
Computational Complexity:A Conceptual PerspectiveOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.July 21, 2006

172

Chapter 6Randomness and CountingI owe this almost atrocious variety to an institution which otherrepublics do not know or which operates in them in an imperfectand secret manner: the lottery.Jorge Luis Borges, The Lottery In BabylonSo far, our approach to computing devices was somewhat conservative: we thoughtof them as executing a deterministic rule. A more liberal and quite realistic ap-proach, which is pursued in this chapter, considers computing devices that use aprobabilistic rule. This relaxation has an immediate impact on the notion of e�-cient computation, which is consequently associated with probabilistic polynomial-time computations rather than with deterministic (polynomial-time) ones. Westress that the association of e�cient computation with probabilistic polynomial-time computation makes sense provided that the failure probability of the latter isnegligible (which means that it may be safely ignored).The quantitative nature of the failure probability of probabilistic algorithmprovides one connection between probabilistic algorithms and counting problems.The latter are indeed a new type of computational problems, and our focus is oncounting e�ciently recognizable objects (e.g., NP-witnesses for a given instance ofset in NP). Randomized procedures turn out to play an important role in thestudy of such counting problems.Summary: Focusing on probabilistic polynomial-time algorithms, weconsider various types of failure of such algorithms giving rise to com-plexity classes such as BPP, RP , and ZPP. The results presentedinclude BPP � P=poly and BPP � �2.We then turn to counting problems; speci�cally, counting the numberof solutions for an instance of a search problem in PC (or, equivalently,counting the number of NP-witnesses for an instance of a decision prob-lem in NP). We distinguish between exact counting and approximatecounting (in the sense of relative approximation). In particular, while173

174 CHAPTER 6. RANDOMNESS AND COUNTINGany problem in PH is reducible to the exact counting class #P , ap-proximate counting (for #P) is (probabilisticly) reducible to NP .Additional related topics include the #P-completeness of various count-ing problems (e.g., counting the number of satisfying assignments to agiven CNF formula and counting the number of perfect matchings in agiven graph), the complexity of searching for unique solutions, and therelation between approximate counting and generating (almost) uni-formly distributed solutions.Prerequisites: We assume basic familiarity with elementary probability theory(see Section D.1). In Section 6.2 we will rely extensively on the formulation pre-sented in Section 2.1 (i.e., the \NP search problem" class PC as well as the setsR(x) def= fy : (x; y)2Rg, and SR def= fX : R(x) 6=;g de�ned for every R 2 PC).6.1 Probabilistic Polynomial-TimeConsidering algorithms that utilize random choices, we extend our notion of ef-�cient algorithms from deterministic polynomial-time algorithms to probabilisticpolynomial-time algorithms.Rigorous models of probabilistic (or randomized) algorithms are de�ned by nat-ural extensions of the basic machine model. We will exemplify this approach bydescribing the model of probabilistic Turing machines, but we stress that (again)the speci�c choice of the model is immaterial (as long as it is \reasonable"). Aprobabilistic Turing machine is de�ned exactly as a non-deterministic machine (seethe �rst item of De�nition 2.7), but the de�nition of its computation is fundamen-tally di�erent. Speci�cally, whereas De�nition 2.7 refers to the question of whetheror not there exists a computation of the machine that (started on a speci�c input)reaches a certain con�guration, in case of probabilistic Turing machines we referto the probability that this event occurs, when at each step a choice is selected uni-formly among the relevant possible choices available at this step. That is, if thetransition function of the machine maps the current state-symbol pair to severalpossible triples, then in the corresponding probabilistic computation one of thesetriples is selected at random (with equal probability) and the next con�guration isdetermined accordingly. These random choices may be viewed as the internal cointosses of the machine. (Indeed, as in the case of non-deterministic machines, wemay assume without loss of generality that the transition function of the machinemaps each state-symbol pair to exactly two possible triples; see Exercise 2.4.)We stress the fundamental di�erence between the �ctitious model of a non-deterministic machine and the realistic model of a probabilistic machine. In the caseof a non-deterministic machine we consider the existence of an adequate sequenceof choices (leading to a desired outcome), and ignore the question of how thesechoices are actually made. In fact, the selection of such a sequence of choices ismerely a mental experiment. In contrast, in the case of a probabilistic machine, ateach step a real random choice is made (uniformly among a set of predetermined

6.1. PROBABILISTIC POLYNOMIAL-TIME 175possibilities), and we consider the probability of reaching a desired outcome.In view of the foregoing, we consider the output distribution of such a proba-bilistic machine on �xed inputs; that is, for a probabilistic machine M and stringx 2 f0; 1g�, we denote by M(x) the output distribution of M when invoked oninput x, where the probability is taken uniformly over the machine's internal cointosses. Needless to say, we will consider the probability that M(x) is a \correct"answer; that is, in the case of a search problem (resp., decision problem) we will beinterested in the probability that M(x) is a valid solution for the instance x (resp.,represents the correct decision regarding x).The foregoing description views the internal coin tosses of the machine as takingplace on-the-y; that is, these coin tosses are performed on-line by the machineitself. An alternative model is one in which the sequence of coin tosses is providedby an external device, on a special \random input" tape. In such a case, we viewthese coin tosses as performed o�-line. Speci�cally, we denote by M 0(x; r) the(uniquely de�ned) output of the residual deterministic machineM 0, when given the(primary) input x and random input r. Indeed, M 0 is a deterministic machine thattakes two inputs (the �rst representing the actual input and the second representingthe \random input"), but we consider the random variableM(x) def= M 0(x; U`(jxj)),where `(jxj) denotes the number of coin tosses \expected" by M 0(x; �).These two perspectives on probabilistic algorithms are clearly related: Clearly,the aforementioned residual deterministic machine M 0 yields the on-line machineM that on input x selects at random a string r of adequate length, and invokesM 0(x; r). On the other hand, the computation of any on-line machineM is capturedby the residual machineM 0 that emulates the actions ofM(x) based on an auxiliaryinput r (obtained by M 0 and representing a possible outcome of the internal cointosses of M). (Indeed, there is no harm in supplying more coin tosses than areactually used by M , and so the length of the aforementioned auxiliary input maybe set to equal the time complexity ofM .) For sake of clarity and future reference,we state the following de�nition.De�nition 6.1 (on-line and o�-line formulations of probabilistic polynomial-time):� We say thatM is a on-line probabilistic polynomial-time machine if there existsa polynomial p such that when invoked on any input x 2 f0; 1g�, machine Malways halts within at most p(jxj) steps (regardless of the outcome of itsinternal coin tosses). In such a case M(x) is a random variable.� We say thatM 0 is a o�-line probabilistic polynomial-time machine if there existsa polynomial p such that, for every x 2 f0; 1g� and r 2 f0; 1gp(jxj), wheninvoked on the primary input x and the random-input sequence r, machine M 0halts within at most p(jxj) steps. In such a case, we will consider the randomvariable M 0(x; Up(jxj)).Clearly, the on-line and o�-line formulations are equivalent (i.e., given a on-lineprobabilistic polynomial-time machine we can derive a functionally equivalent o�-line (probabilistic polynomial-time) machine, and vice versa). Thus, in the sequel,we will freely use whichever is more convenient.

176 CHAPTER 6. RANDOMNESS AND COUNTINGFailure probability. A major aspect of randomized algorithms (probabilisticmachines) is that they may fail (see Exercise 6.1). That is, with some speci�ed(\failure") probability, these algorithms may fail to produce the desired output.We discuss two aspects of this failure: its type and its magnitude.1. The type of failure is a qualitative notion. One aspect of this type is whether,in case of failure, the algorithm produces a wrong answer or merely an indica-tion that it failed to �nd a correct answer. Another aspect is whether failuremay occur on all instances or merely on certain types of instances. Let usclarify these aspects by considering three natural types of failure, giving riseto three di�erent types of algorithms.(a) The most liberal notion of failure is the one of two-sided error. Thisterm originates from the setting of decision problems, where it meansthat (in case of failure) the algorithm may err in both directions (i.e.,it may rule that a yes-instance is a no-instance, and vice versa). In thecase of search problems two-sided error means that, when failing, thealgorithm may output a wrong answer on any input. Furthermore, thealgorithm may falsely rule that the input has no solution and it mayalso output a wrong solution (both in case the input has a solution andin case it has no solution).(b) An intermediate notion of failure is the one of one-sided error. Again, theterm originates from the setting of decision problems, where it meansthat the algorithm may err only in one direction (i.e., either on yes-instances or on no-instances). Indeed, there are two natural cases de-pending on whether the algorithm errs on yes-instances but not on no-instances, or the other way around. Analogous cases occur also in thesetting of search problems. In one case the algorithm never outputsa wrong solution but may falsely rule that the input has no solution.In the other case the indication that an input has no solution is neverwrong, but the algorithm may output a wrong solution.(c) The most conservative notion of failure is the one of zero-sided error. Inthis case, the algorithm's failure amounts to indicating its failure to �ndan answer (by outputting a special don't know symbol). We stress thatin this case the algorithm never provides a wrong answer.Indeed, the forgoing discussion ignores the probability of failure, which is thesubject of the next item.2. The magnitude of failure is a quantitative notion. It refer to the probabilitythat the algorithm fails, where the type of failure is �xed (e.g., as in theforgoing discussion).When actually using a randomized algorithm we typically wish its failureprobability to be negligible, which intuitively means that the failure event isso rare that it can be ignored in practice. Formally, we say that a quantity isnegligible if, as a function of the relevant parameter (e.g., the input length),this quantity vanishes faster than the reciprocal of any positive polynomial.

6.1. PROBABILISTIC POLYNOMIAL-TIME 177For ease of presentation, we sometimes consider alternative upper-boundson the probability of failure. These bounds are selected in a way that al-lows (and in fact facilitates) \error reduction" (i.e., converting a probabilisticpolynomial-time algorithm that satis�es such an upper-bound into one inwhich the failure probability is negligible). For example, in case of two-sidederror we need to be able to distinguish the correct answer from wrong an-swers by sampling, and in the other types of failure \hitting" a correct answersu�ces.In the following three subsections, we will discuss complexity classes correspondingto the aforementioned three types of failure. For sake of simplicity, the failureprobability itself will be set to a constant that allows error reduction.Randomized reductions. Before turning to the more detailed discussion, wenote that randomized reductions play an important role in complexity theory. Suchreductions can be de�ned analogously to the standard Cook-Reductions (resp.,Karp-reductions), and again a discussion of the type and magnitude of the failureprobability is in place. For clarity, we spell-out the two-sided error versions.� In analogy to De�nition 2.9, we say that a problem � is probabilistic polynomial-time reducible to a problem �0 if there exists a probabilistic polynomial-timeoracle machineM such that, for every function f that solves �0 and for everyx, with probability at least 1��(jxj), the output Mf (x) is a correct solutionto the instance x, where � is a negligible function.� In analogy to De�nition 2.10, we say that a decision problem S is reducibleto a decision problem S0 via a randomized Karp-reduction if there exists aprobabilistic polynomial-time algorithm A such that, for every x, it holds thatPr[�S0(A(x)) = �S(x)] � 1��(jxj), where �S (resp., �S0) is the characteristicfunction of S (resp., S0) and � is a negligible function.These reductions preserve e�cient solvability and are transitive: see Exercise 6.2.6.1.1 Two-sided error: The complexity class BPPIn this section we consider the most liberal notion of probabilistic polynomial-timealgorithms that is still meaningful. We allow the algorithm to err on each input,but require the error probability to be negligible. The latter requirement guaranteesthe usefulness of such algorithms, because in reality we may ignore the negligibleerror probability.Before focusing on the decision problem setting, let us say a few words on thesearch problem setting (see De�nition 1.1). Following the previous paragraph, wesay that a probabilistic (polynomial-time) algorithm A solves the search problemof the relation R if for every x 2 SR (i.e., R(x) def= fy : (x; y) 2Rg 6= ;) it holdsthat Pr[A(x) 2 R(x)] > 1 � �(jxj) and for every x 62 SR it holds that Pr[A(x) =?] > 1��(jxj), where � is a negligible function. Note that we did not require that,when invoked on input x that has a solution (i.e., R(x) 6= ;), the algorithm always

178 CHAPTER 6. RANDOMNESS AND COUNTINGoutputs the same solution. Indeed, a stronger requirement is that for every such xthere exists y 2 R(x) such that Pr[A(x)= y] > 1� �(jxj). The latter version andquantitative relaxations of it allow for error-reduction (see Exercise 6.3).Turning to decision problems, we consider probabilistic polynomial-time algo-rithms that err with negligible probability. That is, we say that a probabilistic(polynomial-time) algorithm A decides membership in S if for every x it holdsthat Pr[A(x) = �S(x)] > 1 � �(jxj), where �S is the characteristic function of S(i.e., �S(x) = 1 if x 2 S and �S(x) = 0 otherwise) and � is a negligible function.The class of decision problems that are solvable by probabilistic polynomial-timealgorithms is denoted BPP, standing for Bounded-error Probabilistic Polynomial-time. Actually, the standard de�nition refers to machines that err with probabilityat most 1=3.De�nition 6.2 (the class BPP): A decision problem S is in BPP if there existsa probabilistic polynomial-time algorithm A such that for every x 2 S it holds thatPr[A(x) = 1] � 2=3 and for every x 62 S it holds that Pr[A(x) = 0] � 2=3.The choice of the constant 2=3 is immaterial, and any other constant greater than1=2 will do (and yields the very same class). Similarly, the complementary constant1=3 can be replaced by various negligible functions (while preserving the class).Both facts are special cases of the robustness of the class, which is establishedusing the process of error reduction.Error reduction (or con�dence ampli�cation). For " : N ! (0; 0:5), letBPP" denote the class of decision problems that can be solved in probabilisticpolynomial-time with error probability upper-bounded by "; that is, S 2 BPP" ifthere exists a probabilistic polynomial-time algorithm A such that for every x itholds that Pr[A(x) 6= �S(x)] � "(jxj). By de�nition, BPP = BPP1=3. However, awide range of other classes also equal BPP. In particular, we mention two extremecases:1. For every positive polynomial p and "(n) = (1=2)� (1=p(n)), the class BPP"equals BPP. That is, any error that is (\noticeably") bounded away from1/2 (i.e., error (1=2)� (1=poly(n))) can be reduced to an error of 1=3.2. For every positive polynomial p and "(n) = 2�p(n), the class BPP" equalsBPP. That is, an error of 1=3 can be further reduced to an exponentiallyvanishing error.Both facts are proved by invoking the weaker algorithm (i.e., the one having alarger error probability bound) for an adequate number of times, and ruling bymajority. We stress that invoking a randomized machine several times means thatthe random choices made in the various invocations are independent of one another.The success probability of such a process is analyzed by applying an adequate Lawof Large Numbers (see Exercise 6.4).

6.1. PROBABILISTIC POLYNOMIAL-TIME 1796.1.1.1 On the power of randomizationA natural question arises: Did we gain anything in extending the de�nition ofe�cient computation to include also probabilistic polynomial-time ones?This phrasing seems too generic. We certainly gained the ability to toss coins(and generate various distributions). More concretely, randomized algorithms areessential in many settings (see, e.g., Chapter 9, Section 10.1.2, and Appendix C)and seem essential in others (see, e.g., Sections 6.2.2-6.2.4). What we mean toask here is whether allowing randomization increases the power of polynomial-timealgorithms also in the restricted context of solving decision and search problems?The question is whether BPP extends beyond P (where clearly P � BPP).It is commonly conjectured that the answer is negative. Speci�cally, under somereasonable assumptions, it holds that BPP = P (see Part 1 of Theorem 8.19). Wenote, however, that a polynomial slow-down occurs in the proof of the latter result;that is, randomized algorithms that run in time t(�) are emulated by deterministicalgorithms that run in time poly(t(�)). Furthermore, for some concrete problems(most notably primality testing (cf. x6.1.1.2)), the known probabilistic polynomial-time algorithm is signi�cantly faster (and conceptually simpler) than the knowndeterministic polynomial-time algorithm. Thus, we believe that even in the con-text of decision problems, the notion of probabilistic polynomial-time algorithms isadvantageous. We note that the fundamental nature of BPP will hold even in the(rather unlikely) case that it turns out that it o�ers no computational advantage(i.e., even if every problem that can be decided in probabilistic polynomial-timecan be decided by a deterministic algorithm of essentially the same complexity).1BPP is in the Polynomial-TimeHierarchy: While it may be that BPP = P ,it is not known whether or not BPP is contained in NP . The source of troubleis the two-sided error probability of BPP, which is incompatible with the absoluterejection of no-instances required in the de�nition of NP (see Exercise 6.11). Inview of this ignorance, it is interesting to note that BPP resides in the secondlevel of the Polynomial-Time Hierarchy (i.e., BPP � �2). This is a corollary ofTheorem 6.7.Trivial derandomization. A straightforward way of eliminating randomnessfrom an algorithm is trying all possible outcomes of its internal coin tosses, collect-ing the relevant statistics and deciding accordingly. This yields BPP � PSPACE �EXP , which is considered the trivial derandomization of BPP. In Section 8.4 wewill consider various non-trivial derandomizations of BPP, which are known undervarious intractability assumptions. The interested reader, who may be puzzled bythe connection between derandomization and computational di�culty, is referredto Chapter 8.1Such a result would address a fundamental question regarding the power of randomness. Byanalogy, Theorem 9.4 establishing that IP = PSPACE does not diminish the importance of anyof these classes.

180 CHAPTER 6. RANDOMNESS AND COUNTINGNon-uniform derandomization. In many settings (and speci�cally in the con-text of solving search and decision problems), the power of randomization is su-perseded by the power of non-uniform advice. Intuitively, the non-uniform advicemay specify a sequence of coin tosses that is good for all (primary) inputs of aspeci�c length. In the context of solving search and decision problems, such anadvice must be good for each of these inputs2, and thus its existence is guaran-teed only if the error probability is low enough (so as to support a union bound).The latter condition can be guaranteed by error-reduction, and thus we get thefollowing result.Theorem 6.3 BPP is (strictly) contained in P=poly.Proof: Recall that P=poly contains undecidable problems (Theorem 3.7), whichare certainly not in BPP. Thus, we focus on showing that BPP � P=poly. Bythe discussion regarding error-reduction, for every S 2 BPP there exists a (de-terministic) polynomial-time algorithm A and a polynomial p such that for everyx it holds that Pr[A(x; Up(jxj)) 6= �S(x)] < 2�jxj. Using a union bound, it followsthat Prr2f0;1gp(n) [9x 2 f0; 1gn s.t. A(x; r) 6= �S(x)] < 1. Thus, for every n 2 N ,there exists a string rn 2 f0; 1gp(n) such that for every x 2 f0; 1gn it holds thatA(x; rn) = �S(x). Using such a sequence of rn's as advice, we obtain the desirednon-uniform machine (establishing S 2 P=poly).Digest. The proof of Theorem 6.3 combines error-reduction with a simple ap-plication of the Probabilistic Method (cf. [10]), where the latter refers to provingthe existence of an object by analyzing the probability that a random object isadequate. In this case, we sought an non-uniform advice, and proved it existenceby analyzing the probability that a random advice is good. The latter event wasanalyzed by identifying the space of advice with the set of possible sequences ofinternal coin tosses of a randomized algorithm.6.1.1.2 A probabilistic polynomial-time primality testTeaching note: Although primality has been recently shown to be in P, we believethat the following example provides a nice illustration to the power of randomizedalgorithms.We present a simple probabilistic polynomial-time algorithm for deciding whetheror not a given number is a prime. The only Number Theoretic facts that we useare:Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two squareroots mod p (and they sum-up to p).32In other contexts (see, e.g., Chapters 7 and 8), it su�ces to have an advice that is good onthe average, where the average is taken over all relevant (primary) inputs.3That is, for every r 2 f1; :::; p�1g, the equation x2 � r2 (mod p) has two solutions modulo p(i.e., r and p� r).

6.1. PROBABILISTIC POLYNOMIAL-TIME 181Fact 2: For every (odd and non-integer-power) composite numberN , each quadraticresidue mod N has at least four square roots mod N .Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a primep and a quadratic residue mod p, denoted s, returns the smallest among the twomodular square roots of s. There is no guarantee as to what the output is in thecase that the input is not of the aforementioned form (and in particular in the casethat p is not a prime). Thus, we actually present a probabilistic polynomial-timereduction of testing primality to extracting square roots modulo a prime (which isa search problem with a promise; see Section 2.4.1).Construction 6.4 (the reduction): On input a natural number N > 2 do1. If N is either even or an integer-power4 then reject.2. Uniformly select r 2 f1; :::; N � 1g, and set s r2 mod N .3. Let r0 sqrt(s;N). If r0 � �r (mod N) then accept else reject.Indeed, in the case that N is composite, the reduction invokes sqrt on an illegiti-mate input (i.e., it makes a query that violates the promise of the problem at thetarget of the reduction). In such a case, there is not guarantee as to what sqrt an-swers, but actually a bluntly wrong answer only plays in our favor. In general, wewill show that if N is composite, then the reduction rejects with probability at least1=2, regardless of how sqrt answers. We mention that there exists a probabilisticpolynomial-time algorithm for implementing sqrt (see Exercise 6.14).Proposition 6.5 Construction 6.4 constitutes a probabilistic polynomial-time re-duction of testing primality to extracting square roots module a prime. Further-more, if the input is a prime then the reduction always accepts, and otherwise itrejects with probability at least 1=2.We stress that Proposition 6.5 refers to the reduction itself; that is, sqrt is viewedas a (\perfect") oracle that, for every prime P and quadratic residue s (mod P),returns r < s=2 such that r2 � s (mod P). Combining Proposition 6.5 with aprobabilistic polynomial-time algorithm that computes sqrt with negligible errorprobability, we obtain that testing primality is in BPP.Proof: By Fact 1, on input a prime number N , Construction 6.4 always accepts(because in this case, for every r 2 f1; :::; N�1g, it holds that sqrt(r2 mod N;N) 2fr;N � rg). On the other hand, suppose that N is an odd composite that is notan integer-power. Then, by Fact 2, each quadratic residue s has at least foursquare roots, and each of these square roots is equally likely to be chosen at Step 2(in other words, s yields no information regarding which of its modular squareroots was selected in Step 2). Thus, for every such s, the probability that either4This can be checked by scanning all possible powers e 2 f2; :::; log2Ng, and (approximately)solving the equation xe = N for each value of e (i.e., �nding the smallest integer i such thatie � N). Such a solution can be found by binary search.

182 CHAPTER 6. RANDOMNESS AND COUNTINGsqrt(s;N) or N � sqrt(s;N) equal the root chosen in Step 2 is at most 2=4. Itfollows that, on input a composite number, the reduction rejects with probabilityat least 1=2.Reection. Construction 6.4 illustrates an interesting aspect of randomized al-gorithms (or rather reductions); that is, the ability to hide information from a sub-routine. Speci�cally, Construction 6.4 generates a problem instance (N; s) withoutdisclosing any additional information. Furthermore, a correct solution to this in-stance is likely to help the reduction; that is, a correct answer to the instance (N; s)provides probabilistic evidence regarding whether N is a prime, where the proba-bility space refers to the missing information (regarding how s was generated).Comment. Testing primality is actually in P , however, the deterministic al-gorithm demonstrating this fact is more complex (and its analysis is even morecomplicated).6.1.2 One-sided error: The complexity classes RP and coRPIn this section we consider notions of probabilistic polynomial-time algorithmshaving one-sided error. The notion of one-sided error refers to a natural partition ofthe set of instances; that is, yes-instances versus no-instances in the case of decisionproblems, and instances having solution versus instances having no solution in thecase of search problems. We focus on decision problems, and comment that ananalogous treatment can be provided for search problems (see the second paragraphof Section 6.1.1).De�nition 6.6 (the class RP)5: A decision problem S is in RP if there exists aprobabilistic polynomial-time algorithm A such that for every x 2 S it holds thatPr[A(x)=1] � 1=2 and for every x 62 S it holds that Pr[A(x)=0] = 1.The choice of the constant 1=2 is immaterial, and any other constant greater thanzero will do (and yields the very same class). Similarly, this constant can bereplaced by 1��(jxj) for various negligible functions � (while preserving the class).Both facts are special cases of the robustness of the class (see Exercise 6.5).Observe that RP � NP (see Exercise 6.11) and that RP � BPP (by theaforementioned error-reduction). De�ning coRP = ff0; 1g� n S : S 2 RPg, notethat coRP corresponds to the opposite direction of one-sided error probability.That is, a decision problem S is in coRP if there exists a probabilistic polynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x)=1] = 1 and forevery x 62 S it holds that Pr[A(x)=0] � 1=2.5The initials RP stands for Random Polynomial-time, which fails to convey the restricted typeof error allowed in this class. The only nice feature of this notation is that it is reminiscent of NP,thus reecting the fact that RP is a randomized polynomial-time class that is contained in NP .

6.1. PROBABILISTIC POLYNOMIAL-TIME 183Relating BPP to RPA natural question regarding probabilistic polynomial-time algorithms refers to therelation between two-sided and one-sided error probability. For example, is BPPcontained in RP? Loosely speaking, we show that BPP is reducible to coRPby one-sided error randomized Karp-reductions, where the actual statement refersto the promise problem versions of both classes (briey de�ned in the followingparagraph). Note that BPP is trivially reducible to coRP by two-sided errorrandomized Karp-reductions whereas a deterministic reduction of BPP to coRPwould imply BPP = coRP = RP (see Exercise 6.8).First, we refer the reader to the general discussion of promise problems inSection 2.4.1. Analogously to De�nition 2.30, we say that the promise problem� = (Syes; Sno) is in (the promise problem extension of) BPP if there exists aprobabilistic polynomial-time algorithm A such that for every x 2 Syes it holds thatPr[A(x)=1] � 2=3 and for every x 2 Sno it holds that Pr[A(x)=0] � 2=3. Similarly,� is in coRP if for every x 2 Syes it holds that Pr[A(x) = 1] = 1 and for everyx 2 Sno it holds that Pr[A(x)=0] � 1=2. Probabilistic reductions among promiseproblems are de�ned by adapting the conventions of Section 2.4.1; speci�cally,queries that violate the promise at the target of the reduction may be answeredarbitrarily.Theorem 6.7 Any problem in BPP is reducible by a one-sided error randomizedKarp-reduction to coRP, where coRP (and possibly also BPP) denotes the cor-responding class of promise problems. Speci�cally, the reduction always maps ano-instance to a no-instance.It follows that BPP is reducible by a one-sided error randomized Cook-reduction toRP . Thus, using the conventions of Section 3.2.2 and referring to classes of promiseproblems, we may write BPP � RPRP . In fact, since RPRP � BPPBPP = BPP,we have BPP = RPRP . Theorem 6.7 may be paraphrased as saying that thecombination of the one-sided error probability of the reduction and the one-sidederror probability of coRP can account for the two-sided error probability of BPP.We warn that this statement is not a triviality like 1 + 1 = 2, and in particularwe do not know whether it holds for classes of standard decision problems (ratherthan for the classes of promise problems considered in Theorem 6.7).Proof: Recall that we can easily reduce the error probability of BPP-algorithms,and derive probabilistic polynomial-time algorithms of exponentially vanishing er-ror probability. But this does not eliminate the error (even on \one side") alto-gether. In general, there seems to be no hope to eliminate the error, unless we(either do something earth-shaking or) change the setting as done when allowing aone-sided error randomized reduction to a problem in coRP . The latter setting canbe viewed as a two-move randomized game (i.e., a random move by the reductionfollowed by a random move by the decision procedure of coRP), and it enablesapplying di�erent quanti�ers to the two moves (i.e., allowing error in one directionin the �rst quanti�er and error in the other direction in the second quanti�er).In the next paragraph, which is inessential to the actual proof, we illustrate thepotential power of this setting.

184 CHAPTER 6. RANDOMNESS AND COUNTINGTeaching note: The following illustration represents an alternative way of provingTheorem 6.7. This way seems conceptual simpler but it requires a starting point (orrather an assumption) that is much harder to establish, where both comparisons arewith respect to the actual proof of Theorem 6.7 (which follows the illustration).An illustration. Suppose that for some set S 2 BPP there exists a polynomial p0 andan o�-line BPP-algorithmA0 such that for every x it holds that Prr2f0;1g2p0(jxj) [A0(x; r) 6=�S(x)] < 2�(p0(jxj)+1); that is, the algorithm uses 2p0(jxj) bits of randomness andhas error probability smaller than 2�p0(jxj)=2. Note that such an algorithm cannotbe obtained by standard error-reduction (see Exercise 6.9). Anyhow, such a smallerror probability allows a partition of the string r such that one part accountsfor the entire error probability on yes-instances while the other part accounts forthe error probability on no-instances. Speci�cally, for every x 2 S, it holds thatPrr02f0;1gp0(jxj) [(8r00 2 f0; 1gp0(jxj))A0(x; r0r00) = 1] > 1=2, whereas for every x 62 Sand every r0 2 f0; 1gp0(jxj) it holds that Prr002f0;1gp0(jxj) [A0(x; r0r00) = 1] < 1=2.Thus, the error on yes-instances is \pushed" to the selection of r0, whereas theerror on no-instances is pushed to the selection of r00. This yields a one-sided errorrandomized Karp-reduction that maps x to (x; r0), where r0 is uniformly selectedin f0; 1gp0(jxj), such that deciding S is reduced to the coRP problem (regardingpairs (x; r0)) that is decided by the (on-line) randomized algorithm A00 de�nedby A00(x; r0) def= A0(x; r0Up0(jxj)). For details, see Exercise 6.10. The actual proof,which avoids the aforementioned hypothesis, follows.The actual starting point. Consider any BPP-problem with a characteristic function� (which, in case of a promise problem, is a partial function, de�ned only over thepromise). By standard error-reduction, there exists a probabilistic polynomial-timealgorithm A such that for every x on which � is de�ned it holds that Pr[A(x) 6=�(x)] < �(jxj), where � is a negligible function. Looking at the correspondingo�-line algorithm A0 and denoting by p the polynomial that bounds the runningtime of A, we havePrr2f0;1gp(jxj) [A0(x; r) 6=�(x)] < �(jxj) < 12p(jxj) (6.1)for all su�ciently long x's on which � is de�ned. We show a randomized one-sidederror Karp-reduction of � to a promise problem in coRP .The main idea. As in the illustrating paragraph, the basic idea is \pushing" theerror probability on yes-instances (of �) to the reduction, while pushing the er-ror probability on no-instances to the coRP-problem. Focusing on the case that�(x) = 1, this is achieved by augmenting the input x with a random sequence of\modi�ers" that act on the random-input of algorithm A0 such that for a goodchoice of modi�ers it holds that for every r 2 f0; 1gp(jxj) there exists a modi�er inthis sequence that when applied to r yields r0 that satis�es A0(x; r0) = 1. Indeed,not all sequences of modi�ers are good, but a random sequence will be good withhigh probability and bad sequences will be accounted for in the error probabilityof the reduction. On the other hand, using only modi�ers that are permutations

6.1. PROBABILISTIC POLYNOMIAL-TIME 185guarantees that the error probability on no-instances only increase by a factor thatequals the number of modi�ers we use, and this error probability will be accountedfor by the error probability of the coRP-problem. Details follow.The aforementioned modi�ers are implemented by shifts (of the set of all stringsby �xed o�sets). Thus, we augment the input x with a random sequence of shifts,denoted s1; :::; sm 2 f0; 1gp(jxj), such that for a good choice of (s1; :::; sm) it holdsthat for every r 2 f0; 1gp(jxj) there exists an i 2 [m] such that A0(x; r�si) = 1. Wewill show that, for any yes-instance x and a suitable choice of m, with very highprobability, a random sequence of shifts is good. Thus, for A00(hx; s1; :::; smi; r) def=_mi=1A0(x; r � si), it holds that, with very high probability over the choice ofs1; :::; sm, a yes-instance x is mapped to an augmented input hx; s1; :::; smi thatis accepted by A00 with probability 1. On the other hand, the acceptance probabil-ity of augmented no-instances (for any choice of shifts) only increases by a factor ofm. In further detailing the foregoing idea, we start by explicitly stating the simplerandomized mapping (to be used as a randomized Karp-reduction), and next de�nethe target promise problem.The randomized mapping. On input x 2 f0; 1gn, we set m = p(jxj), uniformly selects1; :::; sm 2 f0; 1gm, and output the pair (x; s), where s = (s1; :::; sm). Note thatthis mapping, denoted M , is easily computable by a probabilistic polynomial-timealgorithm.The promise problem. We de�ne the following promise problem, denoted � =(�yes;�no), having instances of the form (x; s) such that jsj = p(jxj)2.� The yes-instances are pairs (x; s), where s = (s1; :::; sm) and m = p(jxj), suchthat for every r 2 f0; 1gm there exists an i satisfying A0(x; r � si) = 1.� The no-instances are pairs (x; s), where again s = (s1; :::; sm) and m = p(jxj),such that for at least half of the possible r 2 f0; 1gm, for every i it holds thatA0(x; r � si) = 0.To see that � is indeed a coRP promise problem, we consider the following random-ized algorithm. On input (x; (s1; :::; sm)), wherem = p(jxj) = js1j = � � � = jsmj, thealgorithm uniformly selects r 2 f0; 1gm, and accepts if and only if A0(x; r� si) = 1for some i 2 f1; :::;mg. Indeed, yes-instances of � are accepted with probability 1,whereas no-instances of � are rejected with probability at least 1=2.Analyzing the reduction: We claim that the randomized mapping M reduces � to� with one-sided error. Speci�cally, we will prove two claims.Claim 1: If x is a yes-instance (i.e., �(x) = 1) then Pr[M(x) 2 �yes] > 1=2.Claim 2: If x is a no-instance (i.e., �(x) = 0) then Pr[M(x) 2 �no] = 1.We start with Claim 2, which is easier to establish. Recall thatM(x) = (x; (s1; :::; sm)),where s1; :::; sm are uniformly and independently distributed in f0; 1gm. We notethat (by Eq. (6.1) and �(x) = 0), for every possible choice of s1; :::; sm 2 f0; 1gmand every i 2 f1; :::;mg, the fraction of r's that satisfy A0(x; r � si) = 1 is at most12m . Thus, for every possible choice of s1; :::; sm 2 f0; 1gm, for at least half of the

186 CHAPTER 6. RANDOMNESS AND COUNTINGpossible r 2 f0; 1gm there exists an i such that A0(x; r � si) = 1 holds. Hence, thereduction M always maps the no-instance x (i.e., �(x) = 0) to a no-instance of �(i.e., an element of �no).Turning to Claim 1 (which refers to �(x) = 1), we will show shortly that inthis case, with very high probability, the reduction M maps x to a yes-instance of�. We upper-bound the probability that the reduction fails (in case �(x) = 1) asfollows:Pr[M(x) 62 �yes] = Prs1;:::;sm [9r 2 f0; 1gm s.t. (8i) A0(x; r � si) = 0]� Xr2f0;1gm Prs1;:::;sm [(8i) A0(x; r � si) = 0]= Xr2f0;1gm mYi=1Prsi [A0(x; r � si) = 0]< 2m � � 12m�mwhere the last inequality is due to Eq. (6.1). It follows that if �(x) = 1 thenPr[M(x) 2 �yes] � 1=2. Thus, the randomized mapping M reduces � to �, withone-sided error on yes-instances. Recalling that � 2 coRP , the theorem follows.BPP is in PH. The traditional presentation of the ideas underlying the proof ofTheorem 6.7 uses them for showing that BPP is in the Polynomial-time Hierarchy(where both classes refer to standard decision problems). Speci�cally, to prove thatBPP � �2 (see De�nition 3.8), de�ne the polynomial-time computable predicate'(x; s; r) def= Wmi=1(A0(x; si � r) = 1), and observe that�(x) = 1) 9s8r '(x; s; r) (6.2)�(x) = 0) 8s9r :'(x; s; r) (6.3)(where Eq. (6.3) is equivalent to :9s8r '(x; s; r)). Note that Claim 1 (in the proofof Theorem 6.7) establishes that most sequences s satisfy 8r '(x; s; r), whereasEq. (6.2) only requires the existence of at least one such s. Similarly, Claim 2establishes that for every s most choices of r violate '(x; s; r), whereas Eq. (6.3)only requires that for every s there exists at least one such r. We comment thatthe same proof idea yields a variety of similar statements (e.g., BPP �MA, whereMA is a randomized version of NP de�ned in Section 9.1).66Speci�cally, the classMA is de�ned by allowing the veri�cation algorithm V in De�nition 2.5to be probabilistic and err on no-instances; that is, for every x 2 S there exists y 2 f0; 1gpoly(jxj)such that Pr[V (x; y) = 1] = 1, whereas for every x 62 S and every y it holds that Pr[V (x; y) =0] � 1=2. We note that MA can be viewed as a hybrid of the two aforementioned pairs ofconditions; speci�cally, each problem in MA satisfy the conjunction of Eq. (6.2) and Claim 2.Other randomized versions of NP (i.e., variants of MA) are considered in Exercise 6.12.

6.1. PROBABILISTIC POLYNOMIAL-TIME 1876.1.3 Zero-sided error: The complexity class ZPPWe now consider probabilistic polynomial-time algorithms that never err, but mayfail to provide an answer. Focusing on decision problems, the corresponding class isdenoted ZPP (standing for Zero-error Probabilistic Polynomial-time). The stan-dard de�nition of ZPP is in terms of machines that output ? (indicating fail-ure) with probability at most 1=2. That is, S 2 ZPP if there exists a proba-bilistic polynomial-time algorithm A such that for every x 2 f0; 1g� it holds thatPr[A(x) 2 f�S(x);?g] = 1 and Pr[A(x) = �S(x)] � 1=2, where �S(x) = 1 if x 2 Sand �S(x) = 0 otherwise. Again, the choice of the constant (i.e., 1=2) is immate-rial, and \error-reduction" can be performed showing that algorithms that yield ameaningful answer with noticeable probability can be ampli�ed to algorithms thatfail with negligible probability (see Exercise 6.6).Theorem 6.8 ZPP = RP \ coRP.Proof Sketch: The fact that ZPP � RP (as well as ZPP � coRP) follows by atrivial transformation of the ZPP-algorithm; that is, replacing the failure indicator? by a \no" verdict (resp., \yes" verdict). Note that the choice of what to say incase the ZPP-algorithm fails is determined by the type of error that we are allowed.In order to prove that RP \ coRP � ZPP we combine the two algorithmguaranteed for a set in RP \ coRP . The point is that we can trust the RP-algorithm (resp., coNP-algorithm) in the case that it says \yes" (resp., \no"), butnot in the case that it says \no" (resp., \yes"). Thus, we invoke both algorithms,and output a de�nite answer only if we obtain an answer that we can trust (whichhappen with high probability). Otherwise, we output ?.Expected polynomial-time. In some sources ZPP is de�ned in terms of ran-domized algorithms that run in expected polynomial-time and always output thecorrect answer. This de�nition is equivalent to the one we used (see Exercise 6.7).6.1.4 Randomized Log-SpaceIn this section we discuss probabilistic polynomial-time algorithms that are furtherrestricted such that they are allowed to use only a logarithmic amount of space.6.1.4.1 De�nitional issuesWhen de�ning space-bounded randomized algorithms, we face a problem analogousto the one discussed in the context of non-deterministic space-bounded computation(see Section 5.3). Speci�cally, the on-line and the o�-line versions (formulated inDe�nition 6.1) are no longer equivalent, unless we restrict the o�-line machine toaccess its random-input tape in a uni-directional manner. The issue is that, in thecontext of space-bounded computation (and unlike in the case that we only careabout time-bounds), the outcome of the internal coin tosses (in the on-line model)

188 CHAPTER 6. RANDOMNESS AND COUNTINGcannot be recorded for free. Bearing in mind that, in the current context, we wishto model real algorithms (rather than present a �ctitious model that captures afundamental phenomena as in Section 5.3), it is clear that using the on-line versionis the natural choice.An additional issue that arises is the need to explicitly bound the running-timeof space-bounded randomized algorithms. Recall that, without loss of generality,the number of steps taken by a space-bounded non-deterministic machine is atmost exponential in its space complexity, because the shortest path between twocon�gurations in the (directed) graph of possible con�gurations is upper-boundedby its size (which in turn is exponential in the space-bound). This reasoning fails inthe case of randomized algorithms, because the shortest path between two con�g-urations does not bound the expected number of random steps required for goingfrom the �rst con�guration to the second one. In fact, as we shall shortly see,failing to upper-bound the running time of log-space randomized algorithms seemsto allow them too much power; that is, such (unrestricted) log-space randomizedalgorithms can emulate non-deterministic log-space computations (in exponentialtime). The emulation consists of repeatedly invoking the NL-machine, while usingrandom choices in the role of the non-deterministic moves. If the input is a yes-instance then, in each attempt, with probability at least 2�t, we \hit" an acceptingt-step (non-deterministic) computation, where t is polynomial in the input length.Thus, the randomized machine accepts such a yes-instance after an expected num-ber of 2t trials. To allow for the rejection of no-instances (rather than loopingin�nitely in vain), we wish to implement a counter that counts till 2t (or so) andreject the input if this number of trials have failed. We need to implement such acounter within space O(log t) rather than t (which is easy). In fact, it su�ces tohave a \randomized counter" that, with high probability, counts to approximately2t. The implementation of such a counter is left to Exercise 6.15, and using itwe may obtain a randomized algorithm that halts with high probability (on everyinput), always rejects a no-instance, and accepts each yes-instance with probabilityat least 1=2.In light of the foregoing discussion, when de�ning randomized log-space algo-rithms we explicitly require that the algorithms halt in polynomial-time. Modulothis convention, the classRL (resp., BPL) relates toNL analogously to the relationof RP (resp., BPP) to NP . Speci�cially, the probabilistic acceptance condition ofRL (resp., BPL) is as in the case of RP (resp., BPP).De�nition 6.9 (the classes RL and BPL): We say that a randomized log-spacealgorithm is admissible if it always halts in a polynomial number of steps.� A decision problem S is in RL if there exists an admissible (on-line) random-ized log-space algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � 1=2 and for every x 62 S it holds that Pr[A(x) = 0] = 1.� A decision problem S is in BPL if there exists an admissible (on-line) random-ized log-space algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � 2=3 and for every x 62 S it holds that Pr[A(x) = 0] � 2=3.

