fool distinguishers that take less steps than the generator. Theseconsiderations motivate the following de�nition of canonical derandomizers.



338 CHAPTER 8. PSEUDORANDOM GENERATORS8.3.1 De�ning canonical derandomizersRecall that in order to \derandomize" a probabilistic polynomial-time algorithm A,we �rst obtain a functionally equivalent algorithm AG (as in Construction 8.2) thathas (signi�cantly) smaller randomness-complexity. Algorithm AG has to maintainA's input-output behavior on all (but �nitely many) inputs. Thus, the set of therelevant distinguishers (considered in the proof of Theorem 8.13) is the set of allpossible circuits obtained from A by hard-wiring any of the possible inputs. Such acircuit, denoted Cx, emulates the execution of algorithm A on input x, when usingthe circuit's input as the algorithm's internal coin tosses (i.e., Cx(r) = A(x; r)).Furthermore, the size of Cx is quadratic in the running-time of A on input x, andthe length of the input to Cx equals the running-time of A (on input x).22 Thus,the size of Cx is quadratic in the length of its own input, and the pseudorandomgenerator in use (i.e., G) needs to fool each such circuit. Recalling that we mayallow the generator to run in exponential-time (i.e., time that is exponential in thelength of its own input (i.e., the seed))23, we arrive at the following de�nition.De�nition 8.14 (pseudorandom generator for derandomizing BPtime(�))24: Let` :: N!N be a monotonically increasing function. A canonical derandomizer ofstretch ` is a deterministic algorithm G that satis�es the following two conditions.1. On input a k-bit long seed, G makes at most poly(2k � `(k)) steps and outputsa string of length `(k).2. For every circuit Dk of size `(k)2 it holds thatjPr[Dk(G(Uk)) = 1] � Pr[Dk(U`(k)) = 1] j < 16 : (8.11)The circuit Dk represents a potential distinguisher, which is given an `(k)-bit longstring (sampled either from G(Uk) or from U`(k)). When seeking to derandomize22Indeed, we assume that algorithm A is represented as a Turing machine and refer to thestandard emulation of Turing machines by circuits (as underlying the proof of Theorem 2.21).Thus, the aforementioned circuit Cx has size that is at most quadratic in the running-time of Aon input x, which in turn means that Cx has size that is at most quadratic in the length of itsown input. (In fact, the circuit size can be made almost-linear in the running-time of A, by usinga better emulation [179].) We note that many sources use the �ctitious convention by which thecircuit size equals the length of its input; this �ctitious convention can be justi�ed by consideringa (suitably) padded input.23Actually, in De�nition 8.14 we allow the generator to run in time poly(2k`(k)), rather thanin time poly(2k). This is done in order not to trivially rule out generators of super-exponentialstretch (i.e., `(k) = 2!(k)). However (see Exercise 8.18), the condition in Eq. (8.11) does not allowfor super-exponential stretch (or even for `(k) = !(2k)). Thus, in retrospect, the two formulationsare equivalent (because poly(2k`(k)) = poly(2k) for `(k) = 2O(k)).24Fixing a model of computation, we denote by BPtime(t) the class of decision problems that aresolvable by a randomized algorithm of time complexity t that has two-sided error 1=3. Using 1/6as the \threshold distinguishing gap" (in Eq. (8.11)) guarantees that if Pr[Dk(U`(k)) = 1] � 2=3(resp., Pr[Dk(U`(k)) = 1] � 1=3) then Pr[Dk(G(Uk)) = 1] > 1=2 (resp., Pr[Dk(G(Uk)) = 1] <1=2). As we shall see, this su�ces for a derandomization of BPtime(t) in time T , where T (n) =poly(2`�1(t(n)) � t(n)) (and we use a seek of length k = `�1(t(n))).



8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 339an algorithm A of time-complexity t, the aforementioned `(k)-bit long string repre-sents a possible sequence of coin tosses of A, when invoked on a generic (primary)input of length n = t�1(`(k)). Thus, for any x 2 f0; 1gn, considering the circuitDk(r) = A(x; r), where jrj = t(n) = `(k), we note that Eq. (8.11) implies thatAG(x) = A(x;G(Uk)) maintains the majority vote of A(x) = A(x; U`(k)). On theother hand, the time-complexity of G implies that the straightforward deterministicemulation of AG(x) takes time 2k � (poly(2k � `(k))+ t(n)), which is upper-boundedby poly(2k � `(k)) = poly(2`�1(t(n)) � t(n)). This yields the following (conditional)derandomization result.Proposition 8.15 Let `; t : N!N be monotonically increasing functions and let`�1(t(n)) denote the smallest integer k such that `(k) � t(n). If there exists acanonical derandomizer of stretch ` then, for every time-constructible t ::N!N , itholds that BPtime(t) � Dtime(T ), where T (n) = poly(2`�1(t(n)) � t(n)).Proof Sketch: Just mimic the proof of Theorem 8.13, which in turn uses Con-struction 8.2. (Recall that given any randomized algorithm A and generator G,Construction 8.2 yields an algorithm AG of randomness-complexity `�1 � t andtime-complexity poly(2`�1�t) + t.)25 Observe that the complexity of the result-ing deterministic procedure is dominated by the 2k = 2`�1(t(jxj)) invocations ofAG(x; s) = A(x;G(s)), where s 2 f0; 1gk, and each of these invocations takes timepoly(2`�1(t(jxj)) + t(jxj). Thus, on input an n-bit long string, the deterministicprocedure runs in time poly(2`�1(t(n)) � t(n)). The correctness of this procedure(which takes a majority vote among the 2k invocations of AG) follows by combin-ing Eq. (8.11) with the hypothesis that Pr[A(x) = 1] is bounded-away from 1=2.Speci�cally, using the hypothesis jPr[A(x) = 1] � (1=2)j � 1=6, it follows that themajority vote of (AG(x; s))s2f0;1gk equals 1 (equiv., Pr[A(x;G(Uk)) = 1] > 1=2) ifand only if Pr[A(x) = 1] > 1=2 (equiv., Pr[A(x; U`(k)) = 1] > 1=2) Indeed, the im-plication is due to Eq. (8.11), when applied to the circuit Cx(r) = A(x; r) (whichhas size at most jrj2).The goal. In light of Proposition 8.15, we seek canonical derandomizers withstretch that is as large as possible. The stretch cannot be super-exponential (i.e.,it must hold that `(k) = O(2k)), because there exists a circuit of size O(2k � `(k))that violates Eq. (8.11) (see Exercise 8.18) whereas for `(k) = !(2k) it holds thatO(2k � `(k)) < `(k)2. Thus, our goal is to construct a canonical derandomizerwith stretch `(k) = 2
(k). Such a canonical derandomizer will allow for a \fullderandomization of BPP":Theorem 8.16 If there exists a canonical derandomizer of stretch `(k) = 2
(k),then BPP = P.25Actually, given any randomized algorithm A and generator G, Construction 8.2 yields analgorithm AG that is de�ned such that AG(x; s) = A(x;G0(s)), where jsj = `�1(t(jxj)) and G0(s)denotes the t(jxj)-bit long pre�x of G(s). For simplicity, we shall assume here that `(jsj) = t(jxj),and thus use G rather than G0. Note that given n we can �nd k = `�1(t(n)) by invokingG(1i) for i = 1; :::; k (using the fact that ` :N!N is monotonically increasing). Also note that`(k) = O(2k) must hold (see Footnote 23), and thus we may replace poly(2k � `(k)) by poly(2k).



340 CHAPTER 8. PSEUDORANDOM GENERATORSProof: Using Proposition 8.15, we get BPtime(t) � Dtime(T ), where T (n) =poly(2`�1(t(n)) � t(n)) = poly(t(n)).Re
ections: Recall that a canonical derandomizer G was de�ned in a way thatallows it to have time-complexity tG that is larger than the size of the circuits thatit fools (i.e., tG(k) > `(k)2 is allowed). Furthermore, tG(k) > 2k was also allowed.Thus, if indeed tG(k) = 2
(k) (as is the case in Section 8.3.2), then G(Uk) canbe distinguished from U`(k) in time 2k � tG(k) = poly(tG(k)) by trying all possibleseeds.26 We stress that the latter distinguisher is a uniform algorithm (and itworks by invoking G on all possible seeds). In contrast, for a general-purposepseudorandom generator G (as discussed in Section 8.2) it holds that tG(k) =poly(k), while for every polynomial p it holds that G(Uk) is indistinguishable fromU`(k) in time p(tG(k)).8.3.2 Constructing canonical derandomizersThe fact that canonical derandomizers are allowed to be more complex than thecorresponding distinguisher makes some of the techniques of Section 8.2 inapplica-ble in the current context. For example, the stretch function cannot be ampli�ed asin Section 8.2.4 (see Exercise 8.17). On the other hand, the techniques developedin the current section are inapplicable to Section 8.2. For example, the pseudoran-domness of some canonical derandomizers (i.e., the generators of Construction 8.17)holds even when the potential distinguisher is given the seed itself. This amazingphenomenon capitalizes on the fact that the distinguisher's time-complexity doesnot allow for running the generator on the given seed.8.3.2.1 The construction and its consequencesAs in Section 8.2.5, the construction presented next transforms computational dif-�culty into pseudorandomness, except that here both computational di�culty andpseudorandomness are of a somewhat di�erent form than in Section 8.2.5. Specif-ically, here we use Boolean predicates that are computable in exponential-timebut are T -inapproximable for some exponential function T (see De�nition 7.9 re-capitulated next). That is, we assume the existence of a Boolean predicate andconstants c; " > 0 such that for all but �nitely many m, the (residual) predicatef : f0; 1gm ! f0; 1g is computable in time 2cm but for any circuit C of size 2"mit holds that Pr[C(Um) = f(Um)] < 12 + 2�"m. (Needless to say, " < c.) Recallthat such predicates exist under the assumption that E has (almost-everywhere)exponential circuit complexity (see Theorem 7.19). With these preliminaries, weturn to the construction of canonical derandomizers with exponential stretch.26We note that this distinguisher does not contradict the hypothesis that G is a canonicalderandomizer, because tG(k) > `(k) de�nitely holds whereas `(k) � 2k typically holds (and so2k � tG(k) > `(k)2).



8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 341Construction 8.17 (The Nisan-Wigderson Construction):27 Let f : f0; 1gm !f0; 1g and S1; :::; S` be a sequence of m-subsets of f1; :::; kg. Then, for s 2 f0; 1gk,we let G(s) def= f(sS1) � � � f(sS`) (8.12)where sS denotes the projection of s on the bit locations in S � f1; :::; jsjg; that is,for s = �1 � � ��k and S = fi1; :::; img, we have sS = �i1 � � ��im .Letting k vary and `;m : N ! N be functions of k, we wish G to be a canonicalderandomizer and `(k) = 2
(k). One (obvious) necessary condition for this tohappen is that the sets must be distinct, and hence m(k) = 
(k); consequently,f must be computable in exponential-time. Furthermore, the sequence of setsS1; :::; S`(k) must be constructible in poly(2k) time. Intuitively, the function fshould be strongly inapproximable (i.e., T -inapproximable for some exponentialfunction T ), and furthermore it seems desirable to use a set system with smallpairwise intersections (because this restricts the overlap among the various inputsto which f is applied). Interestingly, these conditions are essentially su�cient.Theorem 8.18 (analysis of Construction 8.17): Let �; �; 
; " > 0 be constantssatisfying " > (2�=�) + 
, and consider the functions `;m; T :: N!N such that`(k) = 2�k, m(k) = �k, and T (n) = 2"n. Suppose that the following two conditionshold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g thatis T -inapproximable. (See De�nition 7.9.)2. There exists an exponential-time computable function S : N�N ! 2N suchthat(a) For every k and i 2 [`(k)], it holds that S(k; i) � [k] and jS(k; i)j =m(k).(b) For every k and i 6= j, it holds that jS(k; i) \ S(k; j)j � 
 �m(k).Then, using G as de�ned in Construction 8.17 with Si = S(k; i), yields a canonicalderandomizer with stretch `.Before proving Theorem 8.18 we note that, for any 
 > 0, a function S as inCondition 2 does exist with some m(k) = 
(k) and `(k) = 2
(k); see Exercise 8.19.Combining such a function S with Theorems 7.19 and 8.18, we obtain a canonicalderandomizer with exponential stretch based on the assumption that E has (almost-everywhere) exponential circuit complexity.28 Combining this with Theorem 8.16,we get the �rst part of the following theorem.27Given the popularity of the term, we deviate from our convention of not specifying credits inthe main text. This construction originates in [172, 175].28Speci�cally, starting with a function having circuit complexity at least exp("0m), we applyTheorem 7.19 and obtain a T -inapproximable predicate for T (m) = 2"m, where the constant" 2 (0; "0) depends on the constant "0. Next, we set 
 = "=2 and invoke Exercise 8.19, whichdetermines �; � > 0 such that `(k) = 2�k and m(k) = �k. Note that (by possibly decreasing �)we get (2�=�) + 
 < ".



342 CHAPTER 8. PSEUDORANDOM GENERATORSTheorem 8.19 (derandomization of BPP, revisited):1. Suppose that E contains a decision problem that has almost-everywhere expo-nential circuit complexity (i.e., there exists a constant "0 > 0 such that, forall but �nitely many m's, any circuit that correctly decides this problem onf0; 1gm has size at least 2"0m). Then, BPP = P.2. Suppose that, for every polynomial p, the class E contains a decision problemthat has circuit complexity that is almost-everywhere greater than p. ThenBPP is contained in \">0Dtime(t"), where t"(n) def= 2n" .Part 2 is proved (in Exercise 8.23) by using a generalization of Theorem 8.18, whichin turn is provided in Exercise 8.22. We note that Part 2 of Theorem 8.19 supersedesTheorem 8.13 (see Exercise 7.24). As in the case of general-purpose pseudorandomgenerators, the hardness hypothesis made in each part of Theorem 8.19 is necessaryfor the existence of a corresponding canonical derandomizer (see Exercise 8.24).The two parts of Theorem 8.19 exhibit two extreme cases: Part 1 (often referredto as the \high end") assumes an extremely strong circuit lower-bound and yields\full derandomization" (i.e., BPP = P), whereas Part 2 (often referred to as the\low end") assumes an extremely weak circuit lower-bound and yields weak butmeaningful derandomization. Intermediate results (relying on intermediate lower-bound assumptions) can be obtained analogous to Exercise 8.23, but tight trade-o�sare obtained di�erently (cf., [225]).8.3.2.2 Analyzing the construction (i.e., proof of Theorem 8.18)Using the time complexity upper-bounds on f and S, it follows that G can becomputed in exponential time. Thus, our focus is on showing that fG(Uk)g cannotbe distinguished from fU`(k)g by circuits of size `(k)2; speci�cally, that G satis�esEq. (8.11). In fact, we will prove that this holds for G0(s) = s � G(s); that is, Gfools such circuits even if they are given the seed as auxiliary input. (Indeed, thesecircuits are smaller than the running time of G, and so they cannot just evaluateG on the given seed.)We start by presenting the intuition underlying the proof. As a warm-up sup-pose that the sets (i.e., S(k; i)'s) used in the construction are disjoint. In such acase (which is indeed impossible because k < `(k) �m(k)), the pseudorandomness ofG(Uk) would follow easily from the inapproximability of f , because in this case Gconsists of applying f to non-overlapping parts of the seed (see Exercise 8.21). Inthe actual construction being analyzed here, the sets (i.e., S(k; i)'s) are not disjointbut have relatively small pairwise intersection, which means that G applies f onparts of the seed that have relatively small overlap. Intuitively, such small overlapsguarantee that the values of f on the corresponding inputs are \computationallyindependent" (i.e., having the value of f at some inputs x1; :::; xi does not help inapproximating the value of f at another input xi+1). This intuition will be backedby showing that, when �xing all bits that do not appear in the target input (i.e.,in xi+1), the former values (i.e., f(x1); :::; f(xi)) can be computed at a relativelysmall computational cost. Thus, the values f(x1); :::; f(xi) do not (signi�cantly)



