Computational Complexity:

A Conceptual Perspective

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

July 21, 2006

172

Chapter 6

Randomness and Counting

I owe this almost atrocious variety to an institution which other
republics do not know or which operates in them in an imperfect
and secret manner: the lottery.

Jorge Luis Borges, The Lottery In Babylon

So far, our approach to computing devices was somewhat conservative: we thought
of them as executing a deterministic rule. A more liberal and quite realistic ap-
proach, which is pursued in this chapter, considers computing devices that use a
probabilistic rule. This relaxation has an immediate impact on the notion of effi-
cient computation, which is consequently associated with probabilistic polynomial-
time computations rather than with deterministic (polynomial-time) ones. We
stress that the association of efficient computation with probabilistic polynomial-
time computation makes sense provided that the failure probability of the latter is
negligible (which means that it may be safely ignored).

The quantitative nature of the failure probability of probabilistic algorithm
provides one connection between probabilistic algorithms and counting problems.
The latter are indeed a new type of computational problems, and our focus is on
counting efficiently recognizable objects (e.g., NP-witnesses for a given instance of
set in A"P). Randomized procedures turn out to play an important role in the
study of such counting problems.

Summary: Focusing on probabilistic polynomial-time algorithms, we
consider various types of failure of such algorithms giving rise to com-
plexity classes such as BPP, RP, and ZPP. The results presented
include BPP C P/poly and BPP C %,.

We then turn to counting problems; specifically, counting the number
of solutions for an instance of a search problem in PC (or, equivalently,
counting the number of NP-witnesses for an instance of a decision prob-
lem in N'P). We distinguish between exact counting and approximate
counting (in the sense of relative approximation). In particular, while

173

174 CHAPTER 6. RANDOMNESS AND COUNTING

any problem in PH is reducible to the exact counting class #P, ap-
proximate counting (for #7P) is (probabilisticly) reducible to N'P.

Additional related topics include the #P-completeness of various count-
ing problems (e.g., counting the number of satisfying assignments to a
given CNF formula and counting the number of perfect matchings in a
given graph), the complexity of searching for unique solutions, and the
relation between approximate counting and generating (almost) uni-
formly distributed solutions.

Prerequisites: We assume basic familiarity with elementary probability theory
(see Section D.1). In Section 6.2 we will rely extensively on the formulation pre-

sented in Section 2.1 (i.e., the “NP search problem” class PC as well as the sets

R(x) ef {y : (z,y)€ R}, and Sg def {X : R(z)#0} defined for every R € PC).

6.1 Probabilistic Polynomial-Time

Considering algorithms that utilize random choices, we extend our notion of ef-
ficient algorithms from deterministic polynomial-time algorithms to probabilistic
polynomial-time algorithms.

Rigorous models of probabilistic (or randomized) algorithms are defined by nat-
ural extensions of the basic machine model. We will exemplify this approach by
describing the model of probabilistic Turing machines, but we stress that (again)
the specific choice of the model is immaterial (as long as it is “reasonable”). A
probabilistic Turing machine is defined exactly as a non-deterministic machine (see
the first item of Definition 2.7), but the definition of its computation is fundamen-
tally different. Specifically, whereas Definition 2.7 refers to the question of whether
or not there exists a computation of the machine that (started on a specific input)
reaches a certain configuration, in case of probabilistic Turing machines we refer
to the probability that this event occurs, when at each step a choice is selected uni-
formly among the relevant possible choices available at this step. That is, if the
transition function of the machine maps the current state-symbol pair to several
possible triples, then in the corresponding probabilistic computation one of these
triples is selected at random (with equal probability) and the next configuration is
determined accordingly. These random choices may be viewed as the internal coin
tosses of the machine. (Indeed, as in the case of non-deterministic machines, we
may assume without loss of generality that the transition function of the machine
maps each state-symbol pair to exactly two possible triples; see Exercise 2.4.)

We stress the fundamental difference between the fictitious model of a non-
deterministic machine and the realistic model of a probabilistic machine. In the case
of a non-deterministic machine we consider the ezistence of an adequate sequence
of choices (leading to a desired outcome), and ignore the question of how these
choices are actually made. In fact, the selection of such a sequence of choices is
merely a mental experiment. In contrast, in the case of a probabilistic machine, at
each step a real random choice is made (uniformly among a set of predetermined

6.1. PROBABILISTIC POLYNOMIAL-TIME 175

possibilities), and we consider the probability of reaching a desired outcome.

In view of the foregoing, we consider the output distribution of such a proba-
bilistic machine on fixed inputs; that is, for a probabilistic machine M and string
xz € {0,1}*, we denote by M(x) the output distribution of M when invoked on
input x, where the probability is taken uniformly over the machine’s internal coin
tosses. Needless to say, we will consider the probability that M (z) is a “correct”
answer; that is, in the case of a search problem (resp., decision problem) we will be
interested in the probability that M (z) is a valid solution for the instance x (resp.,
represents the correct decision regarding).

The foregoing description views the internal coin tosses of the machine as taking
place on-the-fly; that is, these coin tosses are performed on-line by the machine
itself. An alternative model is one in which the sequence of coin tosses is provided
by an external device, on a special “random input” tape. In such a case, we view
these coin tosses as performed off-line. Specifically, we denote by M'(xz,r) the
(uniquely defined) output of the residual deterministic machine M’, when given the
(primary) input z and random input r. Indeed, M' is a deterministic machine that

takes two inputs (the first representing the actual input and the second representing

the “random input”), but we consider the random variable M (z) def M'(z,Uga)),

where £(|z|) denotes the number of coin tosses “expected” by M'(z,-).

These two perspectives on probabilistic algorithms are clearly related: Clearly,
the aforementioned residual deterministic machine M’ yields the on-line machine
M that on input = selects at random a string r of adequate length, and invokes
M'(z,r). On the other hand, the computation of any on-line machine M is captured
by the residual machine M’ that emulates the actions of M (z) based on an auxiliary
input r (obtained by M’ and representing a possible outcome of the internal coin
tosses of M). (Indeed, there is no harm in supplying more coin tosses than are
actually used by M, and so the length of the aforementioned auxiliary input may
be set to equal the time complexity of M.) For sake of clarity and future reference,
we state the following definition.

Definition 6.1 (on-line and off-line formulations of probabilistic polynomial-time):

e We say that M is a on-line probabilistic polynomial-time machine if there exists
a polynomial p such that when invoked on any input x € {0,1}*, machine M
always halts within at most p(|z|) steps (regardless of the outcome of its
internal coin tosses). In such a case M (x) is a random variable.

o We say that M' is a off-line probabilistic polynomial-time machine if there ezists
a polynomial p such that, for every x € {0,1}* and r € {0,1}*(2D when
invoked on the primary input z and the random-input sequence r, machine M’
halts within at most p(|z|) steps. In such a case, we will consider the random
variable M'(z, Up(|a)))-

Clearly, the on-line and off-line formulations are equivalent (i.e., given a on-line
probabilistic polynomial-time machine we can derive a functionally equivalent off-
line (probabilistic polynomial-time) machine, and vice versa). Thus, in the sequel,
we will freely use whichever is more convenient.

176 CHAPTER 6. RANDOMNESS AND COUNTING

Failure probability. A major aspect of randomized algorithms (probabilistic
machines) is that they may fail (see Exercise 6.1). That is, with some specified
(“failure”) probability, these algorithms may fail to produce the desired output.
We discuss two aspects of this failure: its type and its magnitude.

1. The type of failure is a qualitative notion. One aspect of this type is whether,
in case of failure, the algorithm produces a wrong answer or merely an indica-
tion that it failed to find a correct answer. Another aspect is whether failure
may occur on all instances or merely on certain types of instances. Let us
clarify these aspects by considering three natural types of failure, giving rise
to three different types of algorithms.

(a) The most liberal notion of failure is the one of two-sided error. This
term originates from the setting of decision problems, where it means
that (in case of failure) the algorithm may err in both directions (i.e.,
it may rule that a yes-instance is a no-instance, and vice versa). In the
case of search problems two-sided error means that, when failing, the
algorithm may output a wrong answer on any input. Furthermore, the
algorithm may falsely rule that the input has no solution and it may
also output a wrong solution (both in case the input has a solution and
in case it has no solution).

(b) An intermediate notion of failure is the one of one-sided error. Again, the
term originates from the setting of decision problems, where it means
that the algorithm may err only in one direction (i.e., either on yes-
instances or on no-instances). Indeed, there are two natural cases de-
pending on whether the algorithm errs on yes-instances but not on no-
instances, or the other way around. Analogous cases occur also in the
setting of search problems. In one case the algorithm never outputs
a wrong solution but may falsely rule that the input has no solution.
In the other case the indication that an input has no solution is never
wrong, but the algorithm may output a wrong solution.

(¢) The most conservative notion of failure is the one of zero-sided error. In
this case, the algorithm’s failure amounts to indicating its failure to find
an answer (by outputting a special don’t know symbol). We stress that
in this case the algorithm never provides a wrong answer.

Indeed, the forgoing discussion ignores the probability of failure, which is the
subject of the next item.

2. The magnitude of failure is a quantitative notion. It refer to the probability
that the algorithm fails, where the type of failure is fixed (e.g., as in the
forgoing discussion).

When actually using a randomized algorithm we typically wish its failure
probability to be negligible, which intuitively means that the failure event is
so rare that it can be ignored in practice. Formally, we say that a quantity is
negligible if, as a function of the relevant parameter (e.g., the input length),
this quantity vanishes faster than the reciprocal of any positive polynomial.

6.1. PROBABILISTIC POLYNOMIAL-TIME 177

For ease of presentation, we sometimes consider alternative upper-bounds
on the probability of failure. These bounds are selected in a way that al-
lows (and in fact facilitates) “error reduction” (i.e., converting a probabilistic
polynomial-time algorithm that satisfies such an upper-bound into one in
which the failure probability is negligible). For example, in case of two-sided
error we need to be able to distinguish the correct answer from wrong an-
swers by sampling, and in the other types of failure “hitting” a correct answer
suffices.

In the following three subsections, we will discuss complexity classes corresponding
to the aforementioned three types of failure. For sake of simplicity, the failure
probability itself will be set to a constant that allows error reduction.

Randomized reductions. Before turning to the more detailed discussion, we
note that randomized reductions play an important role in complexity theory. Such
reductions can be defined analogously to the standard Cook-Reductions (resp.,
Karp-reductions), and again a discussion of the type and magnitude of the failure
probability is in place. For clarity, we spell-out the two-sided error versions.

e In analogy to Definition 2.9, we say that a problem II is probabilistic polynomial-
time reducible to a problem II' if there exists a probabilistic polynomial-time
oracle machine M such that, for every function f that solves I’ and for every
x, with probability at least 1 — u(|z|), the output M/ (z) is a correct solution
to the instance z, where u is a negligible function.

e In analogy to Definition 2.10, we say that a decision problem S is reducible
to a decision problem S’ via a randomized Karp-reduction if there exists a
probabilistic polynomial-time algorithm A such that, for every z, it holds that
Prixs (A(z)) = xs(z)] > 1—u(|z]), where x5 (resp., xs) is the characteristic
function of S (resp., S') and p is a negligible function.

These reductions preserve efficient solvability and are transitive: see Exercise 6.2.

6.1.1 Two-sided error: The complexity class BPP

In this section we consider the most liberal notion of probabilistic polynomial-time
algorithms that is still meaningful. We allow the algorithm to err on each input,
but require the error probability to be negligible. The latter requirement guarantees
the usefulness of such algorithms, because in reality we may ignore the negligible
error probability.

Before focusing on the decision problem setting, let us say a few words on the
search problem setting (see Definition 1.1). Following the previous paragraph, we
say that a probabilistic (polynomial-time) algorithm A solves the search problem

of the relation R if for every z € Sg (i.e., R(z) Lef {y : (z,y) € R} # 0) it holds
that Pr[A(z) € R(z)] > 1 — p(]z|) and for every z ¢ Sg it holds that Pr[A(z) =
1] > 1—p(]x|), where p is a negligible function. Note that we did not require that,
when invoked on input x that has a solution (i.e., R(x) # 0), the algorithm always

178 CHAPTER 6. RANDOMNESS AND COUNTING

outputs the same solution. Indeed, a stronger requirement is that for every such z
there exists y € R(z) such that Pr[A(z)=y] > 1 — p(]z|). The latter version and
quantitative relaxations of it allow for error-reduction (see Exercise 6.3).

Turning to decision problems, we consider probabilistic polynomial-time algo-
rithms that err with negligible probability. That is, we say that a probabilistic
(polynomial-time) algorithm A decides membership in S if for every z it holds
that PrlA(x) = xs(z)] > 1 — p(|z]), where xs is the characteristic function of S
(ie., xs(x) =1if z € S and xs(z) = 0 otherwise) and p is a negligible function.
The class of decision problems that are solvable by probabilistic polynomial-time
algorithms is denoted BPP, standing for Bounded-error Probabilistic Polynomial-
time. Actually, the standard definition refers to machines that err with probability
at most 1/3.

Definition 6.2 (the class BPP): A decision problem S is in BPP if there exists
a probabilistic polynomial-time algorithm A such that for every x € S it holds that
Pr[A(z) = 1] > 2/3 and for every x ¢ S it holds that Pr[A(z) = 0] > 2/3.

The choice of the constant 2/3 is immaterial, and any other constant greater than
1/2 will do (and yields the very same class). Similarly, the complementary constant
1/3 can be replaced by various negligible functions (while preserving the class).
Both facts are special cases of the robustness of the class, which is established
using the process of error reduction.

Error reduction (or confidence amplification). For ¢ : N — (0,0.5), let
BPP. denote the class of decision problems that can be solved in probabilistic
polynomial-time with error probability upper-bounded by ¢; that is, S € BPP. if
there exists a probabilistic polynomial-time algorithm A such that for every z it
holds that Pr[A(x) # xs(z)] < e(|z]). By definition, BPP = BPPy ;3. However, a
wide range of other classes also equal BPP. In particular, we mention two extreme
cases:

1. For every positive polynomial p and e(n) = (1/2) — (1/p(n)), the class BPP.
equals BPP. That is, any error that is (“noticeably”) bounded away from
1/2 (i.e., error (1/2) — (1/poly(n))) can be reduced to an error of 1/3.

2. For every positive polynomial p and (n) = 277(") the class BPP. equals
BPP. That is, an error of 1/3 can be further reduced to an exponentially
vanishing error.

Both facts are proved by invoking the weaker algorithm (i.e., the one having a
larger error probability bound) for an adequate number of times, and ruling by
majority. We stress that invoking a randomized machine several times means that
the random choices made in the various invocations are independent of one another.
The success probability of such a process is analyzed by applying an adequate Law
of Large Numbers (see Exercise 6.4).

6.1. PROBABILISTIC POLYNOMIAL-TIME 179

6.1.1.1 On the power of randomization

A natural question arises: Did we gain anything in extending the definition of
efficient computation to include also probabilistic polynomial-time ones?

This phrasing seems too generic. We certainly gained the ability to toss coins
(and generate various distributions). More concretely, randomized algorithms are
essential in many settings (see, e.g., Chapter 9, Section 10.1.2, and Appendix C)
and seem essential in others (see, e.g., Sections 6.2.2-6.2.4). What we mean to
ask here is whether allowing randomization increases the power of polynomial-time
algorithms also in the restricted context of solving decision and search problems?

The question is whether BPP extends beyond P (where clearly P C BPP).
It is commonly conjectured that the answer is negative. Specifically, under some
reasonable assumptions, it holds that BPP = P (see Part 1 of Theorem 8.19). We
note, however, that a polynomial slow-down occurs in the proof of the latter result;
that is, randomized algorithms that run in time #(-) are emulated by deterministic
algorithms that run in time poly(¢(-)). Furthermore, for some concrete problems
(most notably primality testing (cf. §6.1.1.2)), the known probabilistic polynomial-
time algorithm is significantly faster (and conceptually simpler) than the known
deterministic polynomial-time algorithm. Thus, we believe that even in the con-
text of decision problems, the notion of probabilistic polynomial-time algorithms is
advantageous. We note that the fundamental nature of BPP will hold even in the
(rather unlikely) case that it turns out that it offers no computational advantage
(i.e., even if every problem that can be decided in probabilistic polynomial-time
can be decided by a deterministic algorithm of essentially the same complexity).!

BPP is in the Polynomial-Time Hierarchy: While it may be that BPP = P,
it is not known whether or not BPP is contained in A"P. The source of trouble
is the two-sided error probability of BPP, which is incompatible with the absolute
rejection of no-instances required in the definition of NP (see Exercise 6.11). In
view of this ignorance, it is interesting to note that BPP resides in the second
level of the Polynomial-Time Hierarchy (i.e., BPP C X2). This is a corollary of
Theorem 6.7.

Trivial derandomization. A straightforward way of eliminating randomness
from an algorithm is trying all possible outcomes of its internal coin tosses, collect-
ing the relevant statistics and deciding accordingly. This yields BPP C PSPACE C
EXP, which is considered the trivial derandomization of BPP. In Section 8.4 we
will consider various non-trivial derandomizations of BPP, which are known under
various intractability assumptions. The interested reader, who may be puzzled by
the connection between derandomization and computational difficulty, is referred
to Chapter 8.

LSuch a result would address a fundamental question regarding the power of randomness. By
analogy, Theorem 9.4 establishing that ZP = PSP.ACE does not diminish the importance of any
of these classes.

180 CHAPTER 6. RANDOMNESS AND COUNTING

Non-uniform derandomization. In many settings (and specifically in the con-
text of solving search and decision problems), the power of randomization is su-
perseded by the power of non-uniform advice. Intuitively, the non-uniform advice
may specify a sequence of coin tosses that is good for all (primary) inputs of a
specific length. In the context of solving search and decision problems, such an
advice must be good for each of these inputs?, and thus its existence is guaran-
teed only if the error probability is low enough (so as to support a union bound).
The latter condition can be guaranteed by error-reduction, and thus we get the
following result.

Theorem 6.3 BPP is (strictly) contained in P /poly.

Proof: Recall that P/poly contains undecidable problems (Theorem 3.7), which
are certainly not in BPP. Thus, we focus on showing that BPP C P/poly. By
the discussion regarding error-reduction, for every S € BPP there exists a (de-
terministic) polynomial-time algorithm A and a polynomial p such that for every
z it holds that Pr[A(z,Upj.|)) # xs(2)] < 271°l. Using a union bound, it follows
that Pr,cro 1000 (32 € {0,1}" s.t. A(z,7) # xs(2)] < 1. Thus, for every n € N,
there exists a string r,, € {0, 1}?(") such that for every = € {0,1}" it holds that
A(x,r,) = xs(z). Using such a sequence of r,’s as advice, we obtain the desired
non-uniform machine (establishing S € P/poly). W

Digest. The proof of Theorem 6.3 combines error-reduction with a simple ap-
plication of the Probabilistic Method (cf. [10]), where the latter refers to proving
the existence of an object by analyzing the probability that a random object is
adequate. In this case, we sought an non-uniform advice, and proved it existence
by analyzing the probability that a random advice is good. The latter event was
analyzed by identifying the space of advice with the set of possible sequences of
internal coin tosses of a randomized algorithm.

6.1.1.2 A probabilistic polynomial-time primality test

Teaching note: Although primality has been recently shown to be in P, we believe
that the following example provides a nice illustration to the power of randomized

algorithms.

We present a simple probabilistic polynomial-time algorithm for deciding whether
or not a given number is a prime. The only Number Theoretic facts that we use
are:

Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two square
roots mod p (and they sum-up to p).?

2In other contexts (see, e.g., Chapters 7 and 8), it suffices to have an advice that is good on
the average, where the average is taken over all relevant (primary) inputs.

3That is, for every r € {1, ...,p—1}, the equation 22 = r? (mod p) has two solutions modulo p
(ie., 7 and p—r).

6.1. PROBABILISTIC POLYNOMIAL-TIME 181

Fact 2: For every (odd and non-integer-power) composite number N, each quadratic
residue mod N has at least four square roots mod N.

Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a prime
p and a quadratic residue mod p, denoted s, returns the smallest among the two
modular square roots of s. There is no guarantee as to what the output is in the
case that the input is not of the aforementioned form (and in particular in the case
that p is not a prime). Thus, we actually present a probabilistic polynomial-time
reduction of testing primality to extracting square roots modulo a prime (which is
a search problem with a promise; see Section 2.4.1).

Construction 6.4 (the reduction): On input a natural number N > 2 do
1. If N is either even or an integer-power* then reject.
2. Uniformly select v € {1,...,N — 1}, and set s + r*> mod N.

3. Let r' «— sqrt(s,N). If r' = £r (mod N) then accept else reject.

Indeed, in the case that IV is composite, the reduction invokes sqrt on an illegiti-
mate input (i.e., it makes a query that violates the promise of the problem at the
target of the reduction). In such a case, there is not guarantee as to what sqrt an-
swers, but actually a bluntly wrong answer only plays in our favor. In general, we
will show that if NV is composite, then the reduction rejects with probability at least
1/2, regardless of how sqrt answers. We mention that there exists a probabilistic
polynomial-time algorithm for implementing sqrt (see Exercise 6.14).

Proposition 6.5 Construction 6.4 constitutes a probabilistic polynomial-time re-
duction of testing primality to extracting square roots module a prime. Further-
more, if the input is a prime then the reduction always accepts, and otherwise it
rejects with probability at least 1/2.

We stress that Proposition 6.5 refers to the reduction itself; that is, sqrt is viewed
as a (“perfect”) oracle that, for every prime P and quadratic residue s (mod P),
returns 7 < s/2 such that r? = (mod P). Combining Proposition 6.5 with a
probabilistic polynomial-time algorithm that computes sqrt with negligible error
probability, we obtain that testing primality is in BPP.

Proof: By Fact 1, on input a prime number N, Construction 6.4 always accepts
(because in this case, for every r € {1,..., N—1}, it holds that sqrt(r? mod N, N) €
{r, N —r}). On the other hand, suppose that N is an odd composite that is not
an integer-power. Then, by Fact 2, each quadratic residue s has at least four
square roots, and each of these square roots is equally likely to be chosen at Step 2
(in other words, s yields no information regarding which of its modular square
roots was selected in Step 2). Thus, for every such s, the probability that either

4This can be checked by scanning all possible powers e € {2, ...,logy N}, and (approximately)
solving the equation ¢ = N for each value of e (i.e., finding the smallest integer 7 such that
i > N). Such a solution can be found by binary search.

182 CHAPTER 6. RANDOMNESS AND COUNTING

sqrt(s,N) or N — sqrt(s, N) equal the root chosen in Step 2 is at most 2/4. It
follows that, on input a composite number, the reduction rejects with probability
at least 1/2. W

Reflection. Construction 6.4 illustrates an interesting aspect of randomized al-
gorithms (or rather reductions); that is, the ability to hide information from a sub-
routine. Specifically, Construction 6.4 generates a problem instance (N, s) without
disclosing any additional information. Furthermore, a correct solution to this in-
stance is likely to help the reduction; that is, a correct answer to the instance (IV, s)
provides probabilistic evidence regarding whether IV is a prime, where the proba-
bility space refers to the missing information (regarding how s was generated).

Comment. Testing primality is actually in P, however, the deterministic al-
gorithm demonstrating this fact is more complex (and its analysis is even more
complicated).

6.1.2 One-sided error: The complexity classes RP and coRP

In this section we consider notions of probabilistic polynomial-time algorithms
having one-sided error. The notion of one-sided error refers to a natural partition of
the set of instances; that is, yes-instances versus no-instances in the case of decision
problems, and instances having solution versus instances having no solution in the
case of search problems. We focus on decision problems, and comment that an
analogous treatment can be provided for search problems (see the second paragraph
of Section 6.1.1).

Definition 6.6 (the class RP)>: A decision problem S is in RP if there ezists a
probabilistic polynomial-time algorithm A such that for every x € S it holds that
Pr[A(z)=1] > 1/2 and for every x ¢ S it holds that Pr[A(x)=0] = 1.

The choice of the constant 1/2 is immaterial, and any other constant greater than
zero will do (and yields the very same class). Similarly, this constant can be
replaced by 1 — u(|z|) for various negligible functions p (while preserving the class).
Both facts are special cases of the robustness of the class (see Exercise 6.5).

Observe that RP C NP (see Exercise 6.11) and that RP C BPP (by the
aforementioned error-reduction). Defining coRP = {{0,1}*\ S : S € RP}, note
that coRP corresponds to the opposite direction of one-sided error probability.
That is, a decision problem S is in coRP if there exists a probabilistic polynomial-
time algorithm A such that for every x € S it holds that Prl[A(z)=1] =1 and for
every x & S it holds that Pr[A(x)=0] > 1/2.

5The initials RP stands for Random Polynomial-time, which fails to convey the restricted type
of error allowed in this class. The only nice feature of this notation is that it is reminiscent of NP,
thus reflecting the fact that RP is a randomized polynomial-time class that is contained in N'P.

6.1. PROBABILISTIC POLYNOMIAL-TIME 183

Relating BPP to RP

A natural question regarding probabilistic polynomial-time algorithms refers to the
relation between two-sided and one-sided error probability. For example, is BPP
contained in RP? Loosely speaking, we show that BPP is reducible to coRP
by one-sided error randomized Karp-reductions, where the actual statement refers
to the promise problem versions of both classes (briefly defined in the following
paragraph). Note that BPP is trivially reducible to coRP by two-sided error
randomized Karp-reductions whereas a deterministic reduction of BPP to coRP
would imply BPP = coRP = RP (see Exercise 6.8).

First, we refer the reader to the general discussion of promise problems in
Section 2.4.1. Analogously to Definition 2.30, we say that the promise problem
IT = (Syes, Sno) is in (the promise problem extension of) BPP if there exists a
probabilistic polynomial-time algorithm A such that for every x € Syes it holds that
Pr[A(z)=1] > 2/3 and for every x € Sy, it holds that Pr[A(x)=0] > 2/3. Similarly,
IT is in coRP if for every © € Syes it holds that Pr[A(x) =1] = 1 and for every
x € Sy, it holds that Pr[A(x)=0] > 1/2. Probabilistic reductions among promise
problems are defined by adapting the conventions of Section 2.4.1; specifically,
queries that violate the promise at the target of the reduction may be answered
arbitrarily.

Theorem 6.7 Any problem in BPP is reducible by a one-sided error randomized
Karp-reduction to coRP, where coRP (and possibly also BPP) denotes the cor-
responding class of promise problems. Specifically, the reduction always maps a
no-instance to a no-instance.

It follows that BPP is reducible by a one-sided error randomized Cook-reduction to
RP. Thus, using the conventions of Section 3.2.2 and referring to classes of promise
problems, we may write BPP C RP®” . In fact, since RP*? C BPPEPY = BPP,
we have BPP = RP®”. Theorem 6.7 may be paraphrased as saying that the
combination of the one-sided error probability of the reduction and the one-sided
error probability of coRP can account for the two-sided error probability of BPP.
We warn that this statement is not a triviality like 1 + 1 = 2, and in particular
we do not know whether it holds for classes of standard decision problems (rather
than for the classes of promise problems considered in Theorem 6.7).

Proof: Recall that we can easily reduce the error probability of BPP-algorithms,
and derive probabilistic polynomial-time algorithms of exponentially vanishing er-
ror probability. But this does not eliminate the error (even on “one side”) alto-
gether. In general, there seems to be no hope to eliminate the error, unless we
(either do something earth-shaking or) change the setting as done when allowing a
one-sided error randomized reduction to a problem in coRP. The latter setting can
be viewed as a two-move randomized game (i.e., a random move by the reduction
followed by a random move by the decision procedure of coRP), and it enables
applying different quantifiers to the two moves (i.e., allowing error in one direction
in the first quantifier and error in the other direction in the second quantifier).
In the next paragraph, which is inessential to the actual proof, we illustrate the
potential power of this setting.

184 CHAPTER 6. RANDOMNESS AND COUNTING

Teaching note: The following illustration represents an alternative way of proving
Theorem 6.7. This way seems conceptual simpler but it requires a starting point (or
rather an assumption) that is much harder to establish, where both comparisons are

with respect to the actual proof of Theorem 6.7 (which follows the illustration).

An illustration. Suppose that for some set S € BPP there exists a polynomial p' and
an off-line BPP-algorithm A’ such that for every x it holds that Pr,cfo,1320 e [A(z,7)#

xs(x)] < 27 UzD+1); that is, the algorithm uses 2p/(|z|) bits of randomness and
has error probability smaller than 2’7”(“"‘)/2. Note that such an algorithm cannot
be obtained by standard error-reduction (see Exercise 6.9). Anyhow, such a small
error probability allows a partition of the string r such that one part accounts
for the entire error probability on yes-instances while the other part accounts for
the error probability on no-instances. Specifically, for every x € S, it holds that
Pl eqo,1aan (V1" € {0, 132Dy A’ (2, 7'7"") = 1] > 1/2, whereas for every z ¢ S
and every ' € {0,1}#'(I#) it holds that Proeqonyeraen [A' (@, r'r") = 1] < 1/2.
Thus, the error on yes-instances is “pushed” to the selection of 7', whereas the
error on no-instances is pushed to the selection of r'’. This yields a one-sided error
randomized Karp-reduction that maps x to (z,7’), where ' is uniformly selected
in {0,1}?'(D) such that deciding S is reduced to the coRP problem (regarding
pairs (z,r')) that is decided by the (on-line) randomized algorithm A" defined

by A" (x,r") def A, 7" Up (|q))- For details, see Exercise 6.10. The actual proof,
which avoids the aforementioned hypothesis, follows.

The actual starting point. Consider any BPP-problem with a characteristic function
X (which, in case of a promise problem, is a partial function, defined only over the
promise). By standard error-reduction, there exists a probabilistic polynomial-time
algorithm A such that for every x on which y is defined it holds that Pr[A(z) #
x(x)] < wp(]z|), where p is a negligible function. Looking at the corresponding
off-line algorithm A’ and denoting by p the polynomial that bounds the running
time of A, we have

Prcio,peian [A' (@ r) #x(@)] < plal) < (6.1)

2p(||)
for all sufficiently long x’s on which x is defined. We show a randomized one-sided
error Karp-reduction of x to a promise problem in coRP.

The main idea. As in the illustrating paragraph, the basic idea is “pushing” the
error probability on yes-instances (of x) to the reduction, while pushing the er-
ror probability on no-instances to the coRP-problem. Focusing on the case that
x(z) = 1, this is achieved by augmenting the input = with a random sequence of
“modifiers” that act on the random-input of algorithm A’ such that for a good
choice of modifiers it holds that for every r € {0, 1}?(*] there exists a modifier in
this sequence that when applied to r yields r' that satisfies A'(z,7') = 1. Indeed,
not all sequences of modifiers are good, but a random sequence will be good with
high probability and bad sequences will be accounted for in the error probability
of the reduction. On the other hand, using only modifiers that are permutations

6.1. PROBABILISTIC POLYNOMIAL-TIME 185

guarantees that the error probability on no-instances only increase by a factor that
equals the number of modifiers we use, and this error probability will be accounted
for by the error probability of the coRP-problem. Details follow.

The aforementioned modifiers are implemented by shifts (of the set of all strings
by fixed offsets). Thus, we augment the input z with a random sequence of shifts,
denoted s1, ..., 5, € {0,1}P(2]) such that for a good choice of (sy, ..., 8,) it holds
that for every r € {0,1}?(*D there exists an i € [m] such that A'(z,7@®s;) = 1. We
will show that, for any yes-instance « and a suitable choice of m, with very high
probability, a random sequence of shifts is good. Thus, for A”((z, s1, ..., $m),T) def
v, A'(z,r @ s;), it holds that, with very high probability over the choice of
S1y .-y 8m, @ yes-instance x is mapped to an augmented input (z,sq, ..., S,) that
is accepted by A" with probability 1. On the other hand, the acceptance probabil-
ity of augmented no-instances (for any choice of shifts) only increases by a factor of
m. In further detailing the foregoing idea, we start by explicitly stating the simple
randomized mapping (to be used as a randomized Karp-reduction), and next define
the target promise problem.

The randomized mapping. On input € {0,1}", we set m = p(|z|), uniformly select
S1y .y Sm € {0,1}™, and output the pair (z,3), where 3 = (s1,..., 8,). Note that
this mapping, denoted M, is easily computable by a probabilistic polynomial-time
algorithm.

The promise problem. We define the following promise problem, denoted II =
(Hyes, o), having instances of the form (z,3) such that [5] = p(|=])?.

e The yes-instances are pairs (z,3), where 5 = (s1, ..., $;n) and m = p(|z]), such
that for every r € {0,1}™ there exists an ¢ satisfying A'(z,r ® s;) = 1.

e The no-instances are pairs (z,5), where again 5 = (s1, ..., ;) and m = p(|z|),
such that for at least half of the possible r € {0,1}™, for every ¢ it holds that
Al(x,r ®s;) =0.

To see that Il is indeed a coR’P promise problem, we consider the following random-
ized algorithm. On input (z, (51, ..., Sm)), where m = p(|z|) = |s1| = - - - = |sm], the
algorithm uniformly selects r € {0,1}™, and accepts if and only if A'(z,r ®s;) =1
for some i € {1,...,m}. Indeed, yes-instances of II are accepted with probability 1,
whereas no-instances of IT are rejected with probability at least 1/2.

Analyzing the reduction: We claim that the randomized mapping M reduces x to
IT with one-sided error. Specifically, we will prove two claims.

Claim 1: If z is a yes-instance (i.e., x(z) = 1) then Pr[M(z) € IL] > 1/2.
Claim 2: If z is a no-instance (i.e., x(z) = 0) then Pr[M (x) € II,,,] = 1.

We start with Claim 2, which is easier to establish. Recall that M (z) = (z, (s1, ..., 5m)),
where sy, ..., s, are uniformly and independently distributed in {0,1}™. We note
that (by Eq. (6.1) and x(z) = 0), for every possible choice of sy, ...,s, € {0,1}™
and every ¢ € {1,...,m}, the fraction of ’s that satisfy A'(z,r @ s;) =1 is at most
5. Thus, for every possible choice of s, ..., $,, € {0,1}™, for at least half of the

2m

186 CHAPTER 6. RANDOMNESS AND COUNTING

possible r € {0,1}™ there exists an i such that A'(z,r @ s;) = 1 holds. Hence, the
reduction M always maps the no-instance z (i.e., x(z) = 0) to a no-instance of II
(i-e., an element of II,,,).

Turning to Claim 1 (which refers to x(z) = 1), we will show shortly that in
this case, with very high probability, the reduction M maps z to a yes-instance of
II. We upper-bound the probability that the reduction fails (in case x(z) = 1) as
follows:

PriM(z) € llyes] = Prs,,..s,.[3r€{0,1}™s.t. (Vi) A'(z,r ®s;) = 0]
<> Pro (V) Az @si) = 0]
re{0,1}m
= > JIPu@res)=0
re{0,1}m i=1

A

1 m
(o)

2m
where the last inequality is due to Eq. (6.1). It follows that if x(x) = 1 then
Pr[M(x) € IIyes] > 1/2. Thus, the randomized mapping M reduces x to II, with
one-sided error on yes-instances. Recalling that II € coRP, the theorem follows.

BPP is in PH. The traditional presentation of the ideas underlying the proof of
Theorem 6.7 uses them for showing that BPP is in the Polynomial-time Hierarchy
(where both classes refer to standard decision problems). Specifically, to prove that

BPP C %, (see Definition 3.8), define the polynomial-time computable predicate

o(x,3,r) Lef Vit (A (z,s; ®r) = 1), and observe that

1 = J5VYr o(z,5,r) (6.2)
x(x)=0 = VsIr -p(z,s5,7) (6.3)

(where Eq. (6.3) is equivalent to =35Vr ¢(xz,3,7)). Note that Claim 1 (in the proof
of Theorem 6.7) establishes that most sequences s satisfy Vr¢(z,3,r), whereas
Eq. (6.2) only requires the existence of at least one such S. Similarly, Claim 2
establishes that for every 5 most choices of r violate ¢(z,3,r), whereas Eq. (6.3)
only requires that for every s there exists at least one such r. We comment that
the same proof idea yields a variety of similar statements (e.g., BPP C MA, where
MA is a randomized version of NP defined in Section 9.1).

6Specifically, the class M A is defined by allowing the verification algorithm V in Definition 2.5
to be probabilistic and err on no-instances; that is, for every « € S there exists y € {0, 1}p°1y(‘”‘)
such that Pr[V(z,y) =1] = 1, whereas for every z ¢ S and every y it holds that Pr[V(z,y) =
0] > 1/2. We note that M.A can be viewed as a hybrid of the two aforementioned pairs of
conditions; specifically, each problem in M.A satisfy the conjunction of Eq. (6.2) and Claim 2.
Other randomized versions of NP (i.e., variants of M.A) are considered in Exercise 6.12.

6.1. PROBABILISTIC POLYNOMIAL-TIME 187

6.1.3 Zero-sided error: The complexity class ZPP

We now consider probabilistic polynomial-time algorithms that never err, but may
fail to provide an answer. Focusing on decision problems, the corresponding class is
denoted ZPP (standing for Zero-error Probabilistic Polynomial-time). The stan-
dard definition of ZPP is in terms of machines that output L (indicating fail-
ure) with probability at most 1/2. That is, S € ZPP if there exists a proba-
bilistic polynomial-time algorithm A such that for every x € {0,1}* it holds that
Pr[A(z) € {xs(z), L}] =1 and Pr[A(z) = xs(z)] > 1/2, where xs(z) =1 ifx € S
and xs(z) = 0 otherwise. Again, the choice of the constant (i.e., 1/2) is immate-
rial, and “error-reduction” can be performed showing that algorithms that yield a
meaningful answer with noticeable probability can be amplified to algorithms that
fail with negligible probability (see Exercise 6.6).

Theorem 6.8 ZPP =RP NcoRP.

Proof Sketch: The fact that ZPP C RP (as well as ZPP C coRP) follows by a
trivial transformation of the ZPP-algorithm; that is, replacing the failure indicator
1 by a “no” verdict (resp., “yes” verdict). Note that the choice of what to say in
case the ZPP-algorithm fails is determined by the type of error that we are allowed.

In order to prove that RP N coRP C ZPP we combine the two algorithm
guaranteed for a set in RP N coRP. The point is that we can trust the RP-
algorithm (resp., coNP-algorithm) in the case that it says “yes” (resp., “no”), but
not in the case that it says “no” (resp., “yes”). Thus, we invoke both algorithms,
and output a definite answer only if we obtain an answer that we can trust (which
happen with high probability). Otherwise, we output L. O

Expected polynomial-time. In some sources ZPP is defined in terms of ran-
domized algorithms that run in expected polynomial-time and always output the
correct answer. This definition is equivalent to the one we used (see Exercise 6.7).

6.1.4 Randomized Log-Space

In this section we discuss probabilistic polynomial-time algorithms that are further
restricted such that they are allowed to use only a logarithmic amount of space.

6.1.4.1 Definitional issues

When defining space-bounded randomized algorithms, we face a problem analogous
to the one discussed in the context of non-deterministic space-bounded computation
(see Section 5.3). Specifically, the on-line and the off-line versions (formulated in
Definition 6.1) are no longer equivalent, unless we restrict the off-line machine to
access its random-input tape in a uni-directional manner. The issue is that, in the
context of space-bounded computation (and unlike in the case that we only care
about time-bounds), the outcome of the internal coin tosses (in the on-line model)

188 CHAPTER 6. RANDOMNESS AND COUNTING

cannot be recorded for free. Bearing in mind that, in the current context, we wish
to model real algorithms (rather than present a fictitious model that captures a
fundamental phenomena as in Section 5.3), it is clear that using the on-line version
is the natural choice.

An additional issue that arises is the need to explicitly bound the running-time
of space-bounded randomized algorithms. Recall that, without loss of generality,
the number of steps taken by a space-bounded non-deterministic machine is at
most exponential in its space complexity, because the shortest path between two
configurations in the (directed) graph of possible configurations is upper-bounded
by its size (which in turn is exponential in the space-bound). This reasoning fails in
the case of randomized algorithms, because the shortest path between two config-
urations does not bound the expected number of random steps required for going
from the first configuration to the second one. In fact, as we shall shortly see,
failing to upper-bound the running time of log-space randomized algorithms seems
to allow them too much power; that is, such (unrestricted) log-space randomized
algorithms can emulate non-deterministic log-space computations (in exponential
time). The emulation consists of repeatedly invoking the NL-machine, while using
random choices in the role of the non-deterministic moves. If the input is a yes-
instance then, in each attempt, with probability at least 2—¢, we “hit” an accepting
t-step (non-deterministic) computation, where ¢ is polynomial in the input length.
Thus, the randomized machine accepts such a yes-instance after an expected num-
ber of 2! trials. To allow for the rejection of no-instances (rather than looping
infinitely in vain), we wish to implement a counter that counts till 2° (or so) and
reject the input if this number of trials have failed. We need to implement such a
counter within space O(logt) rather than ¢ (which is easy). In fact, it suffices to
have a “randomized counter” that, with high probability, counts to approximately
2t, The implementation of such a counter is left to Exercise 6.15, and using it
we may obtain a randomized algorithm that halts with high probability (on every
input), always rejects a no-instance, and accepts each yes-instance with probability
at least 1/2.

In light of the foregoing discussion, when defining randomized log-space algo-
rithms we explicitly require that the algorithms halt in polynomial-time. Modulo
this convention, the class RL (resp., BPL) relates to N'L analogously to the relation
of RP (resp., BPP) to N'P. Specificially, the probabilistic acceptance condition of
RL (resp., BPL) is as in the case of RP (resp., BPP).

Definition 6.9 (the classes RL and BPL): We say that a randomized log-space
algorithm is admissible if it always halts in a polynomial number of steps.

o A decision problem S is in RL if there exists an admissible (on-line) random-
ized log-space algorithm A such that for every x € S it holds that Pr[A(z) =
1] > 1/2 and for every « ¢ S it holds that Pr[A(x) = 0] = 1.

o A decision problem S is in BPL if there exists an admissible (on-line) random-
ized log-space algorithm A such that for every x € S it holds that Pr[A(z) =
1] > 2/3 and for every x ¢ S it holds that Pr[A(z) = 0] > 2/3.

6.1. PROBABILISTIC POLYNOMIAL-TIME 189

Clearly, RL C NL C P and BPL C P. Note that the classes RL and BPL remain
unchanged even if we allow the algorithms to run for ezxpected polynomial-time and
have non-halting computations. Such algorithms can be easily transformed into
admissible algorithms by truncating long computations, while using a (standard)
counter (which can be implemented in logarithmic-space). Also note that error-
reduction is applicable in the current setting (while essentially preserving both the
time and space bounds).

6.1.4.2 The accidental tourist sees it all

An appealing example of a randomized log-space algorithm is presented next. It
refers to the problem of deciding undirected connectivity, and demonstrated that
this problem is in RL. (Recall that in Section 5.2.4 we proved that this problem is
actually in £, but the algorithm and its analysis were more complicated.) Recall
that Directed Connectivity is complete for AL (under log-space reductions). For
sake of simplicity, we consider the following version of undirected connectivity,
which is equivalent under log-space reductions to the version in which one needs
to determine whether or not the input (undirected) graph is connected. In the
current version, the input consists of a triple (G, s,t), where G is an undirected
graph, s,t are two vertices in G, and the task is to determine whether or not s and
t are connected in G.

Construction 6.10 On input (G, s,t), the randomized algorithm starts a poly(|G|)-
long random walk at verter s, and accepts the triplet if and only if the walk passed
through the verter t. By a random walk we mean that at each step the algorithm
selects uniformly one of the neighbors of the current vertex and moves to it.

Observe that the algorithm can be implemented in logarithmic space (because we
only need to store the current vertex as well as the number of steps taken so far).
Obviously, if s and ¢ are not connected in G then the algorithm always rejects
(G, s,t). Proposition 6.11 implies that undirected connectivity is indeed in RL.