6.1. PROBABILISTIC POLYNOMIAL-TIME 189Clearly, RL � NL � P and BPL � P . Note that the classes RL and BPL remainunchanged even if we allow the algorithms to run for expected polynomial-time andhave non-halting computations. Such algorithms can be easily transformed intoadmissible algorithms by truncating long computations, while using a (standard)counter (which can be implemented in logarithmic-space). Also note that error-reduction is applicable in the current setting (while essentially preserving both thetime and space bounds).6.1.4.2 The accidental tourist sees it allAn appealing example of a randomized log-space algorithm is presented next. Itrefers to the problem of deciding undirected connectivity, and demonstrated thatthis problem is in RL. (Recall that in Section 5.2.4 we proved that this problem isactually in L, but the algorithm and its analysis were more complicated.) Recallthat Directed Connectivity is complete for NL (under log-space reductions). Forsake of simplicity, we consider the following version of undirected connectivity,which is equivalent under log-space reductions to the version in which one needsto determine whether or not the input (undirected) graph is connected. In thecurrent version, the input consists of a triple (G; s; t), where G is an undirectedgraph, s; t are two vertices in G, and the task is to determine whether or not s andt are connected in G.Construction 6.10 On input (G; s; t), the randomized algorithm starts a poly(jGj)-long random walk at vertex s, and accepts the triplet if and only if the walk passedthrough the vertex t. By a random walk we mean that at each step the algorithmselects uniformly one of the neighbors of the current vertex and moves to it.Observe that the algorithm can be implemented in logarithmic space (because weonly need to store the current vertex as well as the number of steps taken so far).Obviously, if s and t are not connected in G then the algorithm always rejects(G; s; t). Proposition 6.11 implies that undirected connectivity is indeed in RL.Proposition 6.11 If s and t are connected in G = (V;E) then a random walk oflength O(jV j � jEj) starting at s passes through t with probability at least 1=2.In other words, a random walk starting at s visits all vertices of the connectedcomponent of s (i.e., it sees all that there is to see).Proof Sketch: We will actually show that if G is connected then, with probabilityat least 1=2, a random walk starting at s visits all the vertices of G. For any pair ofvertices (u; v), letXu;v be a random variable representing the number of steps takenin a random walk starting at u until v is �rst encountered. The reader may verifythat for every edge fu; vg 2 E it holds that E[Xu;v] � 2jEj; see Exercise 6.16. Next,we let cover(G) denote the expected number of steps in a random walk starting at sand ending when the last of the vertices of V is encountered. Our goal is to upper-bound cover(G). Towards this end, we consider an arbitrary directed cyclic-tour

190 CHAPTER 6. RANDOMNESS AND COUNTINGC that visits all vertices in G, and note thatcover(G) � X(u;v)2C E[Xu;v] � jCj � 2jEj:In particular, selecting C as a traversal of some spanning tree of G, we concludethat cover(G) < 4 � jV j � jEj. Thus, with probability at least 1=2, a random walkof length 8 � jV j � jEj starting at s visits all vertices of G.6.2 CountingWe now turn to a new type of computational problems, which vastly generalizedecision problems of the NP-type. We refer to counting problems, and more specif-ically to counting objects that can be e�ciently recognized. The search and decisionversions of NP provide suitable de�nitions of e�ciently recognized objects, whichin turn yield corresponding counting problems:1. For each search problem having e�ciently checkable solutions (i.e., a relationR � f0; 1g�� f0; 1g� in PC (see De�nition 2.3)), we consider the problem ofcounting the number of solutions for a given instance. That is, on input x,we are required to output jfy : (x; y)2Rgj.2. For each decision problem S in NP , and each corresponding veri�cationprocedure V (as in De�nition 2.5), we consider the problem of counting thenumber of NP-witnesses for a given instance. That is, on input x, we arerequired to output jfy : V (x; y)=1gj.We shall consider these types of counting problems as well as relaxations (ofthese counting problems) that refer to approximating the said quantities (see Sec-tions 6.2.1 and 6.2.2, respectively). Other related topics include \problems withunique solutions" (see Section 6.2.3) and \uniform generation of solutions" (seeSection 6.2.4). Interestingly, randomized procedures will play an important role inthe results regarding the aforementioned types of problems.6.2.1 Exact CountingIn continuation to the foregoing discussion, we de�ne the class of problems con-cerned with counting e�ciently recognized objects. (Recall that PC denotes theclass of search problems having polynomially long solutions that are e�cientlycheckable; see De�nition 2.3.)De�nition 6.12 (counting e�ciently recognized objects { #P): The class #Pconsists of all functions that count solutions to a search problem in PC. That is,f : f0; 1g� ! N is in #P if there exists R 2 PC such that, for every x, it holdsthat f(x) = jR(x)j, where R(x) = fy : (x; y)2Rg. In this case we say that f is thecounting problem associated with R, and denote the latter by #R (i.e., #R = f).

6.2. COUNTING 191Every decision problem in NP is Cook-reducible to #P , because every such prob-lem can be cast as deciding membership in SR = fx : jR(x)j > 0g for some R 2 PC(see Section 2.1.2). It also holds that BPP is Cook-reducible to #P (see Exer-cise 6.17). The class #P is sometimes de�ned in terms of decision problems, as isimplicit in the following proposition.Proposition 6.13 (a decisional version of #P): For any f 2 #P, deciding mem-bership in Sf def= f(x;N) : f(x)�Ng is computationally equivalent to computing f .Actually, the claim holds for any function f : f0; 1g� ! N for which there exists apolynomial p such that for every x 2 f0; 1g� it holds that f(x) � 2p(jxj).Proof: Since the relation R vouching for f 2 #P (i.e., f(x) = jR(x)j) is poly-nomially bounded, there exists a polynomial p such that for every x it holds thatf(x) � 2p(jxj). Deciding membership in Sf is easily reduced to computing f (i.e.,we accept the input (x;N) if and only if f(x) � N). Computing f is reducible todeciding Sf by using a binary search (see Exercise 2.9). This relies on the fact that,on input x and oracle access to Sf , we can determine whether or not f(x) � N bymaking the query (x;N). Note that we know a priori that f(x) 2 [0; 2p(jxj)].The counting class #P is also related to the problem of enumerating all possiblesolutions to a given instance (see Exercise 6.19).6.2.1.1 On the power of #PAs indicated, NP [BPP is (easily) reducible to #P . Furthermore, as stated inTheorem 6.14, the entire Polynomial-Time Hierarchy (as de�ned in Section 3.2) isCook-reducible to #P (i.e., PH � P#P). On the other hand, any problem in #Pis solvable in polynomial space, and so P#P � PSPACE .Theorem 6.14 Every set in PH is Cook-reducible to #P.We do not present a proof of Theorem 6.14 here, because the known proofs arerather technical. Furthermore, one main idea underlying these proofs appears ina more clear form in the proof of Theorem 6.27. Nevertheless, in Section F.1 wepresent a proof of a related result, which implies that PH is reducible to #P viarandomized Karp-reductions.6.2.1.2 Completeness in #PThe de�nition of #P-completeness is analogous to the de�nition ofNP-completeness.That is, a counting problem f is #P-complete if f 2 #P and every problem in #Pis Cook-reducible to f .We claim that the counting problems associated with the NP-complete problemspresented in Section 2.3.3 are all #P-complete. We warn that this fact is notdue to the mere NP-completeness of these problems, but rather to an additionalproperty of the reductions establishing their NP-completeness. Speci�cally, theKarp-reductions that were used (or variants of them) have the extra property ofpreserving the number of NP-witnesses (as captured by the following de�nition).

192 CHAPTER 6. RANDOMNESS AND COUNTINGDe�nition 6.15 (parsimonious reductions): Let R;R0 2 PC and let g be a Karp-reduction of SR = fx : R(x) 6= ;g to SR0 = fx : R0(x) 6= ;g, where R(x) = fy :(x; y) 2 Rg and R0(x) = fy : (x; y) 2 R0g. We say that g is parsimonious (withrespect to R and R0) if for every x it holds that jR(x)j = jR0(g(x))j. In such a casewe say that g is a parsimonious reduction of R to R0.We stress that the condition of being parsimonious refers to the two underlyingrelations R and R0 (and not merely to the sets SR and SR0). The requirementthat g is a Karp-reduction is partially redundant, because if g is polynomial-timecomputable and for every x it holds that jR(x)j = jR0(g(x))j, then g constitutes aKarp-reduction of SR to SR0 . Speci�cally, jR(x)j = jR0(g(x))j implies that jR(x)j >0 (i.e., x 2 SR) if and only if jR0(g(x))j > 0 (i.e., g(x) 2 SR0). The reader mayeasily verify that the Karp-reduction underlying the proof of Theorem 2.18 as wellas many of the reductions used in Section 2.3.3 are parsimonious (see Exercise 2.17).Theorem 6.16 Let R 2 PC and suppose that every search problem in PC is par-simoniously reducible to R. Then the counting problem associated with R is #P-complete.Proof: Clearly, the counting problem associated with R, denoted #R, is in #P.To show that every f 0 2 #P is reducible to f , we consider the relation R0 2 PCthat is counted by f 0; that is, #R0 = f 0. Then, by the hypothesis, there existsa parsimonious reduction g of R0 to R. This reduction also reduces #R0 to #R;speci�cally, #R0(x) = #R(g(x)) for every x.Corollaries. As an immediate corollary of Theorem 6.16, we get that countingthe number of satisfying assignments to a given CNF formula is #P-complete.Similar statement hold for all the other NP-complete problems mentioned in Sec-tion 2.3.3 and in fact for all NP-complete problems listed in [81]. These corollariesfollow from the fact that all known reductions among natural NP-complete prob-lems are either parsimonious or can be easily modi�ed to be so.We conclude that many counting problems associated with NP-complete searchproblems are #P-complete. It turns out that also counting problems associatedwith e�ciently solvable search problems may be #P-complete.Theorem 6.17 There exist #P-complete counting problems that are associatedwith e�ciently solvable search problems. That is, there exists R 2 PF (see De�ni-tion 2.2) such that #R is #P-complete.Proof: Consider the relation Rdnf consisting of pairs (�; �) such that � is a DNFformula and � is an assignment satisfying it. Note that the search problem of Rdnfis easy to solve (e.g., by picking an arbitrary truth assignment that satis�es the�rst term in the input formula). To see that #Rdnf is #P-complete consider thefollowing reduction from #RSAT (which is #P-complete by Theorem 6.16). Givena CNF formula �, transform :� into a DNF formula �0 by applying de-Morgan'sLaw, and return 2n � #Rdnf(�0), where n denotes the number of variables in �(resp., �0).

6.2. COUNTING 193Reections. We note that Theorem 6.17 is not established by a parsimoniousreduction (and refer the reader to more arti�cal #P-complete problems presentedin Exercise 6.18). This fact should not come as a surprise because a parsimoniousreduction of #R0 to #R implies that SR0 = fx : 9y s.t. (x; y) 2R0g is reducibleto SR = fx : 9y s.t. (x; y) 2 Rg, where in our case SR0 is NP-Complete whileSR 2 P (since R 2 PF). Nevertheless, the proof of Theorem 6.17 is related tothe hardness of some underlying decision problem (i.e., the problem of decidingwhether a given DNF formula is a tautology (i.e., whether #Rdnf(�0) = 2n)). Butdoes there exist a #P-complete problem that is \not based on some underlyingNP-complete decision problem"? Amazingly enough, the answer is positive.Theorem 6.18 Counting the number of perfect matchings in a bipartite graph is#P-complete.7Equivalently (see Exercise 6.20), the problem of computing the permanent of ma-trices with 0/1-entries is #P-complete. Recall that the permanent of an n-by-nmatrix M = (mi;j), denoted perm(M), equals the sum over all permutations �of [n] of the products Qni=1mi;�(i). Theorem 6.18 is proven by composing thefollowing two (many-to-one) reductions (asserted in Propositions 6.19 and 6.20,respectively) and using the fact that #R3SAT is #P-complete (see Theorem 6.16and Exercise 2.17). Needless to say, the resulting reduction is not parsimonious.Proposition 6.19 The counting problem of 3SAT (i.e., #R3SAT) is reducible tocomputing the permanent of integer matrices. Furthermore, there exists an eveninteger c > 0 and a �nite set of integers I such that, on input a 3CNF formula �, thereduction produces an integer matrix M� with entries in I such that perm(M�) =cm �#R3SAT(�) where m denotes the number of clauses in �.The original proof of Proposition 6.19 uses c = 210 and I = f�1; 0; 1; 2; 3g. Itcan be shown (see Exercise 6.21 (which relies on Theorem 6.27)) that, for everyinteger n > 1 that is relatively prime to c, computing the permanent modulo nis NP-hard (under randomized reductions). Thus, using the case of c = 210, thismeans that computing the permanent modulo n is NP-hard for any odd n > 1. Incontrast, computing the permanent modulo 2 (which is equivalent to computingthe determinant modulo 2) is easy (i.e., can be done in polynomial-time and evenin NC). Thus, assuming NP 6� BPP, Proposition 6.19 cannot hold for an odd c(because by Exercise 6.21 it would follow that computing the permanent modulo 2is NP-Hard). We also note that, assuming P 6= NP , Proposition 6.19 cannotpossibly hold for a set I containing only non-negative integers (see Exercise 6.22).Proposition 6.20 Computing the permanent of integer matrices is reducible tocomputing the permanent of 0/1-matrices. Furthermore, the reduction maps anyinteger matrix A into a 0/1-matrix A00 such that the permanent of A can be easilycomputed from A and the permanent of A00.7See Section G.1 for basic terminology regarding graphs.

194 CHAPTER 6. RANDOMNESS AND COUNTINGTeaching note: We do not recommend presenting the proofs of Propositions 6.19and 6.20 in class. The high-level structure of the proof of Proposition 6.19 has theavor of some sophisticated reductions among NP-problems, but the crucial point is theexistence of adequate gadgets. We do not know of a high-level argument establishingthe existence of such gadgets nor of any intuition as to why such gadgets exist.8 Instead,the existence of such gadgets is proved by a design that is both highly non-trivial and adhoc in nature. Thus, the proof of Proposition 6.19 boils down to a complicated designproblem that is solved in a way that has little pedagogical value. In contrast, the proofof Proposition 6.20 uses two simple ideas that can be useful in other settings. Withsuitable hints, this proof can be used as a good exercise.Proof of Proposition 6.19: We will use the correspondence between thepermanent of a matrix A and the sum of the weights of the cycle covers of theweighted directed graph represented by the matrix A. A cycle cover of a graphis a collection of simple9 vertex-disjoint directed cycles that covers all the graph'svertices, and its weight is the product of the weights of the corresponding edges.The SWCC of a weighted directed graph is the sum of the weights of all its cyclecovers.Given a 3CNF formula �, we construct a directed weighted graph G� such thatthe SWCC of G� equals equals cm �#R3SAT(�), where c is a universal constant andm denotes the number of clauses in �. We may assume, without loss of generality,that each clause of � has exactly three literals (which are not necessarily distinct).
x

+x

+x+x

-x

Figure 6.1: Tracks connecting gadgets for the reduction to cycle cover.We start with a high-level description (of the construction) that refers to (clause)gadgets, each containing some internal vertices and internal (weighted) edges, whichare unspeci�ed at this point. In addition, each gadget has three pairs of designatedvertices, one pair per each literal appearing in the clause, where one vertex in the8Indeed, the conjecture that such gadgets exist can only be attributed to ingenuity.9Here a simple cycle is a strongly connected directed graph in which each vertex has a singleincoming (resp., outgoing) edge. In particular, self-loops are allowed.

6.2. COUNTING 195pair is designated as an entry vertex and the other as an exit vertex. The graphG� consists of m such gadgets, one per each clause (of �), and n auxiliary vertices,one per each variable (of �), as well as some additional directed edges, each havingweight 1. Speci�cally, for each variable, we introduce two tracks, one per each ofthe possible literals of this variable. The track associated with a literal consists ofdirected edges (each having weight 1) that form a simple \cycle" passing throughthe corresponding (auxiliary) vertex as well as through the designated vertices thatcorrespond to the occurrences of this literal in the various clauses. Speci�cally, foreach such occurrence, the track enters the corresponding clause gadget at the entry-vertex corresponding to this literal and exits at the corresponding exit-vertex. (Ifa literal does not appear in � then the corresponding track is a self-loop on thecorresponding variable.) See Figure 6.1 showing the two tracks of a variable x thatoccurs positively in three clauses and negatively in one clause. The entry-vertices(resp., exit-vertices) are drawn on the top (resp., bottom) part of each gadget.

On the left is a gadget with the track edges adjacent to it (as in thereal construction). On the right is a gadget and four out of the nineexternal edges (two of which are nice) used in the analysis.Figure 6.2: External edges for the analysis of the clause gadgetFor the purpose of stating the desired properties of the clause gadget, we aug-ment the gadget by nine external edges (of weight 1), one per each pair of (notnecessarily matching) entry and exit vertices such that the edge goes from theexit-vertex to the entry-vertex (see Figure 6.2). (We stress that this is an auxiliaryconstruction that di�ers from and yet is related to the use of gadgets in the forego-ing construction of G�.) The three edges that link the designated pairs of verticesthat correspond to the three literals are called nice. We say that a collection ofedges C (e.g., a collection of cycles) uses the external edges S if the intersection ofC with the set of the (nine) external edges equals S. We postulate the followingthree properties of the clause gadget.1. The sum of the weights of all cycle covers (of the gadget) that do not use anyexternal edge (i.e., use the empty set of external edges) equals zero.

196 CHAPTER 6. RANDOMNESS AND COUNTING2. Let V (S) denote the set of vertices incident to S, and say that S is nice if itis non-empty and the vertices in V (S) can be perfectly matched using niceedges.10 Then, there exists a constant c (indeed the one postulated in theproposition's claim) such that, for any nice set S, the sum of the weights ofall cycle covers that use the external edges S equals c.3. For any non-nice set S of external edges, the sum of the weights of all cyclecovers that use the external edges S equals zero.Note that the foregoing three cases exhaust all the possible ones, and that the setof external edges used by a cycle cover must be a matching (i.e., these edges arevertex disjoint). Using the foregoing conditions, it can be shown that each satisfyingassignment of � contributes exactly cm to the SWCC of G� (see Exercise 6.23). Itfollows that the SWCC of G� equals cm �#R3SAT(�).Having established the validity of the abstract reduction, we turn to the imple-mentation of the clause gadget. The �rst implementation is a Deus ex Machina,with a corresponding adjacency matrix depicted in Figure 6.3. Its validity (for thevalue c = 12) can be veri�ed by computing the permanent of the correspondingsub-matrices (see analogous analysis in Exercise 6.25).A more structured implementation of the clause gadget is depicted in Figure 6.4,which refers to a (hexagon) box to be implemented later. The box contains severalvertices and weighted edges, but only two of these vertices, called terminals, areconnected to the outside (and are shown in Figure 6.4). The clause gadget consistsof �ve copies of this box, where three copies are designated for the three literalsof the clause (and are marked LB1, LB2, and LB3), as well as additional verticesand edges shown in Figure 6.4. In particular, the clause gadget contains the sixaforementioned designated vertices (i.e., a pair of entry and exit vertices per eachliteral), two additional vertices (shown at the two extremes of the �gure), and someedges (all having weight 1). Each designated vertex has a self-loop, and is incidentto a single additional edge that is outgoing (resp., incoming) in case the vertexis an entry-vertex (resp., exit-vertex) of the gadget. The two terminals of eachbox that is associated with some literal are connected to the corresponding pairof designated vertices (e.g., the outgoing edge of entry1 is incident at the rightterminal of the box LB1). Note that the �ve boxes reside on a directed path (goingfrom left to right), and the only edges going in the opposite direction are thosedrawn below this path.In continuation to the foregoing, we wish to state the desired properties of thebox. Again, we do so by considering the augmentation of the box by external edges(of weight 1) incident at the speci�ed vertices. In this case (see Figure 6.5), wehave a pair of anti-parallel edges connecting the two terminals of the box as well astwo self-loops (one on each terminal). We postulate the following three propertiesof the box.10Clearly, any non-empty set of nice edges is a nice set. Thus, a singleton set is nice if and onlyif the corresponding edge is nice. On the other hand, any set S of three (vertex-disjoint) externaledges is nice, because V (S) has a perfect matching using all three nice edges. Thus, the notionof nice sets is \non-trivial" only for sets of two edges. Such a set S is nice if and only if V (S)consists of two pairs of corresponding designated vertices.

6.2. COUNTING 197The gadget uses eight vertices, where the �rst six are the designated(entry and exit) vertices. The entry-vertex (resp., exit-vertex) associ-ated with the ith literal is numbered i (resp., i+3). The correspondingadjacency matrix follows.0BBBBBBBBBB@
1 0 0 2 0 0 0 00 1 0 0 3 0 0 00 0 0 0 0 1 0 00 0 �1 1 �1 0 1 10 0 �1 �1 2 0 1 10 0 0 �1 �1 0 1 10 0 1 1 1 0 2 �10 0 1 1 1 0 0 1

1CCCCCCCCCCANote that the edge 3 ! 6 can be contracted, but the resulting 7-vertex graph will not be consistent with our (inessentially stringent)de�nition of a gadget by which the six designated vertices should bedistinct.Figure 6.3: A Deus ex Machina clause gadget for the reduction to cycle cover.1. The sum of the weights of all cycle covers (of the box) that do not use anyexternal edge equals zero.2. There exists a constant b (in our case b = 4) such that, for each of the twoanti-parallel edges, the sum of the weights of all cycle covers that use thisedge equals b.3. For any (non-empty) set S of the self-loops, the sum of the weights of allcycle covers (of the box) that use S equals zero.Note that the foregoing three cases exhaust all the possible ones. It can be shownthat the conditions regarding the box imply that the construction presented inFigure 6.4 satis�es the conditions that were postulated for the clause gadget (seeExercise 6.24). Speci�cally, we have c = b5. As for box itself, a smaller Deus exMachina is provided by the following 4-by-4 adjacency matrix0BB@ 0 1 �1 �11 �1 1 10 1 1 20 1 3 0 1CCA (6.4)where the two terminals correspond to the �rst and the fourth vertices. Its va-lidity (for the value b = 4) can be veri�ed by computing the permanent of thecorresponding sub-matrices (see Exercise 6.25).

198 CHAPTER 6. RANDOMNESS AND COUNTING
entry1 entry2 entry3

exit1 exit2 exit3

LB1 LB2 LB3

Figure 6.4: A structured clause gadget for the reduction to cycle cover.
On the left is a box with potential edges adjacent to it (as in thegadget construction). On the right is a box and the four externaledges used in the analysis.Figure 6.5: External edges for the analysis of the boxProof of Proposition 6.20: The proof proceeds in two steps. In the �rststep we show that computing the permanent of integer matrices is reducible tocomputing the permanent of non-negative matrices. This reduction proceeds asfollows. For an n-by-n integer matrix A = (ai;j)i;j2[n], let kAk1 = maxi;j(jai;j j)and QA = 2(n!) � kAkn1+1. We note that, given A, the value QA can be computedin polynomial-time, and in particular log2QA < n2 log kAk1. Given the matrix A,the reduction constructs the non-negative matrix A0 = (ai;j mod QA)i;j2[n] (i.e.,the entries of A0 are in f0; 1; :::; QA � 1g), queries the oracle for the permanent ofA0, and outputs v def= perm(A0) mod QA if v < QA=2 and �(QA � v) otherwise.The key observation is thatperm(A) � perm(A0) (mod QA), while jperm(A)j � (n!) � kAkn1 < QA=2.

6.2. COUNTING 199Thus, perm(A0) mod QA (which is in f0; 1; :::; QA � 1g) determines perm(A). Wenote that perm(A0) is likely to be much larger than QA > jperm(A)j; it is merelythat perm(A0) and perm(A) are equivalent modulo QA.In the second step we show that computing the permanent of non-negative ma-trices is reducible to computing the permanent of 0/1-matrices. In this reduction,we view the computation of the permanent as the computation of the sum of theweights of the cycle covers (SWCC) of the corresponding weighted directed graph(see proof of Proposition 6.19). Thus, we reduce the computation of the SWCC ofdirected graphs with non-negative weights to the computation of the SWCC of un-weighted directed graphs with no parallel edges (which correspond to 0/1-matrices).The reduction is via local replacements that preserve the value of the SWCC. Theselocal replacements combine the following two local replacements (which preservethe SWCC):1. Replacing an edge of weight w = Qti=1 wi by a path of length t (i.e., t � 1internal nodes) with the corresponding weights w1; :::; wt, and self-loops (withweight 1) on all internal nodes.Note that a cycle-cover that uses the original edge corresponds to a cycle-cover that uses the entire path, whereas a cycle-cover that does not use theoriginal edge corresponds to a cycle-cover that uses all the self-loops.2. Replacing an edge of weight w =Pti=1 wi by t parallel 2-edge paths such thatthe �rst edge on the ith path has weight wi, the second edge has weight 1,and the intermediate node has a self-loop (with weight 1). (Paths of lengthtwo are used because parallel edges are not allowed.)Note that a cycle-cover that uses the original edge corresponds to a collectionof cycle-covers that use one out of the t paths (and the self-loops of all otherintermediate nodes), whereas a cycle-cover that does not use the original edgecorresponds to a cycle-cover that uses all the self-loops.In particular, writing the positive integer w, having binary expansion �jwj�1 � � ��0,as Pi:�i=1(1 + 1)i, we may apply the additive replacement (for the sum over fi :�i = 1g), next the product replacement (for each 2i), and �nally the additivereplacement (for 1 + 1). Applying this process to the matrix A0 obtained in the�rst step, we e�ciently obtain a matrix A00 with 0/1-entries such that perm(A0) =perm(A00). (In particular, the dimension of A00 is polynomial in the length of thebinary representation of A0, which in turn is polynomial in the length of the binaryrepresentation ofA.) Combining the two reductions (steps), the proposition follows.6.2.2 Approximate CountingHaving seen that exact counting (for relations in PC) seems even harder thansolving the corresponding search problems, we turn to relaxations of the countingproblem. Before focusing on relative approximation, we briey consider approxi-mation with (large) additive deviation.

200 CHAPTER 6. RANDOMNESS AND COUNTINGLet us consider the counting problem associated with an arbitrary R 2 PC.Without loss of generality, we assume that all solutions to n-bit instances havethe same length `(n), where indeed ` is a polynomial. We �rst note that, whileit may be hard to compute #R, given x it is easy to approximate #R(x) up toan additive error of 0:01 � 2`(jxj) (by randomly samplying potential solutions forx). Indeed, such an approximation is very rough, but it is not trivial (and in factwe do not know how to obatin it deterministically). In general, we can e�cientlyproduce at random an estimate of #R(x) that, with high probability, deviatesfrom the correct value by at most an additive term that is related to the absoluteupperbound on the number of solutions (i.e., 2`(jxj)).Proposition 6.21 (approximation with large additive deviation): Let R 2 PCand ` be a polynomial such that R � [n2Nf0; 1gn � f0; 1g`(n). Then, for everypolynomial p, there exists a probabilistic polynomial-time algorithm A such that forevery x 2 f0; 1g� and � 2 (0; 1) it holds thatPr[jA(x; �)�#R(x)j > (1=p(jxj)) � 2`(jxj)] < �: (6.5)As usual, � is presented to A in binary, and hence the running time of A(x; �) isupper-bounded by poly(jxj � log(1=�)).Proof Sketch: On input x and �, algorithm A sets t = �(p(jxj)2 � log(1=�)), selectsuniformly y1; :::; yt and outputs jfi : (x; yi) 2 Rgj=t.Discussion. Proposition 6.21 is meaningful in the case that #R(x) > (1=p(jxj)) �2`(jxj) holds for some x's. But otherwise, a trivial approximation (i.e., outputtingthe constant value zero) meets the bound of Eq. (6.5). In contrast to this no-tion of additive approximation, a relative factor approximation is typically moremeaningful. Speci�cally, we will be interested in approximating #R(x) up-to aconstant factor (or some other reasonable factor). In x6.2.2.1, we consider a natu-ral #P-complete problem for which such a relative approximation can be obtainedin probabilistic polynomial-time. We do not expect this to happen for every count-ing problem in #P , because a relative approximation allows for distinguishinginstances having no solution from instances that do have solutions (i.e.,, decidingmembership in SR is reducible to a relative approximation of #R). Thus, rela-tive approximation for all #P is at least as hard as deciding all problems in NP ,but in x6.2.2.2 we show that the former is not harder than the latter; that is,relative approximation for any problem in #P can be obtained by a randomizedCook-reduction to NP . Before turning to these results, let us state the underlyingde�nition (and actually strengthen it by requiring approximation to within a factorof 1� ", for " 2 (0; 1)).1111We refrain from formally de�ning an F -factor approximation, for an arbitrary F , althoughwe shall refer to this notion in several informal discussions. There are several ways of de�ning theaforementioned term (and they are all equivalent when applied to our informal discussions). Forexample, an F -factor approximation of #Rmay mean that, with high probability, the output A(x)satis�es #R(x)=F (jxj) � A(x) � F (jxj) � #R(x). Alternatively, we may require that #R(x) �A(x) � F (jxj) �#R(x) (or, alternatively, that #R(x)=F (jxj) � A(x) � #R(x).

6.2. COUNTING 201De�nition 6.22 (approximation with relative deviation): Let f : f0; 1g� ! Nand "; � : N ! [0; 1]. A randomized process � is called an ("; �)-approximator of fif for every x it holds thatPr [j�(x) � f(x)j > "(jxj) � f(x)] < �(jxj): (6.6)We say that f is e�ciently (1 � ")-approximable (or just (1 � ")-approximable) ifthere exists a probabilistic polynomial-time algorithm A that constitute an ("; 1=3)-approximator of f .The error probability of the latter algorithm A (which has error probability 1=3)can be reduced to � by O(log(1=�)) repetitions (see Exercise 6.26). Typically, therunning time of A will be polynomial in 1=", and " is called the deviation parameter.6.2.2.1 Relative approximation for #RdnfIn this subsection we present a natural #P-complete problem for which constantfactor approximation can be found in probabilistic polynomial-time. Stronger re-sults regarding unnatural problems appear in Exercise 6.27.Consider the relation Rdnf consisting of pairs (�; �) such that � is a DNFformula and � is an assignment satisfying it. Recall that the search problemof Rdnf is easy to solve and that the proof of Theorem 6.17 establishes that#Rdnf is #P-complete (via a non-parsimonious reduction). Still there exists aprobabilistic polynomial-time algorithm that provides a constant factor approxi-mation of #Rdnf. We warn that the fact that #Rdnf is #P-complete via a non-parsimonious reduction means that the constant factor approximation for #Rdnfdoes not seem to imply a similar approximation for all problems in #P . In fact, weshould not expect each problem in #P to have a (probabilistic) polynomial-timeconstant-factor approximation algorithm because this would imply NP � BPP(since a constant factor approximation allows for distinguishing the case in whichthe instance has no solution from the case in which the instance has a solution).The following algorithm is actually a deterministic reduction of the task of("; 1=3)-approximating #Rdnf to an (additive deviation) approximation of thetype provided in Proposition 6.21. Consider a DNF formula � = Wmi=1 Ci, whereeach Ci : f0; 1gn ! f0; 1g is a conjunction. Actually, we will deal with the moregeneral problem in which we are (implicitly) given m subsets S1; :::; Sm � f0; 1gnand wish to approximate jSi Sij. In our case, each Si is the set of assignmentssatisfying the conjunction Ci. In general, we make two computational assumptionsregarding these sets (letting e�cient mean implementable in time polynomial inn �m):1. Given i 2 [m], one can e�ciently determine jSij.2. Given i 2 [m] and J � [m], one can e�ciently approximate Prs2Si hs 2 Sj2J Sjiup to an additive deviation of 1=poly(n+m).

202 CHAPTER 6. RANDOMNESS AND COUNTINGThese assumptions are satis�ed in our setting (where Si = C�1i (1), see Exer-cise 6.28). Now, the key observation towards approximating jSmi=1 Sij is that����� m[i=1Si����� = mXi=1 ������Si n[j<iSj������ = mXi=1 jSij � Prs2Si 24s 62 [j<iSj35 (6.7)and that the probabilities in Eq. (6.7) can be approximated by the second assump-tion. This leads to the following algorithm, where " denotes the desired deviationparameter (i.e., we wish to obtain (1� ") � jSmi=1 Sij).Construction 6.23 Let "0 = "=m. For i = 1 to m do:1. Using the �rst assumption, compute jSij.2. Using the second assumption, obtain epi = pi � "0, where pi def= Prs2Si [s 62Sj<i Sj]. Set ai def= epi � jSij.Output the sum of the ai's.Let Ni = pi � jSij. We are interested in the quality of the approximation toPiNi =jSi Sij provided byPi ai. Using ai = (pi � "0) � jSij = Ni � "0 � jSij (for all i's), wehave Pi ai = PiNi � "0 �Pi jSij. Using Pi jSij � m � jSi Sij = m �PiNi (and" = m"0), we getPi ai = (1� ") �PiNi. Thus, we obtain the following result (seeExercise 6.28).Proposition 6.24 For every positive polynomial p, the counting problem of Rdnfis e�ciently (1� (1=p))-approximable.Using the reduction presented in the proof of Theorem 6.17, we conclude that thenumber of unsatisfying assignments to a given CNF formula is e�ciently (1�(1=p))-approximable. We warn, however, that the number of satisfying assignments tosuch a formula is not e�ciently approximable. This concurs with the generalphenomenon by which relative approximation may be possible for one quantity, butnot for the complementary quantity. Needless to say, such a phenomenon does notoccur in the context of additive-deviation approximation.6.2.2.2 Relative approximation for #PRecall that we cannot expect to e�ciently approximate every #P problem, wherethroughout the rest of this section \approximation" is used as a shorthand for \rel-ative approximation" (as in De�nition 6.22). Speci�cally, e�ciently approximating#R yields an e�cient algorithm for deciding membership in SR = fx : R(x) 6=;g.Thus, at best we can hope that approximating #R is not harder than deciding SR(i.e., that approximating #R is reducible in polynomial-time to SR). This is indeedthe case for every NP-complete problem (i.e., if SR is NP-complete). More gener-ally, we show that approximating any problem in #P is reducible in probabilisticpolynomial-time to NP.

6.2. COUNTING 203Theorem 6.25 For every R 2 PC and positive polynomial p, there exists a prob-abilistic polynomial-time oracle machine that when given oracle access to NPconstitutes a (1=p; �)-approximator of #R, where � is a negligible function (e.g.,�(n) = 2�n).Recall that it su�ces to provide a (1=p; �)-approximator of #R, for any constant� < 0:5, because error reduction is applicable in this context (see Exercise 6.26).Also, it su�ces to provide a (1=2; �)-approximator for every problem in #P (seeExercise 6.29).Proof: Given x, we show how to approximate jR(x)j to within some constantfactor. The desired (1� (1=p))-approximation can be obtained as in Exercise 6.29.We may also assume that R(x) 6= ;, by starting with the query \is x in SR"and halting (with output 0) if the answer is negative. Without loss of generality,we assume that R(x) � f0; 1g`, where ` = poly(jxj). We focus on �nding somei 2 f1; :::; `g such that 2i�4 � jR(x)j � 2i+4.We proceed in iterations. For i = 1; :::; ` + 1, we �nd out whether or notjR(x)j < 2i. If the answer is positive then we halt with output 2i, and otherwisewe proceed to the next iteration. (Indeed, if we were able to obtain correct answersto these queries then the output 2i would satisfy 2i�1 � jR(x)j < 2i.)Needless to say, the key issue is how to check whether jR(x)j < 2i. The mainidea is to use a \random sieve" on the set R(x) such that each element passes thesieve with probability 2�i. Thus, we expect jR(x)j=2i elements of R(x) to passthe sieve. Assuming that the number of elements in R(x) that pass the randomsieve is indeed bjR(x)j=2ic, it holds that jR(x)j � 2i if and only if some element ofR(x) passes the sieve. Assuming that the sieve can be implemented e�ciently, thequestion of whether or not some element in R(x) passed the sieve is of an \NP-type" (and thus can be referred to our NP-oracle). Combining both assumptions,we may implement the foregoing process by proceeding to the next iteration aslong as some element of R(x) passes the sieve. Furthermore, this implementationwill provide a reasonably good approximation even if the number of elements inR(x) that pass the random sieve is only approximately equal to jR(x)j=2i. In fact,the level of approximation that this implementation provides is closely related tothe level of approximation that is provided by the random sieve. Details follow.Implementing a random sieve. The random sieve is implemented by using a familyof hashing functions (see Section D.2). Speci�cally, in the ith iteration we use afamily H ì such that each h 2 H ì has a poly(`)-bit long description and maps `-bitlong strings to i-bit long strings. Furthermore, the family is accompanied withan e�cient evaluation algorithm (i.e., mapping adequate pairs (h; x) to h(x)) andsatis�es (for every S � f0; 1g`)Prh2H ì [jfy 2 S : h(y) = 0igj 62 (1� ") � 2�ijSj] < 2i"2jSj (6.8)(see Lemma D.4). The random sieve will let y pass if and only if h(y) = 0i. Indeed,this random sieve is not as perfect as we assumed in the foregoing discussion, butEq. (6.8) suggests that in some sense this sieve is good enough.

204 CHAPTER 6. RANDOMNESS AND COUNTINGImplementing the queries. Recall that for some x, i and h 2 H ì, we need to de-termine whether fy2R(x) : h(y)= 0ig = ;. This type of question can be cast asmembership in the setSR;H def= f(x; i; h) : 9y s.t. (x; y)2R ^ h(y)=0ig: (6.9)Using the hypotheses that R 2 PC and that the family of hashing functions has ane�cient evaluation algorithm, it follows that SR;H is in NP .The actual procedure. On input x 2 SR and oracle access to SR;H , we proceed initerations, starting with i = 1 and halting at i = ` (if not before), where ` denotesthe length of the potential solutions for x. In the ith iteration (where i < `), weuniformly select h 2 H ì and query the oracle on whether or not (x; i; h) 2 SR;H .If the answer is negative then we halt with output 2i, and otherwise we proceed tothe next iteration (using i i+ 1). Needless to say, if we reach the last iteration(i.e., i = `) then we just halt with output 2`.Indeed, we have ignored the case that x 62 SR, which can be easily handled bya minor modi�cation of the foregoing procedure. Speci�cally, on input x, we �rstquery SR on x and halt with output 0 if the answer is negative. Otherwise weproceed as in the foregoing procedure.The analysis. We upper-bound separately the probability that the procedure out-puts a value that is too small and the probability that it outputs a value that istoo big. In light of the foregoing discussion, we may assume that jR(x)j > 0, andlet ix = blog2 jR(x)jc � 0.1. The probability that the procedure halts in a speci�c iteration i < ix equalsPrh2H ì [jfy 2 R(x) : h(y) = 0igj = 0], which in turn is upper-bounded by2i=jR(x)j (using Eq. (6.8) with " = 1). Thus, the probability that the pro-cedure halts before iteration ix � 3 is upper-bounded by Pix�4i=0 2i=jR(x)j,which in turn is less than 1=8 (because ix � log2 jR(x)j). Thus, with prob-ability at least 7=8, the output is at least 2ix�3 > jR(x)j=16 (because ix >(log2 jR(x)j) � 1).2. The probability that the procedure does not halt in iteration i > ix equalsPrh2H ì [jfy 2 R(x) : h(y) = 0igj � 1], which in turn is upper-bounded by�=(� � 1)2, where � = 2i=jR(x)j > 1 (using Eq. (6.8) with " = � � 1).12Thus, the probability that the procedure does not halt by iteration ix + 4 isupper-bounded by 8=49 < 1=6 (because ix > (log2 jR(x)j) � 1). Thus, withprobability at least 5=6, the output is at most 2ix+4 � 16 � jR(x)j (becauseix � log2 jR(x)j).Thus, with probability at least (7=8)�(1=6) > 2=3, the foregoing procedure outputsa value v such that v=16 � jR(x)j < 16v. Reducing the deviation by using the ideaspresented in Exercise 6.29 (and reducing the error probability as in Exercise 6.26),the theorem follows.12A better bound can be obtained by using the hypothesis that, for every y, when h is uniformlyselected in H ì, the value of h(y) is uniformly distributed in f0; 1gi. In this case, Prh2H ì [jfy 2R(x) : h(y) = 0igj � 1] is upper-bounded by Eh2H ì [jfy 2 R(x) : h(y) = 0igj] = jR(x)j=2i.

6.2. COUNTING 205Perspective. The key observation underlying the proof Theorem 6.25 is that,while (even with the help of an NP-oracle) we cannot directly test whether thenumber of solutions is greater than a given number, we can test (with the helpof an NP-oracle) whether the number of solutions that \survive a random sieve"is greater than zero. If fact, we can also test whether the number of solutionsthat \survive a random sieve" is greater than a small number, where small meanspolynomial in the length of the input (see Exercise 6.31). That is, the complexityof this test is linear in the size of the threshold, and not in the length of its binarydescription. Indeed, in many settings it is more advantageous to use a thresholdthat is polynomial in some e�ciency parameter (rather than using the thresholdzero); examples appear in x6.2.4.2 and in [102].6.2.3 Searching for unique solutionsA natural computational problem (regarding search problems), which arises whendiscussing the number of solutions, is the problem of distinguishing instances havinga single solution from instances having no solution (or �nding the unique solutionwhenever such exists). We mention that instances having a single solution facilitatenumerous arguments (see, for example, Exercise 6.21 and x10.2.2.1). Formally,searching for and deciding the existence of unique solutions are de�ned within theframework of promise problems (see Section 2.4.1).De�nition 6.26 (search and decision problems for unique solution instances):The set of instances having unique solutions with respect to the binary relation Ris de�ned as USR def= fx : jR(x)j = 1g, where R(x) def= fy : (x; y)2Rg. As usual, wedenote SR = fx : jR(x)j � 1g, and SR def= f0; 1g� n SR = fx : jR(x)j = 0g.� The problem of �nding unique solutions for R is de�ned as the search problemR with promise USR [SR (see De�nition 2.28).In continuation to De�nition 2.29, the candid searching for unique solutionsfor R is de�ned as the search problem R with promise USR.� The problem of deciding unique solution for R is de�ned as the promise problem(USR; SR) (see De�nition 2.30).Interestingly, in many natural cases, the promise does not make any of these prob-lems any easier than the original problem. That is, for all known NP-completeproblems, the original problem is reducible in probabilistic polynomial-time to thecorresponding unique instances problem.Theorem 6.27 Let R 2 PC and suppose that every search problem in PC is par-simoniously reducible to R. Then solving the search problem of R (resp., decidingmembership in SR) is reducible in probabilistic polynomial-time to �nding uniquesolutions for R (resp., to the promise problem (USR; SR)). Furthermore, thereexists a probabilistic polynomial-time computable mapping M such that for ev-ery x 2 SR it holds that M(x) 2 SR, whereas for every x 2 SR it holds thatPr[M(x) 2 USR] � 1=poly(jxj).

206 CHAPTER 6. RANDOMNESS AND COUNTINGWe highlight the hypothesis that R is PC-complete via parsimonious reductions iscrucial to Theorem 6.27 (see Exercise 6.32). The large (but bounded-away from 1)error probability of the randomized Karp-reduction M can be reduced by repe-titions, yielding a randomized Cook-reduction with exponentially vanishing errorprobability. Note that the resulting reduction may make many queries that violatethe promise, and still yields the correct answer (with high probability) by relyingon queries that satisfy the promise. (Speci�cally, in the case of search problems weavoid wrong solutions by checking each solution obtained, while in the case of deci-sion problems we rely on the fact that for every x 2 SR it holds that M(x) 2 SR.)Proof: As in the proof of Theorem 6.25, the idea is to apply a \random sieve" onR(x), this time with the hope that a single element survives. Speci�cally, if we leteach element passes the sieve with probability approximately 1=jR(x)j then withconstant probability a single element survives (and we shall obtain an instance witha unique solution). Sieving will be performed by a random function selected in anadequate hashing family (see Section D.2). A couple of questions arise:1. How do we get an approximation to jR(x)j? Note that we need such anapproximation in order to determine the adequate hashing family. Indeed,we may just invoke Theorem 6.25, but this will not yield a many-to-onereduction. Instead, we just select m 2 f0; :::; poly(jxj)g uniformly and notethat (if jR(x)j > 0 then) Pr[m = dlog2 jR(x)je] = 1=poly(jxj). Next, werandomly map x to (x;m; h), where h is uniformly selected in an adequatehashing family.2. How does the question of whether a single element of R(x) pass the randomsieve translate to an instance of the unique-solution problem for R? Recallthat in the proof of Theorem 6.25 the non-emptiness of the set of element ofR(x) that pass the sieve (de�ned by h) was determined by checking mem-bership (of (x;m; h)) in SR;H 2 NP (de�ned in Eq. (6.9)). Furthermore, thenumber of NP-witnesses for (x;m; h) 2 SR;H equals the number of elementsof R(x) that pass the sieve. Using the parsimonious reduction of SR;H to SR(which is guaranteed by the theorem's hypothesis), we obtained the desiredinstance.Note that in case R(x) = ; the aforementioned mapping always generates a no-instance (of SR;H and thus of SR). Details follow.Implementation (i.e., the mapping M). As in the proof of Theorem 6.25, we as-sume, without loss of generality, that R(x) � f0; 1g`, where ` = poly(jxj). Westart by uniformly selecting m 2 f1; :::; `+ 1g and h 2 Hm̀, where Hm̀ is a familyof e�ciently computable and pairwise-independent hashing functions (see De�ni-tion D.1) mapping `-bit long strings to m-bit long strings. Thus, we obtain aninstance (x;m; h) of SR;H 2 NP such that the set of valid solutions for (x;m; h)equals fy2R(x) : h(y)=0mg. Using the parsimonious reduction g of SR;H to SR,we map (x;m; h) to g(x;m; h), and it holds that jfy 2R(x) : h(y) = 0mgj equalsjR(g(x;m; h))j. To summarize, on input x the randomized mappingM outputs the

6.2. COUNTING 207instance M(x) def= g(x;m; h), where m 2 f1; :::; `+ 1g and h 2 Hm̀ are uniformlyselected.The analysis. Note that for any x 2 SR it holds that Pr[M(x) 2 SR] = 1. Assumingthat x 2 SR, with probability exactly 1=(` + 1) it holds that m = mx, wheremx def= dlog2 jR(x)je + 1. In this case, for a uniformly selected h 2 Hm̀, we lower-bound the probability that fy 2 R(x) : h(y) = 0mg is a singleton. Using theInclusion-Exclusion Principle, we havePrh2Hmx` [jfy2R(x) : h(y)=0mxgj = 1] (6.10)= Prh2Hmx` [jfy2R(x) : h(y)=0mxgj > 0] � Prh2Hmx` [jfy2R(x) : h(y)=0mxgj > 1]� Xy2R(x)Prh2Hmx` [h(y)=0mx] � 2 � Xy1<y22R(x)Prh2Hmx` [h(y1)=h(y2)=0mx]= jR(x)j � 2�mx � 2 � �jR(x)j2 � � 2�2mxwhere the last equality is due to the pairwise independence property. Using2mx�2 < jR(x)j � 2mx�1, it follows that Eq. (6.10) is lower-bounded by 1=4.Thus, Pr[M(x) 2 USR] � 1=4(`+ 1), and the theorem follows.Comment. Theorem 6.27 is sometimes stated as referring to the unique solutionproblem of SAT. In this case and when using a speci�c family of pairwise indepen-dent hashing functions, the use of the parsimonious reduction can be avoided. Fordetails see Exercise 6.33.6.2.4 Uniform generation of solutionsWe now turn to a new type of computational problems, which may be viewed asa straining of search problems. We refer to the task of generating a uniformlydistributed solution for a given instance, rather than merely �nding an adequatesolution. Needless to say, by de�nition, algorithms solving this (\uniform gener-ation") task must be randomized. Focusing on relations in PC we consider twoversions of the problem, which di�er by the level of approximation provided for thedesired (uniform) distribution.13De�nition 6.28 (uniform generation): Let R 2 PC and SR = fx : jR(x)j � 1g,and let � be a probabilistic process.1. We say that � solves the uniform generation problem of R if, on input x 2 SR,the process � outputs either an element of R(x) or a special symbol, denoted?, such that Pr[�(x) 2 R(x)] � 1=2 and for every y 2 R(x) it holds thatPr[�(x)=y j�(x)2R(x)] = 1=jR(x)j.13Note that a probabilistic algorithm running in strict polynomial-time is not able to output aperfectly uniform distribution on sets of certain sizes. Speci�cally, referring to the standard modelthat allows only for uniformly selected binary values, such algorithms cannot output a perfectlyuniform distribution on sets having cardinality that is not a power of two.

