
Computational Complexity:A Conceptual PerspectiveOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.October 21, 2006

Chapter 3Variations on P and NPIn this chapter we consider variations on the complexity classes P and NP. Werefer speci�cally to the non-uniform version of P, and to the Polynomial-time Hier-archy (which extends NP). These variations are motivated by relatively technicalconsiderations; still, the resulting classes are referred to quite frequently in theliterature.Summary: Non-uniform polynomial-time (P/poly) captures e�cientcomputations that are carried out by devices that can each only handleinputs of a speci�c length. The basic formalism ignore the complexityof constructing such devices (i.e., a uniformity condition). A �ner for-malism that allows to quantify the amount of non-uniformity refers toso called \machines that take advice."The Polynomial-time Hierarchy (PH) generalizes NP by consideringstatements expressed by quanti�ed Boolean formulae with a �xed num-ber of alternations of existential and universal quanti�ers. It is widelybelieved that each quanti�er alternation adds expressive power to theclass of such formulae.The two di�erent classes are related by showing that if NP is containedin P/poly then the Polynomial-time Hierarchy collapses to its secondlevel. This result is commonly interpreted as supporting the commonbelief that non-uniformity is irrelevant to the P-vs-NP Question; that is,although P/poly extends beyond the class P, is is believed that P/polydoes not contain NP.Except for the latter result, which is presented in Section 3.2.3, the treatments ofP/poly (in Section 3.1) and of the Polynomial-time Hierarchy (in Section 3.2) areindependent of one another. 109

110 CHAPTER 3. VARIATIONS ON P AND NP3.1 Non-uniform polynomial-time (P/poly)In this section we consider two formulations of the notion of non-uniform polynomial-time, based on the two models of non-uniform computing devices that were pre-sented in Section 1.2.4. That is, we specialize the treatment of non-uniform com-puting devices, provided in Section 1.2.4, to the case of polynomially boundedcomplexities. It turns out that both (polynomially bounded) formulations allowfor solving the same class of computational problems, which is a strict superset ofthe class of problems solvable by polynomial-time algorithms.The two models of non-uniform computing devices are Boolean circuits and\machines that take advice" (cf. x1.2.4.1 and x1.2.4.2, respectively). We will focuson the restriction of both models to the case of polynomial complexities, considering(non-uniform) polynomial-size circuits and polynomial-time algorithms that take(non-uniform) advice of polynomially bounded length.The main motivation for considering non-uniform polynomial-size circuits isthat their computational limitations imply analogous limitations on polynomial-time algorithms. The hope is that, as is often the case in mathematics and Science,disposing of an auxiliary condition (i.e., uniformity) that seems secondary1 and isnot well-understood may turn out fruitful. In particular, the (non-uniform) circuitmodel facilitates a low-level analysis of the evolution of a computation, and allowfor the application of combinatorial techniques. The bene�t of this approach hasbeen demonstrated in the study of restricted classes of circuits (see Sections B.2.2and B.2.3).Polynomial-time algorithms that take polynomially bounded advice are usefulin modeling auxiliary information available to possible e�cient strategies that areof interest to us. Indeed, the typical cases are the modeling of adversaries inthe context of cryptography and the modeling of arbitrary randomized algorithmsin the context of derandomization. Furthermore, the model of polynomial-timealgorithms that take advice allows for a quantitative study of the amount of non-uniformity, ranging from zero to polynomial.3.1.1 Boolean CircuitsWe refer the reader to x1.2.4.1 for a de�nition of (families of) Boolean circuitsand the functions computed by them. For concreteness and simplicity, we assumethroughout this section that all circuits has bounded fan-in. We highlight thefollowing result stated in x1.2.4.1:Theorem 3.1 (circuit evaluation): There exists a polynomial-time algorithm that,given a circuit C : f0; 1gn ! f0; 1gm and an n-bit long string x, returns C(x).Recall that the algorithm works by performing the \value-determination" processthat underlies the de�nition of the computation of the circuit on a given input.1The common belief is that the issue of non-uniformity is irrelevant to the P-vs-NP Question;that is, that resolving the latter question by proving that P 6= NP is not easier than provingthat NP does not have polynomial-size circuits. For further discussion see Appendix B.2 andSection 3.2.3.

3.1. NON-UNIFORM POLYNOMIAL-TIME (P/POLY) 111This process assigns values to each of the circuit vertices based on the values ofits children (or the values of the corresponding bit of the input, in the case of aninput-terminal vertex).Circuit size as a complexity measure. We recall the de�nitions of circuitcomplexity presented in to x1.2.4.1: The size of a circuit is de�ned as the numberof edges, and the length of its description is almost linear in the latter; that is, acircuit of size s is commonly described by the list of its edges and the labels of itsvertices, which means that its description length is O(s log s). We are interestedin families of circuits that solve computational problems, and thus we say that thecircuit family (Cn)n2N computes the function f : f0; 1g� ! f0; 1g� if for everyx 2 f0; 1g� it holds that Cjxj(x) = f(x). The size complexity of this family is thefunction s : N ! N such that s(n) is the size of Cn. The circuit complexity of afunction f , denoted sf , is the size complexity of the smallest family of circuits thatcomputes f . An equivalent alternative follows.De�nition 3.2 (circuit complexity): The circuit complexity of f : f0; 1g� ! f0; 1g�is the function sf : N ! N such that sf (n) is the size of the smallest circuit thatcomputes the restriction of f to n-bit strings.We stress that non-uniformity is implicit in this de�nition, because no conditionsare made regarding the relation between the various circuits used to compute thefunction on di�erent input lengths.An interesting feature of De�nition 3.2 is that, unlike in the case of uniformmodel of computation, circuit complexity is the actual complexity of the functionrather than an upper-bound on its complexity (cf. x1.2.3.4 and Section 4.2.1). Thisis a consequence of the fact that the circuit model has no \free parameters" (e.g.,the �nite algorithm in use)2 and that the issue of constructibility of complexitymeasures (cf., e.g., De�nition 4.2) is irrelevant to it.We will be interested in the class of problems that are solvable by families ofpolynomial-size circuits. That is, a problem is solvable by polynomial-size circuits ifit can be solved by a function f that has polynomial circuit complexity (i.e., thereexists a polynomial p such that sf (n) � p(n), for every n 2 N).A detour: uniform families. A family of polynomial-size circuits (Cn)n iscalled uniform if given n one can construct the circuit Cn in poly(n)-time. Moregenerally:De�nition 3.3 (uniformity): A family of circuits (Cn)n is called uniform if thereexists an algorithm A that on input n outputs Cn within a number of steps that ispolynomial in the size of Cn.We note that stronger notions of uniformity have been considered. For example,one may require the existence of a polynomial-time algorithm that on input n and2Advanced comment: Note that such \free parameters" underly linear speedup results suchas Exercise 4.7, which in turn prevent the speci�cation of the exact complexities of functions.

112 CHAPTER 3. VARIATIONS ON P AND NPv, returns the label of vertex v as well as the list of its children (or an indicationthat v is not a vertex in Cn). For further discussion see Section 5.2.3.Proposition 3.4 If a problem is solvable by a uniform family of polynomial-sizecircuits then it is solvable by a polynomial-time algorithm.As was hinted in x1.2.4.1, the converse holds as well. The latter fact follows easilyfrom the proof of Theorem 2.20 (see also the proof of Theorem 3.6).Proof: On input x, the algorithm operates in two stages. In the �rst stage,it invokes the algorithm guaranteed by the uniformity condition, on input n def=jxj, and obtains the circuit Cn. Next, it invokes the circuit evaluation algorithm(asserted in Theorem 3.1) on input Cn and x, and obtains Cn(x). Since the sizeand the description length of Cn are polynomial in n, it follows that each stageof our algorithm runs in polynomial time (i.e., polynomial in n = jxj). Thus, thealgorithm emulates the computation of Cjxj(x), and does so in time polynomial inthe length of its own input (i.e., x).3.1.2 Machines that take adviceGeneral (non-uniform) families of polynomial-size circuits and uniform families ofpolynomial-size circuits are two extremes with respect to the \amounts of non-uniformity" in the computing device. Intuitively, in the former, non-uniformityis only bounded by the size of the device, whereas in the latter the amounts ofnon-uniformity is zero. Here we consider a model that allows to decouple the sizeof the computing device from the amount of non-uniformity, which may indeedrange from zero to the device's size. Speci�cally, we consider algorithms that \takea non-uniform advice" that depends only on the input length. The amount ofnon-uniformity will be de�ned to equal the length of the corresponding advice (asa function of the input length). Thus, we specialize De�nition 1.12 to the case ofpolynomial-time algorithms.De�nition 3.5 (non-uniform polynomial-time and P=poly): We say that a func-tion f is computed in polynomial-time with advice of length ` : N ! N if these existsa polynomial-time algorithm A and an in�nite advice sequence (an)n2N such that1. For every x 2 f0; 1g�, it holds that A(ajxj; x) = f(x).2. For every n 2 N , it holds that janj = `(n).We say that a computational problem can be solved in polynomial-time with ad-vice of length ` if a function solving this problem can be computed within theseresources. We denote by P=` the class of decision problems that can be solved inpolynomial-time with advice of length `, and by P=poly the union of P=p takenover all polynomials p.Clearly, P=0 = P . But allowing some (non-empty) advice increases the power ofthe class (see Theorem 3.7). and allowing advice of length comparable to the timecomplexity yields a formulation equivalent to circuit complexity (see Theorem 3.6).

3.1. NON-UNIFORM POLYNOMIAL-TIME (P/POLY) 113We highlight the greater
exibility available by the formalism of machines that takeadvice, which allows for separate speci�cation of time complexity and advice length.(Indeed, this comes at the expense of a more cumbersome formulation, when wewish to focus on the case that both measures are equal.)Relation to families of polynomial-size circuits. As hinted before, the classof problems solvable by polynomial-time algorithms with polynomially boundedadvice equals the class of problems solvable by families of polynomial-size circuits.For concreteness, we state this fact for decision problems.Theorem 3.6 A decision problem is in P=poly if and only if it can be solved by afamily of polynomial-size circuits.More generally, for any function t, the following proof establishes that equivalenceof the power of machines having time complexity t and taking advice of length tversus families of circuits of size polynomially related to t.Proof Sketch: Suppose that a problem can be solved by a polynomial-time al-gorithm A using the polynomially bounded advice sequence (an)n2N. We obtaina family of polynomial-size circuits that solves the same problem by adapting theproof of Theorem 2.20. Speci�cally, we observe that the computation of A(ajxj; x)can be emulated by a circuit of poly(jxj)-size, which incorporates ajxj and is givenx as input. That is, we construct a circuit Cn such that Cn(x) = A(an; x) holdsfor every x 2 f0; 1gn (analogously to the way Cx was constructed in the proofof Theorem 2.20, where it holds that Cx(y) = MR(x; y) for every y of adequatelength).On the other hand, given a family of polynomial-size circuits, we obtain apolynomial-time algorithm for emulating this family using advice that provide thedescription of the relevant circuits. Speci�cally, we use the evaluation algorithmasserted in Theorem 3.1, while using the circuit's description as advice. That is, weuse the fact that a circuit of size s can be described by a string of length O(s log s),where the log factor is due to the fact that a graph with v vertices and e edges canbe described by a string of length 2e log2 v.Another perspective. A set S is called sparse if there exists a polynomial p suchthat for every n it holds that jS \f0; 1gnj � p(n). We note that P=poly equals theclass of sets that are Cook-reducible to a sparse set (see Exercise 3.2). Thus, SATis Cook-reducible to a sparse set if and only if NP � P=poly. In contrast, SAT isKarp-reducible to a sparse set if and only if NP = P (see Exercise 3.12).The power of P=poly. In continuation to Theorem 1.13 (which focuses on adviceand ignores the time complexity of the machine that takes this advice), we provethe following (stronger) result.Theorem 3.7 (the power of advice, revisited): The class P=1 � P=poly containsP as well as some undecidable problems.

114 CHAPTER 3. VARIATIONS ON P AND NPActually, P=1 � P=poly. Furthermore, by using a counting argument, one canshow that for any two polynomially bounded functions `1; `2 : N ! N such that`2 � `1 > 0 is unbounded, it holds that P=`1 is strictly contained in P=`2; seeExercise 3.3.Proof: Clearly, P = P=0 � P=1 � P=poly. To prove that P=1 contains someundecidable problems, we review the proof of Theorem 1.13. The latter proofestablished the existence of uncomputable Boolean function that only depend ontheir input length. That is, there exists an undecidable set S � f0; 1g� such thatfor every pair of equal length strings (x; y) it holds that x 2 S if and only if y 2 S.In other words, for every x 2 f0; 1g� it holds that x 2 S if and only if 1jxj 2 S. Butsuch a set is easily decidable in polynomial-time by a machine that takes one bitof advice; that is, consider the algorithm A and the advice sequence (an)n2N suchthat an = 1 if and only if 1n 2 S and A(a; x) = a (for a 2 f0; 1g and x 2 f0; 1g�).Note that indeed A(ajxj; x) = 1 if and only if x 2 S.3.2 The Polynomial-time Hierarchy (PH)We start with an informal motivating discussion, which will be made formal inSection 3.2.1.Sets in NP can be viewed as sets of valid assertions that can be expressed asquanti�ed Boolean formulae using only existential quanti�ers. That is, a set S isin NP if there is a Karp-reduction of S to the problem of deciding whether or notan existentially quanti�ed Boolean formula is valid (i.e., an instance x is mappedby this reduction to a formula of the form 9y1 � � � 9ym(x)�x(y1; :::; ym(x))).The conjectured intractability of NP seems due to the long sequence of exis-tential quanti�ers. Of course, if somebody else (i.e., a \prover") were to provideus with an adequate assignment (to the yi's) whenever such an assignment existsthen we would be in good shape. That is, we can e�ciently verify proofs of validityof existentially quanti�ed Boolean formulae.But what if we want to verify the validity of a universally quanti�ed Booleanformulae (i.e., formulae of the form 8y1 � � � 8ym�(y1; :::; ym)). Here we seem toneed the help of a totally di�erent entity: we need a \refuter" that is guaranteedto provide us with a refutation whenever such exist, and we need to believe that ifwe were not presented with such a refutation then it is the case that no refutationexists (and hence the universally quanti�ed formulae is valid). Indeed, this newsetting (of a \refutation system") is fundamentally di�erent from the setting of aproof system: In a proof system we are only convinced by proofs (to assertions)that we have veri�ed by ourselves, whereas in the \refutation system" we trust the\refuter" to provide evidence against false assertions.3 Furthermore, there seemsto be no way of converting one setting (e.g., the proof system) into another (resp.,the refutation system).3More formally, in proof systems the soundness condition relies only on the actions of theveri�er, whereas completeness also relies on the prover using an adequate strategy. In contrast, in\refutation system" the soundness condition relies on the proper actions of the refuter, whereascompleteness does not depend on the refuter's actions.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 115Taking an additional step, we may consider a more complicated system in whichwe use two agents: a \supporter" that tries to provide evidence in favor of anassertion and an \objector" that tries to refute it. These two agents conduct adebate (or an argument) in our presence, exchanging messages with the goal ofmaking us (the referee) rule their way. The assertions that can be proven in thissystem take the form of general quanti�ed formulae with alternating sequencesof quanti�ers, where the number of alternations equals the number of rounds ofinteraction in the said system. We stress that the exact length of each sequenceof quanti�ers of the same type does not matter, what matters is the number ofalternations, denoted k.The aforementioned system of alternations can be viewed as a two-party game,and we may ask ourselves which of the two parties has a k-move winning strategy.In general, we may consider any (0-1 zero-sum) two-party game, in which the game'sposition can be e�ciently updated (by any given move) and e�ciently evaluated.For such a �xed game, given an initial position, we may ask whether the �rst partyhas a (k-move) winning strategy. It seems that answering this type of question forsome �xed k does not necessarily allow answering it for k + 1. We now turn toformalize the foregoing discussion.3.2.1 Alternation of quanti�ersIn the following de�nition, the aforementioned propositional formula �x is replacedby the input x itself. (Correspondingly, the combination of the Karp-reduction anda formula evaluation algorithm are replaced by the veri�cation algorithm V (seeExercise 3.7).) This is done in order to make the comparison to the de�nitionof NP more transparent (as well as to �t the standard presentations). We alsoreplace a sequence of Boolean quanti�ers of the same type by a single correspondingquanti�er that quanti�es over all strings of the corresponding length.De�nition 3.8 (the class �k): For a natural number k, a decision problem S �f0; 1g� is in �k if there exists a polynomial p and a polynomial time algorithm Vsuch that x 2 S if and only if9y12f0; 1gp(jxj)8y22f0; 1gp(jxj)9y32f0; 1gp(jxj) � � �Qkyk2f0; 1gp(jxj)s.t. V (x; y1; :::; yk) = 1where Qk is an existential quanti�er if k is odd and is a universal quanti�er oth-erwise.Note that �1 = NP and �0 = P . The Polynomial-time Hierarchy, denoted PH,is the union of all the aforementioned classes (i.e., PH = [k�k), and �k is oftenreferred to as the kth level of PH. The levels of the Polynomial-time Hierarchycan also be de�ned inductively, by de�ning �k+1 based on �k def= co�k, whereco�k def= ff0; 1g� n S : S 2 �kg (cf. Eq. (2.4)).Proposition 3.9 For every k � 0, a set S is in �k+1 if and only if there exists apolynomial p and a set S0 2 �k such that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g.

116 CHAPTER 3. VARIATIONS ON P AND NPProof: Suppose that S is in �k+1 and let p and V be as in De�nition 3.8. Thende�ne S0 as the set of pairs (x; y) such that jyj = p(jxj) and8z12f0; 1gp(jxj)9z22f0; 1gp(jxj) � � �Qkzk2f0; 1gp(jxj) s.t. V (x; y; z1; :::; zk) = 1 :Note that x 2 S if and only if there exists y 2 f0; 1gp(jxj) such that (x; y) 2 S0, andthat S0 2 �k (see Exercise 3.6).On the other hand, suppose that for some polynomial p and a set S0 2 �k itholds that S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Then, for some p0 and V 0, itholds that (x; y) 2 S0 if and only if jyj = p(jxj) and8z12f0; 1gp0(jxj)9z22f0; 1gp0(jxj) � � �Qkzk2f0; 1gp0(jxj) s.t. V 0(x; y; z1; :::; zk) 6= 1(see Exercise 3.6 again). By suitable encoding (of y and the zi's as strings of lengthmax(p(jxj); p0(jxj))) and a trivial modi�cation of V 0, we conclude that S 2 �k+1.Determining the winner in k-move games. De�nition 3.8 can be interpretedas capturing the complexity of determining the winner in certain e�cient two-partygame. Speci�cally, we refer to two-party games that satisfy the following threeconditions:1. The parties alternate in taking moves that e�ect the game's (global) position,where each move has a description length that is bounded by a polynomialin the length of the current position.2. The current position can be updated in polynomial-time based on the previ-ous position and the current party's move.43. The winner in each position can be determined in polynomial-time.A set S 2 �k can be viewed as the set of initial positions (in a suitable game) forwhich the �rst party has a k-move winning strategy. Speci�cally, x2S if startingat the initial position x, there exists move y1 for the �rst party, such that for everyresponse move y2 of the second party, there exists move y3 for the �rst party, etc,such that after k moves the parties reach a position in which the �rst party wins,where the �nal position as well as which party wins in it are determined by thepredicate V (in De�nition 3.8). That is, V (x; y1; :::; yk) = 1 if the position that isreached when starting from position x and taking the move sequence y1; :::; yk is awinning position for the �rst party.4Note that, since we consider a constant number of moves, the length of all possible �nalpositions is bounded by a polynomial in the length of the initial position, and thus all items havean equivalent form in which one refers to the complexity as a function of the length of the initialposition. The latter form allows for a smooth generalization to games with a polynomial numberof moves (as in Section 5.4), where it is essential to state all complexities in terms of the lengthof the initial position.

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 117The collapsing e�ect of some equalities. Extending the intuition that un-derlies the NP 6= coNP conjecture, it is commonly conjectured that �k 6= �k forevery k 2 N . The failure of this conjecture causes the collapse of the Polynomial-time Hierarchy to the corresponding level.Proposition 3.10 For every k � 1, if �k = �k then �k+1 = �k, which in turnimplies PH = �k.The converse also holds (i.e., PH = �k implies �k+1 = �k and �k = �k). Needlessto say, Proposition 3.10 does not seem to hold for k = 0.Proof: Assuming that �k = �k, we �rst show that �k+1 = �k. For any set Sin �k+1, by Proposition 3.9, there exists a polynomial p and a set S0 2 �k suchthat S = fx : 9y2f0; 1gp(jxj) s.t. (x; y)2S0g. Using the hypothesis, we infer thatS0 2 �k, and so (using Proposition 3.9 and k � 1) there exists a polynomial p0 anda set S00 2 �k�1 such that S0 = fx0 : 9y02f0; 1gp0(jx0j) s.t. (x0; y0)2S00g. It followsthat S = fx : 9y2f0; 1gp(jxj)9z2f0; 1gp0(j(x;y)j) s.t. ((x; y); z)2S00g:By collapsing the two adjacent existential quanti�ers (and using Proposition 3.9yet again), we conclude that S 2 �k. This proves the �rst part of the proposition.Turning to the second part, we note that �k+1 = �k (or, equivalently, �k+1 =�k) implies �k+2 = �k+1 (again by using Proposition 3.9), and similarly �j+2 =�j+1 for any j � k. Thus, �k+1 = �k implies PH = �k.Decision problems that are Cook-reductions to NP. The Polynomial-timeHierarchy contains all decision problems that are Cook-reductions to NP (seeExercise 3.4). As shown next, the latter class contains many natural problems.Recall that in Section 2.2.2 we de�ned two types of optimization problems andshowed that under some natural conditions these two types are computationallyequivalent (under Cook reductions). Speci�cally, one type of problems referredto �nding solutions that have a value exceeding some given threshold, whereas thesecond type called for �nding optimal solutions. In Section 2.3 we presented severalproblems of the �rst type, and proved that they are NP-complete. We note thatcorresponding versions of the second type are believed not to be in NP. For example,we discussed the problem of deciding whether or not a given graph G has a cliqueof a given size K, and showed that it is NP-complete. In contract, the problem ofdeciding whether or not K is the maximum clique size of the graph G is not known(and quite unlikely) to be in NP , although it is Cook-reducible to NP . Thus, theclass of decision problems that are Cook-reducible to NP contains many naturalproblems that are unlikely to be in NP . The Polynomial-time Hierarchy containsall these problems.Complete problems and a relation to AC0. We note that quanti�ed Booleanformulae with a bounded number of quanti�er alternation provide complete prob-lems for the various levels of the Polynomial-time Hierarchy (see Exercise 3.7).

118 CHAPTER 3. VARIATIONS ON P AND NPWe also note the correspondence between these formulae and (highly uniform)constant-depth circuits of unbounded fan-in that get as input the truth-table ofthe underlying (quanti�er-free) formula (see Exercise 3.8).3.2.2 Non-deterministic oracle machinesThe Polynomial-time Hierarchy is commonly de�ned in terms of non-deterministicpolynomial-time (oracle) machines that are given oracle access to a set in the lowerlevel of the same hierarchy. Such machines are de�ned by combining the de�nitionsof non-deterministic (polynomial-time) machines (cf. De�nition 2.7) and oraclemachines (cf. De�nition 1.11). Speci�cally, for an oracle f : f0; 1g� ! f0; 1g�, anon-deterministic oracle machine M , and a string x, one considers the question ofwhether or not there exists an accepting (non-deterministic) computation of M oninput x and access to the oracle f . The class of sets that can be accepted by non-deterministic polynomial-time (oracle) machines with access to f is denoted NPf .(We note that this notation makes sense because we can associate the class NPwith a collection of machines that lends itself to be extended to oracle machines.)For any class of decision problems C, we denote by NPC the union of NPf takenover all decision problems f in C. The following result provides an alternativede�nition of the Polynomial-time Hierarchy.Proposition 3.11 For every k � 1, it holds that �k+1 = NP�k .Proof: The �rst direction (i.e., �k+1 � NP�k) is almost straightforward: Forany S 2 �k+1, let S0 2 �k and p be as in Proposition 3.9; that is, S = fx :9y 2 f0; 1gp(jxj) s.t. (x; y) 2 S0g. Consider the non-deterministic oracle machinethat, on input x, non-deterministically generates y 2 f0; 1gp(jxj) and accepts if andonly if (the oracle indicates that) (x; y) 2 S0. This machine demonstrates thatS 2 NP�k = NP�k , where the equality holds by letting the oracle machine
ipeach (binary) answer that is provided by the oracle.5For the opposite direction (i.e., NP�k � �k+1), let M be a non-deterministicpolynomial-time oracle machine that accepts S when given oracle access to S0 2 �k.Note that (unlike the machine constructed in the foregoing argument) machine Mmay issue several queries to S0, and these queries may be determined based onprevious oracle answers. To simplify the argument, we assume, without loss ofgenerality, that at the very beginning of its execution machine M guesses (non-deterministic) all oracle answers and accepts only if the actual answers match itsguesses. Thus, M 's queries to the oracle are determined by its input, denoted x,and its non-deterministic choices, denoted y. We denote by q(i)(x; y) the ith querymade by M (on input x and non-deterministic choices y), and by a(i)(x; y) thecorresponding (a priori) guessed answer (which is a bit in y). Thus, M accepts xif and only if there exists y 2 f0; 1gpoly(jxj) such that the following two conditionshold:5Do not get confused by the fact that the class of oracles may not be closed under comple-mentation. From the point of view of the oracle machine, the oracle is merely a function, and themachine may do with its answer whatever it pleases (and in particular negate it).

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 1191. Machine M accepts x, on input x and non-deterministic choices y, when forevery i it holds that the ith oracle query made by M is answered by thevalue a(i)(x; y). We stress that we do not assume here that these answers areconsistent with S0; we merely refer to the decision of M on a given input,when it makes a speci�c sequence of non-deterministic choices, and is givenspeci�c oracle answers.2. Each bit a(i)(x; y) is consistent with S0; that is, for every i, it holds thata(i)(x; y)=1 if and only if q(i)(x; y)2S0.Denoting the �rst event by A(x; y) and letting q(x; y) � poly(jxj) denote the num-ber of queries made by M , it follows that x 2 S if and only if9y0@A(x; y) ^ q(x;y)î=1 �(a(i)(x; y)=1), (q(i)(x; y)2S0)�1A:Denoting the veri�cation algorithm of S0 by V 0, it holds that x 2 S if and only if9y0@A(x; y) ^ q(x;y)î=1 �(a(i)(x; y)=1), 9y(i)1 8y(i)2 � � �Qky(i)k V 0(q(i)(x; y); y(i)1 ; :::; y(i)k)=1�1A:The proof is completed by observing that the foregoing expression can be rear-ranged to �t the de�nition of �k+1. Details follow.Starting with the foregoing expression, we �rst pull all quanti�ers outside, andobtain a quanti�ed expression with k + 1 alternations, starting with an existentialquanti�er.6 (We get k + 1 alternations rather than k, because a(i)(x; y)=0 intro-duces an expression of the form :9y(i)1 8y(i)2 � � �Qky(i)k V 0(q(i)(x; y); y(i)1 ; :::; y(i)k)=1,which in turn is equivalent to the expression 8y(i)1 9y(i)2 � � �Qky(i)k :V 0(q(i)(x; y); y(i)1 ; :::; y(i)k)=1).) Once this is done, we may incorporate the computation of all the q(i)(x; y)'s(and a(i)(x; y)'s) as well as the polynomial number of invocations of V 0 (and otherlogical operations) into the new veri�cation algorithm V . It follows that S 2 �k+1.A general perspective { what does C1C2 mean? By the foregoing discussionit should be clear that the class C1C2 can be de�ned for two complexity classes C1and C2, provided that C1 is associated with a class of machines that extends naturallyin a way that allows for oracle access. Actually, the class C1C2 is not de�ned basedon the class C1 but rather by analogy to it. Speci�cally, suppose that C1 is theclass of sets that are recognizable (or rather accepted) by machines of certain type6For example, note that for predicates P1 and P2, the expression 9y (P1(y) , 9z P2(y; z)) isequivalent to the expression 9y ((P1(y) ^ 9z P2(y; z)) _ ((:P1(y) ^ :9z P2(y; z))), which in turnis equivalent to the expression 9y9z08z00 ((P1(y) ^ P2(y; z0)) _ ((:P1(y) ^ :P2(y; z00))). Notethat pulling the quanti�ers outside in ^ti=19y(i)8z(i)P (y(i); z(i)) yields an expression of the type9y(1); :::; y(t)8z(1); :::; z(t) ^ti=1 P (y(i); z(i)).

