
Computational Complexity:A Conceptual PerspectiveOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.May 25, 2008

List of Figures1.1 Dependencies among the advanced chapters : : : : : : : : : : : : : : 121.2 A single step by a Turing machine. : : : : : : : : : : : : : : : : : : : 281.3 A circuit computing f(x1; x2; x3; x4) = (x1 � x2; x1 ^ :x2 ^ x4). : : : 451.4 Recursive construction of parity circuits and formulae. : : : : : : : : 492.1 Consecutive computation steps of a Turing machine : : : : : : : : : 862.2 The idea underlying the reduction of CSAT to SAT : : : : : : : : : : 882.3 The reduction to G3C { the clause gadget and its sub-gadget : : : : 942.4 The reduction to G3C { connecting the gadgets : : : : : : : : : : : : 952.5 The world view under P 6= coNP \NP 6= NP . : : : : : : : : : : : : 1113.1 Two levels of the Polynomial-time Hierarchy. : : : : : : : : : : : : : 1354.1 The Gap Theorem { determining the value of t(n). : : : : : : : : : : 1545.1 Algorithmic composition for space-bounded computation : : : : : : : 1665.2 The recursive procedure in NL � Dspace(O(log2)). : : : : : : : : : 1875.3 The main step in proving NL = coNL. : : : : : : : : : : : : : : : : 1916.1 The reduction to the Permanent { tracks connecting gadgets : : : : 2306.2 The reduction to the Permanent { the gadget's e�ect : : : : : : : : : 2306.3 The reduction to the Permanent { A Deus ex Machina gadget : : : : 2326.4 The reduction to the Permanent { a structured gadget : : : : : : : : 2336.5 The reduction to the Permanent { the box's e�ect : : : : : : : : : : 2337.1 The hard-core of a one-way function { an illustration : : : : : : : : : 2797.2 Proofs of hardness ampli�cation: organization : : : : : : : : : : : : : 2878.1 Pseudorandom generators { an illustration. : : : : : : : : : : : : : : 3218.2 Analysis of stretch ampli�cation { the ith hybrid. : : : : : : : : : : : 3348.3 Derandomization of BPL { the generator : : : : : : : : : : : : : : : 3598.4 An a�ne transformation a�ected by a Toeplitz matrix. : : : : : : : : 3658.5 The LFSR small-bias generator : 3698.6 Pseudorandom generators at a glance : : : : : : : : : : : : : : : : : 3749.1 Arithmetization of CNF formulae. : : : : : : : : : : : : : : : : : : : 4011

LIST OF FIGURES 19.2 Zero-knowledge proofs { an illustration. : : : : : : : : : : : : : : : : 4129.3 The PCP model { an illustration. : 4259.4 Testing consistency of linear and quadratic forms : : : : : : : : : : : 4329.5 Composition of PCP system { an illustration : : : : : : : : : : : : : 4359.6 The amplifying reduction in the second proof of the PCP Theorem : 44410.1 Two types of average-case completeness : : : : : : : : : : : : : : : : 49810.2 Worst-case vs average-case assumptions : : : : : : : : : : : : : : : : 504E.1 Detail of the zig-zag product of G0 and G : : : : : : : : : : : : : : : 628

Chapter 9Probabilistic Proof SystemsA proof is whatever convinces me.Shimon Even (1935{2004)The glory attached to the creativity involved in �nding proofs makes us forget thatit is the less glori�ed process of veri�cation that gives proofs their value. Conceptu-ally speaking, proofs are secondary to the veri�cation process; whereas technicallyspeaking, proof systems are de�ned in terms of their veri�cation procedures.The notion of a veri�cation procedure presumes the notion of computation andfurthermore the notion of e�cient computation. This implicit stipulation is madeexplicit in the de�nition of NP, where e�cient computation is associated withdeterministic polynomial-time algorithms. However, as argued next, we can gain alot if we are willing to take a somewhat non-traditional step and allow probabilisticveri�cation procedures.In this chapter, we shall study three types of probabilistic proof systems, calledinteractive proofs, zero-knowledge proofs, and probabilistic checkable proofs. In eachof these three cases, we shall present fascinating results that cannot be obtainedwhen considering the analogous deterministic proof systems.Summary: The association of e�cient procedures with deterministicpolynomial-time procedures is the basis for viewing NP-proof systemsas the canonical formulation of proof systems (with e�cient veri�ca-tion procedures). Allowing probabilistic veri�cation procedures and,moreover, ruling by statistical evidence gives rise to various types ofprobabilistic proof systems. Indeed, these probabilistic proof systemscarry a probability of error (which is explicitly bounded and can bereduced by successive application of the proof system), yet they of-fer various advantages over the traditional (deterministic and errorless)proof systems.Randomized and interactive veri�cation procedures, giving rise to inter-active proof systems, seem much more powerful than their deterministic389

390 CHAPTER 9. PROBABILISTIC PROOF SYSTEMScounterparts. In particular, such interactive proof systems exist for anyset in PSPACE � coNP (e.g., for the set of unsatis�ed propositionalformulae), whereas it is widely believed that some sets in coNP do nothave NP-proof systems (i.e., NP 6= coNP). We stress that a \proof"in this context is not a �xed and static object, but rather a randomized(and dynamic) process in which the veri�er interacts with the prover.Intuitively, one may think of this interaction as consisting of questionsasked by the veri�er, to which the prover has to reply convincingly.Such randomized and interactive veri�cation procedures allow for themeaningful conceptualization of zero-knowledge proofs, which are ofgreat theoretical and practical interest (especially in cryptography).Loosely speaking, zero-knowledge proofs are interactive proofs thatyield nothing (to the veri�er) beyond the fact that the assertion isindeed valid. For example, a zero-knowledge proof that a certain propo-sitional formula is satis�able does not reveal a satisfying assignment tothe formula nor any partial information regarding such an assignment(e.g., whether the �rst variable can assume the value true). Thus,the successful veri�cation of a zero-knowledge proof exhibit an extremecontrast between being convinced of the validity of a statement andlearning nothing else (while receiving such a convincing proof). It turnsout that, under reasonable complexity assumptions (i.e., assuming theexistence of one-way functions), every set in NP has a zero-knowledgeproof system.NP-proofs can be e�ciently transformed into a (redundant) form thato�ers a trade-o� between the number of locations (randomly) exam-ined in the resulting proof and the con�dence in its validity. In par-ticular, it is known that any set in NP has an NP-proof system thatsupports probabilistic veri�cation such that the error probability de-creases exponentially with the number of bits read from the allegedproof. These redundant NP-proofs are called probabilistically checkableproofs (or PCPs). In addition to their conceptually fascinating nature,PCPs are closely related to the study of the complexity of numerousnatural approximation problems.Introduction and PreliminariesConceptually speaking, proofs are secondary to the veri�cation process. Indeed,both in mathematics and in real-life, proofs are meaningful only with respect tocommonly agreed principles of reasoning, and the veri�cation process amounts tochecking that these principles were properly applied. Thus, these principles, whichare typically taken for granted, are more fundamental than any speci�c proof thatapplies them; that is, the mere attempt to reason about anything is based oncommonly agreed principles of reasoning.

391The commonly agreed principles of reasoning are associated with a veri�cationprocedure that distinguishes proper applications of these principles from improperones. A line of reasoning is considered valid with respect to such �xed principles(and is thus deemed a proof) if and only if it proceeds by a proper applicationsof these principles. Thus, a line of reasoning is considered valid if and only if it isaccepted by the corresponding veri�cation procedure. This means that, technicallyspeaking, proofs are de�ned in terms of a predetermined veri�cation procedure(or are de�ne with respect to such a procedure) . Indeed, this state of a�airs isbest illustrated in the formal study of proofs (i.e., logic), which is actually thestudy of formally de�ned proof systems: The point is that these proof systems arede�ned (often explicitly and sometimes only implicitly) in terms of their veri�cationprocedures.The notion of a veri�cation procedure presumes the notion of computation. Thisfact explains the historical interest of logicians in computer science (cf. [225, 55]).Furthermore, the veri�cation of proofs is supposed to be relatively easy, and hencea natural connection emerges between veri�cation procedures and the notion ofe�cient computation. This connection was made explicit by complexity theorists,and is captured by the de�nition of NP and NP-proof systems (cf. De�nition 2.5),which targets all e�cient veri�cation procedures.1Recall that De�nition 2.5 identi�es e�cient (veri�cation) procedures with de-terministic polynomial-time algorithms, and that it explicitly restricts the lengthof proofs to be polynomial in the length of the assertion. Thus, veri�cation isperformed in a number of steps that is polynomial in the length of the assertion.We comment that deterministic proof systems that allow for longer proofs (butrequire that veri�cation is e�cient in terms of the length of the alleged proof) canbe modeled as NP-proof systems by adequate padding (of the assertion).Indeed, NP-proofs provide the ultimate formulation of e�ciently veri�able proofs(i.e., proof systems with e�cient veri�cation procedures), provided that one asso-ciates e�cient procedures with deterministic polynomial-time algorithms. How-ever, as we shall see, we can gain a lot if we are willing to take a somewhatnon-traditional step and allow probabilistic (polynomial-time) algorithms and, inparticular, probabilistic veri�cation procedures. In particular:� Randomized and interactive veri�cation procedures seem much more powerfulthan their deterministic counterparts.� Such interactive proof systems allow for the construction of (meaningful)zero-knowledge proofs, which are of great conceptual and practical interest.� NP-proofs can be e�ciently transformed into a (redundant) form that sup-ports super-fast probabilistic veri�cation via very few random probes into thealleged proof.1In contrast, traditional proof systems are formulated based on rules of inference that seemnatural in the relevant context. The fact that these inference rules yield an e�cient veri�cationprocedure is merely a consequence of the correspondence between processes that seem naturaland e�cient computation.

392 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSIn all these cases, explicit bounds are imposed on the computational complexity ofthe veri�cation procedure, which in turn is personi�ed by the notion of a veri�er.Furthermore, in all these proof systems, the veri�er is allowed to toss coins andrule by statistical evidence. Thus, all these proof systems carry a probability oferror; yet, this probability is explicitly bounded and, furthermore, can be reducedby successive application of the proof system.One important convention. When presenting a proof system, we state allcomplexity bounds in terms of the length of the assertion to be proved (which isviewed as an input to the veri�er). Namely, when we say \polynomial-time" wemean time that is polynomial in the length of this assertion. Indeed, as will becomeevident, this is the natural choice in all the cases that we consider. Note that thisconvention is consistent with the foregoing discussion of NP-proof systems.2Notational Conventions. We denote by poly the set of all integer functionsthat are upper-bounded by a polynomial, and by log the set of all integer functionsbounded by a logarithmic function (i.e., f 2 log if and only if f(n) = O(log n)).All complexity measures mentioned in this chapter are assumed to be constructiblein polynomial-time.Organization. In Section 9.1 we present the basic de�nitions and results regard-ing interactive proof systems. The de�nition of an interactive proof systems is thestarting point for a discussion of zero-knowledge proofs, which is provided in Sec-tion 9.2. Section 9.3, which presents the basic de�nitions and results regardingprobabilistically checkable proofs (PCP), can be read independently of the othersections.Prerequisites: We assume a basic familiarity with elementary probability theory(see Appendix D.1) and randomized algorithms (see Section 6.1).9.1 Interactive Proof SystemsIn light of the growing acceptability of randomized and interactive computations,it is only natural to associate the notion of e�cient computation with probabilisticand interactive polynomial-time computations. This leads naturally to the notionof an interactive proof system in which the veri�cation procedure is interactive andrandomized, rather than being non-interactive and deterministic. Thus, a \proof"in this context is not a �xed and static object, but rather a randomized (dynamic)process in which the veri�er interacts with the prover. Intuitively, one may think ofthis interaction as consisting of questions asked by the veri�er, to which the proverhas to reply convincingly.2Recall that De�nition 2.5 refers to polynomial-time veri�cation of alleged proofs, which inturn must have length that is bounded by a polynomial in the length of the assertion.

9.1. INTERACTIVE PROOF SYSTEMS 393The foregoing discussion, as well as the de�nition provided in Section 9.1.2,makes explicit reference to a prover, whereas a prover is only implicit in the tradi-tional de�nitions of proof systems (e.g., NP-proof systems). Before turning to theactual de�nition, we highlight and further discuss this issue as well as some otherconceptual issues.9.1.1 Motivation and PerspectiveWe shall discuss the various interpretations given to the notion of a proof in dif-ferent human contexts, and the attitudes that underly and/or accompany theseinterpretations. This discussion is aimed at emphasizing that the motivation forthe de�nition of interactive proof systems is not replacing the notion of a mathemat-ical proof, but rather capturing other forms of proofs that are of natural interest.Speci�cally, we shall contrast \written proofs" with \interactive proofs", highlightthe roles of the \prover" and the \veri�er" in any proof, and discuss the notionsof completeness and soundness which underly any proof. (Some readers may �ndit useful to return to this section after reading Section 9.1.2.)9.1.1.1 A static object versus an interactive processTraditionally in mathematics, a \proof" is a �xed sequence consisting of statementsthat are either self-evident or are derived from previous statements via self-evidentrules. Actually, both conceptually and technically, it is more accurate to substitutethe phrase \self-evident" by the phrase \commonly agreed" (because, at the lastaccount, self-evidence is a matter of common agreement). In fact, in the formalstudy of proofs (i.e., logic), the commonly agreed statements are called axioms,whereas the commonly agreed rules are referred to as derivation rules. We highlighta key property of mathematical proofs: these proofs are �xed (static) objects.In contrast, in other areas of human activity, the notion of a \proof" has amuch wider interpretation. In particular, in many settings, a proof is not a �xedobject but rather a process by which the validity of an assertion is established. Forexample, in the context of Law, standing a cross-examination by an opponent, whomay ask tough and/or tricky questions, is considered a proof of the facts claimedby the witness. Likewise, various debates that take place in daily life have ananalogous potential of establishing claims and are then perceived as proofs. Thisperception is quite common in philosophical and political debates, and applies evenin scienti�c debates. Needless to say, a key property of such debates is their inter-active (\dynamic") nature. Interestingly, the appealing nature of such \interactiveproofs" is reected in the fact that they are mimicked (in a rigorous manner) insome mathematical proofs by contradiction, which emulate an imaginary debatewith a potential (generic) skeptic.Another di�erence between mathematical proofs and various forms of \dailyproofs" is that, while the former aim at certainty, the latter are intended (\only")for establishing claims beyond any reasonable doubt. Arguably, an explicitly boundederror probability (as present in our de�nition of interactive proof systems) is anextremely strong form of establishing a claim beyond any reasonable doubt.

394 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSWe also note that, in mathematics, proofs are often considered more importantthan their consequence (i.e., the theorem). In contrast, in many daily situations,proofs are considered secondary (in importance) to their consequence. These con-icting attitudes are well-coupled with the di�erence between written proofs and\interactive" proofs: If one values the proof itself then one may insist on having itarchived, whereas if one only cares about the consequence then the way in whichit is reached is immaterial.Interestingly, the foregoing set of daily attitudes (rather than the mathematicalones) will be adequate in the current chapter, where proofs are viewed merely asa vehicle for the veri�cation of the validity of claims. (This attitude gets to anextreme in the case of zero-knowledge proofs, where we actually require that theproofs themselves be useless beyond being convincing of the validity of the claimedassertion.)In general, we will be interested in modeling various forms of proofs that mayoccur in the world, focusing on proofs that can be veri�ed by automated procedures.These veri�cation procedures are designed to check the validity of potential proofs,and are oblivious of additional features that may appeal to humans such as beauty,insightfulness, etc. In the current section we will consider the most general formof proof systems that still allow e�cient veri�cation.We note that the proof systems that we study refer to mundane theorems (e.g.,asserting that a speci�c propositional formula is not satis�able or that a party senta message as instructed by a predetermined protocol). We stress that the (meta)theorems that we shall state regarding these proof systems will be proved in thetraditional mathematical sense.9.1.1.2 Prover and Veri�erThe wide interpretation of the notion of a proof system, which includes interactiveprocesses of veri�cation, calls for the explicit introduction of two interactive players,called the prover and the veri�er. The veri�er is the party that employs theveri�cation procedure, which underlies the de�nition of any proof system, whilethe prover is the party that tries to convince the veri�er. In the context of static(or non-interactive) proofs, the prover is the transcendental entity providing theproof, and thus in this context the prover is often not mentioned at all (whendiscussing the veri�cation of alleged proofs). Still, explicitly mentioning potentialprovers may be bene�cial even when discussing such static (non-interactive) proofs.We highlight the \distrustful attitude" towards the prover, which underlies anyproof system. If the veri�er trusts the prover then no proof is needed. Hence,whenever discussing a proof system, one should envision a setting in which theveri�er is not trusting the prover, and furthermore is skeptic of anything that theprover says. In such a setting the prover's goal is to convince the veri�er, while theveri�er should make sure that it is not fooled by the prover. (See further discussionin x9.1.1.3.) Note that the veri�er is \trusted" to protect its own interests byemploying the predetermined veri�cation procedure; indeed, the asymmetry withrespect to who we trust is an artifact of our focus on the veri�cation process (ortask). In general, each party is trusted to protect its own interests (i.e., the veri�er

9.1. INTERACTIVE PROOF SYSTEMS 395is trusted to protect its own interests), but no party is trusted to protect theinterests of the other party (i.e., the prover is not trusted to protect the veri�er'sinterest of not being fooled by the prover).Another asymmetry between the two parties is that our discussion focuses onthe complexity of the veri�cation task and ignores (as a �rst approximation) thecomplexity of the proving task (which is only discussed in x9.1.5.1). Note that thisasymmetry is reected in the de�nition of NP-proof systems; that is, veri�cationis required to be e�cient, whereas for sets NP n P �nding adequate proofs isinfeasible. Thus, as a �rst approximation, we consider the question of what canbe e�ciently veri�ed when interacting with an arbitrary prover (which may bein�nitely powerful). Once this question is resolved, we shall also consider thecomplexity of the proving task (indeed, see x9.1.5.1).9.1.1.3 Completeness and SoundnessTwo fundamental properties of a proof system (i.e., of a veri�cation procedure) areits soundness (or validity) and completeness. The soundness property asserts thatthe veri�cation procedure cannot be \tricked" into accepting false statements. Inother words, soundness captures the veri�er's ability to protect itself from beingconvinced of false statements (no matter what the prover does in order to foolit). On the other hand, completeness captures the ability of some prover to con-vince the veri�er of true statements (belonging to some predetermined set of truestatements). Note that both properties are essential to the very notion of a proofsystem.We note that not every set of true statements has a \reasonable" proof systemin which each of these statements can be proved (while no false statement can be\proved"). This fundamental phenomenon is given a precise meaning in resultssuch as G�odel's Incompleteness Theorem and Turing's theorem regarding the un-decidability of the Halting Problem. In contrast, recall that NP was de�ned as theclass of sets having proof systems that support e�cient deterministic veri�cation(of \written proofs"). This section is devoted to the study of a more liberal notionof e�cient veri�cation procedures (allowing both randomization and interaction).9.1.2 De�nitionLoosely speaking, an interactive proof is a \game" between a computationallybounded veri�er and a computationally unbounded prover whose goal is to con-vince the veri�er of the validity of some assertion. Speci�cally, the veri�er employsa probabilistic polynomial-time strategy (whereas no computational restrictionsapply to the prover's strategy). It is required that if the assertion holds then theveri�er always accepts (i.e., when interacting with an appropriate prover strategy).On the other hand, if the assertion is false then the veri�er must reject with prob-ability at least 12 , no matter what strategy is being employed by the prover. (Theerror probability can be reduced by running such a proof system several times.)We formalize the interaction between parties by referring to the strategies that

396 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe parties employ.3 A strategy for a party is a function mapping the party's viewof the interaction so far to a description of this party's next move; that is, such astrategy describes (or rather prescribes) the party's next move (i.e., its next messageor its �nal decision) as a function of the common input (i.e., the aforementionedassertion), the party's internal coin tosses, and all messages it has received sofar. Note that this formulation presumes (implicitly) that each party records theoutcomes of its past coin tosses as well as all the messages it has received, anddetermines its moves based on these. Thus, an interaction between two parties,employing strategies A and B respectively, is determined by the common input,denoted x, and the randomness of both parties, denoted rA and rB . Assumingthat A takes the �rst move (and B takes the last move), the corresponding (t-round) interaction transcript (on common input x and randomness rA and rB) is�1; �1; :::; �t; �t, where �i = A(x; rA; �1; :::; �i�1) and �i = B(x; rB ; �1; :::; �i). Thecorresponding �nal decision of A is de�ned as A(x; rA; �1; :::; �t).We say that a party employs a probabilistic polynomial-time strategy if its nextmove can be computed in a number of steps that is polynomial in the length ofthe common input. In particular, this means that, on input common input x, thestrategy may only consider a polynomial in jxj many messages, which are each ofpoly(jxj) length.4 Intuitively, if the other party exceeds an a priori (polynomial injxj) bound on the total length of the messages that it is allowed to send, then theexecution is suspended. Thus, referring to the aforementioned strategies, we saythat A is a probabilistic polynomial-time strategy if, for every i and rA; �1; :::; �i,the value of A(x; rA; �1; :::; �i) can be computed in time polynomial in jxj. Again,in proper use, it must hold that jrAj; t and the j�ij's are all polynomial in jxj.De�nition 9.1 (Interactive Proof systems { IP):5 An interactive proof system fora set S is a two-party game, between a veri�er executing a probabilistic polynomial-time strategy, denoted V , and a prover that executes a (computationally unbounded)strategy, denoted P , satisfying the following two conditions:� Completeness: For every x 2 S, the veri�er V always accepts after interactingwith the prover P on common input x.� Soundness: For every x 62 S and every strategy P �, the veri�er V rejects withprobability at least 12 after interacting with P � on common input x.We denote by IP the class of sets having interactive proof systems.3An alternative formulation refers to the interactive machines that capture the behavior of eachof the parties (see, e.g., [91, Sec. 4.2.1.1]). Such an interactive machine invokes the correspondingstrategy, while handling the communication with the other party and keeping a record of allmessages received so far.4Needless to say, the number of internal coin tosses fed to a polynomial-time strategy mustalso be bounded by a polynomial in the length of x.5We follow the convention of specifying strategies for both the veri�er and the prover. Analternative presentation only speci�es the veri�er's strategy, while rephrasing the completenesscondition as follows: There exists a prover strategy P such that, for every x 2 S, the veri�er Valways accepts after interacting with P on common input x.