208 CHAPTER 6. RANDOMNESS AND COUNTING2. For " : N ! [0; 1], we say that � solves the (1 � ")-approximate uniformgeneration problem of R if, on input x 2 SR, the distribution �(x) is "(jxj)-close14 to the uniform distribution on R(x).In both cases, without loss of generality, we may require that if x 62 SR thenPr[�(x) = ?] = 1. More generally, we may require that � never outputs a stringnot in R(x).Note that the error probability of uniform generation (as in Item 1) can be madeexponentially vanishing (in jxj) by employing error-reduction. In contrast, we arenot aware of any general way of reducing the deviation of an approximate uniformgeneration procedure (as in Item 2).15In x6.2.4.1 we show that, for many search problems, approximate uniform gener-ation is computationally equivalent to approximate counting. In x6.2.4.2 we presenta direct approach for solving the uniform generation problem of any search problemin PC by using an oracle to NP .6.2.4.1 Relation to approximate countingWe show that, for many natural search problems in PC, the approximate countingproblem associated with R is computationally equivalent to approximate uniformgeneration with respect to R. Speci�cally, we refer to search problems R 2 PCsuch that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is strongly parsimoniously reducible toR, where a strongly parsimonious reduction of R0 to R is a parsimonious reduction gthat is coupled with an e�ciently computable 1-1 mapping of pairs (g(x); y) 2 R topairs (x; h(x; y)) 2 R0 (i.e., h is e�ciently computable and h(x; �) is a 1-1 mappingof R(g(x)) to R0(x)). Note that for many natural search problems R (e.g., thesearch problem of SAT and Perfect Matching), the corresponding R0 is stronglyparsimoniously reducible to R.Recalling that both types of approximation problems are parameterized by thelevel of precision, we obtain the following quantitative form of the aforementionedequivalence.Theorem 6.29 Let R 2 PC and let ` be a polynomial such that for every (x; y)2Rit holds that jyj � `(jxj). Suppose that R0 is strongly parsimoniously reducible toR, where R0(x; y0) def= fy00 : (x; y0y00) 2 Rg.1. From approximate counting to approximate uniform generation: Let "(n) =1=5`(n) and let � :N! (0; 1) be a function satisfying �(n) � exp(�poly(n)).Then, (1 � �)-approximate uniform generation for R is reducible in proba-bilistic polynomial-time to (1� ")-approximating #R.2. From approximate uniform generation to approximate counting: For everynoticeable " :N ! (0; 1) (i.e., "(n) � 1=poly(n) for every n), the problem of14See Section D.1.1.15We note that in some cases, the deviation of an approximate uniform generation procedurecan be reduced. See discussion following Theorem 6.29.

6.2. COUNTING 209(1�")-approximating #R is reducible in probabilistic polynomial-time to (1�"0)-approximate uniform generation problem of R, where "0(n) = "(n)=5`(n).In fact, Part 1 holds also in case R0 is just parsimoniously reducible to R.Note that the quality of the approximate uniform generation asserted in Part 1(i.e., �) is independent of the quality of the approximate counting procedure (i.e.,") to which the former is reduced, provided that the approximate counter performsbetter than some threshold. On the other hand, the quality of the approximatecounting asserted in Part 2 (i.e., ") does depend on the quality of the approximateuniform generation (i.e., "0), but cannot reach beyond a certain bound (i.e., no-ticeable relative devaition). Recall, that for problems that are NP-complete underparsimonious reductions the quality of approximate counting procedures can beimproved (see Exercise 6.30). However, Theorem 6.29 is most useful when appliedto problems that are not NP-complete, because for problems that are NP-completeboth approximate counting and uniform generation are randomly reducible to thecorresponding search problem (see Exercise 6.35).Proof: Throughout the proof, we assume for simplicity (and in fact without lossof generality) that R(x) 6= ; and R(x) � f0; 1g`(jxj).Towards Part 1, let us �rst reduce the uniform generation problem of R to #R(rather than to approximating #R). On input x 2 SR, we generate a uniformlydistributed y 2 R(x) by randomly generating its bits one after the other. Weproceed in iterations, entering the ith iteration with an (i � 1)-bit long stringy0 such that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is not empty. With probabilityjR0(x; y01)j=jR0(x; y0)j we set the ith bit to equal 1, and otherwise we set it to equal 0.We obtain both jR0(x; y01)j and jR0(x; y0)j by using a parsimonious reduction g ofR0 = f((x; y0); y00) : (x; y0y00) 2 Rg 2 PC to R. That is, we obtain jR0(x; y0)jby querying for the value of jR(g(x; y0))j. Ignoring integrality issues, all this worksperfectly (i.e., we generate an `(n)-bit string uniformly distributed in R(x)) as longas we have oracle access to #R. But we only have oracle access to an approximationof #R, and thus a careful modi�cation is in place.Let us denote the approximation oracle by A. Firstly, by adequate error reduc-tion, we may assume that, for every x, it holds that Pr[A(x) 2 (1�"(n)) �#R(x)] >1��0(jxj), where �0(n) = �(n)=`(n). In the rest of the analysis we ignore the prob-ability that the estimate deviates from the aforementioned interval, and note thatthis rare event is the only source of the possible deviation of the output distributionfrom the uniform distribution on R(x).16 Let us assume for a moment that A isdeterministic and that for every x and y0 it holds thatA(g(x; y00)) +A(g(x; y01)) � A(g(x; y0)): (6.11)We also assume that the approximation is correct at the \trivial level" (where onemay just check whether or not (x; y) is in R); that is, for every y 2 f0; 1g`(jxj), it16The possible deviation is due to the fact that this rare event may occur with di�erent prob-ability in the di�erent invocations of algorithm A.

210 CHAPTER 6. RANDOMNESS AND COUNTINGholds that A(g(x; y)) = 1 if (x; y) 2 R and A(g(x; y)) = 0 otherwise. (6.12)We modify the ith iteration of the foregoing procedure such that, when enteringwith the (i� 1)-bit long pre�x y0, we set the ith bit to � 2 f0; 1g with probabilityA(g(x; y0�))=A(g(x; y0)) and halt (with output ?) with the residual probability(i.e., 1� (A(g(x; y00))=A(g(x; y0)))� (A(g(x; y01))=A(g(x; y0)))). Indeed, Eq. (6.11)guarantees that the latter instruction is sound, since the two main probabilitiessum-up to at most 1. If we completed the last (i.e., `(jxj)th) iteration, then weoutput the `(jxj)-bit long string that was generated. Thus, as long as Eq. (6.11)holds (but regardless of other aspects of the quality of the approximation), everyy = �1 � � ��`(jxj) 2 R(x), is output with probabilityA(g(x;�1))A(g(x;�)) � A(g(x;�1�2))A(g(x;�1)) � � � A(g(x;�1�2 � � ��`(jxj)))A(g(x;�1�2 � � ��`(jxj)�1)) (6.13)which, by Eq. (6.12), equals 1=A(g(x;�)). Thus, the procedure outputs each ele-ment of R(x) with equal probability, and never outputs a non-? value that is out-side R(x). It follows that the quality of approximation only e�ects the probabilitythat the procedure outputs a non-? value (which in turn equals jR(x)j=A(g(x;�))).The key point is that, as long as Eq. (6.12) holds, the speci�c approximate valuesobtained by the procedure are immaterial { with the exception of A(g(x;�)), allthese values \cancel out".We now turn to enforcing Eq. (6.11) and Eq. (6.12). We may enforce Eq. (6.12)by performing the straightforward check (of whether or not (x; y) 2 R) ratherthan invoking A(g(x; y)).17 As for Eq. (6.11), we enforce it arti�cially by usingA0(x; y0) def= (1 + "(jxj))3(`(jxj)�jy0j) � A(g(x; y0)) instead of A(g(x; y0)). Recallingthat A(g(x; y0)) = (1� "(jxy0j)) � jR0(x; y0)j, we haveA0(x; y0) > (1 + "(jxj))3(`(jxj)�jy0j) � (1� "(jxj)) � jR0(x; y0)jA0(x; y0�) < (1 + "(jxj))3(`(jxj)�jy0j�1) � (1 + "(jxj)) � jR0(x; y0�)jand the claim follows using (1� "(jxj)) � (1 + "(jxj))3 > (1� "(jxj)). Note that theforegoing modi�cation only decreases the probability of outputting a non-? valueby a factor of (1 + "(jxj))3`(jxj) < 2, where the inequality is due to the setting of "(i.e., "(n) = 1=5`(n)). Finally, we refer to our assumption that A is deterministic.This assumption was only used in order to identify the value of A(g(x; y0)) obtainedand used in the (jy0j�1)st iteration with the value of A(g(x; y0)) obtained and usedin the jy0jth iteration, but the same e�ect can be obtained by just re-using theformer value (in the jy0jth iteration) rather than re-invoking A in order to obtainit. Part 1 follows.Towards Part 2, let use �rst reduce the task of approximating #R to thetask of (exact) uniform generation for R. On input x 2 SR, the reduction uses17Alternatively, we note that since A is a (1 � ")-approximator for " < 1 it must hold that#R0(z) = 0 implies A(z) = 0. Also, since " < 1=3, if #R0(z) = 1 then A(z) 2 (2=3; 4=3), whichmay be rounded to 1.

6.2. COUNTING 211the tree of possible pre�xes of elements of R(x) in a somewhat di�erent manner.Again, we proceed in iterations, entering the ith iteration with an (i� 1)-bit longstring y0 such that R0(x; y0) def= fy00 : (x; y0y00) 2 Rg is not empty. At the ithiteration we estimate the bigger among the two fractions jR0(x; y00)j=jR0(x; y0)jand jR0(x; y01)j=jR0(x; y0)j, by uniformly sampling the uniform distribution overR0(x; y0). That is, taking poly(jxj="0(jxj)) uniformly distributed samples in R0(x; y0),we obtain with overwhelmingly high probability an approximation of these frac-tions up to an additive deviation of at most "0(jxj)=3. This means that we obtaina relative approximation up-to a factor of 1� "0(jxj) for the fraction (or fractions)that is (resp., are) bigger than 1=3. Indeed, we may not be able to obtain sucha good relative approximation of the other fraction (in case it is very small), butthis does not matter. It also does not matter that we cannot tell which is thebigger fraction among the two; it only matter that we use an approximation thatindicates a quantity that is, say, bigger than 1=3. We proceed to the next iterationby augmenting y0 using the bit that corresponds to such a quantity. Speci�cally,suppose that we obtained the approximations a0(y0) � jR0(x; y00)j=jR0(x; y0)j anda1(y0) � jR0(x; y01)j=jR0(x; y0)j. Then we extend y0 by the bit 1 if a1(y0) > a0(y0)and extend y0 by the bit 0 otherwise. Finally, when we reach y = �1 � � ��`(jxj) suchthat (x; y) 2 R, we outputa�1(�)�1 � a�2(�1)�1 � � � a�`(jxj)(�1�2 � � ��`(jxj)�1)�1: (6.14)As in Part 1, actions regarding R0 (in this case uniform generation in R0) are con-ducted via the parsimonious reduction g to R. That is, whenever we need to sampleuniformly in the set R0(x; y0), we sample the set R(g(x; y0)) and recover the corre-sponding element of R0(x; y0) by using the mapping guaranteed by the hypothesisthat g is strongly parsimonious. Finally, note that the deviation from uniformdistribution (i.e., the fact that we can only approximately sample R) merely in-troduces such a deviation in each of our approximations to the relevant fractions(i.e., to a fraction bigger than 1=3). Speci�cally, on input x, using an oracle thatprovides a (1 � "0)-approximate uniform generation for R, with overwhelminglyhigh probability, the output (as de�ned in Eq. (6.14)) is in`(jxj)Yi=1 �(1� 2"0(jxj)) � jR0(x;�1 � � ��i�1)jjR0(x;�1 � � ��i)j � (6.15)where the error probability is due to the unlikely case that in one of the iterationsour approximations deviates from the correct value by more than an additive de-viation term of "0(n)=3. Noting that Eq. (6.15) equals (1 � 2"0(jxj))`(jxj) � jR(x)jand using (1�2"0(jxj))`(jxj) � (1�"(jxj)), Part 2 follows, and so does the theorem.6.2.4.2 A direct procedure for uniform generationWe conclude the current chapter by presenting a direct procedure for solving theuniform generation problem of any R 2 PC. This procedure uses an oracle to

212 CHAPTER 6. RANDOMNESS AND COUNTINGNP , which is unavoidable because solving the uniform generation problem impliessolving the corresponding search problem. One advantage of this procedure, overthe reduction presented in x6.2.4.1, is that it solves the uniform generation problemrather than the approximate uniform generation problem.We are going to use hashing again, but this time we use a family of hashingfunctions having a stronger \uniformity property" (see Section D.2.3). Speci�cally,we will use a family of `-wise independent hashing functions mapping `-bit stringsto m-bit strings, where ` bounds the length of solutions in R, and rely on the factthat such a family satis�es Lemma D.6. Intuitively, such functions partition f0; 1g`into 2m cells and Lemma D.6 asserts that these partitions \uniformly shatter" allsu�ciently large sets. That is, for every set S � f0; 1g` of size
(`�2m) the partitioninduced by almost every function is such that each cell contains approximatelyjSj=2m elements of S. In particular, if jSj = �(` � 2m) then each cell contains �(`)elements of S.Loosely speaking, the following procedure (for uniform generation) �rst selectsa random hashing function and tests whether it \uniformly shatters" the target setS. If this condition holds then the procedure selects a cell at random and retrievethe elements of S residing in the chosen cell. Finally, the procedure outputs eachretrieves element (in S) with a �xed probability, which is independent of the actualnumber of elements of S that reside in the chosen cell. This guarantees that eachelement e 2 S is output with the same probability, regardless of the number ofelements of S that resides with e in the same cell.In the following construction, we assume that on input x we also obtain a goodapproximation to the size of R(x). This assumption can be enforced by usingan approximate counting procedure as a preprocessing stage. Alternatively, theideas presented in the following construction yield such an approximate countingprocedure.Construction 6.30 (uniform generation): On input x and m0x 2 fmx;mx + 1g,where mx def= blog2 jR(x)jc and R(x) � f0; 1g`, the oracle machine proceeds asfollows.1. Selecting a partition that \uniformly shatters" R(x). The machine sets m =max(0;m0x�6�log2 `) and selects uniformly h 2 Hm̀. Such a function de�nesa partition of f0; 1g` into 2m cells18, and the hope is that each cell containsapproximately the same number of elements of R(x). Next, the machinechecks that this is indeed the case or rather than no cell contains more that128` elements of R(x). This is done by checking whether or not (x; h; 1128`+1)is in the set S(1)R;H de�ned as followsS(1)R;H def= f(x0; h0; 1t) : 9v s.t. jfy : (x0; y)2R ^ h0(y)=vgj � tg (6.16)= f(x0; h0; 1t) : 9v; y1; :::; yt s.t. (1)(x0; h0; v; y1; :::; yt)g;18For sake of uniformity, we allow also the case of m = 0, which is rather arti�cial. In thiscase all hashing functions in H 0̀ map f0; 1g` to the empty string, which is viewed as 00, and thusde�ne a trivial partition of f0; 1g` (i.e., into a single cell).

6.2. COUNTING 213where (1)(x0; h0; v; y1; :::; yt) holds if and only if y1<y2 � � �<yt and for everyj 2 [t] it holds that (x0; yj)2R ^ h0(yj)=v. Note that S(1)R;H 2 NP.If the answer is positive (i.e., there exists a cell that contains more that128` elements of R(x)) then the machine halts with output ?. Otherwise,the machine continues with this choice of h. In this case, no cell containsmore that 128` elements of R(x) (i.e., for every v 2 f0; 1gm, it holds thatjfy : (x; y) 2 R ^ h(y) = vgj � 128`). We stress that this is an absoluteguarantee that follows from (x; h; 1128`+1) 62 S(1)R;H .2. Selecting a cell and determining the number of elements of R(x) that arecontained in it. The machine selects uniformly v 2 f0; 1gm and determinessv def= jfy : (x; y)2R ^ h(y)=vgj by making queries to the following NP-setS(2)R;H def= f(x0; h0; v0; 1t) : 9y1; :::; yt s.t. (1)(x0; h0; v0; y1; :::; yt)g: (6.17)Speci�cally, for i = 1; :::; 128`, it checks whether (x; h; v; 1i) is in S(2)R;H , andsets sv to be the largest value of i for which the answer is positive.3. Obtaining all the elements of R(x) that are contained in the selected cell,and outputting one of them at random. Using sv, the procedure reconstructsthe set Sv def= fy : (x; y)2R ^ h(y) = vg, by making queries to the followingNP-setS(3)R;H def= f(x0; h0; v0; 1t; j) : 9y1; :::; yt s.t. (3)(x0; h0; v0; y1; :::; yt; j)g; (6.18)where (3)(x0; h0; v0; y1; :::; yt; j) holds if and only if (1)(x0; h0; v0; y1; :::; yt)holds and the jth bit of y1 � � � yt equals 1. Speci�cally, for j1 = 1; :::; sv andj2 = 1; :::; `, we make the query (x; h; v; 1sv ; (j1 � 1) � ` + j2) in order todetermine the jth2 bit of yj1 . Finally, having recovered Sv, the procedureoutputs each y 2 Sv with probability 1=128`, and outputs ? otherwise (i.e.,with probability 1� (sv=128`)).Focusing on the case that m0x > 6 + log2 `, we note that m � m0x � 6 � log2 ` <log2(jR(x)j=20`). In this case, by Lemma D.6, with overwhelmingly high prob-ability, each set fy : (x; y) 2 R ^ h(y) = vg has cardinality (1 � 0:5)jR(x)j=2m.Using m0x > (log2 jR(x)j) � 1 (resp., m0x � (log2 jR(x)j) + 1), it follows thatjR(x)j=2m < 128` (resp., jR(x)j=2m � 16`). Thus, Step 1 can be easily adaptedto yield an approximate counting procedure for #R (see Exercise 6.34). However,our aim is to establish the following fact.Proposition 6.31 Construction 6.30 solves the uniform generation problem of R.Proof: By Lemma D.6 (and the setting of m), with overwhelmingly high probabil-ity, a uniformly selected h 2 Hm̀ partitions R(x) into 2m cells, each containing atmost 128` elements. The key observation, stated in Step 1, is that if the proceduredoes not halt in Step 1 then it is indeed the case that h induces such a partition.

214 CHAPTER 6. RANDOMNESS AND COUNTINGThe fact that these cells may contain a di�erent number of elements is immaterial,because each element is output with the same probability (i.e., 1=128`). Whatmatters is that the average number of elements in the cells is su�ciently large, be-cause this average number determines the probability that the procedure outputsan element of R(x) (rather than ?). Speci�cally, the latter probability equals theaforementioned average number (which equals jR(x)j=2m) divided by 128`. Usingm � max(0; 1 + log2(2jR(x)j)� 6� log2 `), we have jR(x)j=2m � min(jR(x)j; 16`),which means that the procedure outputs some element of R(x) with probability atleast min((jR(x)j=128`); (1=8)).Technical comments. We can easily improve the performance of Construc-tion 6.30 by dealing separately with the case m = 0. In such a case, Step 3can be simpli�ed and improved by uniformly selecting and outputting an elementof S� (which equals R(x)). Under this modi�cation, the procedure outputs someelement of R(x) with probability at least 1=8. In any case, recall that the proba-bility that a uniform generation procedure outputs ? can be deceased by repeatedinvocations.Chapter NotesOne key aspect of randomized procedures is their success probability, which is ob-viously a quantitative notion. This aspect provides a clear connection betweenprobabilistic polynomial-time algorithms considered in Section 6.1 and the count-ing problems considered in Section 6.2 (see also Exercise 6.17). More appealingconnections between randomized procedures and counting problems (e.g., the ap-plication of randomization in approximate counting) are presented in Section 6.2.These connections justify the presentation of these two topics in the same chapter.Randomized algorithmsMaking people take an unconventional step requires compelling reasons, and indeedthe study of randomized algorithms was motivated by a few compelling examples.Ironically, the appeal of the two most famous examples (discussed next) has beendiminished due to subsequent �nding, but the fundamental questions that emergedremain fascinating regardless of the status of these and other appealing examples(see x6.1.1.1).The �rst example: primality testing. For more than two decades, primalitytesting was the archetypical example of the usefulness of randomization in the con-text of e�cient algorithms. The celebrated algorithms of Solovay and Strassen [198]and of Rabin [172], proposed in the late 1970's, established that deciding primalityis in coRP (i.e., these tests always recognize correctly prime numbers, but theymay err on composite inputs). (The approach of Construction 6.4, which only es-tablishes that deciding primality is in BPP, is commonly attributed to M. Blum.)In the late 1980's, Adleman and Huang [2] proved that deciding primality is in RP

6.2. COUNTING 215(and thus in ZPP). In the early 2000's, Agrawal, Kayal, and Saxena [3] showedthat deciding primality is actually in P . One should note, however, that strongevidence to the fact that deciding primality is in P was actually available fromthe start: we refer to Miller's deterministic algorithm [155], which relies on theExtended Riemann Hypothesis.The second example: undirected connectivity. Another celebrated exampleto the power of randomization, speci�cally in the context of log-space computa-tions, was provided by testing undirected connectivity. The random-walk algorithmpresented in Construction 6.10 is due to Aleliunas, Karp, Lipton, Lov�asz, and Rack-o� [5]. Recall that a deterministic log-space algorithm was found twenty-�ve yearslater (see Section 5.2.4 or [178]).Other randomized algorithms. Although randomized algorithms are moreabundant in the context of approximation problems (let alone in other compu-tational settings (cf. x6.1.1.1)), quite a few such algorithms are known also in thecontext of search and decision problems. We mention the algorithms for �ndingperfect matchings and minimum cuts in graphs (see, e.g., [86, Apdx. B.1] or [157,Sec. 12.4&10.2]), and note the prominent role of randomization in computationalnumber theory (see, e.g., [21] or [157, Chap. 14]). For a general textbook on ran-domized algorithms, we refer the interested reader to [157].On the general study of BPP. Turning to the general study of BPP, we notethat our presentation of Theorem 6.7 follows the proof idea of Lautemann [141]. Adi�erent proof technique, which yields a weaker result but found more applications(see, e.g., Theorem 6.25 and [107]), was presented (independently) by Sipser [194].On the role of promise problems. In addition to their use in the formulation ofTheorem 6.7, promise problems allow for establishing time hierarchy theorems (asin x4.2.1.1) for randomized computation (see Exercise 6.13). We mention that suchresults are not known for the corresponding classes of standard decision problems.The technical di�culty is that we do not know how to enumerate probabilisticmachines that utilize a non-trivial probabilistic decision rule.On the feasibility of randomized computation. Di�erent perspectives onthis question are o�ered by Chapter 8 and Section D.4. Speci�cally, as advocatedin Chapter 8, generating uniformly distributed bit sequences is not really necessaryfor implementing randomized algorithms; it su�ces to generate sequences that lookas if they are uniformly distributed. In many cases this leads to reducing thenumber of coin tosses in such implementations, and at times even to a full (butnon-trivial) derandomization (see Sections 8.4 and 8.5). A less radical approach ispresented in Section D.4, which deals with the task of extracting almost uniformlydistributed bit sequences from sources of weak randomness. Needless to say, thesetwo approaches are complimentary and can be combined.

216 CHAPTER 6. RANDOMNESS AND COUNTINGCounting problemsThe counting class #P was introduced by Valiant [215], who proved that computingthe permanent of 0/1-matrices is #P-complete (i.e., Theorem 6.18). Interestingly,like in the case of Cook's introduction of NP-completeness [55], Valiant's motivationwas determining the complexity of a speci�c problem (i.e., the permanent).Our presentation of Theorem 6.18 is based both on Valiant's paper [215] and onsubsequent studies (most notably [29]). Speci�cally, the high-level structure of thereduction presented in Proposition 6.19 as well as the \structured" design of theclause gadget is taken from [215], whereas the Deus Ex Machina gadget presentedin Figure 6.3 is based on [29]. The proof of Proposition 6.20 is also based on [29](with some variants). Turning back to the design of clause gadgets we regret notbeing able to cite and/or use a systematic study of this design problem.As noted in the main text, we decided not to present a proof of Toda's The-orem [207], which asserts that every set in PH is Cook-reducible to #P (i.e.,Theorem 6.14). A proof of a related result appears in Section F.1 (implying thatPH is reducible to #P via probabilistic polynomial-time reductions). Alternativeproofs can be found in [127, 199, 207].Approximate counting and related problems. The approximation proce-dure for #P is due to Stockmeyer [201], following an idea of Sipser [194]. Ourexposition, however, follows further developments in the area. The randomizedreduction of NP to problems of unique solutions was discovered by Valiant andVazirani [217]. Again, our exposition is a bit di�erent.The connection between approximate counting and uniform generation (pre-sented in x6.2.4.1) was discovered by Jerrum, Valiant, and Vazirani [125], andturned out to be very useful in the design of algorithms (e.g., in the \Markov Chainapproach" (see [157, Sec. 11.3.1])). The direct procedure for uniform generation(presented in x6.2.4.2) is taken from [26].In continuation to x6.2.2.1, which is based on [130], we refer the interested readerto [124], which presents a probabilistic polynomial-time algorithm for approximat-ing the permanent of non-negative matrices. This fascinating algorithm is basedon the fact that knowing (approximately) certain parameters of a non-negativematrix M allows to approximate the same parameters for a matrix M 0, providedthat M and M 0 are su�ciently similar. Speci�cally, M and M 0 may di�er onlyon a single entry, and the ratio of the corresponding values must be su�cientlyclose to one. Needless to say, the actual observation (is not generic but rather)refers to speci�c parameters of the matrix, which include its permanent. Thus,given a matrix M for which we need to approximate the permanent, we consider asequence of matrices M0; :::;Mt �M such that M0 is the all 1's matrix (for whichit is easy to evaluate the said parameters), and each Mi+1 is obtained from Mi byreducing some adequate entry by a factor su�ciently close to one. This process of(polynomially many) gradual changes, allows to transform the dummy matrix M0into a matrix Mt that is very close to M (and hence has a permanent that is veryclose to the permanent of M). Thus, approximately obtaining the parameters ofMt allows to approximate the permanent of M .

6.2. COUNTING 217Finally, we note that Section 10.1.1 provides a treatment of a di�erent typeof approximation problems. Speci�cally, when given an instance x (for a searchproblem R), rather than seeking an approximation of the number of solutions (i.e.,#R(x)), one seeks an approximation of the value of the best solution (i.e., besty 2 R(x)), where the value of a solution is de�ned by an auxiliary function.ExercisesExercise 6.1 Show that if a search (resp., decision) problem can be solved by aprobabilistic polynomial-time algorithm having zero failure probability, then theproblem can be solve by a deterministic polynomial-time algorithm.(Hint: replace the internal coin tosses by a �xed outcome that is easy to generate deterministically(e.g., the all-zero sequence).)Exercise 6.2 (randomized reductions) In continuation to the de�nitions pre-sented at the beginning of Section 6.1, prove the following:1. If a problem � is probabilistic polynomial-time reducible to a problem thatis solvable in probabilistic polynomial-time then � is solvable in probabilisticpolynomial-time, where by solving we mean solving correctly except withnegligible probability.Warning: Recall that in the case that �0 is a search problem, we requiredthat on input x the solver provides a correct solution with probability at least1� �(jxj), but we did not require that it always returns the same solution.(Hint: without loss of generality, the reduction does not make the same query twice.)2. Prove that probabilistic polynomial-time reductions are transitive.3. Prove that randomized Karp-reductions are transitive and that they yield aspecial case of probabilistic polynomial-time reductions.De�ne one-sided error and zero-sided error randomized (Karp and Cook) reduc-tions, and consider the foregoing items when applied to them. Note that theimplications for the case of one-sided error are somewhat subtle.Exercise 6.3 (on the de�nition of probabilistically solving a search problem)In continuation to the discussion at the beginning of Section 6.1.1, suppose thatfor some probabilistic polynomial-time algorithm A and a positive polynomial pthe following holds: for every x 2 SR def= fz : R(z) 6= ;g there exists y 2 R(x)such that Pr[A(x) = y] > 0:5 + (1=p(jxj)), whereas for every x 62 SR it holds thatPr[A(x) = ?] > 0:5 + (1=p(jxj)).1. Show that there exists a probabilistic polynomial-time algorithm that solvesthe search problem of R with negligible error probability.(Hint: See Exercise 6.4 for a related procedure.)

218 CHAPTER 6. RANDOMNESS AND COUNTING2. Reect on the need to require that one (correct) solution occurs with probabil-ity greater than 0:5+(1=p(jxj)). Speci�cally, what can we do if it is only guar-anteed that for every x 2 SR it holds that Pr[A(x) 2 R(x)] > 0:5+ (1=p(jxj))(and for every x 62 SR it holds that Pr[A(x) = ?] > 0:5 + (1=p(jxj)))?Note that R is not necessarily in PC. Indeed, in the case that R 2 PC we caneliminate the error probability for every x 62 SR, and perform error-reduction as inRP .Exercise 6.4 (error-reduction for BPP) For " : N ! [0; 1], let BPP" denotethe class of decision problems that can be solved in probabilistic polynomial-timewith error probability upper-bounded by ". Prove the following two claims:1. For every positive polynomial p and "(n) = (1=2)� (1=p(n)), the class BPP"equals BPP.2. For every positive polynomial p and "(n) = 2�p(n), the class BPP equalsBPP".Formulate a corresponding version for the setting of search problem. Speci�cally,for every input that has a solution, consider the probability that a speci�c solutionis output.Guideline: Given an algorithm A for the syntactically weaker class, consider an algo-rithm A0 that on input x invokes A on x for t(jxj) times, and rules by majority. For Part 1set t(n) = O(p(n)2) and apply Chebyshev's Inequality. For Part 2 set t(n) = O(p(n)) andapply the Cherno� Bound.Exercise 6.5 (error-reduction for RP) For � : N ! [0; 1], we de�ne the classof decision problem RP� such that it contains S if there exists a probabilisticpolynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x) =1] � �(jxj) and for every x 62 S it holds that Pr[A(x) = 0] = 1. Prove the followingtwo claims:1. For every positive polynomial p, the class RP1=p equals RP .2. For every positive polynomial p, the class RP equals RP�, where �(n) =1� 2�p(n).(Hint: The one-sided error allows using an \or-rule" (rather than a \majority-rule") for thedecision.)Exercise 6.6 (error-reduction for ZPP) For � : N ! [0; 1], we de�ne the classof decision problem ZPP� such that it contains S if there exists a probabilisticpolynomial-time algorithmA such that for every x it holds that Pr[A(x) = �S(x)] ��(jxj) and Pr[A(x) 2 f�S(x);?g] = 1, where �S(x) = 1 if x 2 S and �S(x) = 0otherwise. Prove the following two claims:1. For every positive polynomial p, the class ZPP1=p equals ZPP.

6.2. COUNTING 2192. For every positive polynomial p, the class ZPP equals ZPP�, where �(n) =1� 2�p(n).Exercise 6.7 (an alternative de�nition of ZPP) We say that the decision prob-lem S is solvable in expected probabilistic polynomial-time if there exists a random-ized algorithm A and a polynomial p such that for every x 2 f0; 1g� it holds thatPr[A(x) = �S(x)] = 1 and the expected number of steps taken by A(x) is at mostp(jxj). Prove that S 2 ZPP if and only if S is solvable in expected probabilisticpolynomial-time.Guideline: Repeatedly invoking a ZPP algorithm until it yields an output other than ?,results in an expected probabilistic polynomial-time solver. On the other hand, truncatingruns of an expected probabilistic polynomial-time algorithm once they exceed twice theexpected number of steps (and outputting ? on such runs), we obtain a ZPP algorithm.Exercise 6.8 Let BPP and coRP be classes of promise problems (as in Theo-rem 6.7).1. Prove that every problem in BPP is reducible to the set f1g 2 P by a two-sided error randomized Karp-reduction.(Hint: Such a reduction may e�ectively decide membership in any set in BPP.)2. Prove that if a set S is Karp-reducible toRP (resp., coRP) via a deterministicreduction then S 2 RP (resp., S 2 coRP).Exercise 6.9 (randomness-e�cient error-reductions) Note that standard error-reduction (as in Exercise 6.4) yields error probability � at the cost of increasing therandomness complexity by a factor of O(log(1=�)). Using the randomness-e�cienterror-reductions outlined in xD.4.1.3, show that error probability � can be obtainedat the cost of increasing the randomness complexity by a constant factor and anadditive term of 1:5 log2(1=�). Note that this allows satisfying the hypothesis madein the illustrative paragraph of the proof of Theorem 6.7.Exercise 6.10 In continuation to the illustrative paragraph in the proof of Theo-rem 6.7, consider the promise problem �0 = (�0yes;�0no) such that �0yes = f(x; r0) :jr0j=p0(jxj) ^ (8r00 2 f0; 1gjr0j)A0(x; r0r00) = 1g and �0no = f(x; r0) : x 62Sg. Recallthat for every x it holds that Prr2f0;1g2p0(jxj) [A0(x; r) 6=�S(x)] < 2�(p0(jxj)+1).1. Show that mapping x to (x; r0), where r0 is uniformly distributed in f0; 1gp0(jxj),constitutes a one-sided error randomized Karp-reduction of S to �0.2. Show that �0 is in the promise problem class coRP .Exercise 6.11 Prove that for every S 2 NP there exists a probabilistic polynomial-time algorithm A such that for every x 2 S it holds that Pr[A(x) = 1] > 0 and forevery x 62 S it holds that Pr[A(x) = 0] = 1. That is, A has error probability atmost 1 � exp(�poly(jxj)) on yes-instances but never errs on no-instances. Thus,NP may be �ctitiously viewed as having a huge one-sided error probability.

220 CHAPTER 6. RANDOMNESS AND COUNTINGExercise 6.12 (randomized versions of NP) In continuation to Footnote 6,consider the following two variants ofMA (which we consider the main randomizedversion of NP).1. S 2 MA(1) if there exists a probabilistic polynomial-time algorithm V suchthat for every x 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] �1=2, whereas for every x 62 S and every y it holds that Pr[V (x; y)=0] = 1.2. S 2 MA(2) if there exists a probabilistic polynomial-time algorithm V suchthat for every x 2 S there exists y 2 f0; 1gpoly(jxj) such that Pr[V (x; y)=1] �2=3, whereas for every x 62 S and every y it holds that Pr[V (x; y)=0] � 2=3.Prove thatMA(1) = NP whereasMA(2) =MA.Guideline: For the �rst part, note that a sequence of internal coin tosses that makesV accept (x; y) can be incorporated into y itself (yielding a standard NP-witness). Forthe second part, apply the ideas underlying the proof of Theorem 6.7, and note that anadequate sequence shifts (to be used by the veri�er) can be incorporated in the singlemessage sent by the prover.Exercise 6.13 (time hierarchy theorems for promise problem versions of BPtime)Fixing a model of computation, let BPtime(t) denote the class of promise prob-lems that are solvable by a randomized algorithm of time complexity t that hasa two-sided error probability at most 1=3. (The common de�nition refers only todecision problems.) Formulate and prove results analogous to Theorem 4.3 andCorollary 4.4.Guideline: Analogously to the proof of Theorem 4.3, we construct a Boolean functionf by associating with each admissible machine M an input xM , and making sure thatPr[f(xM) 6= M 0(x)] � 2=3, where M 0(x) denotes the emulation of M(x) suspended aftert1(jxj) steps. The key point is that f is a partial function (corresponding to a promiseproblem) that is de�ned only for machines (called admissible) that have two-sided errorat most 1=3 (on every input). This restriction allows for a randomized computation of fwith two-sided error probability at most 1=3 (on each input on which f is de�ned).Exercise 6.14 (extracting square roots modulo a prime) Using the follow-ing guidelines, present a probabilistic polynomial-time algorithm that, on input aprime P and a quadratic residue s (mod P), returns r such that r2 � s (mod P).1. Prove that if P � 3 (mod 4) then s(P+1)=4 mod P is a square root of thequadratic residue s (mod P).2. Note that the procedure suggested in Item 1 relies on the ability to �nd anodd integer e such that se � 1 (mod P), and (once such e is found) we mayoutput s(e+1)=2 mod P . (In Item 1, we used e = (P �1)=2, which is odd sinceP � 3 (mod 4).)Show that it su�ces to �nd an odd integer e together with a residue t andan even integer e0 such that sete0 � 1 (mod P), because s � se+1te0 �(s(e+1)=2te0=2)2.

6.2. COUNTING 2213. Given a prime P � 1 (mod 4), a quadratic residue s, and a quadratic non-residue t (equiv., t(P�1)=2 � �1 (mod P)), show that e and e0 as in Item 2can be e�ciently found.194. Prove that, for a prime P , with probability 1=2 a uniformly chosen t 2f1; :::; Pg satis�es t(P�1)=2 � �1 (mod P).Note that randomization is used only in the last item, which in turn is used onlyfor P � 1 (mod 4).Exercise 6.15 (small-space randomized step-counter) A step-counter is analgorithm that runs for a number of steps that is speci�ed in its input. Actually,such an algorithm may run for a somewhat larger number of steps but halt afterissuing a number of \signals" as speci�ed in its input, where these signals are de�nedas entering (and leaving) a designated state (of the algorithm). A step-counter maybe run in parallel to another procedure in order to suspend the execution after adesired number of steps (of the other procedure) has elapsed. We note that thereexists a simple deterministic machine that, on input n, halts after issuing n signalswhile using O(1) + log2 n space (and eO(n) time). The goal of this exercise ispresenting a (randomized) step-counter that allows for many more signals whileusing the same amount of space. Speci�cally, present a (randomized) algorithmthat, on input n, uses O(1) + log2 n space (and eO(2n) time) and halts after issuingan expected number of 2n signals. Furthermore, prove that, with probability atleast 1 � 2�k+1, this step-counter halts after issuing a number of signals that isbetween 2n�k and 2n+k.Guideline: Repeat the following experiment till reaching success. Each trial consists ofuniformly selecting n bits (i.e., tossing n unbiased coins), and is deemed successful if allbits turn out to equal the value 1 (i.e., all outcomes equal head). Note that such a trialcan be implemented by using space O(1) + log2 n (mainly for implementing a standardcounter for determining the number of bits). Thus, each trial is successful with probability2�n, and the expected number of trials is 2n.Exercise 6.16 (analysis of random walks on arbitrary undirected graphs)In order to complete the proof of Proposition 6.11, prove that if fu; vg is an edgeof the graph G = (V;E) then E[Xu;v] � 2jEj. Recall that, for a �xed graph, Xu;vis a random variable representing the number of steps taken in a random walk thatstarts at the vertex u until the vertex v is �rst encountered.Guideline: Let Zu;v(n) be a random variable counting the number of minimal pathsfrom u to v that appear along a random walk of length n, where the walk starts at thestationary vertex distribution (which is well-de�ned assuming the graph is not bipartite,19Write (P � 1)=2 = (2j + 1) � 2i0 , and note that s(2j+1)�2i0 � 1 (mod P). Assumingthat for some i0 > i > 0 and j0 it holds that s(2j+1)�2i t(2j0+1)�2i0 � 1 (mod P), show howto �nd i00 > i � 1 and j00 such that s(2j+1)�2i�1 t(2j00+1)�2i00 � 1 (mod P). (Extra hint:s(2j+1)�2i�1 t(2j0+1)�2i0�1 � �1 (mod P) and t(2j+1)�2i0 � �1 (mod P).) Thus, starting withi = i0, we reach i = 1, at which point we have what we need.

222 CHAPTER 6. RANDOMNESS AND COUNTINGwhich in turn may be enforced by adding a self-loop). On one hand, E[Xu;v + Xv;u] =limn!1(n=E[Zu;v(n)]), due to the memoryless property of the walk. On the other hand,letting �v;u(i) def= 1 if the edge fu; vg was traversed from v to u in the ith step of sucha random walk and �v;u(i) def= 0 otherwise, we have Pni=1 �v;u(i) � Zu;v(n) + 1 andE[�v;u(i)] = 1=2jEj (because, in each step, each directed edge appears on the walk withequal probability). It follows that E[Xu;v] < 2jEj.Exercise 6.17 (the class PP � BPP and its relation to #P) In contrast toBPP, which refers to useful probabilistic polynomial-time algorithms, the class PPdoes not capture such algorithms but is rather closely related to #P. A decisionproblem S is in PP if there exists a probabilistic polynomial-time algorithm A suchthat, for every x, it holds that x 2 S if and only if Pr[A(x) = 1] > 1=2. Note thatBPP � PP. Prove that PP is Cook-reducible to #P and vise versa.Guideline: For S 2 PP (by virtue of the algorithm A), consider the relation R such that(x; r) 2 R if and only if A accepts the input x when using the random-input r 2 f0; 1gp(jxj),where p is a suitable polynomial. Thus, x 2 S if and only if jR(x)j > 2p(jxj)�1, whichin turn can de determined by querying the counting function of R. To reduce f 2 #Pto PP, consider the relation R 2 PC that is counted by f (i.e., f(x) = jR(x)j) and thedecision problem Sf as de�ned in Proposition 6.13. Let p be the polynomial specifying thelength of solutions for R (i.e., (x; y) 2 R implies jyj = p(jxj)), and consider the algorithmA0 that on input (x;N) proceeds as follows: With probability 1=2, it uniformly selectsy 2 f0; 1gp(jxj) and accepts if and only if (x; y) 2 R, and otherwise (i.e., in the othercase) it accepts with probability 2p(jxj)�N+0:52p(jxj) . Prove that (x;N) 2 Sf if and only ifPr[A0(x) = 1] > 1=2.Exercise 6.18 (arti�cial #P-complete problems) Show that there exists a re-lation R 2 PC such that #R is #P-complete and SR = f0; 1g�.Guideline: For any #P-complete problem R0, de�ne R = f(x; 1y) : (x; y) 2 R0g [f(x; 10jxj) : x2f0; 1g�g.Exercise 6.19 (enumeration problems) For any binary relation R, de�ne theenumeration problem of R as a function fR : f0; 1g��N ! f0; 1g� [f?g such thatfR(x; i) equals the ith element in jR(x)j if jR(x)j � i and fR(x; i) = ? otherwise.The above de�nition refers to the standard lexicographic order on strings, but anyother e�cient order of strings will do.201. Prove that, for any polynomially bounded R, computing #R is reducible tocomputing fR.2. Prove that, for any R 2 PC, computing fR is reducible to some problem in#P.20An order of strings is a 1-1 and onto mapping � from the natural numbers to the set of allstrings. Such order is called e�cient if both � and its inverse are e�ciently computable. Thestandard lexicographic order satis�es �(i) = y if the (compact) binary expansion of i equals 1y;that is �(1) = �, �(2) = 0, �(3) = 1, �(4) = 00, etc.