Proposition 6.11 If s and t are connected in G = (V, E) then a random walk of
length O(|V'| - |E|) starting at s passes through t with probability at least 1/2.

In other words, a random walk starting at s visits all vertices of the connected
component of s (i.e., it sees all that there is to see).

Proof Sketch: We will actually show that if G is connected then, with probability
at least 1/2, a random walk starting at s visits all the vertices of G. For any pair of
vertices (u, v), let X, , be a random variable representing the number of steps taken
in a random walk starting at w until v is first encountered. The reader may verify
that for every edge {u,v} € E it holds that E[X,, ,] < 2|E|; see Exercise 6.16. Next,
we let cover(G) denote the expected number of steps in a random walk starting at s
and ending when the last of the vertices of V' is encountered. Our goal is to upper-
bound cover(G). Towards this end, we consider an arbitrary directed cyclic-tour

190 CHAPTER 6. RANDOMNESS AND COUNTING

C that visits all vertices in G, and note that

cover(G) < Y E[Xy.] < [C]-2|E].
(u,v)eC

In particular, selecting C' as a traversal of some spanning tree of G, we conclude
that cover(G) < 4-|V|-|E|. Thus, with probability at least 1/2, a random walk
of length 8 - |[V| - | E| starting at s visits all vertices of G. O

6.2 Counting

We now turn to a new type of computational problems, which vastly generalize
decision problems of the NP-type. We refer to counting problems, and more specif-
ically to counting objects that can be efficiently recognized. The search and decision
versions of NP provide suitable definitions of efficiently recognized objects, which
in turn yield corresponding counting problems:

1. For each search problem having efficiently checkable solutions (i.e., a relation
R C{0,1}* x {0,1}* in PC (see Definition 2.3)), we consider the problem of
counting the number of solutions for a given instance. That is, on input z,
we are required to output |{y : (z,y) € R}|.

2. For each decision problem S in NP, and each corresponding verification
procedure V' (as in Definition 2.5), we consider the problem of counting the
number of NP-witnesses for a given instance. That is, on input z, we are
required to output |{y: V(z,y)=1}|.

We shall consider these types of counting problems as well as relaxations (of
these counting problems) that refer to approximating the said quantities (see Sec-
tions 6.2.1 and 6.2.2, respectively). Other related topics include “problems with
unique solutions” (see Section 6.2.3) and “uniform generation of solutions” (see
Section 6.2.4). Interestingly, randomized procedures will play an important role in
the results regarding the aforementioned types of problems.

6.2.1 Exact Counting

In continuation to the foregoing discussion, we define the class of problems con-
cerned with counting efficiently recognized objects. (Recall that PC denotes the
class of search problems having polynomially long solutions that are efficiently
checkable; see Definition 2.3.)

Definition 6.12 (counting efficiently recognized objects — #P): The class #P
consists of all functions that count solutions to a search problem in PC. That is,
f:40,1}* — N is in #P if there exists R € PC such that, for every z, it holds
that f(z) = |R(z)|, where R(z) = {y : (z,y) € R}. In this case we say that f is the
counting problem associated with R, and denote the latter by #R (i.e., #R = f).

6.2. COUNTING 191

Every decision problem in AP is Cook-reducible to #P, because every such prob-
lem can be cast as deciding membership in Sg = {z : |R(x)| > 0} for some R € PC
(see Section 2.1.2). It also holds that BPP is Cook-reducible to #P (see Exer-
cise 6.17). The class #P is sometimes defined in terms of decision problems, as is
implicit in the following proposition.

Proposition 6.13 (a decisional version of #P): For any f € #P, deciding mem-
bership in Sy def {(z,N): f(z) >N} is computationally equivalent to computing f.

Actually, the claim holds for any function f: {0,1}* — N for which there exists a
polynomial p such that for every = € {0, 1}* it holds that f(z) < 2¢(=D.

Proof: Since the relation R vouching for f € #P (i.e., f(z) = |R(x)|) is poly-
nomially bounded, there exists a polynomial p such that for every x it holds that
f(z) < 270D Deciding membership in Sy is easily reduced to computing f (i.e.,
we accept the input (z, N) if and only if f(z) > N). Computing f is reducible to
deciding Sy by using a binary search (see Exercise 2.9). This relies on the fact that,
on input = and oracle access to Sy, we can determine whether or not f(z) > N by
making the query (z, N). Note that we know a priori that f(z) € [0,27(=D].

The counting class #P is also related to the problem of enumerating all possible
solutions to a given instance (see Exercise 6.19).

6.2.1.1 On the power of #P

As indicated, NP U BPP is (easily) reducible to #P. Furthermore, as stated in
Theorem 6.14, the entire Polynomial-Time Hierarchy (as defined in Section 3.2) is
Cook-reducible to #P (i.e., PH C P#7). On the other hand, any problem in #7P
is solvable in polynomial space, and so P#7 C PSP ACE.

Theorem 6.14 Every set in PH is Cook-reducible to #7P.

We do not present a proof of Theorem 6.14 here, because the known proofs are
rather technical. Furthermore, one main idea underlying these proofs appears in
a more clear form in the proof of Theorem 6.27. Nevertheless, in Section F.1 we
present a proof of a related result, which implies that PH is reducible to #P via
randomized Karp-reductions.

6.2.1.2 Completeness in #P

The definition of #P-completeness is analogous to the definition of A”P-completeness.
That is, a counting problem f is #P-complete if f € #P and every problem in #P
is Cook-reducible to f.

We claim that the counting problems associated with the NP-complete problems
presented in Section 2.3.3 are all #P-complete. We warn that this fact is not
due to the mere NP-completeness of these problems, but rather to an additional
property of the reductions establishing their NP-completeness. Specifically, the
Karp-reductions that were used (or variants of them) have the extra property of
preserving the number of NP-witnesses (as captured by the following definition).

192 CHAPTER 6. RANDOMNESS AND COUNTING

Definition 6.15 (parsimonious reductions): Let R, R' € PC and let g be a Karp-
reduction of Sg = {z : R(z) #0} to Sgr = {x : R'(z) # 0}, where R(z) = {y :
(x,y) € R} and R'(x) = {y : (x,y) € R'}. We say that g is parsimonious (with
respect to R and R') if for every x it holds that |R(x)| = |R'(g(x))|. In such a case
we say that g is a parsimonious reduction of R to R'.

We stress that the condition of being parsimonious refers to the two underlying
relations R and R' (and not merely to the sets Sg and Sg/). The requirement
that g is a Karp-reduction is partially redundant, because if g is polynomial-time
computable and for every z it holds that |R(x)| = |R'(g(x))|, then g constitutes a
Karp-reduction of Sg to Sgr. Specifically, |R(z)| = |R'(g(z))| implies that |R(z)| >
0 (i.e., € Sg) if and only if |R'(g(z))| > 0 (i-e., g(z) € Sr'). The reader may
easily verify that the Karp-reduction underlying the proof of Theorem 2.18 as well
as many of the reductions used in Section 2.3.3 are parsimonious (see Exercise 2.17).

Theorem 6.16 Let R € PC and suppose that every search problem in PC is par-
simoniously reducible to R. Then the counting problem associated with R is #P-
complete.

Proof: Clearly, the counting problem associated with R, denoted #R, is in #P.
To show that every f' € #P is reducible to f, we consider the relation R’ € PC
that is counted by f’; that is, #R' = f'. Then, by the hypothesis, there exists
a parsimonious reduction g of R’ to R. This reduction also reduces #R' to #R;
specifically, #R'(z) = #R(g(z)) for every z.

Corollaries. As an immediate corollary of Theorem 6.16, we get that counting
the number of satisfying assignments to a given CNF formula is #P-complete.
Similar statement hold for all the other NP-complete problems mentioned in Sec-
tion 2.3.3 and in fact for all NP-complete problems listed in [81]. These corollaries
follow from the fact that all known reductions among natural NP-complete prob-
lems are either parsimonious or can be easily modified to be so.

We conclude that many counting problems associated with NP-complete search
problems are #P-complete. It turns out that also counting problems associated
with efficiently solvable search problems may be #P-complete.

Theorem 6.17 There exist #P-complete counting problems that are associated
with efficiently solvable search problems. That is, there exists R € PF (see Defini-
tion 2.2) such that #R is #P-complete.

Proof: Consider the relation Ryn¢ consisting of pairs (¢, 7) such that ¢ is a DNF
formula and 7 is an assignment satisfying it. Note that the search problem of Ry,
is easy to solve (e.g., by picking an arbitrary truth assignment that satisfies the
first term in the input formula). To see that #Rgpf is #P-complete consider the
following reduction from #Rgpr (which is #P-complete by Theorem 6.16). Given
a CNF formula ¢, transform —¢ into a DNF formula ¢’ by applying de-Morgan’s
Law, and return 2™ — #R3n¢(¢'), where n denotes the number of variables in ¢

(resp., ¢'). W

6.2. COUNTING 193

Reflections. We note that Theorem 6.17 is not established by a parsimonious
reduction (and refer the reader to more artifical #P-complete problems presented
in Exercise 6.18). This fact should not come as a surprise because a parsimonious
reduction of #R' to #R implies that Sgp = {z : Jy s.t. (z,y) € R’} is reducible
to Sg = {x : Jy s.t. (z,y) € R}, where in our case Sg is NP-Complete while
Sr € P (since R € PF). Nevertheless, the proof of Theorem 6.17 is related to
the hardness of some underlying decision problem (i.e., the problem of deciding
whether a given DNF formula is a tautology (i.e., whether #Rgyn(¢') = 2™)). But
does there exist a #P-complete problem that is “not based on some underlying
NP-complete decision problem”? Amazingly enough, the answer is positive.

Theorem 6.18 Counting the number of perfect matchings in a bipartite graph is
#P-complete.”

Equivalently (see Exercise 6.20), the problem of computing the permanent of ma-
trices with 0/1-entries is #P-complete. Recall that the permanent of an n-by-n
matrix M = (m;;), denoted perm(M), equals the sum over all permutations m
of [n] of the products [], m; x(i)- LTheorem 6.18 is proven by composing the
following two (many-to-one) reductions (asserted in Propositions 6.19 and 6.20,
respectively) and using the fact that #RggpT is #P-complete (see Theorem 6.16
and Exercise 2.17). Needless to say, the resulting reduction is not parsimonious.

Proposition 6.19 The counting problem of 3SAT (i.e., #R3gaT) s reducible to
computing the permanent of integer matrices. Furthermore, there exists an even
integer ¢ > 0 and a finite set of integers I such that, on input a 3CNF formula ¢, the
reduction produces an integer matriz My with entries in I such that perm(My) =
™ - #RagaT(¢) where m denotes the number of clauses in ¢.

The original proof of Proposition 6.19 uses ¢ = 2% and I = {-1,0,1,2,3}. It
can be shown (see Exercise 6.21 (which relies on Theorem 6.27)) that, for every
integer n > 1 that is relatively prime to ¢, computing the permanent modulo n
is NP-hard (under randomized reductions). Thus, using the case of ¢ = 210 this
means that computing the permanent modulo n is NP-hard for any odd n > 1. In
contrast, computing the permanent modulo 2 (which is equivalent to computing
the determinant modulo 2) is easy (i.e., can be done in polynomial-time and even
in A'C). Thus, assuming NP € BPP, Proposition 6.19 cannot hold for an odd ¢
(because by Exercise 6.21 it would follow that computing the permanent modulo 2
is NP-Hard). We also note that, assuming P # AP, Proposition 6.19 cannot
possibly hold for a set I containing only non-negative integers (see Exercise 6.22).

Proposition 6.20 Computing the permanent of integer matrices is reducible to
computing the permanent of 0/1-matrices. Furthermore, the reduction maps any
integer matriz A into o 0/1-matriz A" such that the permanent of A can be easily
computed from A and the permanent of A".

7See Section G.1 for basic terminology regarding graphs.

194 CHAPTER 6. RANDOMNESS AND COUNTING

Teaching note: We do not recommend presenting the proofs of Propositions 6.19
and 6.20 in class. The high-level structure of the proof of Proposition 6.19 has the
flavor of some sophisticated reductions among NP-problems, but the crucial point is the
existence of adequate gadgets. We do not know of a high-level argument establishing
the existence of such gadgets nor of any intuition as to why such gadgets exist.® Instead,
the existence of such gadgets is proved by a design that is both highly non-trivial and ad
hoc in nature. Thus, the proof of Proposition 6.19 boils down to a complicated design
problem that is solved in a way that has little pedagogical value. In contrast, the proof
of Proposition 6.20 uses two simple ideas that can be useful in other settings. With

suitable hints, this proof can be used as a good exercise.

Proof of Proposition 6.19: We will use the correspondence between the
permanent of a matrix A and the sum of the weights of the cycle covers of the
weighted directed graph represented by the matrix A. A cycle cover of a graph
is a collection of simple® vertez-disjoint directed cycles that covers all the graph’s
vertices, and its weight is the product of the weights of the corresponding edges.
The SWCC of a weighted directed graph is the sum of the weights of all its cycle
COVers.

Given a 3CNF formula ¢, we construct a directed weighted graph G4 such that
the SWCC of G4 equals equals ¢™ - #R3gpT(¢), where c is a universal constant and
m denotes the number of clauses in ¢. We may assume, without loss of generality,
that each clause of ¢ has exactly three literals (which are not necessarily distinct).

X

Figure 6.1: Tracks connecting gadgets for the reduction to cycle cover.

We start with a high-level description (of the construction) that refers to (clause)
gadgets, each containing some internal vertices and internal (weighted) edges, which
are unspecified at this point. In addition, each gadget has three pairs of designated
vertices, one pair per each literal appearing in the clause, where one vertex in the

8Indeed, the conjecture that such gadgets exist can only be attributed to ingenuity.
9Here a simple cycle is a strongly connected directed graph in which each vertex has a single
incoming (resp., outgoing) edge. In particular, self-loops are allowed.

6.2. COUNTING 195

pair is designated as an entry vertex and the other as an exit vertex. The graph
G consists of m such gadgets, one per each clause (of ¢), and n auxiliary vertices,
one per each variable (of ¢), as well as some additional directed edges, each having
weight 1. Specifically, for each variable, we introduce two tracks, one per each of
the possible literals of this variable. The track associated with a literal consists of
directed edges (each having weight 1) that form a simple “cycle” passing through
the corresponding (auxiliary) vertex as well as through the designated vertices that
correspond to the occurrences of this literal in the various clauses. Specifically, for
each such occurrence, the track enters the corresponding clause gadget at the entry-
vertex corresponding to this literal and exits at the corresponding exit-vertex. (If
a literal does not appear in ¢ then the corresponding track is a self-loop on the
corresponding variable.) See Figure 6.1 showing the two tracks of a variable z that
occurs positively in three clauses and negatively in one clause. The entry-vertices
(resp., exit-vertices) are drawn on the top (resp., bottom) part of each gadget.

28

On the left is a gadget with the track edges adjacent to it (as in the
real construction). On the right is a gadget and four out of the nine
external edges (two of which are nice) used in the analysis.

Figure 6.2: External edges for the analysis of the clause gadget

For the purpose of stating the desired properties of the clause gadget, we aug-
ment the gadget by nine external edges (of weight 1), one per each pair of (not
necessarily matching) entry and exit vertices such that the edge goes from the
exit-vertex to the entry-vertex (see Figure 6.2). (We stress that this is an auxiliary
construction that differs from and yet is related to the use of gadgets in the forego-
ing construction of G4.) The three edges that link the designated pairs of vertices
that correspond to the three literals are called nice. We say that a collection of
edges C (e.g., a collection of cycles) uses the external edges S if the intersection of
C with the set of the (nine) external edges equals S. We postulate the following
three properties of the clause gadget.

1. The sum of the weights of all cycle covers (of the gadget) that do not use any
external edge (i.e., use the empty set of external edges) equals zero.

196 CHAPTER 6. RANDOMNESS AND COUNTING

2. Let V(S) denote the set of vertices incident to S, and say that S is nice if it
is non-empty and the vertices in V(S) can be perfectly matched using nice
edges.!® Then, there exists a constant ¢ (indeed the one postulated in the
proposition’s claim) such that, for any nice set S, the sum of the weights of
all cycle covers that use the external edges S equals c.

3. For any non-nice set S of external edges, the sum of the weights of all cycle
covers that use the external edges S equals zero.

Note that the foregoing three cases exhaust all the possible ones, and that the set
of external edges used by a cycle cover must be a matching (i.e., these edges are
vertex disjoint). Using the foregoing conditions, it can be shown that each satisfying
assignment of ¢ contributes exactly ¢™ to the SWCC of G4 (see Exercise 6.23). It
follows that the SWCC of G equals ¢ - #R3gpT(®).

Having established the validity of the abstract reduction, we turn to the imple-
mentation of the clause gadget. The first implementation is a Deus ex Machina,
with a corresponding adjacency matrix depicted in Figure 6.3. Its validity (for the
value ¢ = 12) can be verified by computing the permanent of the corresponding
sub-matrices (see analogous analysis in Exercise 6.25).

A more structured implementation of the clause gadget is depicted in Figure 6.4,
which refers to a (hexagon) box to be implemented later. The box contains several
vertices and weighted edges, but only two of these vertices, called terminals, are
connected to the outside (and are shown in Figure 6.4). The clause gadget consists
of five copies of this box, where three copies are designated for the three literals
of the clause (and are marked LB1, LB2, and LB3), as well as additional vertices
and edges shown in Figure 6.4. In particular, the clause gadget contains the six
aforementioned designated vertices (i.e., a pair of entry and exit vertices per each
literal), two additional vertices (shown at the two extremes of the figure), and some
edges (all having weight 1). Each designated vertex has a self-loop, and is incident
to a single additional edge that is outgoing (resp., incoming) in case the vertex
is an entry-vertex (resp., exit-vertex) of the gadget. The two terminals of each
box that is associated with some literal are connected to the corresponding pair
of designated vertices (e.g., the outgoing edge of entryl is incident at the right
terminal of the box LB1). Note that the five boxes reside on a directed path (going
from left to right), and the only edges going in the opposite direction are those
drawn below this path.

In continuation to the foregoing, we wish to state the desired properties of the
box. Again, we do so by considering the augmentation of the box by external edges
(of weight 1) incident at the specified vertices. In this case (see Figure 6.5), we
have a pair of anti-parallel edges connecting the two terminals of the box as well as
two self-loops (one on each terminal). We postulate the following three properties
of the box.

10Clearly, any non-empty set of nice edges is a nice set. Thus, a singleton set is nice if and only
if the corresponding edge is nice. On the other hand, any set S of three (vertex-disjoint) external
edges is nice, because V(S) has a perfect matching using all three nice edges. Thus, the notion
of nice sets is “non-trivial” only for sets of two edges. Such a set S is nice if and only if V(.5)
consists of two pairs of corresponding designated vertices.

6.2. COUNTING 197

The gadget uses eight vertices, where the first six are the designated
(entry and exit) vertices. The entry-vertex (resp., exit-vertex) associ-
ated with the 7*" literal is numbered i (resp., i+3). The corresponding
adjacency matrix follows.

— === O N
|
== =N = O WO

e i e el = R e R)

[N eNoloNoNoNol S
[eNeNeoleNeNal -
[
= Ok~ OO
OO O OO+ OO
ON == OOO

Note that the edge 3 — 6 can be contracted, but the resulting 7-
vertex graph will not be consistent with our (inessentially stringent)
definition of a gadget by which the six designated vertices should be
distinct.

Figure 6.3: A Deus ex Machina clause gadget for the reduction to cycle cover.

1. The sum of the weights of all cycle covers (of the box) that do not use any
external edge equals zero.

2. There exists a constant b (in our case b = 4) such that, for each of the two
anti-parallel edges, the sum of the weights of all cycle covers that use this
edge equals b.

3. For any (non-empty) set S of the self-loops, the sum of the weights of all
cycle covers (of the box) that use S equals zero.

Note that the foregoing three cases exhaust all the possible ones. It can be shown
that the conditions regarding the box imply that the construction presented in
Figure 6.4 satisfies the conditions that were postulated for the clause gadget (see
Exercise 6.24). Specifically, we have ¢ = b°. As for box itself, a smaller Deus ex
Machina is provided by the following 4-by-4 adjacency matrix

-1

(6.4)

O O = O
W = ==
O N = =

1

where the two terminals correspond to the first and the fourth vertices. Its va-
lidity (for the value b = 4) can be verified by computing the permanent of the
corresponding sub-matrices (see Exercise 6.25). Wi

198 CHAPTER 6. RANDOMNESS AND COUNTING

entryl entry2 entry3

exitl exit2 exit3

Figure 6.4: A structured clause gadget for the reduction to cycle cover.

T

h—1

On the left is a box with potential edges adjacent to it (as in the
gadget construction). On the right is a box and the four external
edges used in the analysis.

Figure 6.5: External edges for the analysis of the box

Proof of Proposition 6.20: The proof proceeds in two steps. In the first
step we show that computing the permanent of integer matrices is reducible to
computing the permanent of non-negative matrices. This reduction proceeds as
follows. For an n-by-n integer matrix A = (ai ;)i jec[n), let [|Allcc = max; ;(la; ;)
and Q4 = 2(n!)-||A||% + 1. We note that, given A, the value Q4 can be computed
in polynomial-time, and in particular log, @4 < n?log || Al Given the matrix A,
the reduction constructs the non-negative matrix A" = (a;; mod Qa); je[n (i-e.,
the entries of A" are in {0,1,...,Q4 — 1}), queries the oracle for the permanent of

A’, and outputs v def perm(A’) mod Q4 if v < Qa/2 and —(Qa — v) otherwise.
The key observation is that

perm(A) = perm(A’) (mod Q4), while [perm(4)| < (n!) - ||A|Z < Qa/2.

6.2. COUNTING 199

Thus, perm(A’) mod Q4 (which is in {0,1,...,Q4a — 1}) determines perm(A4). We
note that perm(A’) is likely to be much larger than Q4 > |perm(A)|; it is merely
that perm(A’) and perm(A) are equivalent modulo Q 4.

In the second step we show that computing the permanent of non-negative ma-
trices is reducible to computing the permanent of 0/1-matrices. In this reduction,
we view the computation of the permanent as the computation of the sum of the
weights of the cycle covers (SWCC) of the corresponding weighted directed graph
(see proof of Proposition 6.19). Thus, we reduce the computation of the SWCC of
directed graphs with non-negative weights to the computation of the SWCC of un-
weighted directed graphs with no parallel edges (which correspond to 0/1-matrices).
The reduction is via local replacements that preserve the value of the SWCC. These
local replacements combine the following two local replacements (which preserve
the SWCC):

1. Replacing an edge of weight w = Hle w; by a path of length ¢ (i.e., t — 1
internal nodes) with the corresponding weights wy, ..., w¢, and self-loops (with
weight 1) on all internal nodes.

Note that a cycle-cover that uses the original edge corresponds to a cycle-
cover that uses the entire path, whereas a cycle-cover that does not use the
original edge corresponds to a cycle-cover that uses all the self-loops.

2. Replacing an edge of weight w = 25:1 w; by t parallel 2-edge paths such that
the first edge on the i*" path has weight w;, the second edge has weight 1,
and the intermediate node has a self-loop (with weight 1). (Paths of length
two are used because parallel edges are not allowed.)

Note that a cycle-cover that uses the original edge corresponds to a collection
of cycle-covers that use one out of the ¢ paths (and the self-loops of all other
intermediate nodes), whereas a cycle-cover that does not use the original edge
corresponds to a cycle-cover that uses all the self-loops.

In particular, writing the positive integer w, having binary expansion o|,|_1 - - - 0o,
as) ;.,.—1(1+1)', we may apply the additive replacement (for the sum over {i :
o; = 1}), next the product replacement (for each 2°), and finally the additive
replacement (for 1+ 1). Applying this process to the matrix A’ obtained in the
first step, we efficiently obtain a matrix A" with 0/1-entries such that perm(A’) =
perm(A”). (In particular, the dimension of A" is polynomial in the length of the
binary representation of A’, which in turn is polynomial in the length of the binary
representation of A.) Combining the two reductions (steps), the proposition follows.

6.2.2 Approximate Counting

Having seen that exact counting (for relations in PC) seems even harder than
solving the corresponding search problems, we turn to relaxations of the counting
problem. Before focusing on relative approximation, we briefly consider approxi-
mation with (large) additive deviation.

200 CHAPTER 6. RANDOMNESS AND COUNTING

Let us consider the counting problem associated with an arbitrary R € PC.
Without loss of generality, we assume that all solutions to n-bit instances have
the same length ¢(n), where indeed ¢ is a polynomial. We first note that, while
it may be hard to compute #R, given z it is easy to approximate #R(z) up to
an additive error of 0.01 - 2°(*D) (by randomly samplying potential solutions for
z). Indeed, such an approximation is very rough, but it is not trivial (and in fact
we do not know how to obatin it deterministically). In general, we can efficiently
produce at random an estimate of #R(x) that, with high probability, deviates
from the correct value by at most an additive term that is related to the absolute
upperbound on the number of solutions (i.e., 2¢(1%D).

Proposition 6.21 (approximation with large additive deviation): Let R € PC
and ¢ be a polynomial such that R C U,cn{0,1}" x {0,1}4). Then, for every
polynomial p, there exists a probabilistic polynomial-time algorithm A such that for
every € {0,1}* and 6 € (0,1) it holds that

Pr{|A(z,8) — #R(2)| > (1/p(J«)) - 2] < &. (6.5)

As usual, ¢ is presented to A in binary, and hence the running time of A(z,0) is
upper-bounded by poly(|z| - log(1/6)).

Proof Sketch: On input z and §, algorithm A sets t = O(p(|z|)?-log(1/6)), selects
uniformly w1, ...,y and outputs |[{i : (z,y;) € R}|/t. O

Discussion. Proposition 6.21 is meaningful in the case that #R(z) > (1/p(|z]))-
2t(=1) holds for some z’s. But otherwise, a trivial approximation (i.e., outputting
the constant value zero) meets the bound of Eq. (6.5). In contrast to this no-
tion of additive approrimation, a relative factor approximation is typically more
meaningful. Specifically, we will be interested in approximating #R(z) up-to a
constant factor (or some other reasonable factor). In §6.2.2.1, we consider a natu-
ral #P-complete problem for which such a relative approximation can be obtained
in probabilistic polynomial-time. We do not expect this to happen for every count-
ing problem in #P, because a relative approximation allows for distinguishing
instances having no solution from instances that do have solutions (i.e.,, deciding
membership in Sg is reducible to a relative approximation of #R). Thus, rela-
tive approximation for all #7P is at least as hard as deciding all problems in NP,
but in §6.2.2.2 we show that the former is not harder than the latter; that is,
relative approximation for any problem in #P can be obtained by a randomized
Cook-reduction to NP. Before turning to these results, let us state the underlying
definition (and actually strengthen it by requiring approximation to within a factor
of 1 +¢, fore € (0,1)).1

'We refrain from formally defining an F-factor approximation, for an arbitrary F', although
we shall refer to this notion in several informal discussions. There are several ways of defining the
aforementioned term (and they are all equivalent when applied to our informal discussions). For
example, an F-factor approximation of # R may mean that, with high probability, the output A(z)
satisfies #R(z)/F(|z|) < A(z) < F(|z|) - #R(z). Alternatively, we may require that #R(x) <
A(z) < F(|z|) - #R(z) (or, alternatively, that #R(z)/F(|z|) < A(z) < #R(x).

6.2. COUNTING 201

Definition 6.22 (approximation with relative deviation): Let f : {0,1}* — N
and £,6 : N — [0,1]. A randomized process 11 is called an (e,8)-approximator of f
if for every x it holds that

Prlli(z) - f(2)| > e(le]) - f(2)] < 6(|])- (6.6)

We say that f is efficiently (1 — ¢)-approximable (or just (1 —)-approximable) if
there exists a probabilistic polynomial-time algorithm A that constitute an (¢,1/3)-
approzimator of f.

The error probability of the latter algorithm A (which has error probability 1/3)
can be reduced to ¢ by O(log(1/6)) repetitions (see Exercise 6.26). Typically, the
running time of A will be polynomial in 1/e, and ¢ is called the deviation parameter.

6.2.2.1 Relative approximation for # R4,

In this subsection we present a natural #P-complete problem for which constant
factor approximation can be found in probabilistic polynomial-time. Stronger re-
sults regarding unnatural problems appear in Exercise 6.27.

Consider the relation Rgpf consisting of pairs (¢,7) such that ¢ is a DNF
formula and 7 is an assignment satisfying it. Recall that the search problem
of Rgnf is easy to solve and that the proof of Theorem 6.17 establishes that
#Rant is #P-complete (via a non-parsimonious reduction). Still there exists a
probabilistic polynomial-time algorithm that provides a constant factor approxi-
mation of #Rgpe. We warn that the fact that #Rgp¢ is #P-complete via a non-
parsimonious reduction means that the constant factor approximation for #Rgpnf
does not seem to imply a similar approximation for all problems in #P. In fact, we
should not expect each problem in #P to have a (probabilistic) polynomial-time
constant-factor approximation algorithm because this would imply NP C BPP
(since a constant factor approximation allows for distinguishing the case in which
the instance has no solution from the case in which the instance has a solution).

The following algorithm is actually a deterministic reduction of the task of
(e,1/3)-approximating #Rgn¢ to an (additive deviation) approximation of the
type provided in Proposition 6.21. Consider a DNF formula ¢ = \/I*, C;, where
each C; : {0,1}" — {0,1} is a conjunction. Actually, we will deal with the more
general problem in which we are (implicitly) given m subsets Si, ..., S, C {0,1}"
and wish to approximate ||J, Si|. In our case, each S; is the set of assignments
satisfying the conjunction C;. In general, we make two computational assumptions
regarding these sets (letting efficient mean implementable in time polynomial in
n-m):

1. Given ¢ € [m], one can efficiently determine |S;].

2. Giveni € [m] and J C [m], one can efficiently approximate Prseg, [s € Ujes S’j]
up to an additive deviation of 1/poly(n + m).

202 CHAPTER 6. RANDOMNESS AND COUNTING

These assumptions are satisfied in our setting (where S; = C;'(1), see Exer-
cise 6.28). Now, the key observation towards approximating | |J!", S;| is that

m

Us:

=1

m

= Si\ U S;| = i |Si| - Prses; {s ¢ U SJ} (6.7)

i=1 j<i j<i

and that the probabilities in Eq. (6.7) can be approximated by the second assump-
tion. This leads to the following algorithm, where £ denotes the desired deviation
parameter (i.e., we wish to obtain (1 +¢) - [Ji~, Si|).

Counstruction 6.23 Let ¢’ =¢/m. Fori=1 to m do:

1. Using the first assumption, compute |S;|.

2. Using the second assumption, obtain p; = p; £ &', where p; def Prses,[s ¢

def ~
Uj<iSj]' Set a; = pi'|Si|'

Output the sum of the a;’s.

Let N; = p;-|S;|. We are interested in the quality of the approximation to), N; =
|U; Si| provided by). a;. Using a; = (p; £ ') - |S;| = N; £¢’ -|S;] (for all i’s), we
have Y .a; =), Nixe'- >, |Si|. Using >, [Si| <m - |, Si| =m -, N; (and
e=me'), weget) .a; =(l+e)-) . N;. Thus, we obtain the following result (see
Exercise 6.28).

Proposition 6.24 For every positive polynomial p, the counting problem of Ryps
is efficiently (1 — (1/p))-approzimable.

Using the reduction presented in the proof of Theorem 6.17, we conclude that the
number of unsatisfying assignments to a given CNF formula is efficiently (1—(1/p))-
approximable. We warn, however, that the number of satisfying assignments to
such a formula is not efficiently approximable. This concurs with the general
phenomenon by which relative approzimation may be possible for one quantity, but
not for the complementary quantity. Needless to say, such a phenomenon does not
occur in the context of additive-deviation approximation.

6.2.2.2 Relative approximation for #P

Recall that we cannot expect to efficiently approximate every #P problem, where
throughout the rest of this section “approximation” is used as a shorthand for “rel-
ative approximation” (as in Definition 6.22). Specifically, efficiently approximating
#R yields an efficient algorithm for deciding membership in Sg = {z : R(z) #0}.
Thus, at best we can hope that approximating #R is not harder than deciding Sg
(i.e., that approximating # R is reducible in polynomial-time to Sg). This is indeed
the case for every NP-complete problem (i.e., if Sg is NP-complete). More gener-
ally, we show that approximating any problem in #7P is reducible in probabilistic
polynomial-time to N'P.

6.2. COUNTING 203

Theorem 6.25 For every R € PC and positive polynomial p, there exists a prob-
abilistic polynomial-time oracle machine that when given oracle access to NP
constitutes a (1/p, p)-approzimator of #R, where p is a negligible function (e.g.,

p(n) = 277).

Recall that it suffices to provide a (1/p, d)-approximator of #R, for any constant
6 < 0.5, because error reduction is applicable in this context (see Exercise 6.26).
Also, it suffices to provide a (1/2,6)-approximator for every problem in #7P (see
Exercise 6.29).

Proof: Given z, we show how to approximate |R(z)| to within some constant
factor. The desired (1 — (1/p))-approximation can be obtained as in Exercise 6.29.
We may also assume that R(x) # 0, by starting with the query “is z in Sg”
and halting (with output 0) if the answer is negative. Without loss of generality,
we assume that R(z) C {0,1}*, where ¢ = poly(|z|). We focus on finding some
i € {1,...,£} such that 2i=* < |R(x)| < 2¢+4,

We proceed in iterations. For ¢ = 1,...,£ + 1, we find out whether or not
|R(z)| < 2°. If the answer is positive then we halt with output 2’, and otherwise
we proceed to the next iteration. (Indeed, if we were able to obtain correct answers
to these queries then the output 2 would satisfy 2°~! < |R(z)| < 2°.)

Needless to say, the key issue is how to check whether |R(z)| < 2¢. The main
idea is to use a “random sieve” on the set R(z) such that each element passes the
sieve with probability 27¢. Thus, we expect |R(z)|/2° elements of R(x) to pass
the sieve. Assuming that the number of elements in R(x) that pass the random
sieve is indeed ||R(z)|/2'], it holds that |R(z)| > 2' if and only if some element of
R(z) passes the sieve. Assuming that the sieve can be implemented efficiently, the
question of whether or not some element in R(z) passed the sieve is of an “NP-
type” (and thus can be referred to our NP-oracle). Combining both assumptions,
we may implement the foregoing process by proceeding to the next iteration as
long as some element of R(x) passes the sieve. Furthermore, this implementation
will provide a reasonably good approximation even if the number of elements in
R(z) that pass the random sieve is only approximately equal to |R(x)|/2!. In fact,
the level of approximation that this implementation provides is closely related to
the level of approximation that is provided by the random sieve. Details follow.

Implementing a random sieve. The random sieve is implemented by using a family
of hashing functions (see Section D.2). Specifically, in the i*! iteration we use a
family H; such that each h € H; has a poly(¢)-bit long description and maps ¢-bit
long strings to ¢-bit long strings. Furthermore, the family is accompanied with
an efficient evaluation algorithm (i.e., mapping adequate pairs (h,z) to h(z)) and
satisfies (for every S C {0,1}%)

2i

5 (6.8)

Priemi[{y € S:h(y) =0} ¢ (1 £e)-277|S]] <
(see Lemma D.4). The random sieve will let y pass if and only if h(y) = 0°. Indeed,
this random sieve is not as perfect as we assumed in the foregoing discussion, but
Eq. (6.8) suggests that in some sense this sieve is good enough.

204 CHAPTER 6. RANDOMNESS AND COUNTING

Implementing the queries. Recall that for some z, ¢ and h € HZ, we need to de-
termine whether {y € R(z) : h(y) =0} = 0. This type of question can be cast as
membership in the set

Spu < {(z,i,h) : Jy st. (v,y) ER A B(y)=0'}. (6.9)

Using the hypotheses that R € PC and that the family of hashing functions has an
efficient evaluation algorithm, it follows that S,z is in N'P.
The actual procedure. On input z € Sg and oracle access to Sg g, we proceed in
iterations, starting with ¢ = 1 and halting at ¢ = £ (if not before), where ¢ denotes
the length of the potential solutions for z. In the i*h iteration (where i < £), we
uniformly select h € H} and query the oracle on whether or not (z,i,h) € Sg u.
If the answer is negative then we halt with output 2¢, and otherwise we proceed to
the next iteration (using i « ¢ 4+ 1). Needless to say, if we reach the last iteration
(i.e., i = £) then we just halt with output 2°.

Indeed, we have ignored the case that © ¢ Sg, which can be easily handled by
a minor modification of the foregoing procedure. Specifically, on input x, we first
query Sk on z and halt with output O if the answer is negative. Otherwise we
proceed as in the foregoing procedure.

The analysis. We upper-bound separately the probability that the procedure out-
puts a value that is too small and the probability that it outputs a value that is
too big. In light of the foregoing discussion, we may assume that |R(z)| > 0, and
let i, = |log, |R(z)|] > 0.

1. The probability that the procedure halts in a specific iteration i < i, equals
Pricu:[{y € R(z) : h(y) = 0'}| = 0], which in turn is upper-bounded by
2¢/|R(z)| (using Eq. (6.8) with ¢ = 1). Thus, the probability that the pro-
cedure halts before iteration i, — 3 is upper-bounded by 3 *2'/|R(z)],
which in turn is less than 1/8 (because i, < log, |R(z)|). Thus, with prob-
ability at least 7/8, the output is at least 2% ~2 > |R(x)|/16 (because i, >
(log, |R(z)]) — 1).

2. The probability that the procedure does not halt in iteration © > i, equals
PrhEHj[{y € R(x) : h(y) = 0'}| > 1], which in turn is upper-bounded by
a/(a —1)?, where o = 2'/|R(z)| > 1 (using Eq. (6.8) with ¢ = o — 1).12
Thus, the probability that the procedure does not halt by iteration i, + 4 is
upper-bounded by 8/49 < 1/6 (because i, > (log, |[R(z)|) — 1). Thus, with
probability at least 5/6, the output is at most 2i=7* < 16 - |R(z)| (because
ix < log, |R(x))).

Thus, with probability at least (7/8)—(1/6) > 2/3, the foregoing procedure outputs
a value v such that v/16 < |R(z)| < 16v. Reducing the deviation by using the ideas
presented in Exercise 6.29 (and reducing the error probability as in Exercise 6.26),
the theorem follows. |

12 A better bound can be obtained by using the hypothesis that, for every y, when h is uniformly
selected in Hj, the value of h(y) is uniformly distributed in {0,1}*. In this case, Pr,,i[{y €
¢

R(z) : h(y) = 0°}| > 1] is upper-bounded by Ernemill{y € R(z) - h(y) = 0°}] = |R(x)|/2".

6.2. COUNTING 205

Perspective. The key observation underlying the proof Theorem 6.25 is that,
while (even with the help of an NP-oracle) we cannot directly test whether the
number of solutions is greater than a given number, we can test (with the help
of an NP-oracle) whether the number of solutions that “survive a random sieve”
is greater than zero. If fact, we can also test whether the number of solutions
that “survive a random sieve” is greater than a small number, where small means
polynomial in the length of the input (see Exercise 6.31). That is, the complexity
of this test is linear in the size of the threshold, and not in the length of its binary
description. Indeed, in many settings it is more advantageous to use a threshold
that is polynomial in some efficiency parameter (rather than using the threshold
zero); examples appear in §6.2.4.2 and in [102].

6.2.3 Searching for unique solutions

A natural computational problem (regarding search problems), which arises when
discussing the number of solutions, is the problem of distinguishing instances having
a single solution from instances having no solution (or finding the unique solution
whenever such exists). We mention that instances having a single solution facilitate
numerous arguments (see, for example, Exercise 6.21 and §10.2.2.1). Formally,
searching for and deciding the existence of unique solutions are defined within the
framework of promise problems (see Section 2.4.1).

Definition 6.26 (search and decision problems for unique solution instances):
The set of instances having unique solutions with respect to the binary relation R

is defined as USp ' {z : |R(z)| = 1}, where R(x) = {y: (z,y)€R}. As usual, we

denote Sp = {z : |R(z)| > 1}, and Sgp < {0,1}*\ Sk = {z : |R(z)| = 0}.

o The problem of finding unique solutions for R is defined as the search problem
R with promise USgp U Sk (see Definition 2.28).

In continuation to Definition 2.29, the candid searching for unique solutions
for R is defined as the search problem R with promise USg.

e The problem of deciding unique solution for R is defined as the promise problem
(USR, Sr) (see Definition 2.30).

Interestingly, in many natural cases, the promise does not make any of these prob-
lems any easier than the original problem. That is, for all known NP-complete
problems, the original problem is reducible in probabilistic polynomial-time to the
corresponding unique instances problem.

Theorem 6.27 Let R € PC and suppose that every search problem in PC is par-
stmoniously reducible to R. Then solving the search problem of R (resp., deciding
membership in Sg) is reducible in probabilistic polynomial-time to finding unique
solutions for R (resp., to the promise problem (USg,Sg)). Furthermore, there
exists a probabilistic polynomial-time computable mapping M such that for ev-
ery x € Sg it holds that M(x) € Sg, whereas for every x € Sg it holds that
Pr[M(x) € USR] > 1/poly(|z|).

206 CHAPTER 6. RANDOMNESS AND COUNTING

We highlight the hypothesis that R is PC-complete via parsimonious reductions is
crucial to Theorem 6.27 (see Exercise 6.32). The large (but bounded-away from 1)
error probability of the randomized Karp-reduction M can be reduced by repe-
titions, yielding a randomized Cook-reduction with exponentially vanishing error
probability. Note that the resulting reduction may make many queries that violate
the promise, and still yields the correct answer (with high probability) by relying
on queries that satisfy the promise. (Specifically, in the case of search problems we
avoid wrong solutions by checking each solution obtained, while in the case of deci-
sion problems we rely on the fact that for every z € S it holds that M (z) € Sg.)

Proof: Asin the proof of Theorem 6.25, the idea is to apply a “random sieve” on
R(x), this time with the hope that a single element survives. Specifically, if we let
each element passes the sieve with probability approximately 1/|R(z)| then with
constant probability a single element survives (and we shall obtain an instance with
a unique solution). Sieving will be performed by a random function selected in an
adequate hashing family (see Section D.2). A couple of questions arise:

1. How do we get an approzimation to |R(x)|? Note that we need such an
approximation in order to determine the adequate hashing family. Indeed,
we may just invoke Theorem 6.25, but this will not yield a many-to-one
reduction. Instead, we just select m € {0,...,poly(|z|)} uniformly and note
that (if |R(z)| > 0 then) Pr[m = [log, |R(z)|]] = 1/poly(|z|). Next, we
randomly map z to (z,m,h), where h is uniformly selected in an adequate
hashing family.

2. How does the question of whether a single element of R(x) pass the random
sieve translate to an instance of the unique-solution problem for R? Recall
that in the proof of Theorem 6.25 the non-emptiness of the set of element of
R(x) that pass the sieve (defined by h) was determined by checking mem-
bership (of (z,m,h)) in Sg.g € N'P (defined in Eq. (6.9)). Furthermore, the
number of NP-witnesses for (z,m,h) € Sg u equals the number of elements
of R(z) that pass the sieve. Using the parsimonious reduction of Sg g to Sg
(which is guaranteed by the theorem’s hypothesis), we obtained the desired
instance.

Note that in case R(z) = 0 the aforementioned mapping always generates a no-
instance (of Sg m and thus of Sg). Details follow.