9.1. INTERACTIVE PROOF SYSTEMS 397The error probability (in the soundness condition) can be reduced by successiveapplications of the proof system. (This is easy to see in the case of sequentialrepetitions, but holds also for parallel repetitions; see Exercise 9.1.) In particular,repeating the proving process for k times, reduces the probability that the veri�eris fooled (i.e., accepts a false assertion) to 2�k, and we can a�ord doing so for anyk = poly(jxj). Variants on the basic de�nition are discussed in Section 9.1.4.The role of randomness. Randomness is essential to the power of interactiveproofs; that is, restricting the veri�er to deterministic strategies yields a class ofinteractive proof systems that has no advantage over the class of NP-proof systems.The reason being that, in case the veri�er is deterministic, the prover can predictthe veri�er's part of the interaction. Thus, the prover can just supply its ownsequence of answers to the veri�er's sequence of (predictable) questions, and theveri�er can just check that these answers are convincing. Actually, we establishthat soundness error (and not merely randomized veri�cation) is essential to thepower of interactive proof systems (i.e., their ability to reach beyond NP-proofs).Proposition 9.2 Suppose that S has an interactive proof system (P; V) with nosoundness error; that is, for every x 62 S and every potential strategy P �, the veri�erV rejects with probability one after interacting with P � on common input x. ThenS 2 NP.Proof: We may assume, without loss of generality, that V is deterministic (by just�xing arbitrarily the contents of its random-tape (e.g., to the all-zero string) andnoting that both (perfect) completeness and perfect (i.e., errorless) soundness stillhold). Thus, the case of zero soundness error reduces to the case of deterministicveri�ers.Now, since V is deterministic, the prover can predict each message sent by V ,because each such message is uniquely determined by the common input and theprevious prover messages. Thus, a sequence of optimal prover's messages (i.e., asequence of messages leading V to accept x 2 S) can be (pre)determined (withoutinteracting with V) based solely on the common input x.6 Hence, x 2 S if and onlyif there exists a sequence of (prover's) messages that make (the deterministic) Vaccept x, where the question of whether a speci�c sequence (of prover's messages)makes V accept x depends only on the sequence and on the common input x(because V tosses no coins that may a�ect this decision).7 The foregoing conditioncan be checked in polynomial-time, and so a \passing sequence" constitutes anNP-witness for x 2 S. It follows that S 2 NP .6As usual, we do not care about the complexity of determining such a sequence, since nocomputational bounds are placed on the prover.7Recall that in the case that V is randomized, its �nal decision also depends on its internalcoin tosses (and not only on the common input and on the sequence of prover's messages). Inthat case, the veri�er's own messages may reveal information about the veri�er's internal cointosses, which in turn may help the prover to answer with convincing messages.

398 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSReection. The moral of the reasoning underlying the proof Proposition 9.2 isthat there is no point to interact with a party whose moves are easily predictable,because such moves can be determined without any interaction. This moral repre-sents the prover's point of view (regarding interaction with deterministic veri�ers).In contrast, even an in�nitely powerful party (e.g., a prover) may gain by inter-acting with an unpredictable party (e.g., a randomized veri�er), because this in-teraction may provide useful information (e.g., information regarding the veri�er'scoin tosses, which in turn allows the prover to increase its probability of answer-ing convincingly). Furthermore, from the veri�er's point of view it is bene�cial tointeract with the prover, because the latter is computationally stronger (and thusits moves may not be easily predictable by the veri�er even in the case that theyare predictable in an information theoretic sense).9.1.3 The Power of Interactive ProofsWe have seen that randomness is essential to the power of interactive proof systemsin the sense that without randomness interactive proofs are not more powerful thanNP-proofs. Indeed, the power of interactive proof arises from the combination ofrandomization and interaction. We �rst demonstrate this point by a simple proofsystem for a speci�c coNP-set that is not known to have an NP-proof system, andnext prove the celebrated result IP = PSPACE , which suggests that interactiveproofs are much stronger than NP-proofs.9.1.3.1 A simple exampleOne day on the Olympus, bright-eyed Athena claimed that Nectarpoured out of the new silver-coated jars tastes less good than Nec-tar poured out of the older gold-decorated jars. Mighty Zeus, who wasforced to introduce the new jars by the practically oriented Hera, wasannoyed at the claim. He ordered that Athena be served one hundredglasses of Nectar, each poured at random either from an old jar or froma new one, and that she tell the source of the drink in each glass. Toeverybody's surprise, wise Athena correctly identi�ed the source of eachserving, to which the Father of the Gods responded \my child, you areeither right or extremely lucky." Since all gods knew that being luckywas not one of the attributes of Pallas-Athena, they all concluded thatthe impeccable goddess was right in her claim.The foregoing story illustrates the main idea underlying the interactive proof forGraph Non-Isomorphism, presented in Construction 9.3. Informally, this interac-tive proof system is designed for proving dissimilarity of two given objects (in theforegoing story these are the two brands of Nectar, whereas in Construction 9.3these are two non-isomorphic graphs). We note that, typically, proving similaritybetween objects is easy, because one can present a mapping (of one object to theother) that demonstrates this similarity. In contrast, proving dissimilarity seemsharder, because in general there seems to be no succinct proof of dissimilarity (e.g.,

9.1. INTERACTIVE PROOF SYSTEMS 399clearly, showing that a particular mapping fails does not su�ce, while enumerat-ing all possible mappings (and showing that each fails) does not yield a succinctproof). More generally, it is typically easy to prove the existence of an easily veri-�able structure in a given object by merely presenting this structure, but provingthe non-existence of such a structure seems hard. Formally, membership in anNP-set is proved by presenting an NP-witness, but it is not clear how to provethe non-existence of such a witness. Indeed, recall that the common belief is thatcoNP 6= NP .Two graphs, G1=(V1; E1) and G2=(V2; E2), are called isomorphic if there existsa 1-1 and onto mapping, �, from the vertex set V1 to the vertex set V2 such thatfu; vg 2 E1 if and only if f�(v); �(u)g 2 E2. This (\edge preserving") mapping�, in case it exists, is called an isomorphism between the graphs. The followingprotocol speci�es a way of proving that two graphs are not isomorphic, while it isnot known whether such a statement can be proved via a non-interactive process(i.e., via an NP-proof system).Construction 9.3 (Interactive proof for Graph Non-Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2).� Veri�er's �rst step (V1): The veri�er selects at random one of the two inputgraphs, and sends to the prover a random isomorphic copy of this graph.Namely, the veri�er selects uniformly � 2 f1; 2g, and a random permutation� from the set of permutations over the vertex set V�. The veri�er constructsa graph with vertex set V� and edge setE def= ff�(u); �(v)g : fu; vg2E�gand sends (V� ; E) to the prover.� Motivating Remark: If the input graphs are non-isomorphic, as the proverclaims, then the prover should be able to distinguish (not necessarily by ane�cient algorithm) isomorphic copies of one graph from isomorphic copies ofthe other graph. However, if the input graphs are isomorphic, then a randomisomorphic copy of one graph is distributed identically to a random isomorphiccopy of the other graph.� Prover's step: Upon receiving a graph, G0 = (V 0; E0), from the veri�er, theprover �nds a � 2 f1; 2g such that the graph G0 is isomorphic to the inputgraph G� . (If both �=1; 2 satisfy the condition then � is selected arbitrarily.In case no � 2 f1; 2g satis�es the condition, � is set to 0). The prover sends� to the veri�er.� Veri�er's second step (V2): If the message, � , received from the prover equals� (chosen in Step V1) then the veri�er outputs 1 (i.e., accepts the commoninput). Otherwise the veri�er outputs 0 (i.e., rejects the common input).

400 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThe veri�er's strategy in Construction 9.3 is easily implemented in probabilisticpolynomial-time. We do not known of a probabilistic polynomial-time implemen-tation of the prover's strategy, but this is not required. The motivating remarkjusti�es the claim that Construction 9.3 constitutes an interactive proof system forthe set of pairs of non-isomorphic graphs.8 Recall that the latter is a coNP-set(which is not known to be in NP).9.1.3.2 The full power of interactive proofsThe interactive proof system of Construction 9.3 refers to a speci�c coNP-set thatis not known to be in NP . It turns out that interactive proof systems are powerfulenough to prove membership in any coNP-set (e.g., prove that a graph is not 3-colorable). Thus, assuming that NP 6= coNP, this establishes that interactiveproof systems are more powerful than NP-proof systems. Furthermore, the classof sets having interactive proof systems coincides with the class of sets that can bedecided using a polynomial amount of work-space.Theorem 9.4 (The IP Theorem): IP = PSPACE.Recall that it is widely believed that NP is a proper subset of PSPACE . Thus,under this conjecture, interactive proofs are more powerful than NP-proofs.Sketch of the Proof of Theorem 9.4We �rst show that coNP � IP , by presenting an interactive proof system forthe coNP-complete set of unsatis�able CNF formulae. Next we extend this proofsystem to obtain one for the PSPACE-complete set of unsatis�able Quanti�edBoolean Formulae. Finally, we observe that IP � PSPACE . Indeed, proving thatsome coNP-complete set has an interactive proof system is the core of the proofof Theorem 9.4 (see Exercise 9.2).We show that the set of unsatis�able CNF formulae has an interactive proofsystem by using algebraic methods, which are applied to an arithmetic generaliza-tion of the said Boolean problem (rather than to the problem itself). That is, inorder to demonstrate that this Boolean problem has an interactive proof system, we�rst introduce an arithmetic generalization of CNF formulae, and then constructan interactive proof system for the resulting arithmetic assertion (by capitalizingon the arithmetic formulation of the assertion). Intuitively, we present an iterativeprocess, which involves interaction between the prover and the veri�er, such that ineach iteration the residual claim to be established becomes simpler (i.e., containsone variable less). This iterative process seems to be enabled by the fact that thevarious claims refer to the arithmetic problem rather than to the original Boolean8In case G1 is not isomorphic to G2, no graph can be isomorphic to both input graphs (i.e.,both to G1 and to G2). In this case the graph G0 sent in Step (V1) uniquely determines the bit�. On the other hand, if G1 and G2 are isomorphic then, for every G0 sent in Step (V1), thenumber of isomorphisms between G1 and G0 equals the number of isomorphisms between G2 andG0. It follows that, in this case G0, yields no information about � (chosen by the veri�er), and sono prover may convince the veri�er with probability exceeding 1=2.

9.1. INTERACTIVE PROOF SYSTEMS 401problem. (Actually, one may say that the key point is that these claims refer to ageneralized problem rather than to the original one.)Teaching note: We devote most of the presentation to establishing that coNP � IP,and recommend doing the same in class. Our presentation focuses on the main ideas,and neglects some minor implementation details (which can be found in [162, 205]).The starting point: We prove that coNP � IP by presenting an interactiveproof system for the set of unsatis�able CNF formulae, which is coNP-complete.Thus, our starting point is a given Boolean CNF formula, which is claimed to beunsatis�able.Arithmetization of Boolean (CNF) formulae: Given a Boolean (CNF) for-mula, we replace the Boolean variables by integer variables, and replace the logicaloperations by corresponding arithmetic operations. In particular, the Boolean val-ues false and true are replaced by the integer values 0 and 1 (respectively),or-clauses are replaced by sums, and the top level conjunction is replaced by aproduct. This translation is depicted in Figure 9.1. Note that the Boolean formulaBoolean arithmeticvariable values false, true 0, 1connectives :x, _ and ^ 1� x, + and ��nal values false, true 0, positiveFigure 9.1: Arithmetization of CNF formulae.is satis�ed (resp., unsatis�ed) by a speci�c truth assignment if and only if evaluat-ing the resulting arithmetic expression at the corresponding 0-1 assignment yieldsa positive (integer) value (resp., yields the value zero). Thus, the claim that theoriginal Boolean formula is unsatis�able translates to the claim that the summa-tion of the resulting arithmetic expression, over all 0-1 assignments to its variables,yields the value zero. For example, the Boolean formula(x3 _ :x5 _ x17) ^ (x5 _ x9) ^ (:x3 _ :x4)is replaces by the arithmetic expression(x3 + (1� x5) + x17) � (x5 + x9) � ((1� x3) + (1� x4))and the Boolean formula is unsatis�able if and only if the sum of the correspondingarithmetic expression, taken over all choices of x1; x2; :::; x17 2 f0; 1g, equals 0.Thus, proving that the original Boolean formula is unsatis�able reduces to provingthat the corresponding arithmetic summation evaluates to 0. We highlight twoadditional observations regarding the resulting arithmetic expression:

402 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS1. The arithmetic expression is a low degree polynomial over the integers; specif-ically, its (total) degree equals the number of clauses in the original Booleanformula.2. For any Boolean formula, the value of the corresponding arithmetic expression(for any choice of x1; :::; xn 2 f0; 1g) resides within the interval [0; vm], wherev is the maximum number of variables in a clause, and m is the number ofclauses. Thus, summing over all 2n possible 0-1 assignments, where n � vmis the number of variables, yields an integer value in [0; 2nvm].Moving to a Finite Field: In general, whenever we need to check equalitybetween two integers in [0;M], it su�ces to check their equality mod q, whereq > M . The bene�t is that, if q is prime then the arithmetic is now in a �nite�eld (mod q), and so certain things are \nicer" (e.g., uniformly selecting a value).Thus, proving that a CNF formula is not satis�able reduces to proving an equalityof the following formXx1=0;1 � � � Xxn=0;1�(x1; :::; xn) � 0 (mod q); (9.1)where � is a low-degree multi-variate polynomial (and q can be represented usingO(j�j) bits). In the rest of this exposition, all arithmetic operations refer to the�nite �eld of q elements, denoted GF(q).Overview of the actual protocol: stripping summations in iterations.Given a formal expression as in Eq. (9.1), we strip o� summations in iterations,stripping a single summation at each iteration, and instantiate the correspondingfree variable as follows. At the beginning of each iteration the prover is supposedto supply the univariate polynomial representing the residual expression as a func-tion of the (single) currently stripped variable. (By Observation 1, this is a lowdegree polynomial and so it has a short description.)9 The veri�er checks that thepolynomial (say, p) is of low degree, and that it corresponds to the current value(say, v) being claimed (i.e., it veri�es that p(0) + p(1) � v). Next, the veri�er ran-domly instantiates the currently free variable (i.e., it selects uniformly r 2 GF(q)),yielding a new value to be claimed for the resulting expression (i.e., the veri�ercomputes v p(r), and expects a proof that the residual expression equals v).The veri�er sends the uniformly chosen instantiation (i.e., r) to the prover, and theparties proceed to the next iteration (which refers to the residual expression andto the new value v). At the end of the last iteration, the veri�er has a closed formexpression (i.e., an expression without formal summations), which can be easilychecked against the claimed value.9We also use Observation 2, which implies that we may use a �nite �eld with elements havinga description length that is polynomial in the length of the original Boolean formula (i.e., log2 q =O(vm)).

9.1. INTERACTIVE PROOF SYSTEMS 403A single iteration (detailed): The ith iteration is aimed at proving a claim ofthe form Xxi=0;1 � � � Xxn=0;1�(r1; :::; ri�1; xi; xi+1; :::; xn) � vi�1 (mod q); (9.2)where v0 = 0, and r1; :::; ri�1 and vi�1 are as determined in previous iterations.The ith iteration consists of two steps (messages): a prover step followed by averi�er step. The prover is supposed to provide the veri�er with the univariatepolynomial pi that satis�espi(z) def= Xxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; z; xi+1; :::; xn) mod q : (9.3)Note that, module q, the value pi(0)+pi(1) equals the l.h.s of Eq. (9.2). Denote byp0i the actual polynomial sent by the prover (i.e., the honest prover sets p0i = pi).Then, the veri�er �rst checks if p0i(0)+ p0i(1) � vi�1 (mod q), and next uniformlyselects ri 2 GF(q) and sends it to the prover. Needless to say, the veri�er willreject if the �rst check is violated. The claim to be proved in the next iteration isXxi+1=0;1 � � � Xxn=0;1�(r1; :::; ri�1; ri; xi+1; :::; xn) � vi (mod q); (9.4)where vi def= p0i(ri) mod q is computed by each party.Completeness of the protocol: When the initial claim (i.e., Eq. (9.1)) holds,the prover can supply the correct polynomials (as determined in Eq. (9.3)), andthis will lead the veri�er to always accept.Soundness of the protocol: It su�ces to upper-bound the probability that, fora particular iteration, the entry claim (i.e., Eq. (9.2)) is false while the ending claim(i.e., Eq. (9.4)) is valid. Indeed, let us focus on the ith iteration, and let vi�1 andpi be as in Eq. (9.2) and Eq. (9.3), respectively; that is, vi�1 is the (wrong) valueclaimed at the beginning of the ith iteration and pi is the polynomial representingthe expression obtained when stripping the current variable (as in Eq. (9.3)). Letp0i(�) be any potential answer by the prover. We may assume, without loss ofgenerality, that p0i(0) + p0i(1) � vi�1 (mod q) and that p0i is of low-degree (sinceotherwise the veri�er will de�nitely reject). Using our hypothesis (that the entryclaim of Eq. (9.2) is false), we know that pi(0) + pi(1) 6� vi�1 (mod q). Thus,p0i and pi are di�erent low-degree polynomials, and so they may agree on very fewpoints (if at all). Now, if the veri�er's instantiation (i.e., its choice of a random ri)does not happen to be one of these few points (i.e., pi(ri) 6� p0i(ri) (mod q)), thenthe ending claim (i.e., Eq. (9.4)) is false too (because the new value (i.e., vi) is setto p0i(ri) mod q, while the residual expression evaluates to pi(ri)). Details are leftas an exercise (see Exercise 9.3).

404 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThis establishes that the set of unsatis�able CNF formulae has an interactiveproof system. Actually, a similar proof system (which uses a related arithmeti-zation { see Exercise 9.5) can be used to prove that a given formula has a givennumber of satisfying assignment; i.e., prove membership in the (\counting") setf(�; k) : jf� : �(�) = 1gj = kg : (9.5)Using adequate reductions, it follows that every problem in #P has an interactiveproof system (i.e., for every R 2 PC, the set f(x; k) : jfy : (x; y)2Rgj = kg is inIP). Proving that PSPACE � IP requires a little more work, as outlined next.Obtaining interactive proofs for PSPACE (the basic idea). We presentan interactive proof for the set of satis�ed Quanti�ed Boolean Formulae (QBF),which is complete for PSPACE (see Theorem 5.15).10 Recall that the number ofquanti�ers in such formulae is unbounded (e.g., it may be polynomially related tothe length of the input), that there are both existential and universal quanti�ers,and furthermore these quanti�ers may alternate. In the arithmetization of theseformulae, we replace existential quanti�ers by summations and universal quanti�ersby products. Two di�culties arise when considering the application of the foregoingprotocol to the resulting arithmetic expression. Firstly, the (integral) value ofthe expression (which may involve a big number of nested formal products) isonly upper-bounded by a double-exponential function (in the length of the input).Secondly, when stripping a summation (or a product), the expression may be apolynomial of high degree (due to nested formal products that may appear in theremaining expression).11 For example, both phenomena occur in the followingexpression Xx=0;1 Yy1=0;1 � � � Yyn=0;1 (x+ yn) ;which equals Px=0;1 x2n�1 � (1 + x)2n�1 . The �rst di�culty is easy to resolve byusing the fact (to be established in Exercise 9.7) that if two integers in [0;M] aredi�erent then they must be di�erent modulo most of the primes in the interval[3; poly(logM)]. Thus, we let the veri�er selects a random prime q of length thatis linear in the length of the original formula, and the two parties consider thearithmetic expression reduced modulo this q. The second di�culty is resolved by10Actually, the following extension of the foregoing proof system yields a proof system for the setof unsatis�ed Quanti�ed Boolean Formulae (which is also complete for PSPACE). Alternatively,an interactive proof system for QBF can be obtained by extending the related proof systempresented in Exercise 9.5.11This high degree causes two di�culties, where only the second one is acute. The �rst di�cultyis that the soundness of the corresponding protocol will require working in a �nite �eld thatis su�ciently larger than this high degree, but we can a�ord doing so (since the degree is atmost exponential in the formula's length). The second (and more acute) di�culty is that thepolynomial may have a large (i.e., exponential) number of non-zero coe�cients and so the veri�ercannot a�ord to read the standard representation of this polynomial (as a list of all non-zerocoe�cients). Indeed, other succinct and e�ective representations of such polynomials may existin some cases (as in the following example), but it is unclear how to obtain such representationsin general.

9.1. INTERACTIVE PROOF SYSTEMS 405noting that PSPACE is actually reducible to a special form of (non-canonical) QBFin which no variable appears both to the left and to the right of more than oneuniversal quanti�er (see the proof of Theorem 5.15 or alternatively Exercise 9.6).It follows that when arithmetizing and stripping summations (or products) fromthe resulting arithmetic expression, the corresponding univariate polynomial is oflow degree (i.e., at most twice the length of the original formula, where the factorof two is due to the single universal quanti�er that has this variable quanti�ed onits left and appearing on its right).IP is contained in PSPACE: We shall show that, for every interactive proofsystem, there exists an optimal prover strategy that can be implemented in polynomial-space, where an optimal prover strategy is one that maximizes the probability thatthe prescribed veri�er accepts the common input. It follows that IP � PSPACE,because (for every S 2 IP) we can emulate, in polynomial space, all possible inter-actions of the prescribed veri�er with any �xed polynomial-space prover strategy(e.g., an optimal one).Proposition 9.5 Let V be a probabilistic polynomial-time (veri�er) strategy. Then,there exists a polynomial-space computable (prover) strategy f that, for every x,maximizes the probability that V accepts x. That is, for every P � and every x itholds that the probability that V accepts x after interacting with P � is upper-boundedby the probability that V accepts x after interacting with f .Proof Sketch: For every common input x and any possible partial transcript ofthe interaction so far, the strategy12 f determines an optimal next-message for theprover by considering all possible coin tosses of the veri�er that are consistent with(x;). Speci�cally, f is determined recursively such that f(x;) = m if m maxi-mizes the number of outcomes of the veri�er's coin-tosses that are consistent with(x;) and lead the veri�er to accept when subsequent prover moves are determinedby f (which is where recursion is used). That is, the veri�er's random sequence rsupport the setting f(x;) = m, where = (�1; �1; :::; �t; �t), if the following twoconditions hold:1. r is consistent with (x;), which means that for every i 2 f1; :::; tg it holdsthat �i = V (x; r; �1; :::; �i).2. r leads V to accept when the subsequent prover moves are determined by f ,which means at termination (i.e., after T rounds) it holds thatV (x; r; �1; :::; �t;m; �t+2; :::; �T) = 1 ;where for every i 2 ft+1; :::; T�1g it holds that �i+1 = f(x; ;m; �t+1; :::; �i; �i)and �i = V (x; r; �1; :::; �t;m; �t+2; :::; �i).12For sake of convenience, when describing the strategy f , we refer to the entire partial tran-script of the interaction with V (rather than merely to the sequence of previous messages sentby V).

406 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSThus, f(x;) = m if m maximizes the value of E[�f;V (x;R ; ;m)], where R isselected uniformly among the r's that are consistent with (x;) and �f;V (x; r; ;m)indicates whether or not V accepts x in the subsequent interaction with f (whichrefers to randomness r and partial transcript (;m)). It follows that the valuef(x;) can be computed in polynomial-space when given oracle access to f(x; ; �; �).The proposition follows by standard composition of space-bounded computations(i.e., allocating separate space to each level of the recursion, while using the samespace in all recursive calls of each level).9.1.4 Variants and �ner structure: an overviewIn this subsection we consider several variants on the basic de�nition of interactiveproofs as well as �ner complexity measures. This is an advanced subsection, whichonly provides an overview of the various notions and results (as well as pointers toproofs of the latter).9.1.4.1 Arthur-Merlin games a.k.a public-coin proof systemsThe veri�er's messages in a general interactive proof system are determined arbi-trarily (but e�ciently) based on the veri�er's view of the interaction so far (whichincludes its internal coin tosses, which without loss of generality can take place atthe onset of the interaction). Thus, the veri�er's past coin tosses are not necessarilyrevealed by the messages that it sends. In contrast, in public-coin proof systems(a.k.a Arthur-Merlin proof systems), the veri�er's messages contain the outcomeof any coin that it tosses at the current round. Thus, these messages reveal therandomness used towards generating them (i.e., this randomness becomes public).Actually, without loss of generality, the veri�er's messages can be identical to theoutcome of the coins tossed at the current round (because any other string that theveri�er may compute based on these coin tosses is actually determined by them).Note that the proof systems presented in the proof of Theorem 9.4 are of thepublic-coin type, whereas this is not the case for the Graph Non-Isomorphism proofsystem (of Construction 9.3). Thus, although not all natural proof systems are ofthe public-coin type, by Theorem 9.4 every set having an interactive proof systemalso has a public-coin interactive proof system. This means that, in the context ofinteractive proof systems, asking random questions is as powerful as asking cleverquestions. (A stronger statement appears at the end of x9.1.4.3.)Indeed, public-coin proof systems are a syntactically restricted type of inter-active proof systems. This restriction may make the design of such systems moredi�cult, but potentially facilitates their analysis (and especially when the analy-sis refers to a generic system). Another advantage of public-coin proof systems isthat the veri�er's actions (except for its �nal decision) are oblivious of the prover'smessages. This property is used in the proof of Theorem 9.12.