6.2. COUNTING 223Guideline: Consider the binary relation R0 = f(hx; bi; y) : (x; y) 2 R ^ y � bg,and show that fR is reducible to #R0. (Extra hint: Note that fR(x; i) = y if and onlyif jR0(hx; yi)j = i and for every y0 < y it holds that jR0(hx; y0i)j < i.)Exercise 6.20 (computing the permanent of integer matrices) Prove thatcomputing the permanent of matrices with 0/1-entries is computationally equiva-lent to computing the number of perfect matchings in bipartite graphs.(Hint: Given a bipartite graph G = ((X;Y); E), consider the matrix M representing the edgesbetween X and Y (i.e., the (i; j)-entry in M is 1 if the ith vertex of X is connected to the jthentry of Y), and note that only perfect matchings in G contribute to the permanent of M .)Exercise 6.21 (computing the permanent modulo 3) Combining Proposition 6.19and Theorem 6.27, prove that for every integer n > 1 that is relatively prime toc, computing the permanent modulo n is NP-hard under randomized reductions.21Since Proposition 6.19 holds for c = 210, hardness holds for every odd integer n > 1.Guideline: Apply the reduction of Proposition 6.19 to the promise problem of decidingwhether a 3CNF formula has a unique satis�able assignment or is unsatis�able. Use thefact that n does not divide any power of c.Exercise 6.22 (negative values in Proposition 6.19) Assuming P 6= NP , provethat Proposition 6.19 cannot hold for a set I containing only non-negative integers.Note that the claim holds even if the set I is not �nite (and even if I is the set ofall non-negative integers).Guideline: A reduction as in Proposition 6.19 yields a Karp-reduction of 3SAT to decidingwhether the permanent of a matrix with entries in I is non-zero. Note that the permanentof a non-negative matrix is non-zero if and only if the corresponding bipartite graph hasa perfect matching.Exercise 6.23 (high-level analysis of the permanent reduction) Establish thecorrectness of the high-level reduction presented in the proof of Proposition 6.19.That is, show that if the clause gadget satis�es the three conditions postulated inthe said proof, then each satisfying assignment of � contributes exactly cm to theSWCC of G� whereas unsatisfying assignments have no contribution.Guideline: Cluster the cycle covers of G� according to the set of track edges that theyuse (i.e., the edges of the cycle cover that belong to the various tracks). (Note thecorrespondence between these edges and the external edges used in the de�nition of thegadget's properties.) Using the postulated conditions (regarding the clause gadget) provethat, for each such set T of track edges, if the sum of the weights of all cycle covers thatuse the track edges T is non-zero then the following hold:1. The intersection of T with the set of track edges incident at each speci�c clausegadget is non-empty. Furthermore, if this set contains an incoming edge (resp.,21Actually, a su�cient condition is that n does not divide any power of c. Thus (referring toc = 210), hardness holds for every integer n > 1 that is not a power of 2. On the other hand, forany �xed n = 2e, the permanent modulo n can be computed in polynomial-time [215, Thm. 3].

224 CHAPTER 6. RANDOMNESS AND COUNTINGoutgoing edge) of some entry-vertex (resp., exit-vertex) then it also contains anoutgoing edge (resp., incoming edge) of the corresponding exit-vertex (resp., entry-vertex).2. If T contains an edge that belongs to some track then it contains all edges of thistrack. It follows that, for each variable x, the set T contains the edges of a singletrack associated with x.3. The tracks \picked" by T correspond to a single truth assignment to the variables of�, and this assignment satis�es � (because, for each clause, T contains an externaledge that corresponds to a literal that satis�es this clause).It follows that each satisfying assignment of � contributes exactly cm to the SWCC ofG�.Exercise 6.24 (analysis of the implementation of the clause gadget) Establishthe correctness of the implementation of the clause gadget presented in the proof ofProposition 6.19. That is, show that if the box satisfy the three conditions postu-lated in the said proof, then the clause gadget of Figure 6.4 satis�es the conditionspostulated for it.Guideline: Cluster the cycle covers of a gadget according to the set of non-box edges thatthey use, where non-box edges are the edges shown in Figure 6.4. Using the postulatedconditions (regarding the box) prove that, for each set S of non-box edges, if the sum ofthe weights of all cycle covers that use the non-box edges S is non-zero then the followinghold:1. The intersection of S with the set of edges incident at each box must containtwo (non-seloop) edges, one incident at each of the box's terminals. Needless tosay, one edge is incoming and the other outgoing. Referring to the six edges thatconnects one of the six designated vertices (of the gadget) with the correspondingbox terminals as connectives, note that if S contains a connective incident at theterminal of some box then it must also contain the connective incident at the otherterminal. In such a case, we say that this box is picked by S,2. Each of the three (literal-designated) boxes that is not picked by S is \traversed"from left to right (i.e., the cycle cover contains an incoming edge of the left terminaland an outgoing edge of the right terminal). Thus, the set S must contain aconnective, because otherwise no directed cycle may cover the leftmost vertex shownin Figure 6.4. That is, S must pick some box.3. The set S is fully determined by the non-empty set of boxes that it picks.The postulated properties of the clause gadget follow, with c = b5.Exercise 6.25 (analysis of the design of a box for the clause gadget) Provethat the 4-by-4 matrix presented in Eq. (6.4) satis�es the properties postulated forthe \box" used in the second part of the proof of Proposition 6.19. In particular:1. Show a correspondence between the conditions required of the box and con-ditions regarding the value of the permanent of certain sub-matrices of theadjacency matrix of the graph.(Hint: For example, show that the �rst condition correspond to requiring that the valueof the permanent of the entire matrix equals zero. The second condition refers to sub-matrices obtained by omitting either the �rst row and fourth column or the fourth rowand �rst column.)

6.2. COUNTING 2252. Verify that the matrix in Eq. (6.4) satis�es the aforementioned conditions(regarding the value of the permanent of certain sub-matrices).Prove that no 3-by-3 matrix (and thus also no 2-by-2 matrix) can satisfy the afore-mentioned conditions.Exercise 6.26 (error reduction for approximate counting) Show that the er-ror probability � in De�nition 6.22 can be reduced from 1=3 (or even (1=2) +(1=poly(jxj)) to exp(�poly(jxj)).Guideline: Invoke the weaker procedure for an adequate number of times and take themedian value among the values obtained in these invocations.Exercise 6.27 (strong approximation for some #P-complete problems) Showthat there exists #P-complete problems (albeit unnatural ones) for which an ("; 0)-approximation can be found by a (deterministic) polynomial-time algorithm. Fur-thermore, the running-time depends polynomially on 1=".Guideline: Combine any #P-complete problem referring to some R1 2 PC with a trivialcounting problem (e.g., such as the counting problem associated with R2 = [n2Nf(x; y) :x; y 2 f0; 1gng). Show that, without loss of generality, that (x; y) 2 R1 implies jxj = jyjand that #R1(x) � 2jxj=2. Prove that the counting problem of R = f(x; 1y) : (x; y) 2R1g [f(x; 0y) : (x; y) 2 R2g is #P-complete. Present a deterministic algorithm that, oninput x and " > 0, outputs an ("; 0)-approximation of #R(x) in time poly(jxj=").Exercise 6.28 (relative approximation for DNF satisfaction) Referring tothe text of x6.2.2.1, prove the following claims.1. Both assumptions regarding the general setting hold in case Si = C�1i (1),where C�1i (1) denotes the set of truth assignments that satisfy the conjunc-tion Ci.Guideline: In establishing the second assumption note that it reduces to theconjunction of the following two assumptions:(a) Given i, one can e�ciently generate a uniformly distributed element of Si.Actually, generating a distribution that is almost uniform over Si su�ces.(b) Given i and x, one can e�ciently determine whether x 2 Si.2. Prove Proposition 6.24, relating to details such as the error probability in animplementation of Construction 6.23.3. Note that Construction 6.23 does not require exact computation of jSij. An-alyze the output distribution in the case that we can only approximate jSijup-to a factor of 1� "0.Exercise 6.29 (reducing the relative deviation in approximate counting)Prove that, for any R 2 PC and every polynomial p and constant � < 0:5, thereexists R0 2 PC such that (1=p; �)-approximation for #R is reducible to (1=2; �)-approximation for #R0.

226 CHAPTER 6. RANDOMNESS AND COUNTINGGuideline: For t(n) = �(p(n)), let R0 = f(x; (y1; :::; yt(jxj))) : (8i) (x; yi) 2 Rg. Notethat jR(x)j = jR0(x)j1=t(jxj), and thus if a = (1 � (1=2)) � jR0(x)j then a1=t(jxj) = (1 �(1=2))1=t(jxj) � jR(x)j.Furthermore, for any F (n) = exp(poly(n)), prove that there exists R00 2 PC suchthat (1=p; �)-approximation for #R is reducible to approximating #R00 to withina factor of F with error probability �.(Hint: Same as the main part (using t(n) = �(p(n) � logF (n))).)Exercise 6.30 (deviation reduction in approximate counting, cont.) In con-tinuation to Exercise 6.29, prove that if R is NP-complete via parsimonious reduc-tions then, for every positive polynomial p and constant � < 0:5, the problem of(1=p; �)-approximation for #R is reducible to (1=2; �)-approximation for #R.(Hint: Compose the reduction (to the problem of (1=2; �)-approximation for #R0) provided inExercise 6.29 with the parsimonious reduction of #R0 to #R.)Prove that, for every function F 0 such that F 0(n) = exp(no(1)), we can also reducethe aforementioned problems to the problem of approximating #R to within afactor of F 0 with error probability �.Guideline: Using R00 as in Exercise 6.29, we encounter a technical di�culty. The issue isthat the composition of the (\amplifying") reduction of #R to #R00 with the parsimoniousreduction of #R00 to #R may increase the length of the instance. Indeed, the length of thenew instance is polynomial in the length of the original instance, but this polynomial maydepend on R00, which in turn depends on F 0. Thus, we cannot use F 0(n) = exp(n1=O(1))but F 0(n) = exp(no(1)) is �ne.Exercise 6.31 Referring to the procedure in the proof Theorem 6.25, show how touse an NP-oracle in order to determine whether the number of solutions that \passa random sieve" is greater than t. You are allowed queries of length polynomial inthe length of x; h and in the size of t.(Hint: Consider the set S0R;H def= f(x; i; h; 1t) : 9y1; :::; yt s.t. 0(x; h; y1; :::; yt)g, where 0(x; h; y1; :::; yt)holds if and only if the yj are di�erent and for every j it holds that (x; yj)2R ^ h(yj)=0i.)Exercise 6.32 (parsimonious reductions and Theorem 6.27) Demonstrate theimportance of parsimonious reductions in Theorem 6.27 by proving the following:1. There exists a search problem R 2 PC such that every problem in PC isreducible to R (by a non-parsimonious reduction) and still the the promiseproblem (USR; SR) is decidable in polynomial-time.Guideline: Consider the following arti�cial witness relation R for SAT in which(�; ��) 2 R if � 2 f0; 1g and � satis�es �. Note that the standard witness relationof SAT is reducible to R, but this reduction is not parsimonious. Also note thatUSR = ; and thus (USR; SR) is trivial.2. There exists a search problem R 2 PC such that #R is #P-complete andstill the the promise problem (USR; SR) is decidable in polynomial-time.Guideline: Just use the relation suggested in the guideline to Part 1. An al-ternative proof relies on Theorem 6.18 and on the fact that it is easy to decide

6.2. COUNTING 227(USR; SR) when R is the corresponding perfect matching relation (by computingthe determinant).Exercise 6.33 Prove that SAT is randomly reducible to deciding unique solutionfor SAT, without using the fact that SAT is NP-complete via parsimonious reductions.Guideline: Follow the proof of Theorem 6.27, while using the family of pairwise inde-pendent hashing functions provided in Construction D.3 (or in Eq. (8.18)). Note that,in this case, the condition (� 2RSAT(�)) ^ (h(�)=0i) can be directly encoded as a CNFformula. That is, consider the formula �h such that �h(z) def= �(z)^ (h(z)=0i), and notethat h(z)=0i can be written as the conjunction of i clauses, where each clause is a CNFthat is logically equivalent to the parity of some of the bits of z (where the identity ofthese bits is determined by h).Exercise 6.34 (an alternative procedure for approximate counting) AdaptStep 1 of Construction 6.30 so to obtain an approximate counting procedure for#R.Guideline: For m = 0; 1; :::`, the procedure invokes Step 1 of Construction 6.30 until anegative answer is obtained, and outputs 2m for the current value of m. For jR(x)j >128`, this yields a constant factor approximation of jR(x)j. In fact, we can obtain abetter estimate by making additional queries at iteration m (i.e., queries of the form(x; h; 1i) for i = 16`; :::; 128`). The case jR(x)j � 128` can be treated by using Step 2 ofConstruction 6.30, in which case we obtain an exact count.Exercise 6.35 Let R be an arbitrary PC-complete search problem. Show thatapproximate counting and uniform generation for R can be randomly reduced todeciding membership in SR, where by approximate counting we mean a (1� (1=p)-approximation for any polynomial p.Guideline: Note that Construction 6.30 yields such procedures (see also Exercise 6.34),except that they make oracle calls to some other set in NP. Using the NP-completenessof SR, we are done.

390 CHAPTER 6. RANDOMNESS AND COUNTING

Chapter 10Relaxing the RequirementsThe philosophers have only interpreted the world, invarious ways; the point is to change it.Karl Marx, Theses on FeuerbachIn light of the apparent infeasibility of solving numerous natural computationalproblems, it is natural to ask whether these problems can be relaxed in a way thatis both useful for applications and allows for feasible solving procedures. We stresstwo aspects about the foregoing question: on one hand, the relaxation should besu�ciently good for the intended applications; but, on the other hand, it shouldbe signi�cantly di�erent from the original formulation of the problem so to escapethe infeasibility of the latter. We note that whether a relaxation is adequate foran intended application depends on the application, and thus much of the materialin this chapter is less robust (or generic) than the treatment of the non-relaxedcomputational problems.Summary: We consider two types of relaxations. The �rst type ofrelaxation refers to the computational problems themselves; that is, foreach problem instance we extend the set of admissible solutions. Inthe context of search problems this means settling for solutions thathave a value that is \su�ciently close" to the value of the optimalsolution (with respect to some value function). Needless to say, thespeci�c meaning of `su�ciently close' is part of the de�nition of therelaxed problem. In the context of decision problems this means thatfor some instances both answers are considered valid; put di�erently,we consider promise problems in which the no-instances are \far" fromthe yes-instances in some adequate sense (which is part of the de�nitionof the relaxed problem).The second type of relaxation deviates from the requirement that thesolver provides an adequate answer on each valid instance. Instead,the behavior of the solver is analyzed with respect to a predetermined391

392 CHAPTER 10. RELAXING THE REQUIREMENTSinput distribution (or a class of such distributions), and bad behaviormay occur with negligible probability where the probability is takenover this input distribution. That is, we replace worst-case analysis byaverage-case (or rather typical-case) analysis. Needless to say, a majorcomponent in this approach is limiting the class of distributions in a waythat, on one hand, allows for various types of natural distributions and,on the other hand, prevents the collapse of the corresponding notion ofaverage-case complexity to the standard worst-case complexity.10.1 ApproximationThe notion of approximation is a natural one, and has arisen also in other disci-plines. Approximation is most commonly used in references to quantities (e.g., \thelength of one meter is approximately forty inches"), but it is also used when refer-ring to qualities (e.g., \an approximately correct account of a historical event"). Inthe context of computation, the notion of approximation modi�es computationaltasks such as search and decision problems. (In fact, we have already encounteredit as a modi�er of counting problems; see Section 6.2.2.)Two major questions regarding approximation are (1) what is a \good" approx-imation, and (2) can it be found easier than �nding an exact solution. The answerto the �rst question seems intimately related to the speci�c computational taskat hand and to its role in the wider context (i.e., the higher level application): agood approximation is one that su�ces for the intended application. Indeed, theimportance of certain approximation problems is much more subjective than theimportance of the corresponding optimization problems. This fact seems to standin the way of attempts at providing a comprehensive theory of natural approxi-mation problems (e.g., general classes of natural approximation problems that areshown to be computationally equivalent).Turning to the second question, we note that in numerous cases natural approx-imation problems seem to be signi�cantly easier than the corresponding original(\exact") problems. On the other hand, in numerous other cases, natural approxi-mation problems are computationally equivalent to the original problems. We shallexemplify both cases by reviewing some speci�c results, but regret not being ableto provide any systematic classi�cation.Mimicking the two standard uses of the word approximation, we shall distinguishbetween approximation problems that are of the \search type" and problems thatare have a clear \decisional" avor. In the �rst case we shall refer to a function thatassigns values to possible solutions (of a search problem); whereas in the secondcase we shall refer to distances between instances (of a decision problem). Needlessto say, at times the same computational problem may be cast in both ways, but formost natural approximation problems one of the two frameworks is more appealingthan the other.The common theme is that in both cases we extend the set of admissible so-lutions. In the case of search problems, we extend the set of optimal solutions byincluding also almost-optimal solutions. In the case of decision problems, we extend

10.1. APPROXIMATION 393the set of solutions by allowing an arbitrary answer (solution) to some instances,which may be viewed as a promise problem that disallows these instances. In thiscase we focus on promise problems in which the yes and no-instances are far apart(and the instances that violate the promise are closed to yes-instances).Teaching note: Most of the results presented in this section refer to speci�c computa-tional problems and (with one exception) are presented without a proof. In view of thecomplexity of the corresponding proofs and the merely illustrative role of these resultsin the context of complexity theory, we recommend doing the same in class.10.1.1 Search or OptimizationAs noted in Section 2.2.2, many search problems involve a set of potential solutions(per each problem instance) such that di�erent solutions are assigned di�erent \val-ues" (resp., \costs") by some \value" (resp., \cost") function. In such a case, one isinterested in �nding a solution of maximum value (resp., minimum cost). A corre-sponding approximation problem may refer to �nding a solution of approximatelymaximum value (resp., approximately minimum cost), where the speci�cation ofthe desired level of approximation is part of the problem's de�nition. Let us elab-orate.For concreteness, we focus on the case of a value that we wish to maximize. Forgreater exibility, we allow the value of the solution to depend also on the instanceitself. Thus, for a (polynomially bounded) binary relation R and a value functionf : f0; 1g��f0; 1g� ! R, we consider the problem of �nding solutions (with respectto R) that maximize the value of f . That is, given x (such that R(x) 6= ;), thetask is �nding y 2 R(x) such that f(x; y) = vx, where vx is the maximum valueof f(x; y0) over all y0 2 R(x). Typically, R is in PC and f is polynomial-timecomputable.1 Indeed, without loss of generality, we may assume that for every xit holds that R(x) = f0; 1g`(jxj) for some polynomial ` (see Exercise 2.8). Thus,the optimization problem is recast as the following search problem: given x, �ndy such that f(x; y) = vx, where vx = maxy02f0;1g`(jxj)ff(x; y0)gg.We shall focus on relative approximation problems, where for some gap functiong : f0; 1g� ! fr2R : r�1g the (maximization) task is �nding y such that f(x; y) �vx=g(x). Indeed, in some cases the approximation factor is stated as a function ofthe length of the input (i.e., g(x) = g0(jxj) for some g0 : N ! fr2R : r�1g), butoften the approximation factor is stated in terms of some more re�ned parameterof the input (e.g., as a function of the number of vertices in a graph). Typically, gis polynomial-time computable.De�nition 10.1 (g-factor approximation): Let f : f0; 1g� � f0; 1g� ! R, ` :N!N , and g : f0; 1g� ! fr2R : r�1g.1In this case, we may assume without loss of generality that the function f depends only onthe solution. This can be obtained by rede�ning the relation R such that each solution y 2 R(x)consists of a pair of the form (x; y0). Needless to say, this modi�cation cannot be applied alongwith getting rid of R (as in Exercise 2.8).

394 CHAPTER 10. RELAXING THE REQUIREMENTSMaximization version: The g-factor approximation of maximizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � vx=g(x)g,where vx = maxy02f0;1g`(jxj)ff(x; y0)g.Minimization version: The g-factor approximation of minimizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � g(x) � cxg,where cx = miny02f0;1g`(jxj)ff(x; y0)g.We note that for numerous NP-complete optimization problems polynomial-timealgorithms provide meaningful approximations. A few examples will be mentionedin x10.1.1.1. In contrast, for numerous other NP-complete optimization problems,natural approximation problems are computationally equivalent to the correspond-ing optimization problem. A few examples will be mentioned in x10.1.1.2, wherewe also introduce the notion of a gap problem, which is a promise problem (ofthe decision type) intended to capture the di�culty of the (approximate) searchproblem.10.1.1.1 A few positive examplesLet us start with a trivial example. Considering a problem such as �nding themaximum clique in a graph, we note that �nding a linear factor approximation istrivial (i.e., given a graph G = (V;E), we may output any vertex in V as a jV j-factor approximation of the maximum clique in G). A famous non-trivial exampleis presented next.Proposition 10.2 (factor two approximation to minimum Vertex Cover): Thereexists a polynomial-time approximation algorithm that given a graph G = (V;E)outputs a vertex cover that is at most twice as large as the minimum vertex coverof G.We warn that an approximation algorithm for minimum Vertex Cover does notyield such an algorithm for the complementary problem (of maximum IndependentSet). This phenomenon stands in contrast to the case of optimization, where anoptimal solution for one problem (e.g., minimum Vertex Cover) yields an optimalsolution for the complementary problem (maximum Independent Set).Proof Sketch: The main observation is a connection between the set of maximalmatchings and the set of vertex covers in a graph. LetM be anymaximal matchingin the graph G = (V;E); that is, M � E is a matching but augmenting it by anysingle edge yields a set that is not a matching. Then, on one hand, the set of allvertices participating in M is a vertex cover of G, and, on the other hand, eachvertex cover of G must contain at least one vertex of each edge ofM . Thus, we can�nd the desired vertex cover by �nding a maximal matching, which in turn can befound by a greedy algorithm.

10.1. APPROXIMATION 395Another example. An instance of the traveling salesman problem (TSP) consistsof a symmetric matrix of distances between pairs of points, and the task is �ndinga shortest tour that passes through all points. In general, no reasonable approx-imation is feasible for this problem (see Exercise 10.1), but here we consider twospecial cases in which the distances satis�es some natural constraints (and prettygood approximations are feasible).Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-rithms exists for the following two computational problems.1. Providing a 1.5-factor approximation for the special case of TSP in which thedistances satisfy the triangle inequality.2. For every " > 1, providing a (1+ ")-factor approximation for the special caseof Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points residein a k-dimensional Euclidean space, and the distances refer to the standardEuclidean norm).A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2is provided in [12]. We note the di�erence exampli�ed by the two items of Theo-rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a speci�cconstant factor, Part 2 provides such an algorithm for any constant factor. Such aresult is called a polynomial-time approximation scheme (abbrev. PTAS).10.1.1.2 A few negative examplesLet us start again with a trivial example. Considering a problem such as �ndingthe maximum clique in a graph, we note that given a graph G = (V;E) �ndinga (1 + jV j�1)-factor approximation of the maximum clique in G is as hard as�nding a maximum clique in G. Indeed, this \result" is not really meaningful.In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that�nding a jV j1�o(1)-factor approximation of the maximum clique in G is as hard as�nding a maximum clique in G. This follows from the fact that the approximationproblem is NP-hard (cf. Theorem 10.5).The statement of inapproximability results is made stronger by referring to apromise problem that consists of distinguishing instances of su�ciently far apartvalues. Such promise problems are called gap problems, and are typically statedwith respect to two bounding functions g1; g2 : f0; 1g� ! R (which replace the gapfunction g of De�nition 10.1). Typically, g1 and g2 are polynomial-time computable.De�nition 10.4 (gap problem for approximation of f): Let f be as in De�ni-tion 10.1 and g1; g2 : f0; 1g� ! R.Maximization version: For g1 � g2, the gapg1;g2 problem of maximizing f consistsof distinguishing between fx : vx � g1(x)g and fx : vx < g2(x)g, wherevx = maxy2f0;1g`(jxj)ff(x; y)g.

396 CHAPTER 10. RELAXING THE REQUIREMENTSMinimization version: For g1 � g2, the gapg1;g2 problem of minimizing f consistsof distinguishing between fx : cx � g1(x)g and fx : cx > g2(x)g, wherecx = miny2f0;1g`(jxj)ff(x; y)g.For example, the gapg1;g2 problem of maximizing the size of a clique in a graphconsists of distinguishing between graphs G that have a clique of size g1(G) andgraphs G that have no clique of size g2(G). In this case, we typically let gi(G) be afunction of the number of vertices in G=(V;E); that is, gi(G) = g0i(jV j). Indeed,letting !(G) denote the size of the largest clique in the graphG, we let gapCliqueL;sdenote the gap problem of distinguishing between fG= (V;E) : !(G) � L(jV j)gand fG = (V;E) : !(G) < s(jV j)g, where L � s. Using this terminology, werestate (and strengthen) the aforementioned jV j1�o(1)-factor inapproximation ofthe maximum clique problem.Theorem 10.5 For some L(N) = N1�o(1) and s(N) = No(1), it holds that gapCliqueL;sis NP-hard.The proof of Theorem 10.5 is based on a major re�nement of Theorem 9.16 thatrefers to a PCP system of amortized free-bit complexity that tends to zero (cf.x9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented inExercise 10.3.As we shall show next, results of the type of Theorem 10.5 imply the hardnessof a corresponding approximation problem; that is, the hardness of deciding a gapproblem implies the hardness of a search problem that refers to an analogous factorof approximation.Proposition 10.6 Let f; g1; g2 be as in De�nition 10.4 and suppose that thesefunctions are polynomial-time computable. Then the gapg1;g2 problem of maximiz-ing f (resp., minimizing f) is reducible to the g1=g2-factor (resp., g2=g1-factor)approximation of maximizing f (resp., minimizing f).Note that a reduction in the opposite direction does not necessarily exist (even inthe case that the underlying optimization problem is self-reducible in some naturalsense). Indeed, this is another di�erence between the current context (of approx-imation) and the context of optimization problems, where the search problem isreducible to a related decision problem.Proof Sketch: We focus on the maximization version. On input x, we solve thegapg1;g2 problem, by making the query x, obtaining the answer y, and ruling thatx has value exceeding g1(x) if and only if f(x; y) � g2(x). Recall that we need toanalyze this reduction only on inputs that satisfy the promise. Thus, if vx � g1(x)then the oracle must return a solution y that satis�es f(x; y) � vx=(g1(x)=g2(x)),which implies that f(x; y) � g2(x). On the other hand, if vx < g2(x) then f(x; y) �vx < g2(x) holds for any possible solution y.

10.1. APPROXIMATION 397Additional examples. Let us consider gapVCs;L, the gapgs;gL problem of mini-mizing the vertex cover of a graph, where s and L are constants and gs(G) = s � jV j(resp., gL(G) = L � jV j) for any graph G=(V;E). Then, Proposition 10.2 implies(via Proposition 10.6) that, for every constant s, the problem gapVCs;2s is solvablein polynomial-time. In contrast, su�ciently narrowing the gap between the twothresholds yields an inapproximability result. In particular:Theorem 10.7 For some constants 0 < s < L < 1 (e.g., s = 0:62 and L = 0:84will do), the problem gapVCs;L is NP-hard.The proof of Theorem 10.7 is based on a complicated re�nement of Theorem 9.16.Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).As noted, re�nements of the PCP Theorem (Theorem 9.16) play a key role inestablishing inapproximability results such as Theorems 10.5 and 10.7. In thatrespect, it is adequate to recall that Theorem 9.21 establishes the equivalence ofthe PCP Theorem itself and the NP-hardness of a gap problem concerning themaximization of the number of clauses that are satis�es in a given 3-CNF for-mula. Speci�cally, gapSAT3" was de�ned (in De�nition 9.20) as the gap problemconsisting of distinguishing between satis�able 3-CNF formulae and 3-CNF formu-lae for which each truth assignment violates at least an " fraction of the clauses.Although Theorem 9.21 does not specify the quantitative relation that underliesits qualitative assertion, when (re�ned and) combined with the best known PCPconstruction, it does yield the best possible bound.Theorem 10.8 For every v < 1=8, the problem gapSAT3v is NP-hard.On the other hand, gapSAT31=8 is solvable in polynomial-time.Sharp threshold. The aforementioned conicting results (regarding gapSAT3v)exemplify a sharp threshold on the (factor of) approximation that can be obtainedby an e�cient algorithm. Another appealing example refers to the following maxi-mization problem in which the instances are systems of linear equations over GF(2)and the task is �nding an assignment that satis�es as many equations as possible.Note that by merely selecting an assignment at random, we expect to satisfy halfof the equations. Also note that it is easy to determine whether there exists anassignment that satis�es all equations. Let gapLinL;s denote the problem of dis-tinguishing between systems in which one can satisfy at least an L fraction of theequations and systems in which one cannot satisfy an s fraction (or more) of theequations. Then, as just noted, gapLinL;0:5 is trivial and gapLin1;s is feasible(for every s < 1). In contrast, moving both thresholds (slightly) away from thecorresponding extremes, yields an NP-hard gap problem:Theorem 10.9 For every constant " > 0, the problem gapLin1�";0:5+" is NP-hard.The proof of Theorem 10.9 is based on a major re�nement of Theorem 9.16. In fact,the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:the veri�er makes three queries and tests a linear condition regarding the answers,

398 CHAPTER 10. RELAXING THE REQUIREMENTSwhile using a logarithmic number of coin tosses. This veri�er accepts any yes-instance with probability at least 1 � " (when given oracle access to a suitableproof), and rejects any no-instance with probability at least 0:5 � " (regardlessof the oracle being accessed). A weaker result, which follows from Theorem 9.16itself, is presented in Exercise 10.5.Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations withrespect to the \location" of the \gap" for which the corresponding promise problemis hard. Recall that both gapSAT and gapLin are formulated with respect to twothresholds, where each threshold bounds the fraction of \local" conditions (i.e.,clauses or equations) that are satis�able in the case of yes and no-instances, re-spectively. In the case of gapSAT the high threshold (referring to yes-instances) wasset to 1, and thus only the low threshold (referring to no-instances) remained a freeparameter. Nevertheless, a hardness result was established for gapSAT, and further-more this was achieved for an optimal value of the low threshold (cf. the foregoingdiscussion of sharp threshold). In contrast, in the case of gapLin setting the highthreshold to 1 makes the gap problem e�ciently solvable. Thus, the hardness ofgapLin was established at a di�erent location of the high threshold. Speci�cally,hardness (for an optimal value of the ratio of thresholds) was established whensetting the high threshold to 1� ", for any " > 0.A �nal comment. All the aforementioned inapproximability results refer to ap-proximation (resp., gap) problems that are relaxations of optimization problemsin NP (i.e., the optimization problem is computational equivalent to a decisionproblem in NP ; see Section 2.2.2). In these cases, the NP-hardness of the approx-imation (resp., gap) problem implies that the corresponding optimization problemis reducible to the approximation (resp., gap) problem. In other words, in thesecases nothing is gained by relaxing the original optimization problem, because therelaxed version remains just as hard.10.1.2 Decision or Property TestingA natural notion of relaxation for decision problems arises when considering thedistance between instances, where a natural notion of distance is the Hammingdistance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,this relaxation (called property testing) refers to distinguishing inputs that residein a predetermined set S from inputs that are \relatively far" from any input thatresides in the set. Two natural types of promise problems emerge (with respect toany predetermined set S (and the Hamming distance between strings)):1. Relaxed decision w.r.t a �xed distance: Fixing a distance parameter �, weconsider the problem of distinguishing inputs in S from inputs in ��(S),where ��(S) def= fx : 8z 2 S \ f0; 1gjxj �(x; z) > � � jxjg (10.1)and �(x1 � � �xm; z1 � � � zm) = jfi : xi 6= zigj denotes the number of bits onwhich x = x1 � � �xm and z = z1 � � � zm disagree. Thus, here we consider a

10.1. APPROXIMATION 399promise problem that is a restriction (or a special case) of the problem ofdeciding membership in S.2. Relaxed decision w.r.t a variable distance: Here the instances are pairs (x; �),where x is as in Type 1 and � 2 [0; 1] is a distance parameter. The yes-instances are pairs (x; �) such that x 2 S, whereas (x; �) is a no-instance ifx 2 ��(S).We shall focus on Type 1 formulation, which seems to capture the essential questionof whether or not these relaxations lower the complexity of the original decisionproblem. The study of Type 2 formulation refers to a relatively secondary question,which assumes a positive answer to the �rst question; that is, assuming that therelaxed form is easier than the original form, we ask how is the complexity of theproblem a�ected by making the distance parameter smaller (which means makingthe relaxed problem \tighter" and ultimately equivalent to the original problem).We note that for numerous NP-complete problems there exist natural (Type 1)relaxations that are solvable in polynomial-time. Actually, these algorithms run insub-linear time (speci�cally polylogarithmic time), when given direct access to theinput. A few examples will be presented in x10.1.2.2. As indicated in x10.1.2.2,this is not a generic phenomenon. But before turning to these results, we discussseveral important de�nitional issues.10.1.2.1 De�nitional issuesProperty testing is concerned not only with solving relaxed versions of NP-hardproblems, but rather solving these problems (as well as problems in P) in sub-linear time. Needless to say, such results assume a model of computation in whichalgorithms have direct access to bits in the (representation of the) input (see De�-nition 10.10).De�nition 10.10 (a direct access model { conventions): An algorithm with directaccess to its input is given its main input on a special input device that is accessedas an oracle (see x1.2.3.5). In addition, the algorithm is given the length of theinput and possibly other parameters on an secondary input device. The complexityof such an algorithm is stated in terms of the length of its main input.Indeed, the description in x5.2.4.2 refers to such a model, but there the main inputis viewed as an oracle and the secondary input is viewed as the input.De�nition 10.11 (property testing for S): For any �xed � > 0, the promiseproblem of distinguishing S from ��(S) is called property testing for S (with respectto �).Recall that we say that a randomized algorithm solves a promise problem if itaccepts every yes-instance (resp., rejects every no-instance) with probability atleast 2=3. Thus, a (randomized) property testing for S accepts every input in S(resp., rejects every input in ��(S)) with probability at least 2=3.

400 CHAPTER 10. RELAXING THE REQUIREMENTSThe question of representation. The speci�c representation of the input is ofmajor concern in the current context. This is due to (1) the e�ect of the represen-tation on the distance measure and to (2) the dependence of direct access machineson the speci�c representation of the input. Let us elaborate on both aspects.1. Recall that we de�ned the distance between objects in terms of the Hammingdistance between their representations. Clearly, in such a case, the choice ofrepresentation is crucial and di�erent representations may yield di�erent dis-tance measures. Furthermore, in this case, the distance between objects isnot preserved under various (natural) representations that are considered\equivalent" in standard studies of computational complexity. For example,in previous parts of this book, when referring to computational problems con-cerning graphs, we did not care whether the graphs were represented by theiradjacency matrix or by their incidence-lists. In contrast, these two represen-tations induce very di�erent distance measures and correspondingly di�erentproperty testing problems (see x10.1.2.2). Likewise, the use of padding (andother trivial syntactic conventions) becomes problematic (e.g., when using asigni�cant amount of padding, all objects are deemed close to one another(and property testing for any set becomes trivial)).2. Since our focus is on sub-linear time algorithms, we may not a�ord trans-forming the input from one natural format to another. Thus, representationsthat are considered equivalent with respect to polynomial-time algorithms,may not be equivalent with respect to sub-linear time algorithms that havea direct access to the representation of the object. For example, adjacencyqueries and incidence queries cannot emulate one another in small time (i.e.,in time that is sub-linear in the number of vertices).Both aspects are further clari�ed by the examples provided in x10.1.2.2.The essential role of the promise. Recall that, for a �xed constant � > 0,we consider the promise problem of distinguishing S from ��(S). The promisemeans that all instances that are neither in S nor far from S (i.e., not in ��(S))are ignored, which is essential for sub-linear algorithms for natural problems. Thismakes the property testing task potentially easier than the corresponding stan-dard decision task (cf. x10.1.2.2). To demonstrate the point, consider the set Sconsisting of strings that have a majority of 1's. Then, deciding membership inS requires linear time, because random n-bit long strings with bn=2c ones cannotbe distinguished from random n-bit long strings with bn=2c + 1 ones by probinga sub-linear number of locations (even if randomization and error probability areallowed { see Exercise 10.8). On the other hand, the fraction of 1's in the input canbe approximated by a randomized polylogarithmic time algorithm (which yields aproperty tester for S; see Exercise 10.9). Thus, for some sets, deciding membershiprequires linear time, while property testing can be done in polylogarithmic time.The essential role of randomization. Referring to the foregoing example, wenote that randomization is essential for any sub-linear time algorithm that distin-

10.1. APPROXIMATION 401guishes this set S from, say, �0:4(S). Speci�cally, a sub-linear time deterministicalgorithm cannot distinguish 1n from any input that has 1's in each position probedby that algorithm on input 1n. In general, on input x, a (sub-linear time) deter-ministic algorithm always reads the same bits of x and thus cannot distinguish xfrom any z that agrees with x on these bit locations.Note that, in both cases, we are able to prove lower-bounds on the time com-plexity of algorithms. This success is due to the fact that these lower-bounds areactually information theoretic in nature; that is, these lower-bounds actually referto the number of queries performed by these algorithms.10.1.2.2 Two models for testing graph propertiesIn this subsection we consider the complexity of property testing for sets of graphsthat are closed under graph isomorphism; such sets are called graph properties. Inview of the importance of representation in the context of property testing, weconsider two standard representations of graphs (cf. Appendix G.1), which indeedyield two di�erent models of testing graph properties.1. The adjacency matrix representation. Here a graph G = ([N]; E) is rep-resented (in a somewhat redundant form) by an N -by-N Boolean matrixMG = (mi;j)i;j2[N] such that mi;j = 1 if and only if fi; jg 2 E.2. Bounded incidence-lists representation. For a �xed parameter d, a graphG = ([N]; E) of degree at most d is represented (in a somewhat redundantform) by a mapping �G : [N]� [d]! [N][f?g such that �G(u; i) = v if v isthe ith neighbor of u and �G(u; i) = ? if v has less than i neighbors.We stress that the aforementioned representations determine both the notion ofdistance between graphs and the type of queries performed by the algorithm. Aswe shall see, the di�erence between these two representations yields a big di�erencein the complexity of corresponding property testing problems.Theorem 10.12 (property testing in the adjacency matrix representation): Forany �xed � > 0 and each of the following sets, there exists a polylogarithmic timerandomized algorithm that solves the corresponding property testing problem (withrespect to �).� For every �xed k � 2, the set of k-colorable graphs.� For every �xed � > 0, the set of graphs having a clique (resp., independentset) of density �.� For every �xed � > 0, the set of N-vertex graphs having a cut2 with at least� �N2 edges.2A cut in a graph G = ([N]; E) is a partition (S; [N] n S) of the set of vertices and the edgesof the cut are the edges with exactly one endpoint in S. A bisection is a cut of the graph to twoparts of equal cardinality.

402 CHAPTER 10. RELAXING THE REQUIREMENTS� For every �xed � > 0, the set of N-vertex graphs having a bisection2with atmost � �N2 edges.In contrast, for some � > 0, there exists a graph property in NP for which propertytesting (with respect to �) requires linear time.The testing algorithms use a constant number of queries, where this constant ispolynomial in the constant 1=�. We highlight the fact that exact decision proce-dure for the corresponding sets require a linear number of queries. The runningtime of the aforementioned algorithms hides a constant that is exponential in theirquery complexity (except for the case of 2-colorability where the hidden constantis polynomial in 1=�). Note that such dependencies seem essential, since setting� = 1=N2 regains the original (non-relaxed) decision problems (which, with theexception of 2-colorability, are all NP-complete). Turning to the lower-bound, wenote that the graph property for which this bound is proved is not a natural one.Again, the lower-bound on the time complexity follows from a lower-bound on thequery complexity.Theorem 10.12 exhibits a dichotomy between graph properties for which prop-erty testing is possible by a constant number of queries and graph properties forwhich property testing requires a linear number of queries. A combinatorial charac-terization of the graph properties for which property testing is possible (in the adja-cency matrix representation) when using a constant number of queries is known.3We note that the constant in this characterization may depend arbitrarily on �(and indeed, in some cases, it is a function growing faster than a tower of 1=�exponents).Turning back to Theorem 10.12, we note that the results regarding propertytesting for the sets corresponding to max-cut and min-bisection yield approximationalgorithms with an additive error term (of �N2). For dense graphs (i.e., N -vertexgraphs having
(N2) edges), this yields a constant factor approximation for thestandard approximation problem (as in De�nition 10.1). That is, for every constantc > 1, we obtain a c-factor approximation of the problem of maximizing the size of acut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,the result regarding clique yields a so called dual-approximation for maximumclique; that is, we approximate the minimum number of missing edges in the densestinduced graph of a given size.Indeed, Theorem 10.12 is meaningful only for dense graphs. The same holds, ingeneral, for the adjacency matrix representation.4 Also note that property testingis trivial, under the adjacency matrix representation, for any graph property Ssatisfying �o(1)(S) = ; (e.g., the set of connected graphs, the set of Hamiltoniangraphs, etc).3Describing this fascinating result of Alon et. al. [8], which refers to the notion of regularpartitions (introduced by Szemer�edi), is beyond the scope of the current text.4In this model, all N-vertex graphs having less than (�=2) � �N2 � edges may be accepted ifand only if there exists such a (non-dense) graph in the predetermined set. This trivial decisionregarding non-dense graphs is correct, because if the set S contains an N-vertex graph with lessthan (�=2) ��N2 � edges then ��(S) contains no N-vertex graph having less than (�=2) ��N2� edges.