120 CHAPTER 3. VARIATIONS ON P AND NP(e.g., deterministic or non-deterministic) with certain resource bounds (e.g., timeand/or space bounds). Then, we consider analogous oracle machines (i.e., of thesame type and with the same resource bounds), and say that S 2 C1C2 if thereexists an adequate oracle machine M1 (i.e., of this type and resource bounds) anda set S2 2 C2 such that MS21 accepts the set S.Decision problems that are Cook-reductions to NP, revisited. Using theforegoing notation, the class of decision problems that are Cook-reductions to NPis denoted PNP , and thus is a subset of NPNP = �2 (see Exercise 3.9). Incontrast, recall that the class of decision problems that are Karp-reductions to NPequals NP .3.2.3 The P/poly-versus-NP Question and PHAs stated in Section 3.1, a main motivation for the de�nition of P=poly is thehope that it can serve to separate P from NP (by showing that NP is not evencontained in P=poly, which is a (strict) superset of P). In light of the fact thatP=poly extends far beyond P (and in particular contains undecidable problems),one may wonder if this approach does not run the risk of asking too much (becauseit may be that NP is in P=poly even if P 6= NP). The common feeling is that theadded power of non-uniformity is irrelevant with respect to the P-vs-NP Question.Ideally, we would like to know that NP � P=poly may occur only if P = NP(which may be phrased as saying that the Polynomial-time Hierarchy collapsesto its zero level). The following result seems to get close to such an implication,showing that NP � P=poly may occur only if the Polynomial-time Hierarchycollapses to its second level.Theorem 3.12 If NP � P=poly then �2 = �2.Recall that �2 = �2 implies PH = �2 (see Proposition 3.10). Thus, an unexpectedbehavior of the non-uniform complexity class P=poly implies an unexpected be-havior in the world of uniform complexity (i.e., the ability to reduce any constantnumber of quanti�er alternations to two quanti�er alternations).Proof: Using the hypothesis (i.e., NP � P=poly) and starting with an arbitraryset S 2 �2, we shall show that S 2 �2. Loosely speaking, S 2 �2 means thatx 2 S if and only if for all y there exists a z such that some (�xed) polynomial-time veri�able condition regarding (x; y; z) holds. Note that the residual conditionregarding (x; y) is of the NP-type, and thus (by the hypothesis) it can be veri�edby a polynomial-size circuit. This suggests saying that x 2 S if and only if thereexists an adequate circuit C such that for all y it holds that C(x; y) = 1. Thus, wemanaged to switch the order of the universal and existential quanti�ers. Speci�-cally, the resulting assertion is of the desired �2-type provided that we can eitherverify the adequacy condition in coNP (or even in �2) or keep out of trouble evenin the case that x 62 S and C is inadequate. In the following proof we implementthe latter option by observing that the hypothesis yields small circuits for NP-search problems (and not only for NP-decision problems). Speci�cally, we obtain

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 121(small) circuits that, given (x; y), �nd an NP-witness for (x; y) (whenever such awitness exists), and rely on the fact that we can e�ciently verify the correctness ofNP-witnesses. (The alternative approach of providing a coNP-type procedure forverifying the adequacy of the circuit is pursued in Exercise 3.11.)Let S be an arbitrary set in �2. Then, by Proposition 3.9, there exists apolynomial p and a set S0 2 NP such that S = fx : 8y 2 f0; 1gp(jxj) (x; y) 2 S0g.Let R0 2 PC be the witness-relation corresponding to S0; that is, there exists apolynomial p0, such that x0 = hx; yi 2 S0 if and only if there exists z2f0; 1gp0(jx0j)such that (x0; z) 2 R0. It follows thatS = fx : 8y2f0; 1gp(jxj)9z2f0; 1gp0(jhx;yij) (hx; yi; z) 2 R0g:By the reduction of PC to NP (see the proof of Theorem 2.6 and further discus-sion in Section 2.2.1), the theorem's hypothesis (i.e., NP � P=poly) implies theexistence of polynomial-size circuits for solving the search problem of R0. Usingthe existence of these circuits, it follows that for any x 2 S there exists a smallcircuit C 0 such that for every y it holds that C 0(x; y) 2 R0(x; y), whereas for anyx 62 S there exists a y such that hx; yi 62 S0 and hence C 0(x; y) 62 R0(x; y) for anycircuit C 0 (for the trivial reason that R0(x; y) = ;). But let us �rst spell-out whatwe mean by polynomial-size circuits for solving a search problem as well as furtherjustify their existence for the search problem of R0.In Section 3.1, we have focused on polynomial-size circuits that solve decisionproblems. However, the de�nition sketched in Section 3.1.1 also applies to solvingsearch problems, provided that an appropriate encoding is used for allowing so-lutions of possibly varying lengths (for instances of �xed length) to be presentedas strings of �xed length. Next observe that combining the Cook-reduction of PCto NP with the hypothesis NP � P=poly, implies that PC is Cook-reducible toP=poly. In particular, this implies that any search problem in PC can be solved bya family of polynomial-size circuits. Note that the resulting circuit that solves n-bitlong instances of such a problem may incorporate polynomially (in n) many circuits,each solving a decision problem for m-bit long instances, where m 2 [poly(n)].Needless to say, the size of the resulting circuit that solves the search problemof the aforementioned R0 2 PC (for instances of length n) is upper-bounded bypoly(n) �Ppoly(n)m=1 poly(m).It follows that x 2 S if and only if there exists a poly(jxj + p(jxj))-size circuitC 0 such that for all y2f0; 1gp(jxj) it holds that (hx; yi; C 0(x; y)) 2 R0. Note that inthe case that x 2 S we use the circuit C 0 that is guaranteed for inputs of lengthjxj+ p(jxj) by the foregoing discussion7, whereas in the case that x 62 S it does notmatter which circuit C 0 is used (because in that case there exists a y such that forall z it holds that (hx; yi; z)) 62 R0).The key observation regarding the foregoing condition (i.e., 9C 08y (hx; yi; C 0(x; y)) 2R0) is that it is of the desired form (of a �2 statement). Speci�cally, considerthe polynomial-time veri�cation procedure V that given x; y and the descrip-tion of the circuit C 0, �rst computes z C 0(x; y) and accepts if and only if7Thus, C0 may actually depend only on jxj, which in turn determines p(jxj).

122 CHAPTER 3. VARIATIONS ON P AND NP(hx; yi; z) 2 R0, where the latter condition can be veri�ed in polynomial-time (be-cause R0 2 PC). Denoting the description of a potential circuit by hC 0i, theaforementioned (polynomial-time) computation of V is denoted V (x; hC 0i; y), andindeed x 2 S if and only if9hC 0i2f0; 1gpoly(jxj+p(jxj))8y2f0; 1gp(jxj) V (x; hC 0i; y) = 1:Having established that S 2 �2 for an arbitrary S 2 �2, we conclude that �2 � �2.The theorem follows (by applying Exercise 3.9.4).Chapter NotesThe class P=poly was de�ned by Karp and Lipton [130] as part of a general for-mulation of \machines which take advice" [130]. They also noted the equivalenceto the traditional formulation of polynomial-size circuits as well as the e�ect ofuniformity (Proposition 3.4).The Polynomial-Time Hierarchy (PH) was introduced by Stockmeyer [201]. Athird equivalent formulation of PH (via so-called \alternating machines") can befound in [48].The implication of the failure of the conjecture that NP is not contained inP=poly on the Polynomial-time Hierarchy (i.e., Theorem 3.12) was discovered byKarp and Lipton [130]. This interesting connection between non-uniform and uni-form complexity provides the main motivation for presenting P=poly and PH inthe same chapter.ExercisesExercise 3.1 (a small variation on the de�nitions of P=poly) Using an ad-equate encoding of strings of length smaller than n as n-bit strings (e.g., x 2[i<nf0; 1gi is encoded as x01n�jxj�1), de�ne circuits (resp., machines that takeadvice) as devices that can handle inputs of various lengths up to a given bound(rather than as devices that can handle inputs of a �xed length). Show that theclass P=poly remains invariant under this change (and Theorem 3.6 remains valid).Exercise 3.2 (sparse sets) A set S � f0; 1g� is called sparse if there exists apolynomial p such that jS \ f0; 1gnj � p(n) for every n.1. Prove that any sparse set is in P=poly. Note that a sparse set may beundecidable.2. Prove that a set is in P=poly if and only if it is Cook-reducible to some sparseset.Guideline: For the forward direction of Part 2, encode the advice sequence (an)n2Nas a sparse set f(1n; i; �n;i) : n 2N ; i � janjg, where �n;i is the ith bit of an. For theopposite direction, note that on input x the Cook-reduction makes queries of length atmost poly(jxj), and so emulating the reduction on an input of length n only requiresknowledge of all the strings that are in the sparse set and have length at most poly(n).

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 123Exercise 3.3 (advice hierarchy) Prove that for any two functions `; � : N ! Nsuch that `(n) < 2n�1 and � is unbounded, it holds that P=` is strictly containedin P=(`+ �).Guideline: For every sequence a = (an)n2N such that janj = `(n) + �(n), consider theset Sa that encodes a such that x 2 Sa \ f0; 1gn if and only if the idx(x)th bit in anequals 1 (and idx(x) � janj), where idx(x) denotes the index of x in f0; 1gn. For moredetails see Section 4.1.Exercise 3.4 Prove that �2 contains all sets that are Cook-reducible to NP .Guideline: This is quite obvious when using the de�nition of �2 as presented in Sec-tion 3.2.2; see Exercise 3.9. Alternatively, the fact can be proved by using some of theideas that underlie the proof of Theorem 2.33, while noting that a conjunction of NP andcoNP assertions forms an assertion of type �2 (see also the second part of the proof ofProposition 3.11).Exercise 3.5 Let � = NP \ coNP . Prove that � equals the class of decisionproblems that are Cook-reducible to � (i.e., � = P�).Guideline: See proof of Theorem 2.33.Exercise 3.6 (the class �i) Recall that �k is de�ned to equal co�k, which inturn is de�ned to equal ff0; 1g� n S : S 2 �kg. Prove that for any natural numberk, a decision problem S � f0; 1g� is in �k if there exists a polynomial p and apolynomial time algorithm V such that x 2 S if and only if8y12f0; 1gp(jxj)9y22f0; 1gp(jxj)8y32f0; 1gp(jxj) � � �Qkyk2f0; 1gp(jxj)s.t. V (x; y1; :::; yk) = 1where Qk is a universal quanti�er if k is odd and is an existential quanti�er other-wise.Exercise 3.7 (complete problems for the various levels of PH) A k-alternatingquanti�ed Boolean formula is a quanti�ed Boolean formula with up to k alternationsbetween existential and universal quanti�ers, starting with an existential quanti-�er. For example, 9z19z28z3�(z1; z2; z3) (where the zi's are Boolean variables) isa 2-alternating quanti�ed Boolean formula. Prove that the problem of decidingwhether or not a k-alternating quanti�ed Boolean formula is valid is �k-completeunder Karp-reductions. That is, denoting the aforementioned problem by kQBF,prove that kQBF is in �k and that every problem in �k is Karp-reducible to kQBF.Exercise 3.8 (on the relation between PH and AC0) Note that there is anobvious analogy between PH and constant-depth polynomial-size circuits of un-bounded fan-in, where existential (resp., universal) quanti�ers are represented by\large" W (resp., V) gates. To articulate this relationship, consider the followingde�nitions.

124 CHAPTER 3. VARIATIONS ON P AND NP� A family of circuits fCNg is called highly uniform if there exists a polynomial-time algorithm that answers local queries regarding the structure of the rel-evant circuit. Speci�cally, on input (N; u; v), the algorithm determines thetype of gates represented by the vertices u and v in CN as well as whetherthere exists a directed edge from u to v. Note that this algorithm operatesin time that polylogarithmic in the size of CN .We focus on family of polynomial-size circuits, meaning that the size of CNis polynomial in N , which in turn represents the number of inputs to CN .� Fixing a polynomial p, a p-succinctly represented input Z 2 f0; 1gN is a circuitcZ of size at most p(log2N) such that for every i 2 [N] it holds that cZ(i)equals the ith bit of Z.� For a �xed family of highly uniform circuits fCNg and a �xed polynomial p,the problem of evaluating a succinctly represented input is de�ned as follows.Given p-succinct representation of an input Z 2 f0; 1gN , determine whetheror not CN (Z) = 1.For every k and every S 2 �k, show that there exists a family of highly uniformunbounded fan-in circuits of depth k and polynomial-size such that S is Karp-reducible to evaluating a succinctly represented input (with respect to that family ofcircuits). That is, the reduction should map an instance x 2 f0; 1gn to a p-succinctrepresentation of some Z 2 f0; 1gN such that x 2 S if and only if CN (Z) = 1.(Note that Z is represented by a circuit cZ of size at most p(log2N), and that itfollows that jcZ j � poly(n) and thus N � exp(poly(n)).)8Guideline: Let S 2 �k and let V be the corresponding veri�cation algorithm as inDe�nition 3.8. That is, x 2 S if and only if 9y18y2 � � �Qkyk, where each yi2f0; 1gpoly(jxj)such that V (x; y1; :::; yk)=1. Then, for m = poly(jxj) and N = 2k�m, consider the �xedcircuit CN(Z) = Wi12[2m]Vi22[2m] � � �Q0ik2[2m]Zi1;i2;:::;ik , and the problem of evaluatingCN at an input consisting of the truth-table of V (x; � � �) (i.e., when setting Zi1;i2;:::;ik =V (x; i1; :::; ik), where [2m] � f0; 1gm). Note that the size of CN is O(N).9Exercise 3.9 Verify the following facts:1. For every k � 1, it holds that �k � P�k � �k+1.(Note that, for any complexity class C, the class PC is the class of sets thatare Cook-reducible to some set in C. In particular, PP = P .)8Assuming P 6= NP , it cannot be that N � poly(n) (because circuit evaluation can beperformed in time polynomial in the size of the circuit).9Advanced comment: the computational limitations of AC0 circuits (see, e.g., [78, 110])imply limitations on the functions of a generic input Z that the aforementioned circuits CNcan compute. Actually, these limitations apply also to Z = h(Z0), where Z0 2 f0; 1gN
(1) isgeneric and each bit of Z equals either some �xed bit in Z0 or its negation. Unfortunately,these computational limitations do not seem to provide useful information on the limitationsof functions of inputs Z that have succinct representation (as obtained by setting Zi1;i2;:::;ik =V (x; i1; :::; ik), where V is a �xed polynomial-time algorithm and only x 2 f0; 1gpoly(logN) varies).This fundamental problem is \resolved" in the context of \relativization" by providing V withoracle access to an arbitrary input of length N (or so); cf. [78].

3.2. THE POLYNOMIAL-TIME HIERARCHY (PH) 1252. For every k � 1, �k � P�k � �k+1.(Hint: For any complexity class C, it holds that PC = PcoC and PC = coPC.)3. For every k � 1, it holds that �k � �k+1 and �k � �k+1. Thus, PH = [k�k.4. For every k � 1, if �k � �k (resp., �k � �k) then �k = �k.(Hint: For any S 2 �k (resp., S 2 �k), apply the hypothesis to f0; 1g� n S.)Exercise 3.10 In continuation to Exercise 3.7, prove that following claims:1. SAT is computationally equivalent to 1QBF.2. For every k � 1, it holds that P�k = PkQBF and �k+1 = NPkQBF.Guideline: Prove that if S is C-complete then PC = PS. Note that PC � PSuses the polynomial-time reductions of C to S, whereas PS � PC uses S 2 C.Exercise 3.11 (an alternative proof of Theorem 3.12) In continuation to thediscussion in the proof of Theorem 3.12, use the following guidelines to provide analternative proof of Theorem 3.12.1. First, prove that if S0 is downwards self-reducible (as de�ned in Exercise 2.13)then the correctness of circuits deciding S0 can be decided in coNP . Specif-ically, denoting by � the characteristic function of S0, show that the setckt� def= f(1n; hCi) : 8w 2 f0; 1gn C(w) = �(w)gis in coNP .Guideline: Using the more
exible formulation suggested in Exercise 3.1, it suf-�ces to verify that, for every i < n and every i-bit string w, the value C(w) equalsthe output of the downwards self-reduction on input w when obtaining answersaccording to C. Thus, for every i < n, the correctness of C on inputs of lengthi follows from its correctness on inputs of length less than i. Needless to say, thecorrectness of C on the empty string (or on all inputs of some constant length) canbe veri�ed by comparison to the �xed value of � on the empty string (resp., thevalues of � on a constant number of strings).2. Recalling that SAT is downwards self-reducible and that NP reduces to SAT,derive Theorem 3.12 as a corollary of Part 1.Exercise 3.12 In continuation to Part 2 of Exercise 3.2, we consider the classof sets that are Karp-reducible to a sparse set. It can be proved that this classcontains SAT if and only if P = NP (see [76]). Here, we only consider the specialcase in which the sparse set is contained in a polynomial-time decidable set that isitself sparse (e.g., the latter set may be f1g�, in which case the former set may bean arbitrary unary set). Actually, prove the following seemingly stronger claim:if SAT is Karp-reducible to a set S � G such that G 2 P and G n S issparse then SAT 2 P .

126 CHAPTER 3. VARIATIONS ON P AND NPUsing the hypothesis, we outline a polynomial-time procedure for solving the searchproblem of SAT, and leave the task of providing the details as an exercise. Theprocedure conducts a DFS on the tree of all possible partial truth assignment to theinput formula, while truncating the search at nodes that are roots of sub-trees thatwere already demonstrated to contain no satisfying assignment (at the leaves).10Guideline: The key observation is that each internal node (which yields a formula derivedfrom the initial formulae by instantiating the corresponding partial truth assignment) ismapped by the Karp-reduction either to a string not in G (in which case we concludethat the sub-tree contains no satisfying assignments and backtrack from this node) orto a string in G. In the latter case, unless we already know that this string is not inS, we start a scan of the sub-tree rooted at this node. However, once we backtrack fromthis internal node, we know that the corresponding element of G is not in S, and we willnever scan again a sub-tree rooted at a node that is mapped to this element. Also notethat once we reach a leaf, we can check by ourselves whether or not it corresponds to asatisfying assignment to the initial formula.(Hint: When analyzing the forgoing procedure, note that on input an n-variable formulae � thenumber of times we start to scan a sub-tree is at most n � j [poly(j�j)i=1 f0; 1gi \ (G n S)j.)

10For an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings,and an internal node corresponding to � is the parent of nodes corresponding to �0 and �1.

Chapter 4More Resources, MorePower? More electricity, less toil.The Israeli Electricity Company, 1960sIs it indeed the case that the more resources one has, the more one can achieve?The answer may seem obvious, but the obvious answer (of yes) actually presumesthat the worker knows how much resources are at his/her disposal. In this case,when allocated more resources, the worker (or computation) can indeed achievemore. But otherwise, nothing may be gained by adding resources.In the context of computational complexity, an algorithm knows the amount ofresources that it is allocated if it can determine this amount without exceeding thecorresponding resources. This condition is satis�es in all \reasonable" cases, but itmay not hold in general. The latter fact should not be that surprising: we alreadyknow that some functions are not computable and if these functions are used todetermine resources then the algorithm may be in trouble. Needless to say, thisdiscussion requires some formalization, which is provided in the current chapter.Summary: When using \nice" functions to determine the algorithm'sresources, it is indeed the case that more resources allow for more tasksto be performed. However, when \ugly" functions are used for the samepurpose, increasing the resources may have no e�ect. By nice functionswe mean functions that can be computed without exceeding the amountof resources that they specify (e.g., t(n) = n2 or t(n) = 2n). Naturally,\ugly" functions do not allow to present themselves in such nice forms.The forgoing discussion refers to a uniform model of computation andto (natural) resources such as time and space complexities. Thus, weget results asserting, for example, that there are functions computablein cubic-time but not in quadratic-time. In case of non-uniform models127

128 CHAPTER 4. MORE RESOURCES, MORE POWER?of computation, the issue of \nicety" does not arise, and it is easy toestablish separations between levels of circuit complexity that di�er byany unbounded amount.Results that separate the class of problems solvable within one resourcebound from the class of problems solvable within a larger resourcebound are called hierarchy theorems. Results that indicate the non-existence of such separations, hence indicating a \gap" in the growthof computing power (or a \gap" in the existence of algorithms that uti-lize the added resources), are called gap theorems. A somewhat relatedphenomenon, called speed-up theorems, refers to the inability to de�nethe complexity of some problems.Caveat: Uniform complexity classes based on speci�c resource bounds (e.g.,cubic-time) are model dependent. Furthermore, the tightness of separation re-sults (i.e., how much more time is required to solve an additional computationalproblem) is also model dependent. Still the existence of such separations is aphenomenon common to all reasonable and general models of computation (as re-ferred to in the Cobham-Edmonds Thesis). In the following presentation, we willexplicitly di�erentiate model-speci�c e�ects from generic ones.Organization: We will �rst demonstrate the \more resources yield more power"phenomenon in the context of non-uniform complexity. In this case the issue of\knowing" the amount of resources allocated to the computing device does notarise, because each device is tailored to the amount of resources allowed for theinput length that it handles (see Section 4.1). We then turn to the time complexityof uniform algorithms; indeed, hierarchy and gap theorems for time-complexity,presented in Section 4.2, constitute the main part of the current chapter. We endby mentioning analogous results for space-complexity (see Section 4.3, which mayalso be read after Section 5.1).4.1 Non-uniform complexity hierarchiesThe model of machines that use advice (cf. x1.2.4.2 and Section 3.1.2) o�ers a veryconvenient setting for separation results. We refer speci�cally, to classes of the formP=`, where ` : N ! N is an arbitrary function (see De�nition 3.5). Recall thatevery Boolean function is in P=2n, by virtue of a trivial algorithm that is given asadvice the truth-table of the function restricted to the relevant input length. Ananalogous algorithm underlies the following separation result.Theorem 4.1 For any two functions `0; � : N ! N such that `0(n) + �(n) � 2nand � is unbounded, it holds that P=`0 is strictly contained in P=(`0 + �).Proof: Let ` def= `0 + �, and consider the algorithm A that given advice an 2f0; 1g`(n) and input i 2 f1; :::; 2ng (viewed as an n-bit long string), outputs the ithbit of an if i � janj and zero otherwise. Clearly, for any a = (an)n2N such that

4.2. TIME HIERARCHIES AND GAPS 129janj = `(n), it holds that the function fa(x) def= A(ajxj; x) is in P=`. Furthermore,di�erent sequences a yield di�erent functions fa. We claim that some of thesefunctions fa are not in P=`0, thus obtaining a separation.The claim is proved by considering all possible (polynomial-time) algorithmsA0 and all possible sequences a0 = (a0n)n2N such that ja0nj = `0(n). Fixing anyalgorithm A0, we consider the number of n-bit long functions that are correctlycomputed by A0(a0n; �). Clearly, the number of these functions is at most 2`0(n),and thus A0 may account for at most 2��(n) fraction of the functions fa (evenwhen restricted to n-bit strings). This consideration holds for every n and everypossible A0, and thus the measure of the set of functions that are computable byalgorithms that take advice of length `0 is zero.1A somewhat less tight bound can be obtained by using the model of Booleancircuits. In this case some slackness is needed in order to account for the gapbetween the upper and lower bounds regarding the number of Boolean functionsover f0; 1gn that are computed by Boolean circuits of size s < 2n. Speci�cally(see Exercise 4.1), an obvious lower-bound on this number is 2s=O(log s) whereasan obvious upper-bound is s2s = 22s log2 s. (Compare these bounds to the lower-bound 2`0(n) and the upper-bound 2`0(n)+((�(n)�2)=2), which were used in the proofof Theorem 4.1.)4.2 Time Hierarchies and GapsIn this section we show that in the \reasonable cases" increasing time-complexityallows for more problems to be solved, whereas in \pathological cases" it mayhappen that even a dramatic increase in the time-complexity provides no additionalcomputing power. As hinted in the introductory comments to the current chapter,the \reasonable cases" correspond to time bounds that can be determined by thealgorithm itself within the speci�ed time complexity.We stress that also in the aforementioned \reasonable cases", the added powerdoes not necessarily refer to natural computational problems. That is, like inthe case of non-uniform complexity (i.e., Theorem 4.1), the hierarchy theoremsare proved by introducing arti�cial computational problems. Needless to say, wedo not know of natural problems in P that are provably unsolvable in cubic (orsome other �xed polynomial) time (on, say, a two-tape Turing machine). Thus,although P contains an in�nite hierarchy of computational problems, each requiringsigni�cantly more time than the other, we know of no such hierarchy of naturalcomputational problems. In contrast, so far it has been the case that any naturalproblem that was shown to be solvable in polynomial-time was eventually followedby algorithms having running-time that is bounded by a moderate polynomial.1It su�ces to show that this measure is strictly less than one. This is easily done by considering,for every n, the performance of any algorithm A0 having description of length shorter than (�(n)�2)=2 on all inputs of length n.

130 CHAPTER 4. MORE RESOURCES, MORE POWER?4.2.1 Time HierarchiesNote that the non-uniform computing devices, considered in Section 4.1, were ex-plicitly given the relevant resource bounds (e.g., the length of advice). Actually,they were given the resources themselves (e.g., the advice itself) and did not needto monitor their usage of these resources. In contrast, when designing algorithmsof arbitrary time-complexity t : N ! N , we need to make sure that the algo-rithm does not exceed the time bound. Furthermore, when invoked on input x,the algorithm is not given the time bound t(jxj) explicitly, and a reasonable designmethodology is to have the algorithm compute this bound (i.e., t(jxj)) before doinganything else. This, in turn, requires the algorithm to read the entire input (seeExercise 4.3) as well as to compute t(n) using O(t(n)) (or so) time. The latterrequirement motivates the following de�nition (which is related to the standardde�nition of \fully time constructibility" (cf. [117, Sec. 12.3])).De�nition 4.2 (time constructible functions): A function t : N ! N is calledtime constructible if there exists an algorithm that on input n outputs t(n) using atmost t(n) steps.Equivalently, we may require that the mapping 1n 7! t(n) be computable withintime complexity t. We warn that the foregoing de�nition is model dependent;however, typically nice functions are computable even faster (e.g., in poly(log t(n))steps), in which case the model-dependency is irrelevant (for reasonable and generalmodels of computation, as referred to in the Cobham-Edmonds Thesis). For ex-ample, in any reasonable and general model, functions like t1(n) = n2, t2(n) = 2n,and t3(n) = 22n are computable in poly(log ti(n)) steps.Likewise, for a �xed model of computation (to be understood from the context)and for any function t : N ! N , we denote by Dtime(t) the class of decisionproblems that are solvable in time complexity t. We call the reader's attention toExercise 4.7 that asserts that in many cases Dtime(t) = Dtime(t=2).4.2.1.1 The Time Hierarchy TheoremIn the following theorem, we refer to the model of two-tape Turing machines. Inthis case we obtain quite a tight hierarchy in terms of the relation between t1 andt2. We stress that, using the Cobham-Edmonds Thesis, this results yields (possiblyless tight) hierarchy theorems for any reasonable and general model of computation.Teaching note: The standard statement of Theorem 4.3 asserts that for any timeconstructible function t2 and every function t1 such that t2 = !(t1 log t1) and t1(n) > nit holds that Dtime(t1) is strictly contained in Dtime(t2). The current version is onlyslightly weaker, but it allows a somewhat simpler and more intuitive proof. We commenton the proof of the standard version of Theorem 4.3 after proving the current version.Theorem 4.3 (time hierarchy for two-tape Turing machines): For any time con-structible function t1 and every function t2 such that t2(n) � (log t1(n))2 � t1(n)and t1(n) > n it holds that Dtime(t1) is strictly contained in Dtime(t2).

4.2. TIME HIERARCHIES AND GAPS 131As will become clear from the proof, an analogous result holds for any model inwhich a universal machine can emulate t steps of another machine in O(t log t) time,where the constant in the O-notation depends on the emulated machine. Beforeproving Theorem 4.3, we derive the following corollary.Corollary 4.4 (time hierarchy for any reasonable and general model): For anyreasonable and general model of computation there exists a positive polynomial psuch that for any time-computable function t1 and every function t2 such thatt2 > p(t1) and t1(n) > n it holds that Dtime(t1) is strictly contained in Dtime(t2).It follows that, for every such model and every polynomial t (such that t(n) > n),there exist problems in P that are not in Dtime(t). It also follows that P is a strictsubset of E or even of \quasi-polynomial time"; moreover, P is a strict subset ofDtime(q), where q(n) = nlog2 n (or even q(n) = nlog2 log2 n).Proof of Corollary 4.4: Letting Dtime2 denote the classes that correspondto two-tape Turing machines, we have Dtime(t1) � Dtime2(t01) and Dtime(t2) �Dtime2(t02), where t01 = poly(t1) and t02 is de�ned such that t2(n) = poly(t02(n)).The latter unspeci�ed polynomials, hereafter denoted p1 and p2 respectively, arethe ones guaranteed by the Cobham-Edmonds Thesis. Also, the hypothesis thatt1 is time-computable implies that t01 = p1(t1) is time-constructible with respect tothe two-tape Turing machine model. Thus, for a suitable choice of the polynomialp, it holds thatt02(n) = p�12 (t2(n)) > p�12 (p(t1(n))) > p�12 (p(p�11 (t01(n)))) > t01(n)2 :Invoking Theorem 4.3, we have Dtime2(t02) � Dtime2(t01), and the corollary fol-lows.Proof of Theorem 4.3: The idea is to construct a Boolean function f suchthat all machines having time complexity t1 fail to compute f . This is done byassociating each possible machine M a di�erent input xM (e.g., xM = hMi), andmaking sure that f(xM) 6= M 0(x), where M 0(x) denotes an emulation of M(x)that is suspended after t1(jxj) steps. Actually, we are going to use a mapping � ofinputs to machines (i.e., �(xM) =M), such that each machine is in the range of �and � is very easy to compute. Thus, by construction, f 62 Dtime(t1).The issue is presenting an algorithm for computing f . This algorithm is straight-forward: On input x, it computes t = t1(jxj), determines the machine M = �(x)that corresponds to x (outputting a default value of no such machine exists), em-ulates M(x) for t steps, and returns the value 1 �M 0(x). The question is howmuch time is required for this emulation. We should bear in mind that the timecomplexity of our algorithm needs to be analyzed in the two-tape Turing machinemodel, whereas M itself is a two-tape Turing machine. We start by implementingour algorithm on a three-tape Turing-machine, and next emulate this machine ona two-tape Turing-machine.The obvious implementation of our algorithm on a three-tape Turing-machineuses two tapes for the emulation itself and the third tape for the emulation proce-dure. Thus, each step of the the two-tape machine M is emulated using O(jhMij)

132 CHAPTER 4. MORE RESOURCES, MORE POWER?steps (on the three-tape machine).2 This includes also the amortized complexityof maintaining a step-counter for the emulation (see Exercise 4.4). Next, we needto emulate the foregoing three-tape machine on a two-tape machine. This is doneby using the fact (cf., e.g., [117, Thm. 12.6]) that t0 steps of a three-tape machinecan be emulated on a two-tape machine in O(t0 log t0) steps. Thus, the complexityof computing f on input x is upper-bounded by O(T�(x)(jxj) log T�(x)(jxj)), whereTM (n) = O(jhMij � t1(n)) denotes the cost of emulating t1(n) steps of the two-tapemachine M on a three-tape machine (as in the foregoing discussion).It turns out that the quality of the result we obtain depends on the mapping� of inputs to machines. Using the naive (identity) mapping (i.e., �(x) = x) wecan only establish the theorem for t2(n) = !((n � t1(n)) � log(n � t1(n))), becausein this case T�(x)(jxj) = O(jxj � t1(jxj)). (Note that in this case xM = hMi is adescription of M .) The theorem follows by associating with machine M the inputxM = hMi01m, where m = 2jhMij; that is, we may use the mapping � such that�(x) = M if x = hMi012jhMij and �(x) equals some �xed machine otherwise. Inthis case j�(x)j < log2 jxj < log t1(jxj) and so T�(x)(jxj) = O((log t1(jxj)) � t1(jxj)).Teaching note: Proving the standard version of Theorem 4.3 cannot be done byassociating a su�ciently long input xM with each machine M , because this does notallow to get rid from an additional unbounded factor in T�(x)(jxj) (i.e., the j�(x)j factorthat multiplies t1(jxj)). Note that the latter factor needs to be computable (at thevery least) and thus cannot be accounted for by the generic !-notation that appears inthe standard version (cf. [117, Thm. 12.9]). Instead, a di�erent approach is taken (seeFootnote 3).Technical Comments. The proof of Theorem 4.3 associates with each potentialmachine an input and makes this machine err on this input. The aforementionedassociation is rather
exible: it should merely be e�ciently computed (in the di-rection from the input to a possible machine) and should be su�ciently shrinking(in that direction). Speci�cally, we used the mapping � such that �(x) = M ifx = hMi012jhMij and �(x) equals some �xed machine otherwise. We comment thateach machine can be made to err on in�nitely many inputs by rede�ning � suchthat �(x) =M if hMi012jhMij is a pre�x of x (and �(x) equals some �xed machineotherwise). We also comment that, in contrast to the proof of Theorem 4.3, the2This overhead accounts both for searching the code of M for the adequate action and for thee�ecting of this action (which may refer to a larger alphabet than the one used by the emulator).3In the standard proof the function f is not de�ned with reference to t1(jxM j) steps ofM(xM),but rather with reference to the result of emulating M(xM) while using a total of t2(jxM j) stepsin the emulation process (i.e., in the algorithm used to compute f). This guarantees that f is inDtime(t2), and \pushes the problem" to showing that f is not in Dtime(t1). It also explains whyt2 (rather than t1) is assumed to be time constructible. As for the foregoing problem, it is resolvedby observing that for each relevant machine (i.e., having time complexity t1) the executions onany su�ciently long input will be fully emulated. Thus, we merely need to associate with eachM a disjoint set of in�nitely many inputs and make sure that M errs on each of these inputs.