9.1. INTERACTIVE PROOF SYSTEMS 4079.1.4.2 Interactive proof systems with two-sided errorIn De�nition 9.1 error probability is allowed in the soundness condition but not inthe completeness condition. In such a case, we say that the proof system has perfectcompleteness (or one-sided error probability). A more general de�nition allows anerror probability (upper-bounded by, say, 1=3) in both the completeness and thesoundness conditions. Note that sets having such generalized (two-sided error)interactive proofs are also in PSPACE, and thus (by Theorem 9.4) allowing two-sided error does not increase the power of interactive proofs. See further discussionat the end of x9.1.4.3.9.1.4.3 A hierarchy of interactive proof systemsDe�nition 9.1 only refers to the total computation time of the veri�er, and thusallows an arbitrary (polynomial) number of messages to be exchanged. A �nerde�nition refers to the number of messages being exchanged (also called the numberof rounds).13De�nition 9.6 (The round-complexity of interactive proof):� For an integer function m, the complexity class IP(m) consists of sets havingan interactive proof system in which, on common input x, at most m(jxj)messages are exchanged between the parties.14� For a set of integer functions, M , we let IP(M) def= Sm2M IP(m). Thus,IP = IP(poly).For example, interactive proof systems in which the veri�er sends a single messagethat is answered by a single message of the prover corresponds to IP(2). Clearly,NP � IP(1), yet the inclusion may be strict because in IP(1) the veri�er may tosscoins after receiving the prover's single message. (Also note that IP(0) = coRP.)De�nition 9.6 gives rise to a natural hierarchy of interactive proof systems,where di�erent \levels" of this hierarchy correspond to di�erent \growth rates" ofthe round-complexity of these systems. The following results are known regardingthis hierarchy.� A linear speed-up (see Appendix ?? (or [23] and [111])): For every integerfunction, f , such that f(n) � 2 for all n, the class IP(O(f(�))) collapses tothe class IP(f(�)). In particular, IP(O(1)) collapses to IP(2).� The class IP(2) contains sets that are not known to be in NP ; e.g., GraphNon-Isomorphism (see Construction 9.3). However, under plausible intractabil-ity assumptions, IP(2) = NP (see [167]).� If coNP � IP(2) then the Polynomial-Time Hierarchy collapses (see [45]).13An even �ner structure emerges when considering also the total length of the messages sentby the prover (see [106]).14We count the total number of messages exchanged regardless of the direction ofcommunication.

408 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSIt is conjectured that coNP is not contained in IP(2), and consequently that inter-active proofs with an unbounded number of message exchanges are more powerfulthan interactive proofs in which only a bounded (i.e., constant) number of messagesare exchanged.15The class IP(1), also denotedMA, seems to be the \real" randomized (and yetnon-interactive) version of NP : Here the prover supplies a candidate (polynomial-size) \proof", and the veri�er assesses its validity probabilistically (rather thandeterministically).The IP-hierarchy (i.e., IP(�)) equals an analogous hierarchy, denoted AM(�),that refers to public-coin (a.k.a Arthur-Merlin) interactive proofs. That is, forevery integer function f , it holds that AM(f) = IP(f). For f � 2, it is also thecase that AM(f) = AM(O(f)); actually, the aforementioned linear speed-up forIP(�) is established by combining the following two results:1. Emulating IP(�) by AM(�) (see x?? or [111]): IP(f) � AM(f + 3).2. Linear speed-up for AM(�) (see x?? or [23]): AM(2f) � AM(f + 1).In particular, IP(O(1)) = AM(2), even ifAM(2) is restricted such that the veri�ertosses no coins after receiving the prover's message. (Note that IP(1) = AM(1)and IP(0) = AM(0) are trivial.) We comment that it is common to shorthandAM(2) by AM, which is indeed inconsistent with the convention of using IP asshorthand of IP(poly).The fact that IP(O(f)) = IP(f) is proved by establishing an analogous resultfor AM(�) demonstrates the advantage of the public-coin setting for the studyof interactive proofs. A similar phenomenon occurs when establishing that theIP-hierarchy equals an analogous two-sided error hierarchy (see Exercise 9.8).9.1.4.4 Something completely di�erentWe stress that although we have relaxed the requirements from the veri�cationprocedure (by allowing it to interact with the prover, toss coins, and risk some(bounded) error probability), we did not restrict the soundness of its verdict byassumptions concerning the potential prover(s). This should be contrasted withother notions of proof systems, such as computationally-sound ones (see x9.1.5.2),in which the soundness of the veri�er's verdict depends on assumptions concerningthe potential prover(s).9.1.5 On computationally bounded provers: an overviewRecall that our de�nition of interactive proofs (i.e., De�nition 9.1) makes no ref-erence to the computational abilities of the potential prover. This fact has twoconicting consequences:15Note that the linear speed-up cannot be applied for an unbounded number of times, becauseeach application may increase (e.g., square) the time-complexity of veri�cation.

9.1. INTERACTIVE PROOF SYSTEMS 4091. The completeness condition does not provide any upper bound on the com-plexity of the corresponding proving strategy (which convinces the veri�er toaccept valid assertions).2. The soundness condition guarantees that, regardless of the computationale�ort spend by a cheating prover, the veri�er cannot be fooled to acceptinvalid assertions (with probability exceeding the soundness error).Note that providing an upper-bound on the complexity of the (prescribed) proverstrategy P of a speci�c interactive proof system (P; V) only strengthens the claimthat (P; V) is a proof system for the corresponding set (of valid assertions). Westress that the prescribed prover strategy is referred to only in the completenesscondition (and is irrelevant to the soundness condition). On the other hand, relax-ing the de�nition of interactive proofs such that soundness holds only for a speci�cclass of cheating prover strategies (rather than for all cheating prover strategies)weakens the corresponding claim. In this advanced section we consider both pos-sibilities.Teaching note: Indeed, this is an advanced subsection, which is best left for indepen-dent reading. It merely provides an overview of the various notions, and the reader isdirected to the chapter's notes for further detail (i.e., pointers to the relevant literature).9.1.5.1 How powerful should the prover be?Suppose that a set S is in IP . This means that there exists a veri�er V thatcan be convinced to accept any input in S but cannot be fooled to accept anyinput not in S (except with small probability). One may ask how powerful shoulda prover be such that it can convince the veri�er V to accept any input in S.Note that Proposition 9.5 asserts that an optimal prover strategy (for convincingany �xed veri�er V) can be implemented in polynomial-space, and that we cannotexpect any better for a generic set in PSPACE = IP (because the emulation ofthe interaction of V with any optimal prover strategy yields a decision procedurefor the set). Still, we may seek better upper-bounds on the complexity of someprover strategy that convinces a speci�c veri�er, which in turn corresponds to aspeci�c set S. More interestingly, considering all possible veri�ers that give rise tointeractive proof systems for S, we wish to upper-bound the computational powerthat su�ces for convincing any of these veri�ers (to accept any input in S).We stress that, unlike the case of computationally-sound proof systems (seex9.1.5.2), we do not restrict the power of the prover in the soundness condition,but rather consider the minimum complexity of provers meeting the completenesscondition. Speci�cally, we are interested in relatively e�cient provers that meetthe completeness condition. The term \relatively e�cient prover" has been giventhree di�erent interpretations, which are briey surveyed next.1. A prover is considered relatively e�cient if, when given an auxiliary input (inaddition to the common input in S), it works in (probabilistic) polynomial-time. Speci�cally, in case S 2 NP , the auxiliary input maybe an NP-proof

410 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthat the common input is in the set. Still, even in this case the interac-tive proof need not consist of the prover sending the auxiliary input to theveri�er; for example, an alternative procedure may allow the prover to bezero-knowledge (see Construction 9.10).This interpretation is adequate and in fact crucial for applications in whichsuch an auxiliary input is available to the otherwise polynomial-time parties.Typically, such auxiliary input is available in cryptographic applications inwhich parties wish to prove in (zero-knowledge) that they have correctly con-ducted some computation. In these cases, the NP-proof is just the transcriptof the computation by which the claimed result has been generated, and thusthe auxiliary input is available to the party that plays the role of the prover.2. A prover is considered relatively e�cient if it can be implemented by a proba-bilistic polynomial-time oracle machine with oracle access to the set S itself.Note that the prover in Construction 9.3 has this property (and see alsoExercise 9.10).This interpretation generalizes the notion of self-reducibility of NP-proof sys-tems. Recall that by self-reducibility of an NP-set (or rather of the corre-sponding NP-proof system) we mean that the search problem of �nding anNP-witness is polynomial-time reducible to deciding membership in the set(cf. De�nition 2.14). Here we require that implementing the prover strategy(in the relevant interactive proof) be polynomial-time reducible to decidingmembership in the set.3. A prover is considered relatively e�cient if it can be implemented by a prob-abilistic machine that runs in time that is polynomial in the deterministiccomplexity of the set. This interpretation relates the time-complexity of con-vincing a \lazy person" (i.e., a veri�er) to the time-complexity of determiningthe truth (i.e., deciding membership in the set).Hence, in contrast to the �rst interpretation, which is adequate in settingswhere assertions are generated along with their NP-proofs, the current in-terpretation is adequate in settings in which the prover is given only theassertion and has to �nd a proof to it by itself (before trying to convince alazy veri�er of its validity).9.1.5.2 Computational-soundnessRelaxing the soundness condition such that it only refers to relatively-e�cient waysof trying to fool the veri�er (rather than to all possible ways) yields a fundamen-tally di�erent notion of a proof system. The veri�er's verdict in such a systemis not absolutely sound, but is rather sound provided that the potential cheatingprover does not exceed the presumed complexity limits. As in x9.1.5.1, the notionof \relative e�ciency" can be given di�erent interpretations, the most popular onebeing that the cheating prover strategy can be implemented by a (non-uniform)family of polynomial-size circuits. The latter interpretation coincides with the �rst

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 411interpretation used in x9.1.5.1 (i.e., a probabilistic polynomial-time strategy thatis given an auxiliary input (of polynomial length)). Speci�cally, in this case, thesoundness condition is replaced by the following computational soundness conditionthat asserts that it is infeasible to fool the veri�er into accepting false statements.Formally:For every prover strategy that is implementable by a family of polynomial-size circuits fCng, and every su�ciently long x 2 f0; 1g� n S, the prob-ability that V accepts x when interacting with Cjxj is less than 1=2.As in case of standard soundness, the computational-soundness error can be re-duced by repetitions. We warn, however, that unlike in the case of standard sound-ness (where both sequential and parallel repetitions will do), the computational-soundness error cannot always be reduced by parallel repetitions.It is common and natural to consider proof systems in which the prover strate-gies considered both in the completeness and soundness conditions satisfy the samenotion of relative e�ciency. Protocols that satisfy these conditions with respectto the foregoing interpretation are called arguments. We mention that argumentsystems may be more e�cient (e.g., in terms of their communication complexity)than interactive proof systems.9.2 Zero-Knowledge Proof SystemsStandard mathematical proofs are believed to yield (extra) knowledge and notmerely establish the validity of the assertion being proved; that is, it is commonlybelieved that (good) proofs provide a deeper understanding of the theorem beingproved. At the technical level, an NP-proof of membership in some set S 2 NP nPyields something (i.e., the NP-proof itself) that is hard to compute (even whenassuming that the input is in S). For example, a 3-coloring of a graph constitutes anNP-proof that the graph is 3-colorable, but it yields information (i.e., the coloring)that seems infeasible to compute (when given an arbitrary 3-colorable graph).A natural question that arises is whether or not proving an assertion alwaysrequires giving away some extra knowledge. The setting of interactive proof systemsenables a negative answer to this fundamental question: In contrast to NP-proofs,which seem to yield a lot of knowledge, zero-knowledge (interactive) proofs yield noknowledge at all; that is, zero-knowledge proofs are both convincing and yet yieldnothing beyond the validity of the assertion being proved. For example, a zero-knowledge proof of 3-colorability does not yield any information about the graph(e.g., partial information about a 3-coloring) that is infeasible to compute fromthe graph itself. Thus, zero-knowledge proofs exhibit an extreme contrast betweenbeing convincing (of the validity of a assertion) and teaching anything on top ofthe validity of the assertion.Needless to say, the notion of zero-knowledge proofs is fascinating (e.g., sinceit di�erentiates proof-veri�cation from learning). Still, the reader may wonderwhether such a phenomenon is desirable, because in many settings we do careto learn as much as possible (rather than learn as little as possible). However,

412 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS
X

?
!

?
!

 !

??
X is true!

Figure 9.2: Zero-knowledge proofs { an illustration.in other settings (most notably in cryptography), we may actually wish to limitthe gain that other parties may obtained from a proof (and, in particular, limitthis gain to the minimal level of being convinced in the validity of the assertion).Indeed, the applicability of zero-knowledge proofs in the domain of cryptography isvast; they are typically used as a tool for forcing (potentially malicious) parties tobehave according to a predetermined protocol (without having them reveal theirown private inputs). The interested reader is referred to discussions in xC.4.3.2and xC.7.3.2 (and to detailed treatments in [91, 92]). We also mention that, inaddition to their direct applicability in Cryptography, zero-knowledge proofs serveas a good bench-mark for the study of various questions regarding cryptographicprotocols.Teaching note: We believe that the treatment of zero-knowledge proofs provided inthis section su�ces for the purpose of a course in complexity theory. For an extensivetreatment of zero-knowledge proofs, the interested reader is referred to [91, Chap. 4].9.2.1 De�nitional IssuesLoosely speaking, zero-knowledge proofs are proofs that yield nothing beyond thevalidity of the assertion; that is, a veri�er obtaining such a proof only gains convic-tion in the validity of the assertion. This is formulated by saying that anything thatcan be feasibly obtained from a zero-knowledge proof is also feasibly computablefrom the (valid) assertion itself. The latter formulation follows the simulationparadigm, which is discussed next.9.2.1.1 A wider perspective: the simulation paradigmIn de�ning zero-knowledge proofs, we view the veri�er as a potential adversarythat tries to gain knowledge from the (prescribed) prover.16 We wish to state that16Recall that when de�ning a proof system (e.g., an interactive proof system), we view theprover as a potential adversary that tries to fool the (prescribed) veri�er (into accepting invalid

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 413no (feasible) adversary strategy for the veri�er can gain anything from the prover(beyond conviction in the validity of the assertion). The question addressed hereis how to formulate the \no gain" requirement.Let us consider the desired formulation from a wide perspective. A key ques-tion regarding the modeling of security concerns is how to express the intuitiverequirement that an adversary \gains nothing substantial" by deviating from theprescribed behavior of an honest user. The answer is that the adversary gains noth-ing if whatever it can obtain by unrestricted adversarial behavior can be obtainedwithin essentially the same computational e�ort by a benign (or prescribed) behav-ior. The de�nition of the \benign behavior" captures what we want to achievein terms of security, and is speci�c to the security concern to be addressed. Forexample, in the context of zero-knowledge, a benign behavior is any computationthat is based (only) on the assertion itself (while assuming that the latter is valid).Thus, a zero-knowledge proof is an interactive proof in which no feasible adversar-ial veri�er strategy can obtain from the interaction more than a \benign party"(which believes the assertion) can obtain from the assertion itself.The foregoing interpretation of \gaining nothing" means that any feasible ad-versarial behavior can be \simulated" by a benign behavior (and thus there is nogain in the former). This line of reasoning is called the simulation paradigm, andis pivotal to many de�nitions in cryptography (e.g., it underlies the de�nitions ofsecurity of encryption schemes and cryptographic protocols); for further details seeAppendix C.9.2.1.2 The basic de�nitionsWe turn back to the concrete task of de�ning zero-knowledge. Firstly, we com-ment that zero-knowledge is a property of some prover strategies; actually, moregenerally, zero-knowledge is a property of some strategies. Fixing any strategy(e.g., a prescribed prover), we consider what can be gained (i.e., computed) by anarbitrary feasible adversary (e.g., a veri�er) that interacts with the aforementioned�xed strategy on a common input taken from a predetermined set (in our case theset of valid assertions). This gain is compared against what can be computed by anarbitrary feasible algorithm (called a simulator) that is only given the input itself.The �xed strategy is zero-knowledge if the \computational power" of these two(fundamentally di�erent settings) is essentially equivalent. Details follow.The formulation of the zero-knowledge condition refers to two types of probabil-ity ensembles, where each ensemble associates a single probability distribution toeach relevant input (e.g., a valid assertion). Speci�cally, in the case of interactiveproofs, the �rst ensemble represents the output distribution of the veri�er afterinteracting with the speci�ed prover strategy P (on some common input), wherethe veri�er is employing an arbitrary e�cient strategy (not necessarily the speci�edone). The second ensemble represents the output distribution of some probabilisticpolynomial-time algorithm (which is only given the corresponding input (and doesnot interact with anyone)). The basic paradigm of zero-knowledge asserts that forassertions).

414 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSevery ensemble of the �rst type there exist a \similar" ensemble of the second type.The speci�c variants di�er by the interpretation given to the notion of similarity.The most strict interpretation, leading to perfect zero-knowledge, is that similaritymeans equality.De�nition 9.7 (perfect zero-knowledge, over-simpli�ed):17 A prover strategy, P ,is said to be perfect zero-knowledge over a set S if for every probabilistic polynomial-time veri�er strategy, V �, there exists a probabilistic polynomial-time algorithm,A�, such that (P; V �)(x) � A�(x) ; for every x 2 Swhere (P; V �)(x) is a random variable representing the output of veri�er V � afterinteracting with the prover P on common input x, and A�(x) is a random variablerepresenting the output of algorithm A� on input x.We comment that any set in coRP has a perfect zero-knowledge proof system inwhich the prover keeps silence and the veri�er decides by itself. The same holdsfor BPP provided that we relax the de�nition of interactive proof system to allowtwo-sided error. Needless to say, our focus is on non-trivial proof systems; that is,proof systems for sets outside of BPP.A somewhat more relaxed interpretation (of the notion of similarity), leadingto almost-perfect zero-knowledge (a.k.a statistical zero-knowledge), is that similar-ity means statistical closeness (i.e., negligible di�erence between the ensembles).The most liberal interpretation, leading to the standard usage of the term zero-knowledge (and sometimes referred to as computational zero-knowledge), is thatsimilarity means computational indistinguishability (i.e., failure of any e�cient pro-cedure to tell the two ensembles apart). Combining the foregoing discussion withthe relevant de�nition of computational indistinguishability (i.e., De�nition C.5),we obtain the following de�nition.De�nition 9.8 (zero-knowledge, somewhat simpli�ed): A prover strategy, P , issaid to be zero-knowledge over a set S if for every probabilistic polynomial-timeveri�er strategy, V �, there exists a probabilistic polynomial-time simulator, A�,such that for every probabilistic polynomial-time distinguisher, D, it holds thatd(n) def= maxx2S\f0;1gnfjPr[D(x; (P; V �)(x))=1]� Pr[D(x;A�(x))=1]jgis a negligible function.18 We denote by ZK the class of sets having zero-knowledgeinteractive proof systems.17In the actual de�nition one relaxes the requirement in one of the following two ways. The�rst alternative is allowing A� to run for expected (rather than strict) polynomial-time. Thesecond alternative consists of allowing A� to have no output with probability at most 1=2 andconsidering the value of its output conditioned on it having output at all. The latter alternativeimplies the former, but the converse is not known to hold.18That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positivepolynomial p and for su�ciently large n, it holds that d(n) < 1=p(n)). Needless to say, d(n) def= 0if S \ f0; 1gn = ;.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 415De�nition 9.8 is a simpli�ed version of the actual de�nition, which is presented inAppendix C.4.2. Speci�cally, in order to guarantee that zero-knowledge is preservedunder sequential composition it is necessary to slightly augment the de�nition (byproviding V � and A� with the same value of an arbitrary (poly(jxj)-bit long) aux-iliary input). Other de�nitional issues and related notions are briey discussed inAppendix C.4.4.On the role of randomness and interaction. It can be shown that onlysets in BPP have zero-knowledge proofs in which the veri�er is deterministic (seeExercise 9.13). The same holds for deterministic provers, provided that we consider\auxiliary-input" zero-knowledge (as in De�nition C.9). It can also be shown thatonly sets in BPP have zero-knowledge proofs in which a single message is sent (seeExercise 9.14). Thus, both randomness and interaction are essential to the non-triviality of zero-knowledge proof systems. (For further details, see [91, Sec. 4.5.1].)Advanced Comment: Knowledge Complexity. Zero-knowledge is the lowestlevel of a knowledge-complexity hierarchy which quanti�es the \knowledge revealedin an interaction." Speci�cally, the knowledge complexity of an interactive proofsystem may be de�ned as the minimum number of oracle-queries required in orderto e�ciently simulate an interaction with the prover. (See [90, Sec. 2.3.1] forreferences.)9.2.2 The Power of Zero-KnowledgeWhen faced with a de�nition as complex (and seemingly self-contradictory) as thede�nition of zero-knowledge, one should indeed wonder whether the de�nition canbe met (in a non-trivial manner).19 It turns out that the existence of non-trivialzero-knowledge proofs is related to the existence of intractable problems in NP .In particular, we will show that if one-way functions exist then every NP-set has azero-knowledge proof system. (For the converse, see [91, Sec. 4.5.2] or [228].) But�rst, we demonstrate the non-triviality of zero-knowledge by a presenting a simple(perfect) zero-knowledge proof system for a speci�c NP-set that is not known tobe in BPP. In this case we make no intractability assumptions (yet, the result issigni�cant only if NP is not contained in BPP).9.2.2.1 A simple exampleA story not found in the Odyssey refers to the not so famous Labyrinthof the Island of Aeaea. The Sorceress Circe, daughter of Helius, chal-lenged godlike Odysseus to traverse the Labyrinth from its North Gateto its South Gate. Canny Odysseus doubted whether such a path ex-isted at all and asked beautiful Circe for a proof, to which she replied19Recall that any set in BPP has a trivial zero-knowledge (two-sided error) proof system inwhich the veri�er just determines membership by itself. Thus, the issue is the existence of zero-knowledge proofs for sets outside BPP.