10.1. APPROXIMATION 403We now turn to the bounded incidence-lists representation, which is relevantonly for bounded degree graphs. The problems of max-cut, min-bisection and clique(as in Theorem 10.12) are trivial under this representation, but graph connectivitybecomes non-trivial, and the complexity of property testing for the set of bipartitegraphs changes dramatically.Theorem 10.13 (property testing in the bounded incidence-lists representation):The following assertions refer to the representation of graphs by incidence-lists oflength d.� For any �xed d and � > 0, there exists a polylogarithmic time randomizedalgorithm that solves the property testing problem for the set of connectedgraphs of degree at most d.� For any �xed d and � > 0, there exists a sub-linear randomized algorithm thatsolves the property testing problem for the set of bipartite graphs of degree atmost d. Speci�cally, on input an N-vertex graph, the algorithm runs foreO(pN) time.� For any �xed d � 3 and some � > 0, property testing for the set of N-vertex(3-regular) bipartite graphs requires
(pN) queries.� For some �xed d and � > 0, property testing for the set of N-vertex 3-colorablegraphs requires
(N) queries.The running time of the algorithms hides a constant that is polynomial in 1=�.Providing a characterization of graph properties according to the complexity of thecorresponding tester (in the bounded incidence-lists representation) is an interest-ing open problem.Decoupling the distance from the representation. So far, we have con�nedour attention to the Hamming distance between the representations of graphs.This made the choice of representation even more important than usual (i.e., morecrucial than is common in complexity theory). In contrast, it is natural to considera notion of distance between graphs that is independent of their representation.For example, the distance between G1=(V1; E1) and G2=(V2; E2) can be de�nedas the minimum of the size of symmetric di�erence between E1 and the set of edgesin a graph that is isomorphic to G2. The corresponding relative distance may bede�ned as the distance divided by jE1j+ jE2j (or by max(jE1j; jE2j)).10.1.2.3 Beyond graph propertiesProperty testing has been applied to a variety of computational problems beyondthe domain of graph theory. In fact, this area �rst emerged in the algebraic domain,where the instances (to be viewed as inputs to the testing algorithm) are functionsand the relevant properties are sets of algebraic functions. The archetypical exam-ple is the set of low-degree polynomials; that is, m-variate polynomials of total (orindividual) degree d over some �nite �eld GF(q), where m; d and q are parameters

404 CHAPTER 10. RELAXING THE REQUIREMENTSthat may depend on the length of the input (or satisfy some relationships; e.g.,q = d3 = m6). Note that, in this case, the input is the description of a m-variatefunction over GF(q), which means that it has length qm � log2 q. Viewing the prob-lem instance as a function suggests a natural measure of distance (i.e., the fractionof arguments on which the functions disagree) as well as a natural way of accessingthe instance (i.e., querying the function for the value of selected arguments).Note that we have referred to these computational problems, under a di�erentterminology, in x9.3.2.2 and in x9.3.2.1. In particular, in x9.3.2.1 we refereed tothe special case of linear Boolean functions (i.e., individual degree 1 and q = 2),whereas in x9.3.2.2 we used the setting q = poly(d) and m = d= log d (where d is abound on the total degree).Other domains of computational problems in which property testing was stud-ied include geometry (e.g., clustering problems), formal languages (e.g., testingmembership in regular sets), coding theory (cf. Appendix E.1.2), probability the-ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone andjunta functions). As discuss at the end of x10.1.2.2, it is often natural to decou-ple the distance measure from the representation of the objects (i.e., the way ofaccessing the problem instance). This is done by introducing a representation-independent notion of distance between instances, which should be natural in thecontext of the problem at hand.10.2 Average Case ComplexityTeaching note: We view average-case complexity as referring to the performance onaverage (or typical) instances, and not as the average performance on random instances.This choice is justi�ed in x10.2.1.1. Thus, the current theory may be termed typical-casecomplexity. The term average-case is retained for historical reasons.Our approach so far (including in Section 10.1) is termed worst-case complex-ity, because it refers to the performance of potential algorithms on each legitimateinstance (and hence to the performance on the worst possible instance). That is,computational problems were de�ned as referring to a set of instances and perfor-mance guarantees were required to hold for each instance in this set. In contrast,average-case complexity allows ignoring a negligible measure of the possible in-stances, where the identity of the ignored instances is determined by the analysisof potential solvers and not by the problem's statement.A few comments are in place. Firstly, as just hinted, the standard statementof the worst-case complexity of a computational problem (especially one havinga promise) may also ignores some instances (i.e., those considered inadmissibleor violating the promise), but these instances are determined by the problem'sstatement. In contrast, the inputs ignored in average-case complexity are notinadmissible in any inherent sense (and are certainly not identi�ed as such bythe problem's statement). It is just that they are viewed as exceptional whenclaiming that a speci�c algorithm solve the problem; furthermore, these exceptional

10.2. AVERAGE CASE COMPLEXITY 405instances are determined by the analysis of that algorithm. Needless to say, theseexceptional instances ought to be rare (i.e., occur with negligible probability).The last sentence raises a couple of issues. Firstly, a distribution on the setof admissible instances has to be speci�ed. In fact, we shall consider a new typeof computational problems, each consisting of a standard computational problemcoupled with a probability distribution on instances. Consequently, the question ofwhich distributions should be considered arises. This question and numerous otherde�nitional issues will be addressed in x10.2.1.1.Before proceeding, let us spell out the rather straightforward motivation to thestudy of the average-case complexity of computational problems. It is that, inreal-life applications, one may be perfectly happy with an algorithm that solvesthe problem fast on almost all instances that arise in the application. That is, onemay be willing to tolerate error provided that it occurs with negligible probability,where the probability is taken over the distribution of instances encountered in theapplication. We stress that a key aspect in this approach is a good modeling ofthe type of distributions of instances that are encountered in natural algorithmicapplications.At this point a natural question arises: can natural computational problems besolve e�ciently when restricting attention to typical instances? The bottom-lineof this section is that, for a well-motivated choice of de�nitions, our conjecture isthat the \distributional version" of NP is not contained in the average-case (ortypical-case) version of P. This means that some NP problems are not merely hardin the worst-case, but rather \typically hard" (i.e., hard on typical instances drawnfrom some simple distribution). Speci�cally, hard instances may occur in naturalalgorithmic applications (and not only in cryptographic (or other \adversarial")applications that are design on purpose to produce hard instances).5 This conjec-ture motivates the development of an average-case analogue of NP-completeness,which will be presented in this section. Indeed, the entire section may be viewedas an average-case analogue of Chapter 2.Organization. A major part of our exposition is devoted to the de�nitional is-sues that arise when developing a general theory of average-case complexity. Theseissues are discussed in x10.2.1.1. In x10.2.1.2 we prove the existence of a distri-butional problem that is \NP-complete" in the average-case complexity sense. Inx10.2.1.3 we extend the treatment to randomized algorithms. Additional rami�ca-tions are presented in Section 10.2.2.5We highlight two di�erences between the current context (of natural algorithmic applications)and the context of cryptography. Firstly, in the current context and when referring to problemsthat are typically hard, the simplicity of the underlying input distribution is of great concern:the simpler this distribution, the more appealing the hardness assertion becomes. This concernis irrelevant in the context of cryptography. On the other hand (see discussion at the beginningof Section 7.1.1 and/or at end of x10.2.2.2), cryptographic applications require the ability toe�ciently generate hard instances together with corresponding solutions.

406 CHAPTER 10. RELAXING THE REQUIREMENTS10.2.1 The basic theoryIn this section we provide a basic treatment of the theory of average-case com-plexity, while postponing important rami�cations to Section 10.2.2. The basictreatment consists of the preferred de�nitional choices for the main concepts aswell as the identi�cation of a complete problem for a natural class of average-casecomputational problems.10.2.1.1 De�nitional issuesThe theory of average-case complexity is more subtle than may appear in �rstthought. In addition to the generic di�culty involved in de�ning relaxations, dif-�culties arise from the \interface" between standard probabilistic analysis and theconventions of complexity theory. This is most striking in the de�nition of theclass of feasible average-case computations. Referring to the theory of worst-casecomplexity as a guideline, we shall address the following aspects of the analogoustheory of average-case complexity.1. Setting the general framework. We shall consider distributional problems,which are standard computational problems (see Section 1.2.2) coupled withdistributions on the relevant instances.2. Identifying the class of feasible (distributional) problems. Seeking an average-case analogue of classes such as P , we shall reject the �rst de�nition thatcomes to mind (i.e., the naive notion of \average polynomial-time"), brieydiscuss several related alternatives, and adopt one of them for the main treat-ment.3. Identifying the class of interesting (distributional) problems. Seeking anaverage-case analogue of the class NP , we shall avoid both the extreme ofallowing arbitrary distributions (which collapses average-case complexity toworst-case complexity) and the opposite extreme of con�ning the treatmentto a single distribution such as the uniform distribution.4. Developing an adequate notion of reduction among (distributional) problems.As in the theory of worst-case complexity, this notion should preserve feasiblesolveability (in the current distributional context).We now turn to the actual treatment of each of the aforementioned aspects.Step 1: De�ning distributional problems. Focusing on decision problems,we de�ne distributional problems as pairs consisting of a decision problem and aprobability ensemble.6 For simplicity, here a probability ensemble fXngn2N is a6We mention that even this choice is not evident. Speci�cally, Levin [145] (see discussionin [85]) advocates the use of a single probability distribution de�ned over the set of all strings.His argument is that this makes the theory less representation-dependent. At the time we wereconvinced of his argument (see [85]), but currently we feel that the representation-dependente�ects discussed in [85] are legitimate. Furthermore, the alternative formulation of [85] comesacross as unnatural and tends to confuse some readers.

10.2. AVERAGE CASE COMPLEXITY 407sequence of random variables such thatXn ranges over f0; 1gn. Thus, (S; fXngn2N)is the distributional problem consisting of the problem of deciding membership inthe set S with respect to the probability ensemble fXngn2N. (The treatment ofsearch problem is similar; see x10.2.2.1.) We denote the uniform probability ensembleby U = fUngn2N; that is, Un is uniform over f0; 1gn.Step 2: Identifying the class of feasible problems. The �rst idea thatcomes to mind is de�ning the problem (S; fXngn2N) as feasible (on the average)if there exists an algorithm A that solves S such that the average running timeof A on Xn is bounded by a polynomial in n (i.e., there exists a polynomial psuch that E[tA(Xn)] � p(n), where tA(x) denotes the running-time of A on inputx). The problem with this de�nition is that it very sensitive to the model ofcomputation and is not closed under algorithmic composition. Both de�cienciesare a consequence of the fact that tA may be polynomial on the average withrespect to fXngn2N but t2A may fail to be so (e.g., consider tA(x0x00) = 2jx0j ifx0 = x00 and tA(x0x00) = jx0x00j2 otherwise, coupled with the uniform distributionover f0; 1gn). We conclude that the average running-time of algorithms is not arobust notion. We also doubt the naive appeal of this notion, and view the typicalrunning time of algorithms (as de�ned next) as a more natural notion. Thus, weshall consider an algorithm as feasible if its running-time is typically polynomial.7We say that A is typically polynomial-time on X = fXngn2N if there exists apolynomial p such that the probability that A runs more that p(n) steps on Xnis negligible (i.e., for every polynomial q and all su�ciently large n it holds thatPr[tA(Xn) > p(n)] < 1=q(n)). The question is what is required in the \untypical"cases, and two possible de�nitions follow.1. The simpler option is saying that (S; fXngn2N) is (typically) feasible if thereexists an algorithm A that solves S such that A is typically polynomial-timeon X = fXngn2N. This e�ectively requires A to correctly solve S on eachinstance, which is more than was required in the motivational discussion.(Indeed, if the underlying reasoning is ignoring rare cases, then we shouldignore them altogether rather than ignoring them in a partial manner (i.e.,only ignore their a�ect on the running-time).)2. The alternative, which �ts the motivational discussion, is saying that (S;X)is (typically) feasible if there exists an algorithm A such that A typicallysolves S on X in polynomial-time; that is, there exists a polynomial p suchthat the probability that on input Xn algorithm A either errs or runs morethat p(n) steps is negligible. This formulation totally ignores the untypicalinstances. Indeed, in this case we may assume, without loss of generality,that A always runs in polynomial-time (see Exercise 10.11), but we shall not7An alternative choice, taken by Levin [145] (see discussion in [85]), is considering as feasible(w.r.t X = fXngn2N) any algorithm that runs in time that is polynomial in a function that islinear on the average (w.r.t X); that is, requiring that there exists a polynomial p and a function` : f0; 1g� ! N such that t(x) � p(`(x)) and E[`(Xn)] = O(n). This de�nition is robust (i.e., itdoes not su�er from the aforementioned de�ciencies) and is arguably as \natural" as the naivede�nition (i.e., E[tA(Xn)] � poly(n)).

408 CHAPTER 10. RELAXING THE REQUIREMENTSdo so here (in order to facilitate viewing the �rst option as a special case ofthe current option).We note that both alternatives actually de�ne typical feasibility and not average-case feasibility. To illustrate the di�erence between the two options, consider thedistributional problem of deciding whether a uniformly selected (n-vertex) graphcontains a Hamiltonian path. Intuitively, this problem is \typically trivial" (withrespect to the uniform distribution)8 because the algorithmmay always say yes andbe wrong with exponentially vanishing probability. Indeed, this trivial algorithmis admissible by the second approach, but not by the �rst approach. In light of theforegoing, we adopt the second approach.De�nition 10.14 (the class tpcP): We say that A typically solves (S; fXngn2N)in polynomial-time if there exists a polynomial p such that the probability that oninput Xn algorithm A either errs or runs more that p(n) steps is negligible.9 Wedenote by tpcP the class of distributional problems that are typically solvable inpolynomial-time.Clearly, for every S 2 P and every probability ensemble X , it holds that (S;X) 2tpcP. However, tpcP contains also distributional problems (S;X) with S 62 P(see Exercises 10.12 and 10.13). The big question, which underlies the theory ofaverage-case complexity, is whether natural distributional versions of NP are intpcP. Thus, we turn to identify such versions.Step 3: Identifying the class of interesting problems. Seeking to identifyreasonable distributional versions of NP , we note that two extreme choices shouldbe avoided. On one hand, we must limit the class of admissible distributions soto prevent the collapse of average-case complexity to worst-case complexity (by aselection of a pathological distribution that resides on the \worst case" instances).On the other hand, we should allow for various types of natural distributions ratherthan con�ning attention merely to the uniform distribution (which seems misguidedby the naive belief by which this distribution is the only one relevant to applica-tions). Recall that our aim is addressing all possible input distributions that mayoccur in applications, and thus there is no justi�cation for con�ning attention tothe uniform distribution. Still, arguably, the distributions occuring in applicationsare \relatively simple" and so we seek to identify a class of simple distributions.One such notion (of simple distributions) underlies the following de�nition, whilea more liberal notion will be presented in x10.2.2.2.De�nition 10.15 (the class distNP): We say that a probability ensemble X =fXngn2N is simple if there exists a polynomial time algorithm that, on any input8In contrast, testing whether a given graph contains a Hamiltonian path seems \typicallyhard" for other distributions (see Exercise 10.24). Needless to say, in the latter distributions bothyes-instances and no-instances appear with noticeable probability.9Recall that a function � : N ! N is negligible if for every positive polynomial q and allsu�ciently large n it holds that �(n) < 1=q(n). We say that A errs on x if A(x) di�ers from theindicator value of the predicate x 2 S.

10.2. AVERAGE CASE COMPLEXITY 409x 2 f0; 1g�, outputs Pr[Xjxj � x], where the inequality refers to the standard lexico-graphic order of strings. We denote by distNP the class of distributional problemsconsisting of decision problems in NP coupled with simple probability ensembles.Note that the uniform probability ensemble is simple, but so are many other \sim-ple" probability ensembles. Actually, it makes sense to relax the de�nition suchthat the algorithm is only required to output an approximation of Pr[Xjxj � x], say,to within a factor of 1� 2�2jxj. We note that De�nition 10.15 interprets simplicityin computational terms; speci�cally, as the feasibility of answering very basic ques-tions regarding the probability distribution (i.e., determining the probability massassigned to a single (n-bit long) string and even to an interval of such strings). Thissimplicity condition is closely related to being polynomial-time sampleable via amonotone mapping (see Exercise 10.14). In x10.2.2.2 we shall consider the moreintuitive and robust class of all polynomial-time sampleable probability ensembles(and show that it contains all simple ensembles). We believe that the combina-tion of the results presented in x10.2.1.2 and x10.2.2.2 retrospectively endorses thechoice underlying De�nition 10.15. We articulate this point next.We note that enlarging the class of distributions weakens the conjecture thatthe corresponding class of distributional NP problems contains infeasible prob-lems. On the other hand, the conclusion that a speci�c distributional problem isnot feasible becomes stronger when the problem belongs to a smaller class thatcorresponds to a restricted de�nition of admissible distributions. The combinedresults of x10.2.1.2 and x10.2.2.2 assert that a conjecture that refers to the largerclass of polynomial-time sampleable ensembles implies a conclusion that refers toa (very) simple probability ensemble (which resides in the smaller class). Thus,the current setting in which both the conjecture and the conclusion refer to simpleprobability ensembles may be viewed as just an intermediate step.Indeed, the big question in the current context is whether distNP is containedin tpcP. A positive answer (especially if extended to sampleable ensembles) woulddeem the P-vs-NP Question of little practical signi�cant. However, our daily ex-perience as well as much research e�ort indicate that some NP problems are notmerely hard in the worst-case, but rather \typically hard". This supports theconjecture that distNP is not contained in tpcP .Needless to say, the latter conjecture implies P 6= NP , and thus we shouldnot expect to see a proof of it. What we may hope to see is \distNP-complete"problems; that is, problems in distNP that are not in tpcP unless the entire classdistNP is contained in tpcP . An adequate notion of a reduction is used towardsformulating this possibility (which in turn is captured by the notion of \distNP-complete" problems).Step 4: De�ning reductions among (distributional) problems. Intuitively,such reductions must preserve average-case feasibility. Thus, in addition to thestandard conditions (i.e., that the reduction be e�ciently computable and yield acorrect result), we require that the reduction \respects" the probability distribu-tion of the corresponding distributional problems. Speci�cally, the reduction shouldnot map very likely instances of the �rst (\starting") problem to rare instances of

410 CHAPTER 10. RELAXING THE REQUIREMENTSthe second (\target") problem. Otherwise, having a typically polynomial-time al-gorithm for the second distributional problem does not necessarily yield such analgorithm for the �rst distributional problem. Following is the adequate analogueof a Cook reduction (i.e., general polynomial-time reduction), where the analogueof a Karp-reduction (many-to-one reduction) can be easily derived as a special case.Teaching note: One may prefer presenting in class only the special case of many-to-one reductions, which su�ces for Theorem 10.17. See Footnote 11.De�nition 10.16 (reductions among distributional problems): We say that theoracle machine M reduces the distributional problem (S;X) to the distributionalproblem (T; Y) if the following three conditions hold.1. E�ciency: The machine M runs in polynomial-time.102. Validity: For every x 2 f0; 1g�, it holds that MT (x) = 1 if an only if x 2 S,where MT (x) denotes the output of the oracle machine M on input x andaccess to an oracle for T .3. Domination:11 The probability that, on input Xn and oracle access to T ,machine M makes the query y is upper-bounded by poly(jyj) � Pr[Yjyj = y].That is, there exists a polynomial p such that, for every y 2 f0; 1g� and everyn 2 N , it holds thatPr[Q(Xn) 3 y] � p(jyj) � Pr[Yjyj = y]; (10.2)where Q(x) denotes the set of queries made byM on input x and oracle accessto T .In addition, we require that the reduction does not make too short queries;that is, there exists a polynomial p0 such that if y 2 Q(x) then p0(jyj) � jxj.The l.h.s. of Eq. (10.2) refers to the probability that, on input distributed as Xn,the reduction makes the query y. This probability is required not to exceed theprobability that y occurs in the distribution Yjyj by more than a polynomial factorin jyj. In this case we say that the l.h.s. of Eq. (10.2) is dominated by Pr[Yjyj = y].Indeed, the domination condition is the only aspect of De�nition 10.16 that ex-tends beyond the worst-case treatment of reductions and refers to the distributionalsetting. The domination condition does not insist that the distribution induced by10In fact, one may relax the requirement and only require that M is typically polynomial-timewith respect to X. The validity condition may also be relaxed similarly.11Let us spell out the meaning of Eq. (10.2) in the special case of many-to-one reductions (i.e.,MT (x) = 1 if and only if f(x) 2 T , where f is a polynomial-time computable function): in thiscase Pr[Q(Xn) 3 y] is replaced by Pr[f(Xn) = y]. Assuming that f is one-to-one, Eq. (10.2)simpli�es to Pr[Xjf�1(y)j = f�1(y)] � p(jyj) � Pr[Yjyj = y] for any y in the image of f . Indeed,nothing is required for y not in the image of f .

10.2. AVERAGE CASE COMPLEXITY 411Q(X) equals Y , but rather allows some slackness that, in turn, is bounded so toguarantee preservation of typical feasibility (see Exercise 10.15).12We note that the reducibility arguments extensively used in Chapters 7 and 8(see discussion in Section 7.1.2) are actually reductions in the spirit of De�ni-tion 10.16 (except that they refer to di�erent types of computational tasks).10.2.1.2 Complete problemsRecall that our conjecture is that distNP is not contained in tpcP , which in turnstrengthens the conjecture P 6= NP (making infeasibility a typical phenomenonrather than a worst-case one). Having no hope of proving that distNP is notcontained in tpcP , we turn to the study of complete problems with respect to thatconjecture. Speci�cally, we say that a distributional problem (S;X) is distNP-complete if (S;X) 2 distNP and every (S0; X 0) 2 distNP is reducible to (S;X)(under De�nition 10.16).Recall that it is quite easy to prove the mere existence of NP-complete problemsand many natural problems are NP-complete. In contrast, in the current context,establishing completeness results is quite hard. This should not be surprising inlight of the restricted type of reductions allowed in the current context. The restric-tion (captured by the domination condition) requires that \typical" instances ofone problem should not be mapped to \untypical" instances of the other problem.However, it is fair to say that standard Karp-reductions (used in establishing NP-completeness results) map \typical" instances of one problem to quite \bizarre"instances of the second problem. Thus, the current subsection may be viewed as astudy of reductions that do not commit this sin.Theorem 10.17 (distNP-completeness): distNP contains a distributional prob-lem (T; Y) such that each distributional problem in distNP is reducible (per De�ni-tion 10.16) to (T; Y). Furthermore, the reduction is deterministic and many-to-one.Proof: We start by introducing such a problem, which is a natural distributionalversion of the decision problem Su (used in the proof of Theorem 2.18). Recallthat Su contains the instance hM;x; 1ti if there exists y 2 [i�tf0; 1gi such that Maccepts the input pair (x; y) within t steps. We couple Su with the \quasi-uniform"probability ensemble U 0 that assigns to the instance hM;x; 1ti a probability massproportional to 2�(jM j+jxj). Speci�cally, for every hM;x; 1ti it holds thatPr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)�n2� (10.3)12We stress that the notion of domination is incomparable to the notion of statistical (resp.,computational) indistinguishability. On one hand, domination is a local requirement (i.e., itcompares the two distribution on a point-by-point basis), whereas indistinguishability is a globalrequirement (which allows rare exceptions). On the other hand, domination does not requireapproximately equal values, but rather a ratio that is bounded in one direction. Indeed, domina-tion is not symmetric. We comment that a more relaxed notion of domination that allows rareviolations (as in Footnote 10) su�ces for the preservation of typical feasibility.

412 CHAPTER 10. RELAXING THE REQUIREMENTSwhere n def= jhM;x; 1tij def= jM j+ jxj+ t. Note that, under a suitable encoding, theensemble U 0 is indeed simple.13The reader can easily verify that the generic reduction used when reducingany set in NP to Su (see the proof of Theorem 2.18), fails to reduce distNPto (Su; U 0). Speci�cally, in some cases (see next paragraph), these reductions donot satisfy the domination condition. Indeed, the di�culty is that we have toreduce all distNP problems (i.e., pairs consisting of decision problems and simpledistributions) to one single distributional problem (i.e., (Su; U 0)). Applying theaforementioned reductions, we end up with many distributional versions of Su,and furthermore the corresponding distributions are very di�erent (and are notnecessarily dominated by a single distribution).Let us take a closer look at the aforementioned generic reduction, when appliedto an arbitrary (S;X) 2 distNP . This reduction maps an instance x to a triple(MS ; x; 1pS(jxj)), where MS is a machine verifying membership in S (while usingadequate NP-witnesses) and pS is an adequate polynomial. The problem is that xmay have relatively large probability mass (i.e., it may be that Pr[Xjxj=x]� 2�jxj)while (MS ; x; 1pS(jxj)) has \uniform" probability mass (i.e., hMS ; x; 1pS(jxj)i hasprobability mass smaller than 2�jxj in U 0). This violates the domination condition(see Exercise 10.18), and thus an alternative reduction is required.The key to the alternative reduction is an (e�ciently computable) encoding ofstrings taken from an arbitrary simple distribution by strings that have a similarprobability mass under the uniform distribution. This means that the encodingshould shrink strings that have relatively large probability mass under the origi-nal distribution. Speci�cally, this encoding will map x (taken from the ensemblefXngn2N) to a codeword x0 of length that is upper-bounded by the logarithm of1=Pr[Xjxj=x], ensuring that Pr[Xjxj=x] = O(2�jx0j). Accordingly, the reductionwill map x to a triple (MS;X ; x0; 1p0(jxj)), where jx0j < O(1) + log2(1=Pr[Xjxj=x])and MS;X is an algorithm that (given x0 and x) �rst veri�es that x0 is a properencoding of x and next applies the standard veri�cation (i.e., MS) of the problemS. Such a reduction will be shown to satisfy all three conditions (i.e., e�ciency,validity, and domination). Thus, instead of forcing the structure of the originaldistribution X on the target distribution U 0, the reduction will incorporate thestructure of X in the reduced instance. A key ingredient in making this possible isthe fact that X is simple (as per De�nition 10.15).With the foregoing motivation in mind, we now turn to the actual proof; thatis, proving that any (S;X) 2 distNP is reducible to (Su; U 0). The followingtechnical lemma is the basis of the reduction. In this lemma as well as in thesequel, it will be convenient to consider the (accumulative) distribution functionof the probability ensemble X . That is, we consider �(x) def= Pr[Xjxj � x], andnote that � : f0; 1g� ! [0; 1] is polynomial-time computable (because X satis�es13For example, we may encode hM;x; 1ti, where M = �1 � � ��k 2 f0; 1gk and x = �1 � � � �` 2f0; 1g`, by the string �1�1 � � ��k�k01�1�1 � � � �`�`01t. Then �n2� � Pr[U 0n � hM;x; 1ti] equals(ijMj;jxj;t � 1) + 2�jMj � jfM 0 2 f0; 1gjMj : M 0 < Mgj + 2�(jMj+jxj) � jfx0 2 f0; 1gjxj : x0 � xgj,where ik;`;t is the ranking of fk; k + `g among all 2-subsets of [k + `+ t].

10.2. AVERAGE CASE COMPLEXITY 413De�nition 10.15).Coding Lemma:14 Let � : f0; 1g� ! [0; 1] be a polynomial-time computable functionthat is monotonically non-decreasing over f0; 1gn for every n (i.e., �(x0) � �(x00)for any x0 < x00 2 f0; 1gjx0j). For x 2 f0; 1gn n f0ng, let x � 1 denote the stringpreceding x in the lexicographic order of n-bit long strings. Then there exist anencoding function C� that satis�es the following three conditions.1. Compression: For every x it holds that jC�(x)j � 1+minfjxj; log2(1=�0(x))g,where �0(x) def= �(x) � �(x� 1) if x 62 f0g� and �0(0n) def= �(0n) otherwise.2. E�cient Encoding: The function C� is computable in polynomial-time.3. Unique Decoding: For every n 2 N , when restricted to f0; 1gn, the functionC� is one-to-one (i.e., if C�(x) = C�(x0) and jxj = jx0j then x = x0).Proof: The function C� is de�ned as follows. If �0(x) � 2�jxj then C�(x) = 0x(i.e., in this case x serves as its own encoding). Otherwise (i.e., �0(x) > 2�jxj)then C�(x) = 1z, where z is chosen such that jzj � log2(1=�0(x)) and the mappingof n-bit strings to their encoding is one-to-one. Loosely speaking, z is selected toequal the shortest binary expansion of a number in the interval (�(x)��0(x); �(x)].Bearing in mind that this interval has length �0(x) and that the di�erent intervalsare disjoint, we obtain the desired encoding. Details follows.We focus on the case that �0(x) > 2�jxj, and detail the way that z is selected(for the encoding C�(x) = 1z). If x > 0jxj and �(x) < 1, then we let z be thelongest common pre�x of the binary expansions of �(x� 1) and �(x); for example,if �(1010) = 0:10010 and �(1011) = 0:10101111 then C�(1011) = 1z with z = 10.Thus, in this case 0:z1 is in the interval (�(x�1); �(x)] (i.e., �(x�1) < 0:z1 � �(x)).For x = 0jxj, we let z be the longest common pre�x of the binary expansions of 0and �(x) and again 0:z1 is in the relevant interval (i.e., (0; �(x)]). Finally, for x suchthat �(x) = 1 and �(x�1) < 1, we let z be the longest common pre�x of the binaryexpansions of �(x�1) and 1�2�jxj�1, and again 0:z1 is in (�(x�1); �(x)] (because�0(x) > 2�jxj and �(x � 1) < �(x) = 1 imply that �(x � 1) < 1 � 2�jxj < �(x)).Note that if �(x) = �(x � 1) = 1 then �0(x) = 0 < 2�jxj.We now verify that the foregoing C� satis�es the conditions of the lemma. Westart with the compression condition. Clearly, if �0(x) � 2�jxj then jC�(x)j =1 + jxj � 1 + log2(1=�0(x)). On the other hand, suppose that �0(x) > 2�jxj andlet us focus on the sub-case that x > 0jxj and �(x) < 1. Let z = z1 � � � z` bethe longest common pre�x of the binary expansions of �(x � 1) and �(x). Then,�(x� 1) = 0:z0u and �(x) = 0:z1v, where u; v 2 f0; 1g�. We infer that�0(x) = �(x)� �(x � 1) � 0@X̀i=1 2�izi + poly(jxj)Xi=`+1 2�i1A�X̀i=1 2�izi < 2�jzj;14The lemma actually refers to f0; 1gn, for any �xed value of n, but the e�ciency conditionis stated more easily when allowing n to vary (and using the standard asymptotic analysis ofalgorithms). Actually, the lemma is somewhat easier to state and establish for polynomial-time computable functions that are monotonically non-decreasing over f0; 1g� (rather than overf0; 1gn). See further discussion in Exercise 10.19.

414 CHAPTER 10. RELAXING THE REQUIREMENTSand jzj < log2(1=�0(x)) � jxj follows. Thus, jC�(x)j � 1 + min(jxj; log2(1=�0(x)))holds in both cases. Clearly, C� can be computed in polynomial-time by computing�(x�1) and �(x). Finally, note that C� satis�es the unique decoding condition, byseparately considering the two aforementioned cases (i.e., C�(x) = 0x and C�(x) =1z). Speci�cally, in the second case (i.e., C�(x) = 1z), use the fact that �(x� 1) <0:z1 � �(x).To obtain an encoding that is one-to-one when applied to strings of di�erentlengths we augment C� in the obvious manner; that is, we consider C 0�(x) def=(jxj; C�(x)), which may be implemented as C 0�(x) = �1�1 � � ��`�`01C�(x) where�1 � � ��` is the binary expansion of jxj. Note that jC 0�(x)j = O(log jxj) + jC�(x)jand that C 0� is one-to-one.The machine associated with (S;X). Let � be the accumulative probability func-tion associated with the probability ensemble X , and MS be the polynomial-timemachine that veri�es membership in S while using adequate NP-witnesses (i.e.,x 2 S if and only if there exists y 2 f0; 1gpoly(jxj) such that M(x; y) = 1). Usingthe encoding function C 0�, we introduce an algorithm MS;� with the intension ofreducing the distributional problem (S;X) to (Su; U 0) such that all instances (ofS) are mapped to triples in which the �rst element equals MS;�. Machine MS;�is given an alleged encoding (under C 0�) of an instance to S along with an allegedproof that the corresponding instance is in S, and veri�es these claims in the ob-vious manner. That is, on input x0 and hx; yi, machine MS;� �rst veri�es thatx0 = C 0�(x), and next veri�ers that x 2 S by runningMS(x; y). Thus,MS;� veri�esmembership in the set S0 = fC 0�(x) : x 2 Sg, while using proofs of the form hx; yisuch that MS(x; y) = 1 (for the instance C 0�(x)).15The reduction. We maps an instance x (of S) to the triple (MS;�; C 0�(x); 1p(jxj)),where p(n) def= pS(n)+pC(n) such that pS is a polynomial representing the running-time of MS and pC is a polynomial representing the running-time of the encodingalgorithm.Analyzing the reduction. Our goal is proving that the foregoing mapping constitutesa reduction of (S;X) to (Su; U 0). We verify the corresponding three requirements(of De�nition 10.16).1. Using the fact that C� is polynomial-time computable (and noting that pis a polynomial), it follows that the foregoing mapping can be computed inpolynomial-time.2. Recall that, on input (x0; hx; yi), machine MS;� accepts if and only if x0 =C 0�(x) and MS accepts (x; y) within pS(jxj) steps. Using the fact that C 0�(x)uniquely determines x, it follows that x 2 S if and only if there exists a stringy of length at most p(jxj) such that MS;� accepts (C 0�(x); hx; yi) in at most15Note that jyj = poly(jxj), but jxj = poly(jC0�(x)j) does not necessarily hold (and so S0 is notnecessarily in NP). As we shall see, the latter point is immaterial.

10.2. AVERAGE CASE COMPLEXITY 415p(jxj) steps. Thus, x 2 S if and only if (MS;�; C 0�(x); 1p(jxj)) 2 Su, and thevalidity condition follows.3. In order to verify the domination condition, we �rst note that the foregoingmapping is one-to-one (because the transformation x ! C 0�(x) is one-to-one). Next, we note that it su�ces to consider instances of Su that havea preimage under the foregoing mapping (since instances with no preimagetrivially satisfy the domination condition). Each of these instances (i.e., eachimage of this mapping) is a triple with the �rst element equal to MS;� andthe second element being an encoding under C 0�. By the de�nition of U 0, forevery such image hMS;�; C 0�(x); 1p(jxj)i 2 f0; 1gn, it holds thatPr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] = �n2��1 � 2�(jMS;�j+jC0�(x)j)> c � n�2 � 2�(jC�(x)j+O(log jxj));where c = 2�jMS;�j�1 is a constant depending only on S and � (i.e., on thedistributional problem (S;X)). Thus, for some positive polynomial q, wehave Pr[U 0n = hMS;�; C 0�(x); 1p(jxj)i] > 2�jC�(x)j=q(n): (10.4)By virtue of the compression condition (of the Coding Lemma), we have2�jC�(x)j � 2�1�min(jxj;log2(1=�0(x))). It follows that2�jC�(x)j � Pr[Xjxj = x]=2: (10.5)Recalling that x is the only preimage that is mapped to hMS;�; C 0�(x); 1p(jxj)iand combining Eq. (10.4)& (10.5), we establish the domination condition.The theorem follows.Reections. The proof of Theorem 10.17 demonstrates the fact that the re-duction used in the proof of Theorem 2.18 does not introduce much structurein the reduced instances (i.e., does not reduce the original problem to a \highlystructured special case" of the target problem). Put in other words, unlike moreadvanced worst-case reductions, this reduction does not map \random" (i.e., uni-formly distributed) instances to highly structured instances (which occur with neg-ligible probability under the uniform distribution). Thus, the reduction used in theproof of Theorem 2.18 su�ces for reducing any distributional problem in distNPto a distributional problem consisting of Su coupled with some simple probabilityensemble (see Exercise 10.20).16However, Theorem 10.17 states more than the latter assertion. That is, it statesthat any distributional problem in distNP is reducible to the same distributional16Note that this cannot be said of most known Karp-reductions, which do map random instancesto highly structured ones. Furthermore, the same (structure creating property) holds for thereductions obtained by Exercise 2.19.

416 CHAPTER 10. RELAXING THE REQUIREMENTSversion of Su. Indeed, the e�ort involved in proving Theorem 10.17 was due tothe need for mapping instances taken from any simple probability ensemble (whichmay not be the uniform ensemble) to instances distributed in a manner that isdominated by a single probability ensemble (i.e., the quasi-uniform ensemble U 0).Once we have established the existence of one distNP-complete problem, wemay establish the distNP-completeness of other problems (in distNP) by reduc-ing some distNP-complete problem to them (and relying on the transitivity ofreductions (see Exercise 10.17)). Thus, the di�culties encountered in the proofof Theorem 10.17 are no longer relevant. Unfortunately, a seemingly more severedi�culty arises: almost all know reductions in the theory of NP-completeness workby introducing much structure in the reduced instances (i.e., they actually reduceto highly structured special cases). Furthermore, this structure is too complex inthe sense that the distribution of reduced instances does not seem simple (in thesense of De�nition 10.15). Designing reductions that avoid the introduction of suchstructure has turned out to be quite di�cult; still several such reductions are citedin [85].10.2.1.3 Probabilistic versionsThe de�nitions in x10.2.1.1 can be extended so that to account also for randomizedcomputations. For example, extending De�nition 10.14, we have:De�nition 10.18 (the class tpcBPP): For a probabilistic algorithm A, a Booleanfunction f , and a time-bound function t :N!N , we say that the string x is t-bad forA with respect to f if with probability exceeding 1=3, on input x, either A(x) 6= f(x)or A runs more that t(jxj) steps. We say that A typically solves (S; fXngn2N) inprobabilistic polynomial-time if there exists a polynomial p such that the probabilitythat Xn is p-bad for A with respect to the characteristic function of S is negligible.We denote by tpcBPP the class of distributional problems that are typically solvablein probabilistic polynomial-time.The de�nition of reductions can be similarly extended. This means that in De�ni-tion 10.16, both MT (x) and Q(x) (mentioned in Items 2 and 3, respectively) arerandom variables rather than �xed objects. Furthermore, validity is required tohold (for every input) only with probability 2=3, where the probability space refersonly to the internal coin tosses of the reduction. Randomized reductions are closedunder composition and preserve typical feasibility (see Exercise 10.21).Randomized reductions allow the presentation of a distNP-complete problemthat refers to the (perfectly) uniform ensemble. Recall that Theorem 10.17 estab-lishes the distNP-completeness of (Su; U 0), where U 0 is a quasi-uniform ensemble(i.e., Pr[U 0n = hM;x; 1ti] = 2�(jM j+jxj)=�n2�, where n = jhM;x; 1tij). We �rstnote that (Su; U 0) can be randomly reduced to (S0u; U 00), where S0u = fhM;x; zi :hM;x; 1jzji 2 Sug and Pr[U 00n = hM;x; zi] = 2�(jM j+jxj+jzj)=�n2� for every hM;x; zi 2f0; 1gn. The randomized reduction consists of mapping hM;x; 1ti to hM;x; zi,where z is uniformly selected in f0; 1gt. Recalling that U = fUngn2N denotes theuniform probability ensemble (i.e., Un is uniformly distributed on strings of lengthn) and using a suitable encoding we get.

10.2. AVERAGE CASE COMPLEXITY 417Proposition 10.19 There exists S 2 NP such that every (S0; X 0) 2 distNP israndomly reducible to (S;U).Proof Sketch: By the forgoing discussion, every (S0; X 0) 2 distNP is randomlyreducible to (S0u; U 00), where the reduction goes through (Su; U 0). Thus, we focuson reducing (S0u; U 00) to (S00u; U), where S00u 2 NP is de�ned as follows. The stringbin`(juj)�bin`(jvj)�u�v�w is in S00u if and only if hu; v; wi 2 S0u and ` = dlog2 juvwje+1,where bin`(i) denotes the `-bit long binary encoding of the integer i 2 [2`�1] (i.e.,the encoding is padded with zeros to a total length of `). The reduction mapshM;x; zi to the string bin`(jxj)�bin`(jM j)�M�x�z, where ` = dlog2(jM j+ jxj+ jzj)e+1.Noting that this reduction satis�es all conditions of De�nition 10.16, the proposi-tion follows.10.2.2 Rami�cationsIn our opinion, the most problematic aspect of the theory described in Section 10.2.1is the de�nition of simple probability ensembles, which in turn restricts the def-inition of distNP (De�nition 10.15). This restriction strengthens the conjecturethat distNP is not contained in tpcBPP, which means that it weakens conditionalresults that are based on this conjecture. An appealing extension of the classdistNP is presented in x10.2.2.2, where it is shown that if the extended class isnot contained in tpcBPP then distNP itself is not contained in tpcBPP. Thus,distNP-complete problems enjoy the bene�t of both being in the more restrictedclass (i.e., distNP) and being hard as long as some problems in the extended classis hard.Another extension appears in x10.2.2.1, where we extend the treatment fromdecision problems to search problems. This extension is motivated by the realiza-tion that search problem are actually of greater importance to real-life applications(cf. Section 2.1.1), and hence a theory motivated by real-life applications mustaddress such problems, as we do next.Prerequisites: For the technical development of x10.2.2.1, we assume familiar-ity with the notion of unique solution and results regarding it as presented inSection 6.2.3. For the technical development of x10.2.2.2, we assume familiaritywith hashing functions as presented in Appendix D.2.10.2.2.1 Search versus DecisionIndeed, as in the case of worst-case complexity, search problems are at least as im-portant as decision problems. Thus, an average-case treatment of search problemsis indeed called for. We �rst present distributional versions of PF and PC (cf.Section 2.1.1), following the underlying principles of the de�nitions of tpcP anddistNP .De�nition 10.20 (the classes tpcPF and distPC): As in Section 2.1.1, we con-sider only polynomially bounded search problems; that is, binary relations R �

418 CHAPTER 10. RELAXING THE REQUIREMENTSf0; 1g� � f0; 1g� such that for some polynomial q it holds that (x; y) 2 R impliesjyj � q(jxj). Recall that R(x) def= fy : (x; y)2Rg and SR def= fx : R(x) 6= ;g.� A distributional search problem consists of a polynomially bounded search prob-lem coupled with a probability ensemble.� The class tpcPF consists of all distributional search problems that are typ-ically solvable in polynomial-time. That is, (R; fXngn2N) 2 tpcPF if thereexists an algorithm A and a polynomial p such that the probability that oninput Xn algorithm A either errs or runs more that p(n) steps is negligible,where A errs on x 2 SR if A(x) 62 R(x) and errs on x 62 SR if A(x) 6= ?.� A distributional search problem (R;X) is in distPC if R 2 PC and X issimple (as in De�nition 10.15).Likewise, the class tpcBPPF consists of all distributional search problems thatare typically solvable in probabilistic polynomial-time (cf., De�nition 10.18). Thede�nitions of reductions among distributional problems, presented in the context ofdecision problem, extend to search problems.Fortunately, as in the context of worst-case complexity, the study of distribu-tional search problems \reduces" to the study of distributional decision problems.Theorem 10.21 (reducing search to decision): distPC � tpcBPPF if and only ifdistNP � tpcBPP. Furthermore, every problem in distNP is reducible to someproblem in distPC, and every problem in distPC is randomly reducible to someproblem in distNP.Proof Sketch: The furthermore part is analogous to the actual contents of theproof of Theorem 2.6 (see also Step 1 in the proof of Theorem 2.15). Indeed thereduction ofNP to PC presented in the proof of Theorem 2.6 extends to the currentcontext. Speci�cally, for any S 2 NP, we consider a relation R 2 PC such thatS = fx : R(x) 6= ;g, and note that, for any probability ensemble X , the identitytransformation reduces (S;X) to (R;X).A di�culty arises in the opposite direction. Recall that in the proof of The-orem 2.6 we reduced the search problem of R 2 PC to deciding membership inS0R def= fhx; y0i : 9y00 s.t. (x; y0y00)2Rg 2 NP . The di�culty encountered here isthat, on input x, this reduction makes queries of the form hx; y0i, where y0 is apre�x of some string in R(x). These queries may induce a distribution that is notdominated by any simple distribution. Thus, we seek an alternative reduction.As a warm-up, let us assume for a moment that R has unique solutions (in thesense of De�nition 6.26); that is, for every x it holds that jR(x)j � 1. In this casewe may easily reduce the search problem of R 2 PC to deciding membership inS00R 2 NP , where hx; i; �i 2 S00R if and only if R(x) contains a string in which theith bit equals �. Speci�cally, on input x, the reduction issues the queries hx; i; �i,where i 2 [`] (with ` = poly(jxj)) and � 2 f0; 1g, which allows for determining thesingle string in the set R(x) � f0; 1g` (whenever jR(x)j = 1). The point is that thisreduction can be used to reduce any (R;X) 2 distPC (having unique solutions) to

10.2. AVERAGE CASE COMPLEXITY 419(S00R; X 00) 2 distNP , where X 00 equally distributes the probability mass of x (underX) to all the tuples hx; i; �i; that is, for every i 2 [`] and � 2 f0; 1g, it holds thatPr[X 00jhx;i;�ij = hx; i; �i] equals Pr[Xjxj = x]=2`.Unfortunately, in the general case, R may not have unique solutions. Nev-ertheless, applying the main idea that underlies the proof of Theorem 6.27, thisdi�culty can be overcome. We �rst note that the foregoing mapping of instancesof the distributional problem (R;X) 2 distPC to instances of (S00R; X 00) 2 distNPsatis�es the e�ciency and domination conditions even in the case that R does nothave unique solutions. What may possibly fail (in the general case) is the validitycondition (i.e., if jR(x)j > 1 then we may fail to recover any element of R(x)).Recall that the main part of the proof of Theorem 6.27 is a randomized reductionthat maps instances of R to triples of the form (x;m; h) such that m is uniformlydistributed in [`] and h is uniformly distributed in a family of hashing functionHm̀, where ` = poly(jxj) and Hm̀ is as in Appendix D.2. Furthermore, if R(x) 6= ;then, with probability
(1=`) over the choices ofm 2 [`] and h 2 Hm̀, there exists aunique y 2 R(x) such that h(y) = 0m. De�ning R0(x;m; h) def= fy2R : h(y) = 0mg,this yields a randomized reduction of the search problem of R to the search problemof R0 such that with noticeable probability17 the reduction maps instances that havesolutions to instances having a unique solution. Furthermore, this reduction can beused to reduce any (R;X) 2 distPC to (R0; X 0) 2 distPC, where X 0 distributes theprobability mass of x (underX) to all the triples (x;m; h) such that for every m 2 [`]and h 2 Hm̀ it holds that Pr[X 0j(x;m;h)j = (x;m; h)] equals Pr[Xjxj = x]=(` � jHm̀j).(Note that with a suitable encoding, X 0 is indeed simple.)The theorem follows by combining the two aforementioned reductions. That is,we �rst apply the randomized reduction of (R;X) to (R0; X 0), and next reduce theresulting instance to an instance of the corresponding decision problem (S00R0 ; X 00),where X 00 is obtained by modifying X 0 (rather than X). The combined randomizedmapping satis�es the e�ciency and domination conditions, and is valid with notice-able probability. The error probability can be made negligible by straightforwardampli�cation (see Exercise 10.21).10.2.2.2 Simple versus sampleable distributionsRecall that the de�nition of simple probability ensembles (underlying De�nition 10.15)requires that the accumulating distribution function is polynomial-time computable.Recall that � : f0; 1g� ! [0; 1] is called the accumulating distribution function ofX = fXngn2N if for every n 2 N and x 2 f0; 1gn it holds that �(x) def= Pr[Xn � x],where the inequality refers to the standard lexicographic order of n-bit strings.As argued in x10.2.1.1, the requirement that the accumulating distribution func-tion is polynomial-time computable imposes severe restrictions on the set of ad-missible ensembles. Furthermore, it seems that these simple ensembles are indeed17Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it isgreater than the reciprocal of some positive polynomial. In the context of randomized reductions,the relevant parameter is the length of the input to the reduction.