4.2. TIME HIERARCHIES AND GAPS 133proof of Theorem 1.5 utilizes a rigid mapping of inputs to machines (i.e., there�(x) =M if x = hMi).Digest: Diagonalization. The last comment highlights the fact that the proofof Theorem 4.3 is merely a sophisticated version of the proof of Theorem 1.5. Bothproofs refer to versions of the universal function, which in the case of the proof ofTheorem 4.3 is (implicitly) de�ned such that its value at (hMi; x) equals M 0(x),where M 0(x) denotes an emulation of M(x) that is suspended after t1(jxj) steps.4Actually, both proofs refers to the \diagonal" of the aforementioned function, whichin the case of the proof of Theorem 4.3 is only de�ned implicitly. That is, thevalue of the diagonal function at x, denoted d(x), equals the value of the universalfunction at (h�(x)i; x). This is actually a de�nitional schema, as the choice of thefunction � remains unspeci�ed. Indeed, setting �(x) = x corresponds to a \real"diagonal in the matrix depicting the universal function, but any other choice of a1-1 mappings � also yields a \kind of diagonal" of the universal function. Eitherway, the function f is de�ned such that for every x it holds that f(x) 6= d(x).This guarantees that no machine of time-complexity t1 can compute f , and thefocus is on presenting an algorithm that computes f (which, needless to say, hastime-complexity greater than t1). Part of the proof of Theorem 4.3 is devoted toselecting � in a way that minimizes the time-complexity of computing f , whereasin the proof of Theorem 1.5 we merely need to guarantee that f is computable.4.2.1.2 Impossibility of speed-up for universal computationThe Time Hierarchy Theorem (Theorem 4.3) implies that the computation of auniversal machine cannot be signi�cantly sped-up. That is, consider the functionu0(hMi; x; t) def= y if on input x machine M halts within t steps and outputs thestring y, and u0(hMi; x; t) def= ? if on input x machine M makes more than t steps.Recall that the value of u0(hMi; x; t) can be computed in eO(jxj + jhMij � t) steps.Theorem 4.3 implies that this value cannot be computed with signi�cantly lesssteps.Theorem 4.5 There exists no two-tape Turing machine that, on input hMi; x andt, computes u0(hMi; x; t) in o((t + jxj) � f(M)= log2(t + jxj)) steps, where f is anarbitrary function.A similar result holds for any reasonable and general model of computation (cf.,Corollary 4.4). In particular, it follows that u0 is not computable in polynomialtime (because the input t is presented in binary). In fact, one can show thatdeciding whether or not M halts on input x in t steps (i.e., membership in the setf(hMi; x; t) : u0(hMi; x; t) 6= ?g) is not in P ; see Exercise 4.5.Proof: Suppose (towards the contradiction) that, for every �xed M , given xand t > jxj, the value of u0(hMi; x; t) can be computed in o(t= log2 t) steps, wherethe o-notation hides a constant that may depend on M . Consider an arbitrary4Needless to say, in the proof of Theorem 1.5, M 0 =M .

134 CHAPTER 4. MORE RESOURCES, MORE POWER?time constructible t1 (s.t. t1(n) > n) and an arbitrary set S 2 Dtime(t2), wheret2(n) = t1(n) � log2 t1(n). Let M be a machine of time complexity t2 that decidesmembership in S, and consider an algorithm that, on input x, �rst computest = t1(jxj), and then computes (and outputs) the value u0(hMi; x; t log2 t). Bythe time constructibility of t1, the �rst computation can be implemented in t steps,and by the contradiction hypothesis the same holds for the second computation.Thus, S can be decided in Dtime(2t1) = Dtime(t1), implying that Dtime(t2) =Dtime(t1), which in turn contradicts Theorem 4.3.4.2.1.3 Hierarchy theorem for non-deterministic timeAnalogously to Dtime, for a �xed model of computation (to be understood fromthe context) and for any function t : N ! N , we denote by Ntime(t) the classof sets that are accepted by some non-deterministic machine of time complexity t.Alternatively, analogously to the de�nition of NP, a set S � f0; 1g� is in Ntime(t)if there exists a linear-time algorithm V such that the two conditions hold1. For every x 2 S there exists y 2 f0; 1gt(jxj) such that V (x; y) = 1.2. For every x 62 S and every y 2 f0; 1g� it holds that V (x; y) = 0.We warn that the two formulations are not identical, but in su�ciently strong mod-els (e.g., two-tape Turing machines) they are related up to logarithmic factors (seeExercise 4.6). The hierarchy theorem itself is similar to the one for deterministictime, except that here we require that t2(n) � (log t1(n + 1))2 � t1(n + 1) (ratherthan t2(n) � (log t1(n))2 � t1(n)). That is:Theorem 4.6 (non-deterministic time hierarchy for two-tape Turing machines):For any time-constructible and monotonicly non-decreasing function t1 and everyfunction t2 such that t2(n) � (log t1(n+1))2 � t1(n+1) and t1(n) > n it holds thatNtime(t1) is strictly contained in Ntime(t2).Proof: We cannot just apply the proof of Theorem 4.3, because the Booleanfunction f de�ned there requires the ability to determine whether M accepts theinput xM in t1(jxM j) steps. In the current context, M is a non-deterministicmachine and so the only way we know how to determine this question (both for ayes and no answers) is to try all the (2t1(jxM j)) relevant executions. But this wouldput f in Dtime(2t1), rather than in Ntime(eO(t1)), and so a di�erent approach isneeded.We associate with each machine M , a large interval of strings (viewed as in-tegers), denoted IM = [�M ; �M], such that the various intervals do not intersectand such that it is easy to determine for each string x in which interval it re-sides. For each x 2 [�M ; �M � 1], we de�ne f(x) = 1 if and only if there ex-ists a non-deterministic computation of M that accepts the input x0 def= x + 1 int1(jx0j) � t1(jxj+1) steps. Thus, unless eitherM accepts each string in the intervalIM or rejects each such string, it (i.e., M) fails to accept fx : f(x) = 1g. So it isleft to deal with the case that M is invariant on IM , which is where the de�nition

4.2. TIME HIERARCHIES AND GAPS 135of the value of f(�M) comes into play: We de�ne f(�M) to equal zero if and onlyif there exists a non-deterministic computation of M that accepts the input �M int1(j�M j) steps. We shall select �M to be large enough relative to �M such that wecan a�ord to try all possible computations of M on input �M . Details follow.We present the following non-deterministic machine for accepting the set fx :f(x) = 1g. We assume that on input x it is easy to determine the machine Mas well as the interval [�M ; �M] in which x reside. On input x 2 [�M ; �M � 1],this non-deterministic machine emulates a (single) non-deterministic computationof M on input x0 = x + 1, and decides accordingly. Indeed, this emulation canbe performed in time (log t1(jx + 1j))2 � t1(jx + 1j) � t2(jxj). On input x = �M ,our machine just tries all 2t1(j�M j) executions of M on input �M and decides in asuitable manner; that is, our machine emulates all 2t1(j�M j) possible executions ofM(�M) and accepts �M if and only if all the emulated executions ended rejecting�M . Note that this part of the emulation is deterministic, and it amounts toemulating TM def= 2t1(j�M j) � t1(j�M j) steps of M . By a suitable choice of theinterval [�M ; �M], this number (i.e., TM) is smaller than t1(j�M j) (e.g., j�M j � TMimplies TM � t1(j�M j)), and it follows that TM steps of M can be emulated intime (log2 t1(j�M j))2 � t1(j�M j) � t2(j�M j). Thus, f is in Ntime(t2).Finally, we show that de�ning f as in the foregoing indeed guarantees thatit is not in Ntime(t1). Suppose on the contrary, that some non-deterministicmachine M of time complexity t1 accepts the set fx : f(x) = 1g. We de�nea Boolean function AM such that AM (x) = 1 if and only if there exists a non-deterministic computation of M that accepts the input x, and note that by thecontradiction hypothesis AM (x) = f(x). Focusing on the interval [�M ; �M], wehave AM (x) = f(x) for every x 2 [�M ; �M], which (combined with the de�nitionof f) implies that AM (x) = f(x) = AM (x + 1) for every x 2 [�M ; �M � 1] andAM (�M) = f(�M) = 1 � AM (�M). Thus, we reached a contraction (because wegot AM (�M) = � � � = AM (�M) = 1�AM (�M)).4.2.2 Time Gaps and Speed-UpIn contrast to Theorem 4.3, there exists functions t : N ! N such that Dtime(t) =Dtime(t2) (or even Dtime(t) = Dtime(2t)). Needless to say, these functionsare not time-constructible (and thus the aforementioned fact does not contradictTheorem 4.3). The reason for this phenomenon is that, for such functions t, thereexists not algorithms that have time complexity above t but below t2 (resp., 2t).Theorem 4.7 (the time gap theorem): For every non-decreasing computable func-tion g : N ! N there exists a non-decreasing computable function t : N ! N suchthat Dtime(t) = Dtime(g(t)).The forgoing examples referred to g(m) = m2 and g(m) = 2m. Since we aremainly interested in dramatic gaps (i.e., super-polynomial functions g), the modelof computation does not matter here (as long as it is reasonable and general).Proof: Consider an enumeration of all possible algorithms (or machines), whichalso includes machines that do not halt on some inputs. (Recall that we cannot

136 CHAPTER 4. MORE RESOURCES, MORE POWER?enumerate only all machines that halt on every input.) Let ti denote the timecomplexity of the ith algorithm; that is, ti(n) =1 if the ith machine does not halton some n-bit long input and otherwise ti(n) = maxx2f0;1gnfTi(x)g, where Ti(x)denotes the number of steps taken by the ith machine on input x.The basic idea is to de�ne t such that no ti is \sandwiched" between t and g(t),and thus no algorithm will have time complexity between t and g(t). Intuitively, ifti(n) is �nite, then we may de�ne t such that t(n) > ti(n) and thus guarantee thatti(n) 62 [t(n); g(t(n))], whereas if ti(n) = 1 then any �nite value of t(n) will do(because then ti(n) > g(t(n))). Thus, for every m and n, we can de�ne t(n) suchthat ti(n) 62 [t(n); g(t(n))] for every i 2 [m] (e.g., t(n) = maxi2[m]:ti(n)6=1fti(n)g+1).5 This yields a weaker version of the theorem, in which the function t is notcomputable.The problem is that we want t to be computable, whereas given n we cannot tellwhether or not ti(n) is �nite. However, we do not really need to make the latterdecision: for each candidate value v of t(n), we should just determine whetheror not ti(n) 2 [v; g(v)], which can be decided by running the ith machine forat most g(v) + 1 steps (on each n-bit long string). That is, as far as the ithmachine is concerned, we should just �nd a value v such that either v > ti(n) org(v) < ti(n) (which includes the case ti(n) = 1). This can be done by startingwith v = v0 (where, say, v0 = n + 1), and increasing v until either v > ti(n) org(v) < ti(n). The point is that if ti(n) is �nite then we output v = ti(n) + 1after performingPti(n)j=v0 2n �j emulation steps and otherwise we output v = v0 afteremulating 2n � (g(v0) + 1) steps. Bearing in mind that we should deal with allpossible machines, we obtain the following procedure for setting t(n).Let � : N ! N be any unbounded and computable function (e.g., �(n) = n willdo). Starting with v = n + 1, we keep incrementing v until v satis�es, for everyi 2 f1; :::; �(n)g, either ti(n) < v or ti(n) > g(v). This condition can be veri�edby computing �(n) and g(v), and emulating the execution of each of the �rst �(n)machines on each of the n-bit long strings for g(v) + 1 steps. The procedure setst(n) to equal the �rst value v satisfying the aforementioned condition, and halts.To show that the procedure halts on every n, consider the set Hn � f1; :::; �(n)gof indices of the relevant machines that halt on all inputs of length n. Thenthe procedure de�nitely halts before reaching the value v = Tn + 2, where Tn =maxi2Hnfti(n)g. (Indeed, the procedure may halt with a value v � Tn, but thiswill happen only if g(v) < Tn.)For the foregoing function t, we claim that Dtime(t) = Dtime(g(t)). Indeed,let S 2 Dtime(g(t)) and suppose that the ith algorithm decides S in time at mostg(t); that is, for every n, it holds that ti(n) � g(t(n)). Then (by the construction),for every n satisfying �(n) � i, it holds that ti(n) < t(n), and it follows that the ithalgorithm decides S in time at most t on all but �nitely many inputs. Combiningthis algorithm with a \look-up table" machine that handles the exceptional inputs,the theorem follows.5We may assume, without loss of generality, that t1(n) = 1 for every n; e.g., by letting themachine that always halts after a single step be the �rst machine in our enumeration.

4.3. SPACE HIERARCHIES AND GAPS 137Comment: The function t de�ned by the foregoing proof is computable in timethat exceeds g(t). Speci�cally, the presented procedure computes t(n) (as well asg(f(n))) in time eO(2n � g(t(n)) + Tg(t(n))), where Tg(m) denotes the number ofsteps required to compute g(m) on input m.Speed-up Theorems. Theorem 4.7 can be viewed as asserting that some timecomplexity classes (i.e., Dtime(g(t)) in the theorem) collapse to lower classes (i.e.,to Dtime(t)). A conceptually related phenomenon is of problems that have nooptimal algorithm (not even in a very mild sense); that is, every algorithm forthese (\pathological") problems can be drastically sped-up. It follows that thecomplexity of these problems can not be de�ned (i.e., as the complexity of the bestalgorithm solving this problem). The following drastic speed-up theorem shouldnot be confused with the linear speed-up that is an artifact of the de�nition of aTuring machine (see Exercise 4.7).6Theorem 4.8 (the time speed-up theorem): For every computable (and super-linear) function g there exists a decidable set S such that if S 2 Dtime(t) thenS 2 Dtime(t0) for t0 satisfying g(t0(n)) < t(n).Taking g(n) = n2 (or g(n) = 2n), the theorem asserts that, for every t, if S 2Dtime(t) then S 2 Dtime(pt) (resp., S 2 Dtime(log t)). Note that Theorem 4.8can be applied any (constant) number of times, which means that we cannot givea reasonable estimate to the complexity of deciding membership in S. In contrast,recall that in some important cases, optimal algorithms for solving computationalproblems do exist. Speci�cally, algorithms solving (candid) search problems in NPcannot be speed-up (see Theorem 2.31), nor can the computation of a universalmachine (see Theorem 4.5).We refrain from presenting a proof of Theorem 4.8, but comment on the com-plexity of the sets involved in this proof. The proof (presented in [117, Sec. 12.6])provides a construction of a set S in Dtime(t0)nDtime(t00) for t0(n) = h(n�O(1))and t00(n) = h(n � !(1)), where h(n) denoted g iterated n times on 2 (i.e.,h(n) = g(n)(2), where g(i+1)(m) = g(g(i)(m)) and g(1) = g). The set S is con-structed such that for every i > 0 there exists a j > i and an algorithm thatdecides S in time ti but not in time tj , where tk(n) = h(n� k).4.3 Space Hierarchies and GapsHierarchy and Gap Theorems analogous to Theorem 4.3 and Theorem 4.7, respec-tively, are known for space complexity. In fact, since space-e�cient emulation ofspace-bounded machines is simpler than time-e�cient emulations of time-boundedmachines, the results tend to be sharper. This is most conspicuous in the case of6We note that the linear speed-up phenomenon was implicitly addressed in the proof of Theo-rem 4.3, by allowing an emulation overhead that depends on the length of the description of theemulated machine.

138 CHAPTER 4. MORE RESOURCES, MORE POWER?the separation result (stated next), which is optimal (in light of linear speed-upresults; see Exercise 4.7).Before stating the result, we need a few preliminaries. We refer the reader tox1.2.3.4 for a de�nition of space complexity (and to Chapter 5 for further discus-sion). As in case of time complexity, we consider a speci�c model of computation,but the results hold for any other reasonable and general model. Speci�cally, weconsider three-tape Turing machines, because we designate two special tapes forinput and output. For any function s : N ! N , we denote by Dspace(s) theclass of decision problems that are solvable in space complexity s. Analogously toDe�nition 4.2, we call a function s : N ! N space constructible if there existsan algorithm that on input n outputs s(n) using at most s(n) cells of the work-tape. Actually, functions like s1(n) = logn, s2(n) = (log n)2, and s3(n) = 2n arecomputable using log si(n) space.Theorem 4.9 (space hierarchy for three-tape Turing machines): For any spaceconstructible function s2 and every function s1 such that s2 = !(s1) and s1(n) >logn it holds that Dspace(s1) is strictly contained in Dspace(s2).Theorem 4.9 is analogous to the traditional version of Theorem 4.3 (rather tothe one we presented), and is proven using the alternative approach sketched inFootnote 3. The details are left as an exercise (see Exercise 4.9).Chapter NotesThe material presented in this chapter predates the theory of NP-completeness andthe dominant stature of the P-vs-NP Question. At these early days, the �eld (to beknown as complexity theory) did not yet develop an independent identity and itsperspectives were dominated by two classical theories: the theory of computability(and recursive function) and the theory of formal languages. Nevertheless, webelieve that the results presented in this chapter are interesting for two reasons.Firstly, as stated up-front, these results address the natural question of underwhat conditions is it the case that more computational resources help. Secondly,these results demonstrate how far one can get with respect to \generic" questionsregarding an arbitrary complexity measure; that is, questions that refer to arbitraryresource bounds (e.g., the relation between Dtime(t1) and Dtime(t2) for arbitraryt1 and t2). We note that the P-vs-NP Question as well as the related questionsthat will be addressed in the rest of this book are not \generic" since they referto speci�c classes (which capture natural computational issues). The foregoingcomment many be clari�ed by the concrete discussion in Section 5.3.3.The hierarchy theorems (e.g., Theorem 4.3) were proved by Hartmanis andStearns [109]. Gap theorems (e.g., Theorem 4.7, often referred to as Borodin'sGap Theorem) were proven by Borodin [43]. A axiomatic treatment of complexitymeasures and corresponding speed-up theorems (e.g., Theorem 4.8, often referredto as Blum's Speed-up Theorem) are due to Blum [35].

4.3. SPACE HIERARCHIES AND GAPS 139ExercisesExercise 4.1 Let Fn(s) denote the number of di�erent Boolean functions overf0; 1gn that are computed by Boolean circuits of size s. Prove that, for any s < 2n,it holds that Fn(s) � 2s=O(log s) and Fn(s) � s2s.Guideline: Any Boolean function f : f0; 1g` ! f0; 1g can be computed by a circuit ofsize s` = O(` � 2`). Thus, for every ` � n, it holds that Fn(s`) � 22` > 2s`=O(log s`). Onthe other hand, the number of circuits of size s is less than 2s � �s2s �, where the secondfactor represents the number of possible choices of pair of gates that feed any gate in thecircuit.Exercise 4.2 (advice can speed-up computation) For every time constructiblefunction t, show that there exists a set S in Dtime(t2) nDtime(t) that can be de-cided in linear-time using an advice of linear length (i.e., S 2 Dtime(`)=` where`(n) = O(n)).Guideline: Starting with a set S0 2 Dtime(T 2) n Dtime(T), where T (m) = t(2m),consider the set S = fx02jxj�jxj : x2S0g.Exercise 4.3 Referring to a reasonable model of computation (and assuming thatthe input length is not given explicitly (e.g., as in De�nition 10.10)), prove thatany algorithm that has sub-linear time-complexity actually has constant time-complexity.Guideline: Consider the question of whether or not there exists an in�nite set of stringsS such that when invoked on any input x 2 S the algorithm reads all of x. Note that ifS is in�nite then the algorithm cannot have sub-linear time-complexity, and prove that ifS is �nite then the algorithm has constant time-complexity.Exercise 4.4 (constant amortized time step-counter) A step-counter is analgorithm that runs for a number of steps that is speci�ed in its input. Actu-ally, such an algorithm may run for a somewhat larger number of steps but haltafter issuing a number of \signals" as speci�ed in its input, where these signalsare de�ned as entering (and leaving) a designated state (of the algorithm). Astep-counter may be run in parallel to another procedure in order to suspend theexecution after a desired number of steps (of the other procedure) has elapsed.Show that there exists a simple deterministic machine that, on input n, halts afterissuing n signals while making O(n) steps.Guideline: A slightly careful implementation of the straightforward algorithm will do,when coupled with an \amortized" time-complexity analysis.Exercise 4.5 (a natural set in E n P) In continuation to the proof of Theorem 4.5,prove that the set f(hMi; x; t) : u0(hMi; x; t) 6= ?g is in E n P , where E def=[cDtime(ec) and ec(n) = 2cn.

140 CHAPTER 4. MORE RESOURCES, MORE POWER?Exercise 4.6 Prove that the two de�nitions of Ntime, presented in x4.2.1.3, arerelated up to logarithmic factors. Note the importance of condition that V haslinear (rather than polynomial) time-complexity.Guideline: When emulating a non-deterministic machine by the veri�cation procedureV , encode the non-deterministic choices in y such that jyj is slightly larger than thenumber of steps taken by the original machine. Speci�cally, having jyj = O(t log t), wheret denotes the number of steps taken by the original machine, allows to emulate the latterin linear time (i.e., linear in jyj).Exercise 4.7 (linear speed-up of Turing machine) Prove that any problemthat can be solved by a two-tape Turing machine that has time-complexity t canbe solved by another two-tape Turing machine having time-complexity t0, wheret0(n) = O(n) + (t(n)=2).Guideline: Consider a machine that uses a larger alphabet, capable of encoding a con-stant (denoted c) number of symbols of the original machine, and thus capable of emu-lating c steps of the original machine in O(1) steps, where the constant in the O-notationis a universal constant (independent of c). Note that the O(n) term accounts to a pre-processing that converts the binary input to work-alphabet of the new machine (whichencoding c input bits in one alphabet symbol). Thus, a similar result for one-tape Turingmachine seems to require a O(n2) term.Exercise 4.8 In continuation to Exercise 4.7, state and prove an analogous resultfor space complexity, when using the standard de�nition of space as recalled inSection 4.3. (Note that this result does not hold with respect to \binary spacecomplexity" as de�ned in Section 5.1.1.)Exercise 4.9 Prove Theorem 4.9. As a warm-up, assume that s1 (rather than s2)is space constructible.Guideline: Note that providing a space-e�cient emulation of one machine by anothermachine is easier than providing an analogous time-e�cient emulation.

Chapter 5Space ComplexityOpen are the double doors of the horizon; unlockedare its bolts. Philip Glass, Akhnaten, PreludeWhereas the number of steps taken during a computation is the primary measureof its e�ciency, the amount of temporary storage used by the computation is alsoa major concern. Furthermore, in some settings, space is even more scarce thantime.In addition to the intrinsic interest in space complexity, its study provides aninteresting perspective on the study of time complexity. For example, in contrastto the common conjecture by which NP 6= coNP , we shall see that analogousspace complexity classes (e.g., NL) are closed under complementation (e.g., NL =coNL).Summary: This chapter is devoted to the study of the space complex-ity of computations, while focusing on two rather extreme cases. The�rst case is that of algorithms having logarithmic space complexity.We view such algorithms as utilizing the naturally minimal amount oftemporary storage, where the term \minimal" is used here in an intu-itive (but somewhat inaccurate) sense, and note that logarithmic spacecomplexity seems a more stringent requirement than polynomial time.The second case is that of algorithms having polynomial space com-plexity, which seems a strictly more liberal restriction than polynomialtime complexity. Indeed, algorithms utilizing polynomial space can per-form almost all the computational tasks considered in this book (e.g.,the class PSPACE contains almost all complexity classes considered inthis book).We �rst consider algorithms of logarithmic space complexity. Such al-gorithms may be used for solving various natural search and decision141

142 CHAPTER 5. SPACE COMPLEXITYproblems, for providing reductions among such problems, and for yield-ing a strong notion of uniformity for Boolean circuits. The highlight ofthis part is a log-space algorithm for exploring (undirected) graphs.We then turn to non-deterministic machines, focusing on the complexityclass NL that is captured by the problem of deciding directed connec-tivity of (directed) graphs. The highlight of this part is a proof thatNL = coNL, which may be paraphrased as a log-space reduction ofdirected unconnectivity to directed connectivity.We conclude with a short discussion of the class PSPACE, proving thatthe set of satis�able quanti�ed Boolean formulae is PSPACE-complete(under polynomial-time reductions). We mention the similarity be-tween this proof and the proof that Nspace(s) � Dspace(O(s2)).We stress that, as in the case of time complexity, the main results presented in thischapter hold for any reasonable model of computation.1 In fact, when properlyde�ned, space complexity is even more robust than time complexity. Still, for sakeof clarity, we often refer to the speci�c model of Turing machines.Organization. Space complexity seems to behave quite di�erently from timecomplexity, and seems to require a di�erent mind-set as well as auxiliary conven-tions. Some of the relevant issues are discussed in Section 5.1. We then turn tothe study of logarithmic space complexity (see Section 5.2) and the correspondingnon-deterministic version (see Section 5.3). Finally, we consider polynomial spacecomplexity (see Section 5.4).5.1 General preliminaries and issuesWe start by discussing several very important conventions regarding space com-plexity (see Section 5.1.1). Needless to say, reading Section 5.1.1 is essential forthe understanding of the rest of this chapter. We then discuss a variety of is-sues, highlighting the di�erences between space-complexity and time-complexity.In particular, we call the reader's attention to the composition lemmas (x5.1.3.1)and related reductions (x5.1.3.3) as well as to the obvious simulation result pre-sented in x5.1.3.2 (i.e., Dspace(s) � Dtime(2O(s))). Lastly, in Section 5.1.4 werelate circuit size to space complexity by considering the space-complexity of circuitevaluation (see also x5.3.2.2).5.1.1 Important conventionsSpace complexity is meant to measure the amount of temporary storage (i.e., com-puter's memory) used when performing a computational task. Since much of our1The only exceptions appear in Exercises 5.3 and 5.14, which refer to the notion of a crossingsequence. The use of this notion in these proofs presumes that the machine scans its storagedevices in a serial manner. In contrast, we stress that the various notions of an instantaneouscon�guration do not assume such a machine model.

5.1. GENERAL PRELIMINARIES AND ISSUES 143focus will be on using an amount of memory that is sub-linear in the input length,it is important to use a model in which one can di�erentiate memory used for com-putation from memory used for storing the initial input or the �nal output. Thatis, we do not want to count the input and output themselves within the space ofcomputation, and thus formulate that they are delivered on special devices that arenot considered memory. On the other hand, we have to make sure that the inputand output devices cannot be abused for providing work space (which is uncountedfor). This leads to the convention by which the input device (e.g., a designatedinput-tape of a multi-tape Turing machine) is read-only, whereas the output de-vice (e.g., a designated output-tape of a such machine) is write-only. Thus, spacecomplexity accounts for the use of space on the other (storage) devices (e.g., thework-tapes of a multi-tape Turing machine)Fixing a concrete model of computation (e.g., multi-tape Turing machines),we denote by Dspace(s) the class of decision problems that are solvable in spacecomplexity s. The space complexity of search problems is de�ned analogously.Speci�cally, the standard de�nition of space complexity (see x1.2.3.4) refers to thenumber of cells of the work-tape scanned by the machine on each input. We prefer,however, an alternative de�nition, which provides a more accurate account of theactual storage. Speci�cally, the binary space complexity of a computation refers tothe number of bits that can be stored in these cells, thus multiplying the number ofcells by the logarithm of the �nite set of work symbols of the machine.2The di�erence between the two de�nitions is mostly immaterial, since it amountsto a constant factor and we will discard such factors. Nevertheless, aside from beingconceptually right, using the de�nition of binary space complexity facilitates sometechnical details (because the number of possible con�gurations is explicitly upper-bounded in terms of binary space complexity whereas the relation to the standardde�nition depends on the machine in question). Towards such applications, we alsocount the �nite state of the machine in its space complexity. Furthermore, for sakeof simplicity, we also assume that the machine does not scan the input-tape beyondthe boundaries of the input, which are indicated by special symbols.We stress that individual locations of the (read-only) input-tape (or device) maybe read several times. This is essential for many algorithms that use a sub-linearamount of space (because such algorithms may need to scan their input more thanonce while they cannot a�ord copying their input to their storage device). In con-trast, rewriting on (the same location of) the write-only output-tape is inessential,and in fact can be eliminated at a relatively small cost (see Exercise 5.1).Summary. Let us compile a list of the foregoing conventions. As stated, the�rst two items on the list are of crucial importance, while the rest are of technicalnature (but do facilitate our exposition).1. Space complexity discards the use of the input and output devices.2We note that, unlike in the context of time-complexity, linear speed-up (as in Exercise 4.7)does not seem to represent an actual saving in space resources. Indeed, time can be sped-up byusing stronger hardware (i.e., a Turing machine with a bigger work alphabet), but the actualspace is not really a�ected by partitioning it into bigger chunks (i.e., using bigger cells).