Implementation (i.e., the mapping M). As in the proof of Theorem 6.25, we as-
sume, without loss of generality, that R(x) C {0,1}¢, where £ = poly(|z|). We
start by uniformly selecting m € {1,...,¢ + 1} and h € H;*, where H;" is a family
of efficiently computable and pairwise-independent hashing functions (see Defini-
tion D.1) mapping ¢-bit long strings to m-bit long strings. Thus, we obtain an
instance (z,m,h) of Sg.y € NP such that the set of valid solutions for (z,m,h)
equals {y € R(z) : h(y)=0™}. Using the parsimonious reduction g of Sg g to Sg,
we map (xz,m,h) to g(z,m,h), and it holds that |{y € R(z) : h(y) =0™}| equals
|R(g(z, m,h))|. Tosummarize, on input = the randomized mapping M outputs the

6.2. COUNTING 207

instance M (x) ef g(xz,m,h), where m € {1,....,¢ + 1} and h € H;* are uniformly

selected.

The analysis. Note that for any & € Sk it holds that Pr[M (z) € Sg] = 1. Assuming
that € Sg, with probability exactly 1/(¢ + 1) it holds that m = m,, where
me = [log, |R(x)|] + 1. In this case, for a uniformly selected h € H}"*, we lower-
bound the probability that {y € R(z) : h(y) = 0™} is a singleton. Using the
Inclusion-Exclusion Principle, we have

Pracmm=[[{y € R(z) : h(y)=0""}[=1] (6.10)
= Pryeuys[{y€R(z) : h(y)=0""} > 0] = Prieyr=[[{y€R(z) : h(y)=0""} > 1]
> Z Prieyme [h(y)=0""] — 2. Z Procure [h(y1) =h(y2)=0""]

yER(x) y1<y2ER(zx)

[R(@)[-2 — 2 ('R(;”) g2

o~

where the last equality is due to the pairwise independence property. Using
2m:=2 < |R(x)| < 2m=~1] it follows that Eq. (6.10) is lower-bounded by 1/4.
Thus, Pr[M(z) € USg] > 1/4(¢ + 1), and the theorem follows. [

Comment. Theorem 6.27 is sometimes stated as referring to the unique solution
problem of SAT. In this case and when using a specific family of pairwise indepen-
dent hashing functions, the use of the parsimonious reduction can be avoided. For
details see Exercise 6.33.

6.2.4 Uniform generation of solutions

We now turn to a new type of computational problems, which may be viewed as
a straining of search problems. We refer to the task of generating a uniformly
distributed solution for a given instance, rather than merely finding an adequate
solution. Needless to say, by definition, algorithms solving this (“uniform gener-
ation”) task must be randomized. Focusing on relations in PC we consider two
versions of the problem, which differ by the level of approximation provided for the
desired (uniform) distribution.!3

Definition 6.28 (uniform generation): Let R € PC and Sg = {z : |[R(z)| > 1},
and let II be a probabilistic process.

1. We say that II solves the uniform generation problem of R if, on input x € Sg,
the process I1 outputs either an element of R(x) or a special symbol, denoted
1, such that Pr[Il(x) € R(z)] > 1/2 and for every y € R(z) it holds that
Prlll(z) =y | ll(z) € R(z)] = 1/|R(x)].

13Note that a probabilistic algorithm running in strict polynomial-time is not able to output a
perfectly uniform distribution on sets of certain sizes. Specifically, referring to the standard model
that allows only for uniformly selected binary values, such algorithms cannot output a perfectly
uniform distribution on sets having cardinality that is not a power of two.

208 CHAPTER 6. RANDOMNESS AND COUNTING

2. For ¢ : N — [0,1], we say that II solves the (1 — ¢)-approximate uniform
generation problem of R if, on input v € Sg, the distribution II(z) is e(|z|)-
closet* to the uniform distribution on R(x).

In both cases, without loss of gemerality, we may require that if t ¢ Sgr then
Pr[II(z) = 1] = 1. More generally, we may require that II never outputs a string
not in R(x).

Note that the error probability of uniform generation (as in Item 1) can be made
exponentially vanishing (in |z|) by employing error-reduction. In contrast, we are
not aware of any general way of reducing the deviation of an approximate uniform
generation procedure (as in Item 2).!°

In §6.2.4.1 we show that, for many search problems, approximate uniform gener-
ation is computationally equivalent to approximate counting. In §6.2.4.2 we present
a direct approach for solving the uniform generation problem of any search problem
in PC by using an oracle to N'P.

6.2.4.1 Relation to approximate counting

We show that, for many natural search problems in PC, the approximate counting
problem associated with R is computationally equivalent to approximate uniform
generation with respect to R. Specifically, we refer to search problems R € PC
such that R'(z;y") def {y" : (z,y'y") € R} is strongly parsimoniously reducible to
R, where a strongly parsimonious reduction of R' to R is a parsimonious reduction g
that is coupled with an efficiently computable 1-1 mapping of pairs (g(x),y) € R to
pairs (z, h(z,y)) € R’ (i.e., h is efficiently computable and h(z,-) is a 1-1 mapping
of R(g(z)) to R'(z)). Note that for many natural search problems R (e.g., the
search problem of SAT and Perfect Matching), the corresponding R’ is strongly
parsimoniously reducible to R.

Recalling that both types of approximation problems are parameterized by the
level of precision, we obtain the following quantitative form of the aforementioned
equivalence.

Theorem 6.29 Let R € PC and let £ be a polynomial such that for every (z,y)€R
it holds that |y| < £(|z|). Suppose that R' is strongly parsimoniously reducible to

R, where R'(z;y') € {y" : (z,4'y") € R}.

1. From approximate counting to approximate uniform generation: Let £(n) =
1/56(n) and let p:N—(0,1) be a function satisfying p(n) > exp(—poly(n)).
Then, (1 — p)-approzimate uniform generation for R is reducible in proba-
bilistic polynomial-time to (1 — €)-approzimating #R.

2. From approximate uniform generation to approximate counting: For every
noticeable e : N — (0,1) (i.e., e(n) > 1/poly(n) for every n), the problem of

14Gee Section D.1.1.
15We note that in some cases, the deviation of an approximate uniform generation procedure
can be reduced. See discussion following Theorem 6.29.

6.2. COUNTING 209

(1—¢€)-approzimating #R is reducible in probabilistic polynomial-time to (1 —
e')-approzimate uniform generation problem of R, where €'(n) = e(n)/5¢(n).

In fact, Part 1 holds also in case R' is just parsimoniously reducible to R.

Note that the quality of the approximate uniform generation asserted in Part 1
(i-e., p) is independent of the quality of the approximate counting procedure (i.e.,
€) to which the former is reduced, provided that the approximate counter performs
better than some threshold. On the other hand, the quality of the approximate
counting asserted in Part 2 (i.e., €) does depend on the quality of the approximate
uniform generation (i.e., '), but cannot reach beyond a certain bound (i.e., no-
ticeable relative devaition). Recall, that for problems that are NP-complete under
parsimonious reductions the quality of approximate counting procedures can be
improved (see Exercise 6.30). However, Theorem 6.29 is most useful when applied
to problems that are not NP-complete, because for problems that are NP-complete
both approximate counting and uniform generation are randomly reducible to the
corresponding search problem (see Exercise 6.35).

Proof: Throughout the proof, we assume for simplicity (and in fact without loss
of generality) that R(x) # 0 and R(z) C {0,1}¢(=D.

Towards Part 1, let us first reduce the uniform generation problem of R to #R
(rather than to approximating #R). On input z € Sk, we generate a uniformly
distributed y € R(xz) by randomly generating its bits one after the other. We
proceed in iterations, entering the *® iteration with an (i — 1)-bit long string
y' such that R'(z;y’) def {y" : (z,y'y") € R} is not empty. With probability
|R!(z;y'1)|/| R (z;y")| we set the i1 bit to equal 1, and otherwise we set it to equal 0.
We obtain both |R'(x;y'1)| and |R'(z;y")| by using a parsimonious reduction g of
R = {((z;9"),y") : (z,¥'y") € R} € PC to R. That is, we obtain |R'(z;y’)]
by querying for the value of |R(g(x;y"))|. Ignoring integrality issues, all this works
perfectly (i.e., we generate an £(n)-bit string uniformly distributed in R(z)) as long
as we have oracle access to #R. But we only have oracle access to an approximation
of #R, and thus a careful modification is in place.

Let us denote the approximation oracle by A. Firstly, by adequate error reduc-
tion, we may assume that, for every z, it holds that Pr[A(z) € (1£e(n)) - #R(x)] >
1—p/'(|z]), where p'(n) = p(n)/€(n). In the rest of the analysis we ignore the prob-
ability that the estimate deviates from the aforementioned interval, and note that
this rare event is the only source of the possible deviation of the output distribution
from the uniform distribution on R(x).!® Let us assume for a moment that A is
deterministic and that for every x and ¢’ it holds that

A(g(z,y'0)) + A(g(z,y'1)) < Alg(z;y")). (6.11)

We also assume that the approximation is correct at the “trivial level” (where one
may just check whether or not (z,y) is in R); that is, for every y € {0,1}¢(=D it

16The possible deviation is due to the fact that this rare event may occur with different prob-
ability in the different invocations of algorithm A.

210 CHAPTER 6. RANDOMNESS AND COUNTING

holds that
A(g(z;y)) = 1if (z,y) € R and A(g(x;y)) = 0 otherwise. (6.12)

We modify the i*? iteration of the foregoing procedure such that, when entering
with the (i — 1)-bit long prefix y’, we set the i*® bit to o € {0, 1} with probability
A(g(z;y'0))/A(g(z;y")) and halt (with output L) with the residual probability
(i.e-, 1— (A(g(x;9'0))/Alg(a3y")) — (Alg(w;y'1))/Alg(w;y'))). Indeed, Eq. (6.11)
guarantees that the latter instruction is sound, since the two main probabilities
sum-up to at most 1. If we completed the last (i.e., £(|z|)") iteration, then we
output the £(|z|)-bit long string that was generated. Thus, as long as Eq. (6.11)
holds (but regardless of other aspects of the quality of the approximation), every
Yy =01 0ye|) € R(x), is output with probability

Alg(z;01)) . A(g(z;0102)) A(g(z; 0102 04(ja))))
A(g(z; N) Ag(;01)) A(g(w50102 - 0g(ja])-1))

which, by Eq. (6.12), equals 1/A(g(z;\)). Thus, the procedure outputs each ele-
ment of R(z) with equal probability, and never outputs a non-_L value that is out-
side R(z). It follows that the quality of approximation only effects the probability
that the procedure outputs a non-_L value (which in turn equals |R(z)|/A(g(z; A))).
The key point is that, as long as Eq. (6.12) holds, the specific approximate values
obtained by the procedure are immaterial — with the exception of A(g(x;))), all
these values “cancel out”.

We now turn to enforcing Eq. (6.11) and Eq. (6.12). We may enforce Eq. (6.12)
by performing the straightforward check (of whether or not (z,y) € R) rather

than invoking A(g(z,y)).!” As for Eq. (6.11), we enforce it artificially by using

Al(z,y") Lef (1 4 e(|z]))3€eD=19'D . A(g(x;9")) instead of A(g(z;y’)). Recalling

that A(g(z;y)) = (1 £ =(j2y'])) - |R!(a3y")], we have

(6.13)

Aeyy) > (L ()X DD (1= efal)) - 1R (o)
Awy'e) < (L ()DL (1 efal) - 1R (wy'0)]

and the claim follows using (1 — e(|z])) - (1 +&(]z]))® > (1 — &(|z|)). Note that the
foregoing modification only decreases the probability of outputting a non-L value
by a factor of (1 + e(]z]))*(*1) < 2, where the inequality is due to the setting of ¢
(i.e., e(n) = 1/5¢(n)). Finally, we refer to our assumption that A is deterministic.
This assumption was only used in order to identify the value of A(g(x,y")) obtained
and used in the (Jy'| —1)** iteration with the value of A(g(x,y’)) obtained and used
in the |y|'! iteration, but the same effect can be obtained by just re-using the
former value (in the |y'|*" iteration) rather than re-invoking A in order to obtain
it. Part 1 follows.

Towards Part 2, let use first reduce the task of approximating #R to the
task of (exact) uniform generation for R. On input z € Sg, the reduction uses

17 Alternatively, we note that since A is a (1 — €)-approximator for ¢ < 1 it must hold that
#R'(z) = 0 implies A(z) = 0. Also, since ¢ < 1/3, if #R'(z) = 1 then A(z) € (2/3,4/3), which

may be rounded to 1.

6.2. COUNTING 211

the tree of possible prefixes of elements of R(z) in a somewhat different manner.
Again, we proceed in iterations, entering the 7*% iteration with an (i — 1)-bit long
string y' such that R'(x;y’) def {y" : (z,9y'y") € R} is not empty. At the '}
iteration we estimate the bigger among the two fractions |R'(z;y'0)|/|R/(z;y")]|
and |R'(z;y'1)|/|R (z;y")|, by uniformly sampling the uniform distribution over
R'(x;y"). That is, taking poly(|z|/e'(|z|)) uniformly distributed samples in R'(z;y'),
we obtain with overwhelmingly high probability an approximation of these frac-
tions up to an additive deviation of at most &'(|z|)/3. This means that we obtain
a relative approximation up-to a factor of 1 £ &'(|z|) for the fraction (or fractions)
that is (resp., are) bigger than 1/3. Indeed, we may not be able to obtain such
a good relative approximation of the other fraction (in case it is very small), but
this does not matter. It also does not matter that we cannot tell which is the
bigger fraction among the two; it only matter that we use an approximation that
indicates a quantity that is, say, bigger than 1/3. We proceed to the next iteration
by augmenting 3’ using the bit that corresponds to such a quantity. Specifically,
suppose that we obtained the approximations ag(y') = |R'(z;y'0)|/|R'(z;y')| and
ar1(y") = |R'(z;4y'1)|/|R'(z;y")|. Then we extend y’ by the bit 1 if a1(y") > ao(y’)
and extend y' by the bit 0 otherwise. Finally, when we reach y = o1 -+ - 0y(|) such
that (z,y) € R, we output

oy (N) -y (01) 7 - oy (0102 - Oa(ay—1) (6.14)

As in Part 1, actions regarding R' (in this case uniform generation in R') are con-
ducted via the parsimonious reduction g to R. That is, whenever we need to sample
uniformly in the set R'(x;y’), we sample the set R(g(x;y')) and recover the corre-
sponding element of R'(x;y') by using the mapping guaranteed by the hypothesis
that g is strongly parsimonious. Finally, note that the deviation from uniform
distribution (i.e., the fact that we can only approximately sample R) merely in-
troduces such a deviation in each of our approximations to the relevant fractions
(i.e., to a fraction bigger than 1/3). Specifically, on input z, using an oracle that
provides a (1 — ¢’)-approximate uniform generation for R, with overwhelmingly
high probability, the output (as defined in Eq. (6.14)) is in

(o) (5ion - oi s
IT (@ +2/(ely - 27 1) (6.15)

R (5501 00)

where the error probability is due to the unlikely case that in one of the iterations
our approximations deviates from the correct value by more than an additive de-
viation term of ¢'(n)/3. Noting that Eq. (6.15) equals (1 + 2¢(|z]))“*) - |R(z)]
and using (14 2¢(|]))*=) c (1£&(|z])), Part 2 follows, and so does the theorem.

6.2.4.2 A direct procedure for uniform generation

We conclude the current chapter by presenting a direct procedure for solving the
uniform generation problem of any R € PC. This procedure uses an oracle to

212 CHAPTER 6. RANDOMNESS AND COUNTING

NP, which is unavoidable because solving the uniform generation problem implies
solving the corresponding search problem. One advantage of this procedure, over
the reduction presented in §6.2.4.1, is that it solves the uniform generation problem
rather than the approzimate uniform generation problem.

We are going to use hashing again, but this time we use a family of hashing
functions having a stronger “uniformity property” (see Section D.2.3). Specifically,
we will use a family of /-wise independent hashing functions mapping ¢-bit strings
to m-bit strings, where £ bounds the length of solutions in R, and rely on the fact
that such a family satisfies Lemma D.6. Intuitively, such functions partition {0, 1}*
into 2™ cells and Lemma D.6 asserts that these partitions “uniformly shatter” all
sufficiently large sets. That is, for every set S C {0, 1} of size Q(£-2™) the partition
induced by almost every function is such that each cell contains approximately
|S]/2™ elements of S. In particular, if |S| = ©(£-2™) then each cell contains ©(¢)
elements of S.

Loosely speaking, the following procedure (for uniform generation) first selects
a random hashing function and tests whether it “uniformly shatters” the target set
S. If this condition holds then the procedure selects a cell at random and retrieve
the elements of S residing in the chosen cell. Finally, the procedure outputs each
retrieves element (in S) with a fixed probability, which is independent of the actual
number of elements of S that reside in the chosen cell. This guarantees that each
element e € S is output with the same probability, regardless of the number of
elements of S that resides with e in the same cell.

In the following construction, we assume that on input x we also obtain a good
approximation to the size of R(x). This assumption can be enforced by using
an approximate counting procedure as a preprocessing stage. Alternatively, the
ideas presented in the following construction yield such an approximate counting
procedure.

Construction 6.30 (uniform generation): On input x and m}, € {m,,m, + 1},
where m, = |log, |R(7)|] and R(z) C {0,1}*, the oracle machine proceeds as

follows.

1. Selecting a partition that “uniformly shatters” R(x). The machine sets m =
max(0, m}, —6—log, £) and selects uniformly h € H;*. Such a function defines
a partition of {0,1}¢ into 2™ cells'®, and the hope is that each cell contains
approzimately the same number of elements of R(z). Next, the machine
checks that this is indeed the case or rather than no cell contains more that
128¢ elements of R(x). This is done by checking whether or not (z, h,1128¢+1)

is in the set Sg’)H defined as follows
Sy € @ K1Y 3 st [{y: (@, y) ERAN (y)=v}| > t} (6.16)

= {@ K, 1Y Jv,y1, ..., ye St ¢(1)(:ﬂ’,h',v,y1, wst))

8For sake of uniformity, we allow also the case of m = 0, which is rather artificial. In this
case all hashing functions in H? map {0, 1}Z to the empty string, which is viewed as 0°, and thus

define a trivial partition of {0,1}¢ (i.e., into a single cell).

6.2. COUNTING 213

where P (x' b v, 91, ..., y:) holds if and only if y1 <ys - -- <y, and for every
J € [t] it holds that (¢',y;) € R A h'(y;)=v. Note that S’g)H e NP.

If the answer is positive (i.e., there exists a cell that contains more that
128¢ elements of R(z)) then the machine halts with output L. Otherwise,
the machine continues with this choice of h. In this case, no cell contains
more that 128¢ elements of R(x) (i.e., for every v € {0,1}™, it holds that
Hy : (z,y) € R A h(y) = v}| < 128¢). We stress that this is an absolute

guarantee that follows from (x,h,1128¢+1) ¢ ngl,)H-

2. Selecting a cell and determining the number of elements of R(z) that are
contained in it. The machine selects uniformly v € {0,1}™ and determines

. Hy : (z,y) €R A h(y)=v}| by making queries to the following NP-set

S @ W10 By, e st D@ R0 g)} (6.17)

Specifically, for i = 1,...,128¢, it checks whether (x,h,v,1%) is in S’g)H, and
sets s, to be the largest value of © for which the answer is positive.

3. Obtaining all the elements of R(x) that are contained in the selected cell,
and outputting one of them at random. Using s,, the procedure reconstructs

the set S, & {y : (z,y) € R A h(y) =v}, by making queries to the following
NP-set

5523,)1{ déf {(l”,h’,’l}’,]-t;j) : Elyl; Yt s.t. ¢(3)(xlah’;vlayla "';ytaj)}7 (618)

where Y3 (2! W V' Y1, ...y, 7) holds if and only if v (2’ B vy, .. ys)
holds and the j** bit of y1---y: equals 1. Specifically, for j1 = 1,...,s, and
jo = 1,...,L, we make the query (x,h,v,1% (51 — 1) - £ + j2) in order to
determine the ji® bit of yj,. Finally, having recovered S,, the procedure
outputs each y € S, with probability 1/128¢, and outputs L otherwise (i.e.,
with probability 1 — (s,/128¢)).

Focusing on the case that m! > 6 + log, ¢, we note that m < m/ — 6 —log, ¢ <
log, (|R(z)|/20¢). In this case, by Lemma D.6, with overwhelmingly high prob-
ability, each set {y : (z,y) € R A h(y) = v} has cardinality (1 £ 0.5)|R(z)|/2™.
Using m!, > (log, |R(z)]) — 1 (resp., m! < (log, |R(z)|) + 1), it follows that
|R(z)|/2™ < 128¢ (resp., |R(x)|/2™ > 16¢). Thus, Step 1 can be easily adapted
to yield an approximate counting procedure for #R (see Exercise 6.34). However,
our aim is to establish the following fact.

Proposition 6.31 Construction 6.30 solves the uniform generation problem of R.

Proof: By Lemma D.6 (and the setting of m), with overwhelmingly high probabil-
ity, a uniformly selected h € H}* partitions R(z) into 2™ cells, each containing at
most 128¢ elements. The key observation, stated in Step 1, is that if the procedure
does not halt in Step 1 then it is indeed the case that h induces such a partition.

214 CHAPTER 6. RANDOMNESS AND COUNTING

The fact that these cells may contain a different number of elements is immaterial,
because each element is output with the same probability (i.e., 1/128¢). What
matters is that the average number of elements in the cells is sufficiently large, be-
cause this average number determines the probability that the procedure outputs
an element of R(z) (rather than 1). Specifically, the latter probability equals the
aforementioned average number (which equals |R(z)|/2™) divided by 128¢. Using
m < max(0,1 + log, (2| R(z)|) — 6 — log, £), we have |R(z)|/2™ > min(|R(x)]|, 16£),
which means that the procedure outputs some element of R(x) with probability at
least min((|R(z)|/128¢),(1/8)). W

Technical comments. We can easily improve the performance of Construc-
tion 6.30 by dealing separately with the case m = 0. In such a case, Step 3
can be simplified and improved by uniformly selecting and outputting an element
of Sy (which equals R(z)). Under this modification, the procedure outputs some
element of R(z) with probability at least 1/8. In any case, recall that the proba-
bility that a uniform generation procedure outputs L can be deceased by repeated
invocations.

Chapter Notes

One key aspect of randomized procedures is their success probability, which is ob-
viously a quantitative notion. This aspect provides a clear connection between
probabilistic polynomial-time algorithms considered in Section 6.1 and the count-
ing problems considered in Section 6.2 (see also Exercise 6.17). More appealing
connections between randomized procedures and counting problems (e.g., the ap-
plication of randomization in approximate counting) are presented in Section 6.2.
These connections justify the presentation of these two topics in the same chapter.

Randomized algorithms

Making people take an unconventional step requires compelling reasons, and indeed
the study of randomized algorithms was motivated by a few compelling examples.
Ironically, the appeal of the two most famous examples (discussed next) has been
diminished due to subsequent finding, but the fundamental questions that emerged
remain fascinating regardless of the status of these and other appealing examples
(see §6.1.1.1).

The first example: primality testing. For more than two decades, primality
testing was the archetypical example of the usefulness of randomization in the con-
text of efficient algorithms. The celebrated algorithms of Solovay and Strassen [198]
and of Rabin [172], proposed in the late 1970’s, established that deciding primality
is in coRP (i.e., these tests always recognize correctly prime numbers, but they
may err on composite inputs). (The approach of Construction 6.4, which only es-
tablishes that deciding primality is in BPP, is commonly attributed to M. Blum.)
In the late 1980’s, Adleman and Huang [2] proved that deciding primality is in RP

6.2. COUNTING 215

(and thus in ZPP). In the early 2000’s, Agrawal, Kayal, and Saxena [3] showed
that deciding primality is actually in P. One should note, however, that strong
evidence to the fact that deciding primality is in P was actually available from
the start: we refer to Miller’s deterministic algorithm [155], which relies on the
Extended Riemann Hypothesis.

The second example: undirected connectivity. Another celebrated example
to the power of randomization, specifically in the context of log-space computa-
tions, was provided by testing undirected connectivity. The random-walk algorithm
presented in Construction 6.10 is due to Aleliunas, Karp, Lipton, Lovasz, and Rack-
off [5]. Recall that a deterministic log-space algorithm was found twenty-five years
later (see Section 5.2.4 or [178]).

Other randomized algorithms. Although randomized algorithms are more
abundant in the context of approximation problems (let alone in other compu-
tational settings (cf. §6.1.1.1)), quite a few such algorithms are known also in the
context of search and decision problems. We mention the algorithms for finding
perfect matchings and minimum cuts in graphs (see, e.g., [86, Apdx. B.1] or [157,
Sec. 12.4&10.2]), and note the prominent role of randomization in computational
number theory (see, e.g., [21] or [157, Chap. 14]). For a general textbook on ran-
domized algorithms, we refer the interested reader to [157].

On the general study of BPP. Turning to the general study of BPP, we note
that our presentation of Theorem 6.7 follows the proof idea of Lautemann [141]. A
different proof technique, which yields a weaker result but found more applications
(see, e.g., Theorem 6.25 and [107]), was presented (independently) by Sipser [194].

On the role of promise problems. In addition to their use in the formulation of
Theorem 6.7, promise problems allow for establishing time hierarchy theorems (as
in §4.2.1.1) for randomized computation (see Exercise 6.13). We mention that such
results are not known for the corresponding classes of standard decision problems.
The technical difficulty is that we do not know how to enumerate probabilistic
machines that utilize a non-trivial probabilistic decision rule.

On the feasibility of randomized computation. Different perspectives on
this question are offered by Chapter 8 and Section D.4. Specifically, as advocated
in Chapter 8, generating uniformly distributed bit sequences is not really necessary
for implementing randomized algorithms; it suffices to generate sequences that look
as if they are uniformly distributed. In many cases this leads to reducing the
number of coin tosses in such implementations, and at times even to a full (but
non-trivial) derandomization (see Sections 8.4 and 8.5). A less radical approach is
presented in Section D.4, which deals with the task of extracting almost uniformly
distributed bit sequences from sources of weak randomness. Needless to say, these
two approaches are complimentary and can be combined.

216 CHAPTER 6. RANDOMNESS AND COUNTING

Counting problems

The counting class #P was introduced by Valiant [215], who proved that computing
the permanent of 0/1-matrices is #P-complete (i.e., Theorem 6.18). Interestingly,
like in the case of Cook’s introduction of NP-completeness [55], Valiant’s motivation
was determining the complexity of a specific problem (i.e., the permanent).

Our presentation of Theorem 6.18 is based both on Valiant’s paper [215] and on
subsequent studies (most notably [29]). Specifically, the high-level structure of the
reduction presented in Proposition 6.19 as well as the “structured” design of the
clause gadget is taken from [215], whereas the Deus Ex Machina gadget presented
in Figure 6.3 is based on [29]. The proof of Proposition 6.20 is also based on [29]
(with some variants). Turning back to the design of clause gadgets we regret not
being able to cite and/or use a systematic study of this design problem.

As noted in the main text, we decided not to present a proof of Toda’s The-
orem [207], which asserts that every set in PH is Cook-reducible to #P (i.e.,
Theorem 6.14). A proof of a related result appears in Section F.1 (implying that
PH is reducible to #P via probabilistic polynomial-time reductions). Alternative
proofs can be found in [127, 199, 207].

Approximate counting and related problems. The approximation proce-
dure for #P is due to Stockmeyer [201], following an idea of Sipser [194]. Our
exposition, however, follows further developments in the area. The randomized
reduction of AP to problems of unique solutions was discovered by Valiant and
Vazirani [217]. Again, our exposition is a bit different.

The connection between approximate counting and uniform generation (pre-
sented in §6.2.4.1) was discovered by Jerrum, Valiant, and Vazirani [125], and
turned out to be very useful in the design of algorithms (e.g., in the “Markov Chain
approach” (see [157, Sec. 11.3.1])). The direct procedure for uniform generation
(presented in §6.2.4.2) is taken from [26].

In continuation to §6.2.2.1, which is based on [130], we refer the interested reader
to [124], which presents a probabilistic polynomial-time algorithm for approximat-
ing the permanent of non-negative matrices. This fascinating algorithm is based
on the fact that knowing (approximately) certain parameters of a non-negative
matrix M allows to approximate the same parameters for a matrix M’, provided
that M and M' are sufficiently similar. Specifically, M and M’ may differ only
on a single entry, and the ratio of the corresponding values must be sufficiently
close to one. Needless to say, the actual observation (is not generic but rather)
refers to specific parameters of the matrix, which include its permanent. Thus,
given a matrix M for which we need to approximate the permanent, we consider a
sequence of matrices My, ..., My = M such that My is the all 1’s matrix (for which
it is easy to evaluate the said parameters), and each M, is obtained from M; by
reducing some adequate entry by a factor sufficiently close to one. This process of
(polynomially many) gradual changes, allows to transform the dummy matrix M,
into a matrix M; that is very close to M (and hence has a permanent that is very
close to the permanent of M). Thus, approximately obtaining the parameters of
M, allows to approximate the permanent of M.

6.2. COUNTING 217

Finally, we note that Section 10.1.1 provides a treatment of a different type
of approximation problems. Specifically, when given an instance = (for a search
problem R), rather than seeking an approximation of the number of solutions (i.e.,
#R(x)), one seeks an approximation of the value of the best solution (i.e., best
y € R(z)), where the value of a solution is defined by an auxiliary function.

Exercises

Exercise 6.1 Show that if a search (resp., decision) problem can be solved by a
probabilistic polynomial-time algorithm having zero failure probability, then the
problem can be solve by a deterministic polynomial-time algorithm.

(Hint: replace the internal coin tosses by a fixed outcome that is easy to generate deterministically

(e.g., the all-zero sequence).)

Exercise 6.2 (randomized reductions) In continuation to the definitions pre-
sented at the beginning of Section 6.1, prove the following:

1. If a problem II is probabilistic polynomial-time reducible to a problem that
is solvable in probabilistic polynomial-time then II is solvable in probabilistic
polynomial-time, where by solving we mean solving correctly except with
negligible probability.

Warning: Recall that in the case that II' is a search problem, we required

that on input x the solver provides a correct solution with probability at least
1 — p(|x]), but we did not require that it always returns the same solution.

(Hint: without loss of generality, the reduction does not make the same query twice.)
2. Prove that probabilistic polynomial-time reductions are transitive.

3. Prove that randomized Karp-reductions are transitive and that they yield a
special case of probabilistic polynomial-time reductions.

Define one-sided error and zero-sided error randomized (Karp and Cook) reduc-
tions, and consider the foregoing items when applied to them. Note that the
implications for the case of one-sided error are somewhat subtle.

Exercise 6.3 (on the definition of probabilistically solving a search problem)
In continuation to the discussion at the beginning of Section 6.1.1, suppose that

for some probabilistic polynomial-time algorithm A and a positive polynomial p

the following holds: for every z € Sg = {z : R(z) # 0} there exists y € R(z)
such that Pr[A(z) = y] > 0.5 4+ (1/p(|z|)), whereas for every = ¢ Sg it holds that
PrlA(z) = L] > 0.5+ (1/p(|z])).

1. Show that there exists a probabilistic polynomial-time algorithm that solves
the search problem of R with negligible error probability.

Hint: See Exercise 6.4 for a related procedure.
p

218 CHAPTER 6. RANDOMNESS AND COUNTING

2. Reflect on the need to require that one (correct) solution occurs with probabil-
ity greater than 0.5+ (1/p(|z|)). Specifically, what can we do if it is only guar-
anteed that for every « € Sg it holds that Pr[A(z) € R(z)] > 0.5+ (1/p(|z]))
(and for every x ¢ Sg it holds that Pr[A(z) = L] > 0.5+ (1/p(|z|)))?

Note that R is not necessarily in PC. Indeed, in the case that R € PC we can

eliminate the error probability for every x ¢ Sg, and perform error-reduction as in
RP.

Exercise 6.4 (error-reduction for BPP) For ¢ : N — [0,1], let BPP. denote
the class of decision problems that can be solved in probabilistic polynomial-time
with error probability upper-bounded by e. Prove the following two claims:

1. For every positive polynomial p and e(n) = (1/2) — (1/p(n)), the class BPP.
equals BPP.

2. For every positive polynomial p and e(n) = 2-P(") | the class BPP equals
BPP..

Formulate a corresponding version for the setting of search problem. Specifically,
for every input that has a solution, consider the probability that a specific solution
is output.

Guideline: Given an algorithm A for the syntactically weaker class, consider an algo-
rithm A’ that on input z invokes A on = for ¢(|z|) times, and rules by majority. For Part 1
set t(n) = O(p(n)?) and apply Chebyshev’s Inequality. For Part 2 set t(n) = O(p(n)) and
apply the Chernoff Bound.

Exercise 6.5 (error-reduction for RP) For p : N — [0,1], we define the class
of decision problem RP, such that it contains S if there exists a probabilistic
polynomial-time algorithm A such that for every z € S it holds that Pr[A(z) =
1] > p(|z|) and for every = ¢ S it holds that Pr[A(z) = 0] = 1. Prove the following
two claims:

1. For every positive polynomial p, the class RPy,, equals RP.

2. For every positive polynomial p, the class RP equals RP,, where p(n) =
1— 27,

(Hint: The one-sided error allows using an “or-rule” (rather than a “majority-rule”) for the

decision.)

Exercise 6.6 (error-reduction for ZPP) For p: N — [0,1], we define the class
of decision problem ZPP, such that it contains S if there exists a probabilistic
polynomial-time algorithm A such that for every z it holds that Pr[A(z) = xs(z)] >
p(|z]) and Pr[A(z) € {xs(z),L}] = 1, where xs(z) =1if z € S and xs(z) =0
otherwise. Prove the following two claims:

1. For every positive polynomial p, the class ZPP,,, equals ZPP.

6.2. COUNTING 219

2. For every positive polynomial p, the class ZPP equals ZPP,, where p(n) =
1—2-p),

Exercise 6.7 (an alternative definition of ZPP) We say that the decision prob-
lem S is solvable in expected probabilistic polynomial-time if there exists a random-
ized algorithm A and a polynomial p such that for every « € {0,1}* it holds that
Pr[A(z) = xs(z)] =1 and the expected number of steps taken by A(x) is at most
p(]z|). Prove that S € ZPP if and only if S is solvable in expected probabilistic
polynomial-time.

Guideline: Repeatedly invoking a ZPP algorithm until it yields an output other than L,
results in an expected probabilistic polynomial-time solver. On the other hand, truncating
runs of an expected probabilistic polynomial-time algorithm once they exceed twice the
expected number of steps (and outputting L on such runs), we obtain a ZPP algorithm.

Exercise 6.8 Let BPP and coRP be classes of promise problems (as in Theo-
rem 6.7).

1. Prove that every problem in BPP is reducible to the set {1} € P by a two-
stded error randomized Karp-reduction.

(Hint: Such a reduction may effectively decide membership in any set in BPP.)

2. Prove that if a set S is Karp-reducible to RP (resp., coRP) via a deterministic
reduction then S € RP (resp., S € coRP).

Exercise 6.9 (randomness-efficient error-reductions) Note that standard error-
reduction (as in Exercise 6.4) yields error probability ¢ at the cost of increasing the
randomness complexity by a factor of O(log(1/6)). Using the randomness-efficient
error-reductions outlined in §D.4.1.3, show that error probability ¢ can be obtained

at the cost of increasing the randomness complexity by a constant factor and an
additive term of 1.5log,(1/6). Note that this allows satisfying the hypothesis made

in the illustrative paragraph of the proof of Theorem 6.7.

Exercise 6.10 In continuation to the illustrative paragraph in the proof of Theo-
rem 6.7, consider the promise problem II" = (II{,, IT}) such that II{ - = {(z,7') :

yes? - no

Ir'|=p'(lz]) A (V" € {0,1}171) A’ (2, ') = 1} and 1T, = {(z,7') : 2 ¢ S}. Recall

no

that for every z it holds that Prre{0,1}2p’(lzl)[Al(w7r);éXS(x)] < 2= (@' (JzD)+1)

1. Show that mapping x to (x,r'), where 7’ is uniformly distributed in {0, l}p’(““),
constitutes a one-sided error randomized Karp-reduction of S to II'.

2. Show that II' is in the promise problem class coRP.

Exercise 6.11 Prove that for every S € NP there exists a probabilistic polynomial-
time algorithm A such that for every « € S it holds that Pr[A(z) = 1] > 0 and for

every ¢ ¢ S it holds that Pr[A(z) = 0] = 1. That is, A has error probability at

most 1 — exp(—poly(|z|)) on yes-instances but never errs on no-instances. Thus,

NP may be fictitiously viewed as having a huge one-sided error probability.

220 CHAPTER 6. RANDOMNESS AND COUNTING

Exercise 6.12 (randomized versions of A'P) In continuation to Footnote 6,
consider the following two variants of MA (which we consider the main randomized
version of N'P).

1. S € MAW if there exists a probabilistic polynomial-time algorithm V' such
that for every = € S there exists y € {0, 1}P°V(#D such that Pr[V (z,y)=1] >
1/2, whereas for every « ¢ S and every y it holds that Pr[V(z,y)=0] = 1.

2. S € MA® if there exists a probabilistic polynomial-time algorithm V' such
that for every z € S there exists y € {0, 1}P°V(=D) such that Pr[V(z,y)=1] >
2/3, whereas for every « € S and every y it holds that Pr[V(z,y)=0] > 2/3.

Prove that MAY = AP whereas MA®? = MA.

Guideline: For the first part, note that a sequence of internal coin tosses that makes
V accept (z,y) can be incorporated into y itself (yielding a standard NP-witness). For
the second part, apply the ideas underlying the proof of Theorem 6.7, and note that an
adequate sequence shifts (to be used by the verifier) can be incorporated in the single
message sent by the prover.

Exercise 6.13 (time hierarchy theorems for promise problem versions of BPTIME)
Fixing a model of computation, let BPTIME(t) denote the class of promise prob-

lems that are solvable by a randomized algorithm of time complexity ¢ that has

a two-sided error probability at most 1/3. (The common definition refers only to

decision problems.) Formulate and prove results analogous to Theorem 4.3 and

Corollary 4.4.

Guideline: Analogously to the proof of Theorem 4.3, we construct a Boolean function
f by associating with each admissible machine M an input zu, and making sure that
Prf(zm) # M'(z)] > 2/3, where M'(z) denotes the emulation of M (z) suspended after
t1(|z|) steps. The key point is that f is a partial function (corresponding to a promise
problem) that is defined only for machines (called admissible) that have two-sided error
at most 1/3 (on every input). This restriction allows for a randomized computation of f
with two-sided error probability at most 1/3 (on each input on which f is defined).

Exercise 6.14 (extracting square roots modulo a prime) Using the follow-
ing guidelines, present a probabilistic polynomial-time algorithm that, on input a
prime P and a quadratic residue s (mod P), returns r such that r> =s (mod P).

1. Prove that if P =3 (mod 4) then s("+1)/4 mod P is a square root of the
quadratic residue s (mod P).

2. Note that the procedure suggested in Item 1 relies on the ability to find an
odd integer e such that s =1 (mod P), and (once such e is found) we may
output s(t1)/2 mod P. (In Item 1, we used e = (P —1)/2, which is odd since
P=3 (mod4).)

Show that it suffices to find an odd integer e together with a residue ¢ and

an even integer ¢ such that s°¢¢ = 1 (mod P), because s = s°t1t¢ =
(s(e+1)/2te’/2)2_

6.2. COUNTING 221

3. Given a prime P =1 (mod 4), a quadratic residue s, and a quadratic non-
residue t (equiv., t#~1/2 = —1 (mod P)), show that e and ¢’ as in Item 2
can be efficiently found.!?

4. Prove that, for a prime P, with probability 1/2 a uniformly chosen t €
{1,..., P} satisfies t(*~1)/2 = -1 (mod P).

Note that randomization is used only in the last item, which in turn is used only
for P=1 (mod 4).

Exercise 6.15 (small-space randomized step-counter) A step-counter is an
algorithm that runs for a number of steps that is specified in its input. Actually,
such an algorithm may run for a somewhat larger number of steps but halt after
issuing a number of “signals” as specified in its input, where these signals are defined
as entering (and leaving) a designated state (of the algorithm). A step-counter may
be run in parallel to another procedure in order to suspend the execution after a
desired number of steps (of the other procedure) has elapsed. We note that there
exists a simple deterministic machine that, on input n, halts after issuing n signals
while using O(1) + log, n space (and O(n) time). The goal of this exercise is
presenting a (randomized) step-counter that allows for many more signals while
using the same amount of space. Specifically, present a (randomized) algorithm
that, on input n, uses O(1) +log, n space (and O(2") time) and halts after issuing
an expected number of 2™ signals. Furthermore, prove that, with probability at
least 1 — 27%*1 this step-counter halts after issuing a number of signals that is
between 2"~ % and 2"t*.

Guideline: Repeat the following experiment till reaching success. Each trial consists of
uniformly selecting n bits (i.e., tossing n unbiased coins), and is deemed successful if all
bits turn out to equal the value 1 (i.e., all outcomes equal HEAD). Note that such a trial
can be implemented by using space O(1) + log, n (mainly for implementing a standard
counter for determining the number of bits). Thus, each trial is successful with probability
27", and the expected number of trials is 2™.

Exercise 6.16 (analysis of random walks on arbitrary undirected graphs)
In order to complete the proof of Proposition 6.11, prove that if {u,v} is an edge
of the graph G = (V, E) then E[X, ,] < 2|E|. Recall that, for a fixed graph, X, .
is a random variable representing the number of steps taken in a random walk that
starts at the vertex w until the vertex v is first encountered.

Guideline: Let Z, ,(n) be a random variable counting the number of minimal paths
from w to v that appear along a random walk of length n, where the walk starts at the
stationary vertex distribution (which is well-defined assuming the graph is not bipartite,

OWrite (P — 1)/2 = (2j + 1) - 2%, and note that 5234120 = 4 (mod P). Assuming

that for some i' > i > 0 and j' it holds that s(2+1)2;(2i'+1)-2" = (mod P), show how
. i— -1 il

to find i’/ > i — 1 and j" such that s(Zi+1):2 (25" +1)-2 1 (mod P). (Extra hint:

s2i+1)2 2 2t T 2 gy (mod P) and (2120 = (mod P).) Thus, starting with
i = 19, we reach ¢ = 1, at which point we have what we need.

222 CHAPTER 6. RANDOMNESS AND COUNTING

which in turn may be enforced by adding a self-loop). On one hand, E[Xu v + Xy o] =
limy,— oo (n/E[Zu,»(n)]), due to the memoryless property of the walk. On the other hand,
letting xv,u () L 1 if the edge {u,v} was traversed from v to u in the i*® step of such
a random walk and xv,u.(7)) otherwise, we have Y " Xv (i) < Zyo(n) + 1 and
E[xv,u(?)] = 1/2|E| (because, in each step, each directed edge appears on the walk with
equal probability). It follows that E[X,] < 2|E|.

Exercise 6.17 (the class PP D BPP and its relation to #7) In contrast to
BPP, which refers to useful probabilistic polynomial-time algorithms, the class PP
does not capture such algorithms but is rather closely related to #P. A decision
problem S is in PP if there exists a probabilistic polynomial-time algorithm A such
that, for every x, it holds that « € S if and only if Pr[A(z) = 1] > 1/2. Note that
BPP C PP. Prove that PP is Cook-reducible to #P and vise versa.

Guideline: For S € PP (by virtue of the algorithm A), consider the relation R such that
(z,7) € Rif and only if A accepts the input when using the random-input r € {0, 1}13(‘“1‘)7
where p is a suitable polynomial. Thus, x € S if and only if |R(z)| > 21’('”')71, which
in turn can de determined by querying the counting function of R. To reduce f € #P
to PP, consider the relation R € PC that is counted by f (i.e., f(z) = |R(z)|) and the
decision problem Sy as defined in Proposition 6.13. Let p be the polynomial specifying the
length of solutions for R (i.e., (z,y) € R implies |y| = p(|z|)), and consider the algorithm
A' that on input (z, N) proceeds as follows: With probability 1/2, it uniformly selects
y € {0, 1}1’('”') and accepts if and only if (z,y) € R, and otherwise (i.e., in the other
case) it accepts with probability % Prove that (z,N) € Sy if and only if
PriA’(z) = 1] > 1/2.