420 CHAPTER 10. RELAXING THE REQUIREMENTS\simple" in some intuitive sense and hence represent a minimalistic model of distri-butions that may occur in practice. Seeking a maximalistic model of distributionsthat occur in practice, we consider the notion of polynomial-time sampleable en-sembles (underlying De�nition 10.22). We believe that the class of such ensemblescontains all distributions that may occur in practice, because we believe that thereal world should be modeled as a feasible (rather than an arbitrary) randomizedprocessDe�nition 10.22 (sampleable ensembles and the class sampNP): We say that aprobability ensemble X = fXngn2N is (polynomial-time) sampleable if there existsa probabilistic polynomial-time algorithm A such that for every x 2 f0; 1g� it holdsthat Pr[A(1jxj) = x] = Pr[Xjxj = x]. We denote by sampNP the class of distri-butional problems consisting of decision problems in NP coupled with sampleableprobability ensembles.We �rst note that all simple probability ensembles are indeed sampleable (seeExercise 10.22), and thus distNP � sampNP . On the other hand, it seems thatthere are sampleable probability ensembles that are not simple (see Exercise 10.23).In fact, extending the scope of distributional problems (from distNP to sampNP)allows proving that every NP-complete problem has a distributional version insampNP that is distNP-hard (see Exercise 10.24). Furthermore, it is possible toprove that all natural NP-complete problem have distributional versions that aresampNP-complete.Theorem 10.23 (sampNP-completeness): Suppose that S 2 NP and that everyset in NP is reducible to S by a Karp-reduction that does not shrink the input.Then there exists a polynomial-time sampleable ensemble X such that any problemin sampNP is reducible to (S;X)The proof of Theorem 10.23 is based on the observation that there exists a polynomial-time sampleable ensemble that dominates all polynomial-time sampleable ensembles.The existence of this ensemble is based on the notion of a universal (sampling)machine. For further details see Exercise 10.25. (Recall that when proving The-orem 10.17, we did not establish an analogous result for simple ensembles (butrather capitalized on the universal nature of Su).)Theorem 10.23 establishes a rich theory of sampNP-completeness, but does notrelate this theory to the previously presented theory of distNP-completeness (seeFigure 10.1). This is done in the next theorem, which asserts that the existence oftypically hard problems in sampNP implies their existence in distNP .Theorem 10.24 (sampNP-completeness versus distNP-completeness): If sampNPis not contained in tpcBPP then distNP is not contained in tpcBPP.Thus, the two \typical-case complexity" versions of the P-vs-NP Question areequivalent. That is, if some \sampleable distribution" versions of NP are nottypically feasible then some \simple distribution" versions of NP are not typically

10.2. AVERAGE CASE COMPLEXITY 421
distNP

sampNP

sampNP-complete [Thm 10.23]

distNP-complete [Thm 10.17]

tpcBPP

Figure 10.1: Two types of average-case completenessfeasible. In particular, if sampNP-complete problems are not in tpcBPP thendistNP-complete problems are not in tpcBPP.The foregoing assertions would all follow if sampNP were (randomly) reducibleto distNP (i.e., if every problem in sampNP were reducible (under a randomizedversion of De�nition 10.16) to some problem in distNP); but, unfortunately, wedo not know whether such reductions exist. Yet, underlying the proof of Theo-rem 10.24 is a more liberal notion of a reduction among distributional problem.Proof Sketch: We shall prove that if distNP is contained in tpcBPP then thesame holds for sampNP (i.e., sampNP is contained in tpcBPP). Actually, weshall show that if distPC is contained in tpcBPPF then the sampleable version ofdistPC, denoted sampPC, is contained in tpcBPPF (and refer to Exercise 10.26).Speci�cally, we shall show that under a relaxed notion of a randomized reduction,every problem in sampPC is reduced to some problem in distPC. Loosely speaking,this relaxed notion (of a randomized reduction) only requires that the validity anddomination conditions (of De�nition 10.16 (when adapted to randomized reduc-tions)) hold with respect to a noticeable fraction of the probability space of thereduction.18 We start by formulating this notion, when referring to distributionalsearch problems.Teaching note: The following proof is quite involved and is better left for advancedreading. Its main idea is related in one of the central ideas underlying the currentlyknown proof of Theorem 8.11. This fact as well as numerous other applications of thisidea, provide a good motivation for getting familiar with this idea.18We warn that the existence of such a relaxed reduction between two speci�c distributionalproblems does not necessarily imply the existence of a corresponding (standard average-case)reduction. Speci�cally, although standard validity can be guaranteed (for problems in PC) byrepeated invocations of the reduction, such a process will not redeem the violation of the standarddomination condition.

422 CHAPTER 10. RELAXING THE REQUIREMENTSDe�nition: A relaxed reduction of the distributional problem (R;X) to the distri-butional problem (T; Y) is a probabilistic polynomial-time oracle machine M thatsatis�es the following conditions:Notation: For every x 2 f0; 1g�, we denote by m(jxj) = poly(jxj) the number ofinternal coin tosses of M on input x, and denote by MT (x; r) the executionof M on input x, internal coins r 2 f0; 1gm, and oracle access to T .Validity: For some noticeable function � : N ! [0; 1] (i.e., �(n) > 1=poly(n)) itholds that for every x 2 f0; 1g�, there exists a set
x � f0; 1gm(jxj) of size atleast �(jxj) � 2m(jxj) such that for every r 2
x the reduction yields a correctanswer (i.e., MT (x; r) 2 R(x) if R(x) 6= ; and MT (x; r) = ? otherwise).Domination: There exists a positive polynomial p such that, for every y 2 f0; 1g�and every n 2 N , it holds thatPr[Q0(Xn) 3 y] � p(jyj) � Pr[Yjyj = y]; (10.6)where Q0(x) is a random variable, de�ned over the set
x (of the validitycondition), representing the set of queries made by M on input x and oracleaccess to T . That is, Q0(x) is de�ned by uniformly selecting r 2
x andconsidering the set of queries made by M on input x, internal coins r, andoracle access to T . (In addition, as in De�nition 10.16, we also require thatthe reduction does not make too short queries.)The reader may verify that this relaxed notion of a reduction preserves typicalfeasibility; that is, for R 2 PC, if there exists a relaxed reduction of (R;X) to(T; Y) and (T; Y) is in tpcBPPF then (R;X) is in tpcBPPF. The key observationis that the analysis may discard the case that, on input x, the reduction selectscoins not in
x. Indeed, the queries made in that case may be untypical and theanswers received may be wrong, but this is immaterial. What matter is that, oninput x, with noticeable probability the reduction selects coins in
x, and produces\typical with respect to Y " queries (by virtue of the relaxed domination condition).Such typical queries are answered correctly by the algorithm that typically solves(T; Y), and if x has a solution then these answers yield a correct solution to x(by virtue of the relaxed validity condition). Thus, if x has a solution then withnoticeable probability the reduction outputs a correct solution. On the other hand,the reduction never outputs a wrong solution (even when using coins not in
x),because incorrect solutions are detected by relying on R 2 PC.Our goal is presenting, for every (R;X) 2 sampPC, a relaxed reduction of(R;X) to a related problem (R0; X 0) 2 distPC, where (as usual) X = fXngn2Nand X 0 = fX 0ngn2N.An oversimpli�ed case: For starters, suppose that Xn is uniformly distributed onsome set Sn � f0; 1gn and that there is a polynomial-time computable and invert-ible mapping � of Sn to f0; 1g`(n), where `(n) = log2 jSnj. Then, mapping x to1jxj�`(jxj)0�(x), we obtain a reduction of (R;X) to (R0; X 0), where X 0n+1 is uniformover f1n�`(n)0v : v 2 f0; 1g`(n)g and R0(1n�`(n)0v) = R(��1(v)) (or, equivalently,

10.2. AVERAGE CASE COMPLEXITY 423R(x) = R0(1jxj�`(jxj)0�(x))). Note that X 0 is a simple ensemble and R0 2 PC;hence, (R0; X 0) 2 distPC. Also note that the foregoing mapping is indeed a validreduction (i.e., it satis�es the e�ciency, validity, and domination conditions). Thus,(R;X) is reduced to a problem in distPC (and indeed the relaxation was not usedhere).A simple but more instructive case: Next, we drop the assumption that there isa polynomial-time computable and invertible mapping � of Sn to f0; 1g`(n), butmaintain the assumption that Xn is uniform on some set Sn � f0; 1gn and as-sume that jSnj = 2`(n) is easily computable (from n). In this case, we may mapx 2 f0; 1gn to its image under a suitable randomly chosen hashing function h, whichin particular maps n-bit strings to `(n)-bit strings. That is, we randomly map x to(h; 1n�`(n)0h(x)), where h is uniformly selected in a set H`(n)n of suitable hash func-tions (see Appendix D.2). This calls for rede�ning R0 such that R0(h; 1n�`(n)0v)corresponds to the preimages of v under h that are in Sn. Assuming that h is a1-1 mapping of Sn to f0; 1g`(n), we may de�ne R0(h; 1n�`(n)0v) = R(x) where x isthe unique string satisfying x 2 Sn and h(x) = v, where the condition x 2 Sn maybe veri�ed by providing the internal coins of the sampling procedure that generatex. Denoting the sampling procedure of X by S, and letting S(1n; r) denote theoutput of S on input 1n and internal coins r, we actually rede�ne R0 asR0(h; 1n�`(n)0v) = fhr; yi : h(S(1n; r))=v ^ y2R(S(1n; r))g: (10.7)We note that hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) yields a solution y 2 R(x) if S(1jxj; r) =x, but otherwise \all bets are o�" (as y will be a solution for S(1jxj; r) 6= x). Now,although typically h will not be a 1-1 mapping of Sn to f0; 1g`(n), it is the case thatfor each x 2 Sn, with constant probability over the choice of h, it holds that h(x)has a unique preimage in Sn under h. (See the proof of Theorem 6.27.) In thiscase hr; yi 2 R0(h; 1jxj�`(jxj)0h(x)) implies S(1jxj; r) = x (which, in turn, impliesy 2 R(x)). We claim that the randomized mapping of x to (h; 1n�`(n)0h(x)), whereh is uniformly selected in H`(jxj)jxj , yields a relaxed reduction of (R;X) to (R0; X 0),where X 0n0 is uniform over H`(n)n �f1n�`(n)0v : v 2 f0; 1g`(n)g. Needless to say, theclaim refers to the reduction that makes the query (h; 1n�`(n)0h(x)) and returns yif the oracle answer equals hr; yi and y 2 R(x).The claim is proved by considering the set
x of choices of h 2 H`(jxj)jxj forwhich x 2 Sn is the only preimage of h(x) under h that resides in Sn (i.e.,jfx0 2 Sn : h(x0) = h(x)gj = 1). In this case (i.e., h 2
x) it holds that hr; yi 2R0(h; 1jxj�`(jxj)0h(x)) implies that S(1jxj; r) = x and y 2 R(x), and the (relaxed)validity condition follows. The (relaxed) domination condition follows by notingthat Pr[Xn = x] � 2�`(jxj), that x is mapped to (h; 1jxj�`(jxj)0h(x)) with proba-bility 1=jH`(jxj)jxj j, and that x is the only preimage of (h; 1jxj�`(jxj)0h(x)) under themapping (among x0 2 Sn such that
x0 3 h).Before going any further, let us highlight the importance of hashing Xn to `(n)-bit strings. On one hand, this mapping is \su�ciently" one-to-one, and thus (withconstant probability) the solution provided for the hashed instance (i.e., h(x)) yielda solution for the original instance (i.e., x). This guarantees the validity of the re-

424 CHAPTER 10. RELAXING THE REQUIREMENTSduction. On the other hand, for a typical h, the mapping of Xn to h(Xn) covers therelevant range almost uniformly. This guarantees that the reduction satis�es thedomination condition. Note that these two phenomena impose conicting require-ments that are both met at the correct value of `; that is, the one-to-one conditionrequires `(n) � log2 jSnj, whereas an almost uniform cover requires `(n) � log2 jSnj.Also note that `(n) = log2(1=Pr[Xn = x]) for every x in the support of Xn; thelatter quantity will be in our focus in the general case.The general case: Finally, get rid of the assumption that Xn is uniformly distributedover some subset of f0; 1gn. All that we know is that there exists a probabilisticpolynomial-time (\sampling") algorithm S such that S(1n) is distributed identi-cally to Xn. In this (general) case, we map instances of (R;X) according to theirprobability mass such that x is mapped to an instance (of R0) that consists of(h; h(x)) and additional information, where h is a random hash function mappingn-bit long strings to `x-bit long strings such that`x def= dlog2(1=Pr[Xjxj=x])e: (10.8)Since (in the general case) there may be more than 2`x strings in the support ofXn, we need to augment the reduced instance in order to ensure that it is uniquelyassociated with x. The basic idea is augmenting the mapping of x to (h; h(x)) withadditional information that restricts Xn to strings that occur with probability atleast 2�`x . Indeed, when Xn is restricted in this way, the value of h(Xn) uniquelydetermines Xn.Let q(n) denote the randomness complexity of S and S(1n; r) denote the out-put of S on input 1n and internal coin tosses r 2 f0; 1gq(n). Then, we randomlymap x to (h; h(x); h0; v0), where h : f0; 1gjxj ! f0; 1g`x and h0 : f0; 1gq(jxj) !f0; 1gq(jxj)�`x are random hash functions and v0 2 f0; 1gq(jxj)�`x is uniformly dis-tributed. The instance (h; v; h0; v0) of the rede�ned search problem R0 has solutionsthat consists of pairs hr; yi such that h(S(1n; r))=v^h0(r) = v0 and y2R(S(1n; r)).As we shall see, this augmentation guarantees that, with constant probability (overthe choice of h; h0; v0), the solutions to the reduced instance (h; h(x); h0; v0) corre-spond to the solutions to the original instance x.The foregoing description assumes that, on input x, we can determine `x,which is an assumption that cannot be justi�ed. Instead, we select ` uniformlyin f0; 1; :::; q(jxj)g, and so with noticeable probability we do select the correctvalue (i.e., Pr[` = `x] = 1=(q(jxj) + 1) = 1=poly(jxj)). For clarity, we make nand ` explicit in the reduced instance. Thus, we randomly map x 2 f0; 1gn to(1n; 1`; h; h(x); h0; v0) 2 f0; 1gn0 , where ` 2 f0; 1; :::; q(n)g, h 2 Hǹ, h0 2 Hq(n)�`q(n) ,and v0 2 f0; 1gq(n)�` are uniformly distributed in the corresponding sets.19 Thismapping will be used to reduce (R;X) to (R0; X 0), where R0 and X 0 = fX 0n0gn02N19As in other places, a suitable encoding will be used such that the reduction maps strings of thesame length to strings of the same length (i.e., n-bit string are mapped to n0-bit strings, for n0 =poly(n)). For example, we may encode h1n; 1`; h; h(x); h0; v0i as 1n01`01q(n)�`0hhihh(x)ihh0ihv0i,where each hwi denotes an encoding of w by a string of length (n0 � (n+ q(n) + 3))=4.

10.2. AVERAGE CASE COMPLEXITY 425are rede�ned (yet again). Speci�cally, we letR0(1n; 1`; h; v; h0; v0) = fhr; yi : h(S(1n; r))=v^h0(r)=v0^y2R(S(1n; r))g (10.9)and X 0n0 assigns equal probability to each Xn0;` (for ` 2 f0; 1; :::; ng), where eachXn0;` is isomorphic to the uniform distribution over Hǹ � f0; 1g` � Hq(n)�`q(n) �f0; 1gq(n)�`. Note that indeed (R0; X 0) 2 distPC.The aforementioned randomized mapping is analyzed by considering the correctchoice for `; that is, on input x, we focus on the choice ` = `x. Under thisconditioning (as we shall show), with constant probability over the choice of h; h0and v0, the instance x is the only value in the support of Xn that is mapped to(1n; 1`x ; h; h(x); h0; v0) and satis�es fr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. Itfollows that (for such h; h0 and v0) any solution hr; yi 2 R0(1n; 1`x ; h; h(x); h0; v0)satis�es S(1n; r) = x and thus y 2 R(x), which means that the (relaxed) validitycondition is satis�ed. The (relaxed) domination condition is satis�ed too, because(conditioned on ` = `x and for such h; h0; v0) the probability that Xn is mapped to(1n; 1`x ; h; h(x); h0; v0) approximately equals Pr[X 0n0;`x=(1n; 1`x ; h; h(x); h0; v0)].We now turn to analyze the probability, over the choice of h; h0 and v0, that theinstance x is the only value in the support ofXn that is mapped to (1n; 1`x ; h; h(x); h0; v0)and satis�es fr : h(S(1n; r)) = h(x) ^ h0(r) = v0g 6= ;. Firstly, we note thatjfr : S(1n; r)=xgj � 2q(n)�`x , and thus, with constant probability over the choiceof h0 2 Hq(n)�`xq(n) and v0 2 f0; 1gq(n)�`x , there exists r that satis�es S(1n; r) = xand h0(r) = v0. Next, we note that, with constant probability over the choice ofh 2 H`xn , it holds that x is the only string having probability mass at least 2�`x(under Xn) that is mapped to h(x) under h. Finally, we prove that, with constantprobability over the choice of h 2 H`xn and h0 2 Hq(n)�`xq(n) (and even when con-ditioning on the previous items), the mapping r 7! (h(S(1n; r)); h0(r)) maps theset fr : Pr[Xn=S(1n; r)] � 2�`xg to f0; 1gq(n) in an almost 1-1 manner. Speci�-cally, with constant probability, no other r is mapped to the aforementioned pair(h(x); v0). Thus, the claim follows and so does the theorem.Reection. Theorem 10.24 implies that if sampNP is not contained in tpcBPPthen every distNP-complete problem is not in tpcBPP. This means that thehardness of some distributional problems that refer to sampleable distributions im-plies the hardness of some distributional problems that refer to simple distributions.Furthermore, by Proposition 10.19, this implies the hardness of distributional prob-lems that refer to the uniform distribution. Thus, hardness with respect to somedistribution in an utmost wide class (which arguably captures all distributions thatmay occur in practice) implies hardness with respect to a single simple distribution(which arguably is the simplest one).Relation to one-way functions. We note that the existence of one-way func-tions (see Section 7.1) implies the existence of problems in sampPC that are not intpcBPPF (which in turn implies the existence of such problems in distPC). Specif-ically, for a length-preserving one-way function f , consider the distributional search

426 CHAPTER 10. RELAXING THE REQUIREMENTSproblem (Rf ; ff(Un)gn2N), where Rf = f(f(r); r) : r 2 f0; 1g�g.20 On the otherhand, it is not known whether the existence of a problem in sampPC n tpcBPPFimplies the existence of one-way functions. In particular, the existence of a prob-lem (R;X) in sampPC n tpcBPPF represents the feasibility of generating hardinstances for the search problem R, whereas the existence of one-way function rep-resents the feasibility of generating instance-solution pairs such that the instancesare hard to solve (see Section 7.1.1). Indeed, the gap refers to whether or not hardinstances can be e�ciently generated together with corresponding solutions. Ourworld view is thus depicted in Figure 10.2, where lower levels indicate seeminglyweaker assumptions.
P is different than NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Figure 10.2: Worst-case vs average-case assumptionsChapter NotesIn this chapter, we presented two di�erent approaches to the relaxation of com-putational problems. The �rst approach refers to the concept of approximation,while the second approach refers to average-case analysis. We demonstrated thatvarious natural notions of approximation can be cast within the standard frame-works, where the framework of promise problems (presented in Section 2.4.1) is themost non-standard framework we used (and it su�ces for casting gap problems andproperty testing). In contrast, the study of average-case complexity requires theintroduction of a new conceptual framework and addressing of various de�nitionalissues.A natural question at this point is what have we gained by relaxing the re-quirements. In the context of approximation, the answer is mixed: in some naturalcases we gain a lot (i.e., we obtained feasible relaxations of hard problems), whilein other natural cases we gain nothing (i.e., even extreme relaxations remain asintractable as the original version). In the context of average-case complexity, thenegative side seems more prevailing (at least in the sense of being more system-atic). In particular, assuming the existence of one-way functions, every natural20Note that the distribution f(Un) is uniform in the special case that f is a permutation overf0; 1gn.

10.2. AVERAGE CASE COMPLEXITY 427NP-complete problem has a distributional version that is hard, where this versionrefers to a sampleable ensemble. Furthermore, in this case, some problems in NPhave hard distributional versions that refer to the uniform distribution.Another di�erence between the two approaches is that the theory of approxima-tion seems to lack a comprehensive structure, whereas the theory of average-casecomplexity seems to have a too rigid structure (which seems to foil attempts topresent more appealing distNP-complete problems).ApproximationThe following bibliographic comments are quite laconic and neglect mentioningvarious important works (including credits for some of the results mentioned in ourtext). As usual, the interested reader is referred to corresponding surveys.Search or Optimization. The interest in approximation algorithms increasedconsiderably following the demonstration of the NP-completeness of many nat-ural optimization problems. But, with some exceptions (most notably [167]),the systematic study of the complexity of such problems stalled till the discov-ery of the \PCP connection" (see Section 9.3.3) by Feige, Goldwasser, Lov�asz, andSafra [69]. Indeed the relatively \tight" inapproximation results for max-Clique,max-SAT, and the maximization of linear equations, due to H�astad [111, 112],build on previous work regarding PCP and their connection to approximation (cf.,e.g., [70, 14, 13, 27, 173]). Speci�cally, Theorem 10.5 is due to [111], while Theo-rems 10.8 and 10.9 are due to [112]. The best known inapproximation result forminimum Vertex Cover (see Theorem 10.7) is due to [65], but we doubt it is tight(see, e.g., [134]). Reductions among approximation problems were de�ned andpresented in [167]; see Exercise 10.7, which presents a major technique introducedin [167]. For general texts on approximation algorithms and problems (as discussedin Section 10.1.1), the interested reader is referred to the surveys collected in [117].A compendium of NP optimization problems is available at [61].Recall that a di�erent type of approximation problems, which are naturally as-sociated with search problems, were treated in Section 6.2.2. We note that an anal-ogous de�nitional framework (e.g., gap problems, polynomial-time approximationschemes, etc) is applicable also to the approximate counting problems consideredin Section 6.2.2.Property testing. The study of property testing was initiated by Rubinfeld andSudan [183] and re-initiated by Goldreich, Goldwasser, and Ron [93]. While thefocus of [183] was on algebraic properties such as low-degree polynomials, the focusof [93] was on graph properties (and Theorem 10.12 is taken from [93]). The modelof bounded-degree graphs was introduced in [99] and Theorem 10.13 combinesresults from [99, 100, 39]. For surveys of the area, the interested reader is referredto [73, 182].

428 CHAPTER 10. RELAXING THE REQUIREMENTSAverage-case complexityThe theory of average-case complexity was initiated by Levin [145], who in partic-ular proved Theorem 10.17. In light of the laconic nature of the original text [145],we refer the interested reader to a survey [85], which provides a more detailedexposition of the de�nitions suggested by Levin as well as a discussion of the con-siderations underlying these suggestions. (This survey [85] provides also a briefaccount of further developments.)As noted in x10.2.1.1, the current text uses a variant of the original de�nitions.In particular, our de�nition of \typical-case feasibility" di�ers from the originalde�nition of \average-case feasibility" in totally discarding exceptional instancesand in even allowing the algorithm to fail on them (and not merely run for anexcessive amount of time). The alternative de�nition was suggested by severalresearchers, and appears as a special case of the general treatment provided in [41].Section 10.2.2 is based on [28, 120]. Speci�cally, Theorem 10.21 (or rather thereduction of search to decision) is due to [28] and so is the introduction of the classsampNP. A version of Theorem 10.24 was proven in [120], and our proof followstheir ideas, which in turn are closely related to the ideas underlying the proof ofTheorem 8.11 (proved in [113]).Recall that we know of the existence of problems in distNP that are hard pro-vided sampNP contains hard problems. However, these problems refer to some-what generic decision problems such as Su. The presentation of distNP-completeproblems that combine a more natural decision problem (like SAT or Clique) witha simple probability ensemble is an open problem.ExercisesExercise 10.1 (general TSP) For any function g, prove that the following ap-proximation problem is NP-Hard. Given a general TSP instance I , representedby a symmetric matrix of pairwise distances, the task is �nding a tour of lengththat is at most a factor g(I) of the minimum. Show that the result holds withg(I) = exp(poly(jI j)) and for instances in which all distances are positive,Guideline: By reduction from Hamiltonian path. Speci�cally, reduce the instance G =([n]; E) to an n-by-n distance matrix D = (di;j)i;j2[n] such that di;j = exp(poly(n)) iffi; jg 2 E and di;j = 1.Exercise 10.2 (TSP with triangle inequalities) Provide a polynomial-time 2-factor approximation for the special case of TSP in which the distances satisfy thetriangle inequality.Guideline: First note that the length of any tour is lower-bounded by the weight ofa minimum spanning tree in the corresponding weighted graph. Next note that such atree yields a tour (of length twice the weight of this tree) that may visit some pointsseveral times. The triangle inequality guarantees that the tour does not become longerby \shortcuts" that eliminate multiple visits at the same point.

10.2. AVERAGE CASE COMPLEXITY 429Exercise 10.3 (a weak version of Theorem 10.5) Using Theorem 9.16 provethat, for some constants 0 < a < b < 1 when setting L(N) = N b and s(N) = Na,it holds that gapCliqueL;s is NP-hard.Guideline: Starting with Theorem 9.16, apply the Expander Random Walk Generator(of Proposition 8.29) in order to derive a PCP system with logarithmic randomness andquery complexities that accepts no-instances of length n with probability at most 1=n.The claim follows by applying the FGLSS-reduction (of Exercise 9.14), while noting thatx is reduced to a graph of size poly(jxj) such that the gap between yes and no-instancesis at least a factor of jxj.Exercise 10.4 (a weak version of Theorem 10.7) Using Theorem 9.16 provethat, for some constants 0 < s < L < 1, the problem gapVCs;L is NP-hard.Guideline: Note that combining Theorem 9.16 and Exercise 9.14 implies that for someconstants b < 1 it holds that gapCliqueL;s is NP-hard, where L(N) = b �N and s(N) =(b=2) � N . The claim follows using the relations between cliques, independent sets, andvertex covers.Exercise 10.5 (a weak version of Theorem 10.9) Using Theorem 9.16 provethat, for some constants 0:5 < s < L < 1, the problem gapLinL;s is NP-hard.Guideline: Recall that by Theorems 9.16 and 9.21, the gap problem gapSAT3" is NP-Hard. Note that the result holds even if we restrict the instances to have exactly three(not necessarily di�erent) literals in each clause. Applying the reduction of Exercise 2.26,note that, for any assignment � , a clause that is satis�ed by � is mapped to seven equationsof which exactly three are violated by � , whereas a clause that is not satis�ed by � ismapped to seven equations that are all violated by � .Exercise 10.6 (natural inapproximability without the PCP Theorem) Incontrast to the inapproximability results reviewed in x10.1.1.2, the NP-completenessof the following gap problem can be established (rather easily) without referringto the PCP Theorem. The instances of this problem are systems of quadraticequations over GF(2) (as in Exercise 2.27), yes-instances are systems that have asolution, and no-instances are systems for which any assignment violates at leastone third of the equations.Guideline: By Exercise 2.27, when given such a quadratic system, it is NP-hard todetermine whether or not there exists an assignment that satis�es all the equations. Usingan adequate small-bias generator (cf. Section 8.6.2), present an amplifying reduction (cf.Section 9.3.3) of the foregoing problem to itself. Speci�cally, if the input system has mequations then we use a generator that de�nes a sample space of poly(m) many m-bitstrings, and consider the corresponding linear combinations of the input equations. Notethat it su�ces to bound the bias of the generator by 1=6, whereas using an "-biasedgenerator yields an analogous result with 1=3 replaced by 0:5� ".Exercise 10.7 (enforcing multi-way equalities via expanders) The aim ofthis exercise is presenting a major technique of Papadimitriou and Yannakakis [167],

430 CHAPTER 10. RELAXING THE REQUIREMENTSwhich is useful for designing reductions among approximation problems. Recall-ing that gapSAT30:1 is NP-hard, our goal is proving NP-hard of the following gapproblem, denoted gapSAT3;c" , which is a special case of gapSAT3". Speci�cally, theinstances are restricted to 3CNF formulae with each variable appearing in at most cclauses, where c (as ") is a �xed constant. Note that the standard reduction of 3SATto the corresponding special case (see proof of Proposition 2.22) does not preservean approximation gap.21 The idea is enforcing equality of the values assigned to theauxiliary variables (i.e., the copies of each original variable) by introducing equal-ity constraints only for pairs of variables that correspond to edges of an expandergraph (see Appendix E.2). For example, we enforce equality among the values ofz(1); :::; z(m) by adding the clauses z(i) _ :z(j) for every fi; jg 2 E, where E is theset of edges of am m-vertex expander graph. Prove that, for some constants c and" > 0, the corresponding mapping reduces gapSAT30:1 to gapSAT3;c" .Guideline: Using d-regular expanders, we map 3CNF to instances in which each variableappears in at most 2d+1 clauses. Note that the number of added clauses is linearly relatedto the number of original clauses. Clearly, if the original formula is satis�able then so isthe reduced one. On the other hand, consider an arbitrary assignment � 0 to the reducedformula �0 (i.e., the formula obtained by mapping �). For each original variable z, if� 0 assigns the same value to almost all copies of z then we consider the correspondingassignment in �. Otherwise, by virtue of the added clauses, � 0 does not satisfy a constantfraction of the clauses containing a copy of z.Exercise 10.8 (deciding majority requires linear time) Prove that decidingmajority requires linear-time even in a direct access model and when using a ran-domized algorithm that may err with probability at most 1=3.Guideline: Consider the problem of distinguishing Xn from Yn, where Xn (resp., Yn) isuniformly distributed over the set of n-bit strings having exactly bn=2c (resp., bn=2c+1)ones. For any �xed set I � [n], denote the projection of Xn (resp., Yn) on I by X 0n (resp.,Y 0n). Prove that the statistical di�erence between X 0n and Y 0n is bounded by O(jIj=n).Note that the argument needs to be extended to the case that the examined locations areselected adaptively.Exercise 10.9 (testing majority in polylogarithmic time) Show that test-ing majority (with respect to �) can be done in polylogarithmic time by probingthe input at a constant number of randomly selected locations.21Recall that in this reduction each occurrence of each Boolean variable is replaced by a newcopy of this variable, and clauses are added for enforcing the assignment of the same value to allthese copies. Speci�cally, them occurrence of variable z are replaced by the variables z(1); :::; z(m),while adding the clauses z(i) _ :z(i+1) and z(i+1) _ :z(i) (for i = 1; :::;m � 1). The problem isthat almost all clauses of the reduced formula may be satis�ed by an assignment in which halfof the copies of each variable are assigned one value and the rest are assigned an opposite value.That is, an assignment in which z(1) = � � � = z(i) 6= z(i+1) = � � � = z(m) violates only one of theauxiliary clauses introduced for enforcing equality among the copies of z. Using an alternativereduction that adds the clauses z(i) _ :z(j) for every i; j 2 [m] will not do either, because thenumber of added clauses may be quadratic in the number of original clauses.

10.2. AVERAGE CASE COMPLEXITY 431Exercise 10.10 (testing Eulerian graphs in the adjacency matrix representation)Show that in this model the set of Eulerian graphs can be tested in polylogarithmictime.Guideline: Focus on testing the set of graphs in which each vertex has an even degree.Note that, in general, the fact that the sets S0 and S00 are testable within some complexitydoes not imply the same for the set S0 \ S00.Exercise 10.11 (an equivalent de�nition of tpcP) Prove that (S;X) 2 tpcPif and only if there exists a polynomial-time algorithm A such that the probabilitythat A(Xn) errs (in determining membership in S) is a negligible function in n.Exercise 10.12 (tpcP versus P { Part 1) Prove that tpcP contains a problem(S;X) such that S is not even recursive. Furthermore, use X = U .Guideline: Let S = f0jxjx : x 2 S0g, where S0 is an arbitrary (non-recursive) set.Exercise 10.13 (tpcP versus P { Part 2) Prove that there exists a distribu-tional problem (S;X) such that S 62 P and yet there exists an algorithm solvingS (correctly on all inputs) in time that is typically polynomial with respect to X .Furthermore, use X = U .Guideline: For any time-constructible function t : N!N that is super-polynomial andsub-exponential, use S = f0jxjx : x 2 S0g for any S0 2 Dtime(t) n P.Exercise 10.14 (simple distributions and monotone sampling) We say thata probability ensemble X = fXngn2N is polynomial-time sampleable via a monotonemapping if there exists a polynomial p and a polynomial-time computable functionf such that the following two conditions hold:1. For every n, the random variables f(Up(n)) andXn are identically distributed.2. For every n and every r0 < r00 2 f0; 1gp(n) it holds that f(r0) � f(r00), wherethe inequalities refers to the standard lexicographic order of strings.Prove that X is simple if and only if it is polynomial-time sampleable via a mono-tone mapping.Guideline: Suppose that X is simple, and let p be a polynomial bounding the running-time of the algorithm that on input x outputs Pr[Xjxj�x]. Consider a mapping, denoted�, of [0; 1] to f0; 1gn such that r2 [0; 1] is mapped to x2f0; 1gn if and only if r 2 [Pr[Xn<x];Pr[Xn�x]). The desired function f : f0; 1gp(n) ! f0; 1gn can be obtained from � byconsidering the binary representation of the numbers in [0; 1] (and recalling that the binaryrepresentation of Pr[Xjxj�x] has length at most p(jxj)). Note that f can be computed bybinary search, using the fact that X is simple. Turning to the opposite direction, we notethat any e�ciently computable and monotone mapping f : f0; 1gp(n) ! f0; 1gn can bee�ciently inverted by a binary search. Furthermore, similar methods allow for e�cientlydetermining the interval of p(n)-bit long strings that are mapped to any given n-bit longstring.

432 CHAPTER 10. RELAXING THE REQUIREMENTSExercise 10.15 (reductions preserve typical polynomial-time solveability)Prove that if the distributional problem (S;X) is reducible to the distributionalproblem (S0; X 0) and (S0; X 0) 2 tpcP , then (S;X) is in tpcP .Guideline: Let B0 denote the set of exceptional instances for the distributional problem(S0; X 0); that is, B0 is the set of instances on which the solver in the hypothesis eithererrs or exceeds the typical running-time. Prove that Pr[Q(Xn) \ B0 6= ;] is a negligiblefunction (in n), using both Pr[y 2 Q(Xn)] � p(jyj) �Pr[X 0jyj = y] and jxj � p0(jyj) for everyy 2 Q(x). Speci�cally, use the latter condition for inferring that Py2B0 Pr[y 2 Q(Xn)]equalsPy2fy02B0:p0(jy0j)�ng Pr[y 2 Q(Xn)], which guarantees that a negligible function injyj for any y 2 Q(Xn) is negligible in n.Exercise 10.16 (reductions preserve error-less solveability) In continuationto Exercise 10.15, prove that reductions preserve error-less solveability (i.e., solve-ability by algorithms that never err and typically run in polynomial-time).Exercise 10.17 (transitivity of reductions) Prove that reductions among dis-tributional problems (as in De�nition 10.16) are transitive.Guideline: The point is establishing the domination property of the composed reduction.The hypothesis that reductions do not make too short queries is instrumental here.Exercise 10.18 For any S 2 NP present a simple probability ensemble X suchthat the generic reduction used in the proof of Theorem 2.18, when applied to(S;X), violates the domination condition with respect to (Su; U 0).Guideline: Consider X = fXngn2N such that Xn is uniform over f0n=2x0 : x0 2f0; 1gn=2g.Exercise 10.19 (variants of the Coding Lemma) Prove the following two vari-ants of the Coding Lemma (which is stated in the proof of Theorem 10.17).1. A variant that refers to any e�ciently computable function � : f0; 1g� ! [0; 1]that is monotonically non-decreasing over f0; 1g� (i.e., �(x0) � �(x00) for anyx0 < x00 2 f0; 1g�). That is, unlike in the proof of Theorem 10.17, here itholds that �(0n+1) � �(1n) for every n.2. As in Part 1, except that in this variant the function � is strictly increasingand the compression condition requires that jC�(x)j � log2(1=�0(x)) ratherthan jC�(x)j � 1 +minfjxj; log2(1=�0(x))g, where �0(x) def= �(x)� �(x � 1).In both cases, the proof is less cumbersome than the one presented in the maintext.Exercise 10.20 Prove that for any problem (S;X) in distNP there exists a simpleprobability ensemble Y such that the reduction used in the proof of Theorem 2.18su�ces for reducing (S;X) to (Su; Y).Guideline: Consider Y = fYngn2N such that Yn assigns to the instance hM;x; 1ti aprobability mass proportional to �x def= Pr[Xjxj = x]. Speci�cally, for every hM;x; 1ti it

10.2. AVERAGE CASE COMPLEXITY 433holds that Pr[Yn = hM;x; 1ti] = 2�jMj � �x=�n2�, where n def= jhM; x; 1tij def= jM j + jxj + t.Alternatively, we may set Pr[Yn = hM;x; 1ti] = �x if M = MS and t = pS(jxj) andPr[Yn = hM;x; 1ti] = 0 otherwise, where MS and PS are as in the proof of Theorem 2.18.Exercise 10.21 (randomized reductions) Following the outline in x10.2.1.3,provide a de�nition of randomized reductions among distributional problems.1. In analogy to Exercise 10.15, prove that randomized reductions preserve fea-sible solveability (i.e., typical solveability in probabilistic polynomial-time).That is, if the distributional problem (S;X) is randomly reducible to thedistributional problem (S0; X 0) and (S0; X 0) 2 tpcBPP, then (S;X) is intpcBPP.2. In analogy to Exercise 10.16, prove that randomized reductions preservesolveability by probabilistic algorithms that err with probability at most 1=3on each input and typically run in polynomial-time.3. Prove that randomized reductions are transitive (cf. Exercise 10.17).4. Show that the error probability of randomized reductions can be reduced(while preserving the domination condition).Extend the foregoing to reductions that involve distributional search problems.Exercise 10.22 (simple vs sampleable ensembles { Part 1) Prove that anysimple probability ensemble is polynomial-time sampleable.Guideline: See Exercise 10.14.Exercise 10.23 (simple vs sampleable ensembles { Part 2) Assuming that#P contains functions that are not computable in polynomial-time, prove thatthere exists polynomial-time sampleable ensembles that are not simple.Guideline: Consider any R 2 PC and suppose that p is a polynomial such that (x; y) 2 Rimplies jyj = p(jxj). Then consider the sampling algorithm A that, on input 1n, uniformlyselects (x; y) 2 f0; 1gn�1 � f0; 1gp(n�1) and outputs x1 if (x; y) 2 R and x0 otherwise.Note that #R(x) = 2p(jxj�1) � Pr[A(1jxj�1)=x1].Exercise 10.24 (distributional versions of NPC problems { Part 1 [28])Prove that for any NP-complete problem S there exists a polynomial-time sam-pleable ensemble X such that any problem in distNP is reducible to (S;X). Weactually assume that the many-to-one reductions establishing the NP-completenessof S do not shrink the length of the input.Guideline: Prove that the guaranteed reduction of Su to S also reduces (Su; U 0) to(S;X), for some sampleable probability ensemble X. Consider �rst the case that thestandard reduction of Su to S is length preserving, and prove that, when applied to asampleable probability ensemble, it induces a sampleable distribution on the instancesof S. (Note that U 0 is sampleable (by Exercise 10.22).) Next extend the treatment tothe general case, where applying the standard reduction to U 0n induces a distribution on[poly(n)m=n f0; 1gm (rather than a distribution on f0; 1gn).

434 CHAPTER 10. RELAXING THE REQUIREMENTSExercise 10.25 (distributional versions of NPC problems { Part 2 [28])Prove Theorem 10.23 (i.e., for any NP-complete problem S there exists a polynomial-time sampleable ensemble X such that any problem in sampNP is reducible to(S;X)). As in Exercise 10.24, we actually assume that the many-to-one reductionsestablishing the NP-completeness of S do not shrink the length of the input.Guideline: We establish the claim for Su, and the general claim follows by using thereduction of Su to S (as in Exercise 10.24). Thus, we focus on showing that, for some(suitably chosen) sampleable ensembleX, any (S0; X 0) 2 sampNP is reducible to (Su; X).Loosely speaking, X will be an adequate convex combination of all sampleable distribu-tions (and thus X will not equal U 0 or U). Speci�cally, X = fXngn2N is de�ned suchthat Xn uniformly selects i 2 [n], emulates the execution of the ith algorithm (in lexi-cographic order) on input 1n for n3 steps,22 and outputs whatever the latter has output(or 0n in case the said algorithm has not halted within n3 steps). Prove that, for any(S00; X 00) 2 sampNP such that X 00 is sampleable in cubic time, the standard reductionof S00 to Su reduces (S00; X 00) to (Su; X) (as per De�nition 10.15; i.e., in particular,it satis�es the domination condition).23 Finally, using adequate padding, reduce any(S0; X 0) 2 sampNP to some (S00; X 00) 2 sampNP such that X 00 is sampleable in cubictime.Exercise 10.26 (search vs decision in the context of sampleable ensembles)Prove that every problem in sampNP is reducible to some problem in sampPC,and every problem in sampPC is randomly reducible to some problem in sampNP .Guideline: See proof of Theorem 10.21.

22Needless to say, the choice to consider n algorithms in the de�nition of Xn is quite arbitrary.Any other unbounded function of n that is at most a polynomial (and is computable in polynomial-time) will do. (More generally, we may select the ith algorithm with pi, as long as pi is a noticeablefunction of n.) Likewise, the choice to emulate each algorithm for a cubic number of steps (rathersome other �xed polynomial number of steps) is quite arbitrary.23Note that applying this reduction to X00 yields an ensembles that is also sampleable in cubictime. This claim uses the fact that the standard reduction runs in time that is less than cubic(and in fact almost linear) in its output, and the fact that the output is longer than the input.