144 CHAPTER 5. SPACE COMPLEXITY2. The input device is read-only and the output device is write-only.3. We will usually refer to the binary space complexity of algorithms, wherethe binary space complexity of a machine M that uses the alphabet �, �nitestate set Q, and has standard space complexity SM is de�ned as (log2 jQj) +(log2 j�j)�SM . (Recall that SM measures the number of cells of the temporarystorage device that are used by M during the computation.)4. We will assume that the machine does not scan the input-device beyond theboundaries of the input.5. We will assume that the machine does not rewrite to locations of its output-device (i.e., it write to each cell of the output-device at most once).5.1.2 On the minimal amount of useful computation spaceBearing in mind that one of our main objectives is identifying natural sub-classesof P , we consider the question of what is the minimal amount of space that al-lows for meaningful computations. We note that regular sets [117, Chap. 2] aredecidable by constant-space Turing machines and that this is all that the lattercan decide (see, e.g., [117, Sec. 2.6]). It is tempting to say that sub-logarithmicspace machines are not more useful than constant-space machines, because it seemsimpossible to allocate a sub-logarithmic amount of space. This wrong intuition isbased on the presumption that the allocation of a non-constant amount of spacerequires explicitly computing the length of the input, which in turn requires loga-rithmic space. However, this presumption is wrong: the input itself (in case it isof a proper form) can be used to determine its length (and/or the allowed amountof space).3 In fact, for `(n) = log logn, the class Dspace(O(`)) is a proper su-perset of Dspace(O(1)); see Exercise 5.2. On the other hand, it turns out thatdouble-logarithmic space is indeed the smallest amount of space that is more usefulthan constant space (see Exercise 5.3); that is, for `(n) = log logn, it holds thatDspace(o(`)) = Dspace(O(1)).In spite of the fact that some non-trivial things can be done in sub-logarithmicspace complexity, the lowest space complexity class that we shall study in depth islogarithmic space (see Section 5.2). As we shall see, this class is the natural habitatof several fundamental computational phenomena.A parenthetical comment (or a side lesson). Before proceeding let us high-light the fact that a naive presumption about generic algorithms (i.e., that the useof a non-constant amount of space requires explicitly computing the length of theinput) could have led us to a wrong conclusion. This demonstrates the dangerin making (\reasonably looking") presumptions about arbitrary algorithms. Weneed to be fully aware of this danger whenever we seek impossibility results and/orcomplexity lower-bounds.3Indeed, for this approach to work, we should be able to detect the case that the input is notof the proper form (and do so within sub-logarithmic space).

5.1. GENERAL PRELIMINARIES AND ISSUES 1455.1.3 Time versus SpaceSpace complexity behaves very di�erent from time complexity and indeed di�erentparadigms are used in studying it. One notable example is provided by the contextof algorithmic composition, discussed next.5.1.3.1 Two composition lemmasUnlike time, space can be re-used; but, on the other hand, intermediate resultsof a computation cannot be recorded for free. These two con
icting aspects arecaptured in the following composition lemma.Lemma 5.1 (naive composition): Let f1 : f0; 1g� ! f0; 1g� and f2 : f0; 1g� �f0; 1g� ! f0; 1g� be computable in space s1 and s2, respectively.4 Then f de�nedby f(x) def= f2(x; f1(x)) is computable in space s such thats(n) = max(s1(n); s2(n+ `(n))) + `(n) +O(1) ;where `(n) = maxx2f0;1gnfjf1(x)jg.That is, f(x) is computed by �rst computing and storing f1(x), and then re-usingthe space (used in the �rst computation) when computing f2(x; f1(x)). The addi-tional term of `(n) is due to storing the intermediate result (i.e., f1(x)). Lemma 5.1is useful when ` is relatively small, but in many cases ` � max(s1; s2). In thesecases, the following composition lemma is more useful.Lemma 5.2 (emulative composition): Let f1; f2; s1; s2; ` and f be as in Lemma 5.1.Then f is computable in space s such thats(n) = s1(n) + s2(n+ `(n)) +O(log(n+ `(n))) + �(n) ;where �(n) = O(log(s1(n) + s2(n+ `(n)))) = o(s(n)).The alternative compositions are depicted in Figure 5.1 (which also shows the moststraightforward composition of A1 and A2 that makes no attempt to economizespace).Proof: The idea is avoiding the storage of the temporary value of f1(x), bycomputing each of its bits (\on the
y") whenever it is needed for the computationof f2. That is, we do not start by computing f1(x), but rather start by computingf2(x; f1(x)) although we do not have some of the bits of the relevant input. Themissing bits will be computed (and re-computed) whenever we need them in thecomputation of f2(x; f1(x)). Details follow.Let us assume, for simplicity, that algorithm A1 never rewrites on (the samelocation of) its write-only output-tape. As shown in Exercise 5.1, this assumptioncan be justi�ed at an additive cost of O(log `(n)).54Here (and throughout the chapter) we assume, for simplicity, that all complexity bounds aremonotonically non-decreasing.5Alternatively, the idea presented in Exercise 5.1 can be incorporated directly in the currentproof.

146 CHAPTER 5. SPACE COMPLEXITY
x

A2

f(x)

A1

x

A2

f(x)

A1

x

A2

f(x)

A1

f (x)1 f (x)1 f (x)1

counters

The leftmost �gure shows the trivial composition (which just invokesA1 and A2 without attempt to economize storage), the middle �gureshows the naive composition (of Lemma 5.1), and the rightmost �g-ure shows the emulative composition (of Lemma 5.2). In all �guresthe �lled rectangles represent designated storage spaces. The dottedrectangle represents a virtual storage device.Figure 5.1: Algorithmic composition for space-bounded computationLet A1 and A2 be the algorithms (for computing f1 and f2, respectively) guar-anteed in the hypothesis. Then, on input x 2 f0; 1gn, we invoke algorithm A2 (forcomputing f2). Algorithm A2 is invoked on a virtual input, and so when emulatingeach of its steps we should provide it with the relevant bit. Thus, we should alsokeep track of the location of A2 on the imaginary (virtual) input tape. WheneverA2 seeks to read the ith bit of its input, where i 2 [n+ `(n)], we provide A2 withthis bit by reading it from x if i � n and invoke A1(x) otherwise. When invokingA1(x) we provide it with a virtual output tape, which means that we get the bitsof its output one-by-one and do not record them anywhere. Instead, we countuntil reaching the (i� n)th output bit, which we then pass to A2 (as the ith bit ofhx; f1(x)i).Note that while invoking A1(x), we suspend the execution of A2 but keep itscurrent con�guration such that we can resume the execution (of A2) once we getthe desired bit. Thus, we need to allocate separate space for the computation of A2and for the computation of A1. In addition, we need to allocate separate storagefor maintaining the aforementioned counters (i.e., we use log2(n+`(n)) bits to holdthe location of the input-bit currently read by A2, and log2 `(n) bits to hold theindex of the output-bit currently produced in the current invocation of A1).66The additional �(n) term takes care of the following issue. Our description of the composedalgorithm refers to two storage devices, one for the computation of A1 and the other for thecomputation of A2. Indeed, we can obtain an algorithm that uses a single storage device and a

5.1. GENERAL PRELIMINARIES AND ISSUES 147Re
ection. The algorithm presented in the proof of Lemma 5.2 is wasteful interms of time: it re-computes f1(x) again and again (i.e., once per each access ofA2 to the second part of its input). Indeed, our aim was economizing on space andnot on time (and the two goals may be con
icting (see, e.g., [55, Sec. 4.3])).5.1.3.2 An obvious boundThe time complexity of an algorithm is essentially upper-bounded by an exponentialfunction in its space complexity. This is due to an upper-bound on the numberof possible instantaneous \con�gurations" of the algorithm (as formulated in theproof of Theorem 5.3), and to the fact that if the computation passes through thesame con�guration twice then it must loop forever.Theorem 5.3 If an algorithm A has binary space complexity s and halts on everyinput then it has time complexity t such that t(n) � n � 2s(n)+log2 s(n).Note that for s(n) =
(logn), the factor of n can be absorbed by 2O(s(n)), and sowe may just write t(n) = 2O(s(n)).Proof: The proof refers to the notion of an instantaneous con�guration (in acomputation). Before starting, we warn the reader that this notion may be givendi�erent de�nitions, each tailored to the application at hand. All these de�nitionsshare the desire to specify variable information that together with some �xed infor-mation determines the next step of the computation being analyzed. In the currentproof, we �x an algorithm A and an input x, and consider as variable the contentsof the storage device (e.g., work-tape of a Turing machine as well as its �nite state)and the machine's location on the input device and on the storage device. Thus,an instantaneous con�guration of A(x) consists of the latter three objects (i.e., thecontents of the storage device and a pair of locations), and can be encoded by abinary string of length `(jxj) = s(jxj) + log2 jxj+ log2 s(jxj).7The key observation is that the computation A(x) cannot pass through the samecomputation twice, because otherwise the computation A(x) passes through thiscon�guration in�nitely many times, which means that it does not halt. Intuitively,the point is that the �xed information (i.e., A and x) together with the con�gu-ration, determines the next step of the computation. Thus, whatever happens (isteps) after the �rst time that the computation A(x) passes through con�guration
, will also happen (i steps) after the second time that the computation A(x) passesthrough
.By the forgoing observation, we infer that the number of steps taken by A oninput x is at most 2`(jxj), because otherwise the same con�guration will appeartwice in the computation (which contradicts the halting hypothesis). The theoremfollows.single pointer to locations on this device, but this requires holding the two original pointers inmemory.7Here we rely on the fact that s is the binary space complexity (and not the standard spacecomplexity).

148 CHAPTER 5. SPACE COMPLEXITY5.1.3.3 Subtleties regarding space-bounded reductionsLemmas 5.1 and 5.2 su�ce for the analysis of the a�ect of many-to-one reductionsin the context of space-bounded computations. Speci�cally:1. (In spirit of Lemma 5.1:)8 If f is reducible to g via a many-to-one reductionthat can be computed in space s1, and g is computable in space s2, then fis computable in space s such that s(n) = max(s1(n); s2(`(n)))+ `(n), where`(n) denotes the maximum length of the image of the reduction when appliedto some n-bit string.2. (In spirit of Lemma 5.2:) For f and g as in Item 1, it follows that f iscomputable in space s such that s(n) = s1(n)+ s2(`(n))+O(log `(n))+ �(n),where �(n) = O(log(s1(n) + s2(`(n)))) = o(s(n)).Note that by Theorem 5.3, it holds that `(n) � 2s1(n)+log2 s1(n) � n. We stress thefact that ` is not bounded by s1 itself (as in the analogous case of time-boundedcomputation), but rather by exp(s1).Things get much more complicated when we turn to general (space-bounded) re-ductions, especially when referring to general reductions that make a non-constantnumber of queries. A preliminary issue is de�ning the space complexity of gen-eral reductions (i.e., of oracle machines). In the standard de�nition, the length ofthe queries and answers is not counted in the space complexity, but the queriesof the reduction (resp., answers given to it) are written on (resp., read from) aspecial device that is write-only (resp., read-only) for the reduction (and read-only(resp., write-only) for the invoked oracle). Note that these convention are analo-gous to the conventions regarding input and output (as well as �t the de�nitionsof space-bounded many-to-one reductions (see Section 5.2.2)). This su�ces forgeneral reductions that make a single query, but more di�culties arise when thereduction makes several adaptive queries (i.e., queries that depend on the answersto prior queries).Teaching note: The rest of the discussion is quite advanced and laconic (but is inessen-tial to the rest of the chapter).Recall that the complexity of the algorithm resulting from the composition ofan oracle machine and an actual algorithm depends on the length of the queriesmade by the oracle machine. The length of the �rst query is upper-bounded byan exponential function in the space complexity of the oracle machine, but thesame does not necessarily hold for subsequent queries, unless some conventions areadded to enforce it. For example, consider a reduction, that on input x and accessto the oracle f such that f(z) = 12jzj, invokes the oracle jxj times, where each timeit uses as a query the answer obtained to the previous query. This reduction usesconstant space, but produces queries that are exponentially longer than the input,whereas the �rst query of any constant-space reduction has length that is linear in8Here and in the next item, we refer to the case that f(x) = g(f1(x)) rather than to the moregeneral case where f(x) = g(x; f1(x)). Consequently, s2 is applied to `(n) rather than to n+`(n).

5.1. GENERAL PRELIMINARIES AND ISSUES 149its input. This problem can be resolved by placing explicit bounds on the lengthof the queries that space-bounded reductions are allowed to make; for example, wemay bound the length of all queries by the obvious bound that holds for the lengthof the �rst query (i.e., a reduction of space complexity s is allowed to make queriesof length at most 2s(n)+log2 s(n) � n).With the aforementioned convention (or restriction) in place, let us considerthe composition of general space-bounded reductions with a space-bounded imple-mentation of the oracle. Speci�cally, we say that a reduction is (`; `0)-restricted if,on input x, all oracle queries are of length at most `(jxj) and the correspondingoracle answers are of length at most `0(jxj). It turns out that naive composition(in the spirit of Lemma 5.1) remains valid, whereas the emulative composition ofLemma 5.2 breaks down (in the sense that it yield very weak results).1. Following Lemma 5.1, we claim that if � can be computed in space s1 whengiven (`; `0)-restricted oracle access to �0 and �0 is solvable is space s2, then� is solvable in space s such that s(n) = s1(n)+s2(`(n))+`(n)+`0(n)+�(n),where �(n) = O(log(`(n) + `0(n) + s1(n) + s2(`(n)))) = o(s(n)). The claimis proved by using a naive emulation that allocates separate space for thereduction (i.e., oracle machine) itself, for the emulation of its query andanswer devices, and for the algorithm solving �0. Note that here we cannotre-use the space of the reduction when running the algorithm that solves�0, because the reduction's computation continues after the oracle answer isobtained. The additional �(n) term accounts for the various pointers of theoracle machine, which need to be stored when algorithm that solves �0 isinvoked (see also Footnote 6).A related composition result is presented in Exercise 5.5. It yields s(n) =2s1(n)+ s2(`(n))+2`0(n)+O(log(`(n)+ s1(n)+ s2(`(n)))), which for `(n) <2O(s1(n)) means s(n) = O(s1(n)) + (1 + o(1))s2(`(n)) + 2`0(n).2. Turning to the approach underlying the proof of Lemma 5.2, we get intomore serious trouble. Speci�cally, note that recomputing the answer of theith query requires recomputing the query itself, which unlike in Lemma 5.2is not the input to the reduction but rather depends on the answers to priorqueries, which need to be recomputed as well. Thus, the space required forsuch an emulation may be linear in the number of queries. In fact, we shouldnot expect any better, because any computation of space complexity s canbe performed by a constant-space (2s; 2s)-restricted reduction to a problemthat is solvable in constant-space (see Exercise 5.6).An alternative notion of space-bounded reductions is discussed in x5.2.4.2. Thisnotion is more cumbersome and more restricted, but it allows recursive compositionwith a smaller overhead than the two options explored above.5.1.3.4 Complexity hierarchies and gapsRecall that more space allows for more computation (see Theorem 4.9), providedthat the space-bounding function is \nice" in an adequate sense. Actually, the

150 CHAPTER 5. SPACE COMPLEXITYproofs of space-complexity hierarchies and gaps are simpler than in the analogousproofs for time-complexity, because emulations are easier in the context of space-bounded algorithms (cf. Section 4.3).5.1.3.5 Simultaneous time-space complexityRecall that, for space complexity that is at least logarithmic, the time of a compu-tation is always upper-bounded by an exponential function in the space complexity(see Theorem 5.3). Thus, polylogarithmic space complexity may extend beyondpolynomial-time, and it make sense to de�ne a class that consists of all decisionproblems that may be solved by a polynomial-time algorithm of polylogarithmicspace complexity. This class, denoted SC, is indeed a natural sub-class of P (andcontains the class L, which is de�ned in Section 5.2.1).9In general, one may de�ne DTiSp(t; s) as the class of decision problems solvableby an algorithm that has time complexity t and space complexity s. Note thatDTiSp(t; s) � Dtime(t) \ Dspace(s) and that a strict containment may hold.We mention that DTiSp(�; �) provides the arena for the only known absolute (andhighly non-trivial) lower-bound regarding NP ; see [74]. We also note that lowerbounds on time-space trade-o�s (see, e.g., [55, Sec. 4.3]) may be stated as referringto the classes DTiSp(�; �).5.1.4 Circuit EvaluationRecall that Theorem 3.1 asserts the existence of a polynomial-time algorithm that,given a circuit C : f0; 1gn ! f0; 1gm and an n-bit long string x, returns C(x). Forcircuits of bounded fan-in, the space complexity of such an algorithm can be madelinear in the depth of the circuit (which may be logarithmic in its size). This isobtained by the following DFS-type algorithm.The algorithm (recursively) determines the value of a gate in the circuit by�rst determining the value of its �rst in-coming edge and next determining thevalue of the second in-coming edge. Thus, the recursive procedure, started at eachoutput terminal of the circuit, needs only store the path that leads to the currentlyprocessed vertex as well as the temporary values computed for each ancestor. Notethat this path is determined by indicating, for each vertex on the path, whether wecurrently process its �rst or second in-coming edge. In case we currently processthe vertex's second in-coming edge, we need also store the value computed for its�rst in-coming edge.The temporary storage used by the foregoing algorithm, on input (C; x), is thus2dC + O(log jxj+ log jC(x)j), where dC denotes the depth of C. The �rst term inthe space-bound accounts for the core activity of the algorithm (i.e., the recursion),whereas the other terms account for the overhead involved in manipulating theinitial input and �nal output (i.e., assigning the bits of x to the correspondinginput terminals of C and scanning all output terminals of C).9We also mention that BPL � SC, where BPL is de�ned in x6.1.4.1 and the result is provedin Section 8.4 (see Theorem 8.23).

5.2. LOGARITHMIC SPACE 1515.2 Logarithmic SpaceAlthough Exercise 5.2 asserts that \there is life below log-space," logarithmic spaceseems to be the smallest amount of space that supports interesting computationalphenomena. In particular, logarithmic space is required for merely maintainingan auxiliary counter that holds a position in the input, which seems required inmany computations. On the other hand, logarithmic space su�ces for solving manynatural computational problems, for establishing reductions among many naturalcomputational problems, and for a stringent notion of uniformity (of families ofBoolean circuits). Indeed, an important feature of logarithmic space computa-tions is that they are a natural subclass of the polynomial-time computations (seeTheorem 5.3).5.2.1 The class LFocusing on decision problems, we denote by L the class of decision problemsthat are solvable by algorithms of logarithmic space complexity; that is, L =[cDspace(`c), where `c(n) def= c log2 n. Note that, by Theorem 5.3, L � P . Ashinted, many natural computational problems are in L (see Exercises 5.4 and 5.7as well as Section 5.2.4). On the other hand, it is widely believed that L 6= P .5.2.2 Log-Space ReductionsAnother class of important log-space computations is the class of logarithmic spacereductions. In light of the subtleties discussed in x5.1.3.3, we con�ne ourselves to thecase of many-to-one reductions. Analogously to the de�nition of Karp-reductions(De�nition 2.10), we say that f is a log-space many-to-one reduction of S to S0 if f islog-space computable and, for every x, it holds that x 2 S if and only if f(x) 2 S0.Clearly, if S is so reducible to S0 2 L then S 2 L. Similarly, one can de�ne alog-space variant of Levin-reductions (De�nition 2.11). Both types of reductionsare transitive (see Exercise 5.8). Note that Theorem 5.3 applies in this contextand implies that these reductions run in polynomial-time. Thus, the notion of alog-space many-to-one reduction is a special case of a Karp-reduction.We observe that all known Karp-reductions establishing NP-completeness re-sults are actually log-space reductions. This is easily veri�able in the case of thereductions presented in Section 2.3.3 (as well as in Section 2.3.2). For example,consider the generic reduction to CSAT presented in the proof of Theorem 2.20: Theconstructed circuit is \highly uniform" and can be easily constructed in logarithmic-space (see also Section 5.2.3). A degeneration of this reduction su�ces for provingthat every problem in P is log-space reducible to the problem of evaluating a givencircuit on a given input. Note that the latter problem is in P , and thus we maysay that it is P-complete under log-space reductions.Theorem 5.4 (The complexity of Circuit Evaluation): Let CEVL denote the set ofpairs (C;�) such that C is a Boolean circuit and C(�) = 1. Then CEVL is in Pand every problem in P is log-space Karp-reducible to CEVL.

152 CHAPTER 5. SPACE COMPLEXITYProof Sketch: Recall that the observation underlying the proof of Theorem 2.20(as well as the proof of Theorem 3.6) is that the computation of a Turing machinecan be emulated by a (\highly uniform") family of circuits. In the proof of The-orem 2.20, we hardwired the input to the reduction (denoted x) into the circuit(denoted Cx) and introduced input terminals corresponding to the bits of the NP-witness (denoted y). In the current context we leave x as an input to the circuit,while noting that the auxiliary NP-witness does not exists (or has length zero).Thus, the reduction from S 2 P to CEVL maps the instance x (for S) to the pair(Cjxj; x), where Cjxj is a circuit that emulates the computation of the machine thatdecides membership in S (on any jxj-bit long input). For the sake of future use (inSection 5.2.3), we highlight the fact that Cjxj can be constructed by a log-spacemachine that is given the input 1jxj.The impact of P-completeness under log-space reductions. Indeed, The-orem 5.4 implies that L 6= P if any only if CEVL 62 L. Other natural problemswere proved to have the same property (i.e., being P-complete under log-spacereductions; cf. [56]).Log-space reductions are used to de�ne completeness with respect to otherclasses that are assumed to extend beyond L. This restriction of the power of thereduction is de�nitely needed when the class of interest is contained in P (e.g.,NL, see Section 5.3.2). In general, we say that a problem � is C-complete underlog-space reductions if � is in C and every problem in C is log-space (many-to-one)reducible to �. In such a case, if � 2 L then C � L.As in the case of polynomial-time reductions, we wish to stress that the relevanceof log-space reductions extends beyond being a tool for de�ning complete problems.5.2.3 Log-Space uniformity and stronger notionsStrengthening De�nition 3.3, we say that a family of circuits (Cn)n is log-spaceuniform if there exists an algorithm A that on input n outputs Cn while using spacethat is logarithmic in the size of Cn. As implied by Theorem 5.5 (and implicitlyproved in Theorem 5.4), the computation of any polynomial-time algorithm can beemulated by a log-space uniform family of (bounded fan-in) polynomial-size circuits.On the other hand, in continuation to Section 5.1.4, we note that log-space uniformcircuits of bounded fan-in and logarithmic depth can be emulated by an algorithmof logarithmic space complexity (i.e., NC1 is in log-space; see Exercise 5.7).As mentioned in Section 3.1.1, stronger notions of uniformity have been consid-ered. Speci�cally, in analogy to the discussion in xE.2.1.2, we say that (Cn)n hasa strongly explicit construction if there exists an algorithm that runs in polynomial-time and linear-space such that, on input n and v, the algorithm returns the labelof vertex v in Cn as well as the list of its children (or an indication that v is nota vertex in Cn). Note that if (Cn)n has a strongly explicit construction then itis log-space uniform, because the length of the description of a vertex in Cn is

5.2. LOGARITHMIC SPACE 153logarithmic in the size of Cn. The proof of Theorem 5.4 actually establishes thefollowing.Theorem 5.5 (strongly uniform circuits emulating P): For every polynomial-time algorithm A there exists a strongly explicit construction of a family of polynomial-size circuits (Cn)n such that for every x it holds that Cjxj(x) = A(x).Proof Sketch: As noted already, the circuits (Cjxj)jxj are highly uniform. Inparticular, the underlying digraph consists of constant-size gadgets that are ar-ranged in an array and are only connected to adjacent gadgets (see the proof ofTheorem 2.20).5.2.4 Undirected ConnectivityExploring a graph (e.g., towards determining its connectivity) is one of the mostbasic and ubiquitous computational tasks regarding graphs. The standard graphexploration algorithms (e.g., BFS and DFS) require temporary storage that is linearin the number of vertices. In contrast, the algorithm presented in this section usestemporary storage that is only logarithmic in the number of vertices. In additionto demonstrating the power of log-space computation, this algorithm (or rather itsactual implementation) provides a taste of the type of issues arising in the designof sophisticated log-space algorithms.The intuitive task of \exploring a graph" is captured by the task of decidingwhether a given graph is connected.10 In addition to the intrinsic interest in thisnatural computational problem, we mention that it is computationally equivalent(under log-space reductions) to numerous other computational problems (see, e.g.,Exercise 5.12). We note that some related computational problems seem actuallyharder; for example, determining directed connectivity (in directed graphs) cap-tures the essence of the class NL (see Section 5.3.2). In view of this state of a�airs,we emphasize the fact that the computational problem considered here refers toundirected graphs by calling it undirected connectivity.Theorem 5.6 Deciding undirected connectivity (UCONN) is in LThe algorithm is based on the fact that UCONN is easy in the special case that thegraph consists of a collection of constant degree expanders (see Appendix E.2). Inparticular, if the graph has constant degree and logarithmic diameter then it canbe explored using a logarithmic amount of space (which is used for determining ageneric path from a �xed starting vertex).11Needless to say, the input graph does not necessarily consist of a collection ofconstant degree expanders. The main idea is then to transform the input graph intoone that does satisfy the aforementioned condition, while preserving the number10See Appendix G.1 for basic terminology.11Indeed, this is analogous to the circuit evaluation algorithm of Section 5.1.4, where the circuitdepth corresponds to the diameter and the bounded fan-in corresponds to the constant degree.For further details, see Exercise 5.9.

154 CHAPTER 5. SPACE COMPLEXITYof connected components of the graph. Furthermore, the key point is performingsuch a transformation in logarithmic space. The rest of this section is devoted tothe description of such a transformation. We �rst present the basic approach andnext turn to the highly non-trivial implementation details.Teaching note: We recommend leaving the actual proof of Theorem 5.6 (i.e., therest of this section) for advanced reading. The main reason is its heavy dependence ontechnical material that is beyond the scope of a course in complexity theory.We �rst note that it is easy to transform the input graph G0 = (V0; E0) into aconstant-degree graph G1 that preserves the number of connected components inG0. Speci�cally, each vertex v 2 V having degree d(v) (in G0) is represented by acycle Cv of d(v) vertices (in G1), and each edge fu; vg 2 E0 is replaced by an edgehaving one end-point on the cycle Cv and the other end-point on the cycle Cu suchthat each vertex in G1 has degree three (i.e., has two cycle edges and a single intra-cycle edge). This transformation can be performed using logarithmic space, andthus (relying on Lemma 5.2) we assume throughout the rest of the proof that theinput graph has degree three. Our goal is to transform this graph into a collectionof expanders, while maintaining the number of connected components. In fact,we shall describe the transformation while pretending that the graph is connected,while noting that otherwise the transformation acts separately on each connectedcomponent.A couple of technicalities. For a constant integer d > 2 determined so as tosatisfy some additional condition, we may assume that the input graph is actuallyd2-regular (albeit is not necessarily simple). Furthermore, we shall assume thatthis graph is not bipartite. Both assumptions can be justi�ed by augmenting theaforementioned construction of a 3-regular graph by adding d2 � 3 self-loops toeach vertex.Prerequisites: Needless to say, the aforementioned transformation refers to thenotion of an expander graph (as de�ned in xE.2.1.1). The transformation also relieson the zig-zag product de�ned in xE.2.2.2.5.2.4.1 The basic approachRecall that our goal is to transform G1 into an expander. The transformation isgradual and consists of logarithmically many iterations, where in each iteration anadequate expansion parameter doubles while the graph becomes a constant factorlarger and maintains the degree bound. The (expansion) parameter of interest isthe gap between the relative second eigenvalue of the graph and 1 (see xE.2.1.1). Aconstant value of this parameter indicates that the graph is an expander. Initially,this parameter is lower-bounded by 1=O(n2), where n is the size of the graph, andafter logarithmically many iterations this parameter is lower-bounded by a constant(and the current graph is an expander).

5.2. LOGARITHMIC SPACE 155The crux of the aforementioned gradual transformation is the transformationthat takes place in each single iteration. This transformation combines the stan-dard graph powering (to a constant power c) and the zig-zag product presentedin xE.2.2.2. Speci�cally, for adequate positive integers d and c, we start with thed2-regular graph G1 = (V1; E1), and go through a logarithmic number of iterationsletting Gi+1 = Gci
z G for i = 1; :::; t� 1, where G is a �xed d-regular graph withd2c vertices. That is, in each iteration, we raise the current graph (i.e., Gi) to thepower c and combine the resulting graph with the �xed graph G using the zig-zagproduct. Thus, Gi is a d2-regular graph with d(i�1)�2c � jV1j vertices, where thisinvariant is preserved by de�nition of the zig-zag product.The analysis of the improvement in the expansion parameter, denoted �2(�) def=1� ��2(�), relies on Eq. (E.10). Recall that Eq. (E.10) implies that if ��2(G) < 1=2then 1 � ��2(G0
z G) > (1 � ��2(G0))=3. Thus, the �xed graph G is selected suchthat ��2(G) < 1=2, which requires a su�ciently large constant d. Thus, we have�2(Gi+1) = 1� ��2(Gci
z G) > 1� ��2(Gci)3 = 1� ��2(Gi)c3whereas, for su�ciently large constant c, it holds that 1� ��2(Gi)c > max(6 � (1���2(Gi)); 1=2). It follows that that �2(Gi+1) > max(2�2(Gi); 1=6). Thus, settingt = O(log jV1j) and using �2(G1) = 1���2(G1) =
(jV1j�2), we obtain �2(Gt) > 1=6as desired.Needless to say, a \detail" of crucial importance is the ability to transform G1into Gt via a log-space computation. Indeed, the transformation of Gi to Gi+1can be performed in logarithmic space (see Exercise 5.10), but we need to composea logarithmic number of such transformations. Unfortunately, the standard com-position lemmas for space-bounded algorithms involve overhead that we cannota�ord.12 Still, taking a closer look at the transformation of Gi to Gi+1, one maynote that it is highly structured and in some sense it can be implemented in con-stant space and supports a stronger composition result that incurs only a constantamount of storage per iteration. The resulting implementation (of the iterativetransformation of G1 to Gt) and the underlying formalism will be the subject ofx5.2.4.2. (An alternative implementation, provided in [179], can be obtained byunraveling the composition.)5.2.4.2 The actual implementationThe space-e�cient implementation of the iterative transformation outlined in x5.2.4.1is based on the observation that we do not need to explicitly construct the variousgraphs but merely provide \oracle access" to them. This observation is crucialwhen applied to the intermediate graphs; that is, rather than constructing Gi+1,when given Gi as input, we show how to provide oracle access to Gi+1 (i.e., an-swer \neighborhood queries" regarding Gi+1) when given oracle access to Gi (i.e.,12We cannot a�ord the naive composition (of Lemma 5.1), because it causes an overhead linearin the size of the intermediate output. As for the emulative composition (of Lemma 5.2), it sumsup the space complexities of the composed algorithms (not to mention adding another logarithmicterm), which would result in a log-squared bound on the space complexity.