Exercise 6.18 (artificial #P-complete problems) Show that there exists a re-
lation R € PC such that #R is #P-complete and Sr = {0, 1}*.

Guideline: For any #P-complete problem R', define R = {(=z,1y) : (z,y) € R'} U
{(z,10"*1) : z€{0,1}"}.

Exercise 6.19 (enumeration problems) For any binary relation R, define the
enumeration problem of R as a function fg:{0,1}* x N — {0,1}* U {L} such that
fr(z,i) equals the i*" element in |R(x)| if |R(x)| > i and fr(x,i) = L otherwise.
The above definition refers to the standard lexicographic order on strings, but any
other efficient order of strings will do.?°

1. Prove that, for any polynomially bounded R, computing #R is reducible to
computing fgr.

2. Prove that, for any R € PC, computing fgr is reducible to some problem in

#P.

20 An order of strings is a 1-1 and onto mapping g from the natural numbers to the set of all
strings. Such order is called efficient if both p and its inverse are efficiently computable. The
standard lexicographic order satisfies u(i) = y if the (compact) binary expansion of ¢ equals 1y;
that is p(1) = X, p(2) =0, u(3) =1, p(4) = 00, etc.

6.2. COUNTING 223

Guideline: Consider the binary relation R' = {({z,b),y) : (z,y) € RAy < b},
and show that fr is reducible to #R'. (Extra hint: Note that fg(z,i) = y if and only
if |R'({z,y))| =4 and for every y' < y it holds that |R'({z,y'))| < 3.)

Exercise 6.20 (computing the permanent of integer matrices) Prove that
computing the permanent of matrices with 0/1-entries is computationally equiva-
lent to computing the number of perfect matchings in bipartite graphs.

(Hint: Given a bipartite graph G = ((X,Y), E), consider the matrix M representing the edges
between X and Y (i.e., the (4,7)-entry in M is 1 if the i*® vertex of X is connected to the j*&
entry of Y), and note that only perfect matchings in G contribute to the permanent of M.)

Exercise 6.21 (computing the permanent modulo 3) Combining Proposition 6.19
and Theorem 6.27, prove that for every integer n > 1 that is relatively prime to
¢, computing the permanent modulo n is NP-hard under randomized reductions.?!
Since Proposition 6.19 holds for ¢ = 2!° hardness holds for every odd integer n. > 1.

Guideline: Apply the reduction of Proposition 6.19 to the promise problem of deciding
whether a 3CNF formula has a unique satisfiable assignment or is unsatisfiable. Use the
fact that n does not divide any power of c.

Exercise 6.22 (negative values in Proposition 6.19) Assuming P # NP, prove
that Proposition 6.19 cannot hold for a set I containing only non-negative integers.
Note that the claim holds even if the set I is not finite (and even if I is the set of
all non-negative integers).

Guideline: A reduction as in Proposition 6.19 yields a Karp-reduction of 3SAT to deciding
whether the permanent of a matrix with entries in / is non-zero. Note that the permanent
of a non-negative matrix is non-zero if and only if the corresponding bipartite graph has
a perfect matching.

Exercise 6.23 (high-level analysis of the permanent reduction) Establish the
correctness of the high-level reduction presented in the proof of Proposition 6.19.
That is, show that if the clause gadget satisfies the three conditions postulated in
the said proof, then each satisfying assignment of ¢ contributes exactly ¢™ to the
SWCC of G4 whereas unsatisfying assignments have no contribution.

Guideline: Cluster the cycle covers of Gy according to the set of track edges that they
use (i.e., the edges of the cycle cover that belong to the various tracks). (Note the
correspondence between these edges and the external edges used in the definition of the
gadget’s properties.) Using the postulated conditions (regarding the clause gadget) prove
that, for each such set 1" of track edges, if the sum of the weights of all cycle covers that
use the track edges 1" is non-zero then the following hold:

1. The intersection of 1" with the set of track edges incident at each specific clause
gadget is non-empty. Furthermore, if this set contains an incoming edge (resp.,

21 Actually, a sufficient condition is that n does not divide any power of c¢. Thus (referring to
¢ = 219), hardness holds for every integer n > 1 that is not a power of 2. On the other hand, for
any fixed n = 2¢, the permanent modulo n can be computed in polynomial-time [215, Thm. 3].

224 CHAPTER 6. RANDOMNESS AND COUNTING

outgoing edge) of some entry-vertex (resp., exit-vertex) then it also contains an
outgoing edge (resp., incoming edge) of the corresponding exit-vertex (resp., entry-
vertex).

2. If T contains an edge that belongs to some track then it contains all edges of this
track. It follows that, for each variable z, the set 1" contains the edges of a single
track associated with x.

3. The tracks “picked” by T' correspond to a single truth assignment to the variables of
¢, and this assignment satisfies ¢ (because, for each clause, 1" contains an external
edge that corresponds to a literal that satisfies this clause).

It follows that each satisfying assignment of ¢ contributes exactly ¢™ to the SWCC of
G-

Exercise 6.24 (analysis of the implementation of the clause gadget) Establish
the correctness of the implementation of the clause gadget presented in the proof of
Proposition 6.19. That is, show that if the box satisfy the three conditions postu-
lated in the said proof, then the clause gadget of Figure 6.4 satisfies the conditions
postulated for it.

Guideline: Cluster the cycle covers of a gadget according to the set of non-box edges that
they use, where non-box edges are the edges shown in Figure 6.4. Using the postulated
conditions (regarding the box) prove that, for each set S of non-box edges, if the sum of
the weights of all cycle covers that use the non-box edges S is non-zero then the following
hold:

1. The intersection of S with the set of edges incident at each box must contain
two (non-selfloop) edges, one incident at each of the box’s terminals. Needless to
say, one edge is incoming and the other outgoing. Referring to the six edges that
connects one of the six designated vertices (of the gadget) with the corresponding
box terminals as connectives, note that if S contains a connective incident at the
terminal of some box then it must also contain the connective incident at the other
terminal. In such a case, we say that this box is picked by 5,

2. Each of the three (literal-designated) boxes that is not picked by S is “traversed”
from left to right (i.e., the cycle cover contains an incoming edge of the left terminal
and an outgoing edge of the right terminal). Thus, the set S must contain a
connective, because otherwise no directed cycle may cover the leftmost vertex shown
in Figure 6.4. That is, S must pick some box.

3. The set S is fully determined by the non-empty set of boxes that it picks.

The postulated properties of the clause gadget follow, with ¢ = b°.

Exercise 6.25 (analysis of the design of a box for the clause gadget) Prove
that the 4-by-4 matrix presented in Eq. (6.4) satisfies the properties postulated for
the “box” used in the second part of the proof of Proposition 6.19. In particular:

1. Show a correspondence between the conditions required of the box and con-
ditions regarding the value of the permanent of certain sub-matrices of the
adjacency matrix of the graph.

(Hint: For example, show that the first condition correspond to requiring that the value
of the permanent of the entire matrix equals zero. The second condition refers to sub-
matrices obtained by omitting either the first row and fourth column or the fourth row

and first column.)

6.2. COUNTING 225

2. Verify that the matrix in Eq. (6.4) satisfies the aforementioned conditions
(regarding the value of the permanent of certain sub-matrices).

Prove that no 3-by-3 matrix (and thus also no 2-by-2 matrix) can satisfy the afore-
mentioned conditions.

Exercise 6.26 (error reduction for approximate counting) Show that the er-
ror probability ¢ in Definition 6.22 can be reduced from 1/3 (or even (1/2) +

(1/poly(|z|)) to exp(—poly(|z)).

Guideline: Invoke the weaker procedure for an adequate number of times and take the

median value among the values obtained in these invocations.

Exercise 6.27 (strong approximation for some #P-complete problems) Show
that there exists #P-complete problems (albeit unnatural ones) for which an (g, 0)-
approximation can be found by a (deterministic) polynomial-time algorithm. Fur-
thermore, the running-time depends polynomially on 1/e.

Guideline: Combine any #P-complete problem referring to some Ry € PC with a trivial
counting problem (e.g., such as the counting problem associated with Rz = U, n{(z,y) :
z,y € {0,1}"}). Show that, without loss of generality, that (z,y) € R: implies |z| = |y|
and that #R(z) < 2/*I/2. Prove that the counting problem of R = {(z,1y) : (z,y) €
R} U{(z,0y) : (z,y) € Ry} is #P-complete. Present a deterministic algorithm that, on
input and € > 0, outputs an (e, 0)-approximation of #R(x) in time poly(|z|/€).

Exercise 6.28 (relative approximation for DNF satisfaction) Referring to
the text of §6.2.2.1, prove the following claims.

1. Both assumptions regarding the general setting hold in case S; = C;'(1),
where Ci_l(l) denotes the set of truth assignments that satisfy the conjunc-
tion C;.

Guideline: In establishing the second assumption note that it reduces to the
conjunction of the following two assumptions:

(a) Given 4, one can efficiently generate a uniformly distributed element of Sj.
Actually, generating a distribution that is almost uniform over S; suffices.

(b) Given ¢ and w, one can efficiently determine whether = € Sj.

2. Prove Proposition 6.24, relating to details such as the error probability in an
implementation of Construction 6.23.

3. Note that Construction 6.23 does not require exact computation of |S;|. An-
alyze the output distribution in the case that we can only approximate |.S;|
up-to a factor of 1 +¢'.

Exercise 6.29 (reducing the relative deviation in approximate counting)
Prove that, for any R € PC and every polynomial p and constant § < 0.5, there
exists R’ € PC such that (1/p,d)-approximation for #R is reducible to (1/2,6)-
approximation for #R'.

226 CHAPTER 6. RANDOMNESS AND COUNTING

Guideline: For t(n) = O(p(n)), let R' = {(=, (y1,--, ¥e(j=)))) : (Vi) (w,y:) € R}. Note
that |R(z)| = |R'(z)|*/**D, and thus if a = (1 % (1/2)) - |R'(z)| then a'/*(*) = (1 &
(1/2) /40D |R(a)].

Furthermore, for any F(n) = exp(poly(n)), prove that there exists R € PC such
that (1/p, 6)-approximation for #R is reducible to approximating #R" to within
a factor of F' with error probability 6.

(Hint: Same as the main part (using t(n) = O(p(n) - log F(n))).)

Exercise 6.30 (deviation reduction in approximate counting, cont.) In con-

tinuation to Exercise 6.29, prove that if R is NP-complete via parsimonious reduc-
tions then, for every positive polynomial p and constant ¢ < 0.5, the problem of
(1/p, 6)-approximation for #R is reducible to (1/2,§)-approximation for #R.
(Hint: Compose the reduction (to the problem of (1/2,§)-approximation for #R') provided in
Exercise 6.29 with the parsimonious reduction of #R' to #R.)

Prove that, for every function F’ such that F'(n) = exp(n°!)), we can also reduce
the aforementioned problems to the problem of approximating #R to within a
factor of F' with error probability .

Guideline: Using R" as in Exercise 6.29, we encounter a technical difficulty. The issue is
that the composition of the (“amplifying”) reduction of #R to #R" with the parsimonious
reduction of #R'' to # R may increase the length of the instance. Indeed, the length of the
new instance is polynomial in the length of the original instance, but this polynomial may
depend on R, which in turn depends on F'. Thus, we cannot use F’(n) = exp(n'/?®))
but F'(n) = exp(n°D) is fine.

Exercise 6.31 Referring to the procedure in the proof Theorem 6.25, show how to
use an NP-oracle in order to determine whether the number of solutions that “pass
a random sieve” is greater than ¢. You are allowed queries of length polynomial in
the length of z, h and in the size of t.

(Hint: Consider the set S}, def {(z,i,h,1%) : Fy1, ..., ye s.t. ' (z, h,y1, ...,)}, where ¥/ (z, h, y1,
holds if and only if the y; ,a,re different and for every j it holds that (z,y;)€RA h(y]-):[]i.)

"'7yt)

Exercise 6.32 (parsimonious reductions and Theorem 6.27) Demonstrate the

importance of parsimonious reductions in Theorem 6.27 by proving the following;:

1. There exists a search problem R € PC such that every problem in PC is
reducible to R_(by a non-parsimonious reduction) and still the the promise
problem (USg, Sg) is decidable in polynomial-time.

Guideline: Consider the following artificial witness relation R for SAT in which
(¢,07) € Rif o € {0,1} and 7 satisfies ¢. Note that the standard witness relation
of SAT is reducible to R, but this reduction is not parsimonious. Also note that
USg = 0 and thus (USg, Sg) is trivial.

2. There exists a search problem R € PC such that #R is #P-complete and
still the the promise problem (USg, Sg) is decidable in polynomial-time.

Guideline: Just use the relation suggested in the guideline to Part 1. An al-
ternative proof relies on Theorem 6.18 and on the fact that it is easy to decide

6.2. COUNTING 227

(USw,Skr) when R is the corresponding perfect matching relation (by computing
the determinant).

Exercise 6.33 Prove that SAT is randomly reducible to deciding unique solution
for SAT, without using the fact that SAT is NP-complete via parsimonious reductions.

Guideline: Follow the proof of Theorem 6.27, while using the family of pairwise inde-
pendent hashing functions provided in Construction D.3 (or in Eq. (8.18)). Note that,
in this case, the condition (7€ Rgat(¢)) A (h(7)=0%) can be directly encoded as a CNF

formula. That is, consider the formula ¢, such that ¢ (z) Lf #(z) A (h(z) =0%), and note
that h(z) =0 can be written as the conjunction of i clauses, where each clause is a CNF
that is logically equivalent to the parity of some of the bits of z (where the identity of
these bits is determined by h).

Exercise 6.34 (an alternative procedure for approximate counting) Adapt
Step 1 of Construction 6.30 so to obtain an approximate counting procedure for

#R.

Guideline: For m = 0,1, ...4, the procedure invokes Step 1 of Construction 6.30 until a
negative answer is obtained, and outputs 2™ for the current value of m. For |R(z)| >
128¢, this yields a constant factor approximation of |R(z)|. In fact, we can obtain a
better estimate by making additional queries at iteration m (i.e., queries of the form
(z,h, 1) for i = 162, ...,128¢). The case |R(z)| < 128 can be treated by using Step 2 of
Construction 6.30, in which case we obtain an exact count.

Exercise 6.35 Let R be an arbitrary PC-complete search problem. Show that
approximate counting and uniform generation for R can be randomly reduced to
deciding membership in Sk, where by approximate counting we mean a (1 —(1/p)-
approximation for any polynomial p.

Guideline: Note that Construction 6.30 yields such procedures (see also Exercise 6.34),
except that they make oracle calls to some other set in A’P. Using the NP-completeness
of Sgr, we are done.

390 CHAPTER 6. RANDOMNESS AND COUNTING

Chapter 10

Relaxing the Requirements

The philosophers have only interpreted the world, in
various ways; the point is to change it.

Karl Marx, Theses on Feuerbach

In light of the apparent infeasibility of solving numerous natural computational
problems, it is natural to ask whether these problems can be relaxed in a way that
is both useful for applications and allows for feasible solving procedures. We stress
two aspects about the foregoing question: on one hand, the relaxation should be
sufficiently good for the intended applications; but, on the other hand, it should
be significantly different from the original formulation of the problem so to escape
the infeasibility of the latter. We note that whether a relaxation is adequate for
an intended application depends on the application, and thus much of the material
in this chapter is less robust (or generic) than the treatment of the non-relaxed
computational problems.

Summary: We consider two types of relaxations. The first type of
relaxation refers to the computational problems themselves; that is, for
each problem instance we extend the set of admissible solutions. In
the context of search problems this means settling for solutions that
have a value that is “sufficiently close” to the value of the optimal
solution (with respect to some value function). Needless to say, the
specific meaning of ‘sufficiently close’ is part of the definition of the
relaxed problem. In the context of decision problems this means that
for some instances both answers are considered valid; put differently,
we consider promise problems in which the no-instances are “far” from
the yes-instances in some adequate sense (which is part of the definition
of the relaxed problem).

The second type of relaxation deviates from the requirement that the
solver provides an adequate answer on each valid instance. Instead,
the behavior of the solver is analyzed with respect to a predetermined

391

392 CHAPTER 10. RELAXING THE REQUIREMENTS

input distribution (or a class of such distributions), and bad behavior
may occur with negligible probability where the probability is taken
over this input distribution. That is, we replace worst-case analysis by
average-case (or rather typical-case) analysis. Needless to say, a major
component in this approach is limiting the class of distributions in a way
that, on one hand, allows for various types of natural distributions and,
on the other hand, prevents the collapse of the corresponding notion of
average-case complexity to the standard worst-case complexity.

10.1 Approximation

The notion of approximation is a natural one, and has arisen also in other disci-
plines. Approximation is most commonly used in references to quantities (e.g., “the
length of one meter is approximately forty inches”), but it is also used when refer-
ring to qualities (e.g., “an approximately correct account of a historical event”). In
the context of computation, the notion of approximation modifies computational
tasks such as search and decision problems. (In fact, we have already encountered
it as a modifier of counting problems; see Section 6.2.2.)

Two major questions regarding approximation are (1) what is a “good” approx-
imation, and (2) can it be found easier than finding an exact solution. The answer
to the first question seems intimately related to the specific computational task
at hand and to its role in the wider context (i.e., the higher level application): a
good approximation is one that suffices for the intended application. Indeed, the
importance of certain approximation problems is much more subjective than the
importance of the corresponding optimization problems. This fact seems to stand
in the way of attempts at providing a comprehensive theory of natural approxi-
mation problems (e.g., general classes of natural approximation problems that are
shown to be computationally equivalent).

Turning to the second question, we note that in numerous cases natural approx-
imation problems seem to be significantly easier than the corresponding original
(“exact”) problems. On the other hand, in numerous other cases, natural approxi-
mation problems are computationally equivalent to the original problems. We shall
exemplify both cases by reviewing some specific results, but regret not being able
to provide any systematic classification.

Mimicking the two standard uses of the word approzimation, we shall distinguish
between approximation problems that are of the “search type” and problems that
are have a clear “decisional” flavor. In the first case we shall refer to a function that
assigns values to possible solutions (of a search problem); whereas in the second
case we shall refer to distances between instances (of a decision problem). Needless
to say, at times the same computational problem may be cast in both ways, but for
most natural approximation problems one of the two frameworks is more appealing
than the other.

The common theme is that in both cases we extend the set of admissible so-
lutions. In the case of search problems, we extend the set of optimal solutions by
including also almost-optimal solutions. In the case of decision problems, we extend

10.1. APPROXIMATION 393

the set of solutions by allowing an arbitrary answer (solution) to some instances,
which may be viewed as a promise problem that disallows these instances. In this
case we focus on promise problems in which the yes and no-instances are far apart
(and the instances that violate the promise are closed to yes-instances).

Teaching note: Most of the results presented in this section refer to specific computa-
tional problems and (with one exception) are presented without a proof. In view of the
complexity of the corresponding proofs and the merely illustrative role of these results

in the context of complexity theory, we recommend doing the same in class.

10.1.1 Search or Optimization

As noted in Section 2.2.2, many search problems involve a set of potential solutions
(per each problem instance) such that different solutions are assigned different “val-
ues” (resp., “costs”) by some “value” (resp., “cost”) function. In such a case, one is
interested in finding a solution of maximum value (resp., minimum cost). A corre-
sponding approximation problem may refer to finding a solution of approximately
maximum value (resp., approximately minimum cost), where the specification of
the desired level of approximation is part of the problem’s definition. Let us elab-
orate.

For concreteness, we focus on the case of a value that we wish to maximize. For
greater flexibility, we allow the value of the solution to depend also on the instance
itself. Thus, for a (polynomially bounded) binary relation R and a value function
f:{0,1}*x{0,1}* — R, we consider the problem of finding solutions (with respect
to R) that maximize the value of f. That is, given x (such that R(z) # 0), the
task is finding y € R(x) such that f(x,y) = v,, where v, is the maximum value
of f(z,y") over all y' € R(z). Typically, R is in PC and f is polynomial-time
computable.! Indeed, without loss of generality, we may assume that for every z
it holds that R(z) = {0,1}*(*D for some polynomial ¢ (see Exercise 2.8). Thus,
the optimization problem is recast as the following search problem: given x, find
y such that f(z,y) = v, where v, = maxyeo1ye0-n{f(2,y')}}-

We shall focus on relative approximation problems, where for some gap function
g:{0,1}* - {reR : r>1} the (maximization) task is finding y such that f(z,y) >
vz /g(x). Indeed, in some cases the approximation factor is stated as a function of
the length of the input (i.e., g(z) = ¢'(|z|) for some ¢’ : N — {reR : r>1}), but
often the approximation factor is stated in terms of some more refined parameter
of the input (e.g., as a function of the number of vertices in a graph). Typically, g
is polynomial-time computable.

Definition 10.1 (g-factor approximation): Let f : {0,1}* x {0,1}* — R, ¢ :
N—-N, and g: {0,1}* - {reR:r>1}.

Hn this case, we may assume without loss of generality that the function f depends only on
the solution. This can be obtained by redefining the relation R such that each solution y € R(x)
consists of a pair of the form (z,y’). Needless to say, this modification cannot be applied along
with getting rid of R (as in Exercise 2.8).

394 CHAPTER 10. RELAXING THE REQUIREMENTS

Maximization version: The g-factor approximation of maximizing f (w.r.t £) is the
search problem R such that R(x) = {y € {0,1}*(=D : f(z,y) > v./g(2)},
where v, = maXyero 1yea«n{f (€, y')}-

Minimization version: The g-factor approximation of minimizing f (w.r.t £) is the
search problem R such that R(z) = {y € {0,1}0=D) : f(x,y) < g(z) - 2},
where ¢, = minegg 1 yea«n {f(2,9')}-

We note that for numerous NP-complete optimization problems polynomial-time
algorithms provide meaningful approximations. A few examples will be mentioned
in §10.1.1.1. In contrast, for numerous other NP-complete optimization problems,
natural approximation problems are computationally equivalent to the correspond-
ing optimization problem. A few examples will be mentioned in §10.1.1.2, where
we also introduce the notion of a gap problem, which is a promise problem (of
the decision type) intended to capture the difficulty of the (approximate) search
problem.

10.1.1.1 A few positive examples

Let us start with a trivial example. Considering a problem such as finding the
maximum clique in a graph, we note that finding a linear factor approximation is
trivial (i.e., given a graph G = (V, E), we may output any vertex in V as a |V|-
factor approximation of the maximum clique in G). A famous non-trivial example
is presented next.

Proposition 10.2 (factor two approximation to minimum Vertex Cover): There
exists a polynomial-time approzimation algorithm that given a graph G = (V, E)
outputs a vertex cover that is at most twice as large as the minimum vertex cover
of G.

We warn that an approximation algorithm for minimum Vertex Cover does not
yield such an algorithm for the complementary problem (of maximum Independent
Set). This phenomenon stands in contrast to the case of optimization, where an
optimal solution for one problem (e.g., minimum Vertex Cover) yields an optimal
solution for the complementary problem (maximum Independent Set).

Proof Sketch: The main observation is a connection between the set of maximal
matchings and the set of vertex covers in a graph. Let M be any mazimal matching
in the graph G = (V, E); that is, M C E is a matching but augmenting it by any
single edge yields a set that is not a matching. Then, on one hand, the set of all
vertices participating in M is a vertex cover of G, and, on the other hand, each
vertex cover of G must contain at least one vertex of each edge of M. Thus, we can
find the desired vertex cover by finding a maximal matching, which in turn can be
found by a greedy algorithm. O

10.1. APPROXIMATION 395

Another example. An instance of the traveling salesman problem (TSP) consists
of a symmetric matrix of distances between pairs of points, and the task is finding
a shortest tour that passes through all points. In general, no reasonable approx-
imation is feasible for this problem (see Exercise 10.1), but here we consider two
special cases in which the distances satisfies some natural constraints (and pretty
good approximations are feasible).

Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-
rithms exists for the following two computational problems.

1. Providing a 1.5-factor approximation for the special case of TSP in which the
distances satisfy the triangle inequality.

2. For every € > 1, providing a (1 + ¢)-factor approzimation for the special case
of Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points reside
in a k-dimensional Euclidean space, and the distances refer to the standard
Euclidean norm).

A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2
is provided in [12]. We note the difference examplified by the two items of Theo-
rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a specific
constant factor, Part 2 provides such an algorithm for any constant factor. Such a
result is called a polynomial-time approzimation scheme (abbrev. PTAS).

10.1.1.2 A few negative examples

Let us start again with a trivial example. Cousidering a problem such as finding
the maximum clique in a graph, we note that given a graph G = (V, E) finding
a (1 + |V|7!)-factor approximation of the maximum clique in G is as hard as
finding a maximum clique in G. Indeed, this “result” is not really meaningful.
In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that
finding a |V|1_°(1)-fact0r approximation of the maximum clique in G is as hard as
finding a maximum clique in G. This follows from the fact that the approximation
problem is NP-hard (cf. Theorem 10.5).

The statement of inapproximability results is made stronger by referring to a
promise problem that consists of distinguishing instances of sufficiently far apart
values. Such promise problems are called gap problems, and are typically stated
with respect to two bounding functions g, gs : {0,1}* — R (which replace the gap
function g of Definition 10.1). Typically, g; and g» are polynomial-time computable.

Definition 10.4 (gap problem for approximation of f): Let f be as in Defini-
tion 10.1 and g1,g2 : {0,1}* = R.

Maximization version: For g1 > g2, the gap,, ,, problem of maximizing f consists
of distinguishing between {x : v, > gi(x)} and {x : v, < g2(x)}, where
Uy = maXyero 1y3eaen{f(@,)}

396 CHAPTER 10. RELAXING THE REQUIREMENTS

Minimization version: For g1 < g2, the gap, ,, problem of minimizing f consists
of distinguishing between {x : ¢, < gi(z)} and {z : ¢ > ga2(z)}, where
Ca = milyero 1ye=n {f (@, y)}-

For example, the gap,, ,, problem of maximizing the size of a clique in a graph
consists of distinguishing between graphs G that have a clique of size g1(G) and
graphs G that have no clique of size g»(G). In this case, we typically let g;(G) be a
function of the number of vertices in G =(V, E); that is, g;(G) = ¢i(|V]). Indeed,
letting w(G) denote the size of the largest clique in the graph G, we let gapClique; |
denote the gap problem of distinguishing between {G =(V, E) : w(G) > L(|V])}
and {G = (V,E) : w(G) < s(|V])}, where L > s. Using this terminology, we
restate (and strengthen) the aforementioned |V|'~°()-factor inapproximation of
the maximum clique problem.

Theorem 10.5 For some L(N) = N'=°(1) and s(N) = N°W) it holds that gapClique; |
is NP-hard.

The proof of Theorem 10.5 is based on a major refinement of Theorem 9.16 that
refers to a PCP system of amortized free-bit complexity that tends to zero (cf.
§9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented in
Exercise 10.3.

As we shall show next, results of the type of Theorem 10.5 imply the hardness
of a corresponding approximation problem; that is, the hardness of deciding a gap
problem implies the hardness of a search problem that refers to an analogous factor
of approximation.

Proposition 10.6 Let f,g1,92 be as in Definition 10.4 and suppose that these
functions are polynomial-time computable. Then the gap,, ,, problem of mazimiz-
ing f (resp., minimizing f) is reducible to the g1/gs-factor (resp., g2/g1-factor)
approzimation of mazimizing f (resp., minimizing f).

Note that a reduction in the opposite direction does not necessarily exist (even in
the case that the underlying optimization problem is self-reducible in some natural
sense). Indeed, this is another difference between the current context (of approx-
imation) and the context of optimization problems, where the search problem is
reducible to a related decision problem.

Proof Sketch: We focus on the maximization version. On input z, we solve the
gap,, 4, problem, by making the query z, obtaining the answer y, and ruling that
x has value exceeding g;(x) if and only if f(z,y) > g2(x). Recall that we need to
analyze this reduction only on inputs that satisfy the promise. Thus, if v, > g1 (z)
then the oracle must return a solution y that satisfies f(z,y) > v./(g1(z)/g2(x)),
which implies that f(z,y) > g2(z). On the other hand, if v, < g2(z) then f(z,y) <
v, < g2(x) holds for any possible solution y. O

10.1. APPROXIMATION 397

Additional examples. Let us consider gapVC, ,, the gap, , problem of mini-
mizing the vertex cover of a graph, where s and L are constants and gs(G) = s-|V|
(resp., gr(G) = L - |V]) for any graph G=(V, E). Then, Proposition 10.2 implies
(via Proposition 10.6) that, for every constant s, the problem gapVC, ,, is solvable
in polynomial-time. In contrast, sufficiently narrowing the gap between the two
thresholds yields an inapproximability result. In particular:

Theorem 10.7 For some constants 0 < s < L <1 (e.g., s =0.62 and L = 0.84
will do), the problem gapVC, ; is NP-hard.

The proof of Theorem 10.7 is based on a complicated refinement of Theorem 9.16.
Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).

As noted, refinements of the PCP Theorem (Theorem 9.16) play a key role in
establishing inapproximability results such as Theorems 10.5 and 10.7. In that
respect, it is adequate to recall that Theorem 9.21 establishes the equivalence of
the PCP Theorem itself and the NP-hardness of a gap problem concerning the
maximization of the number of clauses that are satisfies in a given 3-CNF for-
mula. Specifically, gapSAT? was defined (in Definition 9.20) as the gap problem
consisting of distinguishing between satisfiable 3-CNF formulae and 3-CNF formu-
lae for which each truth assignment violates at least an ¢ fraction of the clauses.
Although Theorem 9.21 does not specify the quantitative relation that underlies
its qualitative assertion, when (refined and) combined with the best known PCP
construction, it does yield the best possible bound.

Theorem 10.8 For every v < 1/8, the problem gapSAT? is NP-hard.

On the other hand, gapSATf/8 is solvable in polynomial-time.

Sharp threshold. The aforementioned conflicting results (regarding gapSAT?)
exemplify a sharp threshold on the (factor of) approximation that can be obtained
by an efficient algorithm. Another appealing example refers to the following maxi-
mization problem in which the instances are systems of linear equations over GF(2)
and the task is finding an assignment that satisfies as many equations as possible.
Note that by merely selecting an assignment at random, we expect to satisfy half
of the equations. Also note that it is easy to determine whether there exists an
assignment that satisfies all equations. Let gapLin, ; denote the problem of dis-
tinguishing between systems in which one can satisfy at least an L fraction of the
equations and systems in which one cannot satisfy an s fraction (or more) of the
equations. Then, as just noted, gapLin; ;5 is trivial and gapLin,; , is feasible
(for every s < 1). In contrast, moving both thresholds (slightly) away from the
corresponding extremes, yields an NP-hard gap problem:

Theorem 10.9 For every constante > 0, the problem gapLin, . , 5., is NP-hard.

The proof of Theorem 10.9 is based on a major refinement of Theorem 9.16. In fact,
the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:
the verifier makes three queries and tests a linear condition regarding the answers,

398 CHAPTER 10. RELAXING THE REQUIREMENTS

while using a logarithmic number of coin tosses. This verifier accepts any yes-
instance with probability at least 1 — ¢ (when given oracle access to a suitable
proof), and rejects any no-instance with probability at least 0.5 — & (regardless
of the oracle being accessed). A weaker result, which follows from Theorem 9.16
itself, is presented in Exercise 10.5.

Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations with
respect to the “location” of the “gap” for which the corresponding promise problem
is hard. Recall that both gapSAT and gapLin are formulated with respect to two
thresholds, where each threshold bounds the fraction of “local” conditions (i.e.,
clauses or equations) that are satisfiable in the case of yes and no-instances, re-
spectively. In the case of gapSAT the high threshold (referring to yes-instances) was
set to 1, and thus only the low threshold (referring to no-instances) remained a free
parameter. Nevertheless, a hardness result was established for gapSAT, and further-
more this was achieved for an optimal value of the low threshold (cf. the foregoing
discussion of sharp threshold). In contrast, in the case of gapLin setting the high
threshold to 1 makes the gap problem efficiently solvable. Thus, the hardness of
gapLin was established at a different location of the high threshold. Specifically,
hardness (for an optimal value of the ratio of thresholds) was established when
setting the high threshold to 1 — ¢, for any ¢ > 0.

A final comment. All the aforementioned inapproximability results refer to ap-
proximation (resp., gap) problems that are relaxations of optimization problems
in NP (i.e., the optimization problem is computational equivalent to a decision
problem in N'P; see Section 2.2.2). In these cases, the NP-hardness of the approx-
imation (resp., gap) problem implies that the corresponding optimization problem
is reducible to the approximation (resp., gap) problem. In other words, in these
cases nothing is gained by relaxing the original optimization problem, because the
relaxed version remains just as hard.

10.1.2 Decision or Property Testing

A natural notion of relaxation for decision problems arises when considering the
distance between instances, where a natural notion of distance is the Hamming
distance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,
this relaxation (called property testing) refers to distinguishing inputs that reside
in a predetermined set S from inputs that are “relatively far” from any input that
resides in the set. Two natural types of promise problems emerge (with respect to
any predetermined set S (and the Hamming distance between strings)):

1. Relazed decision w.r.t a fived distance: Fixing a distance parameter ¢, we
consider the problem of distinguishing inputs in S from inputs in I's(S),
where

Ts(S) € {z:Vz e SN {0, 11 Az, 2) > 6 ||} (10.1)
and A(xy - X, 21 2m) = |{i : ©; # z;}| denotes the number of bits on
which * = x1---%,, and z = 2, --- 2, disagree. Thus, here we consider a

10.1. APPROXIMATION 399

promise problem that is a restriction (or a special case) of the problem of
deciding membership in S.

2. Relazed decision w.r.t a variable distance: Here the instances are pairs (z,),
where z is as in Type 1 and § € [0,1] is a distance parameter. The yes-
instances are pairs (x,0) such that z € S, whereas (z,) is a no-instance if
x € T's(S).

We shall focus on Type 1 formulation, which seems to capture the essential question
of whether or not these relaxations lower the complexity of the original decision
problem. The study of Type 2 formulation refers to a relatively secondary question,
which assumes a positive answer to the first question; that is, assuming that the
relaxed form is easier than the original form, we ask how is the complexity of the
problem affected by making the distance parameter smaller (which means making
the relaxed problem “tighter” and ultimately equivalent to the original problem).

We note that for numerous NP-complete problems there exist natural (Type 1)
relaxations that are solvable in polynomial-time. Actually, these algorithms run in
sub-linear time (specifically polylogarithmic time), when given direct access to the
input. A few examples will be presented in §10.1.2.2. As indicated in §10.1.2.2,
this is not a generic phenomenon. But before turning to these results, we discuss
several important definitional issues.

10.1.2.1 Definitional issues

Property testing is concerned not only with solving relaxed versions of NP-hard
problems, but rather solving these problems (as well as problems in P) in sub-
linear time. Needless to say, such results assume a model of computation in which
algorithms have direct access to bits in the (representation of the) input (see Defi-
nition 10.10).

Definition 10.10 (a direct access model — conventions): An algorithm with direct
access to its input is given its main input on a special input device that is accessed
as an oracle (see §1.2.3.5). In addition, the algorithm is given the length of the
input and possibly other parameters on an secondary input device. The complexity
of such an algorithm is stated in terms of the length of its main input.

Indeed, the description in §5.2.4.2 refers to such a model, but there the main input
is viewed as an oracle and the secondary input is viewed as the input.

Definition 10.11 (property testing for S): For any fized § > 0, the promise
problem of distinguishing S from Ts(S) is called property testing for S (with respect
to 4).

Recall that we say that a randomized algorithm solves a promise problem if it
accepts every yes-instance (resp., rejects every no-instance) with probability at
least 2/3. Thus, a (randomized) property testing for S accepts every input in S
(resp., rejects every input in I's(S)) with probability at least 2/3.

400 CHAPTER 10. RELAXING THE REQUIREMENTS

The question of representation. The specific representation of the input is of
major concern in the current context. This is due to (1) the effect of the represen-
tation on the distance measure and to (2) the dependence of direct access machines
on the specific representation of the input. Let us elaborate on both aspects.

1. Recall that we defined the distance between objects in terms of the Hamming
distance between their representations. Clearly, in such a case, the choice of
representation is crucial and different representations may yield different dis-
tance measures. Furthermore, in this case, the distance between objects is
not preserved under various (natural) representations that are considered
“equivalent” in standard studies of computational complexity. For example,
in previous parts of this book, when referring to computational problems con-
cerning graphs, we did not care whether the graphs were represented by their
adjacency matrix or by their incidence-lists. In contrast, these two represen-
tations induce very different distance measures and correspondingly different
property testing problems (see §10.1.2.2). Likewise, the use of padding (and
other trivial syntactic conventions) becomes problematic (e.g., when using a
significant amount of padding, all objects are deemed close to one another
(and property testing for any set becomes trivial)).

2. Since our focus is on sub-linear time algorithms, we may not afford trans-
forming the input from one natural format to another. Thus, representations
that are considered equivalent with respect to polynomial-time algorithms,
may not be equivalent with respect to sub-linear time algorithms that have
a direct access to the representation of the object. For example, adjacency
queries and incidence queries cannot emulate one another in small time (i.e.,
in time that is sub-linear in the number of vertices).

Both aspects are further clarified by the examples provided in §10.1.2.2.

The essential role of the promise. Recall that, for a fixed constant § > 0,
we consider the promise problem of distinguishing S from I's(S). The promise
means that all instances that are neither in S nor far from S (i.e., not in I's(.5))
are ignored, which is essential for sub-linear algorithms for natural problems. This
makes the property testing task potentially easier than the corresponding stan-
dard decision task (cf. §10.1.2.2). To demonstrate the point, consider the set S
consisting of strings that have a majority of 1’s. Then, deciding membership in
S requires linear time, because random n-bit long strings with [n/2| ones cannot
be distinguished from random n-bit long strings with [n/2] + 1 ones by probing
a sub-linear number of locations (even if randomization and error probability are
allowed — see Exercise 10.8). On the other hand, the fraction of 1’s in the input can
be approximated by a randomized polylogarithmic time algorithm (which yields a
property tester for S; see Exercise 10.9). Thus, for some sets, deciding membership
requires linear time, while property testing can be done in polylogarithmic time.

The essential role of randomization. Referring to the foregoing example, we
note that randomization is essential for any sub-linear time algorithm that distin-

10.1. APPROXIMATION 401

guishes this set S from, say, I'g.4(S). Specifically, a sub-linear time deterministic
algorithm cannot distinguish 1™ from any input that has 1’s in each position probed
by that algorithm on input 1. In general, on input x, a (sub-linear time) deter-
ministic algorithm always reads the same bits of and thus cannot distinguish x
from any z that agrees with = on these bit locations.

Note that, in both cases, we are able to prove lower-bounds on the time com-
plexity of algorithms. This success is due to the fact that these lower-bounds are
actually information theoretic in nature; that is, these lower-bounds actually refer
to the number of queries performed by these algorithms.

10.1.2.2 Two models for testing graph properties

In this subsection we consider the complexity of property testing for sets of graphs
that are closed under graph isomorphism; such sets are called graph properties. In
view of the importance of representation in the context of property testing, we
consider two standard representations of graphs (cf. Appendix G.1), which indeed
yield two different models of testing graph properties.

1. The adjacency matrix representation. Here a graph G = ([N], E) is rep-
resented (in a somewhat redundant form) by an N-by-N Boolean matrix
Mg = (m;j); jen) such that m; ; = 1 if and only if {i,j} € E.

2. Bounded incidence-lists representation. For a fixed parameter d, a graph
G = ([N], E) of degree at most d is represented (in a somewhat redundant
form) by a mapping pg : [N] X [d] — [N]U{L} such that pg(u,i) = v if v is
the i*® neighbor of u and pg(u,i) = L if v has less than i neighbors.

We stress that the aforementioned representations determine both the notion of
distance between graphs and the type of queries performed by the algorithm. As
we shall see, the difference between these two representations yields a big difference
in the complexity of corresponding property testing problems.

Theorem 10.12 (property testing in the adjacency matrix representation): For
any fized 6 > 0 and each of the following sets, there exists a polylogarithmic time
randomized algorithm that solves the corresponding property testing problem (with
respect to 0).

o For every fived k > 2, the set of k-colorable graphs.

e For every fized p > 0, the set of graphs having a clique (resp., independent
set) of density p.

o For every fized p > 0, the set of N-vertex graphs having a cut®> with at least
p-N? edges.

2A cut in a graph G = ([N], E) is a partition (S,[N]\ S) of the set of vertices and the edges
of the cut are the edges with exactly one endpoint in S. A bisection is a cut of the graph to two
parts of equal cardinality.

402 CHAPTER 10. RELAXING THE REQUIREMENTS

e For every fized p > 0, the set of N-vertez graphs having a bisection®with at
most p- N? edges.

In contrast, for some § > 0, there exists a graph property in N'P for which property
testing (with respect to &) requires linear time.

The testing algorithms use a constant number of queries, where this constant is
polynomial in the constant 1/6. We highlight the fact that exact decision proce-
dure for the corresponding sets require a linear number of queries. The running
time of the aforementioned algorithms hides a constant that is exponential in their
query complexity (except for the case of 2-colorability where the hidden constant
is polynomial in 1/6). Note that such dependencies seem essential, since setting
§ = 1/N? regains the original (non-relaxed) decision problems (which, with the
exception of 2-colorability, are all NP-complete). Turning to the lower-bound, we
note that the graph property for which this bound is proved is not a natural one.
Again, the lower-bound on the time complexity follows from a lower-bound on the
query complexity.

Theorem 10.12 exhibits a dichotomy between graph properties for which prop-
erty testing is possible by a constant number of queries and graph properties for
which property testing requires a linear number of queries. A combinatorial charac-
terization of the graph properties for which property testing is possible (in the adja-
cency matrix representation) when using a constant number of queries is known.3
We note that the constant in this characterization may depend arbitrarily on ¢
(and indeed, in some cases, it is a function growing faster than a tower of 1/6
exponents).

Turning back to Theorem 10.12, we note that the results regarding property
testing for the sets corresponding to max-cut and min-bisection yield approximation
algorithms with an additive error term (of §N?2). For dense graphs (i.e., N-vertex
graphs having Q(N?) edges), this yields a constant factor approximation for the
standard approximation problem (as in Definition 10.1). That is, for every constant
¢ > 1, we obtain a c-factor approzimation of the problem of maximizing the size of a
cut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,
the result regarding clique yields a so called dual-approximation for maximum
clique; that is, we approximate the minimum number of missing edges in the densest
induced graph of a given size.

Indeed, Theorem 10.12 is meaningful only for dense graphs. The same holds, in
general, for the adjacency matrix representation.* Also note that property testing
is trivial, under the adjacency matrix representation, for any graph property S
satisfying I'5(1)(S) = 0 (e.g., the set of connected graphs, the set of Hamiltonian
graphs, etc).

3Describing this fascinating result of Alon et. al. [8], which refers to the notion of regular
partitions (introduced by Szemerédi), is beyond the scope of the current text.

4In this model, all N-vertex graphs having less than (6/2) - (];[) edges may be accepted if
and only if there exists such a (non-dense) graph in the predetermined set. This trivial decision
regarding non-dense graphs is correct, because if the set S contains an N-vertex graph with less
than (6/2)- (IZ) edges then I's(S) contains no N-vertex graph having less than (6/2)- (IZ) edges.

10.1. APPROXIMATION 403

We now turn to the bounded incidence-lists representation, which is relevant
only for bounded degree graphs. The problems of max-cut, min-bisection and clique
(as in Theorem 10.12) are trivial under this representation, but graph connectivity
becomes non-trivial, and the complexity of property testing for the set of bipartite
graphs changes dramatically.