416 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthat if she showed him a path this would trivialize for him the chal-lenge of traversing the Labyrinth. \Not necessarily," clever Odysseusreplied, \you can use your magic to transport me to a random place inthe labyrinth, and then guide me by a random walk to a gate of mychoice. If we repeat this enough times then I'll be convinced that thereis a labyrinth-path between the two gates, while you will not reveal tome such a path." \Indeed," wise Circe thought to herself, \showingthis mortal a random path from a random location in the labyrinth tothe gate he chooses will not teach him more than his taking a randomwalk from that gate."The foregoing story illustrates the main idea underlying the zero-knowledge prooffor Graph Isomorphism presented next. Recall that the set of pairs of isomorphicgraphs is not known to be in BPP, and thus the straightforward NP-proof system(in which the prover just supplies the isomorphism) may not be zero-knowledge.Furthermore, assuming that Graph Isomorphism is not in BPP, this set has nozero-knowledge NP-proof system. Still, as we shall shortly see, this set does havea zero-knowledge interactive proof system.Construction 9.9 (zero-knowledge proof for Graph Isomorphism):� Common Input: A pair of graphs, G1=(V1; E1) and G2=(V2; E2).If the input graphs are indeed isomorphic, then we let � denote an arbitraryisomorphism between them; that is, � is a 1-1 and onto mapping of the vertexset V1 to the vertex set V2 such that fu; vg 2 E1 if and only if f�(v); �(u)g 2E2.� Prover's �rst Step (P1): The prover selects a random isomorphic copy ofG2, and sends it to the veri�er. Namely, the prover selects at random, withuniform probability distribution, a permutation � from the set of permutationsover the vertex set V2, and constructs a graph with vertex set V2 and edge setE def= ff�(u); �(v)g : fu; vg2E2g :The prover sends (V2; E) to the veri�er.� Motivating Remark: If the input graphs are isomorphic, as the prover claims,then the graph sent in Step P1 is isomorphic to both input graphs. However,if the input graphs are not isomorphic then no graph can be isomorphic toboth of them.� Veri�er's �rst Step (V1): Upon receiving a graph, G0 = (V 0; E0), from theprover, the veri�er asks the prover to show an isomorphism between G0 andone of the input graphs, chosen at random by the veri�er. Namely, the veri�eruniformly selects � 2 f1; 2g, and sends it to the prover (who is supposed toanswer with an isomorphism between G� and G0).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 417� Prover's second Step (P2): If the message, �, received from the veri�er equals2 then the prover sends � to the veri�er. Otherwise (i.e., � 6= 2), the proversends � � � (i.e., the composition of � on �, de�ned as � � �(v) def= �(�(v)))to the veri�er.(Indeed, the prover treats any � 6= 2 as � = 1. Thus, in the analysis we shallassume, without loss of generality, that � 2 f1; 2g always holds.)� Veri�er's second Step (V2): If the message, denoted , received from theprover is an isomorphism between G� and G0 then the veri�er outputs 1,otherwise it outputs 0.The veri�er strategy in Construction 9.9 is easily implemented in probabilisticpolynomial-time. If the prover is given an isomorphism between the input graphs asauxiliary input, then also the prover's program can be implemented in probabilisticpolynomial-time. The motivating remark justi�es the claim that Construction 9.9constitutes an interactive proof system for the set of pairs of isomorphic graphs.Thus, we focus on establishing the zero-knowledge property.We consider �rst the special case in which the veri�er actually follows theprescribed strategy (and selects � at random, and in particular obliviously of thegraph G0 it receives). The view of this veri�er can be easily simulated by selecting� and at random, constructing G0 as a random isomorphic copy of G� (viathe isomorphism), and outputting the triple (G0; �;). Indeed (even in thiscase), the simulator behaves di�erently from the prescribed prover (which selectsG0 as a random isomorphic copy of G2, via the isomorphism �), but its outputdistribution is identical to the veri�er's view in the real interaction. However,the foregoing description assumes that the veri�er follows the prescribed strategy,while in general the veri�er may (adversarially) select � depending on the graphG0. Thus, a slightly more complicated simulation (described next) is required.A general clari�cation may be in place. Recall that we wish to simulate theinteraction of an arbitrary veri�er strategy with the prescribed prover. Thus, thissimulator must depend on the corresponding veri�er strategy, and indeed we shalldescribe the simulator while referring to such a generic veri�er strategy. Formally,this means that the simulator's program incorporates the program of the corre-sponding veri�er strategy. Actually, the following simulator uses the generic veri�erstrategy as a subroutine.Turning back to the speci�c protocol of Construction 9.9, the basic idea is thatsimulator tries to guess � and completes a simulation if its guess turns out to becorrect. Speci�cally, the simulator selects � 2 f1; 2g uniformly (hoping that theveri�er will later select � = �), and constructs G0 by randomly permuting G� (andthus being able to present an isomorphism between G� and G0). Recall that thesimulator is analyzed only on yes-instances (i.e., the input graphs G1 and G2 areisomorphic). The point is that if G1 and G2 are isomorphic, then the graph G0does not yield any information regarding the simulator's guess (i.e., �).20 Thus,20Indeed, this observation is identical to the observation made in the analysis of the soundnessof Construction 9.3.

418 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe value � selected by the adversarial veri�er may depend on G0 but not on � ,which implies that Pr[�= �] = 1=2. In other words, the simulator's guess (i.e., �)is correct (i.e., equals �) with probability 1=2. Now, if the guess is correct then thesimulator can produce an output that has the correct distribution, and otherwisethe entire process is repeated.Digest: a few useful conventions. We highlight three conventions that wereeither used (implicitly) in the foregoing analysis or can be used to simplify thedescription of (this and/or) other zero-knowledge simulators.1. Without loss of generality, we may assume that the cheating veri�er strategyis implemented by a deterministic polynomial-size circuit (or, equivalently,by a deterministic polynomial-time algorithm with an auxiliary input).21This is justi�ed by �xing any outcome of the veri�er's coins, and observ-ing that our (\uniform") simulation of the various (residual) deterministicstrategies yields a simulation of the original probabilistic strategy. Indeed,this justi�cation relies on the fact that the simulation refers to veri�ers witharbitrary auxiliary inputs (of polynomial length).2. Without loss of generality, it su�ces to consider cheating veri�ers that (only)output their view of the interaction (i.e., the common input, their internalcoin tosses, and the messages that they have received). In other words, itsu�ces to simulate the view that cheating veri�ers have of the real interaction.This is justi�ed by noting that the �nal output of any veri�er can be obtainedfrom its view of the interaction, where the complexity of the transformationis upper-bounded by the complexity of the veri�er's strategy.3. Without loss of generality, it su�ces to construct a \weak simulator" thatproduces output with some noticeable22 probability such that whenever anoutput is produced it is distributed \correctly" (i.e., similarly to the distri-bution occuring in real interactions with the prescribed prover).This is justi�ed by repeatedly invoking such a weak simulator (polynomially)many times and using the �rst output produced by any of these invocations.Note that by using an adequate number of invocations, we fail to producean output with negligible probability. Furthermore, note that a simulatorthat fails to produce output with negligible probability can be convertedto a simulator that always produces an output, while incurring a negligiblestatistic deviation in the output distribution.21This observation is not crucial, but it does simplify the analysis (by eliminating the need tospecify a sequence of coin tosses in each invocation of the veri�er's strategy).22Recall that a probability is called noticeable if it is greater than the reciprocal of some positivepolynomial (in the relevant parameter).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 4199.2.2.2 The full power of zero-knowledge proofsThe zero-knowledge proof system presented in Construction 9.9 refers to one spe-ci�c NP-set that is not known to be in BPP. It turns out that, under reasonableassumptions, zero-knowledge can be used to prove membership in any NP-set. In-tuitively, it su�ces to establish this fact for a single NP-complete set, and thus wefocus on presenting a zero-knowledge proof system for the set of 3-colorable graphs.It is easy to prove that a given graph G is 3-colorable by just presenting a 3-coloring of G (and the same holds for membership in any set in NP), but this NP-proof is not a zero-knowledge proof (unless NP � BPP). In fact, assuming NP 6�BPP, graph 3-colorability has no zero-knowledge NP-proof system. Still, as weshall shortly see, graph 3-colorability does have a zero-knowledge interactive proofsystem. This proof system will be described while referring to \boxes" in whichinformation can be hidden and later revealed. Such boxes can be implementedusing one-way functions (see, e.g., Theorem 9.11).Construction 9.10 (Zero-knowledge proof of 3-colorability, abstract description):The description refers to abstract non-transparent boxes that can be perfectly lockedand unlocked such that these boxes perfectly hide their contents while being locked.� Common Input: A simple graph G=(V;E).� Prover's �rst step: Let be a 3-coloring of G. The prover selects a randompermutation, �, over f1; 2; 3g, and sets �(v) def= �((v)), for each v 2 V .Hence, the prover forms a random relabeling of the 3-coloring . The proversends to the veri�er a sequence of jV j locked and non-transparent boxes suchthat the vth box contains the value �(v).� Veri�er's �rst step: The veri�er uniformly selects an edge fu; vg 2 E, andsends it to the prover.� Motivating Remark: The boxes are supposed to contain a 3-coloring of thegraph, and the veri�er asks to inspect the colors of vertices u and v. Indeed,for the zero-knowledge condition, it is crucial that the prover only respondsto pairs that correspond to edges of the graph.� Prover's second step: Upon receiving an edge fu; vg 2 E, the prover sends tothe veri�er the keys to boxes u and v.For simplicity of the analysis, if the veri�er sends fu; vg 62 E then the proverbehaves as if it has received a �xed (or random) edge in E, rather than sus-pending the interaction, which would have been the natural thing to do.� Veri�er's second step: The veri�er unlocks and opens boxes u and v, andaccepts if and only if they contain two di�erent elements in f1; 2; 3g.The veri�er strategy in Construction 9.10 is easily implemented in probabilisticpolynomial-time. The same holds with respect to the prover's strategy, providedthat it is given a 3-coloring of G as auxiliary input. Clearly, if the input graph

420 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSis 3-colorable then the veri�er accepts with probability 1 when interacting withthe prescribed prover. On the other hand, if the input graph is not 3-colorable,then any contents put in the boxes must be invalid with respect to at least oneedge, and consequently the veri�er will reject with probability at least 1jEj . Hence,the foregoing protocol exhibits a non-negligible gap in the accepting probabilitiesbetween the case of 3-colorable graphs and the case of non-3-colorable graphs. Toincrease the gap, the protocol may be repeated su�ciently many times (of course,using independent coin tosses in each repetition).So far we showed that Construction 9.10 constitutes (a weak form of) an in-teractive proof system for Graph 3-Colorability. The point, however, is that theprescribed prover strategy is zero-knowledge. This is easy to see in the abstractsetting of Construction 9.10, because all that the veri�er sees in the real interac-tion is a sequence of boxes and a random pair of di�erent colors (which is easy tosimulate). Indeed, the simulation of the real interaction proceeds by presenting asequence of boxes and providing a random pair of di�erent colors as the contentsof the two boxes indicated by the veri�er. Note that the foregoing argument relieson the fact that the boxes (indicated by the veri�er) correspond to vertices thatare connected by an edge in the graph.This simple demonstration of the zero-knowledge property is not possible inthe digital implementation (discussed next), because in that case the boxes arenot totally una�ected by their contents (but are rather a�ected, yet in an indistin-guishable manner). Thus, the veri�er's selection of the inspected edge may dependon the \outside appearance" of the various boxes, which in turn may depend (inan indistinguishable manner) on the contents of these boxes. Consequently, wecannot determine the boxes' contents after a pair of boxes are selected, and so thesimple foregoing simulation is inapplicable. Instead, we simulate the interaction asfollows.1. We �rst guess (at random) which pair of boxes (corresponding to an edge)the veri�er would ask to open, and place a random pair of distinct colorsin these boxes (and garbage in the rest).23 Then, we hand all boxes to theveri�er, which asks us to open a pair of boxes (corresponding to an edge).2. If the veri�er asks for the pair that we chose (i.e., our guess is successful),then we can complete the simulation by opening these boxes. Otherwise, wetry again (i.e., repeat Step 1 with a new random guess and random colors).The key observation is that if the boxes hide the contents in the sense thata box's contents is indistinguishable based on it outside appearance, thenour guess will succeed with probability approximately 1=jEj. Furthermore,in this case, the simulated execution will be indistinguishable from the realinteraction.23An alternative (and more e�cient) simulation consists of putting random independent colorsin the various boxes, hoping that the veri�er asks for an edge that is properly colored. The latterevent occurs with probability (approximately) 2=3, provided that the boxes hide their contents(almost) perfectly.

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 421Thus, it su�ces to use boxes that hide their contents almost perfectly (rather thanbeing perfectly opaque). Such boxes can be implemented digitally.Teaching note: Indeed, we recommend presenting and analyzing in class only theforegoing abstract protocol. It su�ces to briey comment about the digital implemen-tation, rather than presenting a formal proof of Theorem 9.11 (which can be foundin [100] (or [91, Sec. 4.4])).Digital implementation (overview). We implement the abstract boxes (re-ferred to in Construction 9.10) by using adequately de�ned commitment schemes.Loosely speaking, such a scheme is a two-phase game between a sender and a re-ceiver such that after the �rst phase the sender is \committed" to a value and yet,at this stage, it is infeasible for the receiver to �nd out the committed value (i.e.,the commitment is \hiding"). The committed value will be revealed to the receiverin the second phase and it is guaranteed that the sender cannot reveal a value otherthan the one committed (i.e., the commitment is \binding"). Such commitmentschemes can be implemented assuming the existence of one-way functions (as inDe�nition 7.3); see xC.4.3.1.Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorabilityis NP-complete, one can derive (from Construction 9.10) zero-knowledge proof sys-tems for any NP-set.24 Furthermore, NP-witnesses can be e�ciently transformedinto polynomial-size circuits that implement the corresponding (prescribed zero-knowledge) prover strategies.Theorem 9.11 (The ZK Theorem): Assuming the existence of (non-uniformlyhard) one-way functions, it holds that NP � ZK. Furthermore, every S 2 NP hasa (computational) zero-knowledge interactive proof system in which the prescribedprover strategy can be implemented in probabilistic polynomial-time, provided thatit is given as auxiliary-input an NP-witness for membership of the common inputin S.The hypothesis of Theorem 9.11 (i.e., the existence of one-way functions) seems un-avoidable, because the existence of zero-knowledge proofs for \hard on the average"problems implies the existence of one-way functions (and, likewise, the existenceof zero-knowledge proofs for sets outside BPP implies the existence of \auxiliary-input one-way functions").Theorem 9.11 has a dramatic e�ect on the design of cryptographic protocols(see Appendix C). In a di�erent vein we mention that, under the same assumption,any interactive proof can be transformed into a zero-knowledge one. (This trans-formation, however, does not necessarily preserve the complexity of the prover.)24Actually, we should either rely on the fact that the standard Karp-reductions are invertiblein polynomial time or on the fact that the 3-colorability protocol is actually zero-knowledge withrespect to auxiliary inputs (as in De�nition C.9).

422 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSTheorem 9.12 (The ultimate ZK Theorem): Assuming the existence of (non-uniformly hard) one-way functions, it holds that IP = ZK.Loosely speaking, Theorem 9.12 can be proved by recalling that IP = AM(poly)and modifying any public-coin protocol as follows: the modi�ed prover sends com-mitments to its messages rather than the messages themselves, and once the orig-inal interaction is completed it proves (in zero-knowledge) that the correspondingtranscript would have been accepted by the original veri�er. Indeed, the latter as-sertion is of the \NP type", and thus the zero-knowledge proof system guaranteedin Theorem 9.11 can be invoked for proving it.Reection. The proof of Theorem 9.11 uses the fact that 3-colorability is NP-complete in order to obtain a zero-knowledge proofs for any set inNP by using sucha protocol for 3-colorability (i.e., Construction 9.10). Thus, an NP-completenessresult is used here in a \positive" way; that is, in order to construct somethingrather than in order to derive a (\negative") hardness result (cf., Section 2.2.4).25Perfect and Statistical Zero-Knowledge. The foregoing results, which referto computational zero-knowledge proof systems, should be contrasted with theknown results regarding the complexity of statistical zero-knowledge proof systems:Statistical zero-knowledge proof systems exist only for sets in IP(2)\coIP(2), andthus are unlikely to exist for all NP-sets. On the other hand, the class StatisticalZero-Knowledge is known to contain some seemingly hard problems, and turnsout to have interesting complexity theoretic properties (e.g., being closed undercomplementation, and having very natural complete problems). The interestedreader is referred to [227].9.2.3 Proofs of Knowledge { a parenthetical subsectionTeaching note: Technically speaking, this topic belongs to Section 9.1, but its moreinteresting demonstrations refer to zero-knowledge proofs of knowledge { hence its cur-rent positioning.Loosely speaking, \proofs of knowledge" are interactive proofs in which the proverasserts \knowledge" of some object (e.g., a 3-coloring of a graph), and not merelyits existence (e.g., the existence of a 3-coloring of the graph, which in turn is equiv-alent to the assertion that the graph is 3-colorable). Note that the entity assertingknowledge is actually the prover's strategy, which is an automated computing de-vice, hereafter referred to as a machine. This raises the question of what do wemean by saying that a machine knows something.25Historically, the proof of Theorem 9.11 was probably the �rst positive application of NP-completeness. Subsequent positive uses of completeness results have appeared in the context ofinteractive proofs (see the proof of Theorem 9.4), probabilistically checkable proofs (see the proofof Theorem 9.16), and the study of statistical zero-knowledge (cf. [227]).

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS 4239.2.3.1 Abstract reectionsAny standard dictionary suggests several meanings for the verb to know, but theseare typically phrased with reference to the notion of awareness, a notion which iscertainly inapplicable in the context of machines. Instead, we should look for abehavioristic interpretation of the verb to know. Indeed, it is reasonable to linkknowledge with the ability to do something (e.g., the ability to write down whateverone knows). Hence, we may say that a machine knows a string � if it can outputthe string �. But this seems as total non-sense too: a machine has a well de�nedoutput { either the output equals � or it does not, so what can be meant by sayingthat a machine can do something?Interestingly, a sound interpretation of the latter phrase does exist. Looselyspeaking, by saying that a machine can do something we mean that the machinecan be easily modi�ed such that it (or rather its modi�ed version) does whateveris claimed. More precisely, this means that there exists an e�cient machine that,using the original machine as a black-box (or given its code as an input), outputswhatever is claimed.Technically speaking, using a machine as a black-box seems more appealingwhen the said machine is interactive (i.e., implements an interactive strategy).Indeed, this will be our focus here. Furthermore, conceptually speaking, whatevera machine knows (or does not know) is its own business, whereas what can beof interest and reference to the outside is whatever can be deduced about theknowledge of a machine by interacting with it. Hence, we are interested in proofsof knowledge (rather than in mere knowledge).9.2.3.2 A concrete treatmentFor sake of simplicity let us consider a concrete question: how can a machine provethat it knows a 3-coloring of a graph? An obvious way is just sending the 3-coloringto the veri�er. Yet, we claim that applying the protocol in Construction 9.10 (i.e.,the zero-knowledge proof system for 3-Colorability) is an alternative way of provingknowledge of a 3-coloring of the graph.The de�nition of a veri�er of knowledge of 3-coloring refers to any possibleprover strategy and links the ability to \extract" a 3-coloring (of a given graph)from such a prover to the probability that this prover convinces the veri�er. That is,the de�nition postulates the existence of an e�cient universal way of \extracting" a3-coloring of a given graph by using any prover strategy that convinces this veri�erto accept this graph with probability 1 (or, more generally, with some noticeableprobability). On the other hand, we should not expect this extractor to obtainmuch from prover strategies that fail to convince the veri�er (or, more generally,convince it with negligible probability). A robust de�nition should allow a smoothtransition between these two extremes (and in particular between provers thatconvince the veri�er with noticeable probability and those that convince it withnegligible probability). Such a de�nition should also support the intuition by whichthe following strategy of Alice is zero-knowledge: Alice sends Bob a 3-coloring ofa given graph provided that Bob has successfully convinced her that he knows this

424 CHAPTER 9. PROBABILISTIC PROOF SYSTEMScoloring.26 We stress that the zero-knowledge property of Alice's strategy shouldhold regardless of the proof-of-knowledge system used for proving Bob's knowledgeof a 3-coloring.Loosely speaking, we say that a strategy, V , constitutes a veri�er for knowledgeof 3-coloring if, for any prover strategy P , the complexity of extracting a 3-coloringof G when using P as a \black box"27 is inversely proportional to the probabilitythat V is convinced by P (to accept the graph G). Namely, the extraction of the3-coloring is done by an oracle machine, called an extractor, that is given access tothe strategy P (i.e., the function specifying the message that P sends in response toany sequence of messages it may receive). We require that the (expected) runningtime of the extractor, on input G and oracle access to P , be inversely related (bya factor polynomial in jGj) to the probability that P convinces V to accept G. Inparticular, if P always convinces V to accept G, then the extractor runs in expectedpolynomial-time. The same holds in case P convinces V to accept with noticeableprobability. On the other hand, if P never convinces V to accept, then nothing isrequired of the extractor. We stress that the latter special cases do not su�ce fora satisfactory de�nition; see discussion in [91, Sec. 4.7.1].Proofs of knowledge, and in particular zero-knowledge proofs of knowledge,have many applications to the design of cryptographic schemes and cryptographicprotocols (see, e.g., [91, 92]). These are enabled by the following general result.Theorem 9.13 (Theorem 9.11, revisited): Assuming the existence of (non-uniformlyhard) one-way functions, any NP-relation has a zero-knowledge proof of knowledge(of a corresponding NP-witnesses). Furthermore, the prescribed prover strategycan be implemented in probabilistic polynomial-time, provided it is given such anNP-witness.9.3 Probabilistically Checkable Proof SystemsTeaching note: Probabilistically checkable proof (PCP) systems may be viewed asa restricted type of interactive proof systems in which the prover is memoryless andresponds to each veri�er message as if it were the �rst such message. This perspectivecreates a tighter link with previous sections, but is somewhat contrived. Indeed, sucha memoryless prover may be viewed as a static object that the veri�er may query atlocations of its choice. But then it is more appealing to present the model using the(more traditional) terminology of oracle machines rather than using (and degenerating)the terminology of interactive machines (or strategies).Probabilistically checkable proof systems can be viewed as standard (determinis-tic) proof systems that are augmented with a probabilistic procedure capable ofevaluating the validity of the assertion by examining few locations in the alleged26For simplicity, the reader may consider graphs that have a unique 3-coloring (up-to a rela-beling). In general, we refer here to instances that have unique solution (cf. Section 6.2.3), whicharise naturally in some (cryptographic) applications.27Indeed, one may consider also non-black-box extractors.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 425proof. Actually, we focus on the latter probabilistic procedure, which in turn im-plies the existence of a deterministic veri�cation procedure (obtained by going overall possible random choices of the probabilistic procedure and making the adequateexaminations).Modeling such probabilistic veri�cation procedures, which may examine fewlocations in the alleged proof, requires providing these procedures with direct accessto the individual bits of the alleged proof (so that they need not scan the proofbit-by-bit). Thus, the alleged proof is a string, as in the case of a traditionalproof system, but the (probabilistic) veri�cation procedure is given direct accessto individual bits of this string (see Figure 9.3).

input

x verifier

direct (oracle) access

proof (oracle)

Figure 9.3: The PCP model { an illustration.We are interested in probabilistic veri�cation procedures that access only fewlocations in the proof, and yet are able to make a meaningful probabilistic verdictregarding the validity of the alleged proof. Speci�cally, the veri�cation procedureshould accept any valid proof (with probability 1), but rejects with probabilityat least 1=2 any alleged proof for a false assertion. Such probabilistic veri�cationprocedures are called probabilistically checkable proof (PCP) systems.The fact that one can (meaningfully) evaluate the correctness of proofs byexamining few locations in them is indeed amazing and somewhat counter-intuitive.Needless to say, such proofs must be written in a somewhat non-standard format,because standard proofs cannot be veri�ed without reading them in full (since a awmay be due to a single improper inference). In contrast, proofs for a PCP systemtend to be very redundant; they consist of superuously many pieces of information(about the claimed assertion), but their correctness can be (meaningfully) evaluatedby checking the consistency of a randomly chosen collection of few related pieces.We stress that by a \meaningful evaluation" we mean rejecting alleged proofs offalse assertions with constant probability (rather than with probability that is