156 CHAPTER 5. SPACE COMPLEXITYan oracle that answers neighborhood queries regarding Gi). This means that weview Gi and Gi+1 (or rather their incidence lists) as functions (to be evaluated)rather than as strings (to be printed), and show how to reduce the task of �ndingneighbors in Gi+1 (i.e., evaluating the \incidence function" at a given vertex) tothe task of �nding neighbors in Gi.A clarifying discussion. Note that here we are referring to oracle machinesthat access a �nite oracle, which represents a �nite variable object (which in turnis an instance of some computational problem). Such a machine provides access toa complex object by using its access to a more basic object, which is represented bythe oracle. Speci�cally, such a machine get an input, which is a \query" regardingthe complex object (i.e, the object that the machine tries to emulate), and producean output (which is the answer to the query). Analogously, these machines makequeries, which are queries regarding another object (i.e., the one represented in theoracle), and obtain corresponding answers.13Like in x5.1.3.3, queries are made via a special write-only device and the answersare read from a corresponding read-only device, where the use of these devices isnot charged in the space complexity. With these conventions in place, we claimthat neighborhoods in the d2-regular graph Gi+1 can be computed by a constant-space oracle machine that is given oracle access to the d2-regular graph Gi. Thatis, letting gi : Vi � [d2] ! Vi � [d2] (resp., gi+1 : Vi+1 � [d2] ! Vi+1 � [d2]) denotethe edge rotation function14 of Gi (resp., Gi+1), we have:Claim 5.7 There exists a constant-space oracle machine that evaluates gi+1 whengiven oracle access to gi, where the state of the machine is counted in the spacecomplexity.Proof Sketch: We �rst show that the two basic operation that underly the def-inition of Gi+1 (i.e., powering and zig-zag product with a constant graph) can beperformed in constant-space.The edge rotation function of G2i (i.e., the square of the graph Gi) can beevaluated at any desired pair, by evaluating the edge rotation function of Gi twice,and using a constant amount of space. Speci�cally, given v 2 Vi and j1; j2 2 [d2],we compute gi(gi(v; j1); j2), which is the edge rotation of (v; hj1; j2i) in G2i , asfollows. First, making the query (v; j1), we obtain the edge rotation of (v; j1),denoted (u; k1). Next, making the query (u; j2), we obtain (w; k2), and �nally weoutput (w; hk2; k1i). We stress that we only use the temporary storage to record13Indeed, the current setting (in which the oracle represents a �nite variable object, which inturn is an instance of some computational problem) is di�erent from the standard setting, wherethe oracle represents a �xed computational problem. Still the mechanism (and/or operations)of these two types of oracle machines is the same: They both get an input (which here is a\query" regarding a variable object rather than an instance of a �xed computational problem),and produce an output (which here is the answer to the query rather than a \solution" for thegiven instance). Analogously, these machines make queries (which here are queries regardinganother variable object rather than queries regarding another �xed computational problem), andobtain corresponding answers.14Recall that the edge rotation function of a graph maps the pair (v; j) to the pair (u; k) ifvertex u is the jth neighbor of vertex v and v is the kth neighbor of u (see xE.2.2.2).

5.2. LOGARITHMIC SPACE 157k1, whereas u is directly copied from the oracle answer device to the oracle querydevice. Accounting also for a constant number of states needed for the variousstages of the foregoing activity, we conclude that graph squaring can be performedin constant-space. The argument extends to the task of raising the graph to anyconstant power.Turning to the zig-zag product (of an arbitrary regular graph G0 with a �xedgraph G), we note that the corresponding edge rotation function can be evaluatedin constant-space (given oracle access to the edge rotation function of G0). Thisfollows directly from Eq. (E.8), noting that the latter calls for a single evaluationof the edge rotation function of G0 and two simple modi�cations that only dependon the constant-size graph G (and a�ect a constant number of bits of the relevantstrings). Again, using the fact that it su�ces to copy vertex names from the inputto the oracle query device (or from the oracle answer device to the output), weconclude that the aforementioned activity can be performed using constant space.The argument extends to a sequential composition of a constant number ofoperations of the aforementioned type (i.e., graph squaring and zig-zag productwith a constant graph).Recursive composition. Using Claim 5.7, we wish to obtain a log-space oraclemachine that evaluates gt by making oracle calls to g1, where t = O(log jV1j). Suchan oracle machine will yield a log-space transformation of G1 to Gt (by evaluatinggt at all possible values). It is tempting to hope that an adequate compositionlemma, when applied to Claim 5.7, will yield the desired log-space oracle machine(reducing the evaluation of gt to g1). This is indeed the case, except that theadequate composition lemma is still to be developed (as we do next).We �rst note that applying a naive composition (as in Lemma 5.1) amountsto an additive overhead of O(log jV1j) per each composition. But we cannot a�ordmore than an amortized constant additive overhead per composition. Applying theemulative composition (as in Lemma 5.2) causes a multiplicative overhead per eachcomposition, which is certainly una�ordable. The composition developed next is avariant of the naive composition, which is bene�cial in the context of recursive calls.The basic idea is deviating from the paradigm that allocates separate input/outputand query devices to each level in the recursion, and combining all these devices ina single (\global") device which will be used by all levels of the recursion. That is,rather than following the \structured programming" methodology of using locallydesignated space for passing information to the subroutine, we use the \bad pro-gramming" methodology of passing information through global variables. As usual,this notion is formulated by referring to the model of multi-tape Turing machine,but it can be formulated in any other reasonable model of computation.De�nition 5.8 (global-tape oracle machines): A global-tape oracle machine is de-�ned as an oracle machine (cf. De�nition 1.11), except that the input, output andoracle tapes are replaced by a single global-tape. In addition, the machine has aconstant number of work tapes, called the local-tapes. The machine obtains its inputfrom the global-tape, writes each query on this very tape, obtains the correspond-

158 CHAPTER 5. SPACE COMPLEXITYing answer from this tape15, and writes its �nal output on this tape. The spacecomplexity of such a machine is stated when referring separately to the use of theglobal-tape and to the use of the local-tapes.Clearly, any ordinary oracle machine can be converted into an equivalent global-tape oracle machine. The resulting machine uses a global-tape of length at mostn + ` + m, where n denotes the length of the input, ` denote the length of thelongest query or oracle answer, and m denotes the length of the output. However,combining these three di�erent tapes into one global-tape seems to require holdingseparate pointers for each of the original tapes, which means that the local-tape hasto store three corresponding counters (in addition to storing the original work-tape).Thus, the resulting machine uses a local-tape of length w+log2 n+log2 `+log2m,where w denotes the space complexity of the original machine and the additionallogarithmic terms (which are logarithmic in the length of the global-tape) accountfor the aforementioned counters.Fortunately, the aforementioned counters can be avoided in the case that theoriginal oracle machine can be described as an iterative sequence of transformations(i.e., the input is transformed to the �rst query, and the ith answer is transformedto the i + 1st query or to the output, all while maintaining auxiliary informationon the work-tape). Indeed, the machine presented in the proof of Claim 5.7 hasthis form, and thus can be implemented by a global-tape oracle machine that usesa global-tape not longer than its input and a local-tape of constant length (ratherthan logarithmic in the length of the global-tape).Claim 5.9 (Claim 5.7, revisited): There exists a global-tape oracle machine thatevaluates gi+1 when given oracle access to gi, while using global-tape of lengthlog2(d2 � jVi+1j) and a local-tape of constant length.Proof Sketch: Following the proof of Claim 5.7, we merely indicate the exactuse of the two tapes. For example, recall that the edge rotation function of thesquare of Gi is evaluated at (v; hj1; j2i) by evaluating the edge rotation functionof the original graph �rst at (v; j1) and then at (u; j2), where (u; k1) = gi(v; j1).This means the global-tape machine �rst reads (v; hj1; j2i) from the global-tapeand replaces it by the query (v; j1), while storing j2 on the local-tape. Thus,the machine merely deletes a constant number of bits from the global-tape (andleaves its pre�x intact). After invoking the oracle, the machine copies k1 fromthe global-tape (which currently holds (u; k1)) to its local-tape, and copies j2 fromits local-tape to the global-tape (such that it contains (u; j2)). After invoking theoracle for the second time, the global-tape contains (w; k2) = gi(u; j2), and themachine merely modi�es it to (w; hk2; k1i), which is the desired output.Similarly, note that the edge rotation function of the zig-zag product of thevariable graph G0 with the �xed graph G is evaluated at (hu; ii; h�; �i) by queryingG0 at (u;E�(i)) and outputting (hv; E�(j0)i; h�; �i), where (v; j0) denotes the oracle15This means that as a result of invoking the oracle f , the contents of the global-tape changesfrom q to f(q). We stress that the prior contents of the global-tape (i.e., the query q) is lost (i.e.,it is replaced by the answer f(q)).

5.2. LOGARITHMIC SPACE 159answer (see Eq. (E.8)). This means that the global-tape oracle machine �rst copies�; � from the global-tape to the local-tape, transforms the contents of the global-tape from (hu; ii; h�; �i) to (u;E�(i)), and makes an analogous transformation afterthe oracle is invoked.Composing global-tape oracle machines. In the proof of Claim 5.9, we im-plicitly used sequential composition of computations conducted by global-tape or-acle machines.16 In general, when sequentially composing such computations thelength of the global-tape (resp., local-tape) is the maximum among all composedcomputations; that is, the current formalism o�ers a tight bound on naive sequentialcomposition (as opposed to Lemma 5.1). Furthermore, global-tape oracle machinesare bene�cial in the context of recursive composition, as indicated by Lemma 5.10(which relies on this model in a crucial way). The key observation is that all levelsin the recursive composition may re-use the same global storage, and only the localstorage gets added. Consequently, we have the following composition lemma.Lemma 5.10 (recursive composition in the global-tape model): Suppose that, forevery i = 1; :::; t� 1, there exists a global-tape oracle machine that computes fi+1by making oracle calls to fi while using a global-tape of length L and a local-tapeof length li, which also accounts for the machine's state. Then ft can be computedby a standard oracle machine that makes calls to f1 and uses space L+ 2Pt�1i=1 li.We shall apply this lemma with fi = gi and t = O(log jV1j) = O(log jVtj), using thebounds L = log2(d2 � jVtj) and li = O(1) (as guaranteed by Claim 5.9). Indeed, inthis application L equals the length of the input to ft = gt.Proof Sketch: We compute ft by allocating space for the emulation of the global-tape and the local-tapes of each level in the recursion. We emulate the recursivecomputation by capitalizing on the fact that all recursive levels use the same global-tape (for making queries and receiving answers). Recall that in the actual recursion,each level may use the global-tape arbitrarily as long as when it returns controlto the invoking machine the global-tape contains the right answer. Thus, theemulation may do the same, and emulate each recursive call by using the spaceallocated for the global-tape as well as the space designated for the local-tape ofthis level. The emulation should also store the locations of the other levels of therecursion on the corresponding local-tapes, but the space needed for this is clearlysmaller than the length of the various local-tapes.Conclusion. Combining Claim 5.9 and Lemma 5.10, we conclude that the eval-uation of gO(log jV1j) can be reduced to the evaluation of g1 in space O(log jV1j).Recalling that G1 can be constructed in log-space (based on the input graph G0),we infer that G0 = GO(log jV1j) can be constructed in log-space. Theorem 5.6 followsby recalling that G0 (which has constant degree and logarithmic diameter) can be16A similar composition took place in the proof of Claim 5.7, but in Claim 5.9 we asserted astronger feature of this speci�c computation.

160 CHAPTER 5. SPACE COMPLEXITYtested for connectivity in log-space (see Exercise 5.9). Using a similar argument,we can test whether a given pair of vertices are connected in the input graph (seeExercise 5.11).5.3 Non-Deterministic Space ComplexityThe di�erence between space-complexity and time-complexity is quite striking inthe context of non-deterministic computations. One phenomenon is the huge gapbetween the power of two formulation of non-deterministic space-complexity (seeSection 5.3.1), which stands in contrast to the fact that the analogous formula-tions are equivalent in the context of time-complexity. We also highlight the con-trast between various results regarding (the standard model of) non-deterministicspace-bounded computation (see Section 5.3.2) and the analogous questions in thecontext of time-complexity; for example, consider the question of complementation(cf. x5.3.2.3).5.3.1 Two modelsRecall that non-deterministic time-bounded computations were de�ned via twoequivalent models. In the o�-line model (underlying the de�nition of NP as aproof system (see De�nition 2.5)) non-determinism is captured by reference to theexistential choice of an auxiliary (\non-deterministic") input. In contrast, in theon-line model (underlying the traditional de�nition of NP (see De�nition 2.7))non-determinism is captured by reference to the non-deterministic choices of themachine itself. In the context of time-complexity, these models are equivalentbecause the latter on-line choices can be recorded (almost) for free (see the proofof Theorem 2.8). However, such a record is not free of charge in the context ofspace-complexity.Let us take a closer look at the relation between the o�-line and on-line models.The fact that the o�-line model can emulate the on-line model is almost generic;that is, it holds for any reasonable notion of complexity, because it is based onthe fact that the o�-line machine can emulate on-line choices by using its non-deterministic input (and without signi�cantly e�ecting the complexity measure).In contrast, the emulation of the o�-line model by the on-line model is enabledby the fact that in the context of time-complexity an on-line machine may store(and re-use) a sequence of non-deterministic (on-line) choices without signi�cantlye�ecting the running-time (i.e., almost \free of charge"). This naive emulation (ofthe o�-line model on the on-line model) is not free of charge in the context of space-bounded computation. Furthermore, typically the number of non-deterministicchoices is much larger than the space-bound, and thus the naive emulation is notpossible in the context of space-complexity (because it is prohibitively expensivein terms of space-complexity). Let us formulate the two models and consider therelation between them in the context of space-complexity.In the standard model, called the on-line model, the machine makes non-deterministicchoices \on the
y" (or, alternatively, reads a non-deterministic input from a spe-

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 161cial read-only tape that can be read only in a uni-directional way). Thus, if themachine needs to refer to such a non-deterministic choice at a latter stage in itscomputation, then it must store the choice on its storage device (and be chargedfor it). In contrast, in the so-called o�-line model the non-deterministic choices (orthe bits of the non-deterministic input) are read from a read-only device (or tape)that can be scanned in both directions like the main input.We denote by Nspaceon-line(s) (resp., Nspaceo�-line(s)) the class of sets thatare acceptable by an on-line (resp., o�-line) non-deterministic machine having spacecomplexity s. We stress that, as in De�nition 2.7, the set accepted by a non-deterministic machineM is the set of strings x such that there exists a computationof M(x) that is accepting. Clearly, Nspaceon-line(s) � Nspaceo�-line(s). Onthe other hand, not only that Nspaceon-line(s) 6= Nspaceo�-line(s) but ratherNspaceon-line(s) = Nspaceo�-line(�(log s)), provided that s is at least linear. Fordetails, see Exercise 5.14.Before proceeding any further, let us justify the focus on the on-line model inthe rest of this section. Indeed, the o�-line model �ts better the motivations toNP (as presented in Section 2.1.2), but the on-line model seems more adequatefor the study of non-deterministic in the context of space complexity. One reasonis that an o�-line non-deterministic input can be used to code computations (seeExercise 5.14), and in a sense allows to \cheat" with respect to the \actual" spacecomplexity of the computation. This is re
ected in the fact that the o�-line modelcan emulate the on-line model while using space that is logarithmic in the spaceused by the on-line model. A related phenomenon is that Nspaceo�-line(s) is onlyknown to be contained in Dtime(22s), whereas Nspaceon-line(s) � Dtime(2s).This fact motivates the study of NL = Nspaceon-line(log), as a study of a (nat-ural) sub-class of P . Indeed, the various results regarding NL justify its study inretrospect.In light of the foregoing, we adopt the standard conventions and letNspace(s) =Nspaceon-line(s). Our main focus will be the study of NL = Nspace(log).5.3.2 NL and directed connectivityThis section is devoted to the study of NL, which we view as the non-deterministicanalogue of L. Speci�cally, NL = [cNspace(`c), where `c(n) = c log2 n. (We referthe reader to the de�nitional issues pertaining Nspace = Nspaceon-line, which arediscussed in Section 5.3.1.)We �rst note that the proof of Theorem 5.3 can be easily extended to the(on-line) non-deterministic context. The reason being that moving from the de-terministic model to the current model does not a�ect the number of instanta-neous con�gurations (as de�ned in the proof of Theorem 5.3), whereas this numberbounds the time complexity. Thus, NL � P .The following problem, called directed connectivity (st-CONN), captures theessence of non-deterministic log-space computations (and, in particular, is com-plete for NL under log-space reductions). The input to st-CONN consists of adirected graph G = (V;E) and a pair of vertices (s; t), and the task is to determine

162 CHAPTER 5. SPACE COMPLEXITYwhether there exists a directed path from s to t (in G).17 Indeed, the study ofNL is often conducted via st-CONN. For example, note that NL � P follows easilyfrom the fact that st-CONN is in P (and the fact that NL is log-space reducible tost-CONN).5.3.2.1 Completeness and beyondClearly, st-CONN is in NL (see Exercise 5.15). The NL-completeness of st-CONNunder log-space reductions follows by noting that the computation of any non-deterministic space-bounded machine yields a directed graph in which vertices cor-respond to possible con�gurations and edges represent the \successive" relation ofthe computation. In particular, for log-space computations the graph has polyno-mial size, but in general the relevant graph is strongly explicit (in a natural sense;see Exercise 5.16).Theorem 5.11 Every problem in NL is log-space reducible to st-CONN (via amany-to-one reduction).Proof Sketch: Fixing a non-deterministic (on-line) machineM and an input x, weconsider the following directed graphGx = (Vx; Ex). The vertices of Vx are possibleinstantaneous con�gurations of M(x), where each con�guration consists of thecontents of the work-tape (and the machine's �nite state), the machine's location onit, and the machine's location on the input. The directed edges represent possiblesingle moves in such a computation. We stress that such a move depends on themachine M as well as on the (single) bit of x that resides in the location speci�edby the �rst con�guration (i.e., the con�guration corresponding to the start-point ofthe potential edge).18 Note that (for a �xed machineM), given x, the graphGx canbe constructed in log-space (by scanning all pairs of vertices and outputting onlythe pairs that are valid edges (which, in turn, can be tested in constant-space)).By de�nition, the graph Gx represents the possible computations ofM on inputx. In particular, there exists an accepting computation ofM on input x if and onlyif there exists a directed path, in Gx, starting at the vertex s that corresponds tothe initial con�guration and ending at the vertex t that corresponds to a canonicalaccepting con�guration. Thus, x 2 S if and only if (Gx; s; t) is a yes-instance ofst-CONN.Re
ection. We believe that the proof of Theorem 5.11 (see also Exercise 5.16)justi�es saying that st-CONN captures the essence of non-deterministic space-boundedcomputations. Note that this (intuitive and informal) statement goes beyond say-ing that st-CONN is NL-complete under log-space reductions.17See Appendix G.1 for basic graph theoretic terminology. We note that, here (and in thesequel), s stands for start and t stands for terminate.18Thus, the actual input x only a�ects the set of edges of Gx (whereas the set of vertices is onlya�ected by jxj). A related construction is obtained by incorporating in the con�guration also the(single) bit of x that resides in the machine's location on the input. In the latter case, x itselfalso a�ects Vx.

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 163We note the discrepancy between the status of undirected connectivity (seeTheorem 5.6 and Exercise 5.11) and directed connectivity (see Theorem 5.11 andExercise 5.18). In this context it is worthwhile to note that determining the ex-istence of relatively short paths (rather than arbitrary paths) in undirected (ordirected) graphs is also NL-complete under log-space reductions; see Exercise 5.19.5.3.2.2 Relating NSPACE to DSPACERecall that in the context of time-complexity, the only known conversion of non-deterministic computation to deterministic computation comes at the cost of anexponential blow-up in the complexity. In contrast, space-complexity allows sucha conversion at the cost of a polynomial blow-up in the complexity.Theorem 5.12 (Non-deterministic versus deterministic space): For any space-constructible s : N ! N that is at least logarithmic, it holds that Nspace(s) �Dspace(O(s2)).In particular, non-deterministic polynomial-space is contained in deterministic polynomial-space (and non-deterministic poly-logarithmic space is contained in deterministicpoly-logarithmic space).Proof Sketch: We focus on the special case of NL and the argument extendseasily to the general case. Alternatively, the general statement can be derived fromthe special case by using a suitable upwards-translation lemma (see, e.g., [117,Sec. 12.5]). The special case boils down to presenting an algorithm for decidingdirected connectivity that has log-square space-complexity.The basic idea is that checking whether or not there is a path of length atmost 2` from u to v in G, reduces (in log-space) to checking whether there is anintermediate vertex w such that there is a path of length at most ` from u to wand a path of length at most ` from w to v. That is, let �G(u; v; `) def= 1 if there isa path of length at most ` from u to v in G, and �G(u; v; `) def= 0 otherwise. Then�G(u; v; 2`) can be computed by scanning all vertices w in G, and checking for eachw whether both �G(u;w; `) = 1 and �G(w; v; `) = 1 hold.19 Hence, we can compute�G(u; v; 2`) by a log-space algorithm that makes oracle calls to �G(�; �; `), which inturn can be computed recursively in the same manner. Note that the originalcomputational problem (i.e., st-CONN) can be cast as computing �G(s; t; jV j) (or�G(s; t; 2dlog2 jV je)) for a given directed graph G = (V;E) and a given pair of vertices(s; t). Thus, the foregoing recursive procedure yields the theorem's claim, providedthat we use adequate composition results. We take a technically di�erent approachby directly analyzing the recursive procedure at hand.Recall that given a directed graph G = (V;E) and a pair of vertices (s; t), weshould merely compute �G(s; t; 2dlog2 jV je). This is done by invoking a recursiveprocedure that computes �G(u; v; 2`) by scanning all vertices in G, and computingfor each vertex w the values of �G(u;w; `) and �G(w; v; `). We stress that all these19Similarly, �G(u; v; 2`+ 1) can be computed by scanning all vertices w in G, and checking foreach w whether both �G(u;w; `+ 1) = 1 and �G(w; v; `) = 1 hold.

164 CHAPTER 5. SPACE COMPLEXITYcomputations may re-use the same space, while we need only store one additionalbit representing the results of all prior computations. We return the value 1 ifand only if for some w it holds that �G(u;w; `) = �G(w; v; `) = 1 (see Figure 5.2).Needless to say, �G(u; v; 1) can be decided easily in logarithmic space.Recursive computation of �G(u; v; 2`), for ` � 1.For w = 1; :::; jV j do begin (storing the vertex name)Compute � �G(u;w; `) (by a recursive call)Compute � � ^ �G(w; v; `) (by a second recursive call)If � = 1 then return 1. (success: an intermediate vertex was found)End (of scan).return 0. (reached only if the scan was completed without success).Figure 5.2: The recursive procedure in NL � Dspace(O(log2)).We consider an implementation of the foregoing procedure (of Figure 5.2) inwhich each level of the recursion uses a designated portion of the entire storage formaintaining the local variables (i.e., w and �). The amount of space taken by eachlevel of the recursion is essentially log2 jV j (for storing the current value of w), andthe number of levels is log2 jV j. We stress that when computing �G(u; v; 2`), wemake many recursive calls, but all these calls re-use the same work space (i.e., theportion that is designated to that level). That is, when we compute �G(u;w; `)we re-use the space that was used for computing �G(u;w0; `) for the previous w0,and we re-use the same space when we compute �G(w; v; `). Thus, the space-complexity of our algorithm is merely the sum of the space used by all recursionlevels. It follows that st-CONN has log-square (deterministic) space-complexity, andthe same follows for all of NL (either by noting that st-CONN actually representsany NL computation or by using the log-space reductions of NL to st-CONN).Digest. The proof of Theorem 5.12 relies on two main observations. The �rstobservation is that an existential claim can be verifying by scanning all possiblevalues in the relevant domain, which in terms of space complexity has a cost that islogarithmic in the size of the domain. The second observation is that a disjunction(resp., conjunction) of two Boolean conditions can be veri�ed using space s +O(1), where s is the space complexity of verifying a single condition. This followsby applying naive composition (i.e., Lemma 5.1). The proof of Theorem 5.12 isfacilitated by the fact that we may consider a concrete and simple computationalproblem such as st-CONN. Nevertheless, the same ideas can be applied directly toNL (or any Nspace class).The simple formulation of st-CONN facilitates placing NL in complexity classessuch as NC2 (i.e., decidability by uniform families of circuits of log-square depthand bounded fan-in). All that is needed is observing that st-CONN can be solved by

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 165raising the adequate matrix (i.e., the adjacency matrix of the graph augmented with1-entries on the diagonal) to the adequate power (i.e., its dimension). Squaring amatrix can be done by a uniform family circuits of logarithmic depth and boundedfan-in (i.e., in NC1), and by repeated squaring the nth power of an n-by-n matrixcan be computed by a uniform family of bounded fan-in circuits of polynomialsize and depth O(log2 n); thus, st-CONN 2 NC2. Indeed, NL � NC2 follows bynoting that st-CONN actually represents any NL computation (or by noting thatany log-space reduction can be computed by a uniform family of logarithmic depthand bounded fan-in circuits).5.3.2.3 Complementation or NL=coNLRecall that (reasonable) non-deterministic time-complexity classes are not knownto be closed under complementation. Furthermore, it is widely believed that NP 6=coNP . In contrast, (reasonable) non-deterministic space-complexity classes areclosed under complementation, as captured by the result NL = coNL, wherecoNL def= ff0; 1g� n S : S 2 NLg.Before proving that NL = coNL, we note that proving this result is equivalentto presenting a log-space Karp-reduction of st-CONN to its complement (or theother way around, see Exercise 5.21). Our proof utilizes a di�erent perspective onthe NL-vs-coNL question, by rephrasing this question as referring to the relationbetween NL and NL \ coNL, and by o�ering an \operational interpretation" ofthe class NL \ coNL.Recall that a set S is inNL if there exists a non-deterministic log-space machineM that accepts S, and that the acceptance condition of non-deterministic machinesis asymmetric in nature. That is, x 2 S implies the existence of an acceptingcomputation of M on input x, whereas x 62 S implies that all computations of Mon input x are non-accepting. Thus, the existence of a accepting computation ofM on input x is an absolute indication for x 2 S, but the existence of a rejectingcomputation of M on input x is not an absolute indication for x 62 S. In contrast,for S 2 NL\ coNL, there exist absolute indications both for x 2 S and for x 62 S(or, equivalently for x 2 S def= f0; 1g�nS), where each of the two types of indicationis provided by a di�erent non-deterministic machine (i.e., the one accepting S or theone accepting S). Combining both machines, we obtain a single non-deterministicmachine that, for every input, sometimes outputs the correct answer and alwaysoutputs either the correct answer or a special (\don't know") symbol. This yieldsthe following de�nition, which refers to Boolean functions as a special case.De�nition 5.13 (non-deterministic computation of functions): We say that anon-deterministic machine M computes the function f : f0; 1g� ! f0; 1g� if forevery x 2 f0; 1g� the following two conditions hold.1. Every computation of M on input x yields an output in ff(x);?g, where? 62 f0; 1g� is a special symbol (indicating \don't know").2. There exists a computation of M on input x that yields the output f(x).

166 CHAPTER 5. SPACE COMPLEXITYNote that S 2 NL\ coNL if and only if there exists a non-deterministic log-spacemachine that computes the characteristic function of S (see Exercise 5.20). Recallthat the characteristic function of S, denoted �S , is the Boolean function satisfying�S(x) = 1 if x 2 S and �S(x) = 0 otherwise. It follows that NL = coNL if andonly if for every S 2 NL there exists a non-deterministic log-space machine thatcomputes �S .Theorem 5.14 (NL = coNL): For every S 2 NL there exists a non-deterministiclog-space machine that computes �S.As in the case of Theorem 5.12, the result extends to any space-constructible s :N ! N that is at least logarithmic; that is, for such s and every S 2 Nspace(s),it holds that f0; 1g� n S 2 Nspace(O(s)). This extension can be proved eitherby generalizing the following proof or by using an adequate upwards-translationlemma.Proof Sketch: As in the proof of Theorem 5.12, it su�ces to present a non-deterministic (on-line) log-space machine that computes the characteristic functionof st-CONN, denoted � (i.e., �(G; s; t) = 1 if there is a directed path from s to t inG and �(G; s; t) = 0 otherwise).We �rst show that the computation of � is log-space reducible (by two queries)20to determining the number of vertices that are reachable (via a directed path)from a given vertex in a given graph. On input (G; s; t), the reduction computesthe number of vertices that are reachable from s in the graph G and comparesthis number to the number of vertices reachable from s in the graph obtained bydeleting t from G. Clearly, the two numbers are di�erent if and only if vertex t isreachable from vertex v (in the graph G). (An alternative reduction that uses asingle query is presented in Exercise 5.22.) Note that if computing f is log-spacereducible by a constant number of queries to computing some function g and thereexists a non-deterministic log-space machine that computes g, then there exists anon-deterministic log-space machine that computes f (see Exercise 5.23). Thus, wefocus on providing a non-deterministic log-space machine that compute the numberof vertices that are reachable from a given vertex in a given graph.Fixing an n-vertex graph G = (V;E) and a vertex v, we consider the set ofvertices that are reachable from v by a path of length at most i. We denote thisset by Ri, and observe that R0 = fvg and that for every i = 1; 2; :::, it holds thatRi = Ri�1 [fu : 9w 2 Ri�1 s.t. (w; u) 2 Eg (5.1)Our aim is to compute jRnj. This will be done in n iterations such that at the ithiteration we compute jRij. When computing jRij we rely on the fact that jRi�1jis known to us, which means that we shall store jRi�1j in memory. We stress thatwe discard jRi�1j from memory as soon as we complete the computation of jRij,20We stress the fact that only two queries are used in the reduction, because this avoids thedi�culties (discussed in x5.1.3.3) regarding emulative composition for general space-bounded re-duction. Alternatively, we may use a version of the naive composition, while relying on the factthat the oracle answers have logarithmic length. For details, see Exercises 5.23 and 5.24.

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 167which we store instead. Thus, at each iteration i, our record of past iterations onlycontains jRi�1j.Computing jRij. Given jRi�1j, we non-deterministically compute jRij by making aguess (for jRij), denoted g, and verifying its correctness as follows:1. We verify that jRij � g in a straightforward manner. That is, scanning V insome canonical order, we verify for g vertices that they are each in Ri. Thatis, during the scan, we select non-deterministically g vertices, and for eachselected vertex w we verify that w is reachable from v by a path of length atmost i, where this veri�cation is performed by just guessing and verifying anadequate path (see Exercise 5.15).We use log2 n bits to store the number of vertices that were already veri�edto be in Ri, another log2 n bits to store the currently scanned vertex (i.e., w),and another O(log n) bits for implementing the veri�cation of the existenceof a path of length at most i from v to w.2. The veri�cation of the condition jRij � g (equivalently, jV n Rij � n � g)is the interesting part of the procedure. Indeed, as we saw, demonstratingmembership in Ri is easy, but here we wish to demonstrate non-membershipin Ri. We do so by relying on the fact that we know jRi�1j, which allowsfor a non-deterministic enumeration of Ri�1 itself, which in turn allows forproofs of non-membership in Ri (via the use of Eq. (5.1)). Details follows(and an even more structured description is provided in Figure 5.3).Scanning V (again), we verify for n�g (guessed) vertices that they are not inRi (i.e., are not reachable from v by paths of length at most i). By Eq. (5.1),verifying that u 62 Ri amounts to proving that for every w 2 Ri�1, it holdsthat u 6= w and (w; u) 62 E. As hinted, the knowledge of jRi�1j allows for theenumeration of Ri�1, and thus we merely check the aforementioned conditionon each vertex in Ri�1. Thus, verifying that u 62 Ri is done as follows.(a) We scan V guessing jRi�1j vertices that are in Ri�1, and verify eachsuch guess in the straightforward manner (i.e., as in Step 1).21(b) For each w 2 Ri�1 that was guessed and veri�ed in Step 2a, we verifythat both u 6= w and (w; u) 62 E.By Eq. (5.1), if u passes the foregoing veri�cation then indeed u 62 Ri.We use log2 n bits to store the number of vertices that were already veri�edto be in V n Ri, another log2 n bits to store the current vertex u, anotherlog2 n bits to count the number of vertices that are currently veri�ed to bein Ri�1, another log2 n bits to store such a vertex w, and another O(log n)bits for verifying that w 2 Ri�1 (as in Step 1).If any of the foregoing veri�cations fails, then the procedure halts outputting the\don't know" symbol ?. Otherwise, it outputs g.21Note that implicit in Step 2a is a non-deterministic procedure that computes the mapping(G; v; i; jRi�1j)! Ri�1, where Ri�1 denotes the set of vertices that are reachable in G by a pathof length at most i from v.