8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 343facilitate the task of approximating f(xi+1). With the foregoing intuition in mind,we now turn to the actual proof.As usual, the actual proof employs a reducibility argument; that is, assumingtowards the contradiction that G0 does not fool some circuit of size `(k)2, we de-rive a contradiction to the hypothesis that the predicate f is T -inapproximable.The argument utilizes the relation between pseudorandomness and unpredictability(cf. Section 8.2.5). Speci�cally, as detailed in Exercise 8.20, any circuit that distin-guishes G0(Uk) from U`(k)+k with gap 1=6, yields a next-bit predictor of similar sizethat succeeds in predicting the next bit with probability at least 12+ 16`0(k) > 12+ 17`(k) ,where the factor of `0(k) = `(k) + k < (1 + o(1)) � `(k) is introduced by the hybridtechnique (cf. Eq. (8.7)). Furthermore, given the non-uniform setting of the cur-rent proof, we may �x a bit location i+1 for prediction, rather than analyzing theprediction at a random bit location. Indeed, i � k must hold, because the �rst kbits of G0(Uk) are uniformly distributed. In the rest of the proof, we transform theforegoing predictor into a circuit that approximates f better than allowed by thehypothesis (regarding the inapproximability of f).Assuming that a small circuit C 0 can predict the i+1st bit of G0(Uk), when giventhe previous i bits, we construct a small circuit C for approximating f(Um(k)) oninput Um(k). The point is that the i+1st bit of G0(s) equals f(sS(k;j+1)), where j =i� k � 0, and so C 0 approximates f(sS(k;j+1)) based on s; f(sS(k;1)); :::; f(sS(k;j)),where s 2 f0; 1gk is uniformly distributed. Note that this is the type of thing thatwe are after, except that the circuit we seek may only get sS(k;j+1) as input.The �rst observation is that C 0 maintains its advantage when we �x the bestchoice for the bits of s that are not at bit locations Sj+1 = S(k; j + 1) (i.e., thebits s[k]nSj+1). That is, by an averaging argument, it holds thatmaxs02f0;1gk�m(k)fPrs2f0;1gk [C 0(s; f(sS1); :::; f(sSj )) = f(sSj+1) j s[k]nSj+1 = s0]g� p0 def= Prs2f0;1gk [C 0(s; f(sS1); :::; f(sSj )) = f(sSj+1)]:Recall that by the hypothesis p0 > 12+ 17`(k) . Hard-wiring the �xed string s0 into C 0,and letting �(x) denote the (unique) string s satisfying sSj+1 = x and s[k]nSj+1 = s0,we obtain a circuit C 00 that satis�esPrx2f0;1gm(k) [C 00(x; f(�(x)S1 ); :::; f(�(x)Sj )) = f(x)] � p0:The circuit C 00 is almost what we seek. The only problem is that C 00 gets as inputnot only x, but also f(�(x)S1); :::; f(�(x)Sj ), whereas we seek an approximator off(x) that only gets x.The key observation is that each of the \missing" values f(�(x)S1 ); :::; f(�(x)Sj )depend only on a relatively small number of the bits of x. This fact is due to thehypothesis that jSt\Sj+1j � 
 �m(k) for t = 1; :::; j, which means that �(x)St is anm(k)-bit long string in which mt def= jSt \ Sj+1j bits are projected from x and therest are projected from the �xed string s0. Thus, given x, the value f(�(x)St) canbe computed by a (trivial) circuit of size eO(2mt); that is, by a circuit implementing



344 CHAPTER 8. PSEUDORANDOM GENERATORSa look-up table on mt bits. Using all these circuits (together with C 00), we willobtain the desired approximator of f . Details follow.We obtain the desired circuit, denoted C, that T -approximates f as follows. Thecircuit C depends on the index j and the string s0 that are �xed as in the foregoinganalysis. Recall that C incorporates ( eO(2
�jxj)-size) circuits for computing x 7!f(�(x)St ), for t = 1; :::; j. On input x 2 f0; 1gm(k), the circuit C computes thevalues f(�(x)S1); :::; f(�(x)Sj ), invokesC 00 on input x and these values, and outputsthe answer as a guess for f(x). That is,C(x) = C 00(x; f(�(x)S1 ); :::; f(�(x)Sj )) = C 0(�(x); f(�(x)S1 ); :::; f(�(x)Sj )):By the foregoing analysis, Prx[C(x) = f(x)] � p0 > 12 + 17`(k) , which is lower-bounded by 12 + 1T (m(k)) , because T (m(k)) = 2"m(k) = 2"�k � 22�k � 7`(k),where the �rst inequality is due to " > 2�=� and second inequality is due to`(k) = 2�k. The size of C is upper-bounded by `(k)2+`(k) � eO(2
�m(k))� eO(`(k)2 �2
�m(k)) = eO(22��(m(k)=�)+
�m(k)) � T (m(k)), where the last inequality is due toT (m(k)) = 2"m(k) � eO(2(2�=�)�m(k)+
�m(k)) (which in turn uses " > (2�=�) + 
).Thus, we derived a contradiction to the hypothesis that f is T -inapproximable.This completes the proof of Theorem 8.18.8.3.3 Technical variations and conceptual re
ectionsWe start this section by discussing a general framework that emerges from Con-struction 8.17, and end this section with a conceptual discussion regarding deran-domization.8.3.3.1 Construction 8.17 as a general frameworkThe Nisan{Wigderson Construction (i.e., Construction 8.17) is actually a generalframework, which can be instantiated in various ways. Some of these instantiations,which are based on an abstraction of the construction as well as of its analysis, arebrie
y reviewed next,We �rst note that the generator described in Construction 8.17 consists of ageneric algorithmic scheme that can be instantiated with any predicate f . Fur-thermore, this algorithmic scheme, denoted G, is actually an oracle machine thatmakes (non-adaptive) queries to the function f , and thus the combination may bewritten as Gf . Likewise, the proof of pseudorandomness of Gf (i.e., the bulk ofthe proof of Theorem 8.18) is actually a general scheme that, for every f , yields a(non-uniform) oracle-aided circuit C that approximates f by using an oracle callto any distinguisher for Gf (i.e., C uses the distinguisher as a black-box). Thecircuit C does depends on f (but in a restricted way). Speci�cally, C containslook-up tables for computing functions obtained from f by �xing some of the inputbits (i.e., look-up tables for the functions f(�(�)St)'s). The foregoing abstractionsfacilitate the presentation of the following instantiations of the general frameworkunderlying Construction 8.17



8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES 345Derandomization of constant-depth circuits. In this case we instantiateConstruction 8.17 using the parity function in the role of the inapproximablepredicate f , noting that parity is indeed inapproximable by \small" constant-depth circuits. With an adequate setting of parameters we obtain pseudorandomgenerators with stretch `(k) = exp(k1=O(1)) that fool \small" constant-depth cir-cuits (see [172]). The analysis of this construction proceeds very much like the proofof Theorem 8.18. One important observation is that incorporating the (straightfor-ward) circuits that compute f(�(x)St ) into the distinguishing circuit only increasesits depth by two levels. Speci�cally, the circuit C uses depth-two circuits that com-pute the values f(�(x)St)'s, and then obtains a prediction of f(x) by using thesevalues in its (single) invocation of the (given) distinguisher.The resulting pseudorandom generator, which use a seed of polylogarithmiclength (equiv., `(k) = exp(k1=O(1))), can be used for derandomizing RAC0 (i.e.,random AC0), analogously to Theorem 8.16. Thus, we can deterministically ap-proximate, in quasi-polynomial-time and up-to an additive error, the fraction ofinputs that satisfy a given (constant-depth) circuit. Speci�cally, for any constantd, given a depth-d circuit C, we can deterministically approximate the fraction ofthe inputs that satisfy C (i.e., cause C to evaluate to 1) to within any additiveconstant error29 in time exp((log jCj)O(d)). Providing a deterministic polynomial-time approximation, even in the case d = 2 (i.e., CNF/DNF formulae) is an openproblem.Derandomization of probabilistic proof systems. A di�erent (and moresurprising) instantiation of Construction 8.17 utilizes predicates that are inapprox-imable by small circuits having oracle access to NP . The result is a pseudorandomgenerator robust against two-move public-coin interactive proofs (which are as pow-erful as constant-round interactive proofs (see x9.1.3.1)). The key observation isthat the analysis of Construction 8.17 provides a black-box procedure for approx-imating the underlying predicate when given oracle access to a distinguisher (andthis procedure is valid also in case the distinguisher is a non-deterministic machine).Thus, under suitably strong (and yet plausible) assumptions, constant-round inter-active proofs collapse to NP . We note that a stronger result, which deviates fromthe foregoing framework, has been subsequently obtained (cf. [166]).Construction of randomness extractors. An even more radical instantiationof Construction 8.17 was used to obtain explicit constructions of randomness ex-tractors (see Appendix D.4). In this case, the predicate f is viewed as (an errorcorrecting encoding of) a somewhat random function, and the construction makessense because it refers to f in a black-box manner. In the analysis we rely on thefact that f can be approximated by combining relatively little information (regard-29We mention that in the special case of approximating the number of satisfying assignmentof a DNF formula, relative error approximations can be obtained by employing a deterministicreduction to the case of additive constant error (see x6.2.2.1). Thus, using a pseudorandom gen-erator that fools DNF formulae, we can deterministically obtain a relative (rather than additive)error approximation to the number of satisfying assignment in a given DNF formula.



346 CHAPTER 8. PSEUDORANDOM GENERATORSing f) with (black-box access to) a distinguisher for Gf . For further details seexD.4.2.2.8.3.3.2 Re
ections regarding derandomizationPart 1 of Theorem 8.19 is often summarized by saying that (under some reasonableassumptions) randomness is useless. We believe that this interpretation is wrongeven within the restricted context of traditional complexity classes, and is bluntlywrong if taken outside of the latter context. Let us elaborate.Taking a closer look at the proof of Theorem 8.16 (which underlies Theo-rem 8.19), we note that a randomized algorithm A of time-complexity t is emulatedby a deterministic algorithm A0 of time complexity t0 = poly(t). Further notingthat A0 = AG invokes A (as well as the canonical derandomizer G) for 
(t) times(because `(k) = O(2k) implies 2k = 
(t)), we infer that t0 = 
(t2) must hold.Thus, derandomization via (Part 1 of) Theorem 8.19 is not really for free.More importantly, we note that derandomization is not possible in various dis-tributed settings, when both parties may protect their con
icting interests by em-ploying randomization. Notable examples include most cryptographic primitives(e.g., encryption) as well as most types of probabilistic proof systems (e.g., PCP).For further discussion see Chapter 9 and Appendix C. Additional settings whererandomness makes a di�erence (either between impossibility and possibility or be-tween formidable and a�ordable cost) include distributed computing (see [16]),communication complexity (see [147]), parallel architectures (see [150]), sampling(see Appendix D.3), and property testing (see Section 10.1.2).8.4 Space-Bounded DistinguishersIn the previous two sections we have considered generators that output sequencesthat look random to any e�cient procedures, where the latter were modeled bytime-bounded computations. Speci�cally, in Section 8.2 we considered indistin-guishability by polynomial-time procedures. A �ner classi�cation of time-boundedprocedures is obtained by considering their space-complexity; that is, restrictingthe space-complexity of time-bounded computations. This restriction, which is thefocus of Chapter 5, leads to the notion of pseudorandom generators that fool space-bounded distinguishers. Interestingly, in contrast to the notions of pseudorandomgenerators that were considered in Sections 8.2 and 8.3, the existence of pseudoran-dom generators that fool space-bounded distinguishers can be established withoutrelying on computational assumptions.Prerequisites: Technically speaking, the current section is self-contained, butvarious de�nitional choices are justi�ed by reference to x6.1.5.1. Thus, we recom-mend Section 6.1.5 as general background for the current section.



8.4. SPACE-BOUNDED DISTINGUISHERS 3478.4.1 De�nitional issuesUnfortunately, natural notions of space-bounded computations are quite subtle,especially when non-determinism or randomization are concerned (see Sections 5.3and 6.1.5, respectively). Two major de�nitional issues regarding randomized space-bounded computations are the need for imposing explicit time bounds and the typeof access to the random tape.1. Time bounds: The question is whether or not the space-bounded machinesare restricted to time-complexity that is at most exponential in their space-complexity.30 Recall that such an upper-bound follows automatically in thedeterministic case (Theorem 5.3), and can be assumed without loss of gen-erality in the non-deterministic case (see Section 5.3.2), but it does not nec-essarily hold in the randomized case (see x6.1.5.1). Furthermore, failing torestrict the time-complexity of randomized space-bounded machines makesthem unnatural and unintentionally too strong (see x6.1.5.1 again).As in Section 6.1.5, seeking a natural model of randomized space-boundedalgorithms, we postulate that their time-complexity must be at most expo-nential in their space-complexity.2. Access to the random tape: Recall that randomized algorithms may be mod-eled as machines that are provided with the necessary randomness via a spe-cial random-tape. The question is whether the space-bounded machine hasuni-directional or bi-directional (i.e., unrestricted) access to its random-tape.(Allowing bi-directional access means that the randomness is recorded \forfree"; that is, without being accounted for in the space-bound (see discussionsin Sections 5.3 and 6.1.5).)Recall that uni-directional access to the random-tape corresponds to the nat-ural model of an on-line randomized machine, which determines its movesbased on its internal coin tosses (and thus cannot store its past coin tosses\for free"). Thus, as in Section 6.1.5, we consider uni-directional access.31Hence, we focus on randomized space-bounded computation that have time-complexitythat is at most exponential in their space-complexity and access their random-tape in a uni-directional manner. In accordance with this de�nition of randomizedspace-bounded computation, we consider space-bounded distinguishers that have auni-directional access to the input sequence that they examine. Let us consider thetype of algorithms that arise.We consider space-bounded algorithms that have a uni-directional access to theirinput. At each step, based on the contents of its temporary storage, such an30Alternatively, one can ask whether these machines must always halt or only halt with prob-ability approaching 1. It can be shown that the only way to ensure \absolute halting" is to havetime-complexity that is at most exponential in the space-complexity. (In the current discussionas well as throughout this section, we assume that the space-complexity is at least logarithmic.)31We note that the fact that we restrict our attention to uni-directional access is instrumen-tal in obtaining space-robust generators without making intractability assumptions. Analogousgenerators for bi-directional space-bounded computations would imply hardness results of a break-through nature in the area.



348 CHAPTER 8. PSEUDORANDOM GENERATORSalgorithm may either read the next input bit or stay at the current location on theinput, where in either case the algorithm may modify its temporary storage. Tosimplify our analysis of such algorithms, we consider a corresponding non-uniformmodel in which, at each step, the algorithm reads the next input bit and updateits temporary storage according to an arbitrary function applied to the previouscontents of that storage (and to the new bit). Note that we have strengthened themodel by allowing arbitrary (updating) functions, which can be implemented by(non-uniform) circuits having size that is exponential in the space-bound, ratherthan using (updating) functions that can be (uniformly) computed in time that isexponential in the space-bound. This strengthening is motivated by the fact thatthe known constructions of pseudorandom generators remain valid also when thespace-bounded distinguishers are non-uniform and by the fact that non-uniformdistinguishers arise anyhow in derandomization.The computation of the foregoing non-uniform space-bounded algorithms (orautomata)32 can be represented by directed layered graphs, where the vertices ineach layer correspond to possible contents of the temporary storage and transitionbetween neighboring layers corresponds to a step of the computation. Foreseeingthe application of this model for the description of potential distinguishers, weparameterize these layered graphs based on the index, denoted k, of the relevantensembles (e.g., fG(Uk)gk2N and fU`(k)gk2N). That is, we present both the inputlength, denoted ` = `(k), and the space-bound, denoted s(k), as functions of theparameter k. Thus, we de�ne a non-uniform automaton of space s : N!N asa family, fDkgk2N, of directed layered graphs with labeled edges such that thefollowing conditions hold:� The digraph Dk consists of `(k) + 1 layers, each containing at most 2s(k)vertices. The �rst layer contains a single vertex, which is the digraph's (single)source (i.e., a vertex with no incoming edges), and the last layer contains allthe digraph's sinks (i.e., vertices with no outgoing edges).� The only directed edges in Dk are between adjacent layers, going from layeri to layer i + 1, for i � `(k). These edges are labeled such that each (non-sink) vertex of Dk has two (possibly parallel) outgoing directed edges, onelabeled 0 and the other labeled 1.The result of the computation of such an automaton, on an input of adequate length(i.e., length ` where Dk has ` + 1 layers), is de�ned as the vertex (in last layer)reached when following the sequence of edges that are labeled by the correspondingbits of the input. That is, on input x = x1 � � �x`, in the ith step (for i = 1; :::; `) wemove from the current vertex (which resides in the ith layer) to one of its neighbors32We use the term automaton (rather than algorithm or machine) in order to remind the readerthat this computing device reads its input in a uni-directional manner. Alternative terms that maybe used are \real-time" or \on-line" machines. We prefer not using the term \on-line" machinein order to keep a clear distinction from randomized (on-line) algorithms that have free accessto their input (and on-line access to a source of randomness). Indeed, the automata considerhere arise from the latter algorithms by �xing their primary input and considering the randomsource as their (only) input. We also note that the automata considered here are a special caseof Ordered Binary Decision Diagrams (OBDDs; see [235]).