426 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSinversely proportional to the length of the alleged proof).The main complexity measure associated with PCPs is indeed their query com-plexity. Another complexity measure of natural concern is the length of the proofsbeing employed, which in turn is related to the randomness complexity of thesystem. The randomness complexity of PCPs plays a key role in numerous appli-cations (e.g., in composing PCP systems as well as when applying PCP systems toderive inapproximability results), and thus we specify this parameter rather thanthe proof length.Teaching note: Indeed, PCP systems are most famous for their role in deriving nu-merous inapproximability results (see Section 9.3.3), but our view is that the latteris merely one extremely important application of the fundamental notion of a PCPsystem. Our presentation is organized accordingly.9.3.1 De�nitionLoosely speaking, a probabilistically checkable proof system consists of a probabilis-tic polynomial-time veri�er having access to an oracle that represents an allegedproof (in redundant form). Typically, the veri�er accesses only few of the oraclebits, and these bit positions are determined by the outcome of the veri�er's cointosses. As in the case of interactive proof systems, it is required that if the asser-tion holds then the veri�er always accepts (i.e., when given access to an adequateoracle); whereas, if the assertion is false then the veri�er must reject with proba-bility at least 12 , no matter which oracle is used. The basic de�nition of the PCPsetting is given in Part (1) of the following de�nition. Yet, the complexity measuresintroduced in Part (2) are of key importance for the subsequent discussions.De�nition 9.14 (Probabilistically Checkable Proofs { PCP):1. A probabilistically checkable proof system (PCP) for a set S is a probabilisticpolynomial-time oracle machine, called veri�er and denoted V , that satis�esthe following two conditions:� Completeness: For every x 2 S there exists an oracle �x such that, oninput x and access to oracle �x, machine V always accepts x.� Soundness: For every x 62 S and every oracle �, on input x and accessto oracle �, machine V rejects x with probability at least 12 .2. We say that a probabilistically checkable proof system has query complexityq :N!N if, on any input of length n, the veri�er makes at most q(n) oraclequeries.28 Similarly, the randomness complexity r :N ! N upper-bounds thenumber of coin tosses performed by the veri�er on a generic n-bit long input.For integer functions r and q, we denote by PCP(r; q) the class of sets havingprobabilistically checkable proof systems of randomness complexity r and query28As usual in complexity theory, the oracle answers are binary values (i.e., either 0 or 1).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 427complexity q. For sets of integer functions, R and Q,PCP(R;Q) def= [r2R ; q2QPCP(r; q) :The error probability (in the soundness condition) of PCP systems can be reducedby successive applications of the proof system. In particular, repeating the processfor k times, reduces the probability that the veri�er is fooled by a false assertion to2�k, whereas all complexities increase by at most a factor of k. Thus, PCP systemsof non-trivial query-complexity (cf. Section 9.3.2) provide a trade-o� between thenumber of locations examined in the proof and the con�dence in the validity of theassertion.We note that the oracle �x referred to in the completeness condition of a PCPsystem constitutes a proof in the standard mathematical sense. Indeed any PCPsystem yields a standard proof system (with respect to a veri�cation procedurethat scans all possible outcomes of V 's internal coin tosses and emulates all thecorresponding checks). Furthermore, the oracles in PCP systems of logarithmicrandomness-complexity constitute NP-proofs (see Exercise 9.15). However, theoracles of a PCP system have the extra remarkable property of enabling a lazyveri�er to toss coins, take its chances and \assess" the validity of the proof withoutreading all of it (but rather by reading a tiny portion of it). Potentially, this allowsthe veri�er to examine very few bits of an NP-proof and even utilize very longproofs (i.e., of super-polynomial length).Adaptive versus non-adaptive veri�ers. De�nition 9.14 allows the veri�erto be adaptive; that is, the veri�er may determine its queries based on the an-swers it has received to previous queries (in addition to their dependence on theinput and on the veri�er's internal coin tosses). In contrast, non-adaptive veri�ersdetermine all their queries based solely on their input and internal coin tosses.Note that q adaptive (binary) queries can be emulated by Pqi=1 2i�1 < 2q non-adaptive (binary) queries. We comment that most constructions of PCP systemsuse non-adaptive veri�ers, and in fact in many sources PCP systems are de�ned asnon-adaptive.Randomness versus proof length. Fixing a veri�er V , we say that locationi (in the oracle) is relevant to input x if there exists a computation of V on inputx in which location i is queried (i.e., there exists ! and � such that, on inputx, randomness ! and access to the oracle �, the veri�er queries location i). Thee�ective proof length of V is the smallest function ` : N!N such that for everyinput x there are at most `(jxj) locations (in the oracle) that are relevant to x.We claim that the e�ective proof length of any PCP system is closely related toits randomness (and query) complexity. On one hand, if the PCP system hasrandomness-complexity r and query-complexity q, then its e�ective proof length isupper-bounded by 2r+q, whereas a bound of 2r � q holds for non-adaptive systems(see Exercise 9.15). Thus, PCP systems of logarithmic randomness complexity have

428 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSe�ective proof length that is polynomial, and hence yield NP-proof systems. On theother hand, in some sense, the randomness complexity of a PCP system can beupper-bounded by the logarithm of the (e�ective) length of the proofs employed(provided we allow non-uniform veri�ers; see Exercise 9.16).On the role of randomness. The PCP Theorem (i.e., NP � PCP(log; O(1)))asserts that a meaningful probabilistic evaluation of proofs is possible based ona constant number of examined bits. We note that, unless P = NP , such aphenomena is impossible when requiring the veri�er to be deterministic. Firstly,note that PCP(0; O(1)) = P holds (as a special case of PCP(r; q) � Dtime(22rq+r �poly); see Exercise 9.17). Secondly, as shown in Exercise 9.19, P 6= NP implies thatNP is not contained in PCP(o(log); o(log)). Lastly, assuming that not all NP-setshave NP-proof systems that employs proofs of length ` (e.g., `(n) = n), it followsthat if 2r(n)q(n) < `(n) then PCP(r; q) does not contain NP (see Exercise 9.17again).9.3.2 The Power of Probabilistically Checkable ProofsThe celebrated PCP Theorem asserts that NP = PCP(log; O(1)), and this resultis indeed the focus of the current section. But before getting to it we make severalsimple observations regarding the PCP Hierarchy.We �rst note that PCP(poly; 0) equals coRP , whereas PCP(0; poly) equalsNP . It is easy to prove an upper bound on the non-deterministic time complexityof sets in the PCP hierarchy (see Exercise 9.17):Proposition 9.15 (upper-bounds on the power of PCPs): For every polynomiallybounded integer function r, it holds that PCP(r; poly) � Ntime(2r � poly). Inparticular, PCP(log; poly) � NP.The focus on PCP systems of logarithmic randomness complexity reects an inter-est in PCP systems that utilize proof oracles of polynomial length (see discussion inSection 9.3.1). We stress that such PCP systems (i.e., PCP(log; q)) are NP-proofsystems with a (potentially amazing) extra property: the validity of the assertioncan be \probabilistically evaluated" by examining a (small) portion (i.e., q(n) bits)of the proof. Thus, for any �xed polynomially bounded function q, a result of theform NP � PCP(log; q) (9.6)is interesting (because it applies also to NP-sets having witnesses of length exceed-ing q). Needless to say, the smaller q { the better. The PCP Theorem asserts theamazing fact by which q can be made a constant.Theorem 9.16 (The PCP Theorem): NP � PCP(log; O(1)).Thus, probabilistically checkable proofs in which the veri�er tosses only logarith-mically many coins and makes only a constant number of queries exist for everyset in NP . This constant is essentially three (see x9.3.4.1). Before reviewing theproof of Theorem 9.16, we make a couple of comments.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 429E�cient transformation of NP-witnesses to PCP oracles: The proof ofTheorem 9.16 is constructive in the sense that it allows to e�ciently transformany NP-witness (for an instance of a set in NP) into an oracle that makes thePCP veri�er accept (with probability 1). That is, for every (NP-witness relation)R 2 PC there exists a PCP veri�er V as in Theorem 9.16 and a polynomial-timecomputable function � such that for every (x; y)2R the veri�er V always accepts theinput x when given oracle access to the proof �(x; y) (i.e., Pr[V �(x;y)(x)=1] = 1).Recalling that the latter oracles are themselves NP-proofs, it follows that NP-proofscan be transformed into NP-proofs that o�er a trade-o� between the portion of theproof being read and the con�dence it o�ers. Speci�cally, for every " > 0, if one iswilling to tolerate an error probability of " then it su�ces to examine O(log(1="))bits of the (transformed) NP-proof. Indeed (as discussed in Section 9.3.1), thesebit locations need to be selected at random.The foregoing strengthening of Theorem 9.16 o�ers a wider range of applica-tions than Theorem 9.16 itself. Indeed, Theorem 9.16 itself su�ces for \negative"applications such as establishing the infeasibility of certain approximation prob-lems (see Section 9.3.3). But for \positive" applications (see x9.3.4.2), typicallysome user (or a real entity) will be required to actually construct the PCP-oracle,and in such cases the strengthening of Theorem 9.16 will be useful.
A characterization of NP: Combining Theorem 9.16 with Proposition 9.15 weobtain the following characterization of NP .Corollary 9.17 (The PCP characterization of NP): NP = PCP(log; O(1)).
Road-map for the proof of the PCP Theorem: Theorem 9.16 is a culmina-tion of a sequence of remarkable works, each establishing meaningful and increas-ingly stronger versions of Eq. (9.6). A presentation of the full proof of Theorem 9.16is beyond the scope of the current work (and is, in our opinion, unsuitable for abasic course in complexity theory). Instead, we present an overview of the originalproof (see x9.3.2.2) as well as of an alternative proof (see x9.3.2.3), which was foundmore than a decade later. We will start, however, by presenting a weaker resultthat is used in both proofs of Theorem 9.16 and is also of independent interest.This weaker result (see x9.3.2.1) asserts that every NP-set has a PCP system withconstant query-complexity (albeit with polynomial randomness complexity); thatis, NP � PCP(poly; O(1)).

430 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSTeaching note: In our opinion, presenting in class any part of the proof of the PCPTheorem should be given low priority. In particular, presenting the connections betweenPCP and the complexity of approximation should be given a higher priority. As forrelative priorities among the following three subsections, we strongly recommend givingx9.3.2.1 the highest priority, because it o�ers a direct demonstration of the power ofPCPs. As for the two alternative proofs of the PCP Theorem itself, our recommendationdepends on the intended goal. On one hand, for the purpose of merely giving a tasteof the ideas involved in the proof, we prefer an overview of the original proof (providedin x9.3.2.2). On the other hand, for the purpose of actually providing a full proof, wede�nitely prefer the new proof (which is only outlined in x9.3.2.3).9.3.2.1 Proving that NP � PCP(poly; O(1))The fact that every NP-set has a PCP system with constant query-complexity(regardless of its randomness-complexity) already testi�es to the power of PCPsystems. It asserts that probabilistic veri�cation of proofs is possible by inspectingvery few locations in a (potentially huge) proof. Indeed, the PCP systems presentednext utilize exponentially long proofs, but they do so while inspecting these proofsat a constant number of (randomly selected) locations.We start with a brief overview of the construction. We �rst note that it su�cesto construct a PCP for proving the satis�ability of a given system of quadraticequations over GF(2), because this problem is NP-complete (see Exercise 2.25).29For an input consisting of a system of quadratic equations with n variables, theoracle (of this PCP) is supposed to provide the evaluation of all quadratic ex-pressions (in these n variables) at some �xed assignment to these variables. Thisassignment is supposed to satisfy the system of quadratic equations that is given asinput. We distinguish two tables in the oracle: the �rst table corresponding to all2n linear expressions and the second table to all 2n2 quadratic expressions. Eachtable is tested for self-consistency (via a \linearity test"), and the two tables aretested to be consistent with each other (via a \matrix-equality" test, which utilizes\self-correction"). Finally, we test that the assignment encoded in these tables sat-is�es the quadratic system that is given as input. This is done by taking a randomlinear combination of the quadratic equations that appear in the quadratic system,and obtaining the value assigned to the corresponding quadratic expression by theaforementioned tables (again, via self-correction). The key point is that each of theforegoing tests utilizes a constant number of Boolean queries, and has time (andrandomness) complexity that is polynomial in the size of the input. Details follow.Teaching note: The following text refers to notions such as the Hadamard encoding,testing and self-correction, which appear in other parts of this work (see, e.g., xE.1.2.2,Section 10.1.2. and x7.2.1.1, respectively). While a wider perspective (provided in theaforementioned parts) is always useful, the current text is self-contained.29Here and elsewhere, we denote by GF(2) the 2-element �eld.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 431The starting point. We construct a PCP system for the set of satis�ablequadratic equations over GF(2). The input is a sequence of such equations over thevariables x1; :::; xn, and the proof oracle consist of two parts (or tables), which aresupposed to provide information regarding some satisfying assignment � = �1 � � � �n(also viewed as an n-ary vector over GF(2)). The �rst part, denoted T1, is sup-posed to provide a Hadamard encoding of the said satisfying assignment; that is,for every � 2 GF(2)n this table is supposed to provide the inner product mod 2 ofthe n-ary vectors � and � (i.e., T1(�) is supposed to equalPni=1 �i�i). The secondpart, denoted T2, is supposed to provide all linear combinations of the values ofthe �i�j 's; that is, for every � 2 GF(2)n2 (viewed as an n-by-n matrix over GF(2)),the value of T2(�) is supposed to equal Pi;j �i;j�i�j . (Indeed T1 is contained inT2, because �2 = � for any � 2 GF(2).) The PCP veri�er will use the two tablesfor checking that the input (i.e., a sequence of quadratic equations) is satis�ed bythe assignment that is encoded in the two tables. Needless to say, these tables maynot be a valid encoding of any n-ary vector (let alone one that satis�es the input),and so the veri�er also needs to check that the encoding is (close to being) valid.We will focus on this task �rst.Testing the Hadamard Code. Note that T1 is supposed to encode a linearfunction; that is, there must exist some � = �1 � � � �n 2 GF(2)n such that T1(�) =Pni=1 �i�i holds for every � = �1 � � ��n 2 GF(2)n. This can be tested by selectinguniformly �0; �00 2 GF(2)n and checking whether T1(�0) + T1(�00) = T1(�0 + �00),where �0+�00 denotes addition of vectors over GF(2). The analysis of this naturaltester turns out to be quite complex. Nevertheless, it is indeed the case that anytable that is 0:02-far from being linear is rejected with probability at least 0:01(see Exercise 9.20), where T is "-far from being linear if T disagrees with any linearfunction f on more than an " fraction of the domain (i.e., Prr[T (r) 6=f(r)] > ").By repeating the linearity test for a constant number of times, we may rejecteach table that is 0:02-far from being a codeword of the Hadamard Code withprobability at least 0:99. Thus, using a constant number of queries, the veri�errejects any T1 that is 0:02-far from being a Hadamard encoding of any � 2 GF(2)n,and likewise rejects any T2 that is 0:02-far from being a Hadamard encoding ofany � 0 2 GF(2)n2 . We may thus assume that T1 (resp., T2) is 0:02-close to theHadamard encoding of some � (resp., � 0).30 (Needless to say, this does not meanthat � 0 equals the outer product of � with itself (i.e., � 0i;j does not necessarily equal�i�j).)In the rest of the analysis, we �x � 2 GF(2)n and � 0 2 GF(2)n2 , and denote theHadamard encoding of � (resp., � 0) by f� :GF(2)n!GF(2) (resp., f� 0 :GF(2)n2!GF(2)). Recall that T1 (resp., T2) is 0:02-close to f� (resp., f� 0).Self-correction of the Hadamard Code. Suppose that T is "-close to a linearfunction f : GF(2)m! GF(2) (i.e., Prr[T (r) 6= f(r)] � "). Then, we can recover30Note that � (resp., � 0) is uniquely determined by T1 (resp., T2), because every two di�erentlinear functions GF(2)m ! GF(2) agree on exactly half of the domain (i.e., the Hadamard codehas relative distance 1=2).

432 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe value of f at any desired point x, by making two (random) queries to T .Speci�cally, for a uniformly selected r 2 GF(2)m, we use the value T (x+r)�T (r).Note that the probability that we recover the correct value is at least 1�2", becausePrr[T (x + r) � T (r) = f(x + r) � f(r)] � 1 � 2" and f(x + r) � f(r) = f(x) bylinearity of f . (Needless to say, for " < 1=4, the function T cannot be "-close totwo di�erent linear functions.)31 Thus, assuming that T1 is 0:02-close to f� (resp.,T2 is 0:02-close to f� 0) we may correctly recover (i.e., with error probability 0:04)the value of f� (resp., f� 0) at any desired point by making 2 queries to T1 (resp.,T2). This process is called self-correction (cf., e.g., x7.2.1.1).
= = f (r) f (s)

srr s

.
τ τ

τA τFigure 9.4: Detail for testing consistency of linear and quadratic forms.Checking consistency of f� and f� 0. Suppose that we are given access tof� : GF(2)n ! GF(2) and f� 0 : GF(2)n2 ! GF(2), where f� (�) = Pi �i�iand f� 0(�0) = Pi;j � 0i;j�0i;j , and that we wish to verify that � 0i;j = �i�j for ev-ery i; j 2 f1; :::; ng. In other words, we are given a (somewhat weird) encodingof two matrices, A = (�i�j)i;j and A0 = (� 0i;j)i;j , and we wish to check whetheror not these matrices are identical. It can be shown (see Exercise 9.22) that ifA 6= A0 then Prr;s[r>As 6= r>A0s] � 1=4, where r and s are uniformly distributedn-ary vectors. Note that, in our case (where A = (�i�j)i;j and A0 = (� 0i;j)i;j), itholds that r>As = Pj(Pi ri�i�j)sj = f� (r)f� (s) (see Figure 9.4) and r>A0s =Pj(Pi ri� 0i;j)sj = f� 0(rs>), where rs> is the outer-product of s and r. Thus, (for(�i�j)i;j 6= (� 0i;j)i;j) we have Prr;s[f� (r)f� (s) 6= f� 0(rs>)] � 1=4.Recall, however, that we do not have direct access to the functions f� and f� 0 ,but rather to tables (i.e., T1 and T2) that are 0:02-close to these functions. Still,using self-correction, we can obtain the values of f� and f� 0 at any desired point,with very high probability. Actually, when implementing the foregoing consistencytest it su�ces to use self-correction for f� 0 , because we use the values of f� attwo independently and uniformly distributed points in GF(2)n (i.e., r; s) but thevalue f� 0 is required at rs>, which is not uniformly distributed in GF(2)n2 . Thus,we test the consistency of f� and f� 0 by selecting uniformly r; s 2 GF(2)n andR 2 GF(2)n2 , and checking that T1(r)T1(s) = T2(rs> +R)� T2(R).By repeating the aforementioned (self-corrected) consistency test for a constantnumber of times, we may reject an inconsistent pair of tables with probability atleast 0:99. Thus, in the rest of the analysis, we may assume that (�i�j)i;j = (� 0i;j)i;j .31Indeed, this fact follows from the self-correction argument, but a simpler proof merely refersto the fact that the Hadamard code has relative distance 1=2.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 433Checking that � satis�es the quadratic system. Suppose that we are givenaccess to f� and f� 0 as in the foregoing (where, in particular, � 0 = ��>). A keyobservation is that if � does not satisfy a system of (quadratic) equations then,with probability 1=2, it does not satisfy a random linear combination of theseequations. Thus, in order to check whether � satis�es the quadratic system (whichis given as input), we create a single quadratic equation by taking such a randomlinear combination, and check whether this quadratic equation is satis�ed by � .The punch-line is that testing whether � satis�es the quadratic equation Q(x) = �amounts to testing whether f� 0(Q) = �. Again, the actual checking is implementedby using self-correction (of the table T2).This completes the description of the veri�er. Note that this veri�er performsa constant number of codeword tests for the Hadamard Code, and a constantnumber of consistency and satis�ability tests, where each of the latter involves self-correction of the Hadamard Code. Each of the individual tests utilizes a constantnumber of queries (ranging between two and four) and uses randomness that isquadratic in the number of variables (and linear in the number of equations in theinput). Thus, the query-complexity is a constant and the randomness-complexityis at most quadratic in the length of the input (quadratic system). Clearly, ifthe input quadratic system is satis�able (by some �), then the veri�er accepts thecorresponding tables T1 and T2 (i.e., T1 = f� and T2 = f��>) with probability 1.On the other hand, if the input quadratic system is unsatis�able, then any pair oftables (T1; T2) will be rejected with constant probability (by one of the foregoingtests). It follows that NP � PCP(q; O(1)), where q is a quadratic polynomial.Reection. Indeed, the actual test of the satis�ability of the quadratic systemthat is given as input is facilitated by the fact that a satisfying assignment isencoded (in the oracle) in a very redundant manner, which �ts the �nal test ofsatis�ability. But then the burden of testing moves to checking that this encodingis indeed valid. In fact, most of the tests performed by the foregoing veri�er areaimed at verifying the validity of the encoding. Such a test of validity (of encoding)may be viewed as a test of consistency between the various parts of the encoding.All these themes are present also in more advanced constructions of PCP systems.9.3.2.2 Overview of the �rst proof of the PCP TheoremThe original proof of the PCP Theorem (Theorem 9.16) consists of three mainconceptual steps, which we briey sketch �rst and further discuss later.1. Constructing a (non-adaptive) PCP system for NP having logarithmic ran-domness and polylogarithmic query complexity; that is, this PCP has thedesired randomness complexity and a very low (but non-constant) query com-plexity. Furthermore, this proof system has additional properties that enableproof composition as in the following Step 3.2. Constructing a PCP system for NP having polynomial randomness and con-stant query complexity; that is, this PCP has the desired (constant) query

434 CHAPTER 9. PROBABILISTIC PROOF SYSTEMScomplexity but its randomness complexity is prohibitingly high. (Indeed, weshowed such a construction in x9.3.2.1.) Furthermore, this proof system toohas additional properties enabling proof composition as in Step 3.3. The proof composition paradigm:32 In general, this paradigm allows to com-pose two proof systems such that the \inner" veri�er is used for probabilis-tically verifying the acceptance criteria of the \outer" veri�er. That is, thecombined veri�er selects coins for the \outer" veri�er, determines the corre-sponding locations that the \outer" veri�er wishes to inspect (in the proof),and veri�es that the \outer" veri�er would have accepted the values thatreside in these locations. The latter veri�cation is performed by invoking the\inner" veri�er, without reading the values residing in all the aforementionedlocations. Indeed, the aim is conducting this (\composed") veri�cation whileusing much fewer queries than the query complexity of the \outer" proof sys-tem. In particular, the inner veri�er cannot a�ord to read its input, whichmakes the composition more subtle than the term suggests.Loosely speaking, the outer veri�er should be robust in the sense that itssoundness condition guarantee that, with high probability, the oracle answersare \far" from satisfying the residual decision predicate (rather than merelynot satisfy it). (Furthermore, the latter predicate, which is well-de�ned by thenon-adaptive nature of the outer veri�er, must have a circuit of size boundedby a polynomial in the number of queries.) The inner veri�er is given oracleaccess to its input and is charged for each query made to it, but is onlyrequired to reject (with high probability) inputs that are far from being valid(and, as usual, accept inputs that are valid). That is, the inner veri�er isactually a veri�er of proximity.Composing two such PCPs yields a new PCP for NP , where the new prooforacle consists of the proof oracle of the \outer" system and a sequence ofproof oracles for the \inner" system (one \inner" proof per each possiblerandom-tape of the \outer" veri�er). The resulting veri�er selects coins forthe outer-veri�er and uses the corresponding \inner" proof in order to verifythat the outer-veri�er would have accepted under this choice of coins. Notethat such a choice of coins determines locations in the \outer" proof that theouter-veri�er would have inspected, and the combined veri�er provides theinner-veri�er with oracle access to these locations (which the inner-veri�erconsiders as its input) as well as with oracle access to the corresponding\inner" proof (which the inner-veri�er considers as its proof-oracle). SeeFigure 9.5 (and further details that follow the current sketch).Note that composing an outer-veri�er of randomness-complexity r0 and query-complexity q0 with an inner-veri�er of randomness-complexity r00 and query-complexity q00 yields a PCP of randomness-complexity r(n) = r0(n)+r00(q0(n))and query-complexity q(n) = q00(q0(n)), because q0(n) represents the lengthof the input (oracle) that is accessed by the inner-veri�er. Recall that the32Our presentation of the composition paradigm follows [35], rather than the original presen-tation of [16, 15].