168 CHAPTER 5. SPACE COMPLEXITYGiven jRi�1j and a guess g, the claim g � jRij is veri�ed as follows.Set c 0. (initializing the main counter)For u = 1; :::; n do begin (the main scan)Guess whether or not u 2 Ri.For a negative guess (i.e., u 62 Ri), do begin(Verify that u 62 Ri via Eq. (5.1).)Set c0 0. (initializing a secondary counter)For w = 1; :::; n do begin (the secondary scan)Guess whether or not w 2 Ri�1.For a positive guess (i.e., w 2 Ri�1), do beginVerify that w 2 Ri�1 (as in Step 1).Verify that u 6= w and (w; u) 62 E.If some veri�cation failedthen halt with output ? otherwise increment c0.End (of handling a positive guess for w 2 Ri�1).End (of secondary scan). (c0 vertices in Ri�1 were checked)If c0 < jRi�1j then halt with output ?.Otherwise (c0 = jRi�1j), increment c. (u veri�ed to be outside of Ri)End (of handling a negative guess for u 62 Ri).End (of main scan). (c vertices were shown outside of Ri)If c < n� g then halt with output ?.Otherwise n� jRij � c � n� g is veri�ed.Figure 5.3: The main step in proving NL = coNL.It can be veri�ed that, when given the correct value of jRi�1j, the foregoingnon-deterministic procedure uses a logarithmic amount of space and computes thevalue of jRij. That is, if all veri�cations are satis�ed then it must hold that g = jRij,and if g = jRij then there are adequate non-deterministic choices that satisfy allveri�cations.Recall that Rn is computed iteratively, starting with jR0j = 1, and computingjRij based on jRi�1j. Each iteration i = 1; :::; n is non-deterministic, and is eithercompleted with the correct value of jRij (at which point jRi�1j is discarded) orhalts in failure (in which case we halt the entire process and output ?). Thisyields a non-deterministic log-space machine for computing jRnj, and the theoremfollows.Digest. Step 2 is the heart of the proof (of Theorem 5.14). In this step anon-deterministic procedure is used to verify non-membership in an NL-type set.Indeed, verifying membership in NL-type sets is the archetypical task of non-deterministic procedures (i.e., they are de�ned so to �t these tasks), and thus Step 1is straightforward. In contrast, non-deterministic veri�cation of non-membership

5.3. NON-DETERMINISTIC SPACE COMPLEXITY 169is not a common phenomenon, and thus Step 2 is not straightforward at all. Inthe current context (of Step 2), the veri�cation of non-membership is performedby an iterative (non-deterministic) process that consumes an admissible amount ofresources (i.e., a logarithmic amount of space).5.3.3 DiscussionThe current section may be viewed as a study of the \power of non-determinism incomputation" (which is a somewhat contradictory term). Recall that we view non-deterministic processes as �ctitious abstractions aimed at capturing fundamentalphenomena such as veri�cation of proofs (cf., Section 2.1.4). Since these �ctitiousabstractions are fundamental in the context of time-complexity, we may hope togain some understanding by a comparative study; speci�cally, a study of non-deterministic in the context of space-complexity. Furthermore, we may discoverthat non-deterministic space-bounded machines give rise to interesting computa-tional phenomena.The aforementioned hopes seems to come true in the current section. For exam-ple, the fact that NL = coNL, while the common conjecture is that NP 6= coNP ,indicates that the latter conjecture is less generic than sometimes stated. It is notthat an existential quanti�er cannot be \feasibly replaced" by a universal quanti-�er, but rather the feasibility of such a replacement depends very much on the typeof the notion of feasibility. Turning to the other type of bene�ts, we learned thatst-CONN can be Karp-reduced in log-space to st-unCONN (i.e., the set of graphsin which there is no directed path between the two designated vertices; see Exer-cise 5.21).Still, one may ask what does the class NL actually represent (beyond st-CONN,which seems actually more than merely a complete problem for this class; seex5.3.2.1). Turning back to Section 5.3.1, we recall that the class Nspaceo�-linecaptures the straightforward notion of space-bounded veri�cation. In this model(called the o�-line model), the alleged proof is written on a special device (similarlyto the claim being proved by it), which is being read freely. In contrast, underlyingthe alternative class Nspaceon-line is a notion of proofs that are veri�ed by readingthem sequentially (rather than scanning them back and forth). In this case, if theveri�cation procedure needs to relate to the currently read part of the proof inthe future, then it must store the relevant part (and is charged for this storage).Thus, the on-line model underlying Nspaceon-line refers to the standard processof reading proofs in a sequential manner and taking notes for future veri�cation,rather than scanning them back and forth all the time. Thus, the on-line modelre
ects the true space-complexity of taking such notes and hence of sequentialveri�cation of proofs. Indeed (as stated in Section 5.3.1), our feeling is that theo�-line model allows for an unfair accounting of temporary space as well as forunintendedly long proofs.

170 CHAPTER 5. SPACE COMPLEXITY5.4 PSPACE and GamesAs stated up-front, we rarely encounter computational problems that require lessthan logarithmic space. On the other hand, we will rarely treat computationalproblems that require more than polynomial space. The class of decision prob-lems that are solvable in polynomial-space is denoted PSPACE def= [cDspace(pc),where pc(n) = nc.To get a sense of the power of PSPACE , we observe that PH � PSPACE ; forexample, a polynomial-space algorithm can easily verify the quanti�ed conditionunderlying De�nition 3.8. In fact, such an algorithm can handle an unboundednumber of alternating quanti�ers (see Theorem 5.15). On the other hand, byTheorem 5.3, PSPACE � EXP , where EXP = [cDtime(2pc) for pc(n) = nc.The class PSPACE can be interpreted as capturing the complexity of deter-mining the winner in certain e�cient two-party game; speci�cally, the very gamesconsidered in Section 3.2.1 (modulo Footnote 4 there). Recall that we refer totwo-party games that satisfy the following three conditions:1. The parties alternate in taking moves that e�ect the game's (global) position,where each move has a description length that is bounded by a polynomialin the length of the initial position.2. The current position is updated based on the previous position and the cur-rent party's move. This updating can be performed in time that is poly-nomial in the length of the initial position. (Equivalently, we may requirea polynomial-time updating procedure and postulate that the length of thecurrent position be bounded by a polynomial in the length of the initial po-sition.)3. The winner in each position can be determined in polynomial-time.A set S 2 PSPACE can be viewed as the set of initial positions (in a suitable game)for which the �rst party has a winning strategy consisting of a polynomial numberof moves. Speci�cally, x2S if starting at the initial position x, there exists a movey1 for the �rst party, such that for every response move y2 of the second party,there exists a move y3 for the �rst party, etc, such that after poly(jxj) many movesthe parties reach a position in which the �rst party wins, where the �nal positionas well as which party wins in it can be computed in polynomial-time (from theinitial position x and the sequence of moves y1; y2; :::). The fact that every set inPSPACE corresponds to such a game follows from Theorem 5.15, which refers tothe satis�ability of quanti�ed Boolean formulae (QBF).22Theorem 5.15 QBF is complete for PSPACE under polynomial-time many-to-onereductions.Proof: As note before, QBF is solvable by a polynomial-space algorithm thatjust evaluates the quanti�ed formula. Speci�cally, consider a recursive procedure22See Appendix G.2.

5.4. PSPACE AND GAMES 171that eliminates a Boolean quanti�er by evaluating the value of the two residualformulae, and note that the space used in the �rst (recursive) evaluation can bere-used in the second evaluation. (Alternatively, consider a DFS-type procedure asin Section 5.1.4.) Note that the space used is linear in the depth of the recursion,which in turn is linear in the length of the input formula.We now turn to show that any set S 2 PSPACE is many-to-one reducible toQBF. The proof is similar to the proof of Theorem 5.12, except that here we workwith an implicit graph (rather than with an explicitly given graph). Speci�cally, werefer to the directed graph of con�guration (of the algorithm A deciding member-ship in S) as de�ned in Exercise 5.16. Actually, here we use a di�erent notion of acon�guration that includes also the input. That is, in the rest of this proof, a con-�guration consists of the contents of all storage devices of the algorithm (includingthe input device) as well as the location of the algorithm on each device.Recall that for a graph G, we de�ned �G(u; v; `) = 1 if there is a path of lengthat most ` from u to v in G (and �G(u; v; `) = 0 otherwise). We need to determine�G(s; t; 2m) for s that encodes the initial con�guration of A(x) and t that encodesthe canonical accepting con�guration, where G depends on the algorithm A andm = poly(jxj) is such that A(x) uses at mostm space and runs for at most 2m steps.By the speci�c de�nition of a con�guration (which contains all relevant informationincluding the input x), the value of �G(u; v; 1) can be determined easily based solelyon the �xed algorithm A (i.e., either u = v or v is a con�guration following u).Recall that �G(u; v; 2`) = 1 if and only if there exists a con�guration w such thatboth �G(u;w; `) = 1 and �G(w; v; `) = 1 hold. Thus, we obtain the recursion�G(u; v; 2`) = 9w 2 f0; 1gm�G(u;w; `) ^ �G(w; v; `); (5.2)where the bottom of the recursion (i.e., �G(u; v; 1)) is a simple propositional formula(see foregoing discussion). The problem with Eq. (5.2) is that the expression for�G(�; �; 2`) involves two occurrences of �G(�; �; `), which doubles the length of therecursively constructed formula (yielding an exponential blow-up).Our aim is to express �G(�; �; 2`) while using �G(�; �; `) only once. The extrarestriction, which prevents an exponential blow-up, corresponds to the re-using ofspace in the (two evaluations of �G(�; �; `) that take place in the) computation of�G(u; v; 2`). The main idea is replacing the condition �G(u;w; `) = �G(w; v; `) = 1by the condition \8(u0v0) 2 f(u;w); (w; v)g�G(u0; v0; `)" (where we quantify overa two-element set that is not the Boolean set f0; 1g). Next, we reformulate thenon-standard quanti�er (which ranges over a speci�c pair of strings) by using ad-ditional quanti�ers as well as some simple Boolean conditions. That is, 8(u0v0) 2f(u;w); (w; v)g is replaced by 8� 2 f0; 1g9u0; v0 2 f0; 1gm and the auxiliary condi-tion [(�=0)) (u0=u ^ v0=w)] ^ [(�=1)) (u0=w ^ v0=v)]: (5.3)Thus, �G(u; v; 2`) holds if and only if there exist w such that for every � thereexists (u0; v0) such that both Eq. (5.3) and �G(u0; v0; `) hold. Note that the lengthof this expression for �G(�; �; 2`) equals the length of �G(�; �; `) plus an additiveoverhead term of O(m). Thus, using a recursive construction, the length of theformula grows only linearly in the number of recursion steps.

172 CHAPTER 5. SPACE COMPLEXITYThe reduction itself maps an instance x (of S) to the quanti�ed Boolean formula�(sx; t; 2m), where sx denotes the initial con�guration of A(x), (t andm = poly(jxj)are as above), and � is recursively de�ned as follows�(u; v; 2`) def= 9w2f0; 1gm 8�2f0; 1g9u0; v02f0; 1gm[(�=0)) (u0=u ^ v0=w)]^ [(�=1)) (u0=w ^ v0=v)]^ �(u0; v0; `) (5.4)with �(u; v; 1) = 1 if and only if either u = v or there is an edge from u to v. Notethat �(u; v; 1) is a (�xed) propositional formula with Boolean variables representingthe bits of u and v such that �(u; v; 1) is satis�es if and only if either u = v or vis a con�guration that follows the con�guration u in a computation of A. On theother hand, note that �(sx; t; 2m) is a quanti�ed formula in which the quanti�edvariables are not shown in the notation.We stress that the mapping of x to �(sx; t; 2m) can be computed in polynomial-time. Firstly, note that the propositional formula �(u; v; 1), having Boolean vari-ables representing the bits of u and v, expresses extremely simple conditions andcan certainly be constructed in polynomial-time (i.e., polynomial in the number ofBoolean variables, which in turn equals 2m). Next note that, given �(u; v; `), which(for ` > 1) contains quanti�ed variables that are not shown in the notation, we canconstruct �(u; v; 2`) by merely replacing variables names and adding quanti�ersand Boolean conditions as in the recursive de�nition of Eq. (5.4). This is certainlydoable in polynomial-time. Lastly, note that the construction of �(sx; t; 2m) de-pends mainly on the length of x, where x itself only a�ects sx (and does so in atrivial manner). Recalling that m = poly(jxj), it follows that everything is com-putable in time polynomial in jxj. Thus, given x, the formula �(sx; t; 2m) can beconstructed in polynomial-time.Finally, note that x 2 S if and only if the formula �(sx; t; 2m) is satis�able.The theorem follows.Other PSPACE-complete problems. Several generalizations of natural gamesgive rise to PSPACE-complete problems (see [196, Sec. 8.3]). This further justi�esthe title of the current section.Chapter NotesThe material presented in the current chapter is based on a mix of \classical" results(proven in the 1970's if not earlier) and \modern" results (proven in the late 1980'sand even later). We wish to emphasize the time gap between the formulation ofsome questions and their resolution. Details follow.We �rst mention the \classical" results. These include the NL-completenessof st-CONN, the emulation of non-deterministic space-bounded machines by deter-ministic space-bounded machines (i.e., Theorem 5.12 due to Savitch [186]), the

5.4. PSPACE AND GAMES 173PSPACE-completeness of QBF, and the connections between circuit depth andspace complexity (see Section 5.1.4 and Exercise 5.7 due to Borodin [44]).Before turning to the \modern" results, we mention that some researchers tendto be discouraged by the impression that \decades of research have failed to an-swer any of the famous open problems of complexity theory." In our opinion thisimpression is fundamentally mistaken. Speci�cally, in addition to the fact thatsubstantial progress towards the understanding of many fundamental issues hasbeen achieved, these researchers tend to forget that some famous open problemswere actually resolved. Two such examples were presented in this chapter.The question of whether NL = coNL was a famous open problem for almosttwo decades. Furthermore, this question is related to an even older open prob-lem dating to the early days of research in the area of formal languages (i.e., tothe 1950's).23 This open problem was resolved in 1988 by Immerman [119] andSzelepcsenyi [207], who (independently) proved Theorem 5.14 (i.e., NL = coNL).For more than two decades, undirected connectivity (UCONN) was one of themost appealing examples of the computational power of randomness. Recall thatthe classical linear-time (deterministic) algorithms (e.g., BFS and DFS) require anextensive use of temporary storage (i.e., linear in the size of the graph). On theother hand, it was known (since 1979, see x6.1.4.2) that, with high probability,a random walk of polynomial length visits all vertices (in the corresponding con-nected component). Thus, the resulting randomized algorithm for UCONN uses aminimal amount of auxiliary memory (i.e., logarithmic in the size of the graph).In the early 1990's, this algorithm (as well as the entire class BPL (see De�ni-tion 6.9)) was derandomized in polynomial-time and poly-logarithmic space (seeTheorem 8.23), but despite more than a decade of research attempts, a signi�-cant gap remained between the space complexity of randomized and deterministicpolynomial-time algorithms for this natural and ubiquitous problem. This gap wasclosed by Reingold [179], who established Theorem 5.6 in 2004.24 Our presentation(in Section 5.2.4) follows Reingold's ideas, but the speci�c formulation in x5.2.4.2does not appear in [179].ExercisesExercise 5.1 (rewriting on the write-only output-tape) Let A be an arbi-trary algorithm of space complexity s. Show that there exists a functionallyequivalent algorithm A0 that never rewrites on (the same location of) its output-device and has space complexity s0 such that s0(n) = s(n) + O(log `(n)), where`(n) = maxx2f0;1gn jA(x)j.Guideline: Algorithm A0 proceeds in iterations, where in the ith iteration it outputs theith bit of A(x) by emulating the computation of A on input x. The ith emulation of A23Speci�cally, the class of sets recognized by linear-space non-deterministic machines equals theclass of context-sensitive languages (see, e.g., [117, Sec. 9.3]), and thus Theorem 5.14 resolves thequestion of whether the latter class is closed under complementation.24We mention that an almost-logarithmic space algorithm was discovered independently andconcurrently by Trifonov [211], using a very di�erent approach.

174 CHAPTER 5. SPACE COMPLEXITYavoids printing A(x), but rather keeps a records of the ith location of A(x)'s output-tape(and terminates by outputting the �nal value of this bit). Indeed, this emulation requiresmaintaining the current value of i as well as the current location of emulated machine(i.e., A) on its output-tape.Exercise 5.2 (on the power of double-logarithmic space) For any k 2 N ,let wk denote the concatenation of all k-bit long strings (in lexicographic order)separated by �'s (i.e., wk = 0k�200 � 0k�201 � 0k�210 � 0k�211 � � � � � 1k). Showthat the set S def= fwk : k 2 Ng � f0; 1; �g is not regular and yet is decidable indouble-logarithmic space.Guideline: The non-regularity of S can be shown using standard techniques. Towardsdeveloping an algorithm, note that jwkj > 2k, and thus O(log k) = O(log log jwkj). Mem-bership of x in S is determined by iteratively checking whether x = wi, for i = 1; 2; :::,while stopping when detecting an obvious case (i.e., either verifying that x = wi or de-tecting evidence that x 6= xk for every k � i). By taking advantage of the �'s (in wi), theith iteration can be implemented in space O(log i). Furthermore, on input x 62 S, we haltand reject after at most log jxj iterations. Actually, it is slightly simpler to handle therelated set fw1 � �w2 � � � � � � �wk : k 2 Ng; moreover, in this case the �'s can be omittedfrom the wi's (as well as from between them).Exercise 5.3 (on the weakness of less than double-logarithmic space) Provethat for `(n) = log logn, it holds that Dspace(o(`)) = Dspace(O(1)).Guideline: Let s denote the machine's (binary) space complexity. Show that if s isunbounded then it must hold that s(n) =
(log log n) in�nitely often. Speci�cally, foreach m, consider a shortest string x such that on input x the machine uses space at leastm. Consider, for each location on the input, the sequence of the residual con�gurationsof the machine (i.e., the contents of its temporary storage)25 such that the ith elementin the sequence represents the residual con�guration of the machine at the ith time thatthe machine crosses (or rather passes through) this input location. For starters, notethat the length of this \crossing sequence" is upper-bounded by the number of possibleresidual con�gurations, which is at most t def= 2s(jxj) � s(jxj). Thus, the number of suchcrossing sequences is upper-bounded by tt. Now, if tt < jxj=2 then there exist three inputlocations that have the same crossing sequence, and two of them hold the same bit value.Contracting the string at these two locations, we get a shorter input on which the machinebehaves in exactly the same manner, contradicting the hypothesis that x is the shortestinput on which the machine uses space at least m. We conclude that tt � jxj=2 musthold, and s(jxj) =
(log log jxj) holds for in�nitely many x's.Exercise 5.4 (some log-space algorithms) Present log-space algorithms for thefollowing computational problems.1. Addition and multiplication of a given pair of integers.25Note that, unlike in the proof of Theorem 5.3, the machine's location on the input is not partof the notion of a con�guration used here. On the other hand, although not stated explicitly, thecon�guration also encodes the machine's location on the storage tape.

5.4. PSPACE AND GAMES 175Guideline: Relying on Lemma 5.2, �rst transform the input to a more convenientformat, then perform the operation, and �nally transform the result to the adequateformat. For example, when adding x =Pn�1i=0 xi2i and y =Pn�1i=0 yi2i, a convenientformat is ((x0; y0); :::; (xn�1; yn�1)).2. Deciding whether two given strings are identical.3. Finding occurrences of a given pattern p 2 f0; 1g� in a given string s 2 f0; 1g�.4. Transforming the adjacency matrix representation of a graph to its incidencelist representation, and vice versa.5. Deciding whether the input graph is acyclic (i.e., has no simple cycles).Guideline: Consider a scanning of the graph that proceeds as follows. Uponentering a vertex v via the ith edge incident at it, we exit this vertex using its i+1stif v has degree at least i+ 1 and exit via the �rst edge otherwise. Note that whenstarted at any vertex of any tree, this scanning performs a DFS. On the other hand,for every cyclic graph there exists a vertex v and an edge e incident to v such thatif this scanning is started by traversing the edge e from v then it returns to v viaan edge di�erent from e.6. Deciding whether the input graph is a tree.Guideline: Use the fact that a graph G = (V;E) is a tree if and only if it isacyclic and jEj = jV j � 1.Exercise 5.5 (another composition result) In continuation to the discussionin x5.1.3.3, prove that if � can be computed in space s1 when given an (`; `0)-restricted oracle access to �0 and �0 is solvable is space s2, then � is solvable inspace s such that s(n) = 2s1(n)+s2(`(n))+2`0(n)+�(n), where �(n) = O(log(`(n)+s1(n) + s2(`(n)))). In particular, if s1; s2 and `0 are at most logarithmic, thens(n) = O(log n).Guideline: View the oracle-aided computation of � as consisting of iterations suchthat in the ith iteration the ith query (denoted qi) is determined based on the initialinput (denoted x), the i � 1st oracle answer (denoted ai�1), and the contents of thework tape at the time the i � 1st answer was given (denoted wi�1). Note that themapping (x; ai�1; wi�1)! (qi; wi) can be computed using s(jxj) bits of temporary storage.Composing each iteration with the computation of �0 (using Lemma 5.2), we conclude thatthe mapping (x; ai�1; wi�1)! (ai; wi) can be computed (without storing the intermediateqi) in space s1(n) + s2(`(n))+O(log(`(n)+ s1(n) + s2(`(n)))). Thus, we can emulate theentire computation using space s(n), where the extra space of s1(n) + 2`0(n) bits is usedfor storing the work-tape of the oracle machine and the i � 1st and ith oracle answers.Exercise 5.6 Referring to the discussion in x5.1.3.3, prove that any problem hav-ing space complexity s can be solved by a constant-space (2s; 2s)-restricted reduc-tion to a problem that is solvable in constant-space.Guideline: The reduction is to the \next con�guration function" associated with thesaid algorithm (of space complexity s), where here the con�guration contains also the

176 CHAPTER 5. SPACE COMPLEXITYsingle bit of the input that the machine currently examines (i.e., the value of bit at themachine's location on the input device). To facilitate the computation of this function,represent each con�guration in a redundant manner (e.g., as a sequence over a 4-ary ratherthan a binary alphabet). The reduction consists of iteratively copying string (with minormodi�cation) from the (input or) oracle-answer tape to the oracle-query (or output) tape.Exercise 5.7 (log-space uniform NC1 is in L) Suppose that a problem � issolvable by a family of log-space uniform circuits of bounded fan-in and depth dsuch that d(n) � logn. Prove that � is solvable by an algorithm having spacecomplexity O(d).Guideline: Combine the algorithm outlined in Section 5.1.4 with the de�nition of log-space uniformity (using Lemma 5.2).Exercise 5.8 (transitivity of log-space reductions) Prove that log-space Karp-reductions are transitive. De�ne log-space Levin-reductions and prove that theyare transitive.Guideline: Use Lemma 5.2, noting that such reductions are merely log-space computablefunctions.Exercise 5.9 (UCONN in constant degree graphs of logarithmic diameter)Present a log-space algorithm for deciding the following promise problem, whichis parameterized by constants c and d. The input graph satis�es the promise ifeach vertex has degree at most d and every pair of vertices that reside in the sameconnected component is connected by a path of length at most c log2 n, where ndenotes the number of vertices in the input graph. The task is to decide whetherthe input graph is connected.Guideline: For every pair of vertices in the graph, we check whether these verticesare connected in the graph. (Alternatively, we may just check whether each vertex isconnected to the �rst vertex.) Relying on the promise, it su�ces to inspect all paths oflength at most ` def= c log2 n, and these paths can be enumerated using ` � dlog2 de bits ofstorage.Exercise 5.10 (warm-up towards x5.2.4.2) In continuation to x5.2.4.1, presenta log-space transformation of Gi to Gi+1.Guideline: Given the graph Gi as input, we may construct Gi+1 by �rst constructingG0 = Gci and then constructing G0
z G. To construct G0, we scan all vertices of Gi(holding the current vertex in temporary storage), and for each such vertex constructits neighborhood in G0 (by using O(c) space for enumerating all possible neighbors).Similarly, we can construct the vertex neighborhoods in G0
z G (by storing the currentvertex name and using a constant amount of space for indicating incident edges in G).Exercise 5.11 (st-UCONN) In continuation to Section 5.2.4, prove that thefollowing computational problem is in L: Given an undirected graph G = (V;E)and two designated vertices, s and t, determine whether there is a path from s tot in G.

5.4. PSPACE AND GAMES 177Guideline: Note that the transformation described in Section 5.2.4 can be easily ex-tended such that it maps vertices in G0 to vertices in GO(log jV j) while preserving theconnectivity relation (i.e., u and v are connected in G0 if and only if their images underthe map are connected in GO(log jV j)).Exercise 5.12 (Bipartiteness) Prove that the problem of determining whetheror not the input graph is bipartite (2-colorable) is computationally equivalent underlog-space reductions to st-UCONN (as de�ned in Exercise 5.11).Guideline: Both reductions use the mapping of a graph G=(V;E) to a bipartite graphG0=(V 0; E0) such that V 0 = fv(1); v(2) : v2V g and E0 = f(u(1); v(2)); (u(2); v(1)) : fu; vg2Eg. When reducing to st-UCONN note that a vertex v resides on an odd cycle in G if andonly if v(1) and v(2) are connected in G0. When reducing from st-UCONN note that s and tare connected in G by a path of even (resp., odd) length if and only if the graph G0 ceasesto be bipartite when augmented with the edge fs(1); t(1)g (resp., with the edges fs(1); xgand fx; t(2)g, where x 62 V 0 is an auxiliary vertex).Exercise 5.13 (�nding paths in undirected graphs) In continuation to Ex-ercise 5.11, present a log-space algorithm that given an undirected graphG = (V;E)and two designated vertices, s and t, �nds a path from s to t in G (in case such apath exists).Guideline: In continuation to Exercise 5.11, we may �nd and (implicitly) store a loga-rithmic path in GO(log jV j) that connects a representative of s and a representative of t.Focusing on the task of �nding a path in G0 that corresponds to an edge in GO(log jV j),we note that such a path can be found by using the reduction underlying the combinationof Claim 5.9 and Lemma 5.10. (An alternative description appears in [179].)Exercise 5.14 (relating the two models of NSPACE) Referring to the de�-nitions in Section 5.3.1, prove that for every function s such that log s is space-constructible and at least logarithmic, it holds thatNspaceon-line(s) = Nspaceo�-line(�(log s)).Guideline (for Nspaceon-line(s) � Nspaceo�-line(O(log s))): Use the non-deterministicinput of the o�-line machine for encoding an accepting computation of the on-line machine;that is, this input should contain a sequence of consecutive con�gurations leading from theinitial con�guration to an accepting con�guration, where each con�guration contains thecontents of the work-tape as well as the machine's state and its locations on the work-tapeand on the input-tape. The emulating o�-line machine (which veri�es the correctness ofthe sequence of con�gurations recorded on its non-deterministic input tape) needs onlystore its location within the current pair of consecutive con�gurations that it examines,which requires space logarithmic in the length of a single con�guration (which in turnequals s(n) + log2 s(n) + log2 n + O(1)). (Note that this veri�cation relies on a two-directional access to the non-deterministic input.)Guideline (for Nspaceo�-line(s0) � Nspaceon-line(exp(s0))): Here we refer to the no-tion of a crossing-sequence. Speci�cally, for each location on the o�-line non-deterministicinput, consider the sequence of the residual con�gurations of the machine, where such aresidual con�guration consists of the bit residing in this non-deterministic tape location,

178 CHAPTER 5. SPACE COMPLEXITYthe contents of the machine's temporary storage and the machine's locations on the inputand storage tapes (but not its location on the non-deterministic tape). Show that thelength of such a crossing-sequence is exponential in the space complexity of the o�-line ma-chine, and that the time complexity of the o�-line machine is at most double-exponential inits space complexity (see Exercise 5.3). The on-line machine merely generates a sequenceof crossing-sequences (\on the
y") and checks that each consecutive pair of crossing-sequences is consistent. This requires holding two crossing-sequences in storage, whichrequire space linear in the length of such sequences (which, in turn, is exponential in thespace complexity of the o�-line machine).Exercise 5.15 (st-CONN and variants of it are in NL) Prove that the fol-lowing computational problem is in NL. The instances have the form (G; v; w; `),where G=(V;E) is a directed graph, v; w 2 V , and ` is an integer, and the questionis whether G contains a path of length at most ` from v to w.Guideline: Consider a non-deterministic (on-line) machine that generates and veri�ersan adequate path on the
y. That is, starting at v0 = v, the machine proceeds initerations, such that in the ith iteration it non-deterministically generates vi, veri�ersthat (vi�1; vi) 2 E, and checks whether i � ` and vi = w. Note that this machine needonly store the last two vertices on the path (i.e., vi�1 and vi) as well as the number ofedges traversed so far (i.e., i). (Actually, using a careful implementation, it su�ces tostore only one of these two vertices (as well as the current i).)Exercise 5.16 (NSPACE and directed connectivity) Our aim is to establisha relation between general non-deterministic space-bounded computation and di-rected connectivity in \strongly constructible" graphs that have size exponential inthe space bound. Let s be space constructible and at least logarithmic. For everyS 2 Nspace(s), present a linear-time oracle machine (somewhat as in x5.2.4.2)that given oracle access to x provides oracle access to a directed graph Gx of sizeexp(s(jxj)) such that x 2 S if and only if there is a directed path between the �rstand last vertices of Gx. That is, on input a pair (u; v) and oracle access to x, themachine decides whether or not (u; v) is a directed edge in Gx.Guideline: Follow the proof of Theorem 5.11.Exercise 5.17 (an alternative presentation of the proof of Theorem 5.12)We refer to directed graphs in which each vertex has a self-loop.1. Viewing the adjacency matrices of directed graphs as oracles (cf. Exer-cise 5.16), present a linear space oracle machine that determines whethera given pair of vertices is connected by a directed path of length two in theinput graph. Note that this machine computes the adjacency relation of thesquare of the graph represented in the oracle.2. Using naive composition (as in Lemma 5.1), present a quadratic space oraclemachine that determines whether a given pair of vertices is connected by adirected path in the input graph.