Theorem 10.13 (property testing in the bounded incidence-lists representation):
The following assertions refer to the representation of graphs by incidence-lists of
length d.

o For any fired d and 6 > 0, there exists a polylogarithmic time randomized
algorithm that solves the property testing problem for the set of connected
graphs of degree at most d.

e For any fired d and § > 0, there ezists a sub-linear randomized algorithm that
solves the property testing problem for the set of bipartite graphs of degree at
most d. Specifically, on input an N-vertex graph, the algorithm runs for

O(V/N) time.

o For any fized d > 3 and some § > 0, property testing for the set of N-vertex
(3-regular) bipartite graphs requires (v N) queries.

e For some fized d and & > 0, property testing for the set of N -vertex 3-colorable
graphs requires Q(N) queries.

The running time of the algorithms hides a constant that is polynomial in 1/6.
Providing a characterization of graph properties according to the complexity of the
corresponding tester (in the bounded incidence-lists representation) is an interest-
ing open problem.

Decoupling the distance from the representation. So far, we have confined
our attention to the Hamming distance between the representations of graphs.
This made the choice of representation even more important than usual (i.e., more
crucial than is common in complexity theory). In contrast, it is natural to consider
a notion of distance between graphs that is independent of their representation.
For example, the distance between Gy =(V1, E1) and G2 =(V2, Es) can be defined
as the minimum of the size of symmetric difference between E; and the set of edges
in a graph that is isomorphic to G5. The corresponding relative distance may be
defined as the distance divided by |E;| + |E2| (or by max(|E1],|Ez|))-

10.1.2.3 Beyond graph properties

Property testing has been applied to a variety of computational problems beyond
the domain of graph theory. In fact, this area first emerged in the algebraic domain,
where the instances (to be viewed as inputs to the testing algorithm) are functions
and the relevant properties are sets of algebraic functions. The archetypical exam-
ple is the set of low-degree polynomials; that is, m-variate polynomials of total (or
individual) degree d over some finite field GF(q), where m, d and ¢ are parameters

404 CHAPTER 10. RELAXING THE REQUIREMENTS

that may depend on the length of the input (or satisfy some relationships; e.g.,
q = d®> = m5). Note that, in this case, the input is the description of a m-variate
function over GF(g), which means that it has length ¢™ -log, q. Viewing the prob-
lem instance as a function suggests a natural measure of distance (i.e., the fraction
of arguments on which the functions disagree) as well as a natural way of accessing
the instance (i.e., querying the function for the value of selected arguments).

Note that we have referred to these computational problems, under a different
terminology, in §9.3.2.2 and in §9.3.2.1. In particular, in §9.3.2.1 we refereed to
the special case of linear Boolean functions (i.e., individual degree 1 and ¢ = 2),
whereas in §9.3.2.2 we used the setting ¢ = poly(d) and m = d/logd (where d is a
bound on the total degree).

Other domains of computational problems in which property testing was stud-
ied include geometry (e.g., clustering problems), formal languages (e.g., testing
membership in regular sets), coding theory (cf. Appendix E.1.2), probability the-
ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone and
junta functions). As discuss at the end of §10.1.2.2, it is often natural to decou-
ple the distance measure from the representation of the objects (i.e., the way of
accessing the problem instance). This is done by introducing a representation-
independent notion of distance between instances, which should be natural in the
context of the problem at hand.

10.2 Average Case Complexity

Teaching note: We view average-case complexity as referring to the performance on
average (or typical) instances, and not as the average performance on random instances.
This choice is justified in §10.2.1.1. Thus, the current theory may be termed typical-case

complexity. The term average-case is retained for historical reasons.

Our approach so far (including in Section 10.1) is termed worst-case complex-
ity, because it refers to the performance of potential algorithms on each legitimate
instance (and hence to the performance on the worst possible instance). That is,
computational problems were defined as referring to a set of instances and perfor-
mance guarantees were required to hold for each instance in this set. In contrast,
average-case complexity allows ignoring a negligible measure of the possible in-
stances, where the identity of the ignored instances is determined by the analysis
of potential solvers and not by the problem’s statement.

A few comments are in place. Firstly, as just hinted, the standard statement
of the worst-case complexity of a computational problem (especially one having
a promise) may also ignores some instances (i.e., those considered inadmissible
or violating the promise), but these instances are determined by the problem’s
statement. In contrast, the inputs ignored in average-case complexity are not
inadmissible in any inherent sense (and are certainly not identified as such by
the problem’s statement). It is just that they are viewed as exceptional when
claiming that a specific algorithm solve the problem; furthermore, these exceptional

10.2. AVERAGE CASE COMPLEXITY 405

instances are determined by the analysis of that algorithm. Needless to say, these
exceptional instances ought to be rare (i.e., occur with negligible probability).

The last sentence raises a couple of issues. Firstly, a distribution on the set
of admissible instances has to be specified. In fact, we shall consider a new type
of computational problems, each consisting of a standard computational problem
coupled with a probability distribution on instances. Consequently, the question of
which distributions should be considered arises. This question and numerous other
definitional issues will be addressed in §10.2.1.1.

Before proceeding, let us spell out the rather straightforward motivation to the
study of the average-case complexity of computational problems. It is that, in
real-life applications, one may be perfectly happy with an algorithm that solves
the problem fast on almost all instances that arise in the application. That is, one
may be willing to tolerate error provided that it occurs with negligible probability,
where the probability is taken over the distribution of instances encountered in the
application. We stress that a key aspect in this approach is a good modeling of
the type of distributions of instances that are encountered in natural algorithmic
applications.

At this point a natural question arises: can natural computational problems be
solve efficiently when restricting attention to typical instances? The bottom-line
of this section is that, for a well-motivated choice of definitions, our conjecture is
that the “distributional version” of NP is not contained in the average-case (or
typical-case) version of P. This means that some NP problems are not merely hard
in the worst-case, but rather “typically hard” (i.e., hard on typical instances drawn
from some simple distribution). Specifically, hard instances may occur in natural
algorithmic applications (and not only in cryptographic (or other “adversarial”)
applications that are design on purpose to produce hard instances).® This conjec-
ture motivates the development of an average-case analogue of NP-completeness,
which will be presented in this section. Indeed, the entire section may be viewed
as an average-case analogue of Chapter 2.

Organization. A major part of our exposition is devoted to the definitional is-
sues that arise when developing a general theory of average-case complexity. These
issues are discussed in §10.2.1.1. In §10.2.1.2 we prove the existence of a distri-
butional problem that is “NP-complete” in the average-case complexity sense. In
§10.2.1.3 we extend the treatment to randomized algorithms. Additional ramifica-
tions are presented in Section 10.2.2.

5We highlight two differences between the current context (of natural algorithmic applications)
and the context of cryptography. Firstly, in the current context and when referring to problems
that are typically hard, the simplicity of the underlying input distribution is of great concern:
the simpler this distribution, the more appealing the hardness assertion becomes. This concern
is irrelevant in the context of cryptography. On the other hand (see discussion at the beginning
of Section 7.1.1 and/or at end of §10.2.2.2), cryptographic applications require the ability to
efficiently generate hard instances together with corresponding solutions.

406 CHAPTER 10. RELAXING THE REQUIREMENTS

10.2.1 The basic theory

In this section we provide a basic treatment of the theory of average-case com-
plexity, while postponing important ramifications to Section 10.2.2. The basic
treatment comnsists of the preferred definitional choices for the main concepts as
well as the identification of a complete problem for a natural class of average-case
computational problems.

10.2.1.1 Definitional issues

The theory of average-case complexity is more subtle than may appear in first
thought. In addition to the generic difficulty involved in defining relaxations, dif-
ficulties arise from the “interface” between standard probabilistic analysis and the
conventions of complexity theory. This is most striking in the definition of the
class of feasible average-case computations. Referring to the theory of worst-case
complexity as a guideline, we shall address the following aspects of the analogous
theory of average-case complexity.

1. Setting the general framework. We shall consider distributional problems,
which are standard computational problems (see Section 1.2.2) coupled with
distributions on the relevant instances.

2. Identifying the class of feasible (distributional) problems. Seeking an average-
case analogue of classes such as P, we shall reject the first definition that
comes to mind (i.e., the naive notion of “average polynomial-time”), briefly
discuss several related alternatives, and adopt one of them for the main treat-
ment.

3. Identifying the class of interesting (distributional) problems. Seeking an
average-case analogue of the class NP, we shall avoid both the extreme of
allowing arbitrary distributions (which collapses average-case complexity to
worst-case complexity) and the opposite extreme of confining the treatment
to a single distribution such as the uniform distribution.

4. Developing an adequate notion of reduction among (distributional) problems.
As in the theory of worst-case complexity, this notion should preserve feasible
solveability (in the current distributional context).

We now turn to the actual treatment of each of the aforementioned aspects.
Step 1: Defining distributional problems. Focusing on decision problems,

we define distributional problems as pairs consisting of a decision problem and a
probability ensemble.® For simplicity, here a probability ensemble {X,,},cn is a

6We mention that even this choice is not evident. Specifically, Levin [145] (see discussion
in [85]) advocates the use of a single probability distribution defined over the set of all strings.
His argument is that this makes the theory less representation-dependent. At the time we were
convinced of his argument (see [85]), but currently we feel that the representation-dependent
effects discussed in [85] are legitimate. Furthermore, the alternative formulation of [85] comes
across as unnatural and tends to confuse some readers.

10.2. AVERAGE CASE COMPLEXITY 407

sequence of random variables such that X,, ranges over {0,1}". Thus, (S, {X,},.en)
is the distributional problem consisting of the problem of deciding membership in
the set S with respect to the probability ensemble {X,}, cn. (The treatment of
search problem is similar; see §10.2.2.1.) We denote the uniform probability ensemble
by U = {U,.} .en; that is, U, is uniform over {0,1}".

Step 2: Identifying the class of feasible problems. The first idea that
comes to mind is defining the problem (S, {X,},cn) as feasible (on the average)
if there exists an algorithm A that solves S such that the average running time
of A on X, is bounded by a polynomial in n (i.e., there exists a polynomial p
such that E[t4(X,)] < p(n), where t4(z) denotes the running-time of A on input
z). The problem with this definition is that it very sensitive to the model of
computation and is not closed under algorithmic composition. Both deficiencies
are a consequence of the fact that ¢4 may be polynomial on the average with
respect to {X,},en but t3 may fail to be so (e.g., consider ta(az'z") = 21¢'| if
' = 2" and ta(2'x") = |x'z"|? otherwise, coupled with the uniform distribution
over {0,1}"). We conclude that the average running-time of algorithms is not a
robust notion. We also doubt the naive appeal of this notion, and view the typical
running time of algorithms (as defined next) as a more natural notion. Thus, we
shall consider an algorithm as feasible if its running-time is typically polynomial.”

We say that A is typically polynomial-time on X = {X,}, cn if there exists a
polynomial p such that the probability that A runs more that p(n) steps on X,
is negligible (i.e., for every polynomial ¢ and all sufficiently large n it holds that
Prita(X,) > p(n)] < 1/q(n)). The question is what is required in the “untypical”
cases, and two possible definitions follow.

1. The simpler option is saying that (S, {X,},en) is (typically) feasible if there
exists an algorithm A that solves S such that A is typically polynomial-time
on X = {X,},en. This effectively requires A to correctly solve S on each
instance, which is more than was required in the motivational discussion.
(Indeed, if the underlying reasoning is ignoring rare cases, then we should
ignore them altogether rather than ignoring them in a partial manner (i.e.,
only ignore their affect on the running-time).)

2. The alternative, which fits the motivational discussion, is saying that (S, X)
is (typically) feasible if there exists an algorithm A such that A typically
solves S on X in polynomial-time; that is, there exists a polynomial p such
that the probability that on input X,, algorithm A either errs or runs more
that p(n) steps is negligible. This formulation totally ignores the untypical
instances. Indeed, in this case we may assume, without loss of generality,
that A always runs in polynomial-time (see Exercise 10.11), but we shall not

7An alternative choice, taken by Levin [145] (see discussion in [85]), is considering as feasible
(wrt X = {Xn}, cN) any algorithm that runs in time that is polynomial in a function that is
linear on the average (w.r.t X); that is, requiring that there exists a polynomial p and a function
£:{0,1}* — N such that t(z) < p(£(z)) and E[¢(X,)] = O(n). This definition is robust (i.e., it
does not suffer from the aforementioned deficiencies) and is arguably as “natural” as the naive
definition (i.e., E[t4(Xy)] < poly(n)).

408 CHAPTER 10. RELAXING THE REQUIREMENTS

do so here (in order to facilitate viewing the first option as a special case of
the current option).

We note that both alternatives actually define typical feasibility and not average-
case feasibility. To illustrate the difference between the two options, consider the
distributional problem of deciding whether a uniformly selected (n-vertex) graph
contains a Hamiltonian path. Intuitively, this problem is “typically trivial” (with
respect to the uniform distribution)® because the algorithm may always say yes and
be wrong with exponentially vanishing probability. Indeed, this trivial algorithm
is admissible by the second approach, but not by the first approach. In light of the
foregoing, we adopt the second approach.

Definition 10.14 (the class tpcP): We say that A typically solves (S, {X,},cn)
in polynomial-time if there exists a polynomial p such that the probability that on
input X,, algorithm A either errs or runs more that p(n) steps is negligible.® We
denote by tpcP the class of distributional problems that are typically solvable in
polynomial-time.

Clearly, for every S € P and every probability ensemble X, it holds that (S, X) €
tpcP. However, tpcP contains also distributional problems (S, X) with S ¢ P
(see Exercises 10.12 and 10.13). The big question, which underlies the theory of
average-case complexity, is whether natural distributional versions of NP are in
tpcP. Thus, we turn to identify such versions.

Step 3: Identifying the class of interesting problems. Seeking to identify
reasonable distributional versions of NP, we note that two extreme choices should
be avoided. On one hand, we must limit the class of admissible distributions so
to prevent the collapse of average-case complexity to worst-case complexity (by a
selection of a pathological distribution that resides on the “worst case” instances).
On the other hand, we should allow for various types of natural distributions rather
than confining attention merely to the uniform distribution (which seems misguided
by the naive belief by which this distribution is the only one relevant to applica-
tions). Recall that our aim is addressing all possible input distributions that may
occur in applications, and thus there is no justification for confining attention to
the uniform distribution. Still, arguably, the distributions occuring in applications
are “relatively simple” and so we seek to identify a class of simple distributions.
One such notion (of simple distributions) underlies the following definition, while
a more liberal notion will be presented in §10.2.2.2.

Definition 10.15 (the class distNP): We say that a probability ensemble X =
{Xn}nen is simple if there exists a polynomial time algorithm that, on any input

8In contrast, testing whether a given graph contains a Hamiltonian path seems “typically
hard” for other distributions (see Exercise 10.24). Needless to say, in the latter distributions both
yes-instances and no-instances appear with noticeable probability.

9Recall that a function p : N - Nis negligible if for every positive polynomial ¢ and all
sufficiently large n it holds that p(n) < 1/q(n). We say that A errs on « if A(x) differs from the
indicator value of the predicate € S.

10.2. AVERAGE CASE COMPLEXITY 409

r € {0,1}*, outputs Pr[X | < x|, where the inequality refers to the standard lezico-
graphic order of strings. We denote by dist NP the class of distributional problems
consisting of decision problems in NP coupled with simple probability ensembles.

Note that the uniform probability ensemble is simple, but so are many other “sim-
ple” probability ensembles. Actually, it makes sense to relax the definition such
that the algorithm is only required to output an approximation of Pr[X ;| <], say,
to within a factor of 14272/l We note that Definition 10.15 interprets simplicity
in computational terms; specifically, as the feasibility of answering very basic ques-
tions regarding the probability distribution (i.e., determining the probability mass
assigned to a single (n-bit long) string and even to an interval of such strings). This
simplicity condition is closely related to being polynomial-time sampleable via a
monotone mapping (see Exercise 10.14). In §10.2.2.2 we shall consider the more
intuitive and robust class of all polynomial-time sampleable probability ensembles
(and show that it contains all simple ensembles). We believe that the combina-
tion of the results presented in §10.2.1.2 and §10.2.2.2 retrospectively endorses the
choice underlying Definition 10.15. We articulate this point next.

We note that enlarging the class of distributions weakens the conjecture that
the corresponding class of distributional NP problems contains infeasible prob-
lems. On the other hand, the conclusion that a specific distributional problem is
not feasible becomes stronger when the problem belongs to a smaller class that
corresponds to a restricted definition of admissible distributions. The combined
results of §10.2.1.2 and §10.2.2.2 assert that a conjecture that refers to the larger
class of polynomial-time sampleable ensembles implies a conclusion that refers to
a (very) simple probability ensemble (which resides in the smaller class). Thus,
the current setting in which both the conjecture and the conclusion refer to simple
probability ensembles may be viewed as just an intermediate step.

Indeed, the big question in the current context is whether dist AP is contained
in tpcP. A positive answer (especially if extended to sampleable ensembles) would
deem the P-vs-NP Question of little practical significant. However, our daily ex-
perience as well as much research effort indicate that some NP problems are not
merely hard in the worst-case, but rather “typically hard”. This supports the
conjecture that distA'P is not contained in tpcP.

Needless to say, the latter conjecture implies P # NP, and thus we should
not expect to see a proof of it. What we may hope to see is “distA/P-complete”
problems; that is, problems in dist AP that are not in tpcP unless the entire class
dist AP is contained in tpcP. An adequate notion of a reduction is used towards
formulating this possibility (which in turn is captured by the notion of “distA/P-
complete” problems).

Step 4: Defining reductions among (distributional) problems. Intuitively,
such reductions must preserve average-case feasibility. Thus, in addition to the
standard conditions (i.e., that the reduction be efficiently computable and yield a
correct result), we require that the reduction “respects” the probability distribu-
tion of the corresponding distributional problems. Specifically, the reduction should
not map very likely instances of the first (“starting”) problem to rare instances of

410 CHAPTER 10. RELAXING THE REQUIREMENTS

the second (“target”) problem. Otherwise, having a typically polynomial-time al-
gorithm for the second distributional problem does not necessarily yield such an
algorithm for the first distributional problem. Following is the adequate analogue
of a Cook reduction (i.e., general polynomial-time reduction), where the analogue
of a Karp-reduction (many-to-one reduction) can be easily derived as a special case.

Teaching note: One may prefer presenting in class only the special case of many-to-
one reductions, which suffices for Theorem 10.17. See Footnote 11.

Definition 10.16 (reductions among distributional problems): We say that the
oracle machine M reduces the distributional problem (S,X) to the distributional
problem (T,Y) if the following three conditions hold.

1. Efficiency: The machine M runs in polynomial-time.'°

2. Validity: For every x € {0,1}*, it holds that M*(z) = 1 if an only if v € S,
where MT(x) denotes the output of the oracle machine M on input x and
access to an oracle for T.

3. Domination:'* The probability that, on input X, and oracle access to T,
machine M makes the query y is upper-bounded by poly(|y|) - Pr[Y|,| = y].
That is, there exists a polynomial p such that, for every y € {0,1}* and every
n € N, it holds that

PriQ(Xn) 3 9] < p(ly|) - Pr[Yjy =yl (10.2)

where Q(x) denotes the set of queries made by M on input © and oracle access
toT.

In addition, we require that the reduction does not make too short queries;
that is, there exists a polynomial p' such that if y € Q(z) then p'(|y|) > |z|.

The Lh.s. of Eq. (10.2) refers to the probability that, on input distributed as X,
the reduction makes the query y. This probability is required not to exceed the
probability that y occurs in the distribution Y}, by more than a polynomial factor
in [y|. In this case we say that the Lh.s. of Eq. (10.2) is dominated by Pr[Y},| = y].

Indeed, the domination condition is the only aspect of Definition 10.16 that ex-
tends beyond the worst-case treatment of reductions and refers to the distributional
setting. The domination condition does not insist that the distribution induced by

10]n fact, one may relax the requirement and only require that M is typically polynomial-time
with respect to X. The validity condition may also be relaxed similarly.

et us spell out the meaning of Eq. (10.2) in the special case of many-to-one reductions (i.e.,
MT(x) = 1 if and only if f(z) € T, where f is a polynomial-time computable function): in this
case Pr[Q(Xn) 3 y] is replaced by Pr[f(X,) = y]. Assuming that f is one-to-one, Eq. (10.2)
simplifies to Pr[le_1(y)‘ = f~Yy)] < p(Jy|) - Pr[Y},| = y] for any y in the image of f. Indeed,
nothing is required for y not in the image of f.

10.2. AVERAGE CASE COMPLEXITY 411

Q(X) equals Y, but rather allows some slackness that, in turn, is bounded so to
guarantee preservation of typical feasibility (see Exercise 10.15).12

We note that the reducibility arguments extensively used in Chapters 7 and 8
(see discussion in Section 7.1.2) are actually reductions in the spirit of Defini-
tion 10.16 (except that they refer to different types of computational tasks).

10.2.1.2 Complete problems

Recall that our conjecture is that distA/P is not contained in tpcP, which in turn
strengthens the conjecture P # NP (making infeasibility a typical phenomenon
rather than a worst-case one). Having no hope of proving that dist AP is not
contained in tpcP, we turn to the study of complete problems with respect to that
conjecture. Specifically, we say that a distributional problem (5, X) is distA/P-
complete if (9, X) € dist AP and every (S’, X') € distAP is reducible to (5, X)
(under Definition 10.16).

Recall that it is quite easy to prove the mere existence of NP-complete problems
and many natural problems are NP-complete. In contrast, in the current context,
establishing completeness results is quite hard. This should not be surprising in
light of the restricted type of reductions allowed in the current context. The restric-
tion (captured by the domination condition) requires that “typical” instances of
one problem should not be mapped to “untypical” instances of the other problem.
However, it is fair to say that standard Karp-reductions (used in establishing NP-
completeness results) map “typical” instances of one problem to quite “bizarre”
instances of the second problem. Thus, the current subsection may be viewed as a
study of reductions that do not commit this sin.

Theorem 10.17 (distNP-completeness): distA'P contains a distributional prob-
lem (T,Y") such that each distributional problem in distN'P is reducible (per Defini-
tion 10.16) to (T,Y"). Furthermore, the reduction is deterministic and many-to-one.

Proof: We start by introducing such a problem, which is a natural distributional
version of the decision problem Sy (used in the proof of Theorem 2.18). Recall
that Sy contains the instance (M, z, 1) if there exists y € U;<;{0, 1} such that M
accepts the input pair (x,y) within ¢ steps. We couple Sy with the “quasi-uniform”
probability ensemble U’ that assigns to the instance (M, z,1') a probability mass
proportional to 2~ UMI+12D) " Specifically, for every (M, x, 1) it holds that

9= (1M +]z])
()

12\We stress that the notion of domination is incomparable to the notion of statistical (resp.,
computational) indistinguishability. On one hand, domination is a local requirement (i.e., it
compares the two distribution on a point-by-point basis), whereas indistinguishability is a global
requirement (which allows rare exceptions). On the other hand, domination does not require
approximately equal values, but rather a ratio that is bounded in one direction. Indeed, domina-
tion is not symmetric. We comment that a more relaxed notion of domination that allows rare
violations (as in Footnote 10) suffices for the preservation of typical feasibility.

PrlU,, = (M,z,1")] = (10.3)

412 CHAPTER 10. RELAXING THE REQUIREMENTS

where n & (M, z,1")] = |M| + |z| + t. Note that, under a suitable encoding, the
ensemble U’ is indeed simple.!?

The reader can easily verify that the generic reduction used when reducing
any set in NP to Su (see the proof of Theorem 2.18), fails to reduce distA'P
to (Su,U’). Specifically, in some cases (see next paragraph), these reductions do
not satisfy the domination condition. Indeed, the difficulty is that we have to
reduce all dist AP problems (i.e., pairs consisting of decision problems and simple
distributions) to one single distributional problem (i.e., (Su,U’)). Applying the
aforementioned reductions, we end up with many distributional versions of Sy,
and furthermore the corresponding distributions are very different (and are not
necessarily dominated by a single distribution).

Let us take a closer look at the aforementioned generic reduction, when applied
to an arbitrary (S, X) € distAVP. This reduction maps an instance x to a triple
(Mg, z,17s(2])) where Mg is a machine verifying membership in S (while using
adequate NP-witnesses) and pg is an adequate polynomial. The problem is that x
may have relatively large probability mass (i.e., it may be that Pr[X|,| =] > 2~ Iy
while (Mg, z,175(2D) has “uniform” probability mass (i.e., (Mg, =, 1Ps(2D) has
probability mass smaller than 2~1*I in U’). This violates the domination condition
(see Exercise 10.18), and thus an alternative reduction is required.

The key to the alternative reduction is an (efficiently computable) encoding of
strings taken from an arbitrary simple distribution by strings that have a similar
probability mass under the uniform distribution. This means that the encoding
should shrink strings that have relatively large probability mass under the origi-
nal distribution. Specifically, this encoding will map x (taken from the ensemble
{X.}nen) to a codeword z' of length that is upper-bounded by the logarithm of
1/Pr[X|;| =], ensuring that Pr[X, =x] = O(271#'l). Accordingly, the reduction
will map z to a triple (Mg x, 2, 11”(‘””‘)), where |2'| < O(1) + logy (1/Pr[X 5 =1])
and Mg x is an algorithm that (given z' and x) first verifies that z’ is a proper
encoding of z and next applies the standard verification (i.e., Mg) of the problem
S. Such a reduction will be shown to satisfy all three conditions (i.e., efficiency,
validity, and domination). Thus, instead of forcing the structure of the original
distribution X on the target distribution U’, the reduction will incorporate the
structure of X in the reduced instance. A key ingredient in making this possible is
the fact that X is simple (as per Definition 10.15).

With the foregoing motivation in mind, we now turn to the actual proof; that
is, proving that any (S,X) € distA"P is reducible to (Su,U’). The following
technical lemma is the basis of the reduction. In this lemma as well as in the
sequel, it will be convenient to consider the (accumulative) distribution function

of the probability ensemble X. That is, we consider u(z) def Pr[X; < o], and
note that p : {0,1}* — [0, 1] is polynomial-time computable (because X satisfies

I3For example, we may encode (M, z,1%), where M = 01 ---0y, € {0,1}* and z =71 ---74 €
{0,1}¢, by the string 107 --- 00017171 - - - 74701t. Then (g) - Pr[U!, < (M,z,1%)] equals
(iparp el — 1) + 27 M (M€ {0, 1M1 M7 < MY+ 27 (MIFEED - fal € {0,131 1#) 2 o < @},
where i, ¢ ; is the ranking of {k,k + £} among all 2-subsets of [k + £+ t].

10.2. AVERAGE CASE COMPLEXITY 413

Definition 10.15).

Coding Lemma:!* Let p : {0,1}* — [0, 1] be a polynomial-time computable function
that is monotonically non-decreasing over {0,1}" for every n (i.e., u(z') < p(z")
for any 2’ < 2’ € {0,1}1*'l). For = € {0,1}"\ {0}, let = — 1 denote the string
preceding z in the lexicographic order of n-bit long strings. Then there exist an
encoding function C), that satisfies the following three conditions.

1. Compression: For every « it holds that |Cy(x)| < 1+ min{|z|,log,(1/p1'(z))},

where p'(z) Lef w(x) —p(z —1) if z € {0}* and p/(0™) Lef 1(0™) otherwise.

2. Efficient Encoding: The function C}, is computable in polynomial-time.

3. Unique Decoding: For every n € N, when restricted to {0,1}", the function
C, is one-to-one (i.e., if Cy(x) = C,(z") and |z| = |2'| then z = z').

Proof: The function C, is defined as follows. If p'(z) < 27/°l then C,(z) = 0z
(ie., in this case x serves as its own encoding). Otherwise (i.e., p'(z) > 2~12I)
then Cy(x) = 1z, where z is chosen such that |z| < log,(1/p'(z)) and the mapping
of n-bit strings to their encoding is one-to-one. Loosely speaking, z is selected to
equal the shortest binary expansion of a number in the interval (u(z) —p'(z), p(z)].
Bearing in mind that this interval has length p'(z) and that the different intervals
are disjoint, we obtain the desired encoding. Details follows.

We focus on the case that p'(z) > 271%l, and detail the way that z is selected
(for the encoding C\(z) = 1z). If & > 0l and p(x) < 1, then we let z be the
longest common prefix of the binary expansions of p(z — 1) and u(z); for example,
if 14(1010) = 0.10010 and p(1011) = 0.10101111 then C,(1011) = 1z with z = 10.
Thus, in this case 0.z1 is in the interval (u(z—1), u(x)] (i.e., p(z—1) < 0.21 < p(z)).
For z = 0/*l, we let z be the longest common prefix of the binary expansions of 0
and p(x) and again 0.z1 is in the relevant interval (i.e., (0, u(x)]). Finally, for z such
that u(z) = 1and p(z—1) < 1, we let z be the longest common prefix of the binary
expansions of p(z—1) and 1 —2-1¢1=1 and again 0.21 is in (u(x —1), u(x)] (because
W (x) > 271 and p(r — 1) < p(z) = 1 imply that pu(z — 1) < 1 — 27171 < p(2)).
Note that if pu(z) = p(z — 1) = 1 then p/(z) = 0 < 2121,

We now verify that the foregoing C), satisfies the conditions of the lemma. We
start with the compression condition. Clearly, if u'(z) < 2~1°l then |C,(z)| =
1+ |z| <14 log,(1/u'(z)). On the other hand, suppose that p(x) > 2% and
let us focus on the sub-case that z > 01l and pu(x) < 1. Let z = 2, --- 2 be
the longest common prefix of the binary expansions of pu(z — 1) and u(z). Then,
w(z — 1) = 0.20u and p(x) = 0.z1v, where w,v € {0,1}*. We infer that

’ _ poly(|zf) 4 _
W) = pla)—ple—1) < [D27+ > 27| =) 27 < 275
i=1 i=041 i=1

14The lemma actually refers to {0,1}™, for any fixed value of n, but the efficiency condition
is stated more easily when allowing n to vary (and using the standard asymptotic analysis of
algorithms). Actually, the lemma is somewhat easier to state and establish for polynomial-
time computable functions that are monotonically non-decreasing over {0, 1}* (rather than over
{0,1}™). See further discussion in Exercise 10.19.

414 CHAPTER 10. RELAXING THE REQUIREMENTS

and |z| < log,(1/p'(x)) < |z| follows. Thus, |Cp,(z)| < 1+ min(|z|,log,(1/p'(x)))
holds in both cases. Clearly, C,, can be computed in polynomial-time by computing
pu(z—1) and p(x). Finally, note that C,, satisfies the unique decoding condition, by
separately considering the two aforementioned cases (i.e., C\,(z) = Oz and C,(x) =
1z). Specifically, in the second case (i.e., C,(z) = 1z), use the fact that p(x —1) <
0.z21 <p(z). O

To obtain an encoding that is one-to-one when applied to strings of different
lengths we augment C), in the obvious manner; that is, we consider Cj (z) def
(||, Cu(x)), which may be implemented as C),(z) = o101 -+ 0¢0,01C,(x) where
01 ---0¢ is the binary expansion of |z|. Note that |C} (z)| = O(log|z]) + |Cp(2)]
and that C}, is one-to-one.

The machine associated with (S, X). Let pu be the accumulative probability func-
tion associated with the probability ensemble X, and Mg be the polynomial-time
machine that verifies membership in S while using adequate NP-witnesses (i.e.,
z € S if and only if there exists y € {0, 1}P°¥(#) such that M(z,y) = 1). Using
the encoding function C},, we introduce an algorithm Mg, with the intension of
reducing the distributional problem (S, X) to (Su,U’) such that all instances (of
S) are mapped to triples in which the first element equals Mg, ,. Machine Mg,
is given an alleged encoding (under Cj,) of an instance to S along with an alleged
proof that the corresponding instance is in S, and verifies these claims in the ob-
vious manner. That is, on input ' and (z,y), machine Mg, first verifies that
o' = C),(z), and next verifiers that # € S by running Ms(z,y). Thus, Mg, verifies
membership in the set 5" = {C},(z) : € S}, while using proofs of the form (z,y)
such that Ms(x,y) =1 (for the instance C},(x)).">

The reduction. We maps an instance z (of S) to the triple (MS,H,CL(x),IP(‘I‘)),

where p(n) def ps(n)+pc(n) such that pg is a polynomial representing the running-
time of Mg and p¢ is a polynomial representing the running-time of the encoding
algorithm.

Analyzing the reduction. Our goal is proving that the foregoing mapping constitutes
a reduction of (S, X) to (Su,U’). We verify the corresponding three requirements
(of Definition 10.16).

1. Using the fact that C, is polynomial-time computable (and noting that p
is a polynomial), it follows that the foregoing mapping can be computed in
polynomial-time.

2. Recall that, on input (z', (z,y)), machine Mg , accepts if and only if 2’ =
C,(z) and Ms accepts (z,y) within ps(|z|) steps. Using the fact that C; ()
uniquely determines z, it follows that = € S if and only if there exists a string
y of length at most p(|z|) such that Mg, accepts (C} (), (z,y)) in at most

15 Note that |y| = poly(|z|), but |z| = poly(|C),(z)]) does not necessarily hold (and so S' is not

necessarily in NP). As we shall see, the latter point is immaterial.

10.2. AVERAGE CASE COMPLEXITY 415

p(|z|) steps. Thus, z € S if and only if (Ms,,,C,,(z), 17(zDy € Sy, and the
validity condition follows.

3. In order to verify the domination condition, we first note that the foregoing
mapping is one-to-one (because the transformation z — Cj () is one-to-
one). Next, we note that it suffices to consider instances of Sy that have
a preimage under the foregoing mapping (since instances with no preimage
trivially satisfy the domination condition). Each of these instances (i.e., each
image of this mapping) is a triple with the first element equal to Mg, and
the second element being an encoding under Cj,. By the definition of U’, for

every such image (Ms ., C), (), 17(=Dy € {0,1}", it holds that

2
> con 2.2 (0@ +00og [a])

—1
PHUL = (M Cy(a). 1900Y] = () -2 (satviciion

where ¢ = 27IMs.xl=1 is a constant depending only on S and p (i.e., on the

distributional problem (S, X)). Thus, for some positive polynomial ¢, we
have
PriU}, = (Ms i, Cp (), 170°D)] > 2719 @) /g (), (10.4)

By virtue of the compression condition (of the Coding Lemma), we have
2=1Cu(@)] > g—1-min(|e[log2(1/1'(x)) Tt follows that

Recalling that is the only preimage that is mapped to (Mg, C}, (), 17(1=D)
and combining Eq. (10.4) & (10.5), we establish the domination condition.

The theorem follows. [}

Reflections. The proof of Theorem 10.17 demonstrates the fact that the re-
duction used in the proof of Theorem 2.18 does not introduce much structure
in the reduced instances (i.e., does not reduce the original problem to a “highly
structured special case” of the target problem). Put in other words, unlike more
advanced worst-case reductions, this reduction does not map “random” (i.e., uni-
formly distributed) instances to highly structured instances (which occur with neg-
ligible probability under the uniform distribution). Thus, the reduction used in the
proof of Theorem 2.18 suffices for reducing any distributional problem in distA'P
to a distributional problem consisting of Sy coupled with some simple probability
ensemble (see Exercise 10.20).16

However, Theorem 10.17 states more than the latter assertion. That is, it states
that any distributional problem in dist VP is reducible to the same distributional

16Note that this cannot be said of most known Karp-reductions, which do map random instances
to highly structured ones. Furthermore, the same (structure creating property) holds for the
reductions obtained by Exercise 2.19.

416 CHAPTER 10. RELAXING THE REQUIREMENTS

version of Sy. Indeed, the effort involved in proving Theorem 10.17 was due to
the need for mapping instances taken from any simple probability ensemble (which
may not be the uniform ensemble) to instances distributed in a manner that is
dominated by a single probability ensemble (i.e., the quasi-uniform ensemble U").

Once we have established the existence of one distAVP-complete problem, we
may establish the distVP-completeness of other problems (in distAP) by reduc-
ing some distA"P-complete problem to them (and relying on the transitivity of
reductions (see Exercise 10.17)). Thus, the difficulties encountered in the proof
of Theorem 10.17 are no longer relevant. Unfortunately, a seemingly more severe
difficulty arises: almost all know reductions in the theory of NP-completeness work
by introducing much structure in the reduced instances (i.e., they actually reduce
to highly structured special cases). Furthermore, this structure is too complex in
the sense that the distribution of reduced instances does not seem simple (in the
sense of Definition 10.15). Designing reductions that avoid the introduction of such
structure has turned out to be quite difficult; still several such reductions are cited
in [85].

10.2.1.3 Probabilistic versions

The definitions in §10.2.1.1 can be extended so that to account also for randomized
computations. For example, extending Definition 10.14, we have:

Definition 10.18 (the class tpcBPP): For a probabilistic algorithm A, a Boolean
function f, and a time-bound function t:N— N, we say that the string x is t-bad for
A with respect to f if with probability exceeding 1/3, on input x, either A(z) # f(z)
or A runs more that t(|x|) steps. We say that A typically solves (S, {X,},cn) in
probabilistic polynomial-time if there exists a polynomial p such that the probability
that X,, is p-bad for A with respect to the characteristic function of S is negligible.
We denote by tpcBPP the class of distributional problems that are typically solvable
in probabilistic polynomial-time.

The definition of reductions can be similarly extended. This means that in Defini-
tion 10.16, both M*(z) and Q(x) (mentioned in Items 2 and 3, respectively) are
random variables rather than fixed objects. Furthermore, validity is required to
hold (for every input) only with probability 2/3, where the probability space refers
only to the internal coin tosses of the reduction. Randomized reductions are closed
under composition and preserve typical feasibility (see Exercise 10.21).

Randomized reductions allow the presentation of a dist//P-complete problem
that refers to the (perfectly) uniform ensemble. Recall that Theorem 10.17 estab-
lishes the distA"P-completeness of (Su,U’), where U’ is a quasi-uniform ensemble
(ie., PrlU, = (M,z,1%)] = 27UMI+eD /() where n = |(M,z,1%)]). We first
note that (Su,U’) can be randomly reduced to (Sy,U"), where S = {(M,z,z) :
(M, z,11¥l) € Sy} and Pr[U) = (M, z, z)] = 2~ IMIFI=I+=D /(7) for every (M, z, 2) €
{0,1}". The randomized reduction consists of mapping (M,z,1%) to (M, z, z),
where z is uniformly selected in {0,1}". Recalling that U = {U,},cn denotes the
uniform probability ensemble (i.e., U,, is uniformly distributed on strings of length
n) and using a suitable encoding we get.

10.2. AVERAGE CASE COMPLEXITY 417

Proposition 10.19 There ezists S € NP such that every (S',X') € distN'P is
randomly reducible to (S,U).

Proof Sketch: By the forgoing discussion, every (S’, X') € distA/P is randomly
reducible to (S, U"), where the reduction goes through (Su,U’). Thus, we focus
on reducing (53, U") to (Sy,U), where Sjj € NP is defined as follows. The string
bing (|u|)-bine(|v])uvw is in Sy if and only if (u,v,w) € Sy and £ = [log, |uvw|] +1,
where bin, (i) denotes the ¢-bit long binary encoding of the integer i € [2°7!] (i.e.,
the encoding is padded with zeros to a total length of ¢). The reduction maps
(M, z, z) to the string bin,(|z|)bin, (| M |)Mwz, where £ = [log,(|M| + |x| + |z|)]+1.
Noting that this reduction satisfies all conditions of Definition 10.16, the proposi-
tion follows. [

10.2.2 Ramifications

In our opinion, the most problematic aspect of the theory described in Section 10.2.1
is the definition of simple probability ensembles, which in turn restricts the def-
inition of distA/P (Definition 10.15). This restriction strengthens the conjecture
that distA/P is not contained in tpcBPP, which means that it weakens conditional
results that are based on this conjecture. An appealing extension of the class
dist AP is presented in §10.2.2.2, where it is shown that if the extended class is
not contained in tpcBPP then distA/P itself is not contained in tpcBPP. Thus,
dist A"P-complete problems enjoy the benefit of both being in the more restricted
class (i.e., dist AP) and being hard as long as some problems in the extended class
is hard.

Another extension appears in §10.2.2.1, where we extend the treatment from
decision problems to search problems. This extension is motivated by the realiza-
tion that search problem are actually of greater importance to real-life applications
(cf. Section 2.1.1), and hence a theory motivated by real-life applications must
address such problems, as we do next.

Prerequisites: For the technical development of §10.2.2.1, we assume familiar-
ity with the notion of unique solution and results regarding it as presented in
Section 6.2.3. For the technical development of §10.2.2.2, we assume familiarity
with hashing functions as presented in Appendix D.2.

10.2.2.1 Search versus Decision

Indeed, as in the case of worst-case complexity, search problems are at least as im-
portant as decision problems. Thus, an average-case treatment of search problems
is indeed called for. We first present distributional versions of PF and PC (cf.
Section 2.1.1), following the underlying principles of the definitions of tpcP and
distA'P.

Definition 10.20 (the classes tpcPF and distPC): As in Section 2.1.1, we con-
sider only polynomially bounded search problems; that is, binary relations R C

418 CHAPTER 10. RELAXING THE REQUIREMENTS

{0,1}* x {0,1}* such that for some polynomial q it holds that (x,y) € R implies
def

ly] < q(|z]). Recall that R(x) = {y:(z,y)€R} and Sgr = {z: R(z) # 0}.
e A distributional search problem consists of a polynomially bounded search prob-
lem coupled with a probability ensemble.

o The class tpcPF consists of all distributional search problems that are typ-
ically solvable in polynomial-time. That is, (R,{Xn},.eN) € tpcPF if there
exists an algorithm A and a polynomial p such that the probability that on
input X,, algorithm A either errs or runs more that p(n) steps is negligible,
where A errs on x € Sg if A(x) € R(z) and errs on x & Sg if A(z) # L.

o A distributional search problem (R,X) is in distPC if R € PC and X is
sitmple (as in Definition 10.15).

Likewise, the class tpcBPPF consists of all distributional search problems that
are typically solvable in probabilistic polynomial-time (cf., Definition 10.18). The
definitions of reductions among distributional problems, presented in the context of
decision problem, extend to search problems.

Fortunately, as in the context of worst-case complexity, the study of distribu-
tional search problems “reduces” to the study of distributional decision problems.

Theorem 10.21 (reducing search to decision): distPC C tpcBPPF if and only if
dist AP C tpcBPP. Furthermore, every problem in distA'P is reducible to some
problem in distPC, and every problem in distPC is randomly reducible to some
problem in distAV/P.

Proof Sketch: The furthermore part is analogous to the actual contents of the
proof of Theorem 2.6 (see also Step 1 in the proof of Theorem 2.15). Indeed the
reduction of NP to PC presented in the proof of Theorem 2.6 extends to the current
context. Specifically, for any S € NP, we consider a relation R € PC such that
S = {x : R(z) # 0}, and note that, for any probability ensemble X, the identity
transformation reduces (S, X) to (R, X).

A difficulty arises in the opposite direction. Recall that in the proof of The-
orem 2.6 we reduced the search problem of R € PC to deciding membership in

Sk def {{z,y"y : " st. (z,y'y") € R} € NP. The difficulty encountered here is
that, on input x, this reduction makes queries of the form (z,y'), where y' is a
prefix of some string in R(x). These queries may induce a distribution that is not
dominated by any simple distribution. Thus, we seek an alternative reduction.

As a warm-up, let us assume for a moment that R has unique solutions (in the
sense of Definition 6.26); that is, for every z it holds that |R(z)| < 1. In this case
we may easily reduce the search problem of R € PC to deciding membership in
St € NP, where (z,i,0) € S} if and only if R(x) contains a string in which the
i*" bit equals 0. Specifically, on input z, the reduction issues the queries (z,i,0),
where ¢ € [{] (with £ = poly(|z|)) and o € {0,1}, which allows for determining the
single string in the set R(z) C {0, 1} (whenever |R(x)| = 1). The point is that this
reduction can be used to reduce any (R, X) € distPC (having unique solutions) to

10.2. AVERAGE CASE COMPLEXITY 419

(S%,X") € distN'P, where X" equally distributes the probability mass of « (under
X) to all the tuples (z,i,0); that is, for every i € [{] and o € {0,1}, it holds that
PriX |l i0y = (:0,0)] equals Pr[X|, = z]/2L.