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 435

x combined verifier

input proof

inner
verifier

(of prox.)

sequence of proofs for inner verifierproof for the outer verifier

input

Figure 9.5: Composition of PCP system. The dashed arrows indicate pointers fromthe (virtual) input and proof oracles of the inner-veri�er to the actual proof of thecomposed veri�er. These pointers (as well as the residual predicate) are determinedby an invocation of the outer-veri�er.outer-veri�er is non-adaptive, and thus if the inner-veri�er is non-adaptive(resp., robust) then so is the veri�er resulting from the composition, which isimportant in case we wish to compose the latter veri�er with another inner-veri�er.In particular, the proof system of Step 1 is composed with itself [using r0(n) =r00(n) = O(log n) and q0(n) = q00(n) = poly(logn)] yielding a PCP system (forNP) of randomness-complexity r(n) = r0(n) + r00(q0(n)) = O(log n) and query-complexity q(n) = q00(q0(n)) = poly(log logn). Composing the latter system (usedas an \outer" system) with the PCP system of Step 2, yields a PCP system (forNP) of randomness-complexity r(n)+poly(q(n)) = O(log n) and query-complexityO(1), thus establishing the PCP Theorem.A more detailed overview { the plan. The foregoing description uses two(non-trivial) PCP systems and refers to additional properties such as robustnessand veri�cation of proximity. A PCP system of polynomial randomness-complexityand constant query-complexity (as postulated in Step 2) was already presented inx9.3.2.1. We thus start by discussing the notions of verifying proximity and beingrobust, while demonstrating their applicability to the said PCP. Next, we detail thecomposition of an \outer" robust-PCP with an \inner" PCP-of-proximity. Finally,we outline the other PCP system that is used (i.e., the one postulated in Step 1).

436 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSPCPs of Proximity. Recall that a standard PCP veri�er gets an explicit inputand is given oracle access to an alleged proof (for membership of the input in apredetermined set). In contrast, a PCP of proximity veri�er is given (direct) accessto two oracles, one representing an input and the other being an alleged proof,and its queries to both oracles are counted in its query-complexity. Typically, thequery-complexity of this veri�er is lower than the length of the input oracle, andhence this veri�er cannot a�ord reading the entire input and cannot be expectedto make absolute statements about it. Indeed, instead of deciding whether or notthe input is in a predetermined set, the veri�er is only required to distinguish thecase that the input is in the set from the case that the input is far from the set(where far means being at relative Hamming distance at least 0.01 (or any othersmall constant)).For example, consider a variant of the system of x9.3.2.1 in which the quadraticsystem is �xed33 and the veri�er needs to determine whether the assignment ap-pearing in the input oracle satis�es the said system or is far from any assignmentthat satis�es it. We use a proof oracle as in x9.3.2.1, and a PCP veri�er of proxim-ity that proceeds as in x9.3.2.1 and in addition perform a proximity test to verifythat the input oracle is close to the assignment encoded in the proof oracle. Specif-ically, the veri�er reads a uniformly selected bit of the input oracle and comparesthis value to the self-corrected value obtained from the proof oracle (i.e., for auniformly selected i 2 f1; :::; ng, we compare the ith bit of the input oracle to theself-correction of the value T1(0i�110n�i), obtained from the proof oracle).Robust PCPs. Composing an \outer" PCP veri�er with an \inner" PCP veri-�er of proximity makes sense provided that the outer veri�er rejects in a \robust"manner. Hence, the soundness condition of a robust veri�er requires that (withprobability at least 1/2) the oracle answers are far from any sequence that isacceptable by the residual predicate (rather than merely that the answers are re-jected by this predicate). That is, for every no-instance x and every alleged proof� = �1�2 � � ��` 2 f0; 1g`, it is required that, with probability at least 1/2 over theveri�er's choice of coins ! 2 f0; 1gr, it holds that �i!;1�i!;2 � � ��i!;q is far from anyassignment that satis�es P! , where i!;j is the jth query made (non-adaptively)on coins !, and P! is the residual predicate that determines which sequences ofanswers are accepted in this case. Indeed, if the outer veri�er is robust, then itsu�ces to distinguish answers that are valid from answers that are far from beingvalid.For example, if robustness is de�ned as referring to relative constant distance(which is indeed the case), then the PCP of x9.3.2.1 (as well as any PCP of con-stant query complexity) is trivially robust. However, we will not care about therobustness of this PCP, because we only use this PCP as an inner veri�er in proofcomposition. In contrast, we will care about the robustness of PCPs that are usedas outer veri�ers (e.g., the PCP postulated in Step 1 and outlined shortly).33Indeed, in our applications the quadratic system will be \known" to the (\inner") veri�er,because it is determined by the (\outer") veri�er.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 437A closer look at proof composition. Following the foregoing sketch, we fur-ther detail the proof composition operation that is employed in the current sub-section (i.e., x9.3.2.2). We start by detailing the two PCPs being composed. LetV1 be a robust veri�er of randomness-complexity r1 and query-complexity q1, andsuppose that its residual decision on input x and random-tape ! 2 f0; 1gr1(jxj)can be described by a poly(q1(jxj))-size circuit, denoted C! . That is, on input x,access to an oracle � = �1�2 � � ��`, and random-tape ! 2 f0; 1gr1(jxj), the veri�erV1 accepts if and only if C!(�i!;1�i!;2 � � ��i!;q1(jxj)) = 1, where i!;j is the jth querymade (non-adaptively) on input x and random-tape !. Note that membershipin C�1! (1) can be determined in time poly(jC�1! j) = poly(q1(jxj)). Let V2 be averi�er of proximity for membership in C�1! (1), and suppose that its proximityparameter equals (or is smaller than) the robustness parameter of V1. Actually,the veri�er V2 should either depend on the circuit C! or get the description of C!as auxiliary input.34 Turning to the combined veri�er resulting from the compo-sition, we �rst postulate that, on input x, this veri�er utilizes proofs of the form(�; (�(!))!2f0;1gr1(jxj)), where � is a proof for V1 (regarding the input x) and �(!) isa proof for V2 (regarding membership of the string �i!;1�i!;2 � � ��i!;q1(jxj) in the setC�1! (1)). The combined veri�er uniformly selects a random-tape ! 2 f0; 1gr1(jxj)(for V1), determines the locations i!;1; i!;2; :::; i!;q1(jxj) (which V1 would query oninput x and random-tape !), and invokes V2 while providing it with access to theinput-oracle �i!;1�i!;2 � � ��i!;q1(jxj) and the proof-oracle �(!). That is, if V2 queriesthe jth bit of its input (resp., its proof) then the combined veri�er queries the ith!;jbit of � (resp., the jth bit of �(!)) and provides V2 with the bit retrieved.Clearly, if x is a yes-instance then using the adequate proofs � and (�(!))!2f0;1gr1(jxj)makes the combined veri�er accept with probability 1. On the other hand, if x isa no-instance then V1 will \robustly rejects" any � with probability at least 1/2(i.e., with probability at least 1/2 over the choice of ! 2 f0; 1gr1(jxj), it holds that�i!;1�i!;2 � � ��i!;q1(jxj) is far from any string in the set C�1! (1)). Now, if V1 \robustlyrejects" � when using the random-tape ! 2 f0; 1gr1(jxj), then (for any �(!)) thecorresponding executions of V2 will reject with probability at least 1/2. It followsthat, for any choice of its proof oracle (i.e., any � and (�(!))!2f0;1gr1(jxj)), the com-bined veri�er rejects each no-instance with probability at least 1/4. Needless tosay, the rejection probability can be increased by sequential repetitions.34In the former case, V2 is a circuit (with oracle access to its input and proof oracles), whichincorporates the circuit C!. In the latter case, the formulation of PCP of proximity should beextended so to account for inputs that are given in two parts such that the �rst part (e.g., C!)is given explicitly (as an ordinary input) and the second part (e.g., the input to C!) is givenimplicitly via oracle access. Either way, it is essential that the size of C! is polynomial in thelength of its own input (i.e., jC!j = poly(q1(jxj))). In fact, an asymptotic treatment is facilitatedby using the latter formulation (of two-part inputs). In this case, V2 is actually an (extended)PCP of proximity for statements in P � NP , where the valid statements have the form (C;�)such that C(�) = 1 (where C is presented as explicit input and � is presented as implicit input).

438 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSTeaching note: Unfortunately, the construction of a PCP of logarithmic randomnessand polylogarithmic query complexity for NP involves many technical details. Further-more, obtaining a robust version of this PCP is beyond the scope of the current text.Thus, the following description should be viewed as merely providing a avor of theunderlying ideas.PCP of logarithmic randomness and polylogarithmic query complexityfor NP . We focus on showing that NP � PCP(f; f), for f(n) = poly(logn),and the claimed result will follow by a relatively minor modi�cation (discussedafterwards). The proof system underlying NP � PCP(f; f) is based on an arith-metization of 3CNF formulae, which is di�erent from the one used in x9.1.3.2 (forconstructing an interactive proof system for coNP). We start by describing thisarithmetization, and later outline the PCP system that is based on it.In the current arithmetization, the names of the variables (resp., clauses) of a3CNF formula � are represented by binary strings of logarithmic (in j�j) length, anda generic variable (resp., clause) of � is represented by a logarithmic number of newvariables, which are assigned values in a �nite �eld F � f0; 1g. Indeed, throughoutthe rest of the description, we refer to the arithmetic operations of this �nite �eldF (which will have cardinality poly(j�j)). The (structure of the) 3CNF formula�(x1; :::; xn) is represented by a Boolean function C� : f0; 1gO(logn) ! f0; 1g suchthat C�(�; �1; �2; �3) = 1 if and only if, for i = 1; 2; 3, the ith literal in the �thclause of � has index �i = (i; �i), which is viewed as a variable name augmented byits sign. Thus, for every � 2 f0; 1glog j�j there is a unique (�1; �2; �3) 2 f0; 1g3 log 2nsuch that C�(�; �1; �2; �3) = 1 holds. Next, we consider a multi-linear extensionof C� over F, denoted �; that is, � is the (unique) multi-linear polynomial thatagrees with C� on f0; 1gO(logn) � FO(log n).Turning to the PCP, we �rst note that the veri�er can reduce the original 3SAT-instance � to the aforementioned arithmetic instance �; that is, on input a 3CNFformula �, the veri�er �rst constructs C� and � (as in Exercise 7.12). Part of theproof oracle for this veri�er is viewed as function A : Flog n ! F, which is supposedto be a multi-linear extension of a truth assignment that satis�es � (i.e., for every 2 f0; 1glogn � [n], the value A() is supposed to be the value of the th variablein such an assignment). Thus, we wish to check whether, for every � 2 f0; 1glog j�j,it holds that X�1�2�32f0;1g3 log 2n�(�; �1; �2; �3) � 3Yi=1 (1�A0(�i)) = 0 (9.7)where A0(�) is the value of the �th literal under the (variable) assignment A;that is, for � = (; �), where 2 f0; 1glogn is a variable name and � 2 f0; 1gindicates the literal's type (i.e., whether the variable is negated), it holds thatA0(�) = (1� �) �A() + � � (1�A()). Thus, Eq. (9.7) holds if and only if the �thclause is satis�ed by the assignment induced by A (because A0(�) = 1 must holdfor at least one of the three literals � that appear in this clause).3535Note that, for this � there exists a unique triple (�1; �2; �3) 2 f0; 1g3 log 2n such that

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 439As in x9.3.2.1, we cannot a�ord to verify all j�j instances of Eq. (9.7). Fur-thermore, unlike in x9.3.2.1, we cannot a�ord to take a random linear combinationof these j�j instances either (because this requires too much randomness). For-tunately, taking a \pseudorandom" linear combination of these equations is goodenough. Speci�cally, using an adequate (e�ciently constructible) small-bias prob-ability space (cf. x8.5.2.3) will do. Denoting such a space (of size poly(j�j � jF j)and bias at most 1=6) by S � Fj�j, we may select uniformly (s1; :::; sj�j) 2 S andcheck whether X��1�2�32f0;1g` s� ��(�; �1; �2; �3) � 3Yi=1 (1�A0(�i)) = 0 (9.8)where ` def= log j�j+ 3 log 2n. The small-bias property guarantees that if A fails tosatisfy any of the equations of type Eq. (9.7) then, with probability at least 1=3(taken over the choice of (s1; :::; sj�j) 2 S), it is the case that A fails to satisfyEq. (9.8). Since jSj = poly(j�j � jF j) rather that jSj = 2j�j, we can select a samplein S using O(log j�j) coin tosses. Thus, we have reduced the original problem tochecking whether, for a random (s1; :::; sj�j) 2 S, Eq. (9.8) holds.Assuming (for a moment) that A is a low-degree polynomial, we can probabilis-tically verify Eq. (9.8) by applying a \summation test" (as in the interactive prooffor coNP); that is, we refer to stripping the ` binary summations in iterations,where in each iteration the veri�er obtains a corresponding univariate polynomialand instantiates it at a random point. Indeed, the veri�er obtains the relevant uni-variate polynomials by making adequate queries (which specify the entire sequenceof choices made so far in the summation test).36 Note that after stripping the `summations, the veri�er end-ups with an expression that contains three unknownvalues of A0, which it may obtain by making corresponding queries to A. The sum-mation test involves tossing ` � log jFj coins and making (`+3) �O(log jFj) Booleanqueries (which correspond to ` queries that are each answered by a univariate poly-nomial of constant degree (over F), and three queries to A (each answered by anelement of F)). Soundness of the summation test follows by setting jF j � O(`),where ` = O(log j�j).Recall, however, that we may not assume that A is a multi-variate polynomial oflow degree. Instead, we must check that A is indeed a multi-variate polynomial oflow degree (or rather that it is close to such a polynomial), and use self-correctionfor retrieving the values of A (which are needed for the foregoing summation test).Fortunately, a \low-degree test"37 of complexities similar to those of the summationtest does exist (and self-correction is also possible within these complexities). Thus,�(�; �1; �2; �3) 6= 0. This triple (�1; �2; �3) encodes the literals appearing in the �th clause,and this clause is satis�ed by A if and only if 9i 2 [3] s.t. A0(�i) = 1.36The query will also contain a sequence (s1; :::; sj�j) 2 S, selected at random (by the veri�er)and �xed for the rest of the process.37By a low-degree test, we mean an oracle machine that accept any low-degree polynomial (overF) with probability 1, and rejects (with probability at least 1/2) any function that is far from alllow-degree polynomials. An appropriate test is presented in [195] (see also Exercise 9.23).

440 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSusing a �nite �eld F of poly(log(n)) elements, the foregoing yieldsNP � PCP(f; f)for f(n) def= O(log(n) � log log(n)).To obtain the desired PCP system of logarithmic randomness complexity, werepresent the names of the original variables and clauses by O(log n)log logn -long sequencesover f1; :::; logng, rather than by logarithmically-long binary sequences. This re-quires using low degree polynomial extensions (i.e., polynomial of degree (logn)�1),rather than multi-linear extensions. We can still use a �nite �eld of poly(log(n))elements, and so we need only O(log n)log logn �O(log logn) random bits for the summationand low-degree tests. However, the number of queries (needed for obtaining theanswers in these tests) grows, because now the polynomials that are involved haveindividual degree (log n) � 1 rather than constant individual degree. This merelymeans that the query-complexity increases by a factor of lognlog log n (since the individ-ual degree increases by a factor of logn but the number of variables decreases bya factor of log logn). Thus, we obtain NP � PCP(log; q) for q(n) def= O(log2 n).Warning: Robustness and PCP of proximity. Recall that, in order to usethe latter PCP system in composition, we need to guarantee that it (or a versionof it) is robust as well as to present a version that is a PCP of proximity. Thelatter version is relatively easy to obtain (using ideas as applied to the PCP ofx9.3.2.1), whereas obtaining robustness is too complex to be described here. Wecomment that one way of obtaining a robust PCP system is by a generic applicationof a (randomness-e�cient) \parallelization" of PCP systems (cf. [15]), which inturn depends heavily on highly e�cient low-degree tests. An alternative approach(cf. [35]) capitalizes of the speci�c structure of the summation test (as well as onthe evident robustness of a simple low-degree test).Reection. The PCP Theorem asserts a PCP system that obtains simultane-ously the minimal possible randomness and query complexity (up to a multiplica-tive factor, assuming that P 6= NP). The foregoing construction obtains thisremarkable result by combining two di�erent PCPs: the �rst PCP obtains loga-rithmic randomness but uses poly-logarithmically many queries, whereas the secondPCP uses a constant number of queries but has polynomial randomness complex-ity. We stress that each of these two PCP systems is highly non-trivial and veryinteresting by itself. We also highlight the fact that these PCPs are combined us-ing a very simple composition method (which refers to auxiliary properties such asrobustness and proximity testing).389.3.2.3 Overview of the second proof of the PCP TheoremThe original proof of the PCP Theorem focuses on the construction of two PCPsystems that are highly non-trivial and interesting by themselves, and combines38Advanced comment: We comment that the composition of PCP systems that lack theseextra properties is possible, but is far more cumbersome and complex. In some sense, this alterna-tive composition involves transforming the given PCP systems to ones having properties relatedto robustness and proximity testing.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 441them in a natural manner. Loosely speaking, this combination (via proof compo-sition) preserves the good features of each of the two systems; that is, it yields aPCP system that inherits the (logarithmic) randomness complexity of one systemand the (constant) query complexity of the other. In contrast, the following alter-native proof is focused at the \ampli�cation" of (the quality of) PCP systems, viaa gradual process of logarithmically many steps. We start with a trivial \PCP"system that has the desired complexities but rejects false assertions with probabil-ity inversely proportional to their length, and in each step we double the rejectionprobability while essentially maintaining the initial complexities. That is, in eachstep, the constant query complexity of the veri�er is preserved and its random-ness complexity is increased only by a constant term. Thus, the process graduallytransforms an extremely weak PCP system into a remarkably strong PCP system(i.e., a PCP as postulated in the PCP Theorem).In order to describe the aforementioned process we need to rede�ne PCP sys-tems so to allow arbitrary soundness error. In fact, for technical reasons, it is moreconvenient to describe the process as an iterated reduction of a \constraint satisfac-tion" problem to itself. Speci�cally, we refer to systems of 2-variable constraints,which are readily represented by (labeled) graphs such that the vertices correspondto (non-Boolean) variables and the edges are associated with constraints.De�nition 9.18 (CSP with 2-variable constraints): For a �xed �nite set �, aninstance of CSP consists of a graph G = (V;E) (which may have parallel edgesand self-loops) and a sequence of 2-variable constraints � = (�e)e2E associatedwith the edges, where each constraint has the form �e : �2 ! f0; 1g. The valueof an assignment � : V ! � is the number of constraints satis�ed by �; that is,the value of � is jf(u; v) 2 E : �(u;v)(�(u); �(v)) = 1gj. We denote by vlt(G;�)(standing for violation) the fraction of unsatis�ed constraints under the best possibleassignment; that is,vlt(G;�) = min�:V!�� jf(u; v) 2 E : �(u;v)(�(u); �(v)) = 0gjjEj �: (9.9)For various functions � : N ! (0; 1], we will consider the promise problem gapCSP�� ,having instances as in the foregoing, such that the yes-instances are fully satis-�able instances (i.e., vlt = 0) and the no-instances are pairs (G;�) for whichvlt(G;�) � �(jGj) holds, where jGj denotes the number of edges in G.Note that 3SAT is reducible to gapCSPf1;:::;7g�0 for �0(m) = 1=m; see Exercise 9.24.Our goal is to reduce 3SAT (or rather gapCSPf1;:::;7g�0) to gapCSP�c , for some �xed�nite � and constant c > 0. The PCP Theorem will follow by showing a simplePCP system for gapCSP�c ; see Exercise 9.26. (The relationship between constraintsatisfaction problems and the PCP Theorem is further discussed in Section 9.3.3.)The desired reduction of gapCSP��0 to gapCSP�
(1) is obtained by iteratively applyingthe following reduction logarithmically many times.Lemma 9.19 (amplifying reduction of gapCSP to itself): For some �nite � andconstant c > 0, there exists a polynomial-time computable function f such that, for

442 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSevery instance (G;�) of gapCSP�, it holds that (G0;�0) = f(G;�) is an instanceof gapCSP� and the two instances are related as follows:1. If vlt(G;�) = 0 then vlt(G0;�0) = 0.2. vlt(G0;�0) � min(2 � vlt(G;�); c).3. jG0j = O(jGj).That is, satis�able instances are mapped to satis�able instances, whereas instancesthat violate a � fraction of the constraints are mapped to that violate at leasta min(2�; c) fraction of the constraints. Furthermore, the mapping increases thenumber of edges (in the instance) by at most a constant factor. We stress thatboth � and �0 consists of Boolean constraints de�ned over �2. Thus, by itera-tively applying Lemma 9.19 for a logarithmic number of times, we reduce gapCSP��0to gapCSP�
(1) and 3SAT 2 PCP(log; O(1)) follows (as detailed in Exercise 9.24and 9.26).Proof Outline:39 Before turning to the proof, let us highlight the di�culty thatit needs to address. Speci�cally, the lemma asserts a \violation amplifying ef-fect" (i.e., Items 1 and 2), while maintaining the alphabet � and allowing onlya moderate increase in the size of the graph (i.e., Item 3). Waiving the latterrequirements allows a relatively simple proof that mimics (an augmented versionof)40 the \parallel repetition" of the corresponding PCP. Thus, the challenge issigni�cantly decreasing the \size blow-up" that arises from parallel repetition andmaintaining a �xed alphabet. The �rst goal (i.e., Item 3) calls for a suitable de-randomization, and indeed we shall use the Expander Random Walk Generator (ofSection 8.5.3). Those who read x9.3.2.2 may guess that the second goal (i.e., �xedalphabet) can be handled using the proof composition paradigm. (The rest of theoverview is intended to be understood also by those who did not read Section 8.5.3and x9.3.2.2.)The lemma is proved by presenting a three-step reduction. The �rst step is apre-processing step that makes the underlying graph suitable for further analysis(e.g., the resulting graph will be an expander). The value of vlt may decreaseduring this step by a constant factor. The heart of the reduction is the secondstep in which we increase vlt by any desired constant factor. This is done by aconstruction that corresponds to taking a random walk of constant length on thecurrent graph. The latter step also increases the alphabet �, and thus a post-processing step is employed to regain the original alphabet (by using any innerPCP systems; e.g., the one presented in x9.3.2.1). Details follow.We �rst stress that the aforementioned � and c, as well as the auxiliary pa-rameters d and t (to be introduced in the following two paragraphs), are �xedconstants that will be determined such that various conditions (which arise in the39For details, see [67].40Advanced comment: The augmentation is used to avoid using the Parallel RepetitionTheorem of [185]. In the augmented version, with constant probability (say half), a consistencycheck takes place between tuples that contain copies of the same variable (or query).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 443course of our argument) are satis�ed. Speci�cally, t will be the last parameter tobe determined (and it will be made greater than a constant that is determined byall the other parameters).We start with the pre-processing step. Our aim in this step is to reduce the input(G;�) of gapCSP� to an instance (G1;�1) such that G1 is a d-regular expandergraph.41 Furthermore, each vertex in G1 will have at least d=2 self-loops, thenumber of edges will be preserved up to a constant factor (i.e., jG1j = O(jGj)), andvlt(G1;�1) = �(vlt(G;�)). This step is quite simple: essentially, the originalvertices are replaced by expanders of size proportional to their degree, and a big(dummy) expander is superimposed on the resulting graph (see Exercise 9.27).The main step is aimed at increasing the fraction of violated constraints by asu�ciently large constant factor. The intuition underlying this step is that theprobability that a random (t-edge long) walk on the expander G1 intersects a �xedset of edges is closely related to the probability that a random sample of (t) edgesintersects this set. Thus, we may expect such walks to hit a violated edge withprobability that is min(�(t ��); c), where � is the fraction of violated edges. Indeed,the current step consists of reducing the instance (G1;�1) of gapCSP� to an instance(G2;�2) of gapCSP�0 such that �0 = �dt and the following holds:1. The vertex set of G2 is identical to the vertex set of G1, and each t-edgelong path in G1 is replaced by a corresponding edge in G2, which is thus adt-regular graph.2. The constraints in �2 refer to each element of �0 as a �-labeling of the(\distance � t") neighborhood of a vertex (see Figure 9.6), and mandatesthat the two corresponding labelings (of the endpoints of the G2-edge) areconsistent as well as satisfy �1. That is, the following two types of conditionsare enforced by the constraints of �2:(consistency): If vertices u and w are connected in G1 by a path of lengthat most t and vertex v resides on this path, then the �2-constraintassociated with the G2-edge between u and w mandates the equality ofthe entries corresponding to vertex v in the �0-labeling of vertices u andw.(satisfying �1): If the G1-edge (v; v0) is on a path of length at most t startingat u, then the �2-constraint associated with the G2-edge that corre-sponds to this path enforces the �1-constraint that is associated with(v; v0).Clearly, jG2j = dt�1 � jG1j = O(jG1j), because d is a constant and t will be setto a constant. (Indeed, the relatively moderate increase in the size of the graph41A d-regular graph is a graph in which each vertex is incident to exactly d edges. Looselyspeaking, an expander graph has the property that each moderately balanced cut (i.e., partitionof its vertex set) has relatively many edges crossing it. An equivalent de�nition, also used in theactual analysis, is that, except for the largest eigenvalue (which equals d), all the eigenvalues ofthe corresponding adjacency matrix have absolute value that is bounded away from d. For furtherdetails, see xE.2.1.1.