8.4. SPACE-BOUNDED DISTINGUISHERS 349(which resides in the i+1st layer) by following the outgoing edge labeled xi. Usinga �xed partition of the vertices of the last layer, this de�nes a natural notion ofa decision (by Dk); that is, we write Dk(x) = 1 if on input x the automaton Dkreached a vertex that belongs to the �rst part of the aforementioned partition.De�nition 8.20 (Indistinguishability by space-bounded automata):� For a non-uniform automaton, fDkgk2N, and two probability ensembles, fXkgk2Nand fYkgk2N, the function d :N! [0; 1] de�ned asd(k) def= jPr[Dk(Xk) = 1]� Pr[Dk(Yk) = 1]jis called the distinguishability-gap of fDkg between the two ensembles.� Let s : N!N and " : N ! [0; 1]. A probability ensemble, fXkgk2N, iscalled (s; ")-pseudorandom if for any non-uniform automaton of space s(�),the distinguishability-gap of the automaton between fXkgk2N and the corre-sponding uniform ensemble (i.e., fUjXkjgk2N) is at most "(�).� A deterministic algorithm G of stretch function ` is called an (s; ")-pseudorandomgenerator if the ensemble fG(Uk)gk2N is (s; ")-pseudorandom. That is, everynon-uniform automaton of space s(�) has a distinguishing-gap of at most "(�)between fG(Uk)gk2N and fU`(k)gk2N.Thus, when using a random seed of length k, an (s; ")-pseudorandom generatoroutputs a sequence of length `(k) that looks random to observers having spaces(k). Note that s(k) � k is a necessary condition for the existence of (s; 0:5)-pseudorandom generators, because a non-uniform automaton of space s(k) > kcan recognize the image of a generator (which contains at most 2k strings of length`(k) > k). More generally, there is a trade-o� between s(k) � k and the stretch of(s; ")-pseudorandom generators; for details see Exercises 8.25 and 8.26.Note: Recall that we stated the space-bound of the potential distinguisher (aswell as the stretch function) in terms of the seed-length, denoted k, of the generator.In contrast, other sources present a parameterization in terms of the space-boundof the potential distinguisher, denoted m. The translation is obtained by usingm = s(k), and we shall provide it following the main statements of Theorems 8.21and 8.22.8.4.2 Two ConstructionsIn contrast to the case of pseudorandom generators that fool time-bounded distin-guishers, pseudorandom generators that fool space-bounded distinguishers can beconstructed without relying on any computational assumption. The following twotheorems exhibit two rather extreme cases of a general trade-o� between the space-bound of the potential distinguisher and the stretch function of the generator.3333These two results have been \interpolated" in [11]: There exists a parameterized family of\space fooling" pseudorandom generators that includes both results as extreme special cases.



350 CHAPTER 8. PSEUDORANDOM GENERATORSWe stress that both theorems fall short of providing parameters as in Exercise 8.26,but they refer to relatively e�cient constructions. We start with an attempt tomaximize the stretch.Theorem 8.21 (stretch exponential in the space-bound for s(k) = pk): For everyspace constructible function s :N!N , there exists an (s; 2�s)-pseudorandom gen-erator of stretch function `(k) = min(2k=O(s(k)); 2s(k)). Furthermore, the generatorworks in space that is linear in the length of the seed, and in time that is linear inthe stretch function.In other words, for every t � m, we have a generator that takes a random seedof length k = O(t �m) and produce a sequence of length 2t that looks random toany (non-uniform) automaton of space m (up to a distinguishing-gap of 2�m). Inparticular, using a random seed of length k = O(m2), one can produce a sequence oflength 2m that looks random to any (non-uniform) automaton of space m. Thus,one may replace random sequences used by any space-bounded computation, bysequences that are e�ciently generated from random seeds of length quadratic inthe space bound. The common instantiation of the latter assertion is for log-spacealgorithms. In x8.4.2.2, we apply Theorem 8.21 (and its underlying ideas) forthe derandomization of space-complexity classes such as BPL (i.e., the log-spaceanalogue of BPP). Theorem 8.21 itself is proved in x8.4.2.1.We now turn to the case where one wishes to maximize the space-bound of po-tential distinguishers. We warn that Theorem 8.22 only guarantees a subexponen-tial distinguishing gap (rather than the exponential distinguishing gap guaranteedin Theorem 8.21). This warning is voiced because failing to recall this limitationhas led to errors in the past.Theorem 8.22 (polynomial stretch and linear space-bound): For any polynomialp and for some s(k) = k=O(1), there exists an (s; 2�ps)-pseudorandom genera-tor of stretch function p. Furthermore, the generator works in linear-space andpolynomial-time (both stated in terms of the length of the seed).In other words, we have a generator that takes a random seed of length k = O(m)and produce a sequence of length poly(m) that looks random to any (non-uniform)automaton of space m. Thus, one may convert any randomized computation uti-lizing polynomial-time and linear-space into a functionally equivalent randomizedcomputation of similar time and space complexities that uses only a linear numberof coin tosses.8.4.2.1 Sketches of the proofs of Theorems 8.21 and 8.22In both cases, we start the proof by considering a generic space-bounded distin-guisher and show that the input distribution that this distinguisher examines canbe modi�ed (from the uniform distribution into a pseudorandom one) without hav-ing the distinguisher notice the di�erence. This modi�cation (or rather a sequenceof modi�cations) yields a construction of a pseudorandom generator, which is onlyspelled-out at the end of the argument.



8.4. SPACE-BOUNDED DISTINGUISHERS 351Sketch of the proof of Theorem 8.21.34 The main technical tool used in thisproof is the \mixing property" of pairwise independent hash functions (see Ap-pendix D.2). A family of functions Hn, which map f0; 1gn to itself, is called mixingif for every pair of subsets A;B � f0; 1gn for all but very few (i.e., exp(�
(n))fraction) of the functions h 2 Hn, it holds thatPr[Un 2 A ^ h(Un) 2 B] � jAj2n � jBj2n (8.13)where the approximation is up to an additive term of exp(�
(n)). (See the gener-alization of Lemma D.4, which implies that exp(�
(n)) can be set to 2�n=3.)We may assume, without loss of generality, that s(k) = 
(pk), and thus `(k) �2s(k) holds. For any s(k)-space distinguisher Dk as in De�nition 8.20, we consideran auxiliary \distinguisher" D0k that is obtained by \contracting" every block ofn def= �(s(k)) consecutive layers in Dk, yielding a directed layered graph with`0 def= `(k)=n < 2s(k) layers (and 2s(k) vertices in each layer). Speci�cally,� each vertex in D0k has 2n (possibly parallel) directed edges going to variousvertices of the next level; and� each such edge is labeled by an n-bit long string such that the directed edge(u; v) labeled �1�2 � � ��n in D0k replaces the n-edge directed path between uand v in Dk that consists of edges labeled �1; �2; ::::; �n.The graph D0k simulates Dk in the obvious manner; that is, the computation of D0kon an input of length `(k) = `0 �n is de�ned by breaking the input into consecutivesubstrings of length n and following the path of edges that are labeled by thecorresponding n-bit long substrings.The key observation is that D0k cannot distinguish between a random `0 � n-bitlong input (i.e., U`0�n � U (1)n U (2)n � � �U (`0)n ) and a \pseudorandom" input of the formU (1)n h(U (1)n )U (2)n h(U (2)n ) � � �U (`0=2)n h(U (`0=2)n ), where h 2 Hn is a (suitably �xed)hash function. To prove this claim, we consider an arbitrary pair of neighboringvertices, u and v (in layers i and i+1, respectively), and denote by Lu;v � f0; 1gnthe set of the labels of the edges going from u to v. Similarly, for a vertex w atlayer i+2, we let L0v;w denote the set of the labels of the edges going from v to w.By Eq. (8.13), for all but very few of the functions h 2 Hn, it holds thatPr[Un 2 Lu;v ^ h(Un) 2 L0v;w] � Pr[Un 2 Lu;v] � Pr[Un 2 L0v;w] ; (8.14)where \very few" and � are as in Eq. (8.13). Thus, for all but exp(�
(n)) fractionof the choices of h 2 Hn, replacing the coins in the second transition (i.e., thetransition from layer i+1 to layer i+2) with the value of h applied to the outcomesof the coins used in the �rst transition (i.e., the transition from layer i to i + 1),approximately maintains the probability that D0k moves from u to w via v. Using aunion bound (on all triples (u; v; w) as in the foregoing), we note that, for all but34A detailed proof appears in [173].



352 CHAPTER 8. PSEUDORANDOM GENERATORS23s(k) � `0 � exp(�
(n)) fraction of the choices of h 2 Hn, the foregoing replacementapproximately maintains the probability that D0k moves through any speci�c two-edge path of D0k.Using `0 < 2s(k) and a suitable choice of n = �(s(k)), it holds that 23s(k) � `0 �exp(�
(n)) < exp(�
(n)), and thus all but \few" functions h 2 Hn are good forapproximating all these transition probabilities. (We stress that the same h can beused in all these approximations.) Thus, at the cost of extra jhj random bits, wecan reduce the number of true random coins used in transitions on D0k by a factorof two, without signi�cantly a�ecting the �nal decision of D0k (where again we usethe fact that `0 � exp(�
(n)) < exp(�
(n)), which implies that the approximationerrors do not accumulate to too much). In other words, at the cost of extra jhjrandom bits, we can e�ectively contract the distinguisher to half its length whileapproximately maintaining the probability that the distinguisher accepts a randominput. That is, �xing a good h (i.e., one that provides a good approximation tothe transition probability over all 23s(k) � `0 two-edge paths), we can replace thetwo-edge paths in D0k by edges in a new distinguisher D00k (which depends on h)such that an edge (u;w) labeled r 2 f0; 1gn appears in D00k if and only if, for somev, the path (u; v; w) appears in D0k with the �rst edge (i.e., (u; v)) labeled r andthe second edge (i.e., (v; w)) labeled h(r). Needless to say, the crucial point is thatPr[D00k(U(`0=2)�n)=1] approximates Pr[D0k(U`0�n)=1].
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The output of the generator (on seed �; h(1); :::; h(t)) consists of the concate-nation of the strings denoted �0t ; :::; �1t , appearing in the leaves of the tree.For every x 2 f0; 1g� it holds that �x0 = �x and �x1 = h(t�jxj)(�x). In par-ticular, for t = 3, we have �011 = h(1)(�01), which equals h(1)(h(2)(�0)) =h(1)(h(2)(�)), where � = ��.Figure 8.3: The �rst generator that \fools" space-bounded automata.The forgoing process can be applied to D00k resulting in a distinguisher D000k ofhalf the length, and so on. Each time we contract the current distinguisher by a



8.4. SPACE-BOUNDED DISTINGUISHERS 353factor of two, and do so by randomly selecting (and �xing) a new hash function.Thus, repeating the process for a logarithmic (in the depth of D0k) number of timeswe obtain a distinguisher that only examines n bits, at which point we stop. Intotal, we have used t def= log2(`0=n) < log2 `(k) random hash functions, denotedh(1); :::; h(t). This means that we can generate a (pseudorandom) sequence thatfools the original Dk by using a seed of length n+ t � log2 jHnj (see Figure 8.3 andExercise 8.28). Using n = �(s(k)) and an adequate family Hn (e.g., Construc-tion D.3), we obtain the desired (s; 2�s)-pseudorandom generator, which indeeduses a seed of length O(s(k) � log2 `(k)) = k.Rough sketch of the proof of Theorem 8.22.35 The main technical tool usedin this proof is a suitable randomness extractor (as de�ned in xD.4.1.1), which isindeed a much more powerful tool than hashing functions. The basic idea is thatwhen the distinguisher Dk is at some \distant" layer, say at layer t = 
(s(k)), ittypically \knows" little about the random choices that led it there. That is, Dkhas only s(k) bits of memory, which leaves out t � s(k) bits of \uncertainty" (orrandomness) regarding the previous moves. Thus, much of the randomness thatled Dk to its current state may be \re-used" (or \recycled"). To re-use these bitswe need to extract almost uniform distribution on strings of su�cient length outof the aforementioned distribution over f0; 1gt that has entropy36 at least t� s(k).Furthermore, such an extraction requires some additional truly random bits, yetrelatively few such bits. In particular, using k0 = 
(log t) bits towards this end,the extracted bits are exp(�
(k0)) away from uniform.The gain from the aforementioned recycling is signi�cant if recycling is repeatedsu�ciently many times. Towards this end, we break the k-bit long seed into twoparts, denoted r0 2 f0; 1gk=2 and (r1; :::; r3pk), where jrij = pk=6, and set n = k=3.Intuitively, r0 will be used for determining the �rst n steps, and it will be re-used(or recycled) together with ri for determining the steps i � n+1 through (i+1) �n.Looking at layer i � n, we consider the information regarding r0 that is \known"to Dk (when reaching a speci�c vertex at layer i � n). Typically, the conditionaldistribution of r0, given that we reached a speci�c vertex at layer i � n, has (min-)entropy greater than 0:99 � ((k=2) � s(k)). Using ri (as a seed of an extractorapplied to r0), we can extract 0:9 � ((k=2) � s(k) � o(k)) > k=3 = n bits that arealmost-random (i.e., 2�
(pk)-close to Un) with respect to Dk, and use these bitsfor determining the next n steps. Hence, using k random bits we are producea sequence of length (1 + 3pk) � n > k3=2 that fools automata of space bound,say, s(k) = k=10. Speci�cally, using an extractor of the form Ext : f0; 1gpk=6 �f0; 1gk=2 ! f0; 1gk=3, we map the seed (r0; r1; :::; r3pk) to the output sequence(r0;Ext(r1; r0); :::;Ext(r3pk; r0)). Thus, we obtained an (s; 2�
(ps))-pseudorandom35A detailed proof appears in [176].36Actually, a stronger technical condition needs and can be imposed on the latter distribution.Speci�cally, with overwhelmingly high probability, at layer t, automaton Dk is at a vertex that canbe reached in more than 20:99�(t�s(k)) di�erent ways. In this case, the distribution representinga random walk that reaches this vertex has min-entropy greater than 0:99 � (t� s(k)). The readeris referred to xD.4.1.1 for de�nitions of min-entropy and extractors.