Unfortunately, in the general case, R may not have unique solutions. Nev-
ertheless, applying the main idea that underlies the proof of Theorem 6.27, this
difficulty can be overcome. We first note that the foregoing mapping of instances
of the distributional problem (R, X) € distPC to instances of (S}, X") € dist NP
satisfies the efficiency and domination conditions even in the case that R does not
have unique solutions. What may possibly fail (in the general case) is the validity
condition (i.e., if |[R(z)| > 1 then we may fail to recover any element of R(x)).

Recall that the main part of the proof of Theorem 6.27 is a randomized reduction
that maps instances of R to triples of the form (z,m,h) such that m is uniformly
distributed in [¢] and h is uniformly distributed in a family of hashing function
H*, where ¢ = poly(|z|) and H}" is as in Appendix D.2. Furthermore, if R(z) # 0
then, with probability ©(1/¢) over the choices of m € [¢] and h € H}"*, there exists a
unique y € R(z) such that h(y) = 0™. Defining R'(x,m,h) = {yeR: h(y) =0"},
this yields a randomized reduction of the search problem of R to the search problem
of R’ such that with noticeable probability'” the reduction maps instances that have
solutions to instances having a unique solution. Furthermore, this reduction can be
used to reduce any (R, X) € distPC to (R, X') € distPC, where X' distributes the
probability mass of x (under X) to all the triples (x,m, h) such that for every m € [{]
and h € Hi" it holds that Pr[X/ . .\ = (x,m,h)] equals Pr[X|; = a]/(€ - [H"|).
(Note that with a suitable encoding, X' is indeed simple.)

The theorem follows by combining the two aforementioned reductions. That is,
we first apply the randomized reduction of (R, X) to (R', X'), and next reduce the
resulting instance to an instance of the corresponding decision problem (S%,, X"),
where X" is obtained by modifying X' (rather than X'). The combined randomized
mapping satisfies the efficiency and domination conditions, and is valid with notice-
able probability. The error probability can be made negligible by straightforward
amplification (see Exercise 10.21). O

10.2.2.2 Simple versus sampleable distributions

Recall that the definition of simple probability ensembles (underlying Definition 10.15)
requires that the accumulating distribution function is polynomial-time computable.
Recall that p : {0,1}* — [0,1] is called the accumulating distribution function of
X ={X, }pen if for every n € N and z € {0,1}™ it holds that u(z) Lef PriX, <z,
where the inequality refers to the standard lexicographic order of n-bit strings.

As argued in §10.2.1.1, the requirement that the accumulating distribution func-
tion is polynomial-time computable imposes severe restrictions on the set of ad-
missible ensembles. Furthermore, it seems that these simple ensembles are indeed

17Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it is
greater than the reciprocal of some positive polynomial. In the context of randomized reductions,
the relevant parameter is the length of the input to the reduction.

420 CHAPTER 10. RELAXING THE REQUIREMENTS

“simple” in some intuitive sense and hence represent a minimalistic model of distri-
butions that may occur in practice. Seeking a maximalistic model of distributions
that occur in practice, we consider the notion of polynomial-time sampleable en-
sembles (underlying Definition 10.22). We believe that the class of such ensembles
contains all distributions that may occur in practice, because we believe that the
real world should be modeled as a feasible (rather than an arbitrary) randomized
process

Definition 10.22 (sampleable ensembles and the class sampNP): We say that a
probability ensemble X = {X,,},,cn is (polynomial-time) sampleable if there ezists
a probabilistic polynomial-time algorithm A such that for every x € {0,1}* it holds
that PrlA(1*)) = 2] = Pr(X|,) = z]. We denote by sampN'P the class of distri-
butional problems consisting of decision problems in NP coupled with sampleable
probability ensembles.

We first note that all simple probability ensembles are indeed sampleable (see
Exercise 10.22), and thus dist VP C sampA/P. On the other hand, it seems that
there are sampleable probability ensembles that are not simple (see Exercise 10.23).
In fact, extending the scope of distributional problems (from distA/P to sampA/P)
allows proving that every NP-complete problem has a distributional version in
sampNP that is distA/P-hard (see Exercise 10.24). Furthermore, it is possible to
prove that all natural NP-complete problem have distributional versions that are
sampA P-complete.

Theorem 10.23 (sampA P-completeness): Suppose that S € NP and that every
set in NP is reducible to S by a Karp-reduction that does not shrink the input.
Then there exists a polynomial-time sampleable ensemble X such that any problem
in sampNP is reducible to (S, X)

The proof of Theorem 10.23 is based on the observation that there exists a polynomial-
time sampleable ensemble that dominates all polynomial-time sampleable ensembles.
The existence of this ensemble is based on the notion of a universal (sampling)
machine. For further details see Exercise 10.25. (Recall that when proving The-
orem 10.17, we did not establish an analogous result for simple ensembles (but
rather capitalized on the universal nature of Sy).)

Theorem 10.23 establishes a rich theory of samp /N P-completeness, but does not
relate this theory to the previously presented theory of distA/P-completeness (see
Figure 10.1). This is done in the next theorem, which asserts that the existence of
typically hard problems in sampA/P implies their existence in distNP.

Theorem 10.24 (sampA P-completeness versus distA“P-completeness): If samp NP
is not contained in tpcBPP then distN'P is not contained in tpcBPP.

Thus, the two “typical-case complexity” versions of the P-vs-NP Question are
equivalent. That is, if some “sampleable distribution” versions of NP are not
typically feasible then some “simple distribution” versions of NP are not typically

10.2. AVERAGE CASE COMPLEXITY 421

sampNP-complete [Thm 10.23]

distNP-complete [Thm 10.17]

Figure 10.1: Two types of average-case completeness

feasible. In particular, if sampNP-complete problems are not in tpcBPP then
dist N"P-complete problems are not in tpcBPP.

The foregoing assertions would all follow if sampN P were (randomly) reducible
to dist AP (i.e., if every problem in sampNP were reducible (under a randomized
version of Definition 10.16) to some problem in distAP); but, unfortunately, we
do not know whether such reductions exist. Yet, underlying the proof of Theo-
rem 10.24 is a more liberal notion of a reduction among distributional problem.

Proof Sketch: We shall prove that if dist AP is contained in tpcBPP then the
same holds for sampAP (i.e., sampAP is contained in tpcBPP). Actually, we
shall show that if distPC is contained in tpcBPPF then the sampleable version of
distPC, denoted sampPC, is contained in tpcBPPF (and refer to Exercise 10.26).
Specifically, we shall show that under a relaxed notion of a randomized reduction,
every problem in samp?PPC is reduced to some problem in dist’PC. Loosely speaking,
this relaxed notion (of a randomized reduction) only requires that the validity and
domination conditions (of Definition 10.16 (when adapted to randomized reduc-
tions)) hold with respect to a noticeable fraction of the probability space of the
reduction.'® We start by formulating this notion, when referring to distributional
search problems.

Teaching note: The following proof is quite involved and is better left for advanced
reading. Its main idea is related in one of the central ideas underlying the currently
known proof of Theorem 8.11. This fact as well as numerous other applications of this

idea, provide a good motivation for getting familiar with this idea.

18We warn that the existence of such a relaxed reduction between two specific distributional
problems does not necessarily imply the existence of a corresponding (standard average-case)
reduction. Specifically, although standard validity can be guaranteed (for problems in PC) by
repeated invocations of the reduction, such a process will not redeem the violation of the standard
domination condition.

422 CHAPTER 10. RELAXING THE REQUIREMENTS

Definition: A relaxed reduction of the distributional problem (R, X) to the distri-
butional problem (7',Y) is a probabilistic polynomial-time oracle machine M that
satisfies the following conditions:

Notation: For every z € {0,1}*, we denote by m(|z|) = poly(]z|) the number of
internal coin tosses of M on input x, and denote by M7 (x,r) the execution
of M on input z, internal coins r € {0,1}"™, and oracle access to T.

Validity: For some noticeable function p : N — [0,1] (i.e., p(n) > 1/poly(n)) it
holds that for every z € {0, 1}*, there exists a set 2, C {0, 1}™(=D of size at
least p(|x|) - 2D such that for every r € Q, the reduction yields a correct
answer (i.e., M%(z,7) € R(z) if R(z) # 0 and M* (x,r) = L otherwise).

Domination: There exists a positive polynomial p such that, for every y € {0,1}*
and every n € NN, it holds that

PriQ"(X,) 3 y] < p(ly]) - PrY}y = 9], (10.6)

where Q'(z) is a random variable, defined over the set Q. (of the validity
condition), representing the set of queries made by M on input x and oracle
access to T'. That is, Q'(x) is defined by uniformly selecting r € 2, and
considering the set of queries made by M on input z, internal coins r, and
oracle access to T'. (In addition, as in Definition 10.16, we also require that
the reduction does not make too short queries.)

The reader may verify that this relaxed notion of a reduction preserves typical
feasibility; that is, for R € PC, if there exists a relaxed reduction of (R, X) to
(T,Y) and (T,Y) is in tpcBPPF then (R, X) is in tpcBPPF. The key observation
is that the analysis may discard the case that, on input x, the reduction selects
coins not in €2,. Indeed, the queries made in that case may be untypical and the
answers received may be wrong, but this is immaterial. What matter is that, on
input z, with noticeable probability the reduction selects coins in 2., and produces
“typical with respect to Y queries (by virtue of the relaxed domination condition).
Such typical queries are answered correctly by the algorithm that typically solves
(T,Y), and if = has a solution then these answers yield a correct solution to x
(by virtue of the relaxed validity condition). Thus, if « has a solution then with
noticeable probability the reduction outputs a correct solution. On the other hand,
the reduction never outputs a wrong solution (even when using coins not in),
because incorrect solutions are detected by relying on R € PC.

Our goal is presenting, for every (R,X) € sampPC, a relaxed reduction of
(R,X) to a related problem (R',X') € distPC, where (as usual) X = {X,},cN
and X' = {X] },en-

An oversimplified case: For starters, suppose that X, is uniformly distributed on
some set S, C {0,1}" and that there is a polynomial-time computable and invert-
ible mapping p of S, to {0,1}¢(") where £(n) = log, |S,|. Then, mapping = to
1l=I=4=Doy(z), we obtain a reduction of (R, X) to (R', X"), where X/, ; is uniform
over {170y : v € {0,1}*™} and R'(1"~“™0v) = R(u~"(v)) (or, equivalently,

10.2. AVERAGE CASE COMPLEXITY 423

R(z) = R'(11*1-t0=Doy(z))). Note that X' is a simple ensemble and R’ € PC;
hence, (R', X') € distPC. Also note that the foregoing mapping is indeed a valid
reduction (i.e., it satisfies the efficiency, validity, and domination conditions). Thus,
(R, X) is reduced to a problem in dist’PC (and indeed the relaxation was not used
here).

A simple but more instructive case: Next, we drop the assumption that there is
a polynomial-time computable and invertible mapping p of S,, to {0, 1}‘3(”), but
maintain the assumption that X,, is uniform on some set S, C {0,1}" and as-
sume that |S,| = 2/ is easily computable (from n). In this case, we may map
x € {0,1}" to its image under a suitable randomly chosen hashing function h, which
in particular maps n-bit strings to £(n)-bit strings. That is, we randomly map z to
(h,1"~*™)0h(z)), where h is uniformly selected in a set HE™ of suitable hash func-
tions (see Appendix D.2). This calls for redefining R’ such that R'(h, 1" “™0v)
corresponds to the preimages of v under h that are in S,,. Assuming that h is a
1-1 mapping of S,, to {0,1}*(™) we may define R'(h,1"~“""0v) = R(x) where z is
the unique string satisfying « € S,, and h(x) = v, where the condition = € S,, may
be verified by providing the internal coins of the sampling procedure that generate
z. Denoting the sampling procedure of X by S, and letting S(1™,r) denote the
output of S on input 1™ and internal coins r, we actually redefine R’ as

R'(h, 1" ™0v) = {(r,y) : M(SA"™,7))=v Ay R(S(1",7))}. (10.7)

We note that (r,y) € R'(h, 11¢1=¢0=D0n(z)) yields a solution y € R(z) if S(11*I,r) =
x, but otherwise “all bets are off” (as y will be a solution for S(11%!,r) # z). Now,
although typically h will not be a 1-1 mapping of S,, to {0, 1}‘3(”), it is the case that
for each © € S, with constant probability over the choice of h, it holds that h(z)
has a unique preimage in S, under h. (See the proof of Theorem 6.27.) In this
case (r,y) € R'(h,11*1=%U=Don(x)) implies S(1%,r) = z (which, in turn, implies
y € R(x)). We claim that the randomized mapping of x to (h,1"~*™0h(z)), where
h is uniformly selected in Hz(lzl), yields a relazed reduction of (R,X) to (R',X"),

||
where X!, is uniform over HE™ % {1740y ;v € {0,1}(™}. Needless to say, the
claim refers to the reduction that makes the query (h, 1*~“™0h(z)) and returns y
if the oracle answer equals (r,y) and y € R(z).
The claim is proved by considering the set 2, of choices of h € gD gor

which © € S,, is the only preimage of h(x) under h that resides in ‘S‘n (ie.,
{z' € S, : h(z')=h(x)}| = 1). In this case (i.e.,, h € Q,) it holds that (r,y) €
R'(h,11=1=t02Don(z)) implies that S(1!*l,7) = 2 and y € R(x), and the (relaxed)
validity condition follows. The (relaxed) domination condition follows by noting
that Pr[X,, =] ~ 2~%D that = is mapped to (h, 11*I=*(=Doh(x)) with proba-
bility 1/|H(';(‘|z|)|, and that x is the only preimage of (h, 11*1=¢0=D0h(z)) under the
mapping (among z' € S, such that Q, 3 h).

Before going any further, let us highlight the importance of hashing X, to ¢(n)-
bit strings. On one hand, this mapping is “sufficiently” one-to-one, and thus (with
constant probability) the solution provided for the hashed instance (i.e., h(x)) yield
a solution for the original instance (i.e.,). This guarantees the validity of the re-

424 CHAPTER 10. RELAXING THE REQUIREMENTS

duction. On the other hand, for a typical h, the mapping of X,, to h(X,,) covers the
relevant range almost uniformly. This guarantees that the reduction satisfies the
domination condition. Note that these two phenomena impose conflicting require-
ments that are both met at the correct value of ¢; that is, the one-to-one condition
requires £(n) > log, |Sy,|, whereas an almost uniform cover requires £(n) < log, |Sn|-
Also note that ¢(n) = log,(1/Pr[X,, = z]) for every z in the support of X,; the
latter quantity will be in our focus in the general case.

The general case: Finally, get rid of the assumption that X,, is uniformly distributed
over some subset of {0,1}". All that we know is that there exists a probabilistic
polynomial-time (“sampling”) algorithm S such that S(1™) is distributed identi-
cally to X,,. In this (general) case, we map instances of (R, X) according to their
probability mass such that z is mapped to an instance (of R') that consists of
(h,h(z)) and additional information, where h is a random hash function mapping
n-bit long strings to £,-bit long strings such that

Ce X Togy(1/Pr[X o =a])]. (10.8)

Since (in the general case) there may be more than 2% strings in the support of
X, we need to augment the reduced instance in order to ensure that it is uniquely
associated with z. The basic idea is augmenting the mapping of z to (h, h(z)) with
additional information that restricts X, to strings that occur with probability at
least 2%, Indeed, when X, is restricted in this way, the value of h(X,) uniquely
determines X,,.

Let g(n) denote the randomness complexity of S and S(1",r) denote the out-
put of S on input 1" and internal coin tosses 7 € {0,1}9("). Then, we randomly
map = to (h,h(z),h',v"), where h : {0,1}* — {0,1}% and A’ : {0,1}9(2D) —
{0,1}90=D =% are random hash functions and v € {0,1}202D~% is uniformly dis-
tributed. The instance (h, v, h',v") of the redefined search problem R’ has solutions
that consists of pairs (r, y) such that A(S(1™,r))=vAh'(r) = v and y€ R(S(1™,7)).
As we shall see, this augmentation guarantees that, with constant probability (over
the choice of h,h',v"), the solutions to the reduced instance (h,h(z),h',v") corre-
spond to the solutions to the original instance x.

The foregoing description assumes that, on input z, we can determine £,
which is an assumption that cannot be justified. Instead, we select ¢ uniformly
in {0,1,...,q(]z|)}, and so with noticeable probability we do select the correct
value (i.e., Pr[¢ = ¢;] = 1/(q(|z]) + 1) = 1/poly(|z|)). For clarity, we make n
and ¢ explicit in the reduced instance. Thus, we randomly map =z € {0,1}" to

(1n71£7h;h(x)7h,7v,) S {0’1}’”’7 where ¢ € {0,1,...,(1(’";)}7 h € Hf“ h, € H;Z((:))_Z7

and v' € {0,1}2") =% are uniformly distributed in the corresponding sets.'® This
mapping will be used to reduce (R, X) to (R', X'), where R’ and X' = {X], },ven

19 As in other places, a suitable encoding will be used such that the reduction maps strings of the
same length to strings of the same length (i.e., n-bit string are mapped to n/-bit strings, for n' =
poly(n)). For example, we may encode (1™, 1¢, h, h(z), k', v') as 1701¢019)=L0(R) (h(z))(h') (v'),
where each (w) denotes an encoding of w by a string of length (n' — (n + g(n) + 3))/4.

10.2. AVERAGE CASE COMPLEXITY 425

are redefined (yet again). Specifically, we let
R'(1", 1%, hyv, h',0') = {(r,y) : B(S(1", 7)) =vAh'(r)=v' Ay € R(S(1",7))} (10.9)

and X/, assigns equal probability to each X, , (for £ € {0,1,...,n}), where each

X, is isomorphic to the uniform distribution over H: x {0,1}¢ x Hg((s))% x

{0,1}9(™ ¢, Note that indeed (R', X') € distPC.

The aforementioned randomized mapping is analyzed by considering the correct
choice for ¢; that is, on input z, we focus on the choice ¢ = ¢,. Under this
conditioning (as we shall show), with constant probability over the choice of h,h'
and v', the instance x is the only value in the support of X, that is mapped to
(1", 1% b, h(x),h',v") and satisfies {r : h(S(1", 7)) = h(z) A B'(r) =v'} # 0. Tt
follows that (for such h,h' and v') any solution (r,y) € R'(1",1% h,h(z),h',v")
satisfies S(1",r) = = and thus y € R(z), which means that the (relaxed) validity
condition is satisfied. The (relaxed) domination condition is satisfied too, because
(conditioned on ¢ = £, and for such h, h’,v") the probability that X,, is mapped to
(1", 1% h, h(x), h',v") approximately equals PriX}, ,, =", 1% h, h(z),h',v")].

We now turn to analyze the probability, over the choice of h, h' and v’, that the
instance z is the only value in the support of X,, that is mapped to (17, 1% h, h(z), h',v")
and satisfies {r : h(S(1™,r)) = h(z) A W'(r) = v'} # 0. Firstly, we note that
|{r: S(1",r)=x}| > 290"~ and thus, with constant probability over the choice

of A € H;I((Z))fl* and v’ € {0,1}4(")=% there exists r that satisfies S(17,7) = «
and A'/(r) = v'. Next, we note that, with constant probability over the choice of
h € H!+, it holds that x is the only string having probability mass at least 27 %

n

(under X,,) that is mapped to h(z) under h. Finally, we prove that, with constant
probability over the choice of h € H’ and h' € H;I(;L)*l” (and even when con-
ditioning on the previous items), the mapping r — (h(S(1™,7)),h'(r)) maps the
set {r : Pr[X,, =S(1",7)] < 2%} to {0,1}9™) in an almost 1-1 manner. Specifi-
cally, with constant probability, no other r is mapped to the aforementioned pair
(h(x),v"). Thus, the claim follows and so does the theorem. O

Reflection. Theorem 10.24 implies that if sampA/P is not contained in tpcBPP
then every distA/P-complete problem is not in tpcBPP. This means that the
hardness of some distributional problems that refer to sampleable distributions im-
plies the hardness of some distributional problems that refer to simple distributions.
Furthermore, by Proposition 10.19, this implies the hardness of distributional prob-
lems that refer to the uniform distribution. Thus, hardness with respect to some
distribution in an utmost wide class (which arguably captures all distributions that
may occur in practice) implies hardness with respect to a single simple distribution
(which arguably is the simplest one).

Relation to one-way functions. We note that the existence of one-way func-
tions (see Section 7.1) implies the existence of problems in samp?PC that are not in
tpcBPPF (which in turn implies the existence of such problems in dist’PC). Specif-
ically, for a length-preserving one-way function f, consider the distributional search

426 CHAPTER 10. RELAXING THE REQUIREMENTS

problem (Rf,{f(Un)}nen), where Ry = {(f(r),7) : 7 € {0,1}*}.2° On the other
hand, it is not known whether the existence of a problem in sampPC \ tpcBPPF
implies the existence of one-way functions. In particular, the existence of a prob-
lem (R,X) in sampPC \ tpcBPPF represents the feasibility of generating hard
instances for the search problem R, whereas the existence of one-way function rep-
resents the feasibility of generating instance-solution pairs such that the instances
are hard to solve (see Section 7.1.1). Indeed, the gap refers to whether or not hard
instances can be efficiently generated together with corresponding solutions. Our
world view is thus depicted in Figure 10.2, where lower levels indicate seemingly
weaker assumptions.

one-way functions exist

distNPisnot in tpcBPP
(equiv., sampNP is not in tpcBPP)

P isdifferent than NP

Figure 10.2: Worst-case vs average-case assumptions

Chapter Notes

In this chapter, we presented two different approaches to the relaxation of com-
putational problems. The first approach refers to the concept of approximation,
while the second approach refers to average-case analysis. We demonstrated that
various natural notions of approximation can be cast within the standard frame-
works, where the framework of promise problems (presented in Section 2.4.1) is the
most non-standard framework we used (and it suffices for casting gap problems and
property testing). In contrast, the study of average-case complexity requires the
introduction of a new conceptual framework and addressing of various definitional
issues.

A natural question at this point is what have we gained by relaxing the re-
quirements. In the context of approximation, the answer is mixed: in some natural
cases we gain a lot (i.e., we obtained feasible relaxations of hard problems), while
in other natural cases we gain nothing (i.e., even extreme relaxations remain as
intractable as the original version). In the context of average-case complexity, the
negative side seems more prevailing (at least in the sense of being more system-
atic). In particular, assuming the existence of one-way functions, every natural

2ONote that the distribution f(Uy,) is uniform in the special case that f is a permutation over

{0,1}".

10.2. AVERAGE CASE COMPLEXITY 427

NP-complete problem has a distributional version that is hard, where this version
refers to a sampleable ensemble. Furthermore, in this case, some problems in NP
have hard distributional versions that refer to the uniform distribution.

Another difference between the two approaches is that the theory of approxima-
tion seems to lack a comprehensive structure, whereas the theory of average-case
complexity seems to have a too rigid structure (which seems to foil attempts to
present more appealing distA/P-complete problems).

Approximation

The following bibliographic comments are quite laconic and neglect mentioning
various important works (including credits for some of the results mentioned in our
text). As usual, the interested reader is referred to corresponding surveys.

Search or Optimization. The interest in approximation algorithms increased
considerably following the demonstration of the NP-completeness of many nat-
ural optimization problems. But, with some exceptions (most notably [167]),
the systematic study of the complexity of such problems stalled till the discov-
ery of the “PCP connection” (see Section 9.3.3) by Feige, Goldwasser, Lovdsz, and
Safra [69]. Indeed the relatively “tight” inapproximation results for max-Clique,
max-SAT, and the maximization of linear equations, due to Hastad [111, 112],
build on previous work regarding PCP and their connection to approximation (cf.,
e.g., [70, 14, 13, 27, 173]). Specifically, Theorem 10.5 is due to [111], while Theo-
rems 10.8 and 10.9 are due to [112]. The best known inapproximation result for
minimum Vertex Cover (see Theorem 10.7) is due to [65], but we doubt it is tight
(see, e.g., [134]). Reductions among approximation problems were defined and
presented in [167]; see Exercise 10.7, which presents a major technique introduced
in [167]. For general texts on approximation algorithms and problems (as discussed
in Section 10.1.1), the interested reader is referred to the surveys collected in [117].
A compendium of NP optimization problems is available at [61].

Recall that a different type of approximation problems, which are naturally as-
sociated with search problems, were treated in Section 6.2.2. We note that an anal-
ogous definitional framework (e.g., gap problems, polynomial-time approximation
schemes, etc) is applicable also to the approximate counting problems considered
in Section 6.2.2.

Property testing. The study of property testing was initiated by Rubinfeld and
Sudan [183] and re-initiated by Goldreich, Goldwasser, and Ron [93]. While the
focus of [183] was on algebraic properties such as low-degree polynomials, the focus
of [93] was on graph properties (and Theorem 10.12 is taken from [93]). The model
of bounded-degree graphs was introduced in [99] and Theorem 10.13 combines
results from [99, 100, 39]. For surveys of the area, the interested reader is referred
to [73, 182).

428 CHAPTER 10. RELAXING THE REQUIREMENTS

Average-case complexity

The theory of average-case complexity was initiated by Levin [145], who in partic-
ular proved Theorem 10.17. In light of the laconic nature of the original text [145],
we refer the interested reader to a survey [85], which provides a more detailed
exposition of the definitions suggested by Levin as well as a discussion of the con-
siderations underlying these suggestions. (This survey [85] provides also a brief
account of further developments.)

As noted in §10.2.1.1, the current text uses a variant of the original definitions.
In particular, our definition of “typical-case feasibility” differs from the original
definition of “average-case feasibility” in totally discarding exceptional instances
and in even allowing the algorithm to fail on them (and not merely run for an
excessive amount of time). The alternative definition was suggested by several
researchers, and appears as a special case of the general treatment provided in [41].

Section 10.2.2 is based on [28, 120]. Specifically, Theorem 10.21 (or rather the
reduction of search to decision) is due to [28] and so is the introduction of the class
sampANP. A version of Theorem 10.24 was proven in [120], and our proof follows
their ideas, which in turn are closely related to the ideas underlying the proof of
Theorem 8.11 (proved in [113]).

Recall that we know of the existence of problems in dist AP that are hard pro-
vided sampNP contains hard problems. However, these problems refer to some-
what generic decision problems such as Sy. The presentation of distA/P-complete
problems that combine a more natural decision problem (like SAT or Clique) with
a simple probability ensemble is an open problem.

Exercises

Exercise 10.1 (general TSP) For any function g, prove that the following ap-
proximation problem is NP-Hard. Given a general TSP instance I, represented
by a symmetric matrix of pairwise distances, the task is finding a tour of length
that is at most a factor g(I) of the minimum. Show that the result holds with
g(I) = exp(poly(]|I])) and for instances in which all distances are positive,

Guideline: By reduction from Hamiltonian path. Specifically, reduce the instance G =
([n], £) to an n-by-n distance matrix D = (di ;)i je[n] such that d;; = exp(poly(n)) if
{’L,]} € Fand d; ; = 1.

Exercise 10.2 (TSP with triangle inequalities) Provide a polynomial-time 2-
factor approximation for the special case of TSP in which the distances satisfy the
triangle inequality.

Guideline: First note that the length of any tour is lower-bounded by the weight of
a minimum spanning tree in the corresponding weighted graph. Next note that such a
tree yields a tour (of length twice the weight of this tree) that may visit some points
several times. The triangle inequality guarantees that the tour does not become longer
by “shortcuts” that eliminate multiple visits at the same point.

10.2. AVERAGE CASE COMPLEXITY 429

Exercise 10.3 (a weak version of Theorem 10.5) Using Theorem 9.16 prove
that, for some constants 0 < a < b < 1 when setting L(N) = N and s(N) = N¢,
it holds that gapClique,, is NP-hard.

Guideline: Starting with Theorem 9.16, apply the Expander Random Walk Generator
(of Proposition 8.29) in order to derive a PCP system with logarithmic randomness and
query complexities that accepts no-instances of length n with probability at most 1/n.
The claim follows by applying the FGLSS-reduction (of Exercise 9.14), while noting that
x is reduced to a graph of size poly(]z|) such that the gap between yes and no-instances
is at least a factor of |z|.

Exercise 10.4 (a weak version of Theorem 10.7) Using Theorem 9.16 prove
that, for some constants 0 < s < L <1, the problem gapVC, , is NP-hard.

Guideline: Note that combining Theorem 9.16 and Exercise 9.14 implies that for some
constants b < 1 it holds that gapClique; , is NP-hard, where L(N) =b- N and s(N) =
(b/2) - N. The claim follows using the relations between cliques, independent sets, and

vertex covers.

Exercise 10.5 (a weak version of Theorem 10.9) Using Theorem 9.16 prove
that, for some constants 0.5 < s < L < 1, the problem gapLin,, , is NP-hard.

Guideline: Recall that by Theorems 9.16 and 9.21, the gap problem gapSATg is NP-
Hard. Note that the result holds even if we restrict the instances to have exactly three
(not necessarily different) literals in each clause. Applying the reduction of Exercise 2.26,
note that, for any assignment 7, a clause that is satisfied by 7 is mapped to seven equations
of which exactly three are violated by 7, whereas a clause that is not satisfied by 7 is

mapped to seven equations that are all violated by 7.

Exercise 10.6 (natural inapproximability without the PCP Theorem) In
contrast to the inapproximability results reviewed in §10.1.1.2, the NP-completeness
of the following gap problem can be established (rather easily) without referring
to the PCP Theorem. The instances of this problem are systems of quadratic
equations over GF(2) (as in Exercise 2.27), yes-instances are systems that have a
solution, and no-instances are systems for which any assignment violates at least
one third of the equations.

Guideline: By Exercise 2.27, when given such a quadratic system, it is NP-hard to
determine whether or not there exists an assignment that satisfies all the equations. Using
an adequate small-bias generator (cf. Section 8.6.2), present an amplifying reduction (cf.
Section 9.3.3) of the foregoing problem to itself. Specifically, if the input system has m
equations then we use a generator that defines a sample space of poly(m) many m-bit
strings, and consider the corresponding linear combinations of the input equations. Note
that it suffices to bound the bias of the generator by 1/6, whereas using an e-biased
generator yields an analogous result with 1/3 replaced by 0.5 — ¢.

Exercise 10.7 (enforcing multi-way equalities via expanders) The aim of
this exercise is presenting a major technique of Papadimitriou and Yannakakis [167],

430 CHAPTER 10. RELAXING THE REQUIREMENTS

which is useful for designing reductions among approximation problems. Recall-
ing that gapSATS , is NP-hard, our goal is proving NP-hard of the following gap
problem, denoted gapSAT®:, which is a special case of gapSAT?. Specifically, the
instances are restricted to 3CNF formulae with each variable appearing in at most ¢
clauses, where ¢ (as €) is a fixed constant. Note that the standard reduction of 3SAT
to the corresponding special case (see proof of Proposition 2.22) does not preserve
an approximation gap.?! The idea is enforcing equality of the values assigned to the
auxiliary variables (i.e., the copies of each original variable) by introducing equal-
ity constraints only for pairs of variables that correspond to edges of an expander
graph (see Appendix E.2). For example, we enforce equality among the values of
2., 2(™) by adding the clauses z(?) vV =20) for every {i,j} € E, where E is the
set of edges of am m-vertex expander graph. Prove that, for some constants ¢ and
e > 0, the corresponding mapping reduces gapSAT; | to gapSAT>*.

Guideline: Using d-regular expanders, we map 3CNF to instances in which each variable
appears in at most 2d+1 clauses. Note that the number of added clauses is linearly related
to the number of original clauses. Clearly, if the original formula is satisfiable then so is
the reduced one. On the other hand, consider an arbitrary assignment 7’ to the reduced
formula ¢' (i.e., the formula obtained by mapping ¢). For each original variable z, if
7' assigns the same value to almost all copies of z then we consider the corresponding
assignment in ¢. Otherwise, by virtue of the added clauses, 7' does not satisfy a constant
fraction of the clauses containing a copy of z.

Exercise 10.8 (deciding majority requires linear time) Prove that deciding
majority requires linear-time even in a direct access model and when using a ran-
domized algorithm that may err with probability at most 1/3.

Guideline: Consider the problem of distinguishing X,, from Y;, where X, (resp., Y5) is
uniformly distributed over the set of n-bit strings having exactly |n/2| (resp., |n/2] + 1)
ones. For any fixed set I C [n], denote the projection of X,, (resp., Y») on I by X, (resp.,
Y,). Prove that the statistical difference between X, and Y,, is bounded by O(|I|/n).
Note that the argument needs to be extended to the case that the examined locations are
selected adaptively.

Exercise 10.9 (testing majority in polylogarithmic time) Show that test-
ing majority (with respect to) can be done in polylogarithmic time by probing
the input at a constant number of randomly selected locations.

21Recall that in this reduction each occurrence of each Boolean variable is replaced by a new
copy of this variable, and clauses are added for enforcing the assignment of the same value to all
these copies. Specifically, the m occurrence of variable z are replaced by the variables z(1) | ..., z(")
while adding the clauses 2(0) v —z(+1) and Z(+1) v () (for i =1,...,,m — 1). The problem is
that almost all clauses of the reduced formula may be satisfied by an assignment in which half
of the copies of each variable are assigned one value and the rest are assigned an opposite value.
That is, an assignment in which z(1) = ... = 2(0) £ z(+1) — ... = (™) yiolates only one of the
auxiliary clauses introduced for enforcing equality among the copies of z. Using an alternative
reduction that adds the clauses z(¥) v =z(9) for every i,5 € [m] will not do either, because the
number of added clauses may be quadratic in the number of original clauses.

10.2. AVERAGE CASE COMPLEXITY 431

Exercise 10.10 (testing Eulerian graphs in the adjacency matrix representation)
Show that in this model the set of Eulerian graphs can be tested in polylogarithmic
time.

Guideline: Focus on testing the set of graphs in which each vertex has an even degree.
Note that, in general, the fact that the sets S’ and S'' are testable within some complexity
does not imply the same for the set S’ N S".

Exercise 10.11 (an equivalent definition of tpcP) Prove that (S, X) € tpcP
if and only if there exists a polynomial-time algorithm A such that the probability
that A(X,,) errs (in determining membership in S) is a negligible function in n.

Exercise 10.12 (tpcP versus P — Part 1) Prove that tpcP contains a problem
(S, X) such that S is not even recursive. Furthermore, use X =U.

Guideline: Let S = {01/ : & € S}, where S’ is an arbitrary (non-recursive) set.

Exercise 10.13 (tpcP versus P — Part 2) Prove that there exists a distribu-
tional problem (S, X) such that S € P and yet there exists an algorithm solving
S (correctly on all inputs) in time that is typically polynomial with respect to X.
Furthermore, use X = U.

Guideline: For any time-constructible function ¢ : N— N that is super-polynomial and
sub-exponential, use S = {0/"lz : z € §'} for any S’ € DTIME(?) \ P.

Exercise 10.14 (simple distributions and monotone sampling) We say that
a probability ensemble X = {X,,},cn is polynomial-time sampleable via a monotone
mapping if there exists a polynomial p and a polynomial-time computable function
f such that the following two conditions hold:

1. For every n, the random variables f(Up(,)) and X,, are identically distributed.

2. For every n and every r' < 7" € {0,1}?(") it holds that f(r') < f(r"), where
the inequalities refers to the standard lexicographic order of strings.

Prove that X is simple if and only if it is polynomial-time sampleable via a mono-
tone mapping.

Guideline: Suppose that X is simple, and let p be a polynomial bounding the running-
time of the algorithm that on input = outputs Pr[X|,| <z]. Consider a mapping, denoted
m, of [0,1] to {0,1}" such that r €[0,1] is mapped to z € {0,1}" if and only if » € [Pr[X, <
], Pr[X,, <z]). The desired function f : {0,1}*") — {0,1}" can be obtained from 7 by
considering the binary representation of the numbersin [0, 1] (and recalling that the binary
representation of Pr[X),| <z] has length at most p(|z|)). Note that f can be computed by
binary search, using the fact that X is simple. Turning to the opposite direction, we note
that any efficiently computable and monotone mapping f : {0, 1}p(") — {0,1}"™ can be
efficiently inverted by a binary search. Furthermore, similar methods allow for efficiently
determining the interval of p(n)-bit long strings that are mapped to any given n-bit long
string.

432 CHAPTER 10. RELAXING THE REQUIREMENTS

Exercise 10.15 (reductions preserve typical polynomial-time solveability)
Prove that if the distributional problem (S, X) is reducible to the distributional
problem (5", X') and (S’, X') € tpcP, then (S, X) is in tpcP.

Guideline: Let B’ denote the set of exceptional instances for the distributional problem
(S’, X'); that is, B’ is the set of instances on which the solver in the hypothesis either
errs or exceeds the typical running-time. Prove that Pr[Q(X,) N B' # 0] is a negligible
function (in n), using both Pr[y € Q(Xy)] < p(|y|)-Pr[X/,; = y] and |z| < p'(]y]|) for every
y € Q(x). Specifically, use the latter condition for inferring that ZyEB’ Prly € Q(Xn)]
equals Zye{y’EB’:p’(ly’l)Zn} Prly € Q(X.)], which guarantees that a negligible function in
ly| for any y € Q(Xy) is negligible in n.

Exercise 10.16 (reductions preserve error-less solveability) In continuation
to Exercise 10.15, prove that reductions preserve error-less solveability (i.e., solve-
ability by algorithms that never err and typically run in polynomial-time).

Exercise 10.17 (transitivity of reductions) Prove that reductions among dis-
tributional problems (as in Definition 10.16) are transitive.

Guideline: The point is establishing the domination property of the composed reduction.
The hypothesis that reductions do not make too short queries is instrumental here.

Exercise 10.18 For any S € AP present a simple probability ensemble X such
that the generic reduction used in the proof of Theorem 2.18, when applied to
(S, X), violates the domination condition with respect to (Sy,U’).

Guideline: Consider X = {X"}neN such that X, is uniform over {On/zm' =

{0,132},

Exercise 10.19 (variants of the Coding Lemma) Prove the following two vari-
ants of the Coding Lemma (which is stated in the proof of Theorem 10.17).

1. A variant that refers to any efficiently computable function u : {0,1}* — [0, 1]
that is monotonically non-decreasing over {0,1}* (i.e., p(z') < p(z") for any
' < z" € {0,1}*). That is, unlike in the proof of Theorem 10.17, here it
holds that p(0™*1) > u(1™) for every n.

2. As in Part 1, except that in this variant the function p is strictly increasing
and the compression condition requires that |C,(z)| < log,(1/p'(z)) rather
than |C,(2)| < 1+ min{|z|,logy(1/x'(x))}, where p'(z) = pu(z) — p(z — 1).

In both cases, the proof is less cumbersome than the one presented in the main
text.

Exercise 10.20 Prove that for any problem (S, X) in dist VP there exists a simple
probability ensemble Y such that the reduction used in the proof of Theorem 2.18
suffices for reducing (S, X) to (Su,Y).

Guideline: Consider Y = {Y,.}, . such that Y, assigns to the instance (M,z,1) a
probability mass proportional to 7, Lof Pr[X|.| ==|. Specifically, for every (M, =,1") it

10.2. AVERAGE CASE COMPLEXITY 433

holds that Pr[Y, = (M,x,1)] = 271M .7 /(2), where n & |(M, 2, 1) & [M] + |z| +t.

Alternatively, we may set Pr[Y, = (M,z,1")] = n, if M = Ms and t = ps(Jz|) and
Pr[Y, = (M, x,1%)] = 0 otherwise, where Ms and Ps are as in the proof of Theorem 2.18.

Exercise 10.21 (randomized reductions) Following the outline in §10.2.1.3,
provide a definition of randomized reductions among distributional problems.

1. In analogy to Exercise 10.15, prove that randomized reductions preserve fea-
sible solveability (i.e., typical solveability in probabilistic polynomial-time).
That is, if the distributional problem (S, X) is randomly reducible to the
distributional problem (S',X') and (S',X') € tpcBPP, then (S,X) is in
tpcBPP.

2. In analogy to Exercise 10.16, prove that randomized reductions preserve
solveability by probabilistic algorithms that err with probability at most 1/3
on each input and typically run in polynomial-time.

3. Prove that randomized reductions are transitive (cf. Exercise 10.17).

4. Show that the error probability of randomized reductions can be reduced
(while preserving the domination condition).

Extend the foregoing to reductions that involve distributional search problems.

Exercise 10.22 (simple vs sampleable ensembles — Part 1) Prove that any
simple probability ensemble is polynomial-time sampleable.

Guideline: See Exercise 10.14.

Exercise 10.23 (simple vs sampleable ensembles — Part 2) Assuming that
#P contains functions that are not computable in polynomial-time, prove that
there exists polynomial-time sampleable ensembles that are not simple.

Guideline: Consider any R € PC and suppose that p is a polynomial such that (z,y) € R
implies |y| = p(|z|). Then consider the sampling algorithm A that, on input 1™, uniformly
selects (z,y) € {0,1}"7" x {0,1}*"~Y and outputs #1 if (z,y) € R and z0 otherwise.
Note that #R(z) = 2°U=1=D . prlA(11*1=1) = 21].

Exercise 10.24 (distributional versions of NPC problems — Part 1 [28])
Prove that for any NP-complete problem S there exists a polynomial-time sam-
pleable ensemble X such that any problem in distA/P is reducible to (S5, X). We
actually assume that the many-to-one reductions establishing the NP-completeness
of S do not shrink the length of the input.

Guideline: Prove that the guaranteed reduction of Su to S also reduces (Su,U') to
(S, X), for some sampleable probability ensemble X. Consider first the case that the
standard reduction of Su to S is length preserving, and prove that, when applied to a
sampleable probability ensemble, it induces a sampleable distribution on the instances
of S. (Note that U’ is sampleable (by Exercise 10.22).) Next extend the treatment to
the general case, where applying the standard reduction to U, induces a distribution on
UE{’B,E"){O, 1}™ (rather than a distribution on {0,1}").

434 CHAPTER 10. RELAXING THE REQUIREMENTS

Exercise 10.25 (distributional versions of NPC problems — Part 2 [28])
Prove Theorem 10.23 (i.e., for any NP-complete problem S there exists a polynomial-
time sampleable ensemble X such that any problem in sampA/P is reducible to
(S,X)). As in Exercise 10.24, we actually assume that the many-to-one reductions
establishing the NP-completeness of S do not shrink the length of the input.

Guideline: We establish the claim for Sy, and the general claim follows by using the
reduction of Sy to S (as in Exercise 10.24). Thus, we focus on showing that, for some
(suitably chosen) sampleable ensemble X, any (S’, X') € sampN P is reducible to (Su, X).
Loosely speaking, X will be an adequate convex combination of all sampleable distribu-
tions (and thus X will not equal U’ or U). Specifically, X = {X,}, |y is defined such
that X, uniformly selects i € [n], emulates the execution of the i algorithm (in lexi-
cographic order) on input 1" for n® steps,?? and outputs whatever the latter has output
(or 0" in case the said algorithm has not halted within n® steps). Prove that, for any
(S",X") € sampNP such that X" is sampleable in cubic time, the standard reduction
of S" to Su reduces (S”,X") to (Su, X) (as per Definition 10.15; i.e., in particular,
it satisfies the domination condition).23 Finally, using adequate padding, reduce any
(S, X") € sampNP to some (S”,X") € sampNP such that X" is sampleable in cubic

time.

Exercise 10.26 (search vs decision in the context of sampleable ensembles)
Prove that every problem in sampNP is reducible to some problem in sampPC,
and every problem in sampPC is randomly reducible to some problem in sampNP.

Guideline: See proof of Theorem 10.21.