506 CHAPTER 10. RELAXING THE REQUIREMENTS

Appendix DProbabilistic Preliminariesand Advanced Topics inRandomizationWhat is this? Chicken Quesadilla and Seafood Salad?Fine, but in the same plate? This is disgusting!Johan H�astad at Grendel's, Cambridge (1985)Summary: This appendix lumps together some preliminaries regard-ing probability theory and some advanced topics related to the roleand use of randomness in computation. Needless to say, each of theseappears in a separate section.The probabilistic preliminaries include our conventions regarding ran-dom variables, which are used throughout the book. Also included areoverviews of three useful inequalities: Markov Inequality, Chebyshev'sInequality, and Cherno� Bound.The advanced topics include hashing, sampling, and randomness ex-traction. For hashing, we describe constructions of pairwise (and t-wiseindependent) hashing functions, and variants of the Leftover HashingLemma (which are used a few times in the main text). We then reviewthe \complexity of sampling": that is, the number of samples and therandomness complexity involved in estimating the average value of anarbitrary function de�ned over a huge domain. Finally, we provide anoverview on the question of extracting almost perfect randomness fromsources of weak (or defected) randomness.507

508APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIOND.1 Probabilistic preliminariesProbability plays a central role in complexity theory (see, for example, Chapters 6{9). We assume that the reader is familiar with the basic notions of probabilitytheory. In this section, we merely present the probabilistic notations that are usedthroughout the book, and three useful probabilistic inequalities.D.1.1 Notational ConventionsThroughout the entire book we will refer only to discrete probability distributions.Speci�cally, the underlying probability space will consist of the set of all stringsof a certain length `, taken with uniform probability distribution. That is, thesample space is the set of all `-bit long strings, and each such string is assignedprobability measure 2�`. Traditionally, random variables are de�ned as functionsfrom the sample space to the reals. Abusing the traditional terminology, we use theterm random variable also when referring to functions mapping the sample spaceinto the set of binary strings. We often do not specify the probability space, butrather talk directly about random variables. For example, we may say that X is arandom variable assigned values in the set of all strings such that Pr[X=00] = 14and Pr[X = 111] = 34 . (Such a random variable may be de�ned over the samplespace f0; 1g2, so that X(11) = 00 and X(00) = X(01) = X(10) = 111.) Oneimportant case of a random variable is the output of a randomized process (e.g., aprobabilistic polynomial-time algorithm, as in Section 6.1).All our probabilistic statements refer to (functions of) random variables thatare de�ned beforehand. Typically, we may write Pr[f(X)=1], where X is a randomvariable de�ned beforehand (and f is a function). An important convention is thatall occurrences of the same symbol in a probabilistic statement refer to the same(unique) random variable. Hence, if B(�; �) is a Boolean expression depending ontwo variables, andX is a random variable then Pr[B(X;X)] denotes the probabilitythat B(x; x) holds when x is chosen with probability Pr[X =x]. For example, forevery random variable X , we have Pr[X =X] = 1. We stress that if we wish todiscuss the probability that B(x; y) holds when x and y are chosen independentlywith identical probability distribution, then we will de�ne two independent randomvariables each with the same probability distribution. Hence, if X and Y aretwo independent random variables then Pr[B(X;Y)] denotes the probability thatB(x; y) holds when the pair (x; y) is chosen with probability Pr[X=x] � Pr[Y =y].For example, for every two independent random variables, X and Y , we havePr[X=Y] = 1 only if both X and Y are trivial (i.e., assign the entire probabilitymass to a single string).Throughout the entire book, Un denotes a random variable uniformly dis-tributed over the set of strings of length n. Namely, Pr[Un = �] equals 2�n if� 2 f0; 1gn and equals 0 otherwise. We will often refer to the distribution of Unas the uniform distribution (neglecting to qualify that it is uniform over f0; 1gn). Inaddition, we will occasionally use random variables (arbitrarily) distributed overf0; 1gn or f0; 1g`(n), for some function ` :N!N . Such random variables are typi-cally denoted by Xn, Yn, Zn, etc. We stress that in some cases Xn is distributed

D.1. PROBABILISTIC PRELIMINARIES 509over f0; 1gn, whereas in other cases it is distributed over f0; 1g`(n), for some func-tion `(�), which is typically a polynomial. We will often talk about probabilityensembles, which are in�nite sequence of random variables fXngn2N such thateach Xn ranges over strings of length bounded by a polynomial in n.Statistical di�erence. The statistical distance (a.k.a variation distance) betweenthe random variables X and Y is de�ned as12 �Xv jPr[X = v]� Pr[Y = v]j = maxS fPr[X 2 S]� Pr[Y 2 S]g: (D.1)We say that X is �-close (resp., �-far) to Y if the statistical distance between themis at most (resp., at least) �.D.1.2 Three InequalitiesThe following probabilistic inequalities are very useful. These inequalities refer torandom variables that are assigned real values and provide upper-bounds on theprobability that the random variable deviates from its expectation.Markov Inequality. The most basic inequality is Markov Inequality that appliesto any random variable with bounded maximum or minimum value. For simplicity,it is stated for random variables that are lower-bounded by zero, and reads asfollows: Let X be a non-negative random variable and v be a non-negative realnumber. Then Pr [X�v] � E(X)v (D.2)Equivalently, Pr[X � r � E(X)] � 1r . The proof amounts to the following sequence.E(X) = Xx Pr[X=x] � x� Xx<v Pr[X=x] � 0 +Xx�v Pr[X=x] � v= Pr[X�v] � vChebyshev's Inequality: Using Markov's inequality, one gets a potentiallystronger bound on the deviation of a random variable from its expectation. Thisbound, called Chebyshev's inequality, is useful when having additional informa-tion concerning the random variable (speci�cally, a good upper bound on its vari-ance). For a random variable X of �nite expectation, we denote by Var(X) def=E[(X � E(X))2] the variance of X , and observe that Var(X) = E(X2) � E(X)2.Chebyshev's inequality then reads as follows: Let X be a random variable, and� > 0. Then Pr [jX � E(X)j��] � Var(X)�2 : (D.3)

510APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONProof: We de�ne a random variable Y def= (X � E(X))2, and apply Markov in-equality. We get Pr [jX � E(X)j��] = Pr �(X � E(X))2 � �2�� E[(X � E(X))2]�2and the claim follows.Corollary (Pairwise Independent Sampling): Chebyshev's inequality is particu-larly useful in the analysis of the error probability of approximation via repeatedsampling. It su�ces to assume that the samples are picked in a pairwise indepen-dent manner, where X1; X2; :::; Xn are pairwise independent if for every i 6= j andevery �; � it holds that Pr[Xi=� ^ Xj =�] = Pr[Xi=�] � Pr[Xj =�]. The corol-lary reads as follows: Let X1; X2; :::; Xn be pairwise independent random variableswith identical expectation, denoted �, and identical variance, denoted �2. Then,for every " > 0, it holds thatPr �����Pni=1Xin � ����� � "� � �2"2n : (D.4)Proof: De�ne the random variables Xi def= Xi � E(Xi). Note that the X i's arepairwise independent, and each has zero expectation. Applying Chebyshev's in-equality to the random variablePni=1 Xin , and using the linearity of the expectationoperator, we get Pr "����� nXi=1 Xin � ������ � "# � Var �Pni=1 Xin �"2= E h�Pni=1Xi�2i"2 � n2Now (again using the linearity of expectation)E24 nXi=1Xi!235 = nXi=1 E hX2i i+ X1�i 6=j�n E �XiXj�By the pairwise independence of the Xi's, we get E[XiXj] = E[Xi] � E[Xj], andusing E[Xi] = 0, we get E24 nXi=1 Xi!235 = n � �2The corollary follows.

D.1. PROBABILISTIC PRELIMINARIES 511Cherno� Bound: When using pairwise independent sample points, the errorprobability in the approximation is decreasing linearly with the number of samplepoints (see Eq. (D.4)). When using totally independent sample points, the errorprobability in the approximation can be shown to decrease exponentially withthe number of sample points. (The random variables X1; X2; :::; Xn are said tobe totally independent if for every sequence a1; a2; :::; an it holds that Pr[^ni=1Xi=ai] =Qni=1 Pr[Xi=ai].) Probability bounds supporting the foregoing statement aregiven next. The �rst bound, commonly referred to as Cherno� Bound, concerns 0-1random variables (i.e., random variables that are assigned as values either 0 or 1),and asserts the following. Let p � 12 , and X1; X2; :::; Xn be independent 0-1 randomvariables such that Pr[Xi = 1] = p, for each i. Then, for every " 2 (0; p(1� p)], wehave Pr �����Pni=1Xin � p���� > "� < 2 � e� "22p(1�p) �n � 2 � e�2"2n (D.5)Proof Sketch: We upper-bound Pr[Pni=1Xi � pn > "n], and Pr[pn�Pni=1Xi >"n] is bounded similarly. Letting Xi def= Xi � E(Xi), we apply Markov Inequalityto the random variable e�Pni=1Xi , where � > 0 is determined to optimize theexpressions that we derive (hint: � = �("=p(1� p)) will do). Thus, Pr[Pni=1Xi >"n] is upper-bounded byE[e�Pni=1Xi]e�"n = e��"n � nYi=1E[e�Xi]where the equality is due to the independence of the random variables. To simplifythe rest of the proof, we establish a sub-optimal bound as follows. Using a Taylorexpansion of ex (e.g., ex < 1 + x+ x2 for x � 1) and observing that E[Xi] = 0, weget E[e�Xi] < 1+�2E[X2i], which equals 1+�2p(1�p). Thus, Pr[Pni=1Xi�pn > "n]is upper-bounded by e��"n � (1 + �2p(1� p))n < exp(��"n+ �2p(1� p)n), whichis optimized at � = "=(2p(1� p)) yielding exp(� "24p(1�p) � n). Needless to say, thismethod can be applied in more general settings (e.g., for Xi 2 [0; 1] rather thanXi 2 f0; 1g).A more general bound, which refers to independent copies of a general (bounded)random variable, is given next (and is commonly referred to as Hoefding Inequality).1Let X1; X2; :::; Xn be n independent random variables with identical probability dis-tribution, each ranging over the (real) interval [a; b], and let � denote the expectedvalue of each of these variables. Then, for every " > 0,Pr �����Pni=1Xin � ����� > "� < 2 � e� 2"2(b�a)2 �n (D.6)Hoefding Inequality is useful in estimating the average value of a function de�nedover a large set of values, especially when the desired error probability needs to1A more general form requires the Xi's to be independent, but not necessarily identical, anduses � def= 1nPni=1 E(Xi). See [10, Apdx. A].

512APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONbe negligible (i.e., decrease faster than any polynomial in the relevant parameter).Such an estimate can be obtained provided that we can e�ciently sample the setand have a bound on the possible values (of the function).Pairwise independent versus totally independent sampling. Referring toEq. (D.6), consider, for simplicity, the case that a = 0 < � < b = 1. In this case,n independent samples give an approximation that deviates by " from the expectvalue (i.e., �) with probability, denoted �, that is exponentially decreasing with"2n. Such an approximation is called an ("; �)-approximation, and can be achievedusing n = O("�2 � log(1=�)) sample points. Thus, the number of sample pointsis polynomially related to "�1 and logarithmically related to ��1. In contrast,by Eq. (D.4), an ("; �)-approximation by n pairwise independent samples calls forsetting n = O("�2 � ��1). We stress that, in both cases the number of samples ispolynomially related to the desired accuracy of the estimation (i.e., "). The onlyadvantage of totally independent samples over pairwise independent ones is in thedependency of the number of samples on the error probability (i.e., �).D.2 HashingHashing is extensively used in complexity theory. The typical application is map-ping arbitrary (unstructured) sets \almost uniformly" to a structured set of ad-equate size. Speci�cally, hashing is supposed to map an arbitrary 2m-subset off0; 1gn to f0; 1gm in an \almost uniform" manner.For a �xed set S of cardinality 2m, a 1-1 mapping fS : S ! f0; 1gm doesexist, but it is not necessarily an e�cient one (e.g., it may require \knowing" theentire set S). Clearly, no single function f : f0; 1gn ! f0; 1gm can map each 2m-subset of f0; 1gn to f0; 1gm in a 1-1 manner (or even approximately so). However,a random function f : f0; 1gn ! f0; 1gm has the property that, for every 2m-subset S � f0; 1gn, with overwhelmingly high probability f maps S to f0; 1gmsuch that no point in the range has too many f -preimages in S. The problemis that a truly random function is unlikely to have a succinct representation (letalone an e�cient evaluation algorithm). We thus seek families of functions thathave a similar property, but do have a succinct representation as well as an e�cientevaluation algorithm.D.2.1 De�nitionsMotivated by the foregoing discussion, we consider families of functions fHmn gm<nSuch that the following properties hold:1. For every S � f0; 1gn, with high probability, a function h selected uniformlyin Hmn maps S to f0; 1gm in an \almost uniform" manner. For example, wemay require that, for any jSj = 2m and each point y, with high probabilityover the choice of h, it holds that jfx 2 S : h(x) = ygj � poly(n).

D.2. HASHING 5132. The functions in Hmn have succinct representation. For example, we mayrequire that Hmn � f0; 1g`(n;m), for some polynomial `.3. The functions in Hmn can be e�ciently evaluated. That is, there exists apolynomial-time algorithm that, on input a representation of a function, h(in Hmn), and a string x2f0; 1gn, returns h(x). In some cases we make evenmore stringent requirements regarding the algorithm (e.g., that it runs inlinear space).Condition 1 was left vague on purpose. At the very least, we require that theexpected size of fx 2 S : h(x) = yg equals jSj=2m. We shall see (in Section D.2.3)that di�erent interpretations of Condition 1 are satis�ed by di�erent families ofhashing functions. We focus on t-wise independent hashing functions, de�ned next.De�nition D.1 (t-wise independent hashing functions): A family Hmn of func-tions from n-bit strings to m-bit strings is called t-wise independent if for every tdistinct domain elements x1; :::; xt 2 f0; 1gn and every y1; :::; yt 2 f0; 1gm it holdsthat Prh2Hmn [^ti=1h(xi) = yi] = 2�t�mThat is, a uniformly chosen h 2 Hmn maps every t domain elements to the range ina totally uniform manner. Note that for t � 2, it follows that the probability thata random h 2 Hmn maps two distinct domain elements to the same image equals2�m. Such (families of) functions are called universal (cf. [47]), but we will focuson the stronger condition of t-wise independence.D.2.2 ConstructionsThe following constructions are merely a re-interpretation of the constructionspresented in x8.6.1.1. (Alternatively, one may view the constructions presentedin x8.6.1.1 as a re-interpretation of the following two constructions.)Construction D.2 (t-wise independent hashing): For t;m; n 2 N such that m �n, consider the following family of hashing functions mapping n-bit strings to m-bit strings. Each t-sequence s = (s0; s1; :::; st�1) 2 f0; 1gt�n describes a functionhs : f0; 1gn ! f0; 1gm such that hs(x) equals the m-bit pre�x of the binary repre-sentation of Pt�1j=0 sjxj , where the arithmetic is that of GF(2n), the �nite �eld of2n elements.Proposition 8.24 implies that Construction D.2 constitutes a family of t-wise inde-pendent hash functions. Typically, we will use either t = 2 or t = �(n). To makethe construction totally explicit, we need an explicit representation of GF(2n);see details following Proposition 8.24. An alternative construction for the caseof t = 2 may be obtained analogously to the pairwise independent generator ofProposition 8.25. Recall that a Toeplitz matrix is a matrix with all diagonals beinghomogeneous; that is, T = (ti;j) is a Toeplitz matrix if ti;j = ti+1;j+1, for all i; j.

514APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONConstruction D.3 (Alternative pairwise independent hashing): For m � n, con-sider the family of hashing functions in which each n-by-m Toeplitz matrix T andan m-dimensional vector b describes a function hT;b : f0; 1gn ! f0; 1gm such thathT;b(x) = Tx+ b.Proposition 8.25 implies that Construction D.3 constitutes a family of pairwiseindependent hash functions. Note that a n-by-m Toeplitz matrix can be speci�edby n+m� 1 bits, yielding a description length of n+2m� 1 bits. An alternativeconstruction (analogous to Eq. (8.18) and requiringm�n+m bits of representation)uses arbitrary n-by-m matrices rather than Toeplitz matrices.D.2.3 The Leftover Hash LemmaWe now turn to the \almost uniform" cover condition (i.e., Condition 1) mentionedin Section D.2.1. One concrete interpretation of this condition is given by thefollowing lemma (and another is implied by it: see Theorem D.5).Lemma D.4 Let m � n be integers, Hmn be a family of pairwise independent hashfunctions, and S � f0; 1gn. Then, for every y 2 f0; 1gm and every " > 0, for allbut at most an 2m"2jSj fraction of h 2 Hmn it holds thatjfx 2 S : h(x) = ygj = (1� ") � jSj2m : (D.7)By pairwise independence (or rather even by \1-wise independence"), the expectedsize of fx 2 S : h(x) = yg is jSj=2m, where the expectation is taken uniformly overall h 2 Hmn . The lemma upper bounds the fraction of h's that deviate from theexpected behavior (i.e., for which jh�1(y)\ Sj 6= (1� ") � jSj=2m). Needless to say,the bound is meaningful only in case jSj > 2m (or alternatively for " > 1). Setting" = 3p2m=jSj (and focusing on the case that jSj > 2m), we infer that for all but atmost an " fraction of h 2 Hmn it holds that jfx 2 S : h(x) = ygj = (1� ") � jSj=2m.Thus, each range element has approximately the right number of h-preimages inthe set S, under almost all h 2 Hmn .Proof: Fixing an arbitrary set S � f0; 1gn and an arbitrary y 2 f0; 1gm, weestimate the probability that a uniformly selected h 2 Hmn violates Eq. (D.7). Wede�ne random variables �x, over the aforementioned probability space, such that�x = �x(h) equal 1 if h(x) = y and �x = 0 otherwise. The expected value ofPx2S �x is � def= jSj � 2�m, and we are interested in the probability that this sumdeviates from the expectation. Applying Chebyshev's Inequality, we getPr "�������Xx2S �x����� > " � �# < �"2�2because Var[Px2S �x] < jSj � 2�m by the pairwise independence of the �x's and thefact that E[�x] = 2�m. The lemma follows.

D.2. HASHING 515A generalization (called mixing). The proof of Lemma D.4 can be easilyextended to show that for every set T � f0; 1gm and every " > 0, for all butat most an 2mjT j�jSj"2 fraction of h 2 Hmn it holds that jfx 2 S : h(x) 2 Tgj =(1 � ") � jT j � jSj=2m. (Hint: rede�ne �x = �(h) = 1 if h(x) 2 T and �x = 0otherwise.) This assertion is meaningfull provided that jT j � jSj > 2m="2, and inthe case that m = n it is called a mixing property.An extremely useful corollary. The aforementioned generalization of Lemma D.4asserts that most functions behave well with respect to any �xed sets of preimagesS � f0; 1gn and images T � f0; 1gm. A seemingly stronger statement, which is(non-trivially) implied by Lemma D.4 itself, is that for all adequate sets S mostfunctions h 2 Hmn map S to f0; 1gm in an almost uniform manner.2 This is aconsequence of the following theorem.Theorem D.5 (a.k.a Leftover Hash Lemma): Let Hmn and S � f0; 1gn be as inLemma D.4, and de�ne " = 3p2m=jSj. Consider random variable X and H thatare uniformly distributed on S and Hmn , respectively. Then, the statistical distancebetween (H;H(X)) and (H;Um) is at most 2".Using the terminology of Section D.4, we say that Hmn yields a strong extractor(with parameters to be spelled out there).Proof: Let V denote the set of pairs (h; y) that violate Eq. (D.7), and V def=(Hmn � f0; 1gm) n V . Then for every (h; y) 2 V it holds thatPr[(H;H(X)) = (h; y)] = Pr[H = h] � Pr[h(X) = y]= (1� ") � Pr[(H;Um) = (h; y)]:On the other hand, by Lemma D.4 (which asserts Pr[(H; y) 2 V] � " for everyy 2 f0; 1gm) and the setting of ", we have Pr[(H;Um) 2 V] � ". It follows thatPr[(H;H(X)) 2 V] = 1� Pr[(H;H(X)) 2 V]� 1� Pr[(H;Um)) 2 V] + " � 2":Using all these upper-bounds, we upper-bounded the statistical di�erence between(H;H(X)) and (H;Um), denoted �, by separating the contribution of V and V .Speci�cally, we have� = 12 � X(h;y)2Hmn �f0;1gm jPr[(H;H(X))=(h; y)]� Pr[(H;Um)=(h; y)]j� "2 + 12 � X(h;y)2V jPr[(H;H(X))=(h; y)]� Pr[(H;Um)=(h; y)]j� "2 + 12 � X(h;y)2V (Pr[(H;H(X))=(h; y)] + Pr[(H;Um)=(h; y)])2That is, for X and " as in Theorem D.5 and any � > 0, for all but at most an � fraction ofthe functions h 2 Hmn it holds that h(X) is (2"=�)-close to Um.

516APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATION� "2 + 12 � (2"+ ")and the claim follows.An alternative proof of Theorem D.5. De�ne the collision probability of arandom variable Z, denote cp(Z), as the probability that two independent samplesof Z yield the same result. Alternatively, cp(Z) def= Pz Pr[Z = z]2. Theorem D.5follows by combining the following two facts:1. A general fact: If Z 2 [N] and cp(Z) � (1 + 4�2)=N then Z is �-close to theuniform distribution on [N].We prove the contra-positive: Assuming that the statistical distance betweenZ and the uniform distribution on [N] equals �, we show that cp(Z) �(1+4�2)=N . This is done by de�ning L def= fz : Pr[Z = z] < 1=Ng, and lower-bounding cp(Z) by using the fact that the collision probability is minimizedon uniform distributions. Speci�cally, considering the uniform distributionson L and [N] n L respectively, we havecp(Z) � jLj � �Pr[Z 2 L]jLj �2 + (N � jLj) ��Pr[Z 2 [N] n L]N � jLj �2: (D.8)Using � = � � Pr[Z 2 L], where � = jLj=N , the r.h.s of Eq. (D.8) equals1 + �2(1��)� � 1 + 4�2.2. The collision probability of (H;H(X)) is at most (1+ (2m=jSj))=(jHmn j � 2m).(Furthermore, this holds even if Hmn is only universal.)The proof is by a straightforward calculation. Speci�cally, note that cp(H;H(X)) =jHmn j�1�Eh2Hmn [cp(h(X))], whereas Eh2Hmn [cp(h(X))] = jSj�2Px1;x22S Pr[H(x1) =H(x2)]. The sum equals jSj + (jSj2 � jSj) � 2�m, and so cp(H;H(X)) <jHmn j�1 � (2�m + jSj�1).Note that it follows that (H;H(X)) is p2m=4jSj-close to (H;Um), which is astronger bound than the one provided in Theorem D.5.Stronger uniformity via higher independence. Recall that Lemma D.4 as-serts that for each point in the range of the hash function, with high probabilityover the choice of the hash function, this �xed point has approximately the expectednumber of preimages in S. A stronger condition asserts that, with high probabilityover the choice of the hash function, every point in its range has approximatelythe expected number of preimages in S. Such a guarantee can be obtained whenusing n-wise independent hashing functions.Lemma D.6 Let m � n be integers, Hmn be a family of n-wise independent hashfunctions, and S � f0; 1gn. Then, for every " 2 (0; 1), for all but at most an2m � (n � 2m="2jSj)n=2 fraction of the functions h 2 Hmn , Eq. (D.7) holds for everyy 2 f0; 1gm.

D.3. SAMPLING 517Indeed, the lemma should be used with 2m < "2jSj=4n. In particular, using m =log2 jSj�log2(5n="2) guarantees that with high probability each range elements has(1� ") � jSj=2m preimages in S. Under this setting of parameters jSj=2m = 5n="2,which is poly(n) whenever " = 1=poly(n). Needless to say, this guarantee is strongerthan the conclusion of Theorem D.5.Proof: The proof follows the footsteps of the proof of Lemma D.4, taking advan-tage of the fact that here the random variables (i.e., the �x's) are n-wise indepen-dent. For t = n=2, this allows using the so-called 2tth moment analysis, whichgeneralizes the second moment analysis of pairwise independent samplying (pre-sented in Section D.1.2). As in the proof of Lemma D.4, we �x any S and y, andde�ne �x = �x(h) = 1 if and only if h(x) = y. Letting � = E[Px2S �x] = jSj=2mand �x = �x � E(�x), we start with Markov inequality:Pr "�������Xx2S �x����� > " � �# < E[(Px2S �x)2t]"2t�2t= Px1;:::;x2t2S E[Q2ti=1 �xi]"2t � (jSj=2m)2t (D.9)Using 2t-wise independence, we note that only the terms in Eq. (D.9) that do notvanish are those in which each variable appears with multiplicity. This mean thatonly terms having less than t distinct variables contribute to Eq. (D.9). Now, forevery j � t, we have less than �jSjj � � (2t!) < (2t!=j!) � jSjj terms with j distinctvariables, and each such term contributes less than (2�m)j to the sum. Thus,Eq. (D.9) is upper-bounded by2t!("jSj=2m)2t � tXj=1 (jSj=2m)jj! < 2 � 2t!=t!("2jSj=2m)t < �2t � 2m"2jSj �twhere the �rst inequality assumes jSj > n2m (since the claim hold vacuously other-wise). This upper-bounds the probability that a random h 2 Hmn violates Eq. (D.7)with reprect to a �xed y. Using a union bound on all y 2 f0; 1gm, the lemma fol-lows.D.3 SamplingIn many settings repeated sampling is used to estimate the average of a huge set ofvalues. Namely, given a \value" function � :f0; 1gn!R, one wishes to approximate�� def= 12n Px2f0;1gn �(x) without having to inspect the value of � at each point of thedomain. The obvious thing to do is sampling the domain at random, and obtainingan approximation to �� by taking the average of the values of � on the sample points.It turns out that certain \pseudorandom" sequences of sample points may servealmost as well as truly random sequences of sample points, and thus the currentproblem is indeed related to Section 8.6.

518APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIOND.3.1 Formal SettingIt is essential to have the range of � be bounded (or else no reasonable approx-imation is possible). For simplicity, we adopt the convention of having [0; 1] bethe range of �, and the problem for other (predetermined) ranges can be treatedanalogously. Our notion of approximation depends on two parameters: accuracy(denoted ") and error probability (denoted �). We wish to have an algorithm that,with probability at least 1� �, gets within " of the correct value. This leads to thefollowing de�nition.De�nition D.7 (sampler): A sampler is a randomized algorithm that on inputparameters n (length), " (accuracy) and � (error), and oracle access to any function� :f0; 1gn! [0; 1], outputs, with probability at least 1� �, a value that is at most "away from �� def= 12n Px2f0;1gn �(x). Namely,Pr[jsampler�(n; "; �)� ��j > "] < �where the probability is taken over the internal coin tosses of the sampler, alsocalled its random seed.A non-adaptive sampler is a sampler that consists of two deterministic algorithms:a sample generating algorithm, G, and a evaluation algorithm, V . On input n; "; �and a random seed of adequate length, algorithm G generates a sequence of queries,denoted s1; :::; sm 2 f0; 1gn. Algorithm V is given the corresponding �-values (i.e.,�(s1); :::; �(sm)) and outputs an estimate to ��.We are interested in \the complexity of sampling" quanti�ed as a function of theparameters n, " and �. Speci�cally, we will consider three complexity measures:The sample complexity (i.e., the number of oracle queries made by the sampler); therandomness complexity (i.e., the length of the random seed used by the sampler);and the computational complexity (i.e., the running-time of the sampler). We saythat a sampler is e�cient if its running-time is polynomial in the total length ofits queries (i.e., polynomial in both its sample complexity and in n). We will focuson e�cient samplers. Furthermore, we will focus on e�cient samplers that haveoptimal (up-to a constant factor) sample complexity, and will wish the randomnesscomplexity to be as low as possible.D.3.2 Known ResultsWe note that all the following positive results refer to non-adaptive samplers,whereas the lower bound hold also for general samplers. For more details on theseresults, see [86, Sec. 3.6.4] and the references therein.The naive sampler. The straightforward method (or the naive sampler) consistsof uniformly and independently selecting su�ciently many sample points (queries),and outputting the average value of the function on these points. Using Cherno�Bound it follows that O(log(1=�)"2) sample points su�ce. As indicated next, the naive

D.3. SAMPLING 519sampler is optimal (up-to a constant factor) in its sample complexity, but is quitewasteful in randomness.It is known that
(log(1=�)"2) samples are needed in any sampler, and that thatsamplers that make s(n; "; �) queries require randomness at least n + log2(1=�) �log2 s(n; "; �) � O(1). These lower bounds are tight (as demonstrated by non-explicit and ine�cient samplers). These facts guide our quest for improvements,which is aimed at �nding more randomness-e�cient ways of e�ciently generatingsample sequences that can be used in conjunction with an appropriate evaluationalgorithm V . (We stress that V need not necessarily take the average of the valuesof the sampled points.)The pairwise-independent sampler. Using a pairwise-independence genera-tor (cf. x8.6.1.1) for generating sample points, along with the natural evaluationalgorithm (which outputs the average of the values of these points), we can ob-tain a great saving in the randomness complexity: In particular, using a seed oflength 2n, we can generate O(1=�"2) pairwise-independent sample points, which(by Eq. (D.4)) su�ce for getting accuracy " with error �. Thus, this (Pairwise-Independent) sampler uses 2n random bits rather than the
((log(1=�))"�2 � n)coins used by the naive sampler. Furthermore, for constant � > 0, the Pairwise-Independent Sampler is optimal up-to a constant factor in both its sample andrandomness complexities. However, for small � (i.e., � = o(1)), this sampler iswasteful in sample complexity.The Median-of-Averages sampler. A new idea is required for going fur-ther, and a relevant tool { random walks on expander graphs (see Sections 8.6.3and E.2) { is needed too. Speci�cally, we combine the Pairwise-Independent Sam-pler with the Expander Random Walk Generator (see Proposition 8.29) to obtaina new sampler. The new sampler uses a t-long random walk on an expander withvertex set f0; 1g2n for generating a sequence of t def= O(log(1=�)) related seeds fort invocations of the Pairwise-Independent Sampler, where each of these invoca-tions uses the corresponding 2n bits to generate a sequence of O(1="2) samples inf0; 1gn. Furthermore, each of these invocations returns a value that, with prob-ability at least 0:9, is "-close to ��. Theorem 8.28 (see also Exercise 8.36) is usedto show that, with probability at least 1� exp(�t) = 1� �, most of these t invo-cations return an "-close approximation. Hence, the median among these t valuesis an ("; �)-approximation to the correct value. The resulting sampler, called theMedian-of-Averages Sampler, has sample complexity O(log(1=�)"2) and randomnesscomplexity 2n + O(log(1=�)), which is optimal up-to a constant factor in bothcomplexities.Further improvements. The randomness complexity of the Median-of-AveragesSampler can be improved from 2n+O(log(1=�)) to n+O(log(1=�")), while main-taining its (optimal) sample complexity (of O(log(1=�)"2)). This is done by replacingthe Pairwise Independent Sampler by a sampler that picks a random vertex in asuitable expander and samples all its neighbors.

520APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONAveraging Samplers. Averaging (a.k.a. \Oblivious") samplers are non-adaptivesamplers in which the evaluation algorithm is the natural one: that is, it merelyoutputs the average of the values of the sampled points. Indeed, the Pairwise-Independent Sampler is an averaging sampler, whereas the Median-of-AveragesSampler is not. Interestingly, averaging samplers have applications for which ordi-nary non-adaptive samplers do not su�ce. Averaging samplers are closely relatedto randomness extractors, de�ned and discussed in Section D.4.An odd perspective. Recall that a non-adaptive sampler consists of a samplegenerator G and an evaluator V such that for every � :f0; 1gn! [0; 1] it holds thatPr(s1;:::;sm) G(Uk)[jV (�(s1); :::; �(sm))� ��j > "] < �:Thus, we may view G as a pseudorandom generator that is subjected to a distin-guishability test that is determined by a �xed algorithm V and an arbitrary function� :f0; 1gn! [0; 1], where we assume that Pr[jV (�(U (1)n); :::; �(U (m)n))� ��j > "] < �.What is a bit odd here is that, except for the case of averaging samplers, thedistinguishability test contains a central component (i.e., the evaluator V) that ispotentially custom-made to help the generator G pass the test.3D.4 Randomness ExtractorsExtracting almost-perfect randomness from sources of weak (i.e., defected) ran-domness is crucial for the actual use of randomized algorithms, procedures andprotocols. The latter are analyzed assuming that they are given access to a perfectrandom source, while in reality one typically has access only to sources of weak(i.e., highly imperfect) randomness. Randomness extractors are e�cient proce-dures that (possibly with the help of little extra randomness) enhance the qualityof random sources, converting any source of weak randomness to an almost perfectone. In addition, randomness extractors are related to several other fundamentalproblems, to be further discussed later.One key parameter, which was avoided in the foregoing discussion, is the class ofweak random sources from which we need to extract almost perfect randomness. Itis preferable to make as little assumptions as possible regarding the weak randomsource. In other words, we wish to consider a wide class of such sources, andrequire that the randomness extractor (often referred to as the extractor) \workswell" for any source in this class. A general class of such sources is de�ned inxD.4.1.1, but �rst we wish to mention that even for very restricted classes of sourcesno deterministic extractor can work.4 To overcome this impossibility result, twoapproaches are used:3Another aspect in which samplers di�er from the various pseudorandom generators discussedin Chapter 8 is in the aim to minimize, rather than maximize, the number of blocks (denotedhere by m) in the output sequence. However, also in case of samplers the aim is to maximize theblock-length (denoted here by n).4For example, consider the class of sources that output n-bit strings such that no stringoccurs with probability greater than 2�(n�1) (i.e., twice its probability weight under the uniformdistribution).

D.4. RANDOMNESS EXTRACTORS 521Seeded extractors: The �rst approach consists of considering randomized ex-tractors that use a relatively small amount of randomness (in addition tothe weak random source). That is, these extractors obtain two inputs: ashort truly random seed and a relatively long sequence generated by an arbi-trary source that belongs to the speci�ed class of sources. This suggestion ismotivated in two di�erent ways:1. The application may actually have access to an almost-perfect randomsource, but bits from this source are much more expensive than bitsfrom the weak (i.e., low-quality) random source. Thus, it makes senseto obtain few high-quality bits from the almost-perfect source and usethem to \purify" the cheap bits obtained from the weak (low-quality)source.2. In some applications (e.g., when using randomized algorithms), it maybe possible to scan over all possible values of the seed and run the algo-rithm using the corresponding extracted randomness. That is, we obtaina sample r from the weak random source, and invoke the algorithm onextract(s; r), for every possible seed s, ruling by majority. (This al-ternative is typically not applicable to cryptographic and/or distributedsettings.)Few independent sources: The second approach consists of considering deter-ministic extractors that obtain samples from a few (say two) independentsources of weak randomness. Such extractors are applicable in any setting(including in cryptography), provided that the application has access to therequired number of independent weak random sources.In this section we focus on the �rst type of extractors (i.e., the seeded extractors).This choice is motivated both by the relatively more mature state of the researchin that direction and the closer connection between this direction and other topicsin complexity.D.4.1 De�nitions and various perspectivesWe �rst present a de�nition that corresponds to the foregoing motivational discus-sion, and later discuss its relation to other topics in complexity.D.4.1.1 The Main De�nitionA very wide class of weak random sources corresponds to sources for which nospeci�c output is too probable (cf. [52]). That is, the class is parameterized by a(probability) bound � and consists of all sources X such that for every x it holdsthat Pr[X = x] � �. In such a case, we say that X has min-entropy5 at leastlog2(1=�). Indeed, we represent sources as random variables, and assume that5Recall that the entropy of a random variableX is de�ned asPx Pr[X = x] log2(1=Pr[X = x]).Indeed the min-entropy of X equals minxflog2(1=Pr[X = x])g, and is always upper-bounded byits entropy.

522APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONthey are distributed over strings of a �xed length, denoted n. An (n; k)-source is asource that is distributed over f0; 1gn and has min-entropy at least k.An interesting special case of (n; k)-sources is that of sources that are uniformover a subset of 2k strings. Such sources are called (n; k)-at. A simple but usefulobservation is that each (n; k)-source is a convex combination of (n; k)-at sources.De�nition D.8 (extractor for (n; k)-sources):1. An algorithm Ext :f0; 1gd�f0; 1gn!f0; 1gm is called an extractor with error" for the class C if for every source X in C it holds that Ext(Ud; X) is "-closeto Um. If C is the class of (n; k)-sources then Ext is called a (k; ")-extractor.2. An algorithm Ext is called a strong extractor with error " for C if for everysource X in C it holds that (Ud;Ext(Ud; X)) is "-close to (Ud; Um). A strong(k; ")-extractor is de�ned analogously.Using the \decomposition" of (n; k)-sources to (n; k)-at sources, it follows thatExt is a (k; ")-extractor if and only if it is an extractor with error " for the classof (n; k)-at sources. (A similar claim holds for strong extractors.) Thus, much ofthe technical analysis is conducted with respect to the class of (n; k)-at sources.For example, it is easy to see that, for d = log2(n="2) +O(1), there exists a (k; ")-extractor Ext : f0; 1gd � f0; 1gn ! f0; 1gk. (The proof is by the ProbabilisticMethod and uses a union bound on the set of all (n; k)-at sources.)6We seek, however, explicit extractors; that is, extractors that are implementableby polynomial-time algorithms. We note that the evaluation algorithm of any fam-ily of pairwise independent hash functions mapping n-bit strings to m-bit stringsconstitutes a (strong) (k; ")-extractor for " = 2�(k�m)=2 (see the alternative proof ofTheorem D.5). However, these extractors necessarily use a long seed (i.e., d � 2mmust hold (and in fact d = n+2m�1 holds in Construction D.3)). In Section D.4.2we survey constructions of e�cient (k; ")-extractors that obtain logarithmic seedlength (i.e., d = O(log(n="))). But before doing so, we provide a few alternativeperspectives on extractors.An important note on logarithmic seed length. The case of logarithmicseed length is of particular importance for a variety of reasons. Firstly, whenemulating a randomized algorithm using a defected random source (as in Item 2 ofthe motivational discussion of seeded extractors), the overhead is exponential in thelength of the seed. Thus, the emulation of a generic probabilistic polynomial-timealgorithm can be done in polynomial time only if the seed length is logarithmic.Similarly, the applications discussed in xD.4.1.2 and xD.4.1.3 are feasible only ifthe seed length is logarithmic. Lastly, we note that logarithmic seed length is anabsolute lower-bound for (k; ")-extractors, whenever n > k+k
(1) (and m � 1 and" < 1=2).6The probability that a random function Ext : f0; 1gd � f0; 1gn ! f0; 1gk is not an extractorwith error " for a �xed (n; k)-at source is upper-bounded by 22k � exp(�
(2d+k"2)), which issmaller than 1=�2n2k�.

D.4. RANDOMNESS EXTRACTORS 523D.4.1.2 Extractors as averaging samplersThere is a close relationship between extractors and averaging samplers (whichare mentioned towards the end of Section D.3). We �rst show that any averagingsampler gives rise to an extractor. Let G : f0; 1gn ! (f0; 1gm)t be the sample gen-erating algorithm of an averaging sampler having accuracy " and error probability�. That is, G uses n bits of randomness and generates t sample points in f0; 1gmsuch that for every f : f0; 1gm ! [0; 1] with probability at least 1�� the average ofthe f -values of these points is in the interval [f � "], where f def= E[f(Um)]. De�neExt : [t] � f0; 1gn ! f0; 1gm such that Ext(i; r) is the ith sample generated byG(r). We shall prove that Ext is a (k; 2")-extractor, for k = n� log2("=�).Suppose towards the contradiction that there exists a (n; k)-at source X suchthat for some S � f0; 1gm it is the case that Pr[Ext(Ud; X) 2 S] > Pr[Um 2 S]+2",where d = log2 t and [t] � f0; 1gd. De�neB = fx 2 f0; 1gn : Pr[Ext(Ud; x) 2 S] > (jSj=2m) + "g:Then, jBj > " � 2k = � � 2n. De�ning f(z) = 1 if z 2 S and f(z) = 0 otherwise, wehave f def= E[f(Um)] = jSj=2m. But, for every r 2 B the f -average of the sampleG(r) is greater than f + ", in contradiction to the hypothesis that the sampler haserror probability � (with respect to accuracy ").We now turn to show that extractors give rise to averaging samplers. Let Ext :f0; 1gd � f0; 1gn ! f0; 1gm be a (k; ")-extractor. Consider the sample generationalgorithm G : f0; 1gn ! (f0; 1gm)2d de�ne by G(r) = (Ext(s; r))s2f0;1gd . We provethat it corresponds to an averaging sampler with accuracy " and error probability� = 2�(n�k�1).Suppose towards the contradiction that there exists a function f : f0; 1gm ![0; 1] such that for �2n = 2k+1 strings r 2 f0; 1gn the average f -value of thesample G(r) deviates from f def= E[f(Um)] by more than ". Suppose, without lossof generality, that for at least half of these r's the average is greater than f + ",and let B denote the set of these r's. Then, for X that is uniformly distributed onB and is thus a (n; k)-source, we haveE[f(Ext(Ud; X))] > E[f(Um)] + ";which (using jf(z)j � 1 for every z) contradicts the hypothesis that Ext(Ud; X) is"-close to Um.D.4.1.3 Extractors as randomness-e�cient error-reductionsAs may be clear from the foregoing discussion, extractors yield randomness-e�cientmethods for error-reduction. Indeed, error-reduction is a special case of the sam-pling problem, obtained by considering Boolean functions. Speci�cally, for a two-sided error decision procedure A, consider the function fx : f0; 1g�(jxj) ! f0; 1gsuch that fx(r) = 1 if A(x; r) = 1 and fx(r) = 0 otherwise. Assuming thatthe probability that A is correct is at least 0:5 + " (say " = 1=6), error reduc-tion amounts to providing a sampler with accuracy " and any desired error prob-ability � � " for the Boolean function fx. In particular, any (k; ")-extractor

524APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONExt : f0; 1gd � f0; 1gn ! f0; 1g�(jxj) with k = n � log(1=�) � 1 will do, provided2d is feasible (e.g., 2d = poly(�(jxj)), where �(�) represents the randomness com-plexity of the original algorithm A). The question of interest here is how does n(which represents the randomness complexity of the corresponding sampler) growas a function of �(jxj) and �.Error-reduction using the extractor Ext: [poly(�(jxj))]�f0; 1gn!f0; 1g�(jxj)error probability randomness complexityoriginal algorithm 1=3 �(jxj)resulting algorithm � (may depend on jxj) n (function of �(jxj) and �)Jumping ahead (see Part 1 of Theorem D.10), we note that for every � > 1, onecan obtain n = O(�(jxj))+� log2(1=�), for any � > 2�poly(�(jxj)). Note that, for � <2�O(�(jxj)), this bound on the randomness-complexity of error-reduction is betterthan the bound of n = �(jxj) + O(log(1=�)) that is provided (for the reduction ofone-sided error) by the Expander RandomWalk Generator (of Section 8.6.3), albeitthe number of samples here is larger (i.e., poly(�(jxj)=�) rather than O(log(1=�))).Mentioning the reduction of one-sided error probability, brings us to a cor-responding relaxation of the notion of an extractor, which is called a disperser.Loosely speaking, a (k; ")-disperser is only required to hit (with positive probabil-ity) any set of density greater than " in its image, rather than produce a distributionthat is "-close to uniform.De�nition D.9 (dispersers): An algorithm Dsp : f0; 1gd � f0; 1gn ! f0; 1gm iscalled a (k; ")-disperser if for every (n; k)-source X the support of Dsp(Ud; X) coversat least (1� ") � 2m points. Alternatively, for every set S � f0; 1gm of size greaterthan "2m it holds that Pr[Dsp(Ud; X) 2 S] > 0.Dispersers can be used for the reduction of one-sided error analogously to theuse of extractors for the reduction of two-sided error. Speci�cally, regarding theaforementioned function fx (and assuming that either Pr[fx(U`(jxj)) = 1] > " orfx(U`(jxj)) = 0), we may use any (k; ")-disperser Dsp : f0; 1gd�f0; 1gn! f0; 1g`(jxj)in attempt to �nd a point z such that fx(z) = 1. Indeed, if Pr[fx(U`(jxj)) = 1] > "then jfz : (8s2f0; 1gd) fx(Dsp(s; z)) = 0gj < 2k, and thus the one-sided error canbe reduced from 1� " to 2�(n�k) while using n random bits.D.4.1.4 Other perspectivesExtractors and dispersers have an appealing interpretation in terms of bipartitegraphs. Starting with dispersers, we view a disperser Dsp : f0; 1gd � f0; 1gn !f0; 1gm as a bipartite graphG = ((f0; 1gn; f0; 1gm); E) such that E = f(x;Dsp(s; x)) :x 2 f0; 1gn; s 2 f0; 1gdg. This graph has the property that any subset of 2k ver-tices on the left (i.e., in f0; 1gn) has a neighborhood that contains at least a 1� "fraction of the vertices of the right, which is remarkable in the typical case whered is small (e.g., d = O(log n=")) and n � k � m whereas m =
(k) (or at leastm = k
(1)). Furthermore, if Dsp is e�ciently computable then this bipartite graph

D.4. RANDOMNESS EXTRACTORS 525is strongly constructible in the sense that, given a vertex on the left, one can e�-ciently �nd all its neighbors. An extractor Ext : f0; 1gd� f0; 1gn ! f0; 1gm yieldsan analogous graph with a even stronger property: the neighborhood multi-set ofany subset of 2k vertices on the left covers the vertices on the right in an almostuniform manner.An odd perspective. In addition to viewing extractors as averaging samplers,which in turn may be viewed within the scope of the pseudorandomness paradigm,we mention here an even more odd perspective. Speci�cally, randomness extractorsmay be viewed as randomized (by the seed) algorithms designed on purpose suchthat to be fooled by any weak random source (but not by an even worse source).Consider a (k; ")-extractor Ext : f0; 1gd � f0; 1gn ! f0; 1gm, for say " � 1=100,m = k = !(logn=") and d = O(log n="), and a potential test TS, parameterizedby a set S � f0; 1gm, such that Pr[TS(x) = 1] = Pr[Ext(Ud; x) 2 S] (i.e., oninput x 2 f0; 1gn, the test uniformly selects s 2 f0; 1gd and outputs 1 if andonly if Ext(s; x) 2 S). Then, for every (n; k)-source X the test TS does notdistinguish X from Un (i.e., Pr[TS(X)] = Pr[TS(Un)] � 2", because Ext(Ud; X)is 2"-close to Ext(Ud; Un) (since each is "-close to Um)). On the other hand, forevery (n; k � d � 4)-at source Y there exists a set S such that TS distinguishY from Un with gap 0:9 (e.g., for S that equals the support of Ext(Ud; Y), itholds that Pr[TS(Y)] = 1 and Pr[TS(Un)] � jSj � 2�m + " = 2�4 + " < 0:1).Furthermore, this class of tests detects as defected, with probability 2=3, any sourcethat has entropy below (k=4)�d.7 Thus, this weird class of tests views each (n; k)-source as \pseudorandom" while detecting sources of lower entropy (e.g., entropylower than (k=4)� d) as non-pseudorandom. Indeed, this perspective stretches thepseudorandomness paradigm quite far.D.4.2 ConstructionsRecall that we seek explicit constructions of extractors; that is, functions Ext :f0; 1gd � f0; 1gn ! f0; 1gm that can be computed in polynomial-time. The ques-tion, of course, is of parameters; that is, having (k; ")-extractors with m as largeas possible and d as small as possible. We �rst note that typically8 m � k +d � (2 log2(1=") � O(1)) and d � log2((n � k)="2) � O(1) must hold, regard-less of explicitness. The aforementioned bounds are in fact tight; that is, thereexists (non-explicit) (k; ")-extractors with m = k + d � 2 log2(1=") � O(1) andd = log2((n� k)="2)+O(1). The obvious goal is to meet these bounds via explicitconstructions.7For any such source Y , the distribution Z = Ext(Ud; Y) has entropy at most k=4 = m=4,and thus is 0:7-far from Um (and 2/3-far from Ext(Ud; Un)). The lower-bound on the statisticaldistance of Z to Um can be proven by the contra-positive: if Z is �-close to Um then its entropyis at least (1 � �) �m� 1 (e.g., by using Fano's inequality, see [60, Thm. 2.11.1]).8That is, for " < 1=2 and m > d.

526APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIOND.4.2.1 Some known resultsDespite tremendous progress on this problem (and occasional claims regarding\optimal" explicit constructions), the ultimate goal was not reached yet. However,we are pretty close. In particular, we have the following.Theorem D.10 (explicit constructions of extractors): Explicit (k; ")-extractors ofthe form Ext : f0; 1gd � f0; 1gn ! f0; 1gm exist in the following cases:1. For any constants "; � > 0, with d = O(log n) and m = (1� �) � k.2. For any constants "; � > 0, with d = (1 + �) � log2 n and m = k=poly(log n).3. For any " > exp(�k= log k), with d = O(log n=") and m =
(k= log k).Part 2 is due to [188], and the other two parts are due to [148], where theseworks build on previous ones (which are not cited here). We note that, for sakeof simplicity, we did not quote the best possible bounds. Furthermore, we did notmention additional incomparable results (which are relevant for di�erent ranges ofparameters). In general, it seems that the \last word" has not been said yet: indeedthe current results are close to optimal, but this cannot be said about the way thatthey are achieved. In view of the foregoing, we refrain from trying to provide anoverview of the proof of Theorem D.10, and review instead a conceptual insightthat opened the door to much of the recent developments in the area.D.4.2.2 The pseudorandomness connectionWe conclude this section with an overview of a fruitful connection between extrac-tors and certain pseudorandom generators. The connection, discovered by Tre-visan [209], is surprising in the sense that it goes in a non-standard direction: ittransforms certain pseudorandom generators into extractors. As argued throughoutthis book (most conspicuously at the end of Section 7.1.2), computational objectsare typically more complex than the corresponding information theoretical objects.Thus, if pseudorandom generators and extractors are at all related (which was notsuspected before [209]) then this relation should not be expected to help in the con-struction of extractors, which seem an information theoretic object. Nevertheless,the discovery of this relation did yield a breakthrough in the study of extractors.9But before describing the connection, let us wonder for a moment. Just lookingat the syntax, we note that pseudorandom generators have a single input (i.e., theseed), while extractors have two inputs (i.e., the n-bit long source and the d-bitlong seed). But taking a second look at the Nisan{Wigderson Generator (i.e., thecombination of Construction 8.17 with an ampli�cation of worst-case to average-case hardness), we note that this construction can be viewed as taking two inputs:a d-bit long seed and a \hard" predicate on d0-bit long strings (where d0 =
(d)).109We note that once the connection became better understood, inuence started going in the\right" direction: from extractors to pseudorandom generators.10Indeed, to �t the current context, we have modi�ed some notations. In Construction 8.17 thelength of the seed is denoted by k and the length of the input for the predicate is denoted by m.

D.4. RANDOMNESS EXTRACTORS 527Now, an appealing idea is to use the n-bit long source as a (truth-table) descriptionof a (worse-case) hard predicate (which indeed means setting n = 2d0). The keyobservation is that even if the source is only weakly random we expect it to representa predicate that is hard on the worst-case.Recall that the aforementioned construction is supposed to yield a pseudoran-dom generator whenever it starts with a hard predicate. In the current context,where there are no computational restrictions, pseudorandomness is supposed tohold against any (computationally unbounded) distinguisher, and thus here pseudo-randomness means being statistically close to the uniform distribution (on stringsof the adequate length, denoted `). Intuitively, this makes sense only if the ob-served sequence is shorter that the amount of randomness in the source (and seed),which is indeed the case (i.e., ` < k + d, where k denotes the min-entropy of thesource). Hence, there is hope to obtain a good extractor this way.To turn the hope into a reality, we need a proof (which is sketched next). Look-ing again at the Nisan{Wigderson Generator, we note that the proof of indistin-guishability of this generator provides a black-box procedure for computing the un-derlying predicate when given oracle access to any potential distinguisher. Specif-ically, in the proofs of Theorems 7.19 and 8.18 (which holds for any ` = 2
(d0))11,this black-box procedure was implemented by a relatively small circuit (which de-pends on the underlying predicate). Hence, this procedure contains relatively littleinformation (regarding the underlying predicate), on top of the observed `-bit longoutput of the extractor/generator. Speci�cally, for some �xed polynomial p, theamount of information encoded in the procedure (and thus available to it) is upper-bound by b def= p(`), while the procedure is suppose to compute the underlyingpredicate correctly on each input. That is, this amount of information is supposedto fully determine the underlying predicate, which in turn is identical to the n-bitlong source. Thus, if the source has min-entropy exceeding b, then it cannot befully determine using only b bits of information. It follows that the foregoing con-struction constitutes a (b+O(1); 1=6)-extractor (outputting ` = b
(1) bits), wherethe constant 1=6 is the one used in the proof of Theorem 8.18 (and the argumentholds provided that b = n
(1)). Note that this extractor uses a seed of lengthd = O(d0) = O(log n). The argument can be extended to obtain (k; poly(1=k))-extractors that output k
(1) bits using a seed of length d = O(log n), provided thatk = n
(1).We note that the foregoing description has only referred to two abstract prop-erties of the Nisan{Wigderson Generator: (1) the fact that this generator usesany worst-case hard predicate as a black-box, and (2) the fact that its analysisuses any distinguisher as a black-box. In particular, we viewed the ampli�cationof worst-case hardness to inapproximability (performed in Theorem 7.19) as partof the construction of the pseudorandom generator. An alternative presentation,which is more self-contained, replaces the ampli�cation step of Theorem 7.19 by adirect argument in the current (information theoretic) context and plugs the result-ing predicate directly into Construction 8.17. The advantages of this alternativeinclude using a simpler ampli�cation (since ampli�cation is simpler in the informa-11Recalling that n = 2d0 , the restriction ` = 2
(d0) implies ` = n
(1).

528APPENDIXD. PROBABILISTIC PRELIMINARIES AND ADVANCED TOPICS IN RANDOMIZATIONtion theoretic setting than in the computational setting), and deriving transparentconstruction and analysis (which mirror Construction 8.17 and Theorem 8.18, re-spectively).The alternative presentation. The foregoing analysis transforms a generic dis-tinguisher into a procedure that computes the underlying predicate correctly oneach input, which fully determines this predicate. Hence, an upper-bound on theinformation available to this procedure yields an upper-bound on the number ofpossible outcomes of the source that are bad for the extractor. In the alternativepresentation, we transforms a generic distinguisher into a procedure that approx-imates the underlying predicate; that is, the procedure yields a function that isrelatively close to the underlying predicate. If the potential underlying predicatesare far apart, then this directly yields the desired bound (on the number of badoutcomes that correspond such predicates). Thus, the idea is to encode the n-bitlong source by an error correcting code of length n0 = poly(n) and relative dis-tance 0:5� (1=n)2, and use the resulting codeword as a truth-table of a predicatefor Construction 8.17. Such codes (coupled with e�cient encoding algorithms)do exist (see Section E.1), and the bene�t in using them is that each n0-bit longstring (determined by the information available to the aforementioned approxima-tion procedure) may be (0:5 � (1=n))-close to at most O(n2) codewords (whichcorrespond to potential predicates). That is, the resulting extractor converts then-bit input x into a codeword x0 2 f0; 1gn0, viewed as a predicate over f0; 1gd0(where d0 = log2 n0), and evaluates this predicate at the ` projections of the d-bitlong seed, where these projections are determined by the corresponding set system(i.e., the `-long sequence of d0-subsets of [d]). The analysis mirrors the proof ofTheorem 8.18, and yields a bound of 2O(`2) �O(n2) on the number of bad outcomesfor the source, where O(`2) upper-bounds the information available to the approx-imation procedure and O(n2) upper-bounds the number of source-outcomes thatwhen encoded are each (0:5� (1=n))-close to the approximation procedure.D.4.2.3 Recommended readingThe interested reader is referred to a survey of Shaltiel [187]. This survey con-tains a comprehensive introduction to the area, including an overview of the ideasthat underly the various constructions. In particular, the survey describes the ap-proaches used before the discovery of the pseudorandomness connection, the con-nection itself (and the constructions that arise from it), and the \third generation"of constructions that followed.

Bibliography[1] S. Aaronson. Complexity Zoo. A continueously updated web-site athttp://qwiki.caltech.edu/wiki/Complexity Zoo/.[2] L.M. Adleman and M. Huang. Primality Testing and Abelian Varieties OverFinite Fields. Springer-Verlag Lecture Notes in Computer Science (Vol. 1512),1992. Preliminary version in 19th STOC, 1987.[3] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathe-matics, Vol. 160 (2), pages 781{793, 2004.[4] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace.In 19th ACM Symposium on the Theory of Computing, pages 132{140, 1987.[5] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lov�asz and C. Racko�. Randomwalks, universal traversal sequences, and the complexity of maze problems. In20th IEEE Symposium on Foundations of Computer Science, pages 218{223,1979.[6] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithmfor the Maximal Independent Set Problem. J. of Algorithms, Vol. 7, pages567{583, 1986.[7] N. Alon and R. Boppana. The monotone circuit complexity of Boolean func-tions. Combinatorica, Vol. 7 (1), pages 1{22, 1987.[8] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Charac-terization of the Testable Graph Properties: It's All About Regularity. In38th ACM Symposium on the Theory of Computing, to appear, 2006.[9] N. Alon, O. Goldreich, J. H�astad, R. Peralta. Simple Constructions of Almostk-wise Independent Random Variables. Journal of Random structures andAlgorithms, Vol. 3, No. 3, (1992), pages 289{304.[10] N. Alon and J.H. Spencer. The Probabilistic Method. John Wiley & Sons,Inc., 1992.[11] R. Armoni. On the derandomization of space-bounded computations. Inthe proceedings of Random98, Springer-Verlag, Lecture Notes in ComputerScience (Vol. 1518), pages 49{57, 1998.571

572 BIBLIOGRAPHY[12] S. Arora. Approximation schemes for NP-hard geometric optimization prob-lems: A survey. Math. Programming, Vol. 97, pages 43{69, July 2003.[13] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cationand Intractability of Approximation Problems. Journal of the ACM, Vol. 45,pages 501{555, 1998. Preliminary version in 33rd FOCS, 1992.[14] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characteriza-tion of NP. Journal of the ACM, Vol. 45, pages 70{122, 1998. Preliminaryversion in 33rd FOCS, 1992.[15] H. Attiya and J. Welch: Distributed Computing: Fundamentals, Simulationsand Advanced Topics. McGraw-Hill, 1998.[16] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposiumon the Theory of Computing, pages 421{429, 1985.[17] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time hasTwo-Prover Interactive Protocols. Computational Complexity, Vol. 1, No. 1,pages 3{40, 1991. Preliminary version in 31st FOCS, 1990.[18] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations inPolylogarithmic Time. In 23rd ACM Symposium on the Theory of Computing,pages 21{31, 1991.[19] L. Babai, L. Fortnow, N. Nisan and A. Wigderson. BPP has Subexponen-tial Time Simulations unless EXPTIME has Publishable Proofs. ComplexityTheory, Vol. 3, pages 307{318, 1993.[20] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof Systemand a Hierarchy of Complexity Classes. Journal of Computer and SystemScience, Vol. 36, pp. 254{276, 1988.[21] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: E�cientAlgorithms). MIT Press, 1996.[22] B. Barak. Non-Black-Box Techniques in Crypptography. PhD Thesis, Weiz-mann Institute of Science, 2004.[23] W. Baur and V. Strassen. The Complexity of Partial Derivatives. Theor.Comput. Sci. 22, pages 317{330, 1983.[24] P. Beame and T. Pitassi. Propositional Proof Complexity: Past, Present, andFuture. In Bulletin of the European Association for Theoretical ComputerScience, Vol. 65, June 1998, pp. 66{89.[25] A. Beimel, Y. Ishai, E. Kushilevitz, and J.F. Raymond. Breaking theO(n1=(2k�1)) barrier for information-theoretic private information retrieval.In 43rd IEEE Symposium on Foundations of Computer Science, pages 261{270, 2002.

BIBLIOGRAPHY 573[26] M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-witnesses using an NP-oracle. Information and Computation, Vol. 163, pages510{526, 2000.[27] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability { Towards Tight Results. SIAM Journal on Computing,Vol. 27, No. 3, pages 804{915, 1998. Extended abstract in 36th FOCS, 1995.[28] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of AverageCase Complexity. Journal of Computer and System Science, Vol. 44 (2), pages193{219, 1992.[29] A. Ben-Dor and S. Halevi. In 2nd Israel Symp. on Theory of Computing andSystems, IEEE Computer Society Press, pages 108-117, 1993.[30] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micaliand P. Rogaway. Everything Provable is Probable in Zero-Knowledge. InCrypto88, Springer-Verlag Lecture Notes in Computer Science (Vol. 403),pages 37{56, 1990[31] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Inter-active Proofs: How to Remove Intractability. In 20th ACM Symposium onthe Theory of Computing, pages 113{131, 1988.[32] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems forNon-Cryptographic Fault-Tolerant Distributed Computation. In 20th ACMSymposium on the Theory of Computing, pages 1{10, 1988.[33] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. RobustPCPs of proximity, Shorter PCPs and Applications to Coding. In 36th ACMSymposium on the Theory of Computing, pages 1{10, 2004. Full version inECCC, TR04-021, 2004.[34] E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and QueryComplexity. ECCC, TR04-060, 2004.[35] L. Berman and J. Hartmanis. On isomorphisms and density of NP and othercomplete sets. SIAM Journal on Computing, Vol. 6 (2), 1977, pages 305{322.Extended abstract in 8th STOC, 1976.[36] M. Blum. A Machine-Independent Theory of the Complexity of RecursiveFunctions. Journal of the ACM, Vol. 14 (2), pages 290{305, 1967.[37] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequencesof Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS, 1982.[38] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Appli-cations to Numerical Problems. Journal of Computer and System Science,Vol. 47, No. 3, pages 549{595, 1993.

574 BIBLIOGRAPHY[39] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in bounded-degree graphs. In 43rd IEEE Symposium on Foun-dations of Computer Science, pages 93{102, 2002.[40] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions forNP problems. In Proc. 44th IEEE Symposium on Foundations of ComputerScience, pages 308{317, 2003.[41] A. Bogdanov and L. Trevisan. Average-case complexity: a survey. In prepa-ration, 2005.[42] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short InteractiveProofs? Information Processing Letters, 25, May 1987, pages 127-132.[43] R. Boppana and M. Sipser. The complexity of �nite functions. In Handbookof Theoretical Computer Science: Volume A { Algorithms and Complexity,J. van Leeuwen editor, MIT Press/Elsevier, 1990, pages 757{804.[44] A. Borodin. Computational Complexity and the Existence of ComplexityGaps. Journal of the ACM, Vol. 19 (1), pages 158{174, 1972.[45] A. Borodin. On Relating Time and Space to Size and Depth. SIAM Journalon Computing, Vol. 6 (4), pages 733{744, 1977.[46] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs ofKnowledge. Journal of Computer and System Science, Vol. 37, No. 2, pages156{189, 1988. Preliminary version by Brassard and Cr�epeau in 27th FOCS,1986.[47] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computerand System Science, Vol. 18, 1979, pages 143{154.[48] G.J. Chaitin. On the Length of Programs for Computing Finite Binary Se-quences. Journal of the ACM, Vol. 13, pages 547{570, 1966.[49] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. Journal of theACM, Vol. 28, pages 114{133, 1981.[50] D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unconditionally SecureProtocols. In 20th ACM Symposium on the Theory of Computing, pages11{19, 1988.[51] B. Chor and O. Goldreich. On the Power of Two{Point Based Sampling.Jour. of Complexity, Vol 5, 1989, pages 96{106. Preliminary version dates1985.[52] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomnessand Probabilistic Communication Complexity. SIAM Journal on Computing,Vol. 17, No. 2, pages 230{261, 1988.

BIBLIOGRAPHY 575[53] A. Church. An Unsolvable Problem of Elementary Number Theory. Amer.J. of Math., Vol. 58, pages 345{363, 1936.[54] A. Cobham. The Intristic Computational Di�culty of Functions. In Proc.1964 Iternational Congress for Logic Methodology and Philosophy of Science,pages 24{30, 1964.[55] S.A. Cook. The Complexity of Theorem Proving Procedures. In 3rd ACMSymposium on the Theory of Computing, pages 151{158, 1971.[56] S.A. Cook. A overview of Computational Complexity. Turing Award Lecture.CACM, Vol. 26 (6), pages 401{408, 1983.[57] S.A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Infor-mation and Control, Vol. 64, pages 2{22, 1985.[58] S.A. Cook and R.A. Reckhow. Stephen A. Cook, Robert A. Reckhow: TheRelative E�ciency of Propositional Proof Systems. J. of Symbolic Logic,Vol. 44 (1), pages 36{50, 1979.[59] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-gressions. Journal of Symbolic Computation, 9, pages 251{280, 1990.[60] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley& Sons, Inc., New-York, 1991.[61] P. Crescenzi and V. Kann. A compendium of NP Optimization problems.Available at http://www.nada.kth.se/�viggo/wwwcompendium/[62] W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Trans.on Info. Theory, IT-22 (Nov. 1976), pages 644{654.[63] I. Dinur. The PCP Theorem by Gap Ampli�cation. ECCC, TR05-046, 2005.[64] I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proofof the PCP-Theorem. In 45th IEEE Symposium on Foundations of ComputerScience, pages 155{164, 2004.[65] I. Dinur and S. Safra. The importance of being biased. In 34th ACM Sym-posium on the Theory of Computing, pages 33{42, 2002.[66] J. Edmonds. Paths, Trees, and Flowers. Canad. J. Math., Vol. 17, pages449{467, 1965.[67] S. Even. Graph Algorithms. Computer Science Press, 1979.[68] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problemswith Applications to Public-Key Cryptography. Information and Control,Vol. 61, pages 159{173, 1984.

576 BIBLIOGRAPHY[69] U. Feige, S. Goldwasser, L. Lov�asz and S. Safra. On the Complexity ofApproximating the Maximum Size of a Clique. Unpublished manuscript,1990.[70] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. ApproximatingClique is almost NP-complete. Journal of the ACM, Vol. 43, pages 268{292,1996. Preliminary version in 32nd FOCS, 1991.[71] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General Assumptions. SIAM Journal on Com-puting, Vol. 29 (1), pages 1{28, 1999.[72] U. Feige and A. Shamir. Witness Indistinguishability and Witness HidingProtocols. In 22nd ACM Symposium on the Theory of Computing, pages416{426, 1990.[73] E. Fischer. The art of uninformed decisions: A primer to property test-ing. Bulletin of the European Association for Theoretical Computer Science,Vol. 75, pages 97{126, 2001.[74] G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.[75] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-space lowerbounds for satis�ability. Journal of the ACM, Vol. 52 (6), pages 835{865,November 2005.[76] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interac-tive protocols. In 3rd IEEE Symp. on Structure in Complexity Theory, pages156{161, 1988. See errata in 5th IEEE Symp. on Structure in ComplexityTheory, pages 318{319, 1990.[77] S. Fortune. A Note on Sparse Complete Sets. SIAM Journal on Computing,Vol. 8, pages 431{433, 1979.[78] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Complete-ness and Soundness in Interactive Proof Systems. Advances in ComputingResearch: a research annual, Vol. 5 (Randomness and Computation, S. Mi-cali, ed.), pages 429{442, 1989.[79] M.L. Furst, J.B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems Theory, Vol. 17 (1), pages 13{27,1984. Preliminary version in 22nd FOCS, 1981.[80] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcen-trators. Journal of Computer and System Science, Vol. 22, pages 407{420,1981.[81] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

BIBLIOGRAPHY 577[82] D. Gillman. A cherno� bound for random walks on expander graphs. In34th IEEE Symposium on Foundations of Computer Science, pages 680{691,1993.[83] O. Goldreich. Foundation of Cryptography { Class Notes. Computer ScienceDept., Technion, Israel, Spring 1989. Superseded by [87, 88].[84] O. Goldreich. A Note on Computational Indistinguishability. InformationProcessing Letters, Vol. 34, pages 277{281, May 1990.[85] O. Goldreich. Notes on Levin's Theory of Average-Case Complexity. ECCC,TR97-058, Dec. 1997.[86] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandom-ness. Algorithms and Combinatorics series (Vol. 17), Springer, 1999.[87] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge Univer-sity Press, 2001.[88] O. Goldreich. Foundation of Cryptography: Basic Applications. CambridgeUniversity Press, 2004.[89] O. Goldreich. Short Locally Testable Codes and Proofs (Survey). ECCC,TR05-014, 2005.[90] O. Goldreich. On Promise Problems (a survey in memory of Shimon Even[1935-2004]). ECCC, TR05-018, 2005.[91] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct RandomFunctions. Journal of the ACM, Vol. 33, No. 4, pages 792{807, 1986.[92] O. Goldreich, S. Goldwasser, and A. Nussboim. On the Implementation ofHuge Random Objects. In 44th IEEE Symposium on Foundations of Com-puter Science, pages 68{79, 2002.[93] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connectionto learning and approximation. Journal of the ACM, pages 653{750, July1998.[94] O. Goldreich and H. Krawczyk. On the Composition of Zero-KnowledgeProof Systems. SIAM Journal on Computing, Vol. 25, No. 1, February 1996,pages 169{192. Preliminary version in 17th ICALP, 1990.[95] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Func-tion. In 21st ACM Symposium on the Theory of Computing, pages 25{32,1989.[96] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing buttheir Validity or All Languages in NP Have Zero-Knowledge Proof Systems.Journal of the ACM, Vol. 38, No. 3, pages 691{729, 1991. Preliminary versionin 27th FOCS, 1986.

578 BIBLIOGRAPHY[97] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game {A Completeness Theorem for Protocols with Honest Majority. In 19th ACMSymposium on the Theory of Computing, pages 218{229, 1987.[98] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC,TR95-050, 1995.[99] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algo-rithmica, pages 302{343, 2002.[100] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degreegraphs. Combinatorica, Vol. 19 (3), pages 335{373, 1999.[101] O. Goldreich, R. Rubinfeld and M. Sudan. Learning polynomials with queries:the highly noisy case. SIAM J. Discrete Math., Vol. 13 (4), pages 535{570,2000.[102] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with alaconic provers. Computational Complexity, Vol. 11, pages 1{53, 2002.[103] O. Goldreich and A. Wigderson. Computational Complexity. In The Prince-ton Companion to Mathematics, to appear.[104] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computerand System Science, Vol. 28, No. 2, pages 270{299, 1984. Preliminary versionin 14th STOC, 1982.[105] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity ofInteractive Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC, 1985. Earlier versions date to1982.[106] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme SecureAgainst Adaptive Chosen-Message Attacks. SIAM Journal on Computing,April 1988, pages 281{308.[107] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in InteractiveProof Systems. Advances in Computing Research: a research annual, Vol. 5(Randomness and Computation, S. Micali, ed.), pages 73{90, 1989. Extendedabstract in 18th STOC, 1986.[108] S.W. Golomb. Shift Register Sequences. Holden-Day, 1967. (Aegean ParkPress, revised edition, 1982.)[109] J. Hartmanis and R.E. Stearns. On the Computational Complexity of ofAlgorithms. Transactions of the AMS, Vol. 117, pages 285{306, 1965.[110] J. H�astad. Almost Optimal Lower Bounds for Small Depth Circuits. Ad-vances in Computing Research: a research annual, Vol. 5 (Randomness andComputation, S. Micali, ed.), pages 143{170, 1989. Extended abstract in18th STOC, pages 6{20, 1986.

BIBLIOGRAPHY 579[111] J. H�astad. Clique is hard to approximate within n1��. Acta Mathematica,Vol. 182, pages 105{142, 1999. Preliminary versions in 28th STOC (1996)and 37th FOCS (1996).[112] J. H�astad. Getting optimal in-approximability results. In 29th ACM Sympo-sium on the Theory of Computing, pages 1{10, 1997.[113] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Gen-erator from any One-way Function. SIAM Journal on Computing, Volume28, Number 4, pages 1364{1396, 1999. Preliminary versions by Impagliazzoet. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).[114] J. H�astad and S. Khot. Query e�cient PCPs with pefect completeness. In42nd IEEE Symposium on Foundations of Computer Science, pages 610{619,2001.[115] A. Healy, S. Vadhan and E. Viola. Using nondeterminism to amplify hardness.In 36th ACM Symposium on the Theory of Computing, pages 192{201, 2004.[116] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languagesand Computation. Addison-Wesley, 1979.[117] D. Hochbaum (ed.). Approximation Algorithms for NP-Hard Problems. PWS,1996.[118] N. Immerman. Nondeterministic Space is Closed Under Complementation.SIAM Journal on Computing, Vol. 17, pages 760{778, 1988.[119] R. Impagliazzo. Hard-core Distributions for Somewhat Hard Problems. In36th IEEE Symposium on Foundations of Computer Science, pages 538{545,1995.[120] R. Impagliazzo and L.A. Levin. No Better Ways to Generate Hard NP In-stances than Picking Uniformly at Random. In 31st IEEE Symposium onFoundations of Computer Science, pages 812{821, 1990.[121] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits:Derandomizing the XOR Lemma. In 29th ACM Symposium on the Theoryof Computing, pages 220{229, 1997.[122] R. Impagliazzo and A. Wigderson. Randomness vs Time: Derandomizationunder a Uniform Assumption. Journal of Computer and System Science,Vol. 63 (4), pages 672-688, 2001.[123] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. InCrypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293),pages 40{51, 1987.[124] M. Jerrum, A. Sinclair, and E. Vigoda. A Polynomial-Time ApproximationAlgorithm for the Permanent of a Matrix with Non-Negative Entries. Journalof the ACM, Vol. 51 (4), pages 671{697, 2004.

580 BIBLIOGRAPHY[125] M. Jerrum, L. Valiant, and V.V. Vazirani. Random Generation of Combina-torial Structures from a Uniform Distribution. Theoretical Computer Science,Vol. 43, pages 169{188, 1986.[126] N. Kahale, Eigenvalues and Expansion of Regular Graphs. Journal of theACM, Vol. 42 (5), pages 1091{1106, September 1995.[127] R. Kannan, H. Venkateswaran, V. Vinay, and A.C. Yao. A Circuit-basedProof of Toda's Theorem. Information and Computation, Vol. 104 (2), pages271{276, 1993.[128] R.M. Karp. Reducibility among Combinatorial Problems. In Complexityof Computer Computations, R.E. Miller and J.W. Thatcher (eds.), PlenumPress, pages 85{103, 1972.[129] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uni-form complexity classes. In 12th ACM Symposium on the Theory of Com-puting, pages 302-309, 1980.[130] R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and re-liability problems. In 24th IEEE Symposium on Foundations of ComputerScience, pages 56-64, 1983.[131] R.M. Karp and V. Ramachandran: Parallel Algorithms for Shared-MemoryMachines. In Handbook of Theoretical Computer Science, Vol A: Algorithmsand Complexity, 1990.[132] M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity RequireSuper-logarithmic Depth. SIAM J. Discrete Math., Vol. 3 (2), pages 255{265,1990. Preliminary version in 20th STOC, 1988.[133] M.J. Kearns and U.V. Vazirani. An introduction to Computational LearningTheory. MIT Press, 1994.[134] S. Khot and O. Regev. Vertex Cover Might be Hard to Approximate towithin 2� ". In 18th IEEE Conference on Computational Complexity, pages379{386, 2003.[135] V.M. Khrapchenko. A method of determining lower bounds for the com-plexity of Pi-schemes. In Matematicheskie Zametki 10 (1),pages 83{92, 1971(in Russian). English translation in Mathematical Notes of the Academy ofSciences of the USSR 10 (1) 1971, pages 474{479.[136] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In24th ACM Symposium on the Theory of Computing, pages 723{732, 1992.[137] D.E. Knuth. The Art of Computer Programming, Vol. 2 (SeminumericalAlgorithms). Addison-Wesley Publishing Company, Inc., 1969 (�rst edition)and 1981 (second edition).

BIBLIOGRAPHY 581[138] A. Kolmogorov. Three Approaches to the Concept of \The Amount Of In-formation". Probl. of Inform. Transm., Vol. 1/1, 1965.[139] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-versity Press, 1996.[140] R.E. Ladner. On the Structure of Polynomial Time Reducibility. Journal ofthe ACM, Vol. 22, 1975, pages 155{171.[141] C. Lautemann. BPP and the Polynomial Hierarchy. Information ProcessingLetters, 17, pages 215{217, 1983.[142] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.[143] L.A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9,pages 115{116, 1973. Translated in problems of Information Transmission 9,pages 265{266.[144] L.A. Levin. Randomness Conservation Inequalities: Information and Inde-pendence in Mathematical Theories. Information and Control, Vol. 61, pages15{37, 1984.[145] L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing,Vol. 15, pages 285{286, 1986.[146] L.A. Levin. Fundamentals of Computing. SIGACT News, Education Forum,special 100-th issue, Vol. 27 (3), pages 89{110, 1996.[147] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and itsApplications. Springer Verlag, August 1993.[148] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal upto constant factors. In 35th ACM Symposium on the Theory of Computing,pages 602{611, 2003.[149] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica,Vol. 8, pages 261{277, 1988.[150] M. Luby and A. Wigderson. Pairwise Independence and Derandomization.TR-95-035, International Computer Science Institute (ICSI), Berkeley, 1995.ISSN 1075-4946.[151] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for In-teractive Proof Systems. Journal of the ACM, Vol. 39, No. 4, pages 859{868,1992. Preliminary version in 31st FOCS, 1990.[152] F. MacWilliams and N. Sloane. The theory of error-correcting codes. North-Holland, 1981.

582 BIBLIOGRAPHY[153] G.A. Margulis. Explicit Construction of Concentrators. (In Russian.) Prob.Per. Infor., Vol. 9 (4), pages 71{80, 1973. English translation in Problems ofInfor. Trans., pages 325{332, 1975.[154] S. Micali. Computationally Sound Proofs. SIAM Journal on Computing,Vol. 30 (4), pages 1253{1298, 2000. Preliminary version in 35th FOCS, 1994.[155] G.L. Miller. Riemann's Hypothesis and Tests for Primality. Journal of Com-puter and System Science, Vol. 13, pages 300{317, 1976.[156] P.B. Miltersen and N.V. Vinodchandran. Derandomizing Arthur-MerlinGames using Hitting Sets. Journal of Computational Complexity, to appear.Preliminary version in 40th FOCS, 1999.[157] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge UniversityPress, 1995.[158] M. Naor. Bit Commitment using Pseudorandom Generators. Journal ofCryptology, Vol. 4, pages 151{158, 1991.[159] J. Naor and M. Naor. Small-bias Probability Spaces: E�cient Constructionsand Applications. SIAM Journal on Computing, Vol 22, 1993, pages 838{856.[160] M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-graphic Application. In 21st ACM Symposium on the Theory of Computing,1989, pages 33{43.[161] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica,Vol. 11 (1), pages 63{70, 1991.[162] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Com-binatorica, Vol. 12 (4), pages 449{461, 1992.[163] N. Nisan. RL � SC. Journal of Computational Complexity, Vol. 4, pages1-11, 1994.[164] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computerand System Science, Vol. 49, No. 2, pages 149{167, 1994.[165] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal ofComputer and System Science, Vol. 52 (1), pages 43{52, 1996.[166] C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.[167] C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation, andComplexity Classes. In 20th ACM Symposium on the Theory of Computing,pages 229{234, 1988.[168] N. Pippenger and M.J. Fischer. Relations among complexity measures. Jour-nal of the ACM, Vol. 26 (2), pages 361{381, 1979.

BIBLIOGRAPHY 583[169] E. Post. A Variant of a Recursively Unsolvable Problem. Bull. AMS, Vol. 52,pages 264{268, 1946.[170] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation(R.A. DeMillo et. al. eds.), Academic Press, 1977.[171] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractableas Factoring. MIT/LCS/TR-212, 1979.[172] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Num-ber Theory, Vol. 12, pages 128{138, 1980.[173] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing,Vol. 27 (3), pages 763{803, 1998. Extended abstract in 27th STOC, 1995.[174] R. Raz and A. Wigderson. Monotone Circuits for Matching Require LinearDepth. Journal of the ACM, Vol. 39 (3), pages 736{744, 1992. Preliminaryversion in 22nd STOC, 1990.[175] A. Razborov. Lower bounds for the monotone complexity of some Booleanfunctions. In Doklady Akademii Nauk SSSR, Vol. 281, No. 4, 1985, pages798{801. English translation in Soviet Math. Doklady, 31, pages 354{357,1985.[176] A. Razborov. Lower bounds on the size of bounded-depth networks over acomplete basis with logical addition. In Matematicheskie Zametki, Vol. 41,No. 4, pages 598{607, 1987. English translation in Mathematical Notes of theAcademy of Sci. of the USSR, Vol. 41 (4), pages 333{338, 1987.[177] A.R. Razborov and S. Rudich. Natural Proofs. Journal of Computer andSystem Science, Vol. 55 (1), pages 24{35, 1997.[178] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Sym-posium on the Theory of Computing, pages 376{385, 2005.[179] O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-ZagGraph Product, and New Constant-Degree Expanders and Extractors. An-nals of Mathematics, Vol. 155 (1), pages 157{187, 2001. Preliminary versionin 41st FOCS, pages 3{13, 2000.[180] H.G. Rice. Classes of Recursively Enumerable Sets and their Decision Prob-lems. Trans. AMS, Vol. 89, pages 25{59, 1953.[181] R.L. Rivest, A. Shamir and L.M. Adleman. A Method for Obtaining DigitalSignatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978, pages120{126.[182] D. Ron. Property testing. In Handbook on Randomization, Volume II,pages 597{649, 2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reifand J.D.P. Rolim.)

584 BIBLIOGRAPHY[183] R. Rubinfeld and M. Sudan. Robust characterization of polynomials withapplications to program testing. SIAM Journal on Computing, Vol. 25 (2),pages 252{271, 1996.[184] M. Saks and S. Zhou. RSPACE(S) � DSPACE(S3=2). In 36th IEEE Sym-posium on Foundations of Computer Science, pages 344{353, 1995.[185] W.J. Savitch. Relationships between nondeterministic and deterministic tapecomplexities. JCSS, Vol. 4 (2), pages 177-192, 1970.[186] A. Selman. On the structure of NP. Notices Amer. Math. Soc., Vol. 21 (6),page 310, 1974.[187] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. InCurrent Trends in Theoretical Computer Science: The Challenge of the NewCentury, Vol 1: Algorithms and Complexity, World scieti�c, 2004. (Editors:G. Paun, G. Rozenberg and A. Salomaa.) Preliminary version in Bulletin ofthe EATCS 77, pages 67{95, 2002.[188] R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and aNew Pseudo-Random Generator. In 42nd IEEE Symposium on Foundationsof Computer Science, pages 648{657, 2001.[189] C.E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans.American Institute of Electrical Engineers, Vol. 57, pages 713{723, 1938.[190] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech.Jour., Vol. 27, pages 623{656, 1948.[191] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech.Jour., Vol. 28, pages 656{715, 1949.[192] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages869{877, 1992. Preliminary version in 31st FOCS, 1990.[193] A. Shpilka. Lower Bounds for Matrix Product. SIAM Journal on Computing,pages 1185-1200, 2003.[194] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACMSymposium on the Theory of Computing, pages 330{335, 1983.[195] M. Sipser. Introduction to the Theory of Computation. PWS PublishingCompany, 1997.[196] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for BooleanCircuit Complexity. In 19th ACM Symposium on the Theory of Computingpages 77{82, 1987.[197] R.J. Solomono�. A Formal Theory of Inductive Inference. Information andControl, Vol. 7/1, pages 1{22, 1964.

BIBLIOGRAPHY 585[198] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAMJournal on Computing, Vol. 6, pages 84{85, 1977. Addendum in SIAM Jour-nal on Computing, Vol. 7, page 118, 1978.[199] D.A. Spielman. Advanced Complexity Theory, Lectures 10 and 11.Notes (by D. Lewin and S. Vadhan), March 1997. Availablefrom http://www.cs.yale.edu/homes/spielman/AdvComplexity/1998/aslect10.ps and lect11.ps.[200] L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical ComputerScience, Vol. 3, pages 1{22, 1977.[201] L. Stockmeyer. The Complexity of Approximate Counting. In 15th ACMSymposium on the Theory of Computing, pages 118{126, 1983.[202] V. Strassen. Algebraic Complexity Theory. In Handbook of Theoretical Com-puter Science: Volume A { Algorithms and Complexity, J. van Leeuwen edi-tor, MIT Press/Elsevier, 1990, pages 633{672.[203] M. Sudan. Decoding of Reed Solomon codes beyond the error-correctionbound. Journal of Complexity, Vol. 13 (1), pages 180{193, 1997.[204] M. Sudan. Algorithmic introduction to coding theory. Lecture notes, Avail-able from http://theory.csail.mit.edu/~madhu/FT01/, 2001.[205] , M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators withoutthe XOR Lemma. Journal of Computer and System Science, Vol. 62, No. 2,pages 236{266, 2001.[206] R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Au-tomata. Acta Informatica, Vol. 26, pages 279{284, 1988.[207] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal onComputing, Vol. 20 (5), pages 865{877, 1991.[208] B.A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute ForceSearch) Algorithms. Annals of the History of Computing, Vol. 6 (4), pages384{398, 1984.[209] L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Generators. In 31st ACM Symposium on the Theory of Computing,pages 141{148, 1998.[210] V. Trifonov. An O(log n log logn) Space Algorithm for Undirected st-Connectivity. In 37th ACM Symposium on the Theory of Computing, pages623{633, 2005.[211] C.E. Turing. On Computable Numbers, with an Application to the Entschei-dungsproblem. Proc. Londom Mathematical Soceity, Ser. 2, Vol. 42, pages230{265, 1936. A Correction, ibid., Vol. 43, pages 544{546.

586 BIBLIOGRAPHY[212] C. Umans. Pseudo-random generators for all hardness. Journal of Computerand System Science, Vol. 67 (2), pages 419{440, 2003.[213] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhDThesis, Department of Mathematics, MIT, 1999. Available fromhttp://www.eecs.harvard.edu/�salil/papers/phdthesis-abs.html.[214] S. Vadhan. An Unconditional Study of Computational Zero Knowledge. In45th IEEE Symposium on Foundations of Computer Science, pages 176{185,2004.[215] L.G. Valiant. The Complexity of Computing the Permanent. TheoreticalComputer Science, Vol. 8, pages 189{201, 1979.[216] L.G. Valiant. A theory of the learnable. CACM, Vol. 27/11, pages 1134{1142,1984.[217] L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions.Theoretical Computer Science, Vol. 47 (1), pages 85{93, 1986.[218] J. von Neumann, First Draft of a Report on the EDVAC, 1945. Contract No.W-670-ORD-492, Moore School of Electrical Engineering, Univ. of Penn.,Philadelphia. Reprinted (in part) in Origins of Digital Computers: SelectedPapers, Springer-Verlag, Berlin Heidelberg, pages 383{392, 1982.[219] J. von Neumann, Zur Theorie der Gesellschaftsspiele. Mathematische An-nalen, 100, pages 295{320, 1928.[220] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.[221] I. Wegener. Branching Programs and Binary Decision Diagrams { Theory andApplications. SIAM Monographs on Discrete Mathematics and Applications,2000.[222] A. Wigderson. The amazing power of pairwise independence. In 26th ACMSymposium on the Theory of Computing, pages 645{647, 1994.[223] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEESymposium on Foundations of Computer Science, pages 80{91, 1982.[224] A.C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. In 26thIEEE Symposium on Foundations of Computer Science, pages 1-10, 1985.[225] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposiumon Foundations of Computer Science, pages 162{167, 1986.[226] D. Zuckerman. Simulating BPP Using a General Weak Random Source.Algorithmica, Vol. 16, pages 367{391, 1996.[227] D. Zuckerman. Randomness-Optimal Oblivious Sampling. Journal of Ran-dom Structures and Algorithms, Vol. 11, Nr. 4, December 1997, pages 345{367.