354 CHAPTER 8. PSEUDORANDOM GENERATORSgenerator of stretch function `(k) = k3=2.In order to obtain an arbitrary polynomial stretch rather than a speci�c poly-nomial stretch (i.e., `(k) = k3=2), we repeatedly apply an adequate composition,to be outlined next. Suppose that G1 is an (s1; "1)-pseudorandom generator ofstretch function `1 that works in linear space, and similarly for G2 with respect to(s1; "1) and `2. Then, we consider the following construction of a generator G:1. On input s 2 f0; 1gk, compute G1(s), and parse it into consecutive blocks,each of length k0 = s1(k)=O(1), denoted r1; :::; rt, where t = `1(k)=k0.2. Compute and output the t � `2(k0)-bit long sequence G2(r1) � � �G2(rt).Note that jG(s)j = `1(k) � `2(k0)=k0, where k0 = s1(k)=O(1) and k = jsj. Fors1(k) = �(k), we have jG(s)j = `1(k) � `2(
(k))=O(k), which for polynomials`1 and `2 yields jG(s)j = `1(jsj) � `2(jsj)=O(jsj). We claim that G is an (s; ")-pseudorandom generator, for s(k) = min(s1(k)=2; s2(
(s1(k))) and "(k) = "1(k) +`1(k) � "2(
(s1(k)). The proof uses a hybrid argument, which refers to the naturaldistributions G(Uk) and Ut�`2(k0) � U (1)`2(k0) � � �U (t)`2(k0) as well as to the intermediatehybrid distribution Ik def= G2(U (1)k0 ) � � �G2(U (t)k0 ). The reader can verify that Ik is(s2(k0); t�"2(k0))-pseudorandom (see Exercise 8.27), and so we focus on proving thatIk is indistinguishable from G(Uk) by automata of space s1(k)=2 (with respect todistinguishing-gap "1(k)). This is proved by converting a potential distinguisher(of Ik and G(Uk)) into a distinguisher of U`1(k) � Ut�k0 and G1(Uk), where thenew distinguisher parses the `1(k)-bit long input into t blocks (each of length k0),invokesG2 on the corresponding k0-bit long blocks, and feeds the resulting sequenceof `1(k0)-bit long blocks to the original distinguisher. For this end, it is crucial thatG2 can be evaluate on k0-bit long strings using space at most s1(k)=2, which isguaranteed by our setting of k0 = s1(k)=O(1) and the hypothesis that G2 works inlinear space.8.4.2.2 Derandomization of space-complexity classesAs a direct application of Theorem 8.21, we obtain that BPL � Dspace(log2),where BPL denotes the log-space analogue of BPP (see De�nition 6.11). (Recallthat NL � Dspace(log2), but it is not known whether or not BPL � NL.)37 Astronger derandomization result can be obtained by a �ner analysis of the proof ofTheorem 8.21.Theorem 8.23 BPL � SC, where SC denotes the class of decision problemsthat can be solved by a deterministic algorithm that runs in polynomial-time andpolylogarithmic-space.Thus, BPL (and in particular RL � BPL) is placed in a class not known tocontain NL. Another such result was subsequently obtained in [195]: Randomized37Indeed, the log-space analogue of RP, denoted RL, is contained in NL � Dspace(log2), andthus the fact that Theorem 8.21 implies RL � Dspace(log2) is of no interest.



8.4. SPACE-BOUNDED DISTINGUISHERS 355log-space can be simulated in deterministic space o(log2); speci�cally, in spacelog3=2. We mention that the archetypical problem of RL has been recently provedto be in L (see Section 5.2).Sketch of the proof of Theorem 8.23.38 We are going to use the generatorconstruction provided in the proof of Theorem 8.21, but show that the main partof the seed (i.e., the sequence of hash functions) can be �xed (depending on thedistinguisher at hand). Furthermore, this �xing can be performed in polyloga-rithmic space and polynomial-time. Speci�cally, wishing to derandomize a speci�clog-space computation (which refers to a speci�c input), we �rst obtain the corre-sponding distinguisher, denotedD0k, that represents this computation (as a functionof the outcomes of the internal coin tosses of the log-space algorithm). The keyobservation is that the question of whether or not a speci�c hash function h 2 Hnis good for a speci�c D0k can be determined in space that is linear in n = jhj=2and logarithmic in the size of D0k. Indeed, the time-complexity of this decisionprocedure is exponential in its space-complexity. It follows that we can �nd a goodh 2 Hn, for a given D0k, within these complexities (by scanning through all pos-sible h 2 Hn). Once a good h is found, we can also construct the correspondinggraph D00k (in which edges represent two-edge paths in D0k), again within the samecomplexity. Actually, it will be more instructive to note that we can determine astep (i.e., an edge-traversal) in D00k by making two steps (edge-traversals) in D0k.This will allow to �x a hash function for D00k , and so on. Details follow.The main claim is that the entire process of �nding a sequence of t def= log2 `0(k)good hash functions can be performed in space t �O(n+log jDkj) = O(n+log jDkj)2and time poly(2n�jDkj); that is, the time-complexity is sub-exponential in the space-complexity (i.e., the time-complexity is signi�cantly smaller than than the genericbound of exp(O(n + log jDkj)2)). Starting with D(1)k = D0k, we �nd a good (forD(1)k ) hashing function h(1) 2 Hn, which de�nes D(2)k = D00k . Having found (andstored) h(1); :::; h(i) 2 Hn, which determine D(i+1)k , we �nd a good hashing functionh(i+1) 2 Hn for D(i+1)k by emulating pairs of edge-traversals on D(i+1)k . Indeed,a key point is that we do not construct the sequence of graphs D(2)k ; :::; D(i+1)k ,but rather emulate an edge-traversal in D(i+1)k by making 2i edge-traversals in D0k,using h(1); :::; h(i): The (edge-traversal) move � 2 f0; 1gn starting at vertex v ofD(i+1)k translates to a sequence of 2i moves starting at vertex v of D0k, where themoves are determined by the 2i-long sequence (of n-bit strings)h(0i)(�); h(0i�201)(�); h(0i�210)(�); h(0i�211)(�); :::; h(1i)(�);where h(�i����1) is the function obtained by the composition of a subsequence of thefunctions h(i); :::; h(1) determined by �i � � ��1. Speci�cally, h(�i����1) equals h(it0 ) �� � � � h(i2) � h(i1), where i1 < i2 < � � � < it0 and fij : j=1; :::; t0g = fj : �j=1g.Recall that the ability to perform edge-traversals on D(i+1)k allows to determinewhether a speci�c function h 2 Hn is good for D(i+1)k . This is done by considering38A detailed proof appears in [174].



356 CHAPTER 8. PSEUDORANDOM GENERATORSall the relevant triples (u; v; w) inD(i+1)k , computing for each such (u; v; w) the threequantities (i.e., probabilities) appearing in Eq. (8.14), and deciding accordingly.Trying all possible h 2 Hn, we �nd a function (to be denoted h(i+1)) that is goodfor D(i+1)k . This is done while using an additional storage of s0 = O(n + log jD0kj)(on top of the storage used to record h(1); :::; h(i)), and in time that is exponentialin s0. Thus, given D0k, we �nd a good sequence of hash functions, h(1); :::; h(t), intime exponential in s0 and while using space s0 + t � log2 jHnj = O(t � s0). Sucha sequence of functions allows us to emulate edge-traversals on D(t+1)k , which inturn allows to (deterministically) approximate the probability that D0k accepts arandom input (i.e., the probability that, starting at the single source vertex of the�rst layer, automaton D0k reaches some accepting vertex at the last layer). Thisapproximation is obtained by computing the corresponding probability in D(t+1)kby traversing all 2n edges.To summarize, given D0k, we can (deterministically) approximate the probabil-ity that D0k accepts a random input in O(t � s0)-space and exp(O(s0 + n))-time,where s0 = O(n + log jD0kj) and t < log2 jD0kj. For n = �(log jD0kj), this meansO(log jD0kj)2-space and poly(jD0kj)-time. We comment that the approximation canbe made accurate up to an additive term of 1=poly(jD0kj), but an additive term of1=6 su�ces here.We conclude the proof by recalling the connection between such an approxima-tion and the derandomization of BPL (indeed, note the analogy to the proof ofTheorem 8.13). The computation of a log-space probabilistic machine M on inputx, can be represented by a directed layer graph GM;x of size poly(jxj). Speci�cally,the vertices of each layer represent possible con�gurations of the computation ofM(x), and the edges between the ith layer and the i + 1st layer represent the ithmove of such a computation, which depends on the ith bit of the random-tape ofM (or, equivalently, on the ith internal coin toss of M).39 Thus, the probabil-ity that M accepts x equals the probability that a random walk starting at thesingle vertex of the �rst layer of GM;x reaches some vertex in the last layer thatrepresents an accepting con�guration. Setting k = �(log jxj) and n = �(k), thegraph GM;x coincides with the graph Dk referred to at the beginning of the proofof Theorem 8.21, and D0k is obtained from Dk by an \n-layer contraction" (seeibid.). Furthermore, Dk and D0k can be constructed (from x) in logarithmic-space(and by using the emulative composition of Lemma 5.2 we may just proceed asif D0k is given as input). Combining this with the foregoing analysis, we concludethat the probability that M accepts x can be deterministically approximated inO(log jxj)2-space and poly(jxj)-time. The theorem follows.39Note that GM;x is a \layered version" of the graph that was considered (and denoted Gx)in the proof of Theorem 5.11. Furthermore, while in the proof of Theorem 5.11 we cared aboutthe existence of certain paths, here we care about their quantity (or rather the probability oftraversing one of them).



8.5. SPECIAL PURPOSE GENERATORS 3578.5 Special Purpose GeneratorsIn this section we consider even weaker types of pseudorandom generators, pro-ducing sequences that can fool only very restricted types of distinguishers. Still,such generators have many applications in complexity theory and in the design ofalgorithms. (These applications will only be mentioned brie
y.)We start with the simplest of these generators: the pairwise-independence gen-erator, and its generalization to t-wise independence for any t�2. Such generatorsperfectly fool any distinguisher that only observe t locations in the output sequence.This leads naturally to almost pairwise (or t-wise) independence generators, whichalso fool such distinguishers (albeit non-perfectly). The latter generators are im-plied by a stronger class of generators, which is of independent interest: the small-bias generators. Small-bias generators fool any linear test (i.e., any distinguisherthat merely considers the xor of some �xed locations in the input sequence). Wethen turn to the Expander Random Walk Generator: this generator produces asequence of strings that hit any dense subset of strings with probability that isclose to the hitting probability of a truly random sequence. Related notions suchas samplers, dispersers, and extractors are treated in Appendix D.Teaching note: Unlike the constructions presented in previous sections, the construc-tions presented in this section do not utilize any insight into the nature of (time- orspace-bounded) computation. Instead, they are based on various purely mathematicalfacts, and their analysis is deferred to exercises.Comment regarding our parameterization: To maintain consistency withprior sections, we continue to present the generators in terms of the seed length,denoted k. Since this is not the common presentation for most results presented inthe sequel, we provide (in footnotes) the common presentation in which the seedlength is determined as a function of other parameters.8.5.1 Pairwise-Independence GeneratorsPairwise (resp., t-wise) independence generators fool tests that inspect only two(resp., t) elements in the output sequence of the generator. Such local tests areindeed very restricted, yet they arise naturally in many settings. For example,such a test corresponds to a probabilistic analysis (of a procedure) that only relieson the pairwise independence of certain choices made by the procedure. We alsomention that, in some natural range of parameters, pairwise independent samplingis as good as sampling by totally independent sample points; see Appendices D.1.2and D.3.A t-wise independence generator of block-length b :N!N (and stretch function`) is a relatively e�cient deterministic algorithm (e.g., one that works in time poly-nomial in the output length) that expands a k-bit long random seed into a sequenceof `(k)=b(k) blocks, each of length b(k), such that any t blocks are uniformly andindependently distributed in f0; 1gt�b(k). That is, denoting the ith block of the gen-erator's output (on seed s) by G(s)i, we requite that for every i1 < i2 < � � � < it



358 CHAPTER 8. PSEUDORANDOM GENERATORS(in [`(k)=b(k)]) it holds thatG(Uk)i1 ; G(Uk)i2 ; :::; G(Uk)it � Ut�b(k): (8.15)We note that this condition holds even if the inspected t blocks are selected adap-tively (see Exercise 8.29). In case t = 2, we call the generator pairwise independent.8.5.1.1 ConstructionsIn the �rst construction, we refer to GF(2b(k)), the �nite �eld of 2b(k) elements,and associate its elements with f0; 1gb(k).Proposition 8.24 (t-wise independence generator):40 Let t be a �xed integer andb; `; `0 :N!N such that b(k) = k=t, `0(k) = `(k)=b(k) > t and `0(k) � 2b(k). Let�1; :::; �`0(k) be �xed distinct elements of the �eld GF(2b(k)). For s0; s1; :::; st�1 2f0; 1gb(k), letG(s0; s1; :::; st�1) def= 0@t�1Xj=0 sj�j1 ; t�1Xj=0 sj�j2 ; :::; t�1Xj=0 sj�j̀0(k)1A (8.16)where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence gen-erator of block-length b and stretch `.That is, given a seed that consists of t elements of GF(2b(k)), the generator outputsa sequence of `0(k) such elements. To make the foregoing generator totally explicit,we need an explicit representation of GF(2b(k)), which requires an irreducible poly-nomial of degree b(k) over GF(2). For speci�c values of b(k), a good representationdoes exist: For example, for d def= b(k) = 2 � 3e (with e being an integer), thepolynomial xd + xd=2 + 1 is irreducible over GF(2). The proof of Proposition 8.24is left as an exercise (see Exercise 8.30). It is based on the observation that, forany �xed v0; v1; :::; vt�1, the condition fG(s0; s1; :::; st�1)ij = vjgtj=1 constitutes asystem of t linear equations over GF(2b(k)) (in the variables s0; s1; :::; st�1) suchthat the equations are linearly-independent. (Thus, linear independence of certainexpressions yields statistical independence of the corresponding random variables.)We note that a construction analogous to Eq. (8.16) works for every �nite �eld(e.g., a �nite �eld of any prime cardinality), but the problem of providing an explicitrepresentation of such a �eld remains non-trivial also in other cases (e.g., considerthe problem of �nding a prime of size approximately 2b(k)). The latter fact is themain motivation for considering the following alternative construction for the caseof t = 2.The following construction uses (random) a�ne transformations (as possibleseeds). In fact, better performance (i.e., shorter seed length) is obtained by us-ing a�ne transformations a�ected by Toeplitz matrices. A Toeplitz matrix is a40In the common presentation of this t-wise independence generator, the length of the seed isdetermined as a function of the desired block-length and stretch. That is, given the parametersb and `0 � 2b, the seed length is set to t � b.



8.5. SPECIAL PURPOSE GENERATORS 359matrix with all diagonals being homogeneous (see Figure 8.4); that is, T = (ti;j)is a Toeplitz matrix if ti;j = ti+1;j+1 for all i; j. Note that a Toeplitz matrix isdetermined by its �rst row and �rst column (i.e., the values of t1;j 's and ti;1's).
+ =

m(k)

b(k)

Figure 8.4: An a�ne transformation a�ected by a Toeplitz matrix.Proposition 8.25 (alternative pairwise independence generator, see Figure 8.4):41Let b; `; `0;m : N!N such that `0(k) = `(k)=b(k) and m(k) = dlog2 `0(k)e =k � 2b(k) + 1. Associate f0; 1gn with the n-dimensional vector space over GF(2),and let v1; :::; v`0(k) be �xed distinct vectors in the m(k)-dimensional vector spaceover GF(2). For s 2 f0; 1gb(k)+m(k)�1 and r 2 f0; 1gb(k), letG(s; r) def= (Tsv1 + r ; Tsv2 + r ; :::; Tsv`0(k) + r) (8.17)where Ts is an b(k)-by-m(k) Toeplitz matrix speci�ed by the string s. Then G is apairwise independence generator of block-length b and stretch `.That is, given a seed that represents an a�ne transformation de�ned by an b(k)-by-m(k) Toeplitz matrix and a b(k)-dimensional vector, the generator outputs asequence of `0(k) � 2m(k) strings, each of length b(k). Note that k = 2b(k) +m(k) � 1, and that the stretching property requires `0(k) > k=b(k). The proof ofProposition 8.25 is left as an exercise (see Exercise 8.31). This proof is also basedon the observation that linear independence of certain expressions yields statisticalindependence of the corresponding random variables: here fG(s; r)ij = vjg2j=1 isa system of 2b(k) linear equations over GF(2) (in Boolean variables representingthe bits of s and r) such that the equations are linearly-independent. We mentionthat a construction analogous to Eq. (8.17) works for every �nite �eld.A stronger notion of e�cient generation. Ignoring the issue of �nding arepresentation for a large �nite �eld, both the foregoing constructions are e�cientin the sense that the generator's output can be produced in time that is polynomial41In the common presentation of this pairwise independence generator, the length of the seedis determined as a function of the desired block-length and stretch. That is, given the parametersb and `0, the seed length is set to 2b+ dlog2 `0e � 1.