22 Needless to say, the choice to consider n algorithms in the definition of X,, is quite arbitrary.
Any other unbounded function of n that is at most a polynomial (and is computable in polynomial-
time) will do. (More generally, we may select the i*h algorithm with p;, as long as p; is a noticeable
function of n.) Likewise, the choice to emulate each algorithm for a cubic number of steps (rather
some other fixed polynomial number of steps) is quite arbitrary.

23Note that applying this reduction to X'’ yields an ensembles that is also sampleable in cubic
time. This claim uses the fact that the standard reduction runs in time that is less than cubic
(and in fact almost linear) in its output, and the fact that the output is longer than the input.

506 CHAPTER 10. RELAXING THE REQUIREMENTS

Appendix D

Probabilistic Preliminaries
and Advanced Topics in
Randomization

What is this? Chicken Quesadilla and Seafood Salad?
Fine, but in the same plate? This is disgusting!

Johan Hastad at Grendel’s, Cambridge (1985)

Summary: This appendix lumps together some preliminaries regard-
ing probability theory and some advanced topics related to the role
and use of randomness in computation. Needless to say, each of these
appears in a separate section.

The probabilistic preliminaries include our conventions regarding ran-
dom variables, which are used throughout the book. Also included are
overviews of three useful inequalities: Markov Inequality, Chebyshev’s
Inequality, and Chernoff Bound.

The advanced topics include hashing, sampling, and randomness ex-
traction. For hashing, we describe constructions of pairwise (and t-wise
independent) hashing functions, and variants of the Leftover Hashing
Lemma (which are used a few times in the main text). We then review
the “complexity of sampling”: that is, the number of samples and the
randomness complexity involved in estimating the average value of an
arbitrary function defined over a huge domain. Finally, we provide an
overview on the question of extracting almost perfect randomness from
sources of weak (or defected) randomness.

507

508APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

D.1 Probabilistic preliminaries

Probability plays a central role in complexity theory (see, for example, Chapters 6—
9). We assume that the reader is familiar with the basic notions of probability
theory. In this section, we merely present the probabilistic notations that are used
throughout the book, and three useful probabilistic inequalities.

D.1.1 Notational Conventions

Throughout the entire book we will refer only to discrete probability distributions.
Specifically, the underlying probability space will consist of the set of all strings
of a certain length ¢, taken with uniform probability distribution. That is, the
sample space is the set of all ¢-bit long strings, and each such string is assigned
probability measure 2~¢. Traditionally, random variables are defined as functions
from the sample space to the reals. Abusing the traditional terminology, we use the
term random variable also when referring to functions mapping the sample space
into the set of binary strings. We often do not specify the probability space, but
rather talk directly about random variables. For example, we may say that X is a
random variable assigned values in the set of all strings such that Pr[X =00] = 1
and Pr[X =111] = 2. (Such a random variable may be defined over the sample
space {0,1}2, so that X(11) = 00 and X(00) = X(01) = X(10) = 111.) One
important case of a random variable is the output of a randomized process (e.g., a
probabilistic polynomial-time algorithm, as in Section 6.1).

All our probabilistic statements refer to (functions of) random variables that
are defined beforehand. Typically, we may write Pr[f(X)=1], where X is a random
variable defined beforehand (and f is a function). An important convention is that
all occurrences of the same symbol in a probabilistic statement refer to the same
(unique) random variable. Hence, if B(-,-) is a Boolean expression depending on
two variables, and X is a random variable then Pr[B(X, X)] denotes the probability
that B(z,z) holds when x is chosen with probability Pr[X =z]|. For example, for
every random variable X, we have Pr[X = X] = 1. We stress that if we wish to
discuss the probability that B(z,y) holds when z and y are chosen independently
with identical probability distribution, then we will define two independent random
variables each with the same probability distribution. Hence, if X and Y are
two independent random variables then Pr[B(X,Y)] denotes the probability that
B(z,y) holds when the pair (z,y) is chosen with probability Pr[X =z] - Pr[Y =y].
For example, for every two independent random variables, X and Y, we have
Pr[X =Y] =1 ounly if both X and Y are trivial (i.e., assign the entire probability
mass to a single string).

Throughout the entire book, U, denotes a random variable uniformly dis-
tributed over the set of strings of length n. Namely, Pr[U, = o] equals 27" if
a € {0,1}" and equals 0 otherwise. We will often refer to the distribution of U,
as the uniform distribution (neglecting to qualify that it is uniform over {0,1}"). In
addition, we will occasionally use random variables (arbitrarily) distributed over
{0,1}™ or {0,1}%™) for some function ¢:N—N. Such random variables are typi-
cally denoted by X,,, Y,,, Z,, etc. We stress that in some cases X,, is distributed

D.1. PROBABILISTIC PRELIMINARIES 509

over {0,1}", whereas in other cases it is distributed over {0,1}*") for some func-
tion £(-), which is typically a polynomial. We will often talk about probability
ensembles, which are infinite sequence of random variables {X,},cn such that
each X,, ranges over strings of length bounded by a polynomial in n.

Statistical difference. The statistical distance (a.k.a variation distance) between
the random variables X and Y is defined as
1
5 DO IPIX = o] = Pr[Y =]| = max{Pr[X €] —Pry € S]}. (D.1)
We say that X is é-close (resp., 6-far) to Y if the statistical distance between them
is at most (resp., at least) 6.

D.1.2 Three Inequalities

The following probabilistic inequalities are very useful. These inequalities refer to
random variables that are assigned real values and provide upper-bounds on the
probability that the random variable deviates from its expectation.

Markov Inequality. The most basic inequality is Markov Inequality that applies

to any random variable with bounded maximum or minimum value. For simplicity,

it is stated for random variables that are lower-bounded by zero, and reads as

follows: Let X be a mon-negative random variable and v be a mon-negative real

number. Then

E(X)
v

PriX>v] < (D.2)

Equivalently, Pr[X > r-E(X)] < % The proof amounts to the following sequence.

E(X) = ZPr[X:x]-x
> ZPr[X::ﬂ]-O—l—ZPr[X:x]-v
z<v z>v
= Pr[X>v]-v

Chebyshev’s Inequality: Using Markov’s inequality, one gets a potentially
stronger bound on the deviation of a random variable from its expectation. This
bound, called Chebyshev’s inequality, is useful when having additional informa-
tion concerning the random variable (specifically, a good upper bound on its vari-
ance). For a random variable X of finite expectation, we denote by Var(X) Lef
E[(X — E(X))?] the variance of X, and observe that Var(X) = E(X?) — E(X)2.
Chebyshev’s inequality then reads as follows: Let X be a random wvariable, and
6 >0. Then

Var(X)

Pr{X - E(O)|28] < 5

(D.3)

510APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

Proof: We define a random variable ¥ & (X — E(X))?, and apply Markov in-

equality. We get

PrX —E(X)|>8] = Pr[(X -E(X))? >
E[(X — E(X))?]
< =

and the claim follows. [}

Corollary (Pairwise Independent Sampling): Chebyshev’s inequality is particu-
larly useful in the analysis of the error probability of approximation via repeated
sampling. It suffices to assume that the samples are picked in a pairwise indepen-
dent manner, where Xi, X, ..., X,, are pairwise independent if for every : # 5 and
every a, (8 it holds that Pr[X; =a A X; =] = Pr[X,; =q] - Pr[X,; =0]. The corol-
lary reads as follows: Let X1, X5, ..., X,, be pairwise independent random variables
with identical expectation, denoted p, and identical variance, denoted o%. Then,
for every € > 0, it holds that

n i 2
Pr HM —u‘ > 6:| < 7 (D.4)
n

e2n.
Proof: Define the random variables X; def X; — E(X;). Note that the X,’s are
pairwise independent, and each has zero expectation. Applying Chebyshev’s in-
equality to the random variable), %, and using the linearity of the expectation
operator, we get

] Var [Z?:l)'fLL

)
n w2
E [(Zi:l Xi) }
g2 - n?
Now (again using the linearity of expectation)
n 2 n
E (ZK‘) =Y E[X]+ Y EXX]
i=1 i=1 1<i#j<n

By the pairwise independence of the X,’s, we get E[X;X;] = E[X;] - E[X]], and
using E[X;] =0, we get

n 2
E (Zyz> =’I’L'U2
=1

The corollary follows. [l

D.1. PROBABILISTIC PRELIMINARIES 511

Chernoff Bound: When using pairwise independent sample points, the error
probability in the approximation is decreasing linearly with the number of sample
points (see Eq. (D.4)). When using totally independent sample points, the error
probability in the approximation can be shown to decrease exponentially with
the number of sample points. (The random variables Xi, X, ..., X,, are said to
be totally independent if for every sequence aq, ag, ..., an it holds that Pr[Al; X; =
a;) = [1i_, Pr[X;=a,].) Probability bounds supporting the foregoing statement are
given next. The first bound, commonly referred to as Chernoff Bound, concerns 0-1
random variables (i.e., random variables that are assigned as values either 0 or 1),
and asserts the following. Let p < %, and X1, Xo, ..., X,, be independent 0-1 random
variables such that Pr[X; = 1] = p, for each i. Then, for every ¢ € (0,p(1 —p)], we
have

2

"X, et ‘
Pr szl;l _p‘ > E] < 2.0t < 2. e~2’n (D.5)
n

Proof Sketch: We upper-bound Pr[>"" | X; — pn > en], and Prlpn — > | X; >

en] is bounded similarly. Letting X, def X,; — E(X;), we apply Markov Inequality

to the random variable e* Zzl%lyi, where A > 0 is determined to optimize the
expressions that we derive (hint: A = ©(e/p(1 — p)) will do). Thus, Pr>°" | X; >

en] is upper-bounded by

E[el\z?zlyi] —Xen : X;
E) e T
=1

where the equality is due to the independence of the random variables. To simplify
the rest of the proof, we establish a sub-optimal bound as follows. Using a Taylor
expansion of e* (e.g., e* < 1+ + 22 for z < 1) and observing that E[X;] = 0, we
get E[e*Xi] < 14+ A2E[X], which equals 1+A2p(1—p). Thus, Pri>-r Xi—pn > en]
is upper-bounded by e=*<™ - (1 + A%p(1 — p))" < exp(—Xen + A%p(1 — p)n), which
is optimized at A = ¢/(2p(1 — p)) yielding exp(—ﬁim -n). Needless to say, this
method can be applied in more general settings (e.g., for X; € [0,1] rather than
X;e{0,1}). 0O

A more general bound, which refers to independent copies of a general (bounded)
random variable, is given next (and is commonly referred to as Hoefding Inequality).
Let X1, X, ..., X, be n independent random variables with identical probability dis-
tribution, each ranging over the (real) interval [a,b], and let p denote the expected
value of each of these variables. Then, for every e > 0,

2

" Xi __2e" _.n
Pr Hz;l - ,u‘ > 6:| <2-e -0 (D.6)
n

Hoefding Inequality is useful in estimating the average value of a function defined
over a large set of values, especially when the desired error probability needs to

LA more general form requires the X;’s to be independent, but not necessarily identical, and

uses p def 1 g E(X;). See [10, Apdx. A].

n i=1

512APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

be negligible (i.e., decrease faster than any polynomial in the relevant parameter).
Such an estimate can be obtained provided that we can efficiently sample the set
and have a bound on the possible values (of the function).

Pairwise independent versus totally independent sampling. Referring to
Eq. (D.6), consider, for simplicity, the case that a = 0 < p < b = 1. In this case,
n independent samples give an approximation that deviates by ¢ from the expect
value (i.e., u) with probability, denoted §, that is exponentially decreasing with
£2n. Such an approximation is called an (e, §)-approximation, and can be achieved
using n = O(e~ 2 - log(1/6)) sample points. Thus, the number of sample points
is polynomially related to ¢! and logarithmically related to §~'. In contrast,
by Eq. (D.4), an (g, 6)-approximation by n pairwise independent samples calls for
setting n = O(e72 - §~1). We stress that, in both cases the number of samples is
polynomially related to the desired accuracy of the estimation (i.e., €). The only
advantage of totally independent samples over pairwise independent ones is in the
dependency of the number of samples on the error probability (i.e., 6).

D.2 Hashing

Hashing is extensively used in complexity theory. The typical application is map-
ping arbitrary (unstructured) sets “almost uniformly” to a structured set of ad-
equate size. Specifically, hashing is supposed to map an arbitrary 2™-subset of
{0,1}" to {0,1}™ in an “almost uniform” manner.

For a fixed set S of cardinality 2™, a 1-1 mapping fs : S — {0,1}™ does
exist, but it is not necessarily an efficient one (e.g., it may require “knowing” the
entire set S). Clearly, no single function f : {0,1}" — {0,1}" can map each 2™-
subset of {0,1}"™ to {0,1}™ in a 1-1 manner (or even approximately so). However,
a random function f : {0,1}"™ — {0,1}™ has the property that, for every 2™-
subset S C {0,1}", with overwhelmingly high probability f maps S to {0,1}™
such that no point in the range has too many f-preimages in S. The problem
is that a truly random function is unlikely to have a succinct representation (let
alone an efficient evaluation algorithm). We thus seek families of functions that
have a similar property, but do have a succinct representation as well as an efficient
evaluation algorithm.

D.2.1 Definitions

Motivated by the foregoing discussion, we consider families of functions {H"}m<n
Such that the following properties hold:

1. For every S C {0,1}™, with high probability, a function h selected uniformly
in H™ maps S to {0,1}™ in an “almost uniform” manner. For example, we
may require that, for any |S| = 2™ and each point y, with high probability
over the choice of h, it holds that |[{z € S : h(z) = y}| < poly(n).

D.2. HASHING 513

2. The functions in H* have succinct representation. For example, we may
require that H™ = {0,1}*™™)_ for some polynomial /.

3. The functions in H]* can be efficiently evaluated. That is, there exists a
polynomial-time algorithm that, on input a representation of a function, h
(in H"), and a string = € {0, 1}", returns h(x). In some cases we make even
more stringent requirements regarding the algorithm (e.g., that it runs in
linear space).

Condition 1 was left vague on purpose. At the very least, we require that the
expected size of {z € S : h(z) = y} equals |S|/2™. We shall see (in Section D.2.3)
that different interpretations of Condition 1 are satisfied by different families of
hashing functions. We focus on ¢-wise independent hashing functions, defined next.

Definition D.1 (¢-wise independent hashing functions): A family H™ of func-
tions from m-bit strings to m-bit strings is called t-wise independent if for every t
distinct domain elements x1,...,x; € {0,1}" and every yi, ...,y € {0,1}™ it holds
that
Prieup [Nioyh(zi) = yi] = 27"

That is, a uniformly chosen h € H,* maps every ¢t domain elements to the range in
a totally uniform manner. Note that for ¢ > 2, it follows that the probability that
a random h € H]* maps two distinct domain elements to the same image equals
27™. Such (families of) functions are called universal (cf. [47]), but we will focus
on the stronger condition of ¢-wise independence.

D.2.2 Counstructions

The following constructions are merely a re-interpretation of the constructions
presented in §8.6.1.1. (Alternatively, one may view the constructions presented
in §8.6.1.1 as a re-interpretation of the following two constructions.)

Construction D.2 (t-wise independent hashing): For t,m,n € N such that m <
n, consider the following family of hashing functions mapping n-bit strings to m-
bit strings. Each t-sequence 3 = (Sg,S1,-..,5¢-1) € {0,1}*™ describes a function
hz :{0,1}™ — {0,1}™ such that hs(x) equals the m-bit prefix of the binary repre-
sentation of Z;;(l) s;x?, where the arithmetic is that of GF(2"), the finite field of
2™ elements.

Proposition 8.24 implies that Construction D.2 constitutes a family of ¢-wise inde-
pendent hash functions. Typically, we will use either t = 2 or t = ©(n). To make
the construction totally explicit, we need an explicit representation of GF(2");
see details following Proposition 8.24. An alternative construction for the case
of t = 2 may be obtained analogously to the pairwise independent generator of
Proposition 8.25. Recall that a Toeplitz matrix is a matrix with all diagonals being
homogeneous; that is, 7' = (t; ;) is a Toeplitz matrix if ¢; ; = ti11 41, for all 4, 5.

514APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

Construction D.3 (Alternative pairwise independent hashing): For m <n, con-
sider the family of hashing functions in which each n-by-m Toeplitz matrix T and
an m-dimensional vector b describes a function hrp : {0,1}* — {0,1}™ such that
hrp(z) =Tz +b.

Proposition 8.25 implies that Construction D.3 constitutes a family of pairwise
independent hash functions. Note that a n-by-m Toeplitz matrix can be specified
by n +m — 1 bits, yielding a description length of n + 2m — 1 bits. An alternative
construction (analogous to Eq. (8.18) and requiring m-n+m bits of representation)
uses arbitrary n-by-m matrices rather than Toeplitz matrices.

D.2.3 The Leftover Hash Lemma

We now turn to the “almost uniform” cover condition (i.e., Condition 1) mentioned
in Section D.2.1. One concrete interpretation of this condition is given by the
following lemma (and another is implied by it: see Theorem D.5).

Lemma D.4 Let m < n be integers, H]" be a family of pairwise independent hash
functions, and S C {0,1}". Then, for every y € {0,1}"™ and every € > 0, for all
but at most an ﬁ fraction of h € H™ it holds that

181

{z e S:h(z) =y} =(1=xe¢) o

(D.7)
By pairwise independence (or rather even by “l-wise independence”), the expected
size of {x € S : h(x) = y} is | S|/2™, where the expectation is taken uniformly over
all h € H*. The lemma upper bounds the fraction of h’s that deviate from the
expected behavior (i.e., for which |[h=1(y) N S| # (1 £¢)-|S]/2™). Needless to say,
the bound is meaningful only in case |S| > 2™ (or alternatively for e > 1). Setting
e = {/2m/|S| (and focusing on the case that |S| > 2™), we infer that for all but at
most an € fraction of h € H it holds that |[{x € S : h(z) = y}| = (1 £e)-|S|/2™.
Thus, each range element has approximately the right number of h-preimages in
the set S, under almost all h € H)".

Proof: Fixing an arbitrary set S C {0,1}" and an arbitrary y € {0,1}™, we
estimate the probability that a uniformly selected h € H™* violates Eq. (D.7). We
define random variables (,, over the aforementioned probability space, such that

C: = C(h) equal 1 if h(z) = y and (, = 0 otherwise. The expected value of

Yowes e s p def |S]-27™, and we are interested in the probability that this sum

deviates from the expectation. Applying Chebyshev’s Inequality, we get

Prlu—zg—c

z€S
because Var[)_ ¢ (] <|S|-27™ by the pairwise independence of the (;’s and the
fact that E[(;] = 2~ ™. The lemma follows. [l

i
e2p

>e-p| < 5

D.2. HASHING 515

A generalization (called mixing). The proof of Lemma D.4 can be easily
extended to show that for every set T C {0,1}™ and every ¢ > 0, for all but
at most an MT‘EZ fraction of h € H™ it holds that |[{x € S : h(z) € T} =
(1 xe¢)-|T|-|S|/2™. (Hint: redefine ¢, = ((h) = 1if h(z) € T and ¢, = 0
otherwise.) This assertion is meaningfull provided that |T'| - |S| > 2™/e?, and in
the case that m = n it is called a mixing property.

An extremely useful corollary. The aforementioned generalization of Lemma D.4
asserts that most functions behave well with respect to any fixed sets of preimages

S C {0,1}™ and images T C {0,1}™. A seemingly stronger statement, which is
(non-trivially) implied by Lemma D.4 itself, is that for all adequate sets S most
functions h € H™ map S to {0,1}™ in an almost uniform manner.? This is a
consequence of the following theorem.

Theorem D.5 (a.k.a Leftover Hash Lemma): Let H™ and S C {0,1}" be as in
Lemma D.4, and define e = /2™ /|S|. Consider random variable X and H that
are uniformly distributed on S and H]", respectively. Then, the statistical distance

n

between (H, H(X)) and (H,U,,) is at most 2¢.

Using the terminology of Section D.4, we say that H," yields a strong extractor
(with parameters to be spelled out there).

Proof: Let V denote the set of pairs (h,y) that violate Eq. (D.7), and v
(H x {0,1}™)\ V. Then for every (h,y) € V it holds that
Pri(H,H(X)) = (h,y)] = PrlH =h]-Pr[h(X)=y]
= (L£e¢) Pr(H,Un) = (h,y)].
On the other hand, by Lemma D.4 (which asserts Pr[(H,y) € V] < e for every
y € {0,1}™) and the setting of ¢, we have Pr[(H,U,,) € V] < . It follows that
Pr(H,H(X))€V] = 1-Pr[(H,H(X))€V]
< 1-Pr[(H,Uy,)) €V]+e < 2.
Using all these upper-bounds, we upper-bounded the statistical difference between

(H,H(X)) and (H,U,,), denoted A, by separating the contribution of V and V.
Specifically, we have

A = % 3 Pr{(H, H(X))=(h,y)] — Pr[(H,Un) = (h,y)]|
(hy)EH % {01}
< %+% > IPr(H, H(X))=(h,y)] — Pr[(H,Up)=(h,y)]|
(h,y)eV
< %+% S (Prl(H, H(X))=(h,y)] + Prl(H, U) = (h,p)])
(h,y)eV

2That is, for X and ¢ as in Theorem D.5 and any « > 0, for all but at most an « fraction of
the functions h € H™ it holds that h(X) is (2¢/a)-close to Up,.

516 APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

1
< %+§'(2€+€)

and the claim follows. [}

An alternative proof of Theorem D.5. Define the collision probability of a
random variable Z, denote cp(Z), as the probability that two independent samples

of Z yield the same result. Alternatively, cp(Z) % 3. Pr[Z = z]%. Theorem D.5
follows by combining the following two facts:

1. A general fact: If Z € [N] and cp(Z) < (1 + 4€?)/N then Z is e-close to the
uniform distribution on [N].
We prove the contra-positive: Assuming that the statistical distance between
Z and the uniform distribution on [N] equals 8, we show that cp(Z) >
(1+462)/N. This is done by defining L = {z :Pr[Z = 2] < 1/N}, and lower-
bounding cp(Z) by using the fact that the collision probability is minimized

on uniform distributions. Specifically, considering the uniform distributions
on L and [N]\ L respectively, we have

Pr[Z € L]* PriZ € [N]\ L]\?
cpZZL-<7>+N—L-<— D.8
@ =1Ll (< V1o () @)
Using 6 = p — Pr[Z € L], where p = |L|/N, the r.h.s of Eq. (D.8) equals

5> 2

2. The collision probability of (H, H(X)) is at most (1 + (2™/|S]))/(|HT| - 2™).

(Furthermore, this holds even if H]™ is only universal.)
The proof is by a straightforward calculation. Specifically, note that cp(H, H(X)) =
|H}'| ™! Eneny [ep(A(X))], whereas Eney [cp(M(X))] = |S]72 X, 1 e PrIH (21) =
H(zs)]. The sum equals |S| + (|S]? = |S]) - 2™™, and so cp(H,H(X)) <
[Hp[~h 27 + 1871,

Note that it follows that (H,H (X)) is /2™/4|S|-close to (H,U,,), which is a

stronger bound than the one provided in Theorem D.5.

Stronger uniformity via higher independence. Recall that Lemma D.4 as-
serts that for each point in the range of the hash function, with high probability
over the choice of the hash function, this fized point has approximately the expected
number of preimages in S. A stronger condition asserts that, with high probability
over the choice of the hash function, every point in its range has approximately
the expected number of preimages in S. Such a guarantee can be obtained when
using n-wise independent hashing functions.

Lemma D.6 Let m < n be integers, H" be a family of n-wise independent hash
functions, and S C {0,1}". Then, for every ¢ € (0,1), for all but at most an
27 . (n - 2™ [€2|S|)™/? fraction of the functions h € H™, Eq. (D.7) holds for every
y € {0,1}™.

D.3. SAMPLING 517

Indeed, the lemma should be used with 2™ < €?|S|/4n. In particular, using m =
log,, |S|—log,(5n/c?) guarantees that with high probability each range elements has
(1+¢)-]S|/2™ preimages in S. Under this setting of parameters |S|/2™ = 5n/e?,
which is poly(n) whenever e = 1/poly(n). Needless to say, this guarantee is stronger
than the conclusion of Theorem D.5.

Proof: The proof follows the footsteps of the proof of Lemma D.4, taking advan-
tage of the fact that here the random variables (i.e., the (,’s) are n-wise indepen-
dent. For t = n/2, this allows using the so-called 2t*® moment analysis, which
generalizes the second moment analysis of pairwise independent samplying (pre-
sented in Section D.1.2). As in the proof of Lemma D.4, we fix any S and y, and
define ¢, = (.(h) = 1if and only if h(x) = y. Letting u = E[}_, 5] = |S]/2™
and ¢, = (. — E(¢,), we start with Markov inequality:

r l . El(Eees C)*]

. £2t 2t
2 =

_ ZIl,...,IztES E[Hi:l Cﬂ:,] (D 9)

T (s |
Using 2t-wise independence, we note that only the terms in Eq. (D.9) that do not
vanish are those in which each variable appears with multiplicity. This mean that
only terms having less than ¢ distinct variables contribute to Eq. (D.9). Now, for
every j < t, we have less than (lil) S(2t1) < (2t!1/5) - |S)? terms with j distinct
variables, and each such term contributes less than (27™)7 to the sum. Thus,
Eq. (D.9) is upper-bounded by

: |S|/2m 2t/ 2t-2m\ "
|S|/2m Z < 2 @S|y < <s2|5|>

>e-p|l <

where the first inequality assumes |S| > n2™ (since the claim hold vacuously other-
wise). This upper-bounds the probability that a random h € H™ violates Eq. (D.7)
with reprect to a fixed y. Using a union bound on all y € {0,1}™, the lemma fol-
lows. B

D.3 Sampling

In many settings repeated sampling is used to estimate the average of a huge set of

values. Namely, given a “value” function v:{0,1}" — R, one wishes to approximate

7 S 2 zefo,13» V(@) without having to inspect the value of v at each point of the

domain. The obvious thing to do is sampling the domain at random, and obtaining
an approximation to 7 by taking the average of the values of v on the sample points.
It turns out that certain “pseudorandom” sequences of sample points may serve
almost as well as truly random sequences of sample points, and thus the current
problem is indeed related to Section 8.6.

518APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

D.3.1 Formal Setting

It is essential to have the range of v be bounded (or else no reasonable approx-
imation is possible). For simplicity, we adopt the convention of having [0, 1] be
the range of v, and the problem for other (predetermined) ranges can be treated
analogously. Our notion of approximation depends on two parameters: accuracy
(denoted) and error probability (denoted §). We wish to have an algorithm that,
with probability at least 1 — ¢, gets within € of the correct value. This leads to the
following definition.

Definition D.7 (sampler): A sampler is a randomized algorithm that on input
parameters n (length), e (accuracy) and § (error), and oracle access to any function
v:{0,1}"—10,1], outputs, with probability at least 1 — 6, a value that is at most €

1

away from v def T 2iwe{01}n v(z). Namely,

Pr[|sampler” (n,e,8) — 7| >¢] < ¢

where the probability is taken over the internal coin tosses of the sampler, also
called its random seed.

A non-adaptive sampler is a sampler that consists of two deterministic algorithms:
a sample generating algorithm, G, and a evaluation algorithm, V. On input n,e,6
and a random seed of adequate length, algorithm G generates a sequence of queries,
denoted s1,...,5m € {0,1}"™. Algorithm V is given the corresponding v-values (i.e.,
v(s1),...,v(sm)) and outputs an estimate to v.

We are interested in “the complexity of sampling” quantified as a function of the
parameters n, ¢ and 6. Specifically, we will consider three complexity measures:
The sample complexity (i.e., the number of oracle queries made by the sampler); the
randomness complexity (i.e., the length of the random seed used by the sampler);
and the computational complexity (i.e., the running-time of the sampler). We say
that a sampler is efficient if its running-time is polynomial in the total length of
its queries (i.e., polynomial in both its sample complexity and in n). We will focus
on efficient samplers. Furthermore, we will focus on efficient samplers that have
optimal (up-to a constant factor) sample complexity, and will wish the randomness
complexity to be as low as possible.

D.3.2 Known Results

We note that all the following positive results refer to non-adaptive samplers,
whereas the lower bound hold also for general samplers. For more details on these
results, see [86, Sec. 3.6.4] and the references therein.

The naive sampler. The straightforward method (or the naive sampler) consists
of uniformly and independently selecting sufficiently many sample points (queries),
and outputting the average value of the function on these points. Using Chernoff
Bound it follows that O(logg#) sample points suffice. As indicated next, the naive

D.3. SAMPLING 519

sampler is optimal (up-to a constant factor) in its sample complexity, but is quite
wasteful in randomness.

It is known that Q(logg#) samples are needed in any sampler, and that that
samplers that make s(n,e,8) queries require randomness at least n + log,(1/6) —
log, s(n,e,6) — O(1). These lower bounds are tight (as demonstrated by non-
explicit and inefficient samplers). These facts guide our quest for improvements,
which is aimed at finding more randomness-efficient ways of efficiently generating
sample sequences that can be used in conjunction with an appropriate evaluation
algorithm V. (We stress that V need not necessarily take the average of the values
of the sampled points.)

The pairwise-independent sampler. Using a pairwise-independence genera-
tor (cf. §8.6.1.1) for generating sample points, along with the natural evaluation
algorithm (which outputs the average of the values of these points), we can ob-
tain a great saving in the randomness complexity: In particular, using a seed of
length 2n, we can generate O(1/8c?) pairwise-independent sample points, which
(by Eq. (D.4)) suffice for getting accuracy € with error §. Thus, this (Pairwise-
Independent) sampler uses 2n random bits rather than the Q((log(1/6))e=2 - n)
coins used by the naive sampler. Furthermore, for constant § > 0, the Pairwise-
Independent Sampler is optimal up-to a constant factor in both its sample and
randomness complexities. However, for small § (i.e., § = o(1)), this sampler is
wasteful in sample complexity.

The Median-of-Averages sampler. A new idea is required for going fur-
ther, and a relevant tool — random walks on expander graphs (see Sections 8.6.3
and E.2) — is needed too. Specifically, we combine the Pairwise-Independent Sam-
pler with the Expander Random Walk Generator (see Proposition 8.29) to obtain
a new sampler. The new sampler uses a t-long random walk on an expander with

vertex set {0,1}2" for generating a sequence of t def O(log(1/6)) related seeds for
t invocations of the Pairwise-Independent Sampler, where each of these invoca-
tions uses the corresponding 2n bits to generate a sequence of O(1/?) samples in
{0,1}". Furthermore, each of these invocations returns a value that, with prob-
ability at least 0.9, is e-close to 7. Theorem 8.28 (see also Exercise 8.36) is used
to show that, with probability at least 1 — exp(—t) = 1 — §, most of these t invo-
cations return an e-close approximation. Hence, the median among these t values
is an (g,0)-approximation to the correct value. The resulting sampler, called the
Median-of-Averages Sampler, has sample complexity O(logE#) and randomness
complexity 2n + O(log(1/6)), which is optimal up-to a constant factor in both
complexities.

Further improvements. The randomness complexity of the Median-of-Averages
Sampler can be improved from 2n + O(log(1/6)) to n + O(log(1/8¢)), while main-
taining its (optimal) sample complexity (of O(logg#)). This is done by replacing
the Pairwise Independent Sampler by a sampler that picks a random vertex in a
suitable expander and samples all its neighbors.

520APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

Averaging Samplers. Averaging (a.k.a. “Oblivious”) samplers are non-adaptive
samplers in which the evaluation algorithm is the natural one: that is, it merely
outputs the average of the values of the sampled points. Indeed, the Pairwise-
Independent Sampler is an averaging sampler, whereas the Median-of-Averages
Sampler is not. Interestingly, averaging samplers have applications for which ordi-
nary non-adaptive samplers do not suffice. Averaging samplers are closely related
to randomness extractors, defined and discussed in Section D.4.

An odd perspective. Recall that a non-adaptive sampler consists of a sample
generator G and an evaluator V' such that for every v:{0,1}™— [0, 1] it holds that

Pr(sh“”sm)(_g((]k)[|V(l/(51), ...,I/(Sm)) — I7| > 6] < 6.

Thus, we may view G as a pseudorandom generator that is subjected to a distin-
guishability test that is determined by a fixed algorithm V' and an arbitrary function
v:{0,1}" [0, 1], where we assume that Pr[|V (v(UM), .., v(US™) = 5| >] < 6.
What is a bit odd here is that, except for the case of averaging samplers, the
distinguishability test contains a central component (i.e., the evaluator V') that is
potentially custom-made to help the generator G pass the test.?

D.4 Randomness Extractors

Extracting almost-perfect randomness from sources of weak (i.e., defected) ran-
domness is crucial for the actual use of randomized algorithms, procedures and
protocols. The latter are analyzed assuming that they are given access to a perfect
random source, while in reality one typically has access only to sources of weak
(i.e., highly imperfect) randomness. Randomness extractors are efficient proce-
dures that (possibly with the help of little extra randomness) enhance the quality
of random sources, converting any source of weak randomness to an almost perfect
one. In addition, randomness extractors are related to several other fundamental
problems, to be further discussed later.

One key parameter, which was avoided in the foregoing discussion, is the class of
weak random sources from which we need to extract almost perfect randomness. It
is preferable to make as little assumptions as possible regarding the weak random
source. In other words, we wish to consider a wide class of such sources, and
require that the randomness extractor (often referred to as the extractor) “works
well” for any source in this class. A general class of such sources is defined in
§D.4.1.1, but first we wish to mention that even for very restricted classes of sources
no deterministic extractor can work.* To overcome this impossibility result, two
approaches are used:

3 Another aspect in which samplers differ from the various pseudorandom generators discussed
in Chapter 8 is in the aim to minimize, rather than maximize, the number of blocks (denoted
here by m) in the output sequence. However, also in case of samplers the aim is to maximize the
block-length (denoted here by n).

4For example, consider the class of sources that output m-bit strings such that no string
occurs with probability greater than 2= (n=1) (i.e., twice its probability weight under the uniform
distribution).

D.4. RANDOMNESS EXTRACTORS 521

Seeded extractors: The first approach consists of considering randomized ex-
tractors that use a relatively small amount of randomness (in addition to
the weak random source). That is, these extractors obtain two inputs: a
short truly random seed and a relatively long sequence generated by an arbi-
trary source that belongs to the specified class of sources. This suggestion is
motivated in two different ways:

1. The application may actually have access to an almost-perfect random
source, but bits from this source are much more expensive than bits
from the weak (i.e., low-quality) random source. Thus, it makes sense
to obtain few high-quality bits from the almost-perfect source and use
them to “purify” the cheap bits obtained from the weak (low-quality)
source.

2. In some applications (e.g., when using randomized algorithms), it may
be possible to scan over all possible values of the seed and run the algo-
rithm using the corresponding extracted randomness. That is, we obtain
a sample r from the weak random source, and invoke the algorithm on
extract(s,r), for every possible seed s, ruling by majority. (This al-
ternative is typically not applicable to cryptographic and/or distributed
settings.)

Few independent sources: The second approach consists of considering deter-
ministic extractors that obtain samples from a few (say two) independent
sources of weak randomness. Such extractors are applicable in any setting
(including in cryptography), provided that the application has access to the
required number of independent weak random sources.

In this section we focus on the first type of extractors (i.e., the seeded extractors).
This choice is motivated both by the relatively more mature state of the research
in that direction and the closer connection between this direction and other topics
in complexity.

D.4.1 Definitions and various perspectives

We first present a definition that corresponds to the foregoing motivational discus-
sion, and later discuss its relation to other topics in complexity.

D.4.1.1 The Main Definition

A very wide class of weak random sources corresponds to sources for which no
specific output is too probable (cf. [52]). That is, the class is parameterized by a
(probability) bound 8 and cousists of all sources X such that for every x it holds
that Pr[X = z] < . In such a case, we say that X has min-entropy® at least
log,(1/8). Indeed, we represent sources as random variables, and assume that

5Recall that the entropy of a random variable X is defined as ZI Pr[X = z]log,(1/Pr[X = z]).
Indeed the min-entropy of X equals ming{log,(1/Pr[X = z])}, and is always upper-bounded by
its entropy.

522APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION

they are distributed over strings of a fixed length, denoted n. An (n, k)-source is a
source that is distributed over {0,1}" and has min-entropy at least k.

An interesting special case of (n, k)-sources is that of sources that are uniform
over a subset of 2F strings. Such sources are called (n, k)-flat. A simple but useful
observation is that each (n, k)-source is a convex combination of (n, k)-flat sources.

Definition D.8 (extractor for (n, k)-sources):

1. An algorithm Ext:{0,1}¢x{0,1}"— {0,1}™ is called an extractor with error
e for the class C if for every source X in C it holds that Ext(Ug, X) is e-close
to Up,. If C is the class of (n,k)-sources then Ext is called a (k,e)-extractor.

2. An algorithm Ext is called a strong extractor with error ¢ for C if for every
source X in C it holds that (Ug, Ext(Ugq, X)) is e-close to (Uq,U,,). A strong
(k,e)-extractor is defined analogously.

Using the “decomposition” of (n, k)-sources to (n,k)-flat sources, it follows that
Ext is a (k,e)-extractor if and only if it is an extractor with error € for the class
of (n,k)-flat sources. (A similar claim holds for strong extractors.) Thus, much of
the technical analysis is conducted with respect to the class of (n, k)-flat sources.
For example, it is easy to see that, for d = log,(n/e?) + O(1), there exists a (k, ¢)-
extractor Ext : {0,1}¢ x {0,1}" — {0,1}*. (The proof is by the Probabilistic
Method and uses a union bound on the set of all (n, k)-flat sources.)®

We seek, however, explicit extractors; that is, extractors that are implementable
by polynomial-time algorithms. We note that the evaluation algorithm of any fam-
ily of pairwise independent hash functions mapping n-bit strings to m-bit strings
constitutes a (strong) (k, e)-extractor for e = 2~ (F~™)/2 (see the alternative proof of
Theorem D.5). However, these extractors necessarily use a long seed (i.e., d > 2m
must hold (and in fact d = n+2m —1 holds in Construction D.3)). In Section D.4.2
we survey constructions of efficient (k,<)-extractors that obtain logarithmic seed
length (i.e., d = O(log(n/¢))). But before doing so, we provide a few alternative
perspectives on extractors.

An important note on logarithmic seed length. The case of logarithmic
seed length is of particular importance for a variety of reasons. Firstly, when
emulating a randomized algorithm using a defected random source (as in Item 2 of
the motivational discussion of seeded extractors), the overhead is exponential in the
length of the seed. Thus, the emulation of a generic probabilistic polynomial-time
algorithm can be done in polynomial time only if the seed length is logarithmic.
Similarly, the applications discussed in §D.4.1.2 and §D.4.1.3 are feasible only if
the seed length is logarithmic. Lastly, we note that logarithmic seed length is an
absolute lower-bound for (k, ¢)-extractors, whenever n > k + k(") (and m > 1 and
e <1/2).

6The probability that a random function Ext : {0,1}¢ x {0,1}" — {0,1}* is not an extractor
with error ¢ for a fixed (n, k)-flat source is upper-bounded by 922" exp(—Q(2¢7*¢2)), which is
smaller than 1/(;:)

D.4. RANDOMNESS EXTRACTORS 523

D.4.1.2 Extractors as averaging samplers

There is a close relationship between extractors and averaging samplers (which
are mentioned towards the end of Section D.3). We first show that any averaging
sampler gives rise to an extractor. Let G : {0,1}"™ — ({0,1}™)" be the sample gen-
erating algorithm of an averaging sampler having accuracy € and error probability
6. That is, G uses n bits of randomness and generates ¢ sample points in {0,1}™
such that for every f : {0,1}™ — [0, 1] with probability at least 1 —é the average of

the f-values of these points is in the interval [f + <], where f Lef E[f(Un,)]- Define
Ext : [t] x {0,1}® — {0,1}™ such that Ext(i,r) is the i** sample generated by
G(r). We shall prove that Ext is a (k, 2¢)-extractor, for k = n — log,(g/6).

Suppose towards the contradiction that there exists a (n, k)-flat source X such
that for some S C {0,1}™ it is the case that Pr[Ext(Uy, X) € S] > Pr[U,, € S|+2¢,
where d = log, t and [t] = {0,1}¢. Define

B ={z €{0,1}" : Pr[Ext(Uy,z) € S] > (|S|/2™) +€}.

Then, |B| > ¢-2% = § - 2". Defining f(z) = 1 if z € S and f(z) = 0 otherwise, we
have f &' E[f(Um)] = |S|/2™. But, for every r € B the f-average of the sample
G(r) is greater than f + ¢, in contradiction to the hypothesis that the sampler has
error probability 6 (with respect to accuracy ¢).

We now turn to show that extractors give rise to averaging samplers. Let Ext :
{0,1}% x {0,1}™ — {0,1}™ be a (k,¢)-extractor. Consider the sample generation
algorithm G : {0,1}" — ({0, l}m)2d define by G(r) = (Ext(s,7))sc{0,134- We prove
that it corresponds to an averaging sampler with accuracy € and error probability
§ = 2-(n—h-L),

Suppose towards the contradiction that there exists a function f : {0,1}™ —

[0,1] such that for 62" = 2FF! strings 7 € {0,1}" the average f-value of the

sample G(r) deviates from f def E[f(Uy,)] by more than . Suppose, without loss

of generality, that for at least half of these r’s the average is greater than f + ¢,
and let B denote the set of these r’s. Then, for X that is uniformly distributed on
B and is thus a (n, k)-source, we have

E[f(Ext(Us, X))] > E[f(Um)] + ¢,

which (using |f(z)| < 1 for every z) contradicts the hypothesis that Ext(Uy, X) is
e-close to U,,.

D.4.1.3 Extractors as randomness-efficient error-reductions

As may be clear from the foregoing discussion, extractors yield randomness-efficient
methods for error-reduction. Indeed, error-reduction is a special case of the sam-
pling problem, obtained by considering Boolean functions. Specifically, for a two-
sided error decision procedure A, consider the function f, : {0,1}*(*D) — {0,1}
such that f,(r) = 1 if A(z,r) = 1 and fy(r) = 0 otherwise. Assuming that
the probability that A is correct is at least 0.5 4+ ¢ (say ¢ = 1/6), error reduc-
tion amounts to providing a sampler with accuracy € and any desired error prob-
ability 6 < e for the Boolean function f,. In particular, any (k,e)-extractor

524 APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

Ext : {0,1}% x {0,1}" — {0,1}*U*D with & = n — log(1/8) — 1 will do, provided
24 is feasible (e.g., 2¢ = poly(p(|z|)), where p(-) represents the randomness com-
plexity of the original algorithm A). The question of interest here is how does n
(which represents the randomness complexity of the corresponding sampler) grow
as a function of p(|z|) and é.

Error-reduction using the extractor Ext : [poly(p(|]))] x {0,1}" — {0, 1}#(=])
| | error probability | randomness complexity |

original algorithm | 1/3 o(lz]) |
resulting algorithm | ¢ (may depend on |z]) | n (function of p(|z]) and §) |

Jumping ahead (see Part 1 of Theorem D.10), we note that for every a > 1, one
can obtain n = O(p(|z|))+alogy(1/6), for any § > 2P (e(z)) Note that, for § <
2-9(r(I2]) " this bound on the randomness-complexity of error-reduction is better
than the bound of n = p(|z|) + O(log(1/6)) that is provided (for the reduction of
one-sided error) by the Expander Random Walk Generator (of Section 8.6.3), albeit
the number of samples here is larger (i.e., poly(p(|z|)/6) rather than O(log(1/9))).

Mentioning the reduction of one-sided error probability, brings us to a cor-
responding relaxation of the notion of an extractor, which is called a disperser.
Loosely speaking, a (k, ¢)-disperser is only required to hit (with positive probabil-
ity) any set of density greater than ¢ in its image, rather than produce a distribution
that is e-close to uniform.