444 CHAPTER 9. PROBABILISTIC PROOF SYSTEMS
vu w

1

2

4

3

6

5 7

10

11

12

13

14

15

16
17

18

19

21 v

w6 7

3 4 5
19

8 109
18 19v

u w

u 7 20

22

23

23

21

20

89

Figure 9.6: The amplifying reduction. The alphabet �0 as a labeling of the distancet = 3 neighborhoods, when repetitions are omitted. In this case d = 6 but the self-loops are not shown (and so the \e�ective" degree is three). The two-sided arrowindicates one of the edges in G1 that will contribute to the edge constraint betweenu and w in (G2;�2).corresponds to the low randomness-complexity of selecting a random walk of lengtht in G1.)Turning to the analysis of this step, we note that vlt(G1;�1) = 0 impliesvlt(G2;�2) = 0. The interesting fact is that the fraction of violated constraintsincreases by a factor of
(pt); that is, vlt(G2;�2) � min(
(pt � vlt(G1;�1)); c).Here we merely provide a rough intuition and refer the interested reader to [67]. Wemay focus on any �0-labeling to the vertices of G2 that is consistent with some �-labeling of G1, because relatively few inconsistencies (among the �-values assignedto a vertex by the �0-labeling of other vertices) can be ignored, while relativelymany such inconsistencies yield violation of the \equality constraints" of manyedges in G2. Intuitively, relying on the hypothesis that G1 is an expander, it followsthat the set of violated edge-constraints (of �1) with respect to the aforementioned�-labeling causes many more edge-constraints of �2 to be violated (because eachedge-constraint of �1 is enforced by many edge-constraints of �2). The point isthat any set F of edges of G1 is likely to appear on a min(
(t) � jF j=jG1j;
(1))fraction of the edges of G2 (i.e., t-paths of G1). (Note that the claim would have

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 445been obvious if G1 were a complete graph, but it also holds for an expander.)42The factor of
(pt) gained in the second step makes up for the constant factorlost in the �rst step (as well as the constant factor to be lost in the last step).Furthermore, for a suitable choice of the constant t, the aforementioned gain yieldsan overall constant factor ampli�cation (of vlt). However, so far we obtained aninstance of gapCSP�0 rather than an instance of gapCSP�, where �0 = �dt . Thepurpose of the last step is to reduce the latter instance to an instance of gapCSP�.This is done by viewing the instance of gapCSP�0 as a PCP-system43 (analogously toExercise 9.26), and composing it with an inner-veri�er using the proof compositionparadigm outlined in x9.3.2.2. We stress that the inner-veri�er used here needs onlyhandle instances of constant size (i.e., having description length O(dt log j�j)), andso the veri�er presented in x9.3.2.1 will do. The resulting PCP-system uses random-ness r def= log2 jG2j + O(dt log j�j)2 and a constant number of binary queries, andhas rejection probability
(vlt(G2;�2)), which is independent of the choice of theconstant t. As in Exercise 9.24, for � = f0; 1gO(1), we can easily obtain an instanceof gapCSP�, that has a
(vlt(G2;�2)) fraction of violated constraints. Further-more, the size of the resulting instance (which is used as the output (G0;�0) of thethree-step reduction) is O(2r) = O(jG2j), where the equality uses the fact that dand t are constants. Recalling that vlt(G2;�2) � min(
(pt � vlt(G1;�1)); c) andvlt(G1;�1) =
(vlt(G;�)), this completes the (outline of the) proof of the entirelemma.Reection. In contrast to the proof presented in x9.3.2.2, which combines tworemarkable constructs by using a simple composition method, the current proofof the PCP Theorem is based on developing a powerful \combining method" thatimproves the quality of the main system to which it is applied. This new method,captured by the Ampli�cation Lemma (Lemma 9.19), does not merely obtain thebest of the combined systems, but rather obtains a better system than the one given.However, the quality-ampli�cation o�ered by Lemma 9.19 is rather moderate, andthus many applications are required in order to derive the desired result. Takingthe opposite perspective, one may say that remarkable results are obtained by agradual process of many moderate ampli�cation steps.9.3.3 PCP and ApproximationThe characterization of NP in terms of probabilistically checkable proofs playsa central role in the study of the complexity of natural approximation problems(cf., Section 10.1.1). To demonstrate this relationship, we �rst note that any PCPsystem V gives rise to an approximation problem that consists of estimating themaximum acceptance probability for a given input; that is, on input x, the taskis approximating the probability that V accepts x when given oracle access to42We mention that, due to a technical di�culty, it is easier to establish the claimed bound of
(pt � vlt(G1;�1)) rather than
(t � vlt(G1;�1)).43The PCP-system referred to here has arbitrary soundness error (i.e., it rejects the instance(G2;�2) with probability vlt(G2;�2) 2 [0; 1]).

446 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSthe best possible � (i.e., we wish to approximate max�fPr[V �(x) = 1]g). Thus,if S 2 PCP(r; q) then deciding membership in S is reducible to approximatingthe maximum among exp(2r+q) quantities (corresponding to all e�ective oracles),where each quantity can be evaluated in time 2r � poly. For (the validity of) thisreduction, an approximation up to a constant factor (of 2) will do.Note that the foregoing approximation problem is parameterized by a PCP ver-i�er V , and its instances are given their value with respect to this veri�er (i.e., theinstance x has value max�fPr[V �(x)=1]g). This per se does not yield a \natural"approximation problem. In order to link PCP systems with natural approxima-tion problems, we take a closer look at the approximation problem associated withPCP(r; q).For simplicity, we focus on the case of non-adaptive PCP systems (i.e., all thequeries are determined beforehand based on the input and the internal coin tossesof the veri�er). Fixing an input x for such a system, we consider the 2r(jxj) Booleanformulae that represent the decision of the veri�er on each of the possible outcomesof its coin tosses after inspecting the corresponding bits in the proof oracle. That is,each of these 2r(jxj) formulae depends on q(jxj) Boolean variables that represent thevalues of the corresponding bits in the proof oracle. Thus, if x is a yes-instance thenthere exists a truth assignment (to these variables) that satis�es all 2r(jxj) formulae,whereas if x is a no-instance then there exists no truth assignment that satis�esmore than 2r(jxj)�1 formulae. Furthermore, in the case that r(n) = O(log n), givenx, we can construct the corresponding sequence of formulae in polynomial-time.Hence, the PCP Theorem (i.e., Theorem 9.16) yields NP-hardness results regardingthe approximation of the number of simultaneously satis�able Boolean formulae ofconstant size. This motivates the following de�nition.De�nition 9.20 (gap problems for SAT and generalized-SAT): For constants q 2N and " > 0, the promise problem gapGSATq" refers to instances that are each asequence of q-variable Boolean formulae (i.e., each formula depends on at mostq variables). The yes-instances are sequences that are simultaneously satis�able,whereas the no-instances are sequences for which no Boolean assignment satis�esmore than a 1� " fraction of the formulae in the sequence. The promise problemgapSATq" is de�ned analogously, except that in this case each instance is a sequenceof disjunctive clause (i.e., each formula in each sequence consists of a single dis-junctive clause).Indeed, each instance of gapSATq" is naturally viewed as q-CNF formulae, and weconsider an assignment that satis�es as many clauses (of the input CNF) as possible.As hinted, NP � PCP(log; O(1)) implies that gapGSATO(1)1=2 is NP-complete, whichin turn implies that for some constant " > 0 the problem gapSAT3" is NP-complete.The converses hold too. All these claims are stated and proved next.Theorem 9.21 (equivalent formulations of the PCP Theorem). The followingthree conditions are equivalent:1. The PCP Theorem: there exists a constant q such that NP � PCP(log; q).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 4472. There exists a constant q such that gapGSATq1=2 is NP-hard.3. There exists a constant " > 0 such that gapSAT3" is NP-hard.The point of Theorem 9.21 is not its mere validity (which follows from the valid-ity of each of the three items), but rather the fact that its proof is quite simple.Note that Items 2 and 3 make no reference to PCP. Thus, their (easy to estab-lish) equivalence to Item 1 manifests that the hardness of approximating naturaloptimization problems lies at the heart of the PCP Theorem. In general, proba-bilistically checkable proof systems for NP yield strong inapproximability resultsfor various classical optimization problems (cf., Exercise 9.18 and Section 10.1.1).Proof: We �rst show that the PCP Theorem implies the NP-hardness of gapGSAT.We may assume, without loss of generality, that, for some constant q and everyS 2 NP , it holds that S 2 PCP(O(log); q) via a non-adaptive veri�er (becauseq adaptive queries can be emulated by 2q non-adaptive queries). We reduce S togapGSAT as follows. On input x, we scan all 2O(log jxj) possible sequence of outcomesof the veri�er's coin tosses, and for each such sequence of outcomes we determinethe queries made by the veri�er as well as the residual decision predicate (where thispredicate determines which sequences of answers lead this veri�er to accept). Thatis, for each random-outcome ! 2 f0; 1gO(log jxj), we consider the residual predicate,determined by x and !, that speci�es which q-bit long sequence of oracle answersmakes the veri�er accept x on coins !. Indeed, this predicate depends only on qvariables (which represent the values of the q corresponding oracle answers). Thus,we map x to a sequence of poly(jxj) formulae, each depending on q variables,obtaining an instance of gapGSATq. This mapping can be computed in polynomial-time, and indeed x 2 S (resp., x 62 S) is mapped to a yes-instance (resp., no-instance) of gapGSATq1=2.Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Speci�cally,gapGSATq1=2 reduces to gapSATq2�(q+1) , which in turn reduces to gapSAT3" for " =2�(q+1)=(q � 2). Note that Item 3 implies Item 2 (e.g., given an instance of gapSAT3",consider all possible conjunctions of 1=" disjunctive clauses in the given instance).We complete the proof by showing that Item 3 implies Item 1. (The sameargument shows that Item 2 implies Item 1.) This is done by showing that gapSAT3"is in PCP("�1 log; 3"�1), and using the reduction of NP to gapSAT3" to derive acorresponding PCP for each set in NP . In fact, we show that gapGSATq" is inPCP("�1 log; "�1q), and do so by presenting a very natural PCP system. In thisPCP system the proof oracle is supposed to be an satisfying assignment, and theveri�er selects at random one of the (q-variable) formulae in the input sequence,and checks whether it is satis�ed by the (assignment given by the) oracle. Thisamounts to tossing logarithmically many coins and making q queries. This veri�eralways accepts yes-instances (when given access to an adequate oracle), whereaseach no-instances is rejected with probability at least " (no matter which oracle isused). To amplify the rejection probability (to the desired threshold of 1/2), weinvoke the foregoing veri�er "�1 times (and note that (1� ")1=" < 1=2).

448 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSGap amplifying reductions { a reection. Item 2 (resp., Item 3) of Theo-rem 9.21 implies that GSAT (resp., 3SAT) can be reduce to gapGSAT1=2 (resp., togapSAT3"). This means that there exist \gap amplifying" reductions of problemslike 3SAT to themselves, where these reductions map yes-instances to yes-instances(as usual), while mapping no-instances to no-instances that are \far" from beingyes-instances. That is, no-instances are mapped to no-instances of a special typesuch that a \gap" is created between the yes-instances and no-instances at theimage of the reduction. For example, in the case of 3SAT, unsatis�able formu-lae are mapped to formulae that are not merely unsatis�able but rather have noassignment that satis�es more than a 1 � " fraction of the clauses. Thus, PCPconstructions are essentially \gap amplifying" reductions.9.3.4 More on PCP itself: an overviewWe start by discussing variants of the PCP characterization of NP, and next turnto PCPs having expressing power beyond NP. Needless to say, the latter systemshave super-logarithmic randomness complexity.9.3.4.1 More on the PCP characterization of NPInterestingly, the two complexity measures in the PCP-characterization of NPcan be traded o� such that at the extremes we get NP = PCP(log; O(1)) andNP = PCP(0; poly), respectively.Proposition 9.22 For every S 2 NP, there exists a logarithmic function ` (i.e.,` 2 log) such that, for every integer function k that satis�es 0� k(n) � `(n), itholds that S 2 PCP(`� k;O(2k)). (Recall that PCP(log; poly) � NP .)Proof Sketch: By Theorem 9.16, we have S 2 PCP(`; O(1)). To show thatS 2 PCP(` � k;O(2k)), we consider an emulation of the corresponding veri�er inwhich we try all possibilities for the k(n)-bit long pre�x of its random-tape.Following the establishment of Theorem 9.16, numerous variants of the PCPCharacterization of NP were explored. These variants refer to a �ner analysis ofvarious parameters of probabilistically checkable proof systems (for sets in NP).Following is a brief summary of some of these studies.44The length of PCPs. Recall that the e�ective length of the oracle in anyPCP(log; log) system is polynomial (in the length of the input). Furthermore,in the PCP systems underlying the proof of Theorem 9.16 the queries refer only toa polynomially long pre�x of the oracle, and so the actual length of these PCPs forNP is polynomial. Remarkably, the length of PCPs for NP can be made nearly-linear (in the combined length of the input and the standard NP-witness), whilemaintaining constant query complexity, where by nearly-linear we mean linear up44With the exception of works that appeared after [90], we provide no references for the resultsquoted here. We refer the interested reader to [90, Sec. 2.4.4].

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 449to a poly-logarithmic factor. (For details see [36, 67].) This means that a rel-atively modest amount of redundancy in the proof oracle su�ces for supportingprobabilistic veri�cation via a constant number of probes.The number of queries in PCPs. Theorem 9.16 asserts that a constant num-ber of queries su�ce for PCPs with logarithmic randomness and soundness errorof 1=2 (for NP). It is currently known that this constant is at most �ve, whereaswith three queries one may get arbitrary close to a soundness error of 1=2. Theobvious trade-o� between the number of queries and the soundness error gives riseto the robust notion of amortized query-complexity, de�ned as the ratio between thenumber of queries and (minus) the logarithm (to based 2) of the soundness error.For every " > 0, any set in NP has a PCP system with logarithmic randomnessand amortized query-complexity 1+ " (cf. [119]), whereas only sets in P have PCPsof logarithmic randomness and amortized query-complexity less than 1.Free-bit complexity. The motivation to the notion of free bits came from thePCP{to{MaxClique connection (see Exercise 9.18 and [29, Sec. 8]), but we believethat this notion is of independent interest. Intuitively, this notion distinguishesbetween queries for which the acceptable answer is determined by previously ob-tained answers (i.e., the veri�er compares the answer to a value determined by theprevious answers) and queries for which the veri�er only records the answer forfuture usage. The latter queries are called free (because any answer to them is \ac-ceptable"). For example, in the linearity test (see x9.3.2.1) the �rst two queries arefree and the third is not (i.e., the test accepts if and only if f(x)+f(y) = f(x+y)).The amortized free-bit complexity is de�ne analogously to the amortized query com-plexity. Interestingly, NP has PCPs with logarithmic randomness and amortizedfree-bit complexity less than any positive constant.Adaptive versus non-adaptive veri�ers. Recall that a PCP veri�er is callednon-adaptive if its queries are determined solely based on its input and the outcomeof its coin tosses. (A general veri�er, called adaptive, may determine its queries alsobased on previously received oracle answers.) Recall that the PCP Characterizationof NP (i.e., Theorem 9.16) is established using a non-adaptive veri�er; however, itturns out that adaptive veri�ers are more powerful than non-adaptive ones in termsof quantitative results: Speci�cally, for PCP veri�ers making three queries andhaving logarithmic randomness complexity, adaptive queries provide for soundnesserror at most 0:51 (actually 0:5 + " for any " > 0) for any set in NP , whereasnon-adaptive queries provide soundness error 5=8 (or less) only for sets in P .Non-binary queries. Our de�nition of PCP allows only binary queries. Cer-tainly, non-binary queries can be emulated by binary queries, but the converse doesnot necessarily hold.45 For this reason, \parallel repetition" is highly non-trivial45Advanced comment: The source of trouble is the adversarial settings (implicit in thesoundness condition), which means that when several binary queries are packed into one non-binary query, the adversary need not respect the packing (i.e., it may answer inconsistently on

450 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSin the PCP setting. Still, a Parallel Repetition Theorem that refers to indepen-dent invocations of the same PCP is known, but it is not applicable for obtainingsoundness error smaller than a constant (while preserving logarithmic randomness).Nevertheless, using adequate \consistency tests" one may construct PCP systemsfor NP using logarithmic randomness, a constant number of (non-binary) queriesand soundness error exponential in the length of the answers. (Currently, this isknown only for sub-logarithmic answer lengths.)9.3.4.2 Stronger forms of PCP systems for NPAlthough the PCP Theorem is famous mainly for its negative applications to thestudy of natural approximation problems (see Section 9.3.3 and x10.1.1.2), its po-tential for direct positive applications is fascinating. Indeed, the vision of speeding-up the veri�cation of mundane proofs is exciting, where these proofs may refer tomundane assertions such as the correctness of a speci�c computation. Enablingsuch a speed-up requires a strengthening of the PCP Theorem such that it man-dates e�cient veri�cation time rather than \merely" low query-complexity of theveri�cation task. Such a strengthening is possible.Theorem 9.23 (Theorem 9.16 { strengthened): Every set S in NP has a PCPsystem V of logarithmic randomness-complexity, constant query-complexity, andquadratic time-complexity. Furthermore, NP-witnesses for membership in S can betransformed in polynomial-time to corresponding proof-oracles for V .The furthermore part was already stated in Section 9.3.2 (as a strengthening ofTheorem 9.16). Thus, the novelty in Theorem 9.23 is that it provides quadraticveri�cation time, rather than polynomial veri�cation time (where the polynomialmay depend arbitrarily on the set S). Theorem 9.23 is proved by noting that thatthe CNF formulae that is obtained by reducing S to 3SAT are highly uniform, andthus the veri�er V that is outlined in x9.3.2.2 can be implemented in quadratictime. Indeed, the most time-consuming operation required of V is evaluating thelow-degree extension � (of C�), which corresponds to the input formula �, at a fewpoints. In the context of x9.3.2.2, evaluating � in exponential-time su�ces (sincethis means time that is polynomial in j�j). Theorem 9.23 follows by showing thata variant of � can be evaluated in polynomial-time (since this means time that ispolylogarithmic in j�j); for details, see Exercise 9.30.PCPs of Proximity. Clearly, we cannot expect a PCP system (or any standardproof system for that matter) to have sub-linear veri�cation time (since linear-time is required for merely reading the input). Nevertheless, we may consider arelaxation of the veri�cation task (regarding proofs of membership in a set S). Inthis relaxation the veri�er is only required to reject any input that is \far" fromthe same binary query depending on the other queries packed with it). This trouble becomesacute in the case of PCPs, because they do not correspond to a full information game. Indeed,in contrast, parallel repetition is easy to analyze in the case of interactive proof systems, becausethey can be modeled as full information games: this is obvious in the case of public-coin systems,but also holds for general interactive proof systems (see Exercise 9.1).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 451S (regardless of the alleged proof), and, as usual, accept any input that is in S(when accompanied with an adequate proof). Speci�cally, in order to allow sub-linear time veri�cation, we provide the veri�er V with direct access to the bitsof the input (which is viewed as an oracle) as well as with direct access to theusual (PCP) proof-oracle, and require that the following two conditions hold (withrespect to some constant " > 0):Completeness: For every x 2 S there exists a string �x such that, when given accessto the oracles x and �x, machine V always accepts.Soundness with respect to proximity ": For every string x that is "-far from S (i.e.,for every x0 2 f0; 1gjxj \ S it holds that x and x0 di�er on at least "jxj bits)and every string �, when given access to the oracles x and �, machine Vrejects with probability at least 12 .Machine V is called a PCP of proximity, and its queries to both oracles are countedin its query-complexity. (Indeed, a PCP of proximity was used in x9.3.2.2, andthe notion is analogous to a relaxation of decision problems that is reviewed inSection 10.1.2.)We mention that every set in NP has a PCPs of proximity of logarithmicrandomness-complexity, constant query-complexity, and polylogarithmic time-complexity.This follows by using ideas as underlying the proof of Theorem 9.23 (see also Ex-ercise 9.30).9.3.4.3 PCP with super-logarithmic randomnessOur focus so far was on the important case where the veri�er tosses logarithmicallymany coins, and hence the \e�ective proof length" is polynomial. Here we mentionthat the PCP Theorem (or rather Theorem 9.23) scales up.46Theorem 9.24 (Theorem 9.16 { Generalized): Let t(�) be an integer function suchthat n<t(n)<2poly(n). Then, Ntime(t) � PCP(O(log t); O(1)).Recall that PCP(r; q) � Ntime(t), for t(n) = poly(n) � 2r(n). Thus, the NtimeHierarchy implies a hierarchy of PCP(�; O(1)) classes, for randomness complexityranging between logarithmic and polynomial functions.Chapter Notes(The following historical notes are quite long and still they fail to properly discussseveral important technical contributions that played an important role in the de-velopment of the area. For further details, the reader is referred to [90, Sec. 2.6.2].)Motivated by the desire to formulate the most general type of \proofs" thatmay be used within cryptographic protocols, Goldwasser, Micali and Racko� [109]46Note that the sketched proof of Theorem 9.23 yields veri�cation time that is quadratic in thelength of the input and polylogarithmic in the length of the NP-witness.