360 CHAPTER 8. PSEUDORANDOM GENERATORSin its length. Actually, the aforementioned constructions satisfy a stronger notionof e�cient generation, which is useful in several applications. Speci�cally, thereexists a polynomial-time algorithm that given a seed, s 2 f0; 1gk, and a blocklocation i 2 [`0(k)] (in binary), outputs the ith block of the corresponding output(i.e., the ith block of G(s)). Note that, in the case of the �rst construction (capturedby Eq. (8.16)), this stronger notion depends on the ability to �nd a representationof GF(2b(k)) in poly(k)-time.42 Recall that this is possible in the case that b(k) isof the form 2 � 3e.8.5.1.2 Applications (a brief review)Pairwise independence generators do su�ce for a variety of applications (cf., [236,160]). In particular, we mention the application to sampling discussed in Ap-pendix D.3, and the derandomization of the fast parallel algorithm for the MaximalIndependent Set problem. This derandomization relies on the fact that the analysisof the randomized algorithm only relies on the hypothesis that some objects aredistributed in pairwise independent manner. Thus, this analysis holds also whenthese objects are selected using a pairwise independence generator. In general,pairwise independence generators do su�ce to fool distinguishers that are derivedfrom some natural and interesting randomized algorithms.Referring to Eq. (8.16), we remark that, for any constant t � 2, the cost ofderandomization (i.e., going over all 2k possible seeds) is exponential in the block-length (because b(k) = k=t). On the other hand, the number of blocks is at mostexponential in the block-length (because `0(k) � 2b(k)), and so if a larger numberof blocks is needed, then we can arti�cially increase the block-length in order toaccommodate this (i.e., set (�k) = log2 `0(k)). Thus, the cost of derandomization ispolynomial in max(`0(k); 2b0(k)), where `0(k) denotes the desired number of blocksand b0(k) the desired block-length. It follows that whenever the analysis of arandomized algorithm can be based on a constant amount of independence betweenfeasibly-many random choices, each taken within a domain of feasible size, then afeasible derandomization is possible.8.5.2 Small-Bias GeneratorsAs stated in x8.5.1.2, O(1)-wise independence generators allow for the e�cient de-randomization of any e�cient randomized algorithm the analysis of which is onlybased on a constant amount of independence between the bits of its random-tape.This restriction is due to the fact that t-wise independence generators of stretch` require a seed of length 
(t � log `). Trying to go beyond constant-independencein such derandomizations (while using seeds of length that is logarithmic in thelength of the pseudorandom sequence) was the original motivation of the notionof small-bias generators. Speci�cally, as we shall see in x8.5.2.2, small-bias genera-tors yield meaningful approximations of t-wise independence sequences (based onlogarithmic-length seeds).42For the basic notion of e�ciency, it su�ces to �nd a representation of GF(2b(k)) in poly(`(k))-time, which can be done by an exhaustive search in the case that b(k) = O(log `(k)).



8.5. SPECIAL PURPOSE GENERATORS 361While the aforementioned type of derandomizations remains an important ap-plication of small-bias generators, the latter are of independent interest and havefound numerous other applications. In particular, small-bias generators fool \globaltests" that examine the entire output sequence and not merely a �xed number ofpositions in it (as in the case of limited independence generators). Speci�cally, asmall-bias generator produces a sequence of bits that fools any linear test (i.e., atest that computes a �xed linear combination of the bits).For " : N ! [0; 1], an "-bias generator with stretch function ` is a relativelye�cient deterministic algorithm (e.g., working in poly(`(k)) time) that expands ak-bit long random seed into a sequence of `(k) bits such that for any �xed non-empty set S � f1; :::; `(k)g the bias of the output sequence over S is at most"(k). The bias of a sequence of n (possibly dependent) Boolean random variables�1; :::; �n 2 f0; 1g over a set S � f1; ::; ng is de�ned as2 � ����Pr[�i2S�i = 1]� 12 ���� = jPr[�i2S�i = 1]� Pr[�i2S�i = 0]j: (8.18)The factor of 2 was introduced so to make these biases correspond to the Fourier co-e�cients of the distribution (viewed as a function from f0; 1gn to the reals). To seethe correspondence replace f0; 1g by f�1g, and substitute xor by multiplication.The bias with respect to a set S is thus written as�����Pr "Yi2S �i = +1#� Pr "Yi2S �i = �1#����� = �����E"Yi2S �i#�����; (8.19)which is merely the (absolute value of the) Fourier coe�cient corresponding to S.8.5.2.1 ConstructionsRelatively e�cient small-bias generators with exponential stretch and exponentiallyvanishing bias are known.Theorem 8.26 (small-bias generators):43 For some universal constant c > 0, let` :N!N and " :N! [0; 1] such that `(k) � "(k) � exp(k=c). Then, there exists an"-bias generator with stretch function ` operating in time that is polynomial in thelength of its output.In particular, we may have `(k) = exp(k=2c) and "(k) = exp(�k=2c). Three simpleconstructions of small-bias generators that satisfy Theorem 8.26 are known (see [9]).One of these constructions is based on Linear Feedback Shift Registers (LFSRs),where the seed of the generator is used to determine both the \feedback rule" andthe \start sequence" of the LFSR. Speci�cally, a feedback rule of a t-long LFSR isan irreducible polynomial of degree t over GF(2), denoted f(x) = xt +Pt�1j=0 fjxj43In the common presentation of this generator, the length of the seed is determined as afunction of the desired bias and stretch. That is, given the parameters " and `, the seed lengthis set to c � log(`="). We comment that using [9] the constant c is merely 2 (i.e., k � 2 log2(`=")),whereas using [169] k � log2 `+ 4 log2(1=").



362 CHAPTER 8. PSEUDORANDOM GENERATORSwhere f0 = 1, and the (`-bit long) sequence produced by the corresponding LFSRbased on the start sequence s0s1 � � � st�1 2 f0; 1gt is de�ned as r0r1 � � � r`�1, whereri = � si if i 2 f0; 1; :::; t� 1gPt�1j=0 fj � ri�t+j if i 2 ft; t+ 1; :::; `� 1g (8.20)(see Figure 8.5). As stated previously, in the corresponding small-bias generatorthe k-bit long seed is used for selecting an almost uniformly distributed feedbackrule f (i.e., a random irreducible polynomial of degree t = k=2) and a uniformlydistributed start sequence s (i.e., a random t-bit string).44 The corresponding`(k)-bit long output r = r0r1 � � � r`(k)�1 is computed as in Eq. (8.20).
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Figure 8.5: The LFSR small-bias generator (for t = k=2).A stronger notion of e�cient generation. As in Section 8.5.1.1, we note thatthe aforementioned constructions satisfy a stronger notion of e�cient generation,which is useful in several applications. That is, there exists a polynomial-timealgorithm that given a k-bit long seed and a bit location i 2 [`(k)] (in binary),outputs the ith bit of the corresponding output. Speci�cally, in case of the LFSRconstruction, given a seed f0; :::; f(k=2)�1; s0; :::; s(k=2)�1 and a bit location i 2 [`(k)](in binary), the algorithm outputs the ith bit of the corresponding output (i.e., ri).4544Note that an implementation of this generator requires an algorithm for selecting an almostrandom irreducible polynomial of degree t = 
(k). A simple algorithm proceeds by enumeratingall irreducible polynomials of degree t, and selecting one of them at random. This algorithm canbe implemented (using t random bits) in exp(t)-time, which is poly(`(k)) if `(k) = exp(
(k)). Apoly(t)-time algorithm that uses O(t) random bits is described in [9, Sec. 8].45The assertion is based on the fact that0BBB@ ri�t+1ri�t+2...ri�1ri 1CCCA =0BBB@ 0 1 0 � � � 00 0 1 � � � 0... ... ... � � � ...0 0 0 � � � 1f0 f1 f2 � � � ft�1 1CCCA0BBB@ ri�tri�t+1...ri�2ri�1 1CCCA =0BBB@ 0 1 0 � � � 00 0 1 � � � 0... ... ... � � � ...0 0 0 � � � 1f0 f1 f2 � � � ft�1 1CCCAi�t+10BBB@ s0s1...st�2st�1 1CCCA



8.5. SPECIAL PURPOSE GENERATORS 3638.5.2.2 Applications (a brief review)An archetypical application of small-bias generators is for producing short and ran-dom \�ngerprints" (or \digests") of strings such that equality/inequality amongstrings is (probabilistically) re
ected in equality/inequality between their corre-sponding �ngerprints. The key observation is that checking whether or not x = yis probabilistically reducible to checking whether the inner product modulo 2 of xand r equals the inner product modulo 2 of y and r, where r is produced by a small-bias generator G. Thus, the pair (s; v), where s is a random seed to G and v equalsthe inner product modulo 2 of z and G(s), serves as the randomized �ngerprint ofthe string z. One advantage of this reduction is that only few bits (i.e., the seedof the generator and the result of the inner product) needs to be \communicatedbetween x and y" in order to enable the checking (see Exercise 8.33). A relatedadvantage is the low randomness complexity of this reduction, which uses jsj ratherthan jG(s)j random bits, where jsj may be O(log jG(s)j). This low (i.e., logarith-mic) randomness-complexity underlies the application of small-bias generators tothe construction of PCP systems (see, e.g., x9.3.2.2) and amplifying reductions ofgap problems regarding the satis�ability of systems of equations (see Section 9.3.3and Exercise 10.6).Small-bias generators have been used in a variety of areas (e.g., inapproxima-tion, structural complexity, and applied cryptography; see references in [89, Sec3.6.2]). In addition, as shown next, small-bias generators seem an important toolin the design of various types of \pseudorandom" objects.Approximate independence generators. As hinted at the beginning of thissection, small-bias is related to approximate versions of limited independence.46Actually, even a restricted type of "-bias (in which only subsets of size t(k) arerequired to have bias upper-bounded by ") implies that any t(k) bits in the saidsequence are 2t(k)=2 � "(k)-close to Ut(k), where here we refer to the variation dis-tance (i.e., Norm-1 distance) between the two distributions. (The max-norm ofthe di�erence is bounded by "(k).)47 Combining Theorem 8.26 and the forego-ing upper-bound, and relying on the linearity of the construction presented inProposition 8.24, we obtain generators with double-exponential stretch (i.e., `(k) =exp(2
(k)) rather than `(k) = exp(
(k))) that are approximately t(k)-independent,for some non-constant t(k); see Exercise 8.40. Speci�cally, we may obtain genera-tors with stretch `(k) = 22
(k) producing bit sequences in which any t(k) = 
(k)positions have variation distance at most "(k) = 2�
(k) from uniform; that is,such generators may have seed-length k = O(t(k) + log(1="(k)) + log log `(k)).In the corresponding result for the max-norm distance, it su�ces to have k =O(log(t(k)="(k)) + log log `(k)). Thus, whenever the analysis of a randomized al-gorithm can be based on a logarithmic amount of (almost) independence between46We warn that, unlike in the case of perfect independence, here we refer only to the distributionon �xed bit locations. See Exercise 8.32 for further discussion.47Both bounds are derived from the Norm2 bound on the di�erence vector (i.e., the di�erencebetween the two probability vectors). For details, see Exercise 8.34.



364 CHAPTER 8. PSEUDORANDOM GENERATORSfeasibly-many binary random choices, a feasible derandomization is possible (byusing an adequate generator of logarithmic seed length).Extensions to non-binary choices were considered in various works (see refer-ences in [89, Sec 3.6.2]). Some of these works also consider the related problem ofconstructing small \discrepancy sets" for geometric and combinatorial rectangles.t-universal set generators. Using the aforementioned upper-bound on the max-norm (of the deviation from uniform of any t locations), any "-bias generator yieldsa t-universal set generator, provided that " < 2�t. The latter generator outputssequences such that in every subsequence of length t all possible 2t patterns occur(i.e., each for at least one possible seed). Such generators have many applications.8.5.2.3 GeneralizationIn this subsection, we outline a generalization of the treatment of small-bias gen-erators to the generation of sequences over an arbitrary �nite �eld. Focusing onthe case of a �eld of prime characteristic, denoted GF(p), we �rst de�ne an ade-quate notion of bias. Generalizing Eq. (8.19), we de�ne the bias of a sequence ofn (possibly dependent) random variables �1; :::; �n 2 GF(p) with respect to the lin-ear combination (c1; :::; cn) 2 GF(p)n as 


E h!Pni=1 ci�ii


, where ! denotes the pth(complex) root of unity (i.e., ! = �1 if p = 2). Referring to Exercise 8.42, we notethat upper-bounds on the biases of �1; :::; �n (with respect to any non-zero linearcombinations) yield upper-bounds on the distance of Pni=1 ci�i from the uniformdistribution over GF(p).We say that S � GF(p)n is an "-bias probability space if a uniformly selectedsequence in S has bias at most " with respect to any non-zero linear combinationover GF(p). (Whenever such a space is e�ciently constructible, it yields a corre-sponding "-biased generator.) We mention that the LFSR construction, outlinedin x8.5.2.1 and analyzed in Exercise 8.36, generalizes to GF(p) and yields an "-biasprobability space of size (at most) p2e, where e = dlogp(n=")e. Such constructionscan be used in applications that generalize those in x8.5.2.2.8.5.3 Random Walks on ExpandersIn this section we review generators that produce a sequence of values by taking arandom walk on a large graph that has a small degree but an adequate \mixing"property. Such a graph is called an expander, and by taking a random walk on itwe may generate a sequence of `0 values over its vertex set, while using a randomseed of length b+ (`0 � 1) � log2 d, where 2b denotes the number of vertices in thegraph and d denotes its degree. This seed length should be compared against the`0 � b random bits required for generating a sequence of `0 independent samplesfrom f0; 1gb (or taking a random walk on a clique of size 2b). Interestingly, as weshall see, the pseudorandom sequence (generated by the said random walk on anexpander) behaves similarly to a truly random sequence with respect to hitting any



8.5. SPECIAL PURPOSE GENERATORS 365�xed subset of f0; 1gb. Let us start by de�ning this property (or rather by de�ningthe corresponding hitting problem).De�nition 8.27 (the hitting problem): A sequence of (possibly dependent) ran-dom variables, denoted (X1; :::; X`0), over f0; 1gb is ("; �)-hitting if for any (target)set T � f0; 1gb of cardinality at least " � 2b, with probability at least 1� �, at leastone of these variables hits T ; that is, Pr[9i s.t. Xi2T ] � 1� �.Clearly, a truly random sequence of length `0 over f0; 1gb is ("; �)-hitting for � =(1� ")`0 . The aforementioned \expander random walk generator" (to be describednext) achieves similar behavior. Speci�cally, for arbitrary small c > 0 (whichdepends on the degree and the mixing property of the expander), the generator'soutput is ("; �)-hitting for � = (1 � (1 � c) � ")`0 . To describe this generator, weneed to discuss expanders.Expanders. By expander graphs (or expanders) of degree d and eigenvalue bound� < d, we actually mean an in�nite family of d-regular graphs, fGNgN2S (S� N),such that GN is a d-regular graph over N vertices and the absolute value of alleigenvalues, save the biggest one, of the adjacency matrix of GN is upper-boundedby �. For simplicity, we shall assume that the vertex set of GN is [N ] (althoughin some cases a somewhat more redundant representation is more convenient). Wewill refer to such a family as to a (d; �)-expander (for S). This technical de�nitionis related to the aforementioned notion of \mixing" (which refers to the rate atwhich a random walk starting at a �xed vertex reaches uniform distribution overthe graph's vertices). For further detail, see Appendix E.2.We are interested in explicit constructions of such graphs, by which we mean thatthere exists a polynomial-time algorithm that on input N (in binary), a vertex vin GN and an index i 2 f1; :::; dg, returns the ith neighbor of v. (We also requirethat the set S for which GN 's exist is su�ciently \tractable" { say that given anyn 2 N one may e�ciently �nd an s 2S such that n � s < 2n.) Several explicitconstructions of expanders are known (see Appendix E.2.2). Below, we rely on thefact that for every � > 0, there exist d and an explicit construction of a (d; � � d)-expander over f2b : b 2 Ng.48 The relevant (to us) fact about expanders is statednext.Theorem 8.28 (Expander Random Walk Theorem): Let G = (V;E) be an ex-pander graph of degree d and eigenvalue bound �. Let W be a subset of V and� def= jW j=jV j, and consider walks on G that start from a uniformly chosen vertexand take `0 � 1 additional random steps, where in each such step one uniformlyselects one out of the d edges incident at the current vertex and traverses it. Thenthe probability that such a random walk stays in W is at most� ���+ (1� �) � �d�`0�1 (8.21)48This can be obtained with d = poly(1=�). In fact d = O(1=�2), which is optimal, can beobtained too, albeit with graphs of sizes that are only approximately close to powers of two.