Definition D.9 (dispersers): An algorithm Dsp : {0,1} x {0,1}* — {0,1}™ is
called a (k,€)-disperser if for every (n, k)-source X the support of Dsp(Uy, X) covers
at least (1 —) - 2™ points. Alternatively, for every set S C {0,1}™ of size greater
than €2™ it holds that Pr[Dsp(Uy, X) € S| > 0.

Dispersers can be used for the reduction of one-sided error analogously to the
use of extractors for the reduction of two-sided error. Specifically, regarding the
aforementioned function f, (and assuming that either Pr[f,(Uy.)) = 1] > ¢ or
fo(Ue(e|)) = 0), we may use any (k, €)-disperser Dsp : {0,1}9x{0,1}"™ — {0,1}=D
in attempt to find a point z such that f.(z) = 1. Indeed, if Pr[f.(Up(o)) = 1] > ¢
then |{z : (Vs€{0,1}9) f.(Dsp(s, z)) = 0}| < 2%, and thus the one-sided error can
be reduced from 1 — & to 2=("=*) while using n random bits.

D.4.1.4 Other perspectives

Extractors and dispersers have an appealing interpretation in terms of bipartite
graphs. Starting with dispersers, we view a disperser Dsp : {0,1}% x {0,1}" —
{0,1}™ as a bipartite graph G = (({0,1}",{0,1}™), E) such that E = {(z, Dsp(s, z)) :
r € {0,1}", s € {0,1}4}. This graph has the property that any subset of 2¥ ver-
tices on the left (i.e., in {0,1}™) has a neighborhood that contains at least a 1 — ¢
fraction of the vertices of the right, which is remarkable in the typical case where
d is small (e.g., d = O(logn/e)) and n > k > m whereas m = Q(k) (or at least
m = kM), Furthermore, if Dsp is efficiently computable then this bipartite graph

D.4. RANDOMNESS EXTRACTORS 525

is strongly constructible in the sense that, given a vertex on the left, one can effi-
ciently find all its neighbors. An extractor Ext : {0,1}¢ x {0,1}" — {0,1}™ yields
an analogous graph with a even stronger property: the neighborhood multi-set of
any subset of 2F vertices on the left covers the vertices on the right in an almost
uniform manner.

An odd perspective. In addition to viewing extractors as averaging samplers,
which in turn may be viewed within the scope of the pseudorandomness paradigm,
we mention here an even more odd perspective. Specifically, randomness extractors
may be viewed as randomized (by the seed) algorithms designed on purpose such
that to be fooled by any weak random source (but not by an even worse source).
Consider a (k, ¢)-extractor Ext : {0,1}¢ x {0,1}" — {0,1}™, for say ¢ < 1/100,
m =k = w(logn/e) and d = O(logn/e), and a potential test T's, parameterized
by a set S C {0,1}™, such that Pr[Ts(z) = 1] = Pr[Ext(U4,z) € S] (i.e., on
input # € {0,1}", the test uniformly selects s € {0,1}¢ and outputs 1 if and
only if Ext(s,z) € S). Then, for every (n,k)-source X the test Ts does not
distinguish X from U, (i.e., Pr[Ts(X)] = Pr[Ts(U,)] £ 2¢, because Ext(Uq, X)
is 2e-close to Ext(Uy,U,,) (since each is e-close to Uy,,)). On the other hand, for
every (n,k — d — 4)-flat source Y there exists a set S such that Ts distinguish
Y from U, with gap 0.9 (e.g., for S that equals the support of Ext(Uy,Y), it
holds that Pr[Ts(Y)] = 1 and Pr[Ts(U,)] < |S]-27™ +¢ = 274 + ¢ < 0.1).
Furthermore, this class of tests detects as defected, with probability 2/3, any source
that has entropy below (k/4) —d.” Thus, this weird class of tests views each (n, k)-
source as “pseudorandom” while detecting sources of lower entropy (e.g., entropy
lower than (k/4) —d) as non-pseudorandom. Indeed, this perspective stretches the
pseudorandomness paradigm quite far.

D.4.2 Constructions

Recall that we seek explicit constructions of extractors; that is, functions Ext :
{0,1}? x {0,1}™ — {0,1}™ that can be computed in polynomial-time. The ques-
tion, of course, is of parameters; that is, having (k,€)-extractors with m as large
as possible and d as small as possible. We first note that typically® m < k +
d — (2logy(1/¢) — O(1)) and d > log,((n — k)/e?) — O(1) must hold, regard-
less of explicitness. The aforementioned bounds are in fact tight; that is, there
exists (non-explicit) (k,e)-extractors with m = k + d — 2log,(1/e) — O(1) and
d = log,((n —k)/£?) + O(1). The obvious goal is to meet these bounds via explicit
constructions.

“For any such source Y, the distribution Z = Ext(Uy,Y) has entropy at most k/4 = m/4,
and thus is 0.7-far from Uy, (and 2/3-far from Ext(Uy,Ur)). The lower-bound on the statistical
distance of Z to U,, can be proven by the contra-positive: if Z is é-close to Uy, then its entropy
is at least (1 — §) -m — 1 (e.g., by using Fano’s inequality, see [60, Thm. 2.11.1]).

8That is, for e < 1/2 and m > d.

526 APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

D.4.2.1 Some known results

Despite tremendous progress on this problem (and occasional claims regarding
“optimal” explicit constructions), the ultimate goal was not reached yet. However,
we are pretty close. In particular, we have the following.

Theorem D.10 (explicit constructions of extractors): Ezplicit (k,e)-extractors of
the form Ext : {0,1}¢ x {0,1}" — {0,1}™ exist in the following cases:

1. For any constants e, > 0, with d = O(logn) and m = (1 — «) - k.
2. For any constants €,a > 0, with d = (1 +) -logyn and m = k/poly(logn).
3. For any € > exp(—k/logk), with d = O(logn/c) and m = Q(k/logk).

Part 2 is due to [188], and the other two parts are due to [148], where these
works build on previous ones (which are not cited here). We note that, for sake
of simplicity, we did not quote the best possible bounds. Furthermore, we did not
mention additional incomparable results (which are relevant for different ranges of
parameters). In general, it seems that the “last word” has not been said yet: indeed
the current results are close to optimal, but this cannot be said about the way that
they are achieved. In view of the foregoing, we refrain from trying to provide an
overview of the proof of Theorem D.10, and review instead a conceptual insight
that opened the door to much of the recent developments in the area.

D.4.2.2 The pseudorandomness connection

We conclude this section with an overview of a fruitful connection between extrac-
tors and certain pseudorandom generators. The connection, discovered by Tre-
visan [209], is surprising in the sense that it goes in a non-standard direction: it
transforms certain pseudorandom generators into extractors. As argued throughout
this book (most conspicuously at the end of Section 7.1.2), computational objects
are typically more complex than the corresponding information theoretical objects.
Thus, if pseudorandom generators and extractors are at all related (which was not
suspected before [209]) then this relation should not be expected to help in the con-
struction of extractors, which seem an information theoretic object. Nevertheless,
the discovery of this relation did yield a breakthrough in the study of extractors.”

But before describing the connection, let us wonder for a moment. Just looking
at the syntax, we note that pseudorandom generators have a single input (i.e., the
seed), while extractors have two inputs (i.e., the n-bit long source and the d-bit
long seed). But taking a second look at the Nisan-Wigderson Generator (i.e., the
combination of Construction 8.17 with an amplification of worst-case to average-
case hardness), we note that this construction can be viewed as taking two inputs:
a d-bit long seed and a “hard” predicate on d'-bit long strings (where d’ = Q(d)).°

9We note that once the connection became better understood, influence started going in the
“right” direction: from extractors to pseudorandom generators.

10Indeed, to fit the current context, we have modified some notations. In Construction 8.17 the
length of the seed is denoted by k and the length of the input for the predicate is denoted by m.

D.4. RANDOMNESS EXTRACTORS 527

Now, an appealing idea is to use the n-bit long source as a (truth-table) description
of a (worse-case) hard predicate (which indeed means setting n = 2¢'). The key
observation is that even if the source is only weakly random we expect it to represent
a predicate that is hard on the worst-case.

Recall that the aforementioned construction is supposed to yield a pseudoran-
dom generator whenever it starts with a hard predicate. In the current context,
where there are no computational restrictions, pseudorandomness is supposed to
hold against any (computationally unbounded) distinguisher, and thus here pseudo-
randomness means being statistically close to the uniform distribution (on strings
of the adequate length, denoted £). Intuitively, this makes sense only if the ob-
served sequence is shorter that the amount of randomness in the source (and seed),
which is indeed the case (i-e., £ < k + d, where k denotes the min-entropy of the
source). Hence, there is hope to obtain a good extractor this way.

To turn the hope into a reality, we need a proof (which is sketched next). Look-
ing again at the Nisan—Wigderson Generator, we note that the proof of indistin-
guishability of this generator provides a black-box procedure for computing the un-
derlying predicate when given oracle access to any potential distinguisher. Specif-
ically, in the proofs of Theorems 7.19 and 8.18 (which holds for any ¢ = 22(4))11
this black-box procedure was implemented by a relatively small circuit (which de-
pends on the underlying predicate). Hence, this procedure contains relatively little
information (regarding the underlying predicate), on top of the observed ¢-bit long
output of the extractor/generator. Specifically, for some fixed polynomial p, the

amount of information encoded in the procedure (and thus available to it) is upper-

bound by b def p(£), while the procedure is suppose to compute the underlying

predicate correctly on each input. That is, this amount of information is supposed
to fully determine the underlying predicate, which in turn is identical to the n-bit
long source. Thus, if the source has min-entropy exceeding b, then it cannot be
fully determine using only b bits of information. It follows that the foregoing con-
struction constitutes a (b4 O(1),1/6)-extractor (outputting ¢ = b() bits), where
the constant 1/6 is the one used in the proof of Theorem 8.18 (and the argument
holds provided that b = n®(1)). Note that this extractor uses a seed of length
d = O(d") = O(logn). The argument can be extended to obtain (k,poly(1/k))-
extract(ogs that output &1 bits using a seed of length d = O(logn), provided that
k=nS),

We note that the foregoing description has only referred to two abstract prop-
erties of the Nisan—Wigderson Generator: (1) the fact that this generator uses
any worst-case hard predicate as a black-box, and (2) the fact that its analysis
uses any distinguisher as a black-box. In particular, we viewed the amplification
of worst-case hardness to inapproximability (performed in Theorem 7.19) as part
of the construction of the pseudorandom generator. An alternative presentation,
which is more self-contained, replaces the amplification step of Theorem 7.19 by a
direct argument in the current (information theoretic) context and plugs the result-
ing predicate directly into Construction 8.17. The advantages of this alternative
include using a simpler amplification (since amplification is simpler in the informa-

HRecalling that n = 2‘1’, the restriction £ = 2(d") implies £ = n©(1)

528 APPENDIX D. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICSIN RANDOMIZATION

tion theoretic setting than in the computational setting), and deriving transparent
construction and analysis (which mirror Construction 8.17 and Theorem 8.18, re-
spectively).

The alternative presentation. The foregoing analysis transforms a generic dis-
tinguisher into a procedure that computes the underlying predicate correctly on
each input, which fully determines this predicate. Hence, an upper-bound on the
information available to this procedure yields an upper-bound on the number of
possible outcomes of the source that are bad for the extractor. In the alternative
presentation, we transforms a generic distinguisher into a procedure that approx-
imates the underlying predicate; that is, the procedure yields a function that is
relatively close to the underlying predicate. If the potential underlying predicates
are far apart, then this directly yields the desired bound (on the number of bad
outcomes that correspond such predicates). Thus, the idea is to encode the n-bit
long source by an error correcting code of length n’ = poly(n) and relative dis-
tance 0.5 — (1/n)?, and use the resulting codeword as a truth-table of a predicate
for Construction 8.17. Such codes (coupled with efficient encoding algorithms)
do exist (see Section E.1), and the benefit in using them is that each n'-bit long
string (determined by the information available to the aforementioned approxima-
tion procedure) may be (0.5 — (1/n))-close to at most O(n?) codewords (which
correspond to potential predicates). That is, the resulting extractor converts the
n-bit input x into a codeword x' € {0,1}"1, viewed as a predicate over {0,1}d’
(where d' = log,n'), and evaluates this predicate at the ¢ projections of the d-bit
long seed, where these projections are determined by the corresponding set system
(i.e., the ¢-long sequence of d'-subsets of [d]). The analysis mirrors the proof of
Theorem 8.18, and yields a bound of 20(¢*) -O(n?) on the number of bad outcomes
for the source, where O(¢?) upper-bounds the information available to the approx-
imation procedure and O(n?) upper-bounds the number of source-outcomes that
when encoded are each (0.5 — (1/n))-close to the approximation procedure.

D.4.2.3 Recommended reading

The interested reader is referred to a survey of Shaltiel [187]. This survey con-
tains a comprehensive introduction to the area, including an overview of the ideas
that underly the various constructions. In particular, the survey describes the ap-
proaches used before the discovery of the pseudorandomness connection, the con-
nection itself (and the constructions that arise from it), and the “third generation”
of constructions that followed.

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

S. Aaronson. Complexity Zoo. A continueously updated web-site at
http://qwiki.caltech.edu/wiki/Complexity Zoo/.

L.M. Adleman and M. Huang. Primality Testing and Abelian Varieties Over
Finite Fields. Springer-Verlag Lecture Notes in Computer Science (Vol. 1512),
1992. Preliminary version in 19th STOC, 1987.

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathe-
matics, Vol. 160 (2), pages 781-793, 2004.

M. Ajtai, J. Komlos, E. Szemerédi. Deterministic Simulation in LogSpace.
In 19th ACM Symposium on the Theory of Computing, pages 132—-140, 1987.

R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovdsz and C. Rackoff. Random
walks, universal traversal sequences, and the complexity of maze problems. In
20th IEEE Symposium on Foundations of Computer Science, pages 218-223,
1979.

N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm
for the Maximal Independent Set Problem. .J. of Algorithms, Vol. 7, pages
567-583, 1986.

N. Alon and R. Boppana. The monotone circuit complexity of Boolean func-
tions. Combinatorica, Vol. 7 (1), pages 1-22, 1987.

N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Charac-
terization of the Testable Graph Properties: It’s All About Regularity. In
38th ACM Symposium on the Theory of Computing, to appear, 2006.

N. Alon, O. Goldreich, J. Hastad, R. Peralta. Simple Constructions of Almost
k-wise Independent Random Variables. Journal of Random structures and
Algorithms, Vol. 3, No. 3, (1992), pages 289-304.

N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons,
Inc., 1992.

R. Armoni. On the derandomization of space-bounded computations. In
the proceedings of Random98, Springer-Verlag, Lecture Notes in Computer
Science (Vol. 1518), pages 49-57, 1998.

571

572

[12]

[13]

[14]

[18]

[19]

[20]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

S. Arora. Approximation schemes for NP-hard geometric optimization prob-
lems: A survey. Math. Programming, Vol. 97, pages 43-69, July 2003.

S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification
and Intractability of Approximation Problems. Journal of the ACM, Vol. 45,
pages 501-555, 1998. Preliminary version in $3rd FOCS, 1992.

S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characteriza-
tion of NP. Journal of the ACM, Vol. 45, pages 70-122, 1998. Preliminary
version in 33rd FOCS, 1992.

H. Attiya and J. Welch: Distributed Computing: Fundamentals, Simulations
and Advanced Topics. McGraw-Hill, 1998.

L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium
on the Theory of Computing, pages 421-429, 1985.

L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has
Two-Prover Interactive Protocols. Computational Complexity, Vol. 1, No. 1,
pages 3—40, 1991. Preliminary version in 81st FOCS, 1990.

L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in
Polylogarithmic Time. In 28rd ACM Symposium on the Theory of Computing,
pages 21-31, 1991.

L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponen-
tial Time Simulations unless EXPTIME has Publishable Proofs. Complezity
Theory, Vol. 3, pages 307-318, 1993.

L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System
and a Hierarchy of Complexity Classes. Journal of Computer and System
Science, Vol. 36, pp. 254-276, 1988.

E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: Efficient
Algorithms). MIT Press, 1996.

B. Barak. Non-Black-Box Techniques in Crypptography. PhD Thesis, Weiz-
mann Institute of Science, 2004.

W. Baur and V. Strassen. The Complexity of Partial Derivatives. Theor.
Comput. Sci. 22, pages 317-330, 1983.

P. Beame and T. Pitassi. Propositional Proof Complexity: Past, Present, and
Future. In Bulletin of the European Association for Theoretical Computer
Science, Vol. 65, June 1998, pp. 66—89.

A. Beimel, Y. Ishai, E. Kushilevitz, and J.F. Raymond. Breaking the
O(n'/(?*=1)) barrier for information-theoretic private information retrieval.
In 48rd IEEE Symposium on Foundations of Computer Science, pages 261—
270, 2002.

BIBLIOGRAPHY 573

[26]

[27]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-
witnesses using an NP-oracle. Information and Computation, Vol. 163, pages
510-526, 2000.

M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-
Approximability — Towards Tight Results. SIAM Journal on Computing,
Vol. 27, No. 3, pages 804-915, 1998. Extended abstract in $6th FOCS, 1995.

S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average
Case Complexity. Journal of Computer and System Science, Vol. 44 (2), pages
193219, 1992.

A. Ben-Dor and S. Halevi. In 2nd Israel Symp. on Theory of Computing and
Systems, IEEE Computer Society Press, pages 108-117, 1993.

M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian, S. Micali
and P. Rogaway. Everything Provable is Probable in Zero-Knowledge. In
Crypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),
pages 37-56, 1990

M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Inter-
active Proofs: How to Remove Intractability. In 20th ACM Symposium on
the Theory of Computing, pages 113-131, 1988.

M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation. In 20th ACM
Symposium on the Theory of Computing, pages 1-10, 1988.

E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust
PCPs of proximity, Shorter PCPs and Applications to Coding. In $6th ACM
Symposium on the Theory of Computing, pages 1-10, 2004. Full version in
ECCC, TR04-021, 2004.

E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and Query
Complexity. ECCC, TR04-060, 2004.

L. Berman and J. Hartmanis. On isomorphisms and density of NP and other
complete sets. STAM Journal on Computing, Vol. 6 (2), 1977, pages 305-322.
Extended abstract in 8th STOC, 1976.

M. Blum. A Machine-Independent Theory of the Complexity of Recursive
Functions. Journal of the ACM, Vol. 14 (2), pages 290-305, 1967.

M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850—
864, 1984. Preliminary version in 23rd FOCS, 1982.

M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Appli-
cations to Numerical Problems. Journal of Computer and System Science,
Vol. 47, No. 3, pages 549-595, 1993.

574

[39]

[40]

[41]

[42]

[43]

BIBLIOGRAPHY

A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-
colorability in bounded-degree graphs. In 43rd IEEE Symposium on Foun-
dations of Computer Science, pages 93—-102, 2002.

A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for
NP problems. In Proc. 44th IEEE Symposium on Foundations of Computer
Science, pages 308-317, 2003.

A. Bogdanov and L. Trevisan. Average-case complexity: a survey. In prepa-
ration, 2005.

R. Boppana, J. Hastad, and S. Zachos. Does Co-NP Have Short Interactive
Proofs? Information Processing Letters, 25, May 1987, pages 127-132.

R. Boppana and M. Sipser. The complexity of finite functions. In Handbook
of Theoretical Computer Science: Volume A — Algorithms and Complexity,
J. van Leeuwen editor, MIT Press/Elsevier, 1990, pages 757-804.

A. Borodin. Computational Complexity and the Existence of Complexity
Gaps. Journal of the ACM, Vol. 19 (1), pages 158-174, 1972.

A. Borodin. On Relating Time and Space to Size and Depth. SIAM Journal
on Computing, Vol. 6 (4), pages 733-744, 1977.

G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. Journal of Computer and System Science, Vol. 37, No. 2, pages
156-189, 1988. Preliminary version by Brassard and Crépeau in 27th FOCS,
1986.

L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer
and System Science, Vol. 18, 1979, pages 143-154.

G.J. Chaitin. On the Length of Programs for Computing Finite Binary Se-
quences. Journal of the ACM, Vol. 13, pages 547-570, 1966.

A K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. Journal of the
ACM, Vol. 28, pages 114-133, 1981.

D. Chaum, C. Crépeau and I. Damgard. Multi-party unconditionally Secure
Protocols. In 20th ACM Symposium on the Theory of Computing, pages
11-19, 1988.

B. Chor and O. Goldreich. On the Power of Two—Point Based Sampling.
Jour. of Complexity, Vol 5, 1989, pages 96-106. Preliminary version dates
1985.

B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness
and Probabilistic Communication Complexity. SIAM Journal on Computing,
Vol. 17, No. 2, pages 230-261, 1988.

BIBLIOGRAPHY 575

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[65]

[66]

[67]

[68]

A. Church. An Unsolvable Problem of Elementary Number Theory. Amer.
J. of Math., Vol. 58, pages 345-363, 1936.

A. Cobham. The Intristic Computational Difficulty of Functions. In Proc.
1964 Iternational Congress for Logic Methodology and Philosophy of Science,
pages 24-30, 1964.

S.A. Cook. The Complexity of Theorem Proving Procedures. In $rd ACM
Symposium on the Theory of Computing, pages 151-158, 1971.

S.A. Cook. A overview of Computational Complexity. Turing Award Lecture.
CACM, Vol. 26 (6), pages 401-408, 1983.

S.A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Infor-
mation and Control, Vol. 64, pages 2—22, 1985.

S.A. Cook and R.A. Reckhow. Stephen A. Cook, Robert A. Reckhow: The
Relative Efficiency of Propositional Proof Systems. J. of Symbolic Logic,
Vol. 44 (1), pages 36-50, 1979.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. Journal of Symbolic Computation, 9, pages 251-280, 1990.

T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley
& Sons, Inc., New-York, 1991.

P. Crescenzi and V. Kann. A compendium of NP Optimization problems.
Available at http://www.nada.kth.se/~viggo/wwwcompendium/

W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Trans.
on Info. Theory, IT-22 (Nov. 1976), pages 644—654.

I. Dinur. The PCP Theorem by Gap Amplification. ECCC, TR05-046, 2005.

I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof
of the PCP-Theorem. In 45th IEEE Symposium on Foundations of Computer
Science, pages 155-164, 2004.

I. Dinur and S. Safra. The importance of being biased. In 3/th ACM Sym-
posium on the Theory of Computing, pages 33—42, 2002.

J. Edmonds. Paths, Trees, and Flowers. Canad. J. Math., Vol. 17, pages
449-467, 1965.

S. Even. Graph Algorithms. Computer Science Press, 1979.

S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems
with Applications to Public-Key Cryptography. Information and Control,
Vol. 61, pages 159-173, 1984.

576

[69]

[70]

[71]

[72]

[77]

[78]

BIBLIOGRAPHY

U. Feige, S. Goldwasser, L. Lovdsz and S. Safra. On the Complexity of
Approximating the Maximum Size of a Clique. Unpublished manuscript,
1990.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating
Clique is almost NP-complete. Journal of the ACM, Vol. 43, pages 268292,
1996. Preliminary version in 32nd FOCS, 1991.

U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-
Knowledge Proofs Under General Assumptions. SIAM Journal on Com-
puting, Vol. 29 (1), pages 1-28, 1999.

U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding
Protocols. In 22nd ACM Symposium on the Theory of Computing, pages
416-426, 1990.

E. Fischer. The art of uninformed decisions: A primer to property test-
ing. Bulletin of the European Association for Theoretical Computer Science,
Vol. 75, pages 97-126, 2001.

G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.

L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-space lower
bounds for satisfiability. Journal of the ACM, Vol. 52 (6), pages 835-865,
November 2005.

L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interac-
tive protocols. In 3rd IEEE Symp. on Structure in Complexity Theory, pages
156161, 1988. See errata in 5th IEEE Symp. on Structure in Complezity
Theory, pages 318-319, 1990.

S. Fortune. A Note on Sparse Complete Sets. SIAM Journal on Computing,
Vol. 8, pages 431433, 1979.

M. Fiirer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-
ness and Soundness in Interactive Proof Systems. Advances in Computing
Research: a research annual, Vol. 5 (Randomness and Computation, S. Mi-
cali, ed.), pages 429-442, 1989.

M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-
Time Hierarchy. Mathematical Systerns Theory, Vol. 17 (1), pages 13-27,
1984. Preliminary version in 22nd FOCS, 1981.

O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-
trators. Journal of Computer and System Science, Vol. 22, pages 407-420,
1981.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

BIBLIOGRAPHY S77

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[93]

[94]

D. Gillman. A chernoff bound for random walks on expander graphs. In
34th IEEE Symposium on Foundations of Computer Science, pages 680691,
1993.

O. Goldreich. Foundation of Cryptography — Class Notes. Computer Science
Dept., Technion, Israel, Spring 1989. Superseded by [87, 88].

O. Goldreich. A Note on Computational Indistinguishability. Information
Processing Letters, Vol. 34, pages 277-281, May 1990.

O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. ECCC,
TR97-058, Dec. 1997.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-
ness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.

O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge Univer-
sity Press, 2001.

O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge
University Press, 2004.

O. Goldreich. Short Locally Testable Codes and Proofs (Survey). ECCC,
TRO05-014, 2005.

O. Goldreich. On Promise Problems (a survey in memory of Shimon Even
[1935-2004]). ECCC, TR05-018, 2005.

O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random
Functions. Journal of the ACM, Vol. 33, No. 4, pages 792-807, 1986.

O. Goldreich, S. Goldwasser, and A. Nussboim. On the Implementation of
Huge Random Objects. In 44th IEEE Symposium on Foundations of Com-
puter Science, pages 68—79, 2002.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection
to learning and approximation. Journal of the ACM, pages 653-750, July
1998.

O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge
Proof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February 1996,
pages 169-192. Preliminary version in 17th ICALP, 1990.

O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-
tion. In 21st ACM Symposium on the Theory of Computing, pages 25—32,
1989.

O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but
their Validity or All Languages in NP Have Zero-Knowledge Proof Systems.
Journal of the ACM, Vol. 38, No. 3, pages 691-729, 1991. Preliminary version
in 27th FOCS, 1986.

578

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

BIBLIOGRAPHY

O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game —
A Completeness Theorem for Protocols with Honest Majority. In 19th ACM
Symposium on the Theory of Computing, pages 218-229, 1987.

O. Goldreich, N. Nisan and A. Wigderson. On Yao’s XOR-Lemma. ECCC,
TR95-050, 1995.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algo-
rithmica, pages 302-343, 2002.

O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree
graphs. Combinatorica, Vol. 19 (3), pages 335-373, 1999.

O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries:
the highly noisy case. SIAM J. Discrete Math., Vol. 13 (4), pages 535-570,
2000.

O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with a
laconic provers. Computational Complexity, Vol. 11, pages 1-53, 2002.

O. Goldreich and A. Wigderson. Computational Complexity. In The Prince-
ton Companion to Mathematics, to appear.

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer
and System Science, Vol. 28, No. 2, pages 270-299, 1984. Preliminary version
in 14th STOC, 1982.

S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186—
208, 1989. Preliminary version in 17th STOC, 1985. Earlier versions date to
1982.

S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
April 1988, pages 281-308.

S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive
Proof Systems. Advances in Computing Research: a research annual, Vol. 5
(Randomness and Computation, S. Micali, ed.), pages 73-90, 1989. Extended
abstract in 18th STOC, 1986.

S.W. Golomb. Shift Register Sequences. Holden-Day, 1967. (Aegean Park
Press, revised edition, 1982.)

J. Hartmanis and R.E. Stearns. On the Computational Complexity of of
Algorithms. Transactions of the AMS, Vol. 117, pages 285-306, 1965.

J. Hastad. Almost Optimal Lower Bounds for Small Depth Circuits. Ad-
vances in Computing Research: a research annual, Vol. 5 (Randomness and
Computation, S. Micali, ed.), pages 143-170, 1989. Extended abstract in
18th STOC, pages 6-20, 1986.

BIBLIOGRAPHY 579

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

J. Hastad. Clique is hard to approximate within n'=¢. Acta Mathematica,
Vol. 182, pages 105-142, 1999. Preliminary versions in 28th STOC (1996)
and 37th FOCS (1996).

J. Hastad. Getting optimal in-approximability results. In 29th ACM Sympo-
stum on the Theory of Computing, pages 1-10, 1997.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Gen-
erator from any One-way Function. SIAM Journal on Computing, Volume
28, Number 4, pages 1364-1396, 1999. Preliminary versions by Impagliazzo
et. al. in 21st STOC (1989) and Hastad in 22nd STOC (1990).

J. Hastad and S. Khot. Query efficient PCPs with pefect completeness. In
42nd IEEE Symposium on Foundations of Computer Science, pages 610-619,
2001.

A. Healy, S. Vadhan and E. Viola. Using nondeterminism to amplify hardness.
In 36th ACM Symposium on the Theory of Computing, pages 192—-201, 2004.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

D. Hochbaum (ed.). Approzimation Algorithms for NP-Hard Problems. PWS,
1996.

N. Immerman. Nondeterministic Space is Closed Under Complementation.
SIAM Journal on Computing, Vol. 17, pages 760-778, 1988.

R. Impagliazzo. Hard-core Distributions for Somewhat Hard Problems. In
36th IEEE Symposium on Foundations of Computer Science, pages 538-545,
1995.

R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP In-
stances than Picking Uniformly at Random. In 81st IEEE Symposium on
Foundations of Computer Science, pages 812-821, 1990.

R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits:
Derandomizing the XOR Lemma. In 29th ACM Symposium on the Theory
of Computing, pages 220229, 1997.

R. Impagliazzo and A. Wigderson. Randomness vs Time: Derandomization
under a Uniform Assumption. Journal of Computer and System Science,
Vol. 63 (4), pages 672-688, 2001.

R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In
Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),
pages 40-51, 1987.

M. Jerrum, A. Sinclair, and E. Vigoda. A Polynomial-Time Approximation
Algorithm for the Permanent of a Matrix with Non-Negative Entries. Journal
of the ACM, Vol. 51 (4), pages 671-697, 2004.

580

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

BIBLIOGRAPHY

M. Jerrum, L. Valiant, and V.V. Vazirani. Random Generation of Combina-
torial Structures from a Uniform Distribution. Theoretical Computer Science,
Vol. 43, pages 169-188, 1986.

N. Kahale, Eigenvalues and Expansion of Regular Graphs. Journal of the
ACM, Vol. 42 (5), pages 1091-1106, September 1995.

R. Kannan, H. Venkateswaran, V. Vinay, and A.C. Yao. A Circuit-based
Proof of Toda’s Theorem. Information and Computation, Vol. 104 (2), pages
271-276, 1993.

R.M. Karp. Reducibility among Combinatorial Problems. In Complezity
of Computer Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum
Press, pages 85-103, 1972.

R.M. Karp and R.J. Lipton. Some connections between nonuniform and uni-
form complexity classes. In 12th ACM Symposium on the Theory of Com-
puting, pages 302-309, 1980.

R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and re-
liability problems. In 24th IEEE Symposium on Foundations of Computer
Science, pages 56-64, 1983.

R.M. Karp and V. Ramachandran: Parallel Algorithms for Shared-Memory
Machines. In Handbook of Theoretical Computer Science, Vol A: Algorithms
and Complexity, 1990.

M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity Require
Super-logarithmic Depth. SIAM J. Discrete Math., Vol. 3 (2), pages 255-265,
1990. Preliminary version in 20th STOC, 1988.

M.J. Kearns and U.V. Vazirani. An introduction to Computational Learning
Theory. MIT Press, 1994.

S. Khot and O. Regev. Vertex Cover Might be Hard to Approximate to
within 2 —e. In 18th IEEE Conference on Computational Complezity, pages
379-386, 2003.

V.M. Khrapchenko. A method of determining lower bounds for the com-
plexity of Pi-schemes. In Matematicheskie Zametki 10 (1),pages 83-92, 1971
(in Russian). English translation in Mathematical Notes of the Academy of
Sciences of the USSR 10 (1) 1971, pages 474-479.

J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In
24th ACM Symposium on the Theory of Computing, pages 723-732, 1992.

D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical
Algorithms). Addison-Wesley Publishing Company, Inc., 1969 (first edition)
and 1981 (second edition).

BIBLIOGRAPHY 581

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

A. Kolmogorov. Three Approaches to the Concept of “The Amount Of In-
formation”. Probl. of Inform. Transm., Vol. 1/1, 1965.

E. Kushilevitz and N. Nisan. Communication Complerity. Cambridge Uni-
versity Press, 1996.

R.E. Ladner. On the Structure of Polynomial Time Reducibility. Journal of
the ACM, Vol. 22, 1975, pages 155-171.

C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing
Letters, 17, pages 215217, 1983.

F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9,
pages 115-116, 1973. Translated in problems of Information Transmission 9,
pages 265-266.

L.A. Levin. Randomness Conservation Inequalities: Information and Inde-
pendence in Mathematical Theories. Information and Control, Vol. 61, pages
15-37, 1984.

L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing,
Vol. 15, pages 285-286, 1986.

L.A. Levin. Fundamentals of Computing. SIGACT News, Education Forum,
special 100-th issue, Vol. 27 (3), pages 89-110, 1996.

M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications. Springer Verlag, August 1993.

C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal up
to constant factors. In 35th ACM Symposium on the Theory of Computing,
pages 602-611, 2003.

A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica,
Vol. 8, pages 261-277, 1988.

M. Luby and A. Wigderson. Pairwise Independence and Derandomization.
TR-95-035, International Computer Science Institute (ICSI), Berkeley, 1995.
ISSN 1075-4946.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for In-
teractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages 859868,
1992. Preliminary version in 31st FOCS, 1990.

F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-
Holland, 1981.

582

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

BIBLIOGRAPHY

G.A. Margulis. Explicit Construction of Concentrators. (In Russian.) Prob.
Per. Infor., Vol. 9 (4), pages 71-80, 1973. English translation in Problems of
Infor. Trans., pages 325-332, 1975.

S. Micali. Computationally Sound Proofs. SIAM Journal on Computing,
Vol. 30 (4), pages 1253-1298, 2000. Preliminary version in 35th FOCS, 1994.

G.L. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Com-
puter and System Science, Vol. 13, pages 300-317, 1976.

P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-Merlin
Games using Hitting Sets. Journal of Computational Complexity, to appear.
Preliminary version in 40th FOCS, 1999.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

M. Naor. Bit Commitment using Pseudorandom Generators. Journal of
Cryptology, Vol. 4, pages 151-158, 1991.

J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions
and Applications. SIAM Journal on Computing, Vol 22, 1993, pages 838-856.

M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-
graphic Application. In 21st ACM Symposium on the Theory of Computing,
1989, pages 33-43.

N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,
Vol. 11 (1), pages 63—70, 1991.

N. Nisan. Pseudorandom Generators for Space Bounded Computation. Com-
binatorica, Vol. 12 (4), pages 449-461, 1992.

N. Nisan. RL C SC. Journal of Computational Complexity, Vol. 4, pages
1-11, 1994.

N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer
and System Science, Vol. 49, No. 2, pages 149-167, 1994.

N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal of
Computer and System Science, Vol. 52 (1), pages 43-52, 1996.

C.H. Papadimitriou. Computational Complezxity. Addison Wesley, 1994.

C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and
Complexity Classes. In 20th ACM Symposium on the Theory of Computing,
pages 229-234, 1988.

N. Pippenger and M.J. Fischer. Relations among complexity measures. Jour-
nal of the ACM, Vol. 26 (2), pages 361-381, 1979.

BIBLIOGRAPHY 583

[169] E. Post. A Variant of a Recursively Unsolvable Problem. Bull. AMS, Vol. 52,
pages 264-268, 1946.

170] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation
g g
(R.A. DeMillo et. al. eds.), Academic Press, 1977.

[171] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable
as Factoring. MIT/LCS/TR-212, 1979.

[172] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Num-
ber Theory, Vol. 12, pages 128-138, 1980.

[173] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,
Vol. 27 (3), pages 763-803, 1998. Extended abstract in 27th STOC, 1995.

[174] R. Raz and A. Wigderson. Monotone Circuits for Matching Require Linear
Depth. Journal of the ACM, Vol. 39 (3), pages 736—744, 1992. Preliminary
version in 22nd STOC, 1990.

[175] A. Razborov. Lower bounds for the monotone complexity of some Boolean
functions. In Doklady Akademii Nauk SSSR, Vol. 281, No. 4, 1985, pages
798-801. English translation in Soviet Math. Doklady, 31, pages 354-357,
1985.

[176] A. Razborov. Lower bounds on the size of bounded-depth networks over a
complete basis with logical addition. In Matematicheskie Zametki, Vol. 41,
No. 4, pages 598—607, 1987. English translation in Mathematical Notes of the
Academy of Sci. of the USSR, Vol. 41 (4), pages 333-338, 1987.

[177] A.R. Razborov and S. Rudich. Natural Proofs. Journal of Computer and
System Science, Vol. 55 (1), pages 24-35, 1997.

[178] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Sym-
posium on the Theory of Computing, pages 376-385, 2005.

[179] O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-Zag
Graph Product, and New Constant-Degree Expanders and Extractors. An-
nals of Mathematics, Vol. 155 (1), pages 157-187, 2001. Preliminary version
in 41st FOCS, pages 3—13, 2000.

[180] H.G. Rice. Classes of Recursively Enumerable Sets and their Decision Prob-
lems. Trans. AMS, Vol. 89, pages 25-59, 1953.

[181] R.L. Rivest, A. Shamir and L.M. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978, pages
120-126.

[182] D. Ron. Property testing. In Handbook on Randomization, Volume II,
pages 597-649, 2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif
and J.D.P. Rolim.)

584

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

BIBLIOGRAPHY

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with
applications to program testing. SIAM Journal on Computing, Vol. 25 (2),
pages 252-271, 1996.

M. Saks and S. Zhou. RSPACE(S) C DSPACE(S?/?). In 36th IEEE Sym-
posium on Foundations of Computer Science, pages 344-353, 1995.

W.J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. JCSS, Vol. 4 (2), pages 177-192, 1970.

A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol. 21 (6),
page 310, 1974.

R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. In
Current Trends in Theoretical Computer Science: The Challenge of the New
Century, Vol 1: Algorithms and Complexity, World scietific, 2004. (Editors:
G. Paun, G. Rozenberg and A. Salomaa.) Preliminary version in Bulletin of
the EATCS 77, pages 67-95, 2002.

R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a
New Pseudo-Random Generator. In 42nd IEEE Symposium on Foundations
of Computer Science, pages 648—657, 2001.

C.E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans.
American Institute of Electrical Engineers, Vol. 57, pages 713-723, 1938.

C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech.
Jour., Vol. 27, pages 623-656, 1948.

C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.
Jour., Vol. 28, pages 656715, 1949.

A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages
869-877, 1992. Preliminary version in 81st FOCS, 1990.

A. Shpilka. Lower Bounds for Matrix Product. SIAM Journal on Computing,
pages 1185-1200, 2003.

M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACM
Symposium on the Theory of Computing, pages 330-335, 1983.

M. Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, 1997.

R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity. In 19th ACM Symposium on the Theory of Computing
pages 77-82, 1987.

R.J. Solomonoff. A Formal Theory of Inductive Inference. Information and
Control, Vol. 7/1, pages 1-22, 1964.

BIBLIOGRAPHY 585

[198]

[199]

200]

201]

202]

203]

[204]

205]

206]

[207]

[208]

209]

[210]

[211]

R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAM
Journal on Computing, Vol. 6, pages 84-85, 1977. Addendum in SIAM Jour-
nal on Computing, Vol. 7, page 118, 1978.

D.A. Spielman. Advanced Complexity Theory, Lectures 10 and 11.
Notes (by D. Lewin and S. Vadhan), March 1997. Available
from http://www.cs.yale.edu/homes/spielman/AdvComplexity/1998/ as
lect10.ps and lectll.ps.

L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer
Science, Vol. 3, pages 1-22, 1977.

L. Stockmeyer. The Complexity of Approximate Counting. In 15th ACM
Symposium on the Theory of Computing, pages 118-126, 1983.

V. Strassen. Algebraic Complexity Theory. In Handbook of Theoretical Com-
puter Science: Volume A — Algorithms and Complezity, J. van Leeuwen edi-
tor, MIT Press/Elsevier, 1990, pages 633-672.

M. Sudan. Decoding of Reed Solomon codes beyond the error-correction
bound. Journal of Complexity, Vol. 13 (1), pages 180-193, 1997.

M. Sudan. Algorithmic introduction to coding theory. Lecture notes, Avail-
able from http://theory.csail.mit.edu/ madhu/FT01/, 2001.

, M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without
the XOR Lemma. Journal of Computer and System Science, Vol. 62, No. 2,
pages 236-266, 2001.

R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Au-
tomata. Acta Informatica, Vol. 26, pages 279-284, 1988.

S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on
Computing, Vol. 20 (5), pages 865-877, 1991.

B.A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute Force
Search) Algorithms. Annals of the History of Computing, Vol. 6 (4), pages
384-398, 1984.

L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-
Random Generators. In 31st ACM Symposium on the Theory of Computing,
pages 141-148, 1998.

V. Trifonov. An O(lognloglogn) Space Algorithm for Undirected st-
Connectivity. In 37th ACM Symposium on the Theory of Computing, pages
623-633, 2005.

C.E. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proc. Londom Mathematical Soceity, Ser. 2, Vol. 42, pages
230265, 1936. A Correction, ibid., Vol. 43, pages 544—546.

586

[212]

[213]

214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

BIBLIOGRAPHY

C. Umans. Pseudo-random generators for all hardness. Journal of Computer
and System Science, Vol. 67 (2), pages 419-440, 2003.

S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. = PhD
Thesis, Department of Mathematics, MIT, 1999. Available from
http://www.eecs.harvard.edu/~salil/papers/phdthesis-abs.html.

S. Vadhan. An Unconditional Study of Computational Zero Knowledge. In
45th IEEE Symposium on Foundations of Computer Science, pages 176185,
2004.

L.G. Valiant. The Complexity of Computing the Permanent. Theoretical
Computer Science, Vol. 8, pages 189-201, 1979.

L.G. Valiant. A theory of the learnable. CACM, Vol. 27/11, pages 1134-1142,
1984.

L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions.
Theoretical Computer Science, Vol. 47 (1), pages 85-93, 1986.

J. von Neumann, First Draft of a Report on the EDVAC, 1945. Contract No.
W-670-ORD-492, Moore School of Electrical Engineering, Univ. of Penn.,
Philadelphia. Reprinted (in part) in Origins of Digital Computers: Selected
Papers, Springer-Verlag, Berlin Heidelberg, pages 383—-392, 1982.

J. von Neumann, Zur Theorie der Gesellschaftsspiele. Mathematische An-
nalen, 100, pages 295-320, 1928.

I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

I. Wegener. Branching Programs and Binary Decision Diagrams — Theory and
Applications. STAM Monographs on Discrete Mathematics and Applications,
2000.

A. Wigderson. The amazing power of pairwise independence. In 26th ACM
Symposium on the Theory of Computing, pages 645—647, 1994.

A.C. Yao. Theory and Application of Trapdoor Functions. In 23%rd IEEFE
Symposium on Foundations of Computer Science, pages 80-91, 1982,

A.C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. In 26th
IEEE Symposium on Foundations of Computer Science, pages 1-10, 1985.

A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium
on Foundations of Computer Science, pages 162167, 1986.

D. Zuckerman. Simulating BPP Using a General Weak Random Source.
Algorithmica, Vol. 16, pages 367-391, 1996.

D. Zuckerman. Randomness-Optimal Oblivious Sampling. Journal of Ran-
dom Structures and Algorithms, Vol. 11, Nr. 4, December 1997, pages 345—
367.