5.4. PSPACE AND GAMES 179Note that the machine in Item 2 implies that st-CONN can be decided in log-squarespace. In particular, justify the self-loop assumption made up-front.Exercise 5.18 (deciding strong connectivity) A directed graph is called stronglyconnected if there exists a directed path between every ordered pair of vertices inthe graph (or, equivalently, a directed cycle passing through every two vertices).Prove that the problem of deciding whether a directed graph is strongly connectedis NL-complete under (many-to-one) log-space reductions.Guideline (for NL-hardness): Reduce from st-CONN. Note that, for any graph G=(V;E), it holds that (G; s; t) is a yes-instance of st-CONN if and only if the graph G0 =(V;E [f(v; s) : v2V g [f(t; v) : v2V g) is strongly connected.Exercise 5.19 (�nding shortest paths in undirected graphs) Prove that thefollowing computational problem is NL-complete under (many-to-one) log-spacereductions: Given an undirected graph G = (V;E), two designated vertices, s andt, and an integer K, determine whether there is a path of length at most (resp.,exactly) K from s to t in G.Guideline (for NL-hardness): Reduce from st-CONN. Speci�cally, given a directedgraph G = (V;E) and vertices s; t, consider a (\layered") graph G0 = (V 0; E0) such thatV 0 = [jV j�1i=0 fhi; vi : v2V g and E0 = [jV j�2i=0 ffhi; ui; hi + 1; vig : (u; v)2E _ u=vg. Notethat there exists a directed path from s to t in G if and only if there exists a path oflength at most (resp., exactly) jV j � 1 between hs; 0i and ht; jV j � 1i in G0.Exercise 5.20 (an operational interpretation of NL \ coNL, NP \ coNP, etc)Referring to De�nition 5.13, prove that S 2 NL\ coNL if and only if there existsa non-deterministic log-space machine that computes �S , where �S(x) = 1 if x 2 Sand �S(x) = 0 otherwise. State and prove an analogous result for NP \ coNP .Guideline: A non-deterministic machine computing any function f yields, for each valuev, a machine of similar complexity that accept fx : f(x) = vg. (Extra hint: Invoke themachine M that computes f and accept if and only if M outputs v.) On the other hand, forany function f of �nite range, combining machines that accept the various sets Sv def=fx : f(x) = vg, we obtain a machine of similar complexity that computes f . (Extra hint:On input x, the combined machine invokes each of the aforementioned machines on input x andoutputs the value v if and only if the machine accepting Sv has accepted. In the case that noneof the machines accepts, the combined machine outputs ?.)Exercise 5.21 (a graph algorithmic interpretation of NL = coNL) Show thatthere exists a log-space computable function f such that for every (G; s; t) it holdsthat (G; s; t) is a yes-instance of st-CONN if and only if (G0; s0; t0) = f(G; s; t) is ano-instance of st-CONN.Exercise 5.22 As an alternative to the two-query reduction presented in the proofof Theorem 5.14, show that computing the characteristic function of st-CONN islog-space reducible via a single query to the problem of determining the number ofvertices that are reachable from a given vertex in a given graph.(Hint: On input (G; s; t), where G = ([N]; E), consider the number of vertices reachable from sin the graph G0 = ([2N]; E [f(t; N + i) : i = 1; :::;Ng).)

180 CHAPTER 5. SPACE COMPLEXITYExercise 5.23 (reductions and non-deterministic computations) Suppose thatcomputing f is log-space reducible by a constant number of queries to computingsome function g. Referring to non-deterministic computations as in De�nition 5.13,prove that if there exists a non-deterministic log-space machine that computes gthen there exists a non-deterministic log-space machine that computes f .Guideline: Use the emulative composition (as in Lemma 5.2). If any of the non-deterministic computations of g returns the value ? then return ? as the value of f .Otherwise, use the non-? values provided by the non-deterministic computations of g tocompute the value of f .Exercise 5.24 (reductions and non-deterministic computations, revisited)Suppose that computing f is log-space reducible (by any number of queries) tocomputing some function g such that for every x it holds that jg(x)j = O(log jxj).Referring to non-deterministic computations as in De�nition 5.13, prove that ifthere exists a non-deterministic log-space machine that computes g then there ex-ists a non-deterministic log-space machine that computes f . As a warm-up considerthe special case in which every query to g is computable in log-space based onlyon the input to f .Guideline: As in Exercise 5.23, except that here we use di�erent composition techniques.Speci�cally, in the warm-up we use the naive composition (in the spirit of Lemma 5.1),whereas in the general case we apply the semi-naive composition result of Exercise 5.5.Exercise 5.25 Referring to De�nition 5.13, prove that there exists a non-deterministiclog-space machine that computes the distance between two given vertices in a givenundirected graph.Guideline: Relate this computational problem to the decision problem considered inExercise 5.19, and use NL = coNL.

540 CHAPTER 5. SPACE COMPLEXITY

Appendix EExplicit ConstructionsIt is easier for a camel to go through the eye of aneedle, than for a rich man to enter into the kingdomof God. Matthew, 19:24.Complexity theory provides a clear de�nition of the intuitive notion of an explicitconstruction. Furthermore, it also suggests a hierarchy of di�erent levels of ex-plicitness, referring to the ease of constructing the said object. The basic levels ofexplicitness are provided by considering the complexity of fully constructing theobject (e.g., the time it takes to print the truth-table of a �nite function). In thiscontext, explicitness often means outputting a full description of the object in timethat is polynomial in the length of that description. Stronger levels of explicitnessemerge when considering the complexity of answering natural queries regarding theobject (e.g., the time it takes to evaluate a �xed function at a given input). In thiscontext, (strong) explicitness often means answering such queries in polynomial-time. The aforementioned themes are demonstrated in our brief overview of explicitconstructions of error correcting codes and expander graphs. These constructionsare, in turn, used in various parts of the main text.Summary: We review several popular constructions of error correctingcodes, culminating with the construction of a concatenated code thatcombines a Reed-Solomon code with a \mildly explicit" construction ofa small code. We also review brie
y the notions of locally testable andlocally decodable codes, and a useful \list decoding bound" (i.e., bound-ing the number of codewords that are close to any single sequence).We review the two standard de�nitions of expanders, two levels of ex-plicitness, and two properties of expanders that are related to (single-step and multi-step) random walks on them. We then review two ex-plicit constructions of expander graphs.541

542 APPENDIX E. EXPLICIT CONSTRUCTIONSE.1 Error Correcting CodesIn this section we highlight some issues and aspects of coding theory that are mostrelevant to the current book. The interested reader is referred to [205] for a morecomprehensive treatment of the computational aspects of coding theory. Structuralaspects of coding theory, which are at the traditional focus of that �eld, are coveredin standard textbook such as [153].Loosely speaking, an error correcting code is a mapping of strings to longerstrings such that any two di�erent strings are mapped to a corresponding pair ofstrings that are far apart (and not merely di�erent). Speci�cally, C : f0; 1gk !f0; 1gn is a (binary) code of distance d if for every x 6= y 2 f0; 1gk it holds that C(x)and C(y) di�er on at least d bit positions.It will be useful to extend this de�nition to sequences over an arbitrary alphabet�, and to use some notations. Speci�cally, for x 2 �m, we denote the ith symbolof x by xi (i.e., x = x1 � � �xm), and consider codes over � (i.e., mappings of �-sequences to �-sequences). The mapping (code) C : �k ! �n has distance d iffor every x 6= y 2 �k it holds that jfi : C(x)i 6= C(y)igj � d. The members offC(x) : x 2 �kg are called codewords (and in some texts this set itself is called acode).In general, we de�ne a metric, called Hamming distance, over the set of n-longsequences over �. The Hamming distance between y and z, where y; z 2 �n, isde�ned as the number of locations on which they disagree (i.e., jfi : yi 6= zigj). TheHamming weight of such sequences is de�ned as the number of non-zero elements(assuming that one element of � is viewed as zero). Typically, � is associatedwith an additive group, and in this case the distance between y and z equals theHamming weight of w = y � z, where wi = yi � zi (for every i).Asymptotics. We will actually consider in�nite families of codes; that is, fCk :�kk ! �n(k)k gk2S , where S � N (and typically S = N). (N.B., we allow �k todepend on k.) We say that such a family has distance d : N ! N if for everyk 2 S it holds that Ck has distance d(k). Needless to say, both n = n(k) (calledthe block-length) and d(k) depend on k, and the aim is to have a linear dependence(i.e., n(k) = O(k) and d(k) =
(n(k))). In such a case, one talks of the relative rateof the code (i.e., the constant k=n(k)) and its relative distance (i.e., the constantd(k)=n(k)).In general, we will often refer to relative distances between sequences. Forexample, for y; z 2 �n, we say that y and z are "-close (resp., "-far) if jfi : yi 6=zigj � " � n (resp., jfi : yi 6= zigj � " � n).Explicitness. A mild notion of explicitness refers to constructing the list of allcodewords in time that is polynomial in its length (which is exponential in k).A more standard notion of explicitness refers to generating a speci�c codeword(i.e., producing C(x) when given x), which coincides with the encoding task men-tioned next. Stronger notions of explicitness refer to other computational problemsconcerning codes (see next).

E.1. ERROR CORRECTING CODES 543Computational problems. The most basic computational tasks associated withcodes are encoding and decoding (under noise). The de�nition of the encoding taskis straightforward (i.e., map x 2 �kk to Ck(x)), and an e�cient algorithm is requiredto compute each symbol in Ck(x) in poly(k; log j�kj)-time.1 When de�ning the de-coding task we note that \minimum distance decoding" (i.e., given w 2 �n(k)k ,�nd x such that Ck(x) is closest to y (in Hamming distance)) is just one naturalpossibility. Two related variants, regarding a code of distance d, are:Unique decoding: Given w 2 �n(k)k that is at Hamming distance less than d(k)=2from some codeword Ck(x), retrieve the corresponding decoding of Ck(x)(i.e., retrieve x).Needless to say, this task is well-de�ned because there cannot be two di�erentcodewords that are each at Hamming distance less than d(k)=2 from w.List decoding: Given w 2 �n(k)k and a parameter d0 � d(k)=2, output a list of allx 2 �kk that are at Hamming distance at most d0 from w.Typically, one considers the case that d0 < d(k). See Section E.1.3 for discus-sion of upper-bounds on the number of codewords that are within a certaindistance from a generic sequence.Two additional computational tasks are considered in Section E.1.2.Linear codes. Associating �k with some �nite �eld, we call a code Ck : �kk !�n(k)k linear if it satis�es Ck(x + y) = Ck(x) + Ck(y), where x and y (resp., Ck(x)and Ck(y)) are viewed as k-dimensional (resp., n(k)-dimensional) vectors over �k,and the arithmetic is of the corresponding vector space. A useful property of linearcodes is that their distance equals the Hamming weight of the lightest codewordother than Ck(0k); that is, minx 6=yfjfi : Ck(x)i 6= Ck(y)igjg equals minx 6=0kfjfi :Ck(x)i 6= 0gjg. Another useful property is that the code is fully speci�ed by ak-by-n(k) matrix, called the generating matrix, that consists of the codewords ofsome �xed basis of �kk. That is, the set of all codewords is obtained by taking allj�kjk di�erent linear combination of the rows of the generating matrix.E.1.1 A few popular codesOur focus will be on explicitly constructible codes; that is, (families of) codes of theform fCk : �kk ! �n(k)k gk2S that are coupled with e�cient encoding and decodingalgorithms. But before presenting a few such codes, let us consider a non-explicitconstruction.Proposition E.1 (random linear codes): Let c > 1 and n; d : N ! N be such that,for all su�ciently large k, it holds that n(k) > max(c�k=(1�H2(d(k)=n(k))); 2d(k)),1This formulation is not the one common in coding theory, but it is the most natural one forour applications. On one hand, this formulation is applicable also to codes with super-polynomialblock-length. On the other hand, this formulation does not support a discussion of practicalalgorithms that compute the codeword faster than by computing each of its bits separately.

544 APPENDIX E. EXPLICIT CONSTRUCTIONSwhere H2(�) def= � log2(1=�) + (1 � �) log2(1=(1 � �)). Then, for all su�cientlylarge k, with high probability, a random linear transformation of f0; 1gk to f0; 1gn(k)constitutes a code of distance d(k).Thus, for every constant � 2 (0; 0:5) there exists a constant � > 0 and an in�nitefamily of codes fCk : f0; 1gk ! f0; 1gk=�gk2N of relative distance �. Speci�cally,� = (1�H2(�))=c will do.Proof: We consider a uniformly selected k-by-n(k) generating matrix over GF(2),and upper-bound the probability that it yields a linear code of distance less thand(k). We use a union bound on all possible 2k�1 linear combinations of the rows ofthe generating matrix, where for each such combination we compute the probabilitythat it yields a vector of Hamming weight less than d(k). Observe that the resultof each such linear combination is uniformly distributed over f0; 1gn(k), and thushas Hamming weight less than d(k) with probability Pd(k)�1i=0 �n(k)i � � 2�n(k) <2�(1�H2(d(k)=n(k)))�n(k)). Using (1 �H2(d(k)=n(k))) � n(k) > c � k, the propositionfollows.E.1.1.1 A mildly explicit version of Proposition E.1Note that Proposition E.1 yields a (deterministic) exp(k � n(k))-time algorithmthat �nds a linear code of distance d(k). The time bound can be improved toexp(k+n(k)), by observing that we may choose the rows of the generating matrixone by one, making sure that all non-empty linear combinations of the current rowshave weight at least d(k). Note that the proof of Proposition E.1 can be adaptedto assert that as long as we have less than k rows a random choice of the next rowwill do with high probability. Note that in the case that n(k) = O(k), this yieldsan algorithm that runs in time that is polynomial in the size of the code (i.e., thenumber of codewords). Needless to say, this mild level of explicitness is inadequatefor most coding applications; however, it will be useful to us in xE.1.1.5.E.1.1.2 The Hadamard CodeThe Hadamard code is the longest (non-repetitive) linear code over f0; 1g � GF(2).That is, x 2 f0; 1gk is mapped to the sequence of all n(k) = 2k possible linearcombinations of its bits (i.e., bit locations in the codewords are associated with k-bitstrings, and location � 2 f0; 1gk in the codeword of x holds the value Pki=1 �ixi).It can be veri�ed that each non-zero codeword has weight 2k�1, and thus this codehas relative distance d(k)=n(k) = 1=2 (albeit its block-length n(k) is exponentialin k).Turning to the computational aspects, we note that encoding is very easy. Asfor decoding, the warm-up discussion at the beginning of the proof of Theorem 7.7provides a very fast probabilistic algorithm for unique decoding, whereas Theo-rem 7.8 provides a very fast probabilistic algorithm for list decoding.We mention that the Hadamard code has played a key role in the proof of thePCP Theorem (Theorem 9.16); see x9.3.2.1.

E.1. ERROR CORRECTING CODES 545A propos long codes. We note that the longest (non-repetitive) binary code(called the Long-Code and introduced in [26]) is extensively used in the design of\advanced" PCP systems (see, e.g., [111, 112]). In this code, a k-bit long stringx is mapped to the sequence of n(k) = 22k values, each corresponding to theevaluation of a di�erent Boolean function at x; that is, bit locations in the code-words are associated with Boolean functions such that the location associated withf :f0; 1gk!f0; 1g in the codeword of x holds the value f(x).E.1.1.3 The Reed{Solomon CodeA Reed-Solomon code is de�ned for a non-binary alphabet, which is associatedwith a �nite �eld of n elements, denoted GF(n). For any k < n, we consider themapping of univariate degree k � 1 polynomials over GF(n) to their evaluation atall �eld elements. That is, p 2 GF(n)k (viewed as such a polynomial), is mappedto the sequence (p(�1); :::; p(�n)), where �1; :::; �n is a canonical enumeration ofthe elements of GF(n).2The Reed-Solomon code o�ers in�nite families of codes with constant rate andconstant relative distance (e.g., by taking n(k) = 3k and d(k) = 2k), but thealphabet size grows with k (or rather with n(k) > k). E�cient algorithms forunique decoding and list decoding are known (see [204] and references therein).These computational tasks correspond to the extrapolation of polynomials basedon a noisy version of their values at all possible evaluation points.E.1.1.4 The Reed{Muller CodeReed-Muller codes generalize Reed-Solomon codes by considering multi-variatepolynomials rather than univariate polynomials. Consecutively, the alphabet maybe any �nite �eld, and in particular the two-element �eld GF(2). Reed-Mullercodes (and variants of them) are extensively used in complexity theory; for ex-ample, they underly Construction 7.11 and the PCP constructed at the end ofx9.3.2.2. The relevant property of these codes is that, under a suitable setting ofparameters that satis�es n(k) = poly(k), they allow super fast \codeword testing"and \self-correction" (see discussion in Section E.1.2).For any prime power q and parameters m and r, we consider the set, denotedPm;r, of all m-variate polynomials of total degree at most r over GF(q). Eachpolynomial in Pm;r is represented by the k = logq jPm;rj coe�cients of all relevantmonomials, where in the case that r < q it holds that k = �m+rm �. We considerthe code C : GF(q)k ! GF(q)n, where n = qm, mapping m-variate polynomials oftotal degree at most r to their values at all qm evaluation points. That is, the m-variate polynomial p of total degree at most r is mapped to the sequence of values(p(�1); :::; p(�n)), where �1; :::; �n is a canonical enumeration of all the m-tuplesof GF(q). The relative distance of this code is lower-bounded by (q � r)=q.2Alternatively, we may map (v1; :::; vk) 2 GF(n)k to (p(�1); :::; p(�n)), where p is the uniqueunivariate polynomial of degree k � 1 that satis�es p(�i) = vi for i = 1; :::; k. Note that thismodi�cation amounts to a linear transformation of the generating matrix.

546 APPENDIX E. EXPLICIT CONSTRUCTIONSIn typical applications one sets r = �(m2 logm) and q = poly(r), which yieldsk > mm and n = poly(r)m = poly(mm). Thus we have n(k) = poly(k) but notn(k) = O(k). As we shall see in Section E.1.2, the advantage (in comparison to theReed-Solomon code) is that codeword testing and self-correction can be performedat complexity related to q = poly(log n). Actually, in most complexity applications,a variant in which only m-variate polynomials of individual degree r0 = r=m areused. In this case, an alternative presentation analogous to the one presented inFootnote 2 is preferred: The information is viewed as a function f : Hm ! GF(q),where H � GF(q) is of size r0 + 1, and is encoded by the evaluation at all pointsin GF(q)m of the m-variate polynomial of individual degree r0 that extends thefunction f .E.1.1.5 Binary codes of constant relative distance and constant rateRecall that we seek binary codes of constant relative distance and constant rate.Proposition E.1 asserts that such codes exists, but does not provide an explicitconstruction. The Hadamard code is explicit but does not have a constant rate (tosay the least (since n(k) = 2k)).3 The Reed-Solomon code has constant relativedistance and constant rate but uses a non-binary alphabet (which grows at leastlinearly with k). We achieve the desired construction by using the paradigm of con-catenated codes [73], which is of independent interest. (Indeed, concatenated codesmay be viewed as a simple version of the proof composition paradigm presented inx9.3.2.2.)Intuitively, concatenated codes are obtained by �rst encoding information, viewedas a sequence over a large alphabet, by some code and next encoding each resultingsymbol, which is viewed as a sequence of over a smaller alphabet, by a second code.Formally, consider �1 � �k22 and two codes, C1 : �k11 ! �n11 and C2 : �k22 ! �n22 .Then, the concatenated code of C1 and C2, maps (x1; :::; xk1) 2 �k11 � �k1k22 to(C2(y1); :::; C2(yn1)), where (y1; :::; yn1) = C1(x1; :::; xk1).Note that the resulting code C : �k1k22 ! �n1n22 has constant rate and con-stant relative distance if both C1 and C2 have these properties. Encoding inthe concatenated code is straightforward. To decode a corrupted codeword ofC, we view the input as an n1-long sequence of blocks, where each block is ann2-long sequence over �2. Applying the decoder of C2 to each block, we obtainn1 sequences (each of length k2) over �2, and interpret each such sequence asa symbol of �1. Finally, we apply the decoder of C1 to the resulting n1-longsequence (over �1), and interpret the resulting k1-long sequence (over �1) as ak1k2-long sequence over �2. The key observation is that if w 2 �n1n22 is "1"2-closeto C(x1; :::; xk1) = (C2(y1); :::; C2(yn1)) then at least (1� "1) � n1 of the blocks of ware "2-close to the corresponding C2(yi).4We are going to consider the concatenated code obtained by using the Reed-3Binary Reed-Muller codes also fail to simultaneously provide constant relative distance andconstant rate.4This observation o�ers unique decoding from a fraction of errors that is the product of thefractions (of error) associated with the two original codes. Stronger statements regarding uniquedecoding of the concatenated code can be made based on more re�ned analysis (cf. [73]).

E.1. ERROR CORRECTING CODES 547Solomon Code C1 : GF(n1)k1 ! GF(n1)n1 as the large code, setting k2 = log2 n1,and using the mildly explicit version of Proposition E.1, C2 : f0; 1gk2 ! f0; 1gn2 asthe small code. We use n1 = 3k1 and n2 = O(k2), and so the concatenated code isC : f0; 1gk ! f0; 1gn, where k = k1k2 and n = n1n2 = O(k). The key observationis that C2 can be constructed in exp(k2)-time, whereas here exp(k2) = poly(k).Furthermore, both encoding and decoding with respect to C2 can be performed intime exp(k2) = poly(k). Thus, we get:Theorem E.2 (an explicit good code): There exists constants �; � > 0 and anexplicit family of binary codes of rate � and relative distance at least �. That is,there exists a polynomial-time (encoding) algorithm C such that jC(x)j = jxj=� (forevery x) and a polynomial-time (decoding) algorithm D such that for every y thatis �=2-close to some C(x) it holds that D(y) = x. Furthermore, C is a linear code.The linearity of C is justi�ed by using a Reed-Solomon code over the extension �eldF = GF(2k2), and noting that this code induces a linear transformation over GF(2).Speci�cally, the value of a polynomial p over F at a point � 2 F can be obtainedas a linear transformation of the coe�cient of p, when viewed as k2-dimensionalvectors over GF(2).Relative distance approaching one half. Starting with a Reed-Solomon codeof relative distance �1 and a smaller code C2 of relative distance �2, we obtain aconcatenated code of relative distance �1�2. Note that, for any constant �1 < 1,there exists a Reed-Solomon code C1 : GF(n1)k1 ! GF(n1)n1 of relative distance�1 and constant rate (i.e., 1� �1). Giving up on constant rate, we may start witha Reed-Solomon code of block-length n1(k1) = poly(k1) and distance n1(k1) � k1over [n1(k1)], and use a Hadamard code (encoding [n1(k1)] by f0; 1gn1(k1)) in therole of the small code C2. This yields a (concatenated) binary code of block lengthn(k) = n1(k)2 and distance (n1(k)� k) � n1(k)=2. Thus, the resulting explicit codehas relative distance approximately (1=2)� (k=pn(k)).E.1.2 Two additional computational problemsIn this section we brie
y review relaxations of two traditional coding theoretic tasks.The purpose of these relaxations is enabling super-fast (randomized) algorithmsthat provide meaningful information. Speci�cally, these algorithms may run in sub-linear (e.g., poly-logarithmic) time, and thus cannot possibly solve the unrelaxedversion of the problem.Local testability. This task refers to testing whether a given word is a codeword(in a predetermine code), based on (randomly) inspecting few locations in theword. Needless to say, we can only hope to make an approximately correctdecision; that is, accept each codeword and reject with high probability eachword that is far from the code. (Indeed, this task is within the framework ofproperty testing; see Section 10.1.2.)

548 APPENDIX E. EXPLICIT CONSTRUCTIONSLocal decodability. Here the task is to recover a speci�ed bit in the plaintext by(randomly) inspecting few locations in a mildly corrupted codeword. Thistask is somewhat related to the task of self-correction (i.e., recovering a spec-i�ed bit in the codeword itself, by inspecting few locations in the mildlycorrupted codeword).Note that the Hadamard code is both locally testable and locally decodable as wellas self-correctable (based on a constant number of queries into the word); these factswere demonstrated and extensively used in x9.3.2.1. However, the Hadamard codehas an exponential block-length (i.e., n(k) = 2k), and the question is whether onecan achieve analogous results with respect to a shorter code (e.g., n(k) = poly(k)).As hinted in xE.1.1.4, the answer is positive (when we refer to performing theseoperations in time that is poly-logarithmic in k):Theorem E.3 For some constant � > 0 and polynomials n; q : N ! N , thereexists an explicit family of codes fCk : [q(k)]k ! [q(k)]n(k)gk2N of relative distance� that can be locally testable and locally decodable in poly(log k)-time. That is, thefollowing three conditions hold.1. Encoding: There exists a polynomial time algorithm that on input x 2 [q(k)]kreturns Ck(x).2. Local Testing: There exists a probabilistic polynomial-time oracle machine Tthat given k (in binary)5 and oracle access to w 2 [q(k)]n(k) distinguishes thecase that w is a codeword from the case that w is �=2-far from any codeword.Speci�cally:(a) For every x 2 [q(k)]k it holds that Pr[TCk(x)(k)=1] = 1.(b) For every w 2 [q(k)]n(k) that is �=2-far from any codeword of Ck it holdsthat Pr[Tw(k)=1] � 1=2.As usual, the error probability can be reduced by repetitions.3. Local Decoding: There exists a probabilistic polynomial-time oracle machineD that given k and i 2 [k] (in binary) and oracle access to any w 2 [q(k)]n(k)that is �=2-close to Ck(x) returns xi; that is, Pr[Dw(k; i)=xi] � 2=3.Self correction holds too: there exists a probabilistic polynomial-time oraclemachine M that given k and i 2 [n(k)] (in binary) and oracle access to anyw 2 [q(k)]n(k) that is �=2-close to Ck(x) returns Ck(x)i; that is, Pr[Dw(k; i)=Ck(x)i] � 2=3.We stress that all these oracle machines work in time that is polynomial in the bi-nary representation of k, which means that they run in time that is poly-logarithmicin k. The code asserted in Theorem E.3 is a (small modi�cation of a) Reed-Mullercode, for r = m2 logm < q(k) = poly(r) and [n(k)] � GF(q(k))m (see xE.1.1.4).65Thus, the running time of T is poly(jkj) = poly(log k).6The modi�cation is analogous to the one presented in Footnote 2: For a suitable choice ofk points �1; :::; �k 2 GF(q(k))m, we map v1; :::; vk to (p(�1); :::; p(�n)), where p is the uniquem-variate polynomial of degree at most r that satis�es p(�i) = vi for i = 1; :::; k.

E.1. ERROR CORRECTING CODES 549The aforementioned oracle machines query the oracle w : [n(k)] ! GF(q(k))at a non-constant number of locations. Speci�cally, self-correction for locationi 2 GF(q(k))m is performed by selecting a random line (over GF(q(k))m) thatpasses through i, recovering the values assigned by w to all q(k) points on thisline, and performing univariate polynomial extrapolation (under mild noise). Lo-cal testability is easily reduced to self-correction, and (under the aforementionedmodi�cation) local decodability is a special case of self-correction.Constant number of queries. The local testing and decoding algorithms as-serted in Theorem E.3 make a polylogarithmic number of queries into the oracle.In contrast, the Hadamard code supports these operation using a constant numberof queries. Can this be obtained with much shorter codewords? For local testabilitythe answer is de�nitely positive. One can obtain such locally testable codes withlength that is nearly linear (i.e., linear up to polylogarithmic factors; see [33, 62]).For local decodability based on a constant number of queries, the shortest knowncode has super-polynomial length (see [227]). In light of this state of a�airs, weadvocate a relaxation of the local decodability task (e.g., the one studied in [32]).The interested reader is referred to [89], which includes more details on locallytestable and decodable codes as well as a wider perspective. (Note, however, thatthis survey was written prior to [62] and [227], which address two major openproblems discussed in [89].)E.1.3 A list decoding boundA necessary condition for the feasibility of the list decoding task is that the listof codewords that are close to the given word is short. In this section we presentan upper-bound on the length of such lists, noting that this bound has foundseveral applications in complexity theory (and speci�cally to studies related to thecontents of this book). In contrast, we do not present far more famous bounds(which typically refer to the relation among the main parameters of codes (i.e.,k; n and d)), because they seem irrelevant to the contents of this book.We start with a general statement that refers to any alphabet � � [q], and laterspecialize it to the case that q = 2. Especially in the general case, it is natural andconvenient to consider the agreement (rather than the distance) between sequencesover [q]. Furthermore, it is natural to focus on agreement rate of at least 1=q, andit is convenient to state the following result in terms of the \excessive agreementrate" (i.e., the excess beyond 1=q).7Lemma E.4 (Part 2 of [101, Thm. 15]): Let C : [q]k ! [q]n be an arbitrarycode of distance d � n � (n=q), and let �C def= (1 � (d=n)) � (1=q) � 0 denotethe corresponding upper-bound on the excessive agreement rate between codewords.7Indeed, we only consider codes with distance d � (1� 1=q) �n and words that are at distanceat most d from the code. Note that 1=q is a natural threshold for an upper-bound on the relativeagreement between sequences over [q], because a random sequence is expected to agree with any�xed sequence on a 1=q fraction of the locations.

550 APPENDIX E. EXPLICIT CONSTRUCTIONSSuppose that � 2 (0; 1) satis�es� > s�1� 1q� � �C: (E.1)Then, for any w 2 [q]n, the number of codewords that agree with w on at least((1=q) + �) � n positions (i.e., are at distance at most (1� ((1=q) + �)) � n from w)is upper-bounded by (1� (1=q))2 � (1� (1=q)) � �C�2 � (1� (1=q)) � �C : (E.2)In the binary case (i.e., q = 2), Eq. (E.1) requires � >p�C=2 and Eq. (E.2) yieldsthe upper-bound (1� 2�C)=(4�2 � 2�C). We highlight two speci�c cases:1. At the end of xD.4.2.2, we refer to this bound (for the binary case) whilesetting �C = (1=k)2 and � = 1=k. Indeed, in this case (1�2�C)=(4�2�2�C) =O(k2).2. In the case of the Hadamard code, we have �C = 0. Thus, for every w 2f0; 1gn and every � > 0, the number of codewords that are (0:5� �)-close tow is at most 1=(4�2).In the general case (and speci�cally for q � 2) it is useful to simplify Eq. (E.1) by� > minfp�C; (1=q) +p�C � (1=q)g and Eq. (E.2) by 1�2��C .E.2 Expander GraphsLoosely speaking, expander graphs are graphs of small degree that exhibit variousproperties of cliques. In particular, we refer to properties such as the relative sizesof cuts in the graph, and the rate at which a random walk converges to the uniformdistribution (relative to the logarithm of the graph size to the base of its degree).Some technicalities. Typical presentations of expander graphs refer to one ofseveral variants. For example, in some sources, expanders are presented as bipartitegraphs, whereas in others they are presented as ordinary graphs (and are in factvery far from being bipartite). We shall follow the latter convention. Furthermore,at times we implicitly consider an augmentation of these graphs where self-loopsare added to each vertex. For simplicity, we also allow parallel edges.We often talk of expander graphs while we actually mean an in�nite collectionof graphs such that each graph in this collection satis�es the same property (whichis informally attributed to the collection). For example, when talking of a d-regularexpander (graph) we actually refer to an in�nite collection of graphs such that eachof these graphs is d-regular. Typically, such a collection (or family) contains a singleN -vertex graph for every N 2 S, where S is an in�nite subset of N . Throughoutthis section, we denote such a collection by fGNgN2S, with the understanding thatGN is a graph with N vertices and S is an in�nite set of natural numbers.