366 CHAPTER 8. PSEUDORANDOM GENERATORSThus, a random walk on an expander is \pseudorandom" with respect to the hittingproperty (i.e., when we consider hitting the set V nW and use " = 1��); that is, aset of density " is hit with probability 1��, where � = (1�")�(1�"+(�=d)�")`0�1 <(1� (1� (�=d)) � ")`0 . A proof of Theorem 8.28 is given in [134], while a proof ofan upper-bound that is weaker than Eq. (8.21) is outlined in Exercise 8.43. UsingTheorem 8.28 and an explicit (2t; � � 2t)-expander, we obtain a generator thatproduces sequences that are ("; �)-hitting for � that is almost optimal.Proposition 8.29 (The Expander Random Walk Generator):49� For every constant � > 0, consider an explicit construction of (2t; � � 2t)-expanders for f2n : n2Ng, where t2N is a su�ciently large constant. Forv 2 [2n] � f0; 1gn and i 2 [2t] � f0; 1gt, denote by �i(v) the vertex of thecorresponding 2n-vertex graph that is reached from vertex v when followingits ith edge.� For b; `0 : N!N such that k = b(k) + (`0(k) � 1) � t < `0(k) � b(k), and forv0 2 f0; 1gb(k) and i1; :::; i`0(k)�1 2 [2t], letG(v0; i1; ::::; i`0(k)�1) def= (v0; v1; ::::; v`0(k)�1); (8.22)where vj = �ij (vj�1).Then G has stretch `(k) = `0(k) � b(k), and G(Uk) is ("; �)-hitting for any " > 0and � = (1� (1� �) � ")`0(k).The stretch of G is maximized at b(k) � k=2 (and `0(k) = k=2t), but maximizingthe stretch is not necessarily the goal in all applications. In many applications,the parameters n, " and � are given, and the goal is to derive a generator thatproduces ("; �)-hitting sequences over f0; 1gn while minimizing both the lengthof the sequence and the amount of randomness used by the generator (i.e., theseed length). Indeed, Proposition 8.29 suggests using sequences of length `0 �"�1 log2(1=�) that are generated based on a random seed of length n+O(`0).Expander random-walk generators have been used in a variety of areas (e.g.,PCP and inapproximability (see [28, Sec. 11.1]), cryptography (see [90, Sec. 2.6]),and the design of various types of \pseudorandom" objects (see, in particular,Appendix D.3)).Chapter NotesFigure 8.6 depicts some of the notions of pseudorandom generators discussed inthis chapter. We highlight a key distinction between the case of general-purposepseudorandom generators (treated in Section 8.2) and the other cases (cf. Sec-tions 8.3 and 8.4): in the former case the distinguisher is more complex than the49In the common presentation of this generator, the length of the seed is determined as afunction of the desired block-length and stretch. That is, given the parameters b and `0, the seedlength is set to b+O(`0 � 1).



8.5. SPECIAL PURPOSE GENERATORS 367distinguisher's generator's stretch commentstype resources resources (i.e., `(k))gen.-purpose p(k)-time, 8 poly. p poly(k)-time poly(k) Assumes OW50canon. derandom. 2k=O(1)-time 2O(k)-time 2k=O(1) Assumes EvEC50space-bounded s(k)-space, s(k) < k O(k)-space 2k=O(s(k)) runs in timerobustness k=O(1)-space O(k)-space poly(k) poly(k) � `(k)t-wise independ. inspect t positions poly(k) � `(k)-time 2k=O(t) (e.g., pairwise)small bias linear tests poly(k) � `(k)-time 2k=O(1) � "(k)expander \hitting" poly(k) � `(k)-time `0(k) � b(k)random walk (0:5; 2�`0(k)=O(1))-hitting for f0; 1gb(k), with `0(k) = ((k � b(k))=O(1)) + 1.Figure 8.6: Pseudorandom generators at a glancegenerator, whereas in the latter cases the generator is more complex than the dis-tinguisher. Speci�cally, in the general-purpose case the generator runs in (some�xed) polynomial-time and needs to withstand any probabilistic polynomial-timedistinguisher. In fact, some of the proofs presented in Section 8.2 utilize the factthat the distinguisher can invoke the generator on seeds of its choice. In contrast,the Nisan-Wigderson Generator, analyzed in Theorem 8.18 (of Section 8.3), runsmore time than the distinguishers that it tries to fool, and the proof relies on thisfact in an essential manner. Similarly, the space-complexity of the space-resilientgenerators presented in Section 8.4 is higher than the space-bound of the distin-guishers that they fool.The general paradigm of pseudorandom generators. Our presentation,which views vastly di�erent notions of pseudorandom generators as incarnationsof a general paradigm, has emerged mostly in retrospect. We note that, while thehistorical study of the various notions was mostly unrelated at a technical level,the case of general-purpose pseudorandom generators served as a source of inspi-ration to most of the other cases. In particular, the concept of computationalindistinguishability, the connection between hardness and pseudorandomness, andthe equivalence between pseudorandomness and unpredictability, appeared �rst inthe context of general-purpose pseudorandom generators (and inspired the devel-opment of \generators for derandomization" and \generators for space boundedmachines"). Indeed, the study of the special-purpose generators (see Section 8.5)was unrelated to all of these.General-purpose pseudorandom generators. The concept of computationalindistinguishability, which underlies the entire computational approach to random-ness, was suggested by Goldwasser and Micali [107] in the context of de�ning secureencryption schemes. Indeed, computational indistinguishability plays a key role incryptography (see Appendix C). The general formulation of computational indis-tinguishability is due to Yao [237]. Using the hybrid technique of [107], Yao also50By the OW we denote the assumption that one-way functions exists. By EvEC we denote theassumption that the class E has (almost-everywhere) exponential circuit complexity.



368 CHAPTER 8. PSEUDORANDOM GENERATORSobserved that de�ning pseudorandom generators as producing sequences that arecomputationally indistinguishable from the corresponding uniform distribution isequivalent to de�ning such generators as producing unpredictable sequences. Thelatter de�nition originates in the earlier work of Blum and Micali [39].Blum and Micali [39] pioneered the rigorous study of pseudorandom generatorsand, in particular, the construction of pseudorandom generators based on somesimple intractability assumption. In particular, they constructed pseudorandomgenerators assuming the intractability of Discrete Logarithm problem over prime�elds. Their work also introduces basic paradigms that were used in all subsequentimprovements (cf., e.g., [237, 117]). We refer to the transformation of compu-tational di�culty into pseudorandomness, the use of hard-core predicates (alsode�ned in [39]), and the iteration paradigm (cf. Eq. (8.10)).Theorem 8.11 (by which pseudorandom generators exist if and only if one-wayfunctions exist) is due to H�astad, Impagliazzo, Levin and Luby [117], building onthe hard-core predicate of [98] (see Theorem 7.7). Unfortunately, the current proofof Theorem 8.11 is very complicated and un�t for presentation in a book of thecurrent nature. Presenting a simpler and tighter (cf. x8.2.7.1) proof is indeed animportant research project.Pseudorandom functions (further discussed in Appendix C.3.3) were de�nedand �rst constructed by Goldreich, Goldwasser and Micali [94]. We also mention(and advocate) the study of a general theory of pseudorandom objects initiatedin [95]. Finally, we mention that a more detailed treatment of general-purposepseudorandom generators is provided in [90, Chap. 3].Derandomization of time-complexity classes. As observed by Yao [237], anon-uniformly strong notion of pseudorandom generators yields improved deran-domization of time-complexity classes. A key observation of Nisan [172, 175] is thatwhenever a pseudorandom generator is used in this way, it su�ces to require thatthe generator runs in time that is exponential in its seed length, and so the generatormay have running-time greater than the distinguisher (representing the algorithmto be derandomized). This observation motivates the de�nition of canonical de-randomizers as well as the construction of Nisan and Wigderson [172, 175], whichis the basis for further improvements culminating in [127]. Part 1 of Theorem 8.19(i.e., the so-called \high end" derandomization of BPP) is due to Impagliazzo andWigderson [127], whereas Part 2 (the \low end") is from [175].The Nisan{Wigderson Generator [175] was subsequently used in several waystranscending its original presentation. We mention its application towards foolingnon-deterministic machines (and thus derandomizing constant-round interactiveproof systems) and to the construction of randomness extractors [221] (see overviewin xD.4.2.2).In contrast to the aforementioned derandomization results, which place BPP insome worst-case deterministic complexity class based on some non-uniform (worst-case) assumption, we now mention a result that places BPP in an average-casedeterministic complexity class (cf. Section 10.2) based on a uniform-complexity(worst-case) assumption. We refer speci�cally to a theorem, which is due to Im-



8.5. SPECIAL PURPOSE GENERATORS 369pagliazzo and Wigderson [128] (but is not presented in the main text), that assertsthe following: if BPP is not contained in EXP (almost everywhere) then BPP hasdeterministic sub-exponential time algorithms that are correct on all typical cases(i.e., with respect to any polynomial-time sampleable distribution).Pseudorandom with respect to space-bounded distinguishers. As statedin the �rst paper on the subject of \space-resilient pseudorandom generators" [4]51,this research direction was inspired by the derandomization result obtained via theuse of general-purpose pseudorandom generators. The latter result (necessarily)depends on intractability assumptions, and so the objective was identifying natu-ral classes of algorithms for which derandomization is possible without relying onintractability assumptions (but rather by relying on intractability results that areknown for the corresponding classes of distinguishers). This objective was achievedbefore for the case of constant-depth (randomized) circuits, but space-bounded(randomized) algorithms o�er a more appealing class that refers to natural al-gorithms. Fundamentally di�erent constructions of space-resilient pseudorandomgenerators were given in several works, but are superseded by the two incomparableresults mentioned in Section 8.4.2: Theorem 8.21 (a.k.a Nisan's Generator [173])and Theorem 8.22 (a.k.a the Nisan{Zuckerman Generator [176]). These two re-sults have been \interpolated" in [11]. Theorem 8.23 (BPL � SC) was proved byNisan [174].Special Purpose Generators. The various generators presented in Section 8.5were not inspired by any of the other types of pseudorandom generator (nor even bythe generic notion of pseudorandomness). Pairwise-independence generator wereexplicitly suggested in [53] (and are implicit in [49]). The generalization to t-wiseindependence (for t � 2) is due to [6]. Small-bias generators were �rst de�ned andconstructed by Naor and Naor [169], and three simple constructions were subse-quently given in [9]. The Expander Random Walk Generator was suggested byAjtai, Komlos, and Szemer�edi [4], who discovered that random walks on expandergraphs provide a good approximation to repeated independent attempts with re-spect to hitting any �xed subset of su�cient density (within the vertex set). Theanalysis of the hitting property of such walks was subsequently improved, culmi-nating in the bound cited in Theorem 8.28, which is taken from [134, Cor. 6.1].(The foregoing historical notes do not mention several technical contributions thatplayed an important role in the development of the area. For further details, thereader is referred to [89, Chap. 3]. In fact, the current chapter is a revision of [89,Chap. 3], providing signi�cantly more details for the main topics, and omitting rela-tively secondary material (a revision of which appears in Appendices D.3 and D.4.)We mention that an alternative treatment of pseudorandomness, which putsmore emphasis on the relation between various techniques, is provided in [228]. Inparticular, the latter text highlights the connections between information theoretic51This paper is more frequently cited for the Expander Random Walk technique, which it hasintroduced.



370 CHAPTER 8. PSEUDORANDOM GENERATORSand computational phenomena (e.g., randomness extractors and canonical deran-domizers), while the current text tends to decouple the two (see, e.g., Section 8.3and Appendix D.4).ExercisesExercise 8.1 Show that placing no computational requirements on the genera-tor enables unconditional results regarding \generators" that fool any family ofsubexponential-size circuits. That is, making no computational assumptions, provethat there exist functions G : f0; 1g� ! f0; 1g� such that fG(Uk)gk2N is (strongly)pseudorandom, while jG(s)j = 2jsj for every s 2 f0; 1g�. Furthermore, show thatG can be computed in double-exponential time.Guideline: Use the Probabilistic Method (cf. [10]). First, for any �xed circuit C :f0; 1gn ! f0; 1g, upper-bound the probability that for a random set S � f0; 1gn of size2n=2 the absolute value of Pr[C(Un) = 1] � (jfx 2 S : C(x) = 1gj=jSj) is larger than2�n=8. Next, using a union bound, prove the existence of a set S � f0; 1gn of size 2n=2such that no circuit of size 2n=5 can distinguish a uniformly distributed element of S froma uniformly distributed element of f0; 1gn, where distinguishing means with a probabilitygap of at least 2�n=8.Exercise 8.2 Prove the following corollaries to Proposition 8.3.1. Let A be a probabilistic polynomial-time algorithm solving a decision problem� : f0; 1g� ! f0; 1g (in BPP), and let AG be as in Construction 8.2. Provethat it is infeasible to �nd an x on which AG errs with probability that issigni�cantly higher than the error probability of A; that is, prove that oninput 1n it is infeasible to �nd an x 2 f0; 1gn such that Pr[AG(x) 6=�(x)] <Pr[A(x)=�(x)] + 0:01.2. Let A be a probabilistic polynomial-time algorithm solving the search as-sociated with the NP-relation R, and let AG be as in Construction 8.2.Prove that it is infeasible to �nd an x on which AG outputs a wrong so-lution; that is, assuming for simplicity that A has error probability 1=3,prove that on input 1n it is infeasible to �nd an x 2 f0; 1gn \ SR such thatPr[(x;AG(x)) 62 R] > 0:4, where SR def= fx : 9y (x; y) 2 Rg. Likewise, it isinfeasible to �nd an x 2 f0; 1gn n SR such that Pr[AG(x) 6= ?] > 0:4.Exercise 8.3 Prove that omitting the absolute value in Eq. (8.6) keeps De�ni-tion 8.4 intact.(Hint: consider D0(z) def= 1�D(z).)Exercise 8.4 Prove that computational indistinguishability is an equivalence re-lation (de�ned over pair of probability ensembles). Speci�cally, prove that thisrelation is transitive (i.e., X � Y and Y � Z implies X � Z).



8.5. SPECIAL PURPOSE GENERATORS 371Exercise 8.5 Prove that if fXngn2N and fYngn2N are computationally indistin-guishable and A is a probabilistic polynomial-time algorithm then fA(Xn)gn2N andfA(Yn)gn2N are computationally indistinguishable.Guideline: If D distinguishes the latter ensembles, then D0 such that D0(z) def= D(A(z))distinguishes the former.Exercise 8.6 In contrast to Exercise 8.5, show that the conclusion may not holdin case A is not computationally bounded. That is, show that there exists computa-tionally indistinguishable ensembles, fXngn2N and fYngn2N, and an exponential-time algorithm A such that fA(Xn)gn2N and fA(Yn)gn2N are not computationallyindistinguishable.Guideline: For any pair of ensembles fXngn2N and fYngn2N, consider the Booleanfunction f such that f(z) = 1 if and only if Pr[Xn = z] > Pr[Yn = z]. Show thatjPr[f(Xn) = 1] � Pr[f(Yn) = 1]j equals the statistical di�erence between Xn and Yn.Consider an adequate (approximate) implementation of f (e.g., approximate Pr[Xn = z]and Pr[Yn = z] up to �2�2jzj).Exercise 8.7 Show that the existence of pseudorandom generators implies the ex-istence of polynomial-time constructible probability ensembles that are statisticallyfar apart and yet are computationally indistinguishable.Guideline: Lower-bound the statistical distance between G(Uk) and U`(k), where G is apseudorandom generator with stretch `.Exercise 8.8 Relying on Theorem 7.7, provide a self-contained proof of the factthat the existence of one-way 1-1 functions implies the existence of polynomial-time constructible probability ensembles that are statistically far apart and yet arecomputationally indistinguishable.Guideline: Assuming that b is a hard-core of the function f , consider the ensemblesff(Un) �b(Un)gn2N and ff(Un) �U 01gn2N. Prove that these ensembles are computationallyindistinguishable by using the main ideas of the proof of Proposition 8.9. Show that if fis 1-1 then these ensembles are statistically far apart.Exercise 8.9 (following [87]) Prove that the su�cient condition in Exercise 8.7is in fact necessary. Recall that fXngn2N and fYngn2N are said to be statisticallyfar apart if, for some positive polynomial p and all su�ciently large n, the variationdistance betweenXn and Yn is greater than 1=p(n). Using the following three steps,prove that the existence of polynomial-time constructible probability ensembles thatare statistically far apart and yet are computationally indistinguishable implies theexistence of pseudorandom generators.1. Show that, without loss of generality, we may assume that the variationdistance between Xn and Yn is greater than 1� exp(�n).Guideline: For Xn and Yn as in the forgoing, consider Xn = (X(1)n ; :::; X(t(n))n )and Y n = (Y (1)n ; :::; Y (t(n))n ), where the X(i)n 's (resp., Y (i)n 's) are independent copies



372 CHAPTER 8. PSEUDORANDOM GENERATORSof Xn (resp., Yn), and t(n) = O(n �p(n)2). To lower-bound the statistical di�erencebetween Xn and Y n, consider the set Sn def= fz : Pr[Xn= z] > Pr[Yn= z]g and therandom variable representing the number of copies in Xn (resp., Y n) that reside inSn.2. Using fXngn2N and fYngn2N as in Step 1, prove the existence of a false en-tropy generator, where a false entropy generator is a deterministic polynomial-time algorithm G such that G(Uk) has entropy e(k) but fG(Uk)gk2N is com-putationally indistinguishable from a polynomial-time constructible ensemblethat has entropy greater than e(�) + (1=2).Guideline: Let S0 and S1 be sampling algorithms such that Xn � S0(Upoly(n))and Yn � S1(Upoly(n)). Consider the generator G(�; r) = (�; S�(r)), and the distri-bution Zn that equals (U1; Xn) with probability 1=2 and (U1; Yn) otherwise. Notethat in G(U1; Upoly(n)) the �rst bit is almost determined by the rest, whereas in Znthe �rst bit is statistically independent of the rest.3. Using a false entropy generator, obtain one in which the excess entropy ispk, and using the latter construct a pseudorandom generator.Guideline: Use the ideas presented in x8.2.5.3 (i.e., the discussion of the inter-esting direction of the proof of Theorem 8.11).Exercise 8.10 (multiple samples vs single sample, a separation) In contrastto Proposition 8.6, prove that there exist two probability ensembles that are com-putational indistinguishable by a single sample, but are e�ciently distinguishableby two samples. Furthermore, one of these ensembles is the uniform ensemble andthe other has a sparse support (i.e., only poly(n) many strings are assigned a non-zero probability weight by the second distribution). Indeed, the second ensembleis not polynomial-time constructible.Guideline: Prove that, for every function d : f0; 1gn ! [0; 1], there exists two strings, xnand yn (in f0; 1gn), and a number p 2 [0; 1] such that Pr[d(Un)=1] = p�Pr[d(xn)=1]+(1�p) � Pr[d(yn)=1]. Generalize this claim to m functions, using m+ 1 strings and a convexcombination of the corresponding probabilities.52 Conclude that there exists a distributionZn with a support of size at most m+ 1 such that for each of the �rst (in lexicographicorder) m (randomized) algorithms A it holds that Pr[A(Un) = 1] = Pr[A(Zn)= 1]. Notethat with probability at least 1=(m+1), two independent samples of Zn are assigned thesame value, yielding a simple two-sample distinguisher of Un from Zn.Exercise 8.11 (amplifying the stretch function, an alternative construction)For G1 and ` as in Construction 8.7, consider G(s) def= G`(jsj)�jsj1 (s), where Gi1(x)denotes G1 iterated i times on x (i.e., Gi1(x) = Gi�11 (G1(x)) and G01(x) = x).Prove that G is a pseudorandom generator of stretch `. Re
ect on the advantagesof Construction 8.7 over the current construction (e.g., consider generation time).52That is, prove that for every m functions d1; :::; dm : f0; 1gn ! [0; 1] there exist m+1 stringsz(1)n ; :::; z(m+1)n and m+1 non-negative numbers p1; :::; pm+1 that sum-up to 1 such that for everyi 2 [m] it holds that Pr[di(Un)=1] =Pj pj � Pr[di(z(j)n )=1].



8.5. SPECIAL PURPOSE GENERATORS 373Guideline: Use a hybrid argument, with the ith hybrid being Gi1(U`(k)�i), for i =0; :::; `(k) � k. Note that Gi+11 (U`(k)�(i+1)) = Gi1(G1(U`(k)�i�1)) and Gi1(U`(k)�i) =Gi1(UjG1(U`(k)�i�1)j), and use Exercise 8.5.Exercise 8.12 (pseudorandom versus unpredictability) Prove that a prob-ability ensemble fZkgk2N is pseudorandom if and only if it is unpredictable. Forsimplicity, we say that fZkgk2N is (next-bit) unpredictable if for every probabilis-tic polynomial-time algorithm A it holds that Pri[A(Fi(Zk)) =Bi+1(Zk)] � (1=2)is negligible, where i 2 f0; :::; jZkj � 1g is uniformly distributed, and Fi(z) (resp.,Bi+1(z)) denotes the i-bit pre�x (resp., i+ 1st bit) of z.Guideline: Show that pseudorandomness implies polynomial-time unpredictability; thatis, polynomial-time predictability violates pseudorandomness (because the uniform ensem-ble is unpredictable regardless of computing power). Use a hybrid argument to prove thatunpredictability implies pseudorandomness. Speci�cally, the ith hybrid consists of the i-bit long pre�x of Zk followed by jZkj � i uniformly distributed bits. Thus, distinguishingthe extreme hybrids (which correspond to Zk and UjZkj) implies distinguishing a randompair of neighboring hybrids, which in turn implies next-bit predictability. For the laststep, use an argument as in the proof of Proposition 8.9.Exercise 8.13 Prove that a probability ensemble is unpredictable (from left toright) if and only if it is unpredictable from right to left (or in any other canonicalorder).Guideline: Use Exercise 8.12, and note that an ensemble is pseudorandom if and onlyif its reverse is pseudorandom.Exercise 8.14 Let f be 1-1 and length preserving, and b be a hard-core predicateof f . For any polynomial `, letting G0(s) def= b(f `(jsj)�1(s)) � � � b(f(s)) � b(s), provethat fG0(Uk)g is unpredictable (in the sense of Exercise 8.12).Guideline: Suppose towards the contradiction that, for a uniformly distributed j 2f0; :::; `(k) � 1g, given the j-bit long pre�x of G0(Uk) an algorithm A0 can predict thej + 1st bit of G0(Uk). That is, given b(f `(k)�1(s)) � � � b(f `(k)�j(s)), algorithm A0 predictsb(f `(k)�(j+1)(s)), where s is uniformly distributed in f0; 1gk. Consider an algorithm Athat given y = f(x) approximates b(x) by invoking A0 on input b(f j�1(y)) � � � b(y), wherej is uniformly selected in f0; :::; `(k)� 1g. Analyze the success probability of A using thefact that f induces a permutation over f0; 1gn, and thus b(f j(Uk)) � � � b(f(Uk)) � b(Uk) isdistributed identically to b(f `(k)�1(Uk)) � � � b(f `(k)�j(Uk)) � b(f `(k)�(j+1)(Uk)).Exercise 8.15 Prove that if G is a strong pseudorandom generator in the senseof De�nition 8.12 then it a pseudorandom generator in the sense of De�nition 8.1.Guideline: Consider a sequence of internal coin tosses that maximizes the probabilityin Eq. (8.2).Exercise 8.16 (strong computational indistinguishability) Provide a de�-nition of the notion of computational indistinguishability that underlies De�ni-tion 8.12 (i.e., indistinguishability with respect to (non-uniform) polynomial-sizecircuits). Prove the following two claims:



374 CHAPTER 8. PSEUDORANDOM GENERATORS1. Computational indistinguishability with respect to (non-uniform) polynomial-size circuits is strictly stronger than De�nition 8.4.2. Computational indistinguishability with respect to (non-uniform) polynomial-size circuits is invariant under (polynomially-many) multiple samples, even ifthe underlying ensembles are not polynomial-time constructible.Guideline: For Part 1, see the solution to Exercise 8.10. For Part 2 note that samplesas generated in the proof of Proposition 8.6 can be hard-wired into the distinguishingcircuit.Exercise 8.17 Show that Construction 8.7 may fail in the context of canonicalderandomizers. Speci�cally, prove that it fails for the canonical derandomizer G0that is presented in the proof of Theorem 8.18.Exercise 8.18 In relation to De�nition 8.14 (and assuming `(k) > k), show thatthere exists a circuit of size O(2k � `(k)) that violates Eq. (8.11).Guideline: The circuit may incorporate all values in the range of G and decide bycomparing its input to these values.Exercise 8.19 (constructing a set system for Theorem 8.18) For every 
 >0, show a construction of a set system S as in Condition 2 of Theorem 8.18, withm(k) = 
(k) and `(k) = 2
(k).Guideline: We assume, without loss of generality, that 
 < 1, and set m(k) = (
=2) � kand `(k) = 2
m(k)=6. We construct the set system S1; :::; S`(k) in iterations, selectingSi as the �rst m(k)-subset of [k] that has su�ciently small intersections with each ofthe previous sets S1; :::; Si�1. The existence of such a set Si can be proved using theProbabilistic Method (cf. [10]). Speci�cally, for a �xed m(k)-subset S0, the probabilitythat a random m(k)-subset has intersection greater than 
m(k) with S0 is smaller than2�
m(k)=6, because the expected intersection size is (
=2) � m(k). Thus, with positiveprobability a randomm(k)-subset has intersection at most 
m(k) with each of the previousi�1 < `(k) = 2
m(k)=6 subsets. Note that we construct Si in time � km(k)� � (i�1) �m(k) <2k � `(k) � k, and thus S is computable in time k2k � `(k)2 < 22k.Exercise 8.20 (pseudorandom versus unpredictability, by circuits) In con-tinuation to Exercise 8.12, show that if there exists a circuit of size s that distin-guishes Zn from U` with gap �, then there exists an i < ` = jZnj and a circuitof size s + O(1) that given an i-bit long pre�x of Zn guesses the i + 1st bit withsuccess probability at least 12 + �̀ .Guideline: De�ning hybrids as in Exercise 8.12, note that, for some i, the given circuitdistinguishes the ith hybrid from the i+ 1st hybrid with gap at least �=`.Exercise 8.21 Suppose that the sets Si's in Construction 8.17 are disjoint andthat f : f0; 1gm ! f0; 1g is T -inapproximable. Prove that for every circuit C ofsize T �O(1) it holds that jPr[C(G(Uk)) = 1]� Pr[C(U`) = 1]j < `=T .



8.5. SPECIAL PURPOSE GENERATORS 375Guideline: Prove the contrapositive using Exercise 8.20. Note that the value of thei + 1st bit of G(Uk) is statistically independent of the values of the �rst i bits of G(Uk),and thus predicting it yields an approximator for f . Indeed, such an approximator canbe obtained by �xing the the �rst i bits of G(Uk) via an averaging argument.Exercise 8.22 (Theorem 8.18, generalized) Let `;m;m0; T : N ! N satisfy`(k)2 + eO(`(k)2m0(k)) < T (m(k)). Suppose that the following two conditions hold:1. There exists an exponential-time computable function f :f0; 1g�!f0; 1g thatis T -inapproximable.2. There exists an exponential-time computable function S :N�N!2N such thatfor every k and i = 1; :::; `(k) it holds that S(k; i) � [k] and jS(k; i)j = m(k),and jS(k; i) \ S(k; j)j � m0(k) for every k and i 6= j.Prove that using G as de�ned in Construction 8.17, with Si = S(k; i), yields acanonical derandomizer with stretch `.Guideline: Following the proof of Theorem 8.18, just note that the circuit constructedfor approximating f(Um(k)) has size `(k)2 + `(k) � eO(2m0(k)) and success probability atleast (1=2) + (1=7`(k)).Exercise 8.23 (Part 2 of Theorem 8.19) Prove that if for every polynomial Tthere exists a T -inapproximable predicate in E then BPP � \">0Dtime(t"), wheret"(n) def= 2n" .Guideline: Using Proposition 8.15, it su�ces to present, for every polynomial p and everyconstant " > 0, a canonical derandomizer of stretch `(k) = p(k1="). Such a derandomizercan be presented by applying Exercise 8.22 using m(k) = pk, m0(k) = O(log k), andT (m(k)) = `(k)2 + eO(`(k)2m0(k)). Note that T is a polynomial, revisit Exercise 8.19 inorder to obtain a set system as required in Exercise 8.22 (for these parameters), and useTheorem 7.10.Exercise 8.24 (canonical derandomizers imply hard problems) Prove thatthe hardness hypothesis made in each part of Theorem 8.19 is essential for the ex-istence of a corresponding canonical derandomizer. More generally, prove that theexistence of a canonical derandomizer with stretch ` implies the existence of apredicate in E that is T -inapproximable for T (n) = `(n)1=O(1).Guideline: We focus on obtaining a predicate in E that cannot be computed by circuitsof size `, and note that the claim follows by applying the techniques in x7.2.1.3. Given acanonical derandomizer G : f0; 1gk ! f0; 1g`(k), we consider the predicate f : f0; 1gk+1 !f0; 1g that satis�es f(x) = 1 if and only if there exists s 2 f0; 1gjxj�1 such that x is a pre�xof G(s). Note that f is in E and that an algorithm computing f yields a distinguisher ofG(Uk) and U`(k).Exercise 8.25 (limitations on the stretch of (s; ")-pseudorandom generators)Referring to De�nition 8.20, establish the following upper-bounds on the stretch `of (s; ")-pseudorandom generators.