E.2. EXPANDER GRAPHS 551E.2.1 De�nitions and PropertiesWe consider two de�nitions of expander graphs, two di�erent notions of explicitconstructions, and two useful properties of expanders.E.2.1.1 Two Mathematical De�nitionsWe start with two di�erent de�nitions of expander graphs. These de�nitions arequalitatively equivalent and even quantitatively related. We start with an algebraicde�nition, which seems technical in nature but is actually the de�nition typicallyused in complexity theoretic applications, since it directly implies various \mixingproperties" (see xE.2.1.3). We later present a very natural combinatorial de�nition(which is the source of the term \expander").The algebraic de�nition (spectral gap). Identifying graphs with their adja-cency matrix, we consider the eigenvalues (and eigenvectors) of a graph (or ratherof its adjacency matrix). Any d-regular graph G = (V;E) has the uniform vectoras an eigenvector corresponding to the eigenvalue d, and if G is connected and notbipartite then (the absolute values of) all other eigenvalues are strictly smaller thand. The second eigenvalue, denoted �2(G) < d, of such a graph G is thus a tightupper-bound on the absolute value of all the other eigenvalues. Using the connec-tion to the combinatorial de�nition, it follows that �2(G) < d �
(1=jV j2) holds(for every connected non-bipartite d-regular graph G). The algebraic de�nition ofexpanders refers to an in�nite family of d-regular graphs and requires the existenceof a constant eigenvalue bound that holds for all the graphs in the family.De�nition E.5 An in�nite family of d-regular graphs, fGNgN2S, where S � N ,satis�es the eigenvalue bound � if for every N 2 S it holds that �2(GN) � �.In such a case we say that the family has spectral gap d � �. It will be oftenconvenient to consider relative (or normalized) versions of these quantities, obtainedby division by d.The combinatorial de�nition (expansion). Loosely speaking, expansion re-quires that any (not too big) set of vertices of the graph has a relatively large setof neighbors. Speci�cally, a graph G = (V;E) is c-expanding if, for every set S � Vof cardinality at most jV j=2, it holds that�G(S) def= fv : 9u2S s.t. (u; v)2Eg (E.3)has cardinality at least (1 + c) � jSj. Equivalently (assuming the existence of self-loops on all vertices), we may require that j�G(S) n Sj � c � jSj. Clearly, everyconnected graph G = (V;E) is (1=jV j)-expanding. The combinatorial de�nition ofexpanders refers to an in�nite family of d-regular graphs and requires the existenceof a constant expansion bound that holds for all the graphs in the family.De�nition E.6 An in�nite family of d-regular graphs, fGNgN2S is c-expanding iffor every N 2 S it holds that GN is c-expanding.

552 APPENDIX E. EXPLICIT CONSTRUCTIONSThe two de�nitions of expander graphs are related (see [10, Sec. 9.2] or [118,Sec. 4.5]).Theorem E.7 Let G be a non-bipartite d-regular graph.1. The graph G is c-expanding for c � (d� �2(G))=2d.2. If G is c-expanding then d� �2(G) � c2=(4 + 2c2).Thus, any non-zero bound on the combinatorial expansion of a family of d-regulargraphs yields a non-zero bound on its spectral gap, and vice versa. Note, however,that the back-and-forth translation between these de�nitions is not tight. Theapplications presented in the main text refer to the algebraic de�nition, and theloss incurred in Theorem E.7 is immaterial for them.Ampli�cation. The quality of expander graphs improves by raising them toany power t > 1 (i.e., raising their adjacency matrix to the tth power), whichcorresponds to considering graphs in which t-paths are replaced by edges. Usingthe algebraic de�nition, we have �2(Gt) = �2(G)t, but indeed the degree also getsraised to the power t. Still, the ratio �2(Gt)=dt deceases with t. An analogousphenomenon occurs also under the combinatorial de�nition, provided that somesuitable modi�cations are applied. For example, if G = (V;E) is c-expanding (i.e.,for every S � V it holds that j�G(S)j � min((1 + c) � jSj; jV j=2)), then for everyS � V it holds that j�Gt(S)j � min((1 + c)t � jSj; jV j=2).The optimal eigenvalue bound. For every d-regular graph G = (V;E), itholds that �2(G) � 2
G � pd� 1, where
G = 1�O(1= logd jV j). Thus, 2pd� 1 isa lower-bound on the eigenvalue bound of any in�nite family of d-regular graphs.E.2.1.2 Two levels of explicitnessA mild level of explicit constructiveness refers to the complexity of constructing theentire object (i.e., graph). Thus, an in�nite family of graphs fGNgN2S is said tobe explicitly constructible if there exists a polynomial-time algorithm that, on input1N (where N 2 S), outputs the list of the edges in the N-vertex graph GN .The aforementioned level of explicitness su�ces when the application requiresholding the entire graph and/or when the running-time of the application is lower-bounded by the size of the graph. In contrast, other applications only refer to ahuge virtual graph (which is much bigger than their running time), and only requirethe computation of the neighborhood relations in such a graph. In this case, thefollowing stronger level of explicitness is relevant.A strongly explicit construction of an in�nite family of (d-regular) graphs fGNgN2Sis a polynomial-time algorithm that on input N (in binary), a vertex v in the N-vertex graph GN and an index i (i 2 f1; :::; dg), returns the ith neighbor of v. Thatis, the neighbor is determined in time that is polylogarithmic in the size of thegraph. Needless to say, the strong level of explicitness implies the basic level.

E.2. EXPANDER GRAPHS 553An additional requirement, which is often forgotten but is very important, refersto the \tractability" of the set S. Speci�cally, we require the existence of an e�cientalgorithm that given any n 2 N �nds an s2S such that n � s < 2n. Correspondingto the foregoing de�nitions, e�cient may mean either running in time poly(n) orrunning in time poly(log n). The requirement that n � s < 2n su�ces in mostapplications, but in some cases a smaller interval (e.g., n � s < n+pn) is required,whereas in other cases a larger interval (e.g., n � s < poly(n)) su�ces.Greater
exibility. In continuation to the foregoing paragraph, we commentthat expanders can be combined in order to obtain expanders for a wider rangeof sizes. For example, two d-regular c-expanding graphs, G1 = (V1; E1) and G2 =(V2; E2) where jV1j � jV2j and c � 1, can be combined into a (d + 1)-regular c=2-expanding graph on jV1j+ jV2j vertices by connecting the two graphs with a perfectmatching of V1 and jV1j of the vertices of V2 (and adding self-loops to the remainingvertices of V2). More generally, the d-regular c-expanding graphs, G1 = (V1; E1)through Gt = (Vt; Et), where N def= Pt�1i=1 jVij � jVtj, yield a (d + 1)-regular c=2-expanding graph on Pti=1 jVij vertices by using a perfect matching of [t�1i=1Vi andN of the vertices of Vt.E.2.1.3 Two propertiesThe following two properties provide a quantitative interpretation to the statementthat expanders approximate the complete graph. The deviation from the latter isrepresented by an error term that is linear in �=d.The mixing lemma. The following lemma is folklore and has appeared in manypapers. Loosely speaking, the lemma asserts that expander graphs (for which d��) have the property that the fraction of edges between two large sets of verticesapproximately equals the product of the densities of these sets. This property iscalled mixing.Lemma E.8 (Expander Mixing Lemma): For every d-regular graph G = (V;E)and for every two subsets A;B � V it holds that���� j(A�B) \E2jjE2j � jAjjV j � jBjjV j ���� � �2(G)pjAj � jBjd � jV j � �2(G)d (E.4)where E2 denotes the set of directed edges that correspond to the undirected edgesof G (i.e., E2 = f(u; v) : fu; vg2Eg and jE2j = djV j).Proof: Let N def= jV j and � def= �2(G). For any subset of the vertices S � V , wedenote its density in V by �(S) def= jSj=N . Hence, Eq. (E.4) is restated as���� j(A�B) \ E2jd �N � �(A) � �(B)���� � �p�(A) � �(B)d :

554 APPENDIX E. EXPLICIT CONSTRUCTIONSWe proceed by providing bounds on the value of j(A�B)\E2j. To this end we leta denote the N -dimensional Boolean vector having 1 in the ith component if andonly if i 2 A. The vector b is de�ned similarly. Denoting the adjacency matrix ofthe graph G by M = (mi;j), we note that j(A � B) \ E2j equals a>Mb (because(i; j) 2 (A � B) \ E2 if and only if it holds that i 2 A, j 2 B and mi;j = 1).We consider the orthogonal eigenvector basis, e1; :::; eN , where e1 = (1; :::; 1)> andei>ei = N for each i, and write each vector as a linear combination of the vectorsin this basis. Speci�cally, we denote by ai the coe�cient of a in the direction of ei;that is, ai = (a>ei)=N and a =Pi aiei. Note that a1 = (a>e1)=N = jAj=N = �(A)and PNi=1 a2i = (a>a)=N = jAj=N = �(A). Similarly for b. It now follows thatj(A�B) \ E2j = a>M b1e1 + NXi=2 biei!= �(B) � a>Me1 + NXi=2 bi � a>Mei= �(B) � d � a>e1 + NXi=2 bi�i � a>eiwhere �i denotes the ith eigenvalue of M (and indeed �1 = d). Thus,j(A�B) \ E2jdN = �(B)�(A) + NXi=2 �ibiaid2 "�(B)�(A) � �d � NXi=2 aibi#Using PNi=1 a2i = �(A) and PNi=1 b2i = �(B), and applying Cauchy-Schwartz In-equality, we bound PNi=2 aibi by p�(A)�(B). The lemma follows.The random walk lemma. Loosely speaking, the �rst part of the followinglemma asserts that, as far as remaining trapped in some subset of the vertex setis concerned, a random walk on an expander approximates a random walk on thecomplete graph.Lemma E.9 (Expander Random Walk Lemma): Let G = ([N]; E) be a d-regulargraph, and consider walks on G that start from a uniformly chosen vertex and take`�1 additional random steps, where in each such step we uniformly selects one outof the d edges incident at the current vertex and traverses it.Theorem 8.28 (restated): Let W be a subset of [N] and � def= jW j=N . Then theprobability that such a random walk stays in W is at most� � ��+ (1� �) � �2(G)d �`�1: (E.5)

E.2. EXPANDER GRAPHS 555Exercise 8.37 (restated): For any W0; :::;W`�1 � [N], the probability that a randomwalk of length ` intersects W0 �W1 � � � � �W`�1 is at mostp�0 � `�1Yi=1q�i + (�=d)2; (E.6)where �i def= jWij=N .The basic principle underlying Lemma E.9 was discovered by Ajtai, Komlos, andSzemer�edi [4], who proved a bound as in Eq. (E.6). The better analysis yieldingTheorem 8.28 is due to Kahale [127, Cor. 6.1]. More general bounds that referto the probability of visiting W for a number of times that approximates jW j=Nare given in [82], which actually considers an even more general problem (i.e.,obtaining Cherno�-type bounds for random variables that are generated by a walkon a Markov Chain).Proof of Equation (E.6): The basic idea is to view the random walk asthe evolution of a corresponding probability vector under suitable transformations.The transformations correspond to taking a random step in G and to passingthrough a \sieve" that keeps only the entries that correspond to the current setWi. The key observation is that the �rst transformation shrinks the componentthat is orthogonal to the uniform distribution, whereas the second transformationshrinks the component that is in the direction of the uniform distribution. Detailsfollow.Let A be a matrix representing the random walk on G (i.e., A is the adjacencymatrix of G divided by d), and let �̂ denote the absolute value of the secondlargest eigenvalue of A (i.e., �̂ def= �2(G)=d). Note that the uniform distribution,represented by the vector u = (N�1; :::; N�1)>, is the eigenvector of A that isassociated with the largest eigenvalue (which is 1). Let Pi be a 0-1 matrix thathas 1-entries only on its diagonal, and furthermore entry (j; j) is set to 1 if andonly if j 2 Wi. Then, the probability that a random walk of length ` intersectsW0 �W1 � � � � �W`�1 is the sum of the entries of the vectorv def= P`�1A � � �P2AP1AP0u: (E.7)We are interested in upper-bounding kvk1, and use kvk1 � pN � kvk, where kzk1and kzk denote the L1-norm and L2-norm of z, respectively (e.g., kuk1 = 1 andkuk = N�1=2). The key observation is that the linear transformation PiA shrinksevery vector.Main Claim. For every z, it holds that kPiAzk � (�i + �̂2)1=2 � kzk.Proof. Intuitively, A shrinks the component of z that is orthogonal to u, whereas Pishrinks the component of z that is in the direction of u. Speci�cally, we decomposez = z1 + z2 such that z1 is the projection of z on u and z2 is the componentorthogonal to u. Then, using the triangle inequality and other obvious facts (which

556 APPENDIX E. EXPLICIT CONSTRUCTIONSimply kPiAz1k = kPiz1k and kPiAz2k � kAz2k), we havekPiAz1 + PiAz2k � kPiAz1k+ kPiAz2k� kPiz1k+ kAz2k� p�i � kz1k+ �̂ � kz2kwhere the last inequality uses the fact that Pi shrinks any uniform vector by elimi-nating 1��i of its elements, whereas A shrinks the length of any eigenvector exceptu by a factor of at least �̂. Using the Cauchy-Schwartz inequality8, we getkPiAzk � q�i + �̂2 �pkz1k2 + kz2k2= q�i + �̂2 � kzkwhere the equality is due to the fact that z1 is orthogonal to z2.Recalling Eq. (E.7) and using the Main Claim (and kvk1 � pN � kvk), we getkvk1 � pN � kP`�1A � � �P2AP1AP0uk� pN � `�1Yi=1q�i + �̂2! � kP0uk:Finally, using kP0uk =p�0N � (1=N)2 =p�0=N , we establish Eq. (E.6).Rapid mixing. A property related to Lemma E.9 is that a random walk startingat any vertex converges to the uniform distribution on the expander vertices aftera logarithmic number of steps. Using notation as in the proof of Eq. (E.6), weclaim that for every starting distribution s (including one that assigns all weight toa single vertex), it holds that kA`s � uk1 � pN � �̂`, which is meaningful for any` > 0:5�log1=�̂N . The claim is proved by recalling that kA`s�uk1 � pN �kA`s�ukand using the fact that s� u is orthogonal to u (because the former is a zero-sumvector). Thus, kA`s � uk = kA`(s � u)k � �̂`ks � uk and using ks � uk < 1 theclaim follows.E.2.2 ConstructionsMany explicit constructions of expanders were discovered, starting in [154] andculminating in the optimal construction of [150] where � = 2pd� 1. Most of theseconstructions are quite simple (see, e.g., xE.2.2.1), but their analysis is based onnon-elementary results from various branches of mathematics. In contrast, theconstruction of Reingold, Vadhan, and Wigderson [180], presented in xE.2.2.2,8That is, we get p�ikz1k + �̂kz2k � p�i + �̂2 �pkz1k2 + kz2k2, by using Pni=1 ai � bi ��Pni=1 ai2�1=2 � �Pni=1 bi2�1=2, with n = 2, a1 = p�i, b1 = kz1k, etc.

E.2. EXPANDER GRAPHS 557is based on an iterative process, and its analysis is based on a relatively simplealgebraic fact regarding the eigenvalues of matrices.Before turning to these explicit constructions we note that it is relatively easyto prove the existence of 3-regular expanders, by using the Probabilistic Method(cf. [10]) and referring to the combinatorial de�nition of expansion.Theorem E.10 For some constant � < 3 there exists a family of (3; �)-expandersfor any even graph size.Proof Sketch:9 As a warm-up, one may establish the existence of d-regular ex-panders, for some constant d. In particular, foreseeing the case of d = 3, considera random graph G on the vertex set V = f0; :::; n� 1g constructed by augmentingthe �xed edge set ffi; i + 1 mod ng : i = 0; :::; n � 1g with d � 2 uniformly (andindependently) chosen perfect matchings of the vertices of F def= f0; :::; (n=2)� 1gto the vertices of L def= fn=2; :::; n � 1g. For a su�ciently small universal con-stant " > 0, we upper-bound the probability that such a random graph is not"-expanding. Noting that for every set S it holds that j�G(S\F)\F j � jS\F j�1(and similarly for L), we focus on the sizes of j(�G(S \ F) \ L) n �G(S \ L)jand j(�G(S \ L) \ F) n �G(S \ F)j. Assuming without loss of generality thatjS \ F j � jS \ Lj, we upper-bound the probability that there exists a set S � Vof size at most n=2 such that j(�G(S \ F) \ L) n �G(S \ L)j < "jSj. Fixing a setS, the corresponding probability is upper-bounded by pd�2S , where pS denotes theprobability that a uniformly selected matching of F to L matches S \ F to a setthat contains less than "jSj elements in L n �G(S \ L). That is,pS def= "jSj�1Xi=0 �jLj�`i � � � `jS\F j�i�� jLjjS\F j� � �(n=2)�`"jSj � � �`+"jSjjS\F j�� n=2jS\F j�where ` = j�G(S\L)\Lj. Indeed, we may focus on the case that jS\F j � `+"jSj(because in the other case pS = 0), and observe that for every � < 1=2 there existsa su�ciently small " > 0 such that pS < � njSj���. The claim follows for d � 5, byusing a union bound on all sets (and setting � = 1=3).To deal with the case d = 3, we use a more sophisticated union bound. Specif-ically, �xing an adequate constant t > 6 (e.g., t = 1=p"), we decompose S intoS0 and S00, where S0 contains the elements of S that reside on t-long arithmeticsubsequences of S that use an step increment of either 1 or 2, and S00 = S n S0.It can be shown that j�G(S00) n Sj > jS00j=2t (hint: an arithmetic subsequence hasneighborhood greater than itself whereas a suitable partition of the elements tosuch subsequences guarantees that the overall excess is at least half the individual9The proof is much simpler in the case that one refers to the alternative de�nition of combi-natorial expansion in which for each relevant set S it holds that j�G(S) n Sj � " � jSj. In thiscase, for a su�ciently small " > 0 and all su�ciently large n, a random 3-regular n-vertex graphis "-expanding with overwhelmingly high probability. The proof proceeds by considering a (notnecessarily simple) graph G generated by three perfect matchings of the elements of [n]. Forevery S � [n] of size at most n=2 and for every set T of size "jSj, we consider the probability that�G(S) � S [T . The argument is concluded by applying a union bound.

558 APPENDIX E. EXPLICIT CONSTRUCTIONScount). Thus, if jS00j > 2jSj=t then j�G(S00) nSj > jSj=t2. Hence, it su�ces to con-sider the case jS00j � 2jSj=t (and t � 6) and prove that j�G(S0)j > (1+ (4=t)) � jS0j.The gain is that, when applying the union bound, it su�ces to consider less thanPn0=tj=1 2j � �n2j� < � n3n0=t� possible sets S0 of size n0, which are each a union of atmost n0=t arithmetic sequences that use an step increment of either 1 or 2.E.2.2.1 The Margulis{Gabber{Galil ExpanderFor every natural number m, consider the graph with vertex set Zm � Zm andedge set in which every hx; yi 2 Zm �Zm is connected to the vertices hx� y; yi,hx� (y + 1); yi, hx; y � xi, and hx; y � (x+ 1)i, where the arithmetic is modulo m.This yields an extremely simple and explicit 8-regular graph with second eigenvaluethat is bounded by a constant � < 8 that is independent of m. Thus we get:Theorem E.11 For some constant � < 8 there exists a strongly explicit construc-tion of a family of (8; �)-expanders for graph sizes fm2 : m2Ng. Furthermore, theneighbors of a vertex can be computed in logarithmic-space.10An appealing property of Theorem E.11 is that, for every n 2 N , it directly yieldsexpanders with vertex set f0; 1gn. This is obvious in case n is even, but can beeasily achieved also for odd n (e.g., use two copies of the graph for n � 1, andconnect the two copies by the obvious perfect matching).Theorem E.11 is due to Gabber and Galil [79], building on the basic approachsuggested by Margulis [154]. We mention again that the optimal constructionof [150] achieves � = 2pd� 1, but there are annoying restrictions on the degree d(i.e., d� 1 should be a prime congruent to 1 modulo 4) and on the graph sizes forwhich this construction works.E.2.2.2 The Iterated Zig-Zag ConstructionThe starting point of the following construction is a very good expander G ofconstant size, which may be found by an exhaustive search. The constructionof a large expander graph proceeds in iterations, where in the ith iteration thecurrent graph Gi and the �xed graph G are combined, resulting in a larger graphGi+1. The combination step guarantees that the expansion property of Gi+1 is atleast as good as the expansion of Gi, while Gi+1 maintains the degree of Gi andis a constant times larger than Gi. The process is initiated with G1 = G2 andterminates when we obtain a graph Gt of approximately the desired size (whichrequires a logarithmic number of iterations).10In fact, under a suitable encoding of the vertices and for m that is a power of two, theneighbors can be computed by a on-line algorithm that uses a constant amount of space. Thesame holds also for a variant in which each vertex hx; yi is connected to the vertices hx� 2y; yi,hx� (2y + 1); yi, hx; y � 2xi, and hx; y � (2x+ 1)i. (This variant yields a better known bound on�, i.e., � � 5p2 � 7:071.)

E.2. EXPANDER GRAPHS 559
1

2

35

6
1

2

35

6

4

4

u v

In this example G0 is 6-regular and G is a 3-regular graph having sixvertices. In the graph G0 (not shown), the 2nd edge of vertex u isincident at v, as its 5th edge. The wide 3-segment line shows one ofthe corresponding edges of G0
z G, which connects the vertices hu; 3iand hv; 2i.Figure E.1: Detail of the zig-zag product of G0 and G.The Zig-Zag product. The heart of the combination step is a new type of\graph product" called Zig-Zag product. This operation is applicable to any pairof graphs G = ([D]; E) and G0 = ([N]; E0), provided that G0 (which is typicallylarger than G) is D-regular. For simplicity, we assume that G is d-regular (wheretypically d� D). The Zig-Zag product of G0 and G, denoted G0
z G, is de�ned asa graph with vertex set [N] � [D] and an edge set that includes an edge betweenhu; ii 2 [N]� [D] and hv; ji if and only if (i; k); (`; j) 2 E and the kth edge incidentat u equals the `th edge incident at v. See Figure E.1 as well as further clari�cationthat follows.Teaching note: The following paragraph, which provides a formal description of thezig-zag product, can be ignored in �rst reading but is useful for more advanced discus-sion.It will be convenient to represent graphs like G0 by their edge rotation function,denoted R0 : [N]�[D]! [N]�[D], such that R0(u; i) = (v; j) if (u; v) is the ith edgeincident at u as well as the jth edge incident at v. For simplicity, we assume that Gis edge-colorable with d colors, which in turn yields a natural edge rotation function(i.e., R(i; �) = (j; �) if the edge (i; j) is colored �). We will denote by E�(i) thevertex reached from i 2 [D] by following the edge colored � (i.e., E�(i) = j i�R(i; �) = (j; �)). The Zig-Zag product of G0 and G, denoted G0
z G, is then de�nedas a graph with the vertex set [N]� [D] and the edge rotation function(hu; ii; h�; �i) 7! (hv; ji; h�; �i) if R0(u;E�(i)) = (v; E�(j)). (E.8)

560 APPENDIX E. EXPLICIT CONSTRUCTIONSThat is, edges are labeled by pairs over [d], and the h�; �ith edge out of vertexhu; ii 2 [N]�[D] is incident at the vertex hv; ji (as its h�; �ith edge) if R(u;E�(i)) =(v; E�(j)). (That is, based on h�; �i, we take a G-step from hu; ii to hu;E�(i)i,then viewing hu;E�(i)i � (u;E�(i)) as an edge of G0 we rotate it to (v; j0) def=R0(u;E�(i)), and take a G-step from hv; j0i to hv; E�(j0)i, while de�ning j = E�(j0)and using j0 = E�(E�(j0)) = E�(j).)Clearly, the graph G0
z G is d2-regular and has D � N vertices. The key fact,proved in [180] (using techniques as in xE.2.1.3), is that the relative eigenvalueof the zig-zag product is upper-bounded by the sum of the relative eigenvalues ofthe two graphs (i.e., ��2(G0
z G) � ��2(G0)+ ��2(G), where ��2(�) denotes the relativeeigenvalue of the relevant graph). The (qualitative) fact that G0
z G is an expanderif both G0 and G are expanders is very intuitive (e.g., consider what happens ifG0 or G is a clique). Things are even more intuitive if one considers the (related)replacement product of G0 and G, denoted G0
r G, where there is an edge betweenhu; ii 2 [N] � [D] and hv; ji if and only if either u = v and (i; j) 2 E or the ithedge incident at u equals the jth edge incident at v.11The iterated construction. The iterated expander construction uses the afore-mentioned zig-zag product as well as graph squaring. Speci�cally, the constructionstarts with the d2-regular graph G1 = G2 = ([D]; E2), where D = d4 and ��2(G) <1=4, and proceeds in iterations such that Gi+1 = G2i
z G for i = 1; 2; :::; t�1. Thatis, in each iteration, the current graph is �rst squared and then composed with the�xed (d-regular D-vertex) graph G via the zig-zag product. This process maintainsthe following two invariants:1. The graph Gi is d2-regular and has Di vertices.(The degree bound follows from the fact that a zig-zag product with a d-regular graph always yields a d2-regular graph.)2. The relative eigenvalue of Gi is smaller than one half.(Here we use the fact that ��2(G2i�1
z G) � ��2(G2i�1) + ��2(G), which in turnequals ��2(Gi�1)2+��2(G) < (1=2)2+(1=4). Note that graph squaring is usedto reduce the relative eigenvalue of Gi before increasing it by zig-zag productwith G.)To ensure that we can construct Gi, we should show that we can actually constructthe edge rotation function that correspond to its edge set. This boils down toshowing that, given the edge rotation function of Gi�1, we can compute the edgerotation function of G2i�1 as well as of its zig-zag product with G. Note thatthis computation amounts to two recursive calls to computations regarding Gi�1(and two computations that correspond to the constant graph G). But since therecursion depth is logarithmic in the size of the �nal graph, the time spend in therecursive computation is polynomial in the size of the �nal graph. This su�ces forthe minimal notion of explicitness, but not for the stronger one.11As an exercise, the reader is encouraged to show that if both G0 and G are expanders accordingto the combinatorial de�nition then so is G0
r G.

E.2. EXPANDER GRAPHS 561The strongly explicit version. To achieve a strongly explicit construction, weslightly modify the iterative construction. Rather than letting Gi+1 = G2i
z G, welet Gi+1 = (Gi � Gi)2
z G, where G0 � G0 denotes the tensor product of G0 withitself; that is, if G0 = (V 0; E0) then G0 �G0 = (V 0 � V 0; E00), whereE00 = f(hu1; u2i; hv1; v2i) : (u1; v1); (u2; v2)2E0gwith an edge rotation functionR00(hu1; u2i; hi1; i2i) = (hv1; v2i; hj1; j2i)where R0(u1; i1) = (v1; j1) and R0(u2; i2) = (v2; j2). (We still use G1 = G2.) Usingthe fact that tensor product preserves the relative eigenvalue (while squaring thedegree) and using a d-regular G = ([D]; E) with D = d8, we note that the modi�edGi = (Gi�1 � Gi�1)2
z G is a d2-regular graph with (D2i�1�1)2 � D = D2i�1vertices, and ��2(Gi) < 1=2 (because ��2((Gi�1�Gi�1)2
z G) � ��2(Gi�1)2+��2(G)).Computing the neighbor of a vertex in Gi boils down to a constant number of suchcomputations regarding Gi�1, but due to the tensor product operation the depthof the recursion is only double-logarithmic in the size of the �nal graph (and hencelogarithmic in the length of the description of vertices in it).Digest. In the �rst construction, the zig-zag product was used both in order toincrease the size of the graph and to reduce its degree. However, as indicated bythe second construction (where the tensor product of graphs is the main vehiclefor increasing the size of the graph), the primary e�ect of the zig-zag product is toreduce the degree, and the increase in the size of the graph is merely a side-e�ect(which is actually undesired in Section 5.2.4). In both cases, graph squaring is usedin order to compensate for the modest increase in the relative eigenvalue causedby the zig-zag product. In retrospect, the second construction is the \correct"one, because it decouples three di�erent e�ects, and uses a natural operation toobtain each of them: Increasing the size of the graph is obtained by tensor productof graphs (which in turn increases the degree), a degree reduction is obtained bythe zig-zag product (which in turn increases the relative eigenvalue), and graphsquaring is used in order to reduce the relative eigenvalue.Stronger bound regarding the e�ect of the zig-zag product. In the fore-going description we relied on the fact, proved in [180], that the relative eigen-value of the zig-zag product is upper-bounded by the sum of the relative eigenval-ues of the two graphs. Actually, a stronger upper-bound is proved in [180]: Forg(x; y) = (1� y2) � x=2, it holds that��2(G0
z G) � g(��2(G0); ��2(G)) +qg(��2(G0); ��2(G))2 + ��2(G)2 (E.9)� 2g(��2(G0); ��2(G)) + ��2(G)= (1� ��2(G)2) � ��2(G0) + ��2(G):

562 APPENDIX E. EXPLICIT CONSTRUCTIONSThus, we get ��2(G0
z G) � ��2(G0) + ��2(G). Furthermore, Eq. (E.9) yields a non-trivial bound for any ��2(G0); ��2(G) < 1, even in case ��2(G0) is very close to 1 (asin the proof of Theorem 5.6). Speci�cally, Eq. (E.9) is upper-bounded byg(��2(G0); ��2(G)) +s�1� ��2(G)22 �2 + ��2(G)2= (1� ��2(G)2) � ��2(G0)2 + 1 + ��2(G)22= 1� (1� ��2(G)2) � (1� ��2(G0))2 (E.10)Thus, 1���2(G0
z G) � (1���2(G)2) �(1���2(G0))=2. In particular, if ��2(G) < 1=p3then 1 � ��2(G0
z G) > (1 � ��2(G0))=3. This fact plays an important role in theproof of Theorem 5.6.