376 CHAPTER 8. PSEUDORANDOM GENERATORS1. If s(k) � 2 and "(k) � 1=2 then `(k) < "(k) � (k + 2) � 2k+2�s(k).2. For every s(k) � 1 and "(k) < 1 it holds that `(k) < 2k.Guideline: Part 2 follows by combining Exercises 8.37 and 8.38. For Part 1, considertowards the contradiction a generator of stretch `(k) = "(k) � (k + 2) � 2k+2�s(k) and anenumeration, �(1); :::; �(2k) 2 f0; 1g`(k), of all 2k outputs of the generator (on k-bit longseeds). Construct a non-uniform automaton of space s that accepts x1 � � �x`(k) 2 f0; 1g`(k)if for some i 2 [`(k)=(k + 2)] it holds that x(i�1)�(k+2)+1 � � �xi�(k+2) equals some string inSi, where Si contains the projection of the strings �((i�1)�2s(k)�1+1); :::; �(i�2s(k)�1) onthe coordinates (i� 1) � (k + 2) + 1; :::; i � (k + 2). Note that such an automaton acceptsat least (`(k)=(k + 2)) � 2s(k)�1 = 2"(k) � 2k of the possible outputs of the generator,whereas a random (`(k)-bit long) string is accepted with probability at most (`(k)=(k +2)) � 2(s(k)�1)�(k+2) = "(k)=2.Exercise 8.26 (on the existence of (s; ")-pseudorandom generators) In con-trast to Exercise 8.25, for any s and " such that s(k) < k � 2 log2(k="(k))�O(1),prove the existence of (non-e�cient) (s; ")-pseudorandom generators of stretch`(k) = 
("(k)2 � 2k�s(k)=s(k)).Guideline: Use the Probabilistic Method as in Exercise 8.1. Note that non-uniformautomata of space s and time ` can be described by strings of length ` � 2s2s.Exercise 8.27 (multiple samples and space-bounded distinguishers) Supposethat two probability ensembles, fXkgk2N and fYkgk2N, are (s; ")-indistinguishableby non-uniform automata (i.e., the distinguishability-gap of any non-uniform au-tomaton of space s is bounded by the function "). For any function t : N!N ,prove that the ensembles f(X(1)k ; :::; X(t(k))k )gk2N and f(Y (1)k ; :::; X(t(k))k )gk2N are(s; t")-indistinguishable, where X(1)k through X(t(k))k and Y (1)k through Y (t(k))k areindependent random variables, with each X(i)k identical to Xk and each Y (i)k iden-tical to Yk.Guideline: Use the hybrid technique. When distinguishing the ith and (i+1)st hybrids,note that the �rst i blocks (i.e., copies of Xk) as well as the last t(k)� (i+1) blocks (i.e.,copies of Yk) can be �xed and hard-wired into the non-uniform distinguisher.Exercise 8.28 Provide a more explicit description of the generator outlined in theproof of Theorem 8.21.Guideline: for r 2 f0; 1gn and h(1); :::; h(t) 2 Hn, the generator outputs a 2t-longsequence of n-bit strings such that the ith string in this sequence equals h0(r), where h0is a composition of some of the h(j)'s.Exercise 8.29 (adaptive t-wise independence tests) Recall that a generatorG : f0; 1gk ! f0; 1g`0(k)�b(k) is called t-wise independent if for any t �xed block posi-tions, the distribution G(Uk) restricted to these t blocks is uniform over f0; 1gt�b(k).Prove that the output of a t-wise independence generator is (perfectly) indistin-guishable from the uniform distribution by any test that examines t of the blocks,



8.5. SPECIAL PURPOSE GENERATORS 377even if the examined blocks are selected adaptively (i.e., the location of the ith blockto be examined is determined based on the contents of the previously inspectedblocks).Guideline: First show that, without loss of generality, it su�ces to consider deterministic(adaptive) testers. Next, show that the probability that such a tester sees any �xedsequence of t values at the locations selected adaptively (in the generator's output) equals2�t�b(k), where b(k) is the block length.Exercise 8.30 (a t-wise independence generator) Prove that G as de�ned inProposition 8.24 produces a t-wise independent sequence over GF(2b(k)).Guideline: For every t �xed indices i1; :::; it 2 [`0(k)], consider the distribution ofG(Uk)i1;:::;it (i.e., the projection of G(Uk) on locations i1; :::; it). Show that for everysequence of t possible values v1; :::; vt 2 GF(2b(k)), there exists a unique seed s 2 f0; 1gksuch that G(s)i1;:::;it = (v1; :::; vt).Exercise 8.31 (pairwise independence generators) As a warm-up, considera construction analogous to the one in Proposition 8.25, except that here theseed speci�es an arbitrary a�ne b(k)-by-m(k) transformation. That is, for s 2f0; 1gb(k)�m(k) and r 2 f0; 1gb(k), where k = b(k) �m(k) + b(k), letG(s; r) def= (Asv1 + r ; Asv2 + r ; :::; Asv`0(k) + r) (8.23)where As is an b(k)-by-m(k) matrix speci�ed by the string s. Show that G asin Eq. (8.23) is a pairwise independence generator of block-length b and stretch`. (Note that a related construction appears in the proof of Theorem 7.7; seealso Exercise 7.5.) Next, show that G as in Eq. (8.17) is a pairwise independencegenerator of block-length b and stretch `.Guideline: The following description applies to both constructions. First note that forevery �xed i 2 [`0(k)], the ith element in the sequence G(Uk), denoted G(Uk)i, is uniformlydistributed in f0; 1gb(k). Actually, show that for every �xed s 2 f0; 1gk�b(k), it holds thatG(s; Ub(k))i is uniformly distributed in f0; 1gb(k). Next note that it su�ces to show that,for every j 6= i, conditioned on the value of G(Uk)i, the value of G(Uk)j is uniformlydistributed in f0; 1gb(k). The key technical detail is showing that, for any non-zero vectorv 2 f0; 1gm(k) and a uniformly selected s 2 f0; 1gk�b(k), it holds that Asv (resp., Tsv) isuniformly distributed in f0; 1gb(k). This is easy in case of a random b(k)-by-m(k) matrix,and can be proven also for a random Toeplitz matrix.Exercise 8.32 (adaptive t-wise independence tests, revisited) Note that incontrast to Exercise 8.29, with respect to non-perfect indistinguishability, there isa discrepancy between adaptive and non-adaptive tests that inspects t locations.1. Present a distribution over 2t�1-bit long strings in which every t �xed bitpositions are t � 2�t-close to uniform, but there exists a test that adaptivelyinspects t positions and distinguish this distribution from the uniform onewith gap 1/2.



378 CHAPTER 8. PSEUDORANDOM GENERATORSGuideline: Modify the uniform distribution over ((t� 1) + 2t�1)-bit long stringssuch that the �rst t � 1 locations indicate a bit position (among the rest) that isset to zero.2. On the other hand, prove that if every t �xed bit positions in a distributionX are "-close to uniform, then every test that adaptively inspects t positionscan distinguish X the uniform distribution with gap at most 2t � ".Guideline: See Exercise 8.29.Exercise 8.33 Suppose that G is an "-bias generator with stretch `. Show thatequality between the `(k)-bit strings x and y can be probabilistically checked (witherror probability (1 + ")=2) by comparing the inner product modulo 2 of x andG(s) to the inner product modulo 2 of y and G(s), where s 2 f0; 1gk is selecteduniformly.(Hint: reduce the problem to the special case in which y = 0`(k).)Exercise 8.34 (bias versus statistical di�erence from uniform) Let X bea random variable assuming values in f0; 1gt. Prove that if X has bias at most "over any non-empty set then the statistical di�erence between X and Ut is at most2t=2 � ", and that for every x 2 f0; 1gt it holds that Pr[X = x] = 2�t � ".Guideline: Consider the probability function p : f0; 1gt ! [0; 1] de�ned by p(x) def=Pr[X = x], and let �(x) def= p(x)� 2�t denote the deviation of p from the uniform proba-bility function. Viewing the set of real functions over f0; 1gt as a 2t-dimensional vectorspace, consider two orthonormal bases for this space. The �rst basis consists of the(Kroniker) functions fk�g�2f0;1gt such that k�(x) = 1 if x = � and k�(x) = 0 other-wise. The second basis consists of the (normalize Fourier) functions ffSgS�[t] de�ned byfS(x1 � � �xt) def= 2�t=2Qi2S(�1)xi (where f; � 2�t=2).53 Note that the bias of X over anyS 6= ; equals jPx p(x) � 2t=2fS(x)j, which in turn equals 2t=2jPx �(x)fS(x)j. Thus, forevery S (including the empty set), we have jPx �(x)fS(x)j � 2�t=2", which means thatthe representation of � in the normalize Fourier basis is by coe�cients that have each anabsolute value of at most 2�t=2". It follows that the Norm-2 of this vector of coe�cientsis upper-bounded by p2t � (2�t=2")2 = ", and the two claims follow by noting that theyrefer to norms of � according to the Kroniker basis. In particular, Norm-2 is preservedunder orthonormal bases, the max-norm is upper-bounded by Norm-2, and Norm-1 isupper-bounded by p2t times the value of the Norm-2.Exercise 8.35 (on the existence of (non-explicit) small-bias generators)Prove that, for k = log2(`(k)="(k)2) + O(1), there exists a function G : f0; 1gk !f0; 1g`(k) such that G(Uk) has bias at most "(k) over any non-empty subset of[`(k)].Guideline: Use the Probabilistic Method as in Exercise 8.1.53Verify that both bases are indeed orthogonal (i.e.,Px k�(x)k�(x) = 0 for every � 6= � andPx fS(x)fT (x) = 0 for every S 6= T ) and normal (i.e.,Px k�(x)2 = 1 andPx fS(x)2 = 1).



8.5. SPECIAL PURPOSE GENERATORS 379Exercise 8.36 (The LFSR small-bias generator (following [9])) Using thefollowing guidelines (and letting t = k=2), analyze the construction outlined fol-lowing Theorem 8.26 (and depicted in Figure 8.5):1. Prove that ri equalsPt�1j=0 c(f;i)j � sj , where c(f;i)j is the coe�cient of zj in the(degree t � 1) polynomial obtained by reducing zi modulo the polynomialf(z) (i.e., zi �Pt�1j=0 c(f;i)j zj (mod f(z))).Guideline: Recall that zt � Pt�1j=0 fjzj (mod f(z)), and thus for every i � tit holds that zi � Pt�1j=0 fjzi�t+j (mod f(z)). Note the correspondence to ri =Pt�1j=0 fj � ri�t+j.2. For any non-empty S � f0; :::; `(k) � 1g, evaluate the bias of the sequencer0; :::; r`(k)�1 over S, where f is a random irreducible polynomial of degree tand s = (s0; :::; st�1) 2 f0; 1gt is uniformly distributed. Speci�cally:(a) For a �xed f and random s 2 f0; 1gt, prove that Pi2S ri has non-zerobias if and only if f(z) divides Pi2S zi.(Hint: Note thatPi2S ri =Pt�1j=0Pi2S c(f;i)j sj , and use Item 1.)(b) Prove that the probability that a random irreducible polynomial of de-gree t divides Pi2S zi is �(`(k)=2t).(Hint: A polynomial of degree n can be divided by at most n=d di�erent irreduciblepolynomials of degree d. On the other hand, the number of irreducible polynomialsof degree d over GF(2) is �(2d=d).)Conclude that for random f and s, the sequence r0; :::; r`(k)�1 has biasO(`(k)=2t).Note that an implementation of the LFSR generator requires a mapping of randomk=2-bit long string to almost random irreducible polynomials of degree k=2. Such amapping can be constructed in exp(k) time, which is poly(`(k)) if `(k) = exp(
(k)).A more e�cient mapping that uses a O(k)-bit long seek is described in [9, Sec. 8].Exercise 8.37 (limitations on small-bias generators) LetG be an "-bias gen-erator with stretch `, and view G as a mapping from GF(2)k to GF(2)`(k). As such,each bit in the output of G can be viewed as a polynomial54 in the k input variables(each ranging in GF(2)). Prove that if "(k) < 1 and each of these polynomials hastotal degree at most d, then `(k) �Pdi=1 �ki�. Derive the following corollaries:1. If "(k) < 1 then `(k) < 2k (regardless of d).552. If "(k) < 1 and `(k) > k then G cannot be a linear transformation.5654Recall that every Boolean function over GF(p) can be expressed as a polynomial of individualdegree at most p� 1.55This upper-bound is optimal, because (e�cient) "-bias generators of stretch `(k) = poly("(k))�2k do exists (see [169]).56In contrast, bilinear "-bias generators do exist; for example, G(s) = (s; b(s)), whereb(s1; :::; sk) = Pk=2i=1 sis(k=2)+i mod 2, is an "-bias generator with "(k) = exp(�
(k)). (Hint:Focusing on bias over sets that include the last output bit, prove that without loss of generalityit su�ces to analyze the bias of b(Uk).)



380 CHAPTER 8. PSEUDORANDOM GENERATORSGuideline (for the main claim): Note that, without loss of generality, all the afore-mentioned polynomials have a free term equal to zero (and have individual degree atmost 1 in each variable). Next, consider the vector space spanned by all d-monomialsover k variables (i.e., monomial having at most d variables). Since "(k) < 1, the poly-nomials representing the output bits of G must correspond to a sequence of independentvectors in this space.Exercise 8.38 (a sanity check for space-bounded pseudorandomness) Thefollowing fact is suggested as a sanity check for candidate pseudorandom genera-tors with respect to space-bounded automata. The fact (to be proven as an ex-ercise) is that, for every "(�) and s(�) such that s(k) � 1 for every k, if G is(s; ")-pseudorandom (as per De�nition 8.20), then G is an "-bias generator.Exercise 8.39 In contrast to Exercise 8.38, prove that there exist exp(�
(n))-bias distributions over f0; 1gn that are not (2; 0:666)-pseudorandom.Guideline: Show that the uniform distribution over the set(�1 � � ��n : nXi=1 �i � 0 (mod 3))has bias exp(�
(n)).Exercise 8.40 (approximate t-wise independence generators (following [169]))Combining a small-bias generator as in Theorem 8.26 with the t-wise indepen-dence generator of Eq. (8.16), and relying on the linearity of the latter, con-struct a generator producing `-bit long sequences in which any t positions areat most "-away from uniform (in variation distance), while using a seed of lengthO(t + log(1=") + log log `). (For max-norm a seed of length O(log(t=") + log log `)su�ces.)Guideline: First note that, for any t; `0 and b � log2 `0, the transformation of Eq. (8.16)can be implemented by a �xed linear (over GF(2)) transformation of a t � b-bit seed intoan `-bit long sequence, where ` = `0 � b. It follows that, for b = log2 `0, there exists a �xedGF(2)-linear transformation T of a random seed of length t � b into a t-wise independentbit sequence of the length ` (i.e., T Ut�b is t-wise independent over f0; 1g`). Thus, everyt rows of T are linearly independent. The key observation is that when we replace theaforementioned random seed by an "0-bias sequence, every i � t positions in the outputsequence have bias at most "0 (because they de�ne a non-zero linear test on the bits of the"0-bias sequence). Note that the length of the new seed (used to produce "0-bias sequenceof length t �b) is O(log tb="0). Applying Exercise 8.34, we conclude that any t positions areat most 2t=2 � "0-away from uniform (in variation distance). Recall that this was obtainedusing a seed of length O(log(t="0)+ log log `), and the claim follows by using "0 = 2�t=2 �".Exercise 8.41 (small-bias generator and error-correcting codes) Show a cor-respondence between "-bias generators of stretch ` and binary linear error-correctingcodes (cf. Appendix E.1) mapping `(k)-bit long strings to 2k-bit long strings suchthat every two codewords are at distance (1� "(k)) � 2k�1 apart.



8.5. SPECIAL PURPOSE GENERATORS 381Guideline: Associate f0; 1gk with [2k]. Then, a generator G : [2k] ! f0; 1g`(k) corre-sponds to the code C : f0; 1g`(k) ! f0; 1g2k such that, for every i 2 [`(k)] and j 2 [2k],the ith bit of G(j) equals the jth bit of C(0i�110`(k)�i).Exercise 8.42 (on the bias of sequences over a �nite �eld) For a prime p,let � be a random variable assigned values in GF(p) and �(v) def= Pr[� = v]� (1=p).Prove that maxv2GF(p)fj�(v)jg is upper-bounded by b def= maxc2f1;:::;p�1gfkE[!c�]kg,where ! denotes the pth (complex) root of unity, and thatPv2GF(p) j�(v)j is upper-bounded by pp � b.Guideline: Analogously to Exercise 8.34, view probability distributions over GF(p) asp-dimensional vectors, and consider two bases for the set of complex functions over GF(p):the Kroniker basis (i.e., ki(x) = 1 if x = i and ki(x) = 0) and the (normalize) Fourierbasis (i.e., fi(x) = p�1=2 �!ix). Note that the biases of � corresponds to the inner productsof � with the non-constant Fourier functions, whereas the distances of � from the uniformdistribution correspond to the inner products of � with the Kroniker functions.Exercise 8.43 (a version of the Expander Random Walk Theorem) Usingnotations as in Theorem 8.28, prove that the probability that a random walk oflength `0 stays in W is at most (� + (�=d)2)`0=2. In fact, prove a more generalclaim that refers to the probability that a random walk of length `0 intersectsW0 �W1 � � � � �W`0�1. The claimed upper-bound isp�0 � `0�1Yi=1 q�i + (�=d)2; (8.24)where �i def= jWij=jV j.Guideline: View the random walk as the evolution of a corresponding probability vectorunder suitable transformations. The transformations correspond to taking a random stepin the graph and to passing through a \sieve" that keeps only the entries that correspondto the current set Wi. The key observation is that the �rst transformation shrinks thecomponent that is orthogonal to the uniform distribution (which is the �rst eigenvalueof the adjacency matrix of the expander), whereas the second transformation shrinks thecomponent that is in the direction of the uniform distribution. For further details, seexE.2.1.3.Exercise 8.44 Using notations as in Theorem 8.28, prove that the probabilitythat a random walk of length `0 visits W more than �`0 times is smaller than� `0�`0� � (�+(�=d)2)�`0=2. For example, for � = 1=2 and �=d < p�, we get an upper-bound of (32�)`0=4. We comment that much better bounds can be obtained (cf.,e.g., [119]).Guideline: Use a union bound on all possible sequences of m = �`0 visits, and upper-bound the probability of visitingW in steps j1; :::; jm by applying Eq. (8.24) withWi =Wif i 2 fj1; :::; jmg and W = V otherwise.
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