452 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSintroduced the notion of an interactive proof system. Although the main thrust oftheir work was the introduction of a special type of interactive proofs (i.e., onesthat are zero-knowledge), the possibility that interactive proof systems may be morepowerful from NP-proof systems was pointed out in [109]. Independently of [109],Babai [18] suggested a di�erent formulation of interactive proofs, which he calledArthur-Merlin Games. Syntactically, Arthur-Merlin Games are a restricted formof interactive proof systems, yet it was subsequently shown that these restrictedsystems are as powerful as the general ones (cf., [111]). The speed-up result (i.e.,AM(2f) � AM(f)) is due to [23] (improving over [18]).The �rst evidence to the power of interactive proofs was given by Goldreich,Micali, and Wigderson [100], who presented an interactive proof system for GraphNon-Isomorphism (Construction 9.3). More importantly, they demonstrated thegenerality and wide applicability of zero-knowledge proofs: Assuming the existenceof one-way function, they showed how to construct zero-knowledge interactiveproofs for any set in NP (Theorem 9.11). This result has had a dramatic im-pact on the design of cryptographic protocols (cf., [101]). For further discussionof zero-knowledge and its applications to cryptography, see Appendix C. Theo-rem 9.12 (i.e., ZK = IP) is due to [32, 130].Probabilistically checkable proof (PCP) systems are related to multi-prover in-teractive proof systems, a generalization of interactive proofs that was suggestedby Ben-Or, Goldwasser, Kilian and Wigderson [33]. Again, the main motivationcame from the zero-knowledge perspective; speci�cally, presenting multi-proverzero-knowledge proofs for NP without relying on intractability assumptions. Yet,the complexity theoretic prospects of the new class, denotedMIP, have not beenignored.The amazing power of interactive proof systems was demonstrated by usingalgebraic methods. The basic technique was introduced by Lund, Fortnow, Karlo�and Nisan [162], who applied it to show that the polynomial-time hierarchy (andactually P#P) is in IP . Subsequently, Shamir [205] used the technique to showthat IP = PSPACE , and Babai, Fortnow and Lund [20] used it to show thatMIP = NEXP . (Our entire proof of Theorem 9.4 follows [205].)The aforementioned multi-prover proof system of Babai, Fortnow and Lund [20](hereafter referred to as the BFL proof system) has been the starting point for fun-damental developments regarding NP . The �rst development was the discoverythat the BFL proof system can be \scaled-down" from NEXP to NP . This im-portant discovery was made independently by two sets of authors: Babai, Fortnow,Levin, and Szegedy [21] and Feige, Goldwasser, Lov�asz, and Safra [73]. However,the manner in which the BFL proof is scaled-down is di�erent in the two papers,and so are the consequences of the scaling-down.Babai et. al. [21] start by considering (only) inputs encoded using a special error-correcting code. The encoding of strings, relative to this error-correcting code, canbe computed in polynomial time. They presented an almost-linear time algorithmthat transforms NP-witnesses (to inputs in a set S 2 NP) into transparent proofsthat can be veri�ed (as vouching for the correctness of the encoded assertion)in (probabilistic) poly-logarithmic time (by a Random Access Machine). Babai

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 453et. al. [21] stress the practical aspects of transparent proofs; speci�cally, for rapidlychecking transcripts of long computations.In contrast, in the proof system of Feige et. al. [73, 74] the veri�er stayspolynomial-time and only two more re�ned complexity measures (i.e., the ran-domness and query complexities) are reduced to poly-logarithmic. This eliminatesthe need to assume that the input is in a special error-correcting form, and yieldsa re�ned (quantitative) version of the notion of probabilistically checkable proofsystems (introduced in [80]), where the re�nement is obtained by specifying therandomness and query complexities (see De�nition 9.14). Hence, whereas the BFLproof system [20] can be reinterpreted as establishing NEXP = PCP(poly; poly),the work of Feige et. al. [74] establishes NP � PCP(f; f), where f(n) = O(log n �log logn). (In retrospect, we note that the work of Babai et. al. [21] implies thatNP � PCP(log; polylog).)Interest in the new complexity class became immense since Feige et. al. [73, 74]demonstrated its relevance to proving the intractability of approximating some nat-ural combinatorial problems (speci�cally, for MaxClique). When using the PCP{to{MaxClique connection established by Feige et. al., the randomness and querycomplexities of the veri�er (in a PCP system for an NP-complete set) relate tothe strength of the negative results obtained for the approximation problems. Thisfact provided a very strong motivation for trying to reduce these complexities andobtain a tight characterization of NP in terms of PCP(�; �). The obvious challengewas showing that NP equals PCP(log; log). This challenge was met by Arora andSafra [16]. Actually, they showed that NP = PCP(log; q), where q(n) = o(log n).Hence, a new challenge arose; namely, further reducing the query complexity {in particular, to a constant { while maintaining the logarithmic randomness com-plexity. Again, additional motivation for this challenge came from the relevance ofsuch a result to the study of natural approximation problems. The new challengewas met by Arora, Lund, Motwani, Sudan and Szegedy [15], and is captured bythe PCP Characterization Theorem, which asserts that NP = PCP(log; O(1)).Indeed the PCP Characterization Theorem is a culmination of a sequence ofimpressive works [162, 20, 21, 74, 16, 15]. These works are rich in innovative ideas(e.g., various arithmetizations of SAT as well as various forms of proof composi-tion) and employ numerous techniques (e.g., low-degree tests, self-correction, andpseudorandomness). Our overview of the original proof of the PCP Theorem (inx9.3.2.1{9.3.2.2) is based on [15, 16].47 The alternative proof outlined in x9.3.2.3is due to Dinur [67].We mention some of the ideas and techniques involved in deriving even strongervariants of the PCP Theorem (which are surveyed in x9.3.4.1). These includethe Parallel Repetition Theorem [185], the use of the Long-Code [29], and theapplication of Fourier analysis in this setting [116, 117]. We also highlight thenotions of PCPs of proximity and robustness (see [35, 68]).47Our presentation also bene�ts from the notions of PCPs of proximity and robustness, putforward in [35, 68].

454 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSComputationally-Sound Proof Systems. Argument systems were de�ned byBrassard, Chaum and Cr�epeau [49], with the motivation of providing perfect zero-knowledge arguments (rather than zero-knowledge proofs) for NP . A few yearslater, Kilian [145] demonstrated their signi�cance beyond the domain of zero-knowledge by showing that, under some reasonable intractability assumptions, ev-ery set in NP has a computationally-sound proof in which the randomness andcommunication complexities are poly-logarithmic.48 Interestingly, these argumentsystems rely on the fact that NP � PCP(f; f), for f(n) = poly(logn). We men-tion that Micali [165] suggested a di�erent type of computationally-sound proofsystems (which he called CS-proofs).Final comment: The current chapter is a revision of [90, Chap. 2]. In particular,more details are provided here for the main topics, whereas numerous secondarytopics discussed in [90, Chap. 2] are not mentioned here (or are only briey men-tioned here). We note that a few of the research directions that were mentionedin [90, Sec. 2.4.4] have received considerable attention in the period that elapsed,and improved results are currently known. In particular, the interested reader isreferred to [35, 36, 67] for a study of the length of PCPs, and to [119] for a studyof their amortized query complexity. Likewise, a few open problems mentionedin [90, Sec. 2.6.3] have been resolved; speci�cally, the interested reader is referredto [25, 172] for breakthrough results regarding zero-knowledge.ExercisesExercise 9.1 (parallel error-reduction for interactive proof systems) By tparallel repetitions of the proof system (P; V) we mean an interaction in which tcopies of the basic system are executed in parallel such that, at the ith move, therelevant party performs the ith move for each of these t copies. Needless to say,a honest party (i.e., the veri�er) will act in each copy independently of the othercopies, but a dishonest prover may determine its action in each copy based on theexecution of all copies. Nevertheless, prove that the error probability (in the sound-ness condition) decreases exponentially with the number of parallel repetitions (ofthe proof system).Guideline: As a warm-up, consider the special case of public-coin interactive proof sys-tems. Next, generalize the analysis to arbitrary interactive proof systems, by considering(as a mental experiment) a \powerful veri�er" that emulates the original veri�er whilebehaving as in the public-coin model. (A direct proof appears in [90, Apdx. C.1].)Exercise 9.2 Prove that if S is Karp-reducible to a set in IP , then S 2 IP .Prove that if S is Cook-reducible to a set S0 such that both S0 and f0; 1g� nS0 arein IP , then S 2 IP .Exercise 9.3 Complete the details of the proof that coNP � IP (i.e., the �rstpart of the proof of Theorem 9.4). In particular, suppose that the protocol for48We comment that interactive proofs are unlikely to have such low complexities; see [106].

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 455unsatis�ability is applied to a CNF formula with n variables and m clauses. Then,what is the length of the messages sent by the two parties? What is the soundnesserror?Exercise 9.4 Present an interactive proof system for unsatis�ability such that oninput a CNF formula having n variables the parties exchange n=O(logn) messages.Guideline: Modify the (�rst part of the) proof of Theorem 9.4, by stripping O(log n)summations in each round.Exercise 9.5 (an interactive proof system for #P) Using the main part ofthe proof of Theorem 9.4, present a proof system for the counting set of Eq. (9.5).Guideline: Use a slightly di�erent arithmetization of CNF formulae. Speci�cally, insteadof replacing the clause x_:y_ z by the term (x+(1�y)+ z), replace it by the term (1�((1�x)�y �(1�z))). The point is that this arithmetization maps Boolean assignments thatsatisfy the CNF formula to 0-1 assignments that when substituted in the correspondingarithmetic expression yield the value 1 (rather than yielding a somewhat arbitrary positiveinteger).Exercise 9.6 Show that QBF can be reduced to a special form of (non-canonical)49QBF in which no variable appears both to the left and to the right of more thanone universal quanti�er.Guideline: Consider a process (which proceeds from left to right) of \refreshing" vari-ables after each universal quanti�er. Let �(x1; :::; xs; y; xs+1; :::; xs+t) be a quanti�er-freeboolean formula and let Qs+1; :::; Qs+t be an arbitrary sequence of quanti�ers. Then, wereplace the quanti�ed (sub-)formula8yQs+1xs+1 � � � Qs+txs+t �(x1; :::; xs; y; xs+1; :::; xs+t)by the (sub-)formula8y9x01 � � � 9x0s[(^si=1(x0i = xi)) ^ Qs+1xs+1 � � � Qs+txs+t �(x01; :::; x0s; y; xs+1; :::; xs+t)] :Note that the variables x1; :::; xs do not appear to the right of the quanti�er Qs+1 inthe replaced formula, and that the length of the replaced formula grows by an additiveterm of O(s). This process of refreshing variables is applied from left to right on theentire sequence of universal quanti�ers (except the inner one, for which this refreshing isuseless).5049See Appendix G.2.50For example, 9z18z29z38z49z58z6 �(z1; z2; z3; z4; z5; z6)is �rst replaced by9z18z29z01 [(z01 = z1) ^ 9z38z49z58z6 �(z01; z2; z3; z4; z5; z6)]and next (written as 9z18z029z01 [(z01 = z1) ^ 9z038z049z058z06 �(z01; z02; z03; z04; z05; z06)]) is replaced by9z18z029z01 [(z01 = z1) ^ 9z038z049z001 9z002 9z003[(^3i=1(z00i = z0i)) ^ 9z058z06�(z001 ; z002 ; z003 ; z04; z05; z06)]]:Thus, in the resulting formula, no variable appears both to the left and to the right of more thana single universal quanti�er.

456 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSExercise 9.7 Prove that if two integers in [0;M] are di�erent then they must bedi�erent modulo most of the primes in the interval [3; L], where L = poly(logM)].Prove the same for the interval [L; 2L].Guideline: Let a 6= b 2 [0;M] and suppose that P1; :::; Pt is an enumeration of all theprimes that satisfy a � b (mod Pi). Using the Chinese Reminder Theorem, prove thatQ def= Qti=1 Pi �M (because otherwise a = b follows by combining a � b (mod Q) withthe hypothesis a; b 2 [0;M]). It follows that t < log2M . Using a lower-bound on thedensity of prime numbers, the claim follows.Exercise 9.8 (on interactive proofs with two-sided error (following [82]))Let IP 0(f) denote the class of sets having a two-sided error interactive proof systemin which a total of f(jxj) messages are exchanged on common input x. Speci�cally,suppose that a suitable prover may cause every yes-instance to be accepted withprobability at least 2=3 (rather than 1), while no cheating prover can cause ano-instance to be accepted with probability greater than 1=3 (rather than 1=2).Similarly, let AM0 denote the public-coin version of IP 0.1. Establish IP 0(f) � AM0(f + 3) by noting that the proof of Theorem ??,which establishes IP(f) � AM(f+3), extends to the two-sided error setting.2. Prove that AM0(f) � AM(f + 1) by extending the ideas underlying theproof of Theorem 6.9, which actually establishes that BPP � AM(1) (whereBPP = AM0(0)).Using the Round Speed-up Theorem (i.e., Theorem ??), conclude that, for everyfunction f : N ! N n f1g, it holds that IP 0(f) = AM(f) = IP(f).Guideline (for Part 2): Fixing an optimal prover strategy for the given two-sidederror public-coin interactive proof, consider the set of veri�er coins that make the veri�eraccept any �xed yes-instance, and apply the ideas underlying the transformation of BPPtoMA = AM(1). For further details, see [82].Exercise 9.9 In continuation to Exercise 9.8, show that IP 0(f) = IP(f) for everyfunction f : N ! N (including f � 1).Guideline: Focus on establishing IP 0(1) = IP(1), which is identical to Part 2 of Exer-cise 6.12. Note that the relevant classes de�ned in Exercise 6.12 coincide with IP(1) andIP 0(1); that is,MA = IP(1) andMA(2) = IP 0(1).Exercise 9.10 Prove that every PSPACE-complete set S has an interactive proofsystem in which the designated prover can be implemented by a probabilisticpolynomial-time oracle machine that is given oracle access to S.Guideline: Use Theorem 9.4 and Proposition 9.5.Exercise 9.11 (checkers (following [39])) A probabilistic polynomial-time or-acle machine C is called a checker for the decision problem � if the following twoconditions hold:

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 4571. For every x it holds that Pr[C�(x)=1] = 1, where (as usual) Cf (x) denotesthe output of A on input x when given oracle access to f .2. For every f : f0; 1g� ! f0; 1g and every x such that f(x) 6= �(x) it holdsthat Pr[Cf (x)=1] � 1=2.Note that nothing is required in the case that f(x) = �(x) but f 6= �. Prove thatif both S1 = fx : �(x)=1g and S0 = fx : �(x)=0g have interactive proof systemsin which the designated prover can be implemented by a probabilistic polynomial-time oracle machine that is given oracle access to �, then � has a checker. UsingExercise 9.10, conclude that any PSPACE-complete problem has a checker.Guideline: On input x and oracle access to f , the checker �rst obtains � def= f(x). Theclaim �(x) = � is then checked by combining the veri�er of S� with the probabilisticpolynomial-time oracle machine that describes the designated prover, while referring itsqueries to the oracle f .Exercise 9.12 (weakly optimal deciders for checkable problems (following [133]))Prove that if a decision problem � has a checker (as de�ned in Exercise 9.11) thenthere exists a probabilistic algorithm A that satis�es the following two conditions:1. A solves the decision problem � (i.e., for every x it holds that Pr[A(x) =�(x)] � 2=3).2. For every probabilistic algorithm A0 that solves the decision problem �,there exists a polynomial p such that for every x it holds that tA(x) =p(jxj) �maxjx0j�p(jxj)ftA0(x0)g, where tA(z) (resp., tA0(z)) denotes the numberof steps taken by A (resp., A0) on input z.Note that, compared to Theorem 2.33, the claim of optimality is weaker, but on theother hand it applies to decision problems (rather than to candid search problems).Guideline: Use the ideas of the proof of Theorem 2.33, noting that the correctnessof the answers provided by the various candidate algorithms can be veri�ed by usingthe checker. That is, A invokes copies of the checker, while using di�erent candidatealgorithms as oracles in the various copies.Exercise 9.13 (on the role of soundness error in zero-knowledge proofs)Prove that if S has a zero-knowledge interactive proof system with perfect sound-ness (i.e., the soundness error equals zero) then S 2 BPP.Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)veri�er. Consider the algorithm that on input x, accepts x if and only if M(x) representsa valid view of the veri�er in an accepting interaction (i.e., an interaction that leads theveri�er to accept the common input x). Use the simulation condition to analyze the casex 2 S, and the perfect soundness hypothesis to analyze the case x 62 S.Exercise 9.14 (on the role of interaction in zero-knowledge proofs) Provethat if S has a zero-knowledge interactive proof system with a uni-directional com-munication then S 2 BPP.

458 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSGuideline: Let M be an arbitrary algorithm that simulates the view of the (honest)veri�er, and let M 0(x) denote the part of this view that consists of the prover message.Consider the algorithm that on input x, obtains m M 0(x), and emulates the veri�er'sdecision on input x and messagem. Note that this algorithm ignores the part ofM(x) thatrepresents the veri�er's internal coin tosses, and uses fresh veri�er's coins when decidingon (x;m).Exercise 9.15 (on the e�ective length of PCP oracles) Suppose that V isa PCP veri�er of query-complexity q and randomness-complexity r. Show thatfor every �xed x, the number of possible locations in the proof oracle that areexamined by V on input x (when considering all possible internal coin tosses of Vand all possible answers it may receive) is upper-bounded by 2q(jxj)+r(jxj). Showthat if V is non-adaptive then the upper-bound can be improved to 2r(jxj) � q(jxj).Guideline: In the non-adaptive case, all q queries are determined by V 's internal cointosses.Exercise 9.16 (on the e�ective randomness of PCPs) Suppose that a set Shas a PCP of query-complexity q that utilizes proof oracles of length `. Showthat, for every constant " > 0, the set S has a \non-uniform" PCP of querycomplexity q, soundness error 0:5 + " and randomness complexity r such thatr(n) = log2(`(n) +n)+O(1). By a \non-uniform PCP" we mean one in which theveri�er is a probabilistic polynomial-time oracle machine that is given direct accessto the bits of a non-uniform poly(`(n) + n)-bit long advice.Guideline: Consider a PCP veri�er V as in the hypothesis, and denote its randomnesscomplexity by rV . We construct a non-uniform veri�er V 0 that, on input of length n,obtains as advice a set Rn � f0; 1grV (n) of cardinality O((`(n) + n)="2), and emulates Von a uniformly selected element of Rn. Show that for a random Rn of the said size, theveri�er V 0 satis�es the claims of the exercise.(Extra hint: Fixing any input x 62 S and any oracle � 2 f0; 1g`(jxj), upper-bound the probabilitythat a random set Rn (of the said size) is bad, where Rn is bad if V accept x with probability0:5 + " when selecting its coins in Rn and using the oracle �.)Exercise 9.17 (on the complexity of sets having certain PCPs) Suppose thata set S has a PCP of query-complexity q and randomness-complexity r. Show thatS can be decided by a non-deterministic machine51 that, on input of length n, makesat most 2r(n) � q(n) truly non-deterministic steps (i.e., choosing between di�erentalternatives) and halts within a total number of 2r(n) � poly(n) steps. Concludethat S 2 Ntime(2r � poly) \Dtime(22rq+r � poly).Guideline: For each input x 2 S and each possible value ! 2 f0; 1gr(jxj) of the veri�er'srandom-tape, we consider a sequence of q(jxj) bit values that represent a sequence oforacle answers that make the veri�er accept. Indeed, for �xed x and ! 2 f0; 1gr(jxj),each setting of the q(jxj) oracle answers determine the computation of the correspondingveri�er (including the queries it makes).51See x4.2.1.3 for de�nition of non-deterministic machines.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 459Exercise 9.18 (The FGLSS-reduction [74]) For any S 2 PCP(r; q), considerthe following mapping of instances for S to instances of the Independent Setproblem. The instance x is mapped to a graph Gx = (Vx; Ex), where Vx �f0; 1gr(jxj)+q(jxj) consists of pairs (!; �) such that the PCP veri�er accepts the inputx, when using coins ! 2 f0; 1gr(jxj) and receiving the answers � = �1 � � ��q(jxj) (tothe oracle queries determined by x, r and the previous answers). Note that Vx con-tains only accepting \views" of the veri�er. The set Ex consists of edges that con-nect vertices that represents mutually inconsistent views of the said veri�er; thatis, the vertex v = (!; �1 � � ��q(jxj)) is connected to the vertex v0 = (!0; �01 � � ��0q(jxj))if there exists i and i0 such that �i 6= �0i0 and qxi (v) = qxi0(v0), where qxi (v) (resp.,qxi0(v0)) denotes the i-th (resp., i0-th) query of the veri�er on input x, when us-ing coins ! (resp., !0) and receiving the answers �1 � � ��i�1 (resp., �01 � � ��0i0�1).In particular, for every ! 2 f0; 1gr(jxj) and � 6= �0, if (!; �); (!; �0) 2 Vx, thenf(!; �); (!; �0)g 2 Ex.1. Prove that the mapping x 7! Gx can be computed in time that is polynomialin 2r(jxj)+q(jxj) � jxj.(Note that the number of vertices in Gx is upper-bounded by 2r(jxj)+f(jxj),where f � q is the free-bit complexity of the PCP veri�er.)2. Prove that, for every x, the size of the maximum independent set in Gx is atmost 2r(jxj).3. Prove that if x 2 S then Gx has an independent set of size 2r(jxj).4. Prove that if x 62 S then the size of the maximum independent set in Gx isat most 2r(jxj)�1.In general, denoting the PCP veri�er by V , prove that the size of the maximumindependent set in Gx is exactly 2r(jxj) �max�fPr[V �(x) = 1]g. (Note the similarityto the proof of Proposition 2.26.)Show that the PCP Theorem implies that the size of the maximum independent set(resp., clique) in a graph is NP-hard to approximate to within any constant factor.Guideline: Note that an independent set in Gx corresponds to a set of coins R and apartial oracle �0 such that V accepts x when using coins in R and accessing any oraclethat is consistent with �0. The FGLSS-reduction creates a gap of a factor of 2 betweenyes- and no-instances of S (having a standard PCP). Larger factors can be obtained byconsidering a PCP that results from repeating the original PCP for a constant number oftimes. The result for Clique follows by considering the complement graph.Exercise 9.19 Using the ideas of Exercise 9.18, prove that, for any t(n) = o(logn),if NP � PCP(t; t) then P = NP .Guideline: We only use the fact that the FGLSS-reduction maps instances of S 2PCP(t; t) to instances of the Clique problem (and ignore the fact that we actually geta stronger reduction to a \gap-Clique" problem). The key observation is that, whenapplies to n-bit long instances of a problem in PCP(t; t), the FGLSS-reduction runs in

460 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSpolynomial-time and produces instances of size 22t(n) � n. Thus, the hypothesis NP �PCP(t; t) implies that the FGLSS-reduction maps instances of the Clique problem toshorter instances of the same problem. Hence, iteratively applying the FGLSS-reduction,we can reduce instances of Clique to instances of constant size. This yields a reductionof Clique to a �nite set, and NP = P follows (by the NP-completeness of Clique).Exercise 9.20 (a simple but partial analysis of the BLR Linearity Test)For Abelian groups G and H , consider functions from G to H . For such a (generic)function f , consider the linearity (or rather homomorphism) test that selects uni-formly r; s 2 G and checks that f(r)+f(s) = f(r+s). Let �(f) denote the distanceof f from the set of homomorphisms (of G to H); that is, �(f) is the minimumtaken over all homomorphisms h : G ! H of Prx2G[f(x) 6= h(x)]. Using the fol-lowing guidelines, prove that the probability that the test rejects f , denoted "(f),is at least 3�(f)� 6�(f)2.1. Suppose that h is the homomorphism closest to f (i.e., �(f) = Prx2G[f(x) 6=h(x)]). Prove that "(f) = Prx;y2G[f(x) + f(y) 6= f(x+ y)] is lower-boundedby 3 � Prx;y[f(x) 6=h(x) ^ f(y)=h(y) ^ f(x+ y)=h(x+ y)].(Hint: consider three out of four disjoint cases (regarding f(x) ?= h(x), f(y) ?= h(y), andf(x+ y) ?= h(x+ y)) that are possible when f(x)+ f(y) 6=f(x+ y), where these three casesrefer to the disagreement of h and f on exactly one out of the three relevant points.)2. Prove that Prx;y[f(x) 6=h(x)^f(y)=h(y)^f(x+y)=h(x+y)] � �(f)�2�(f)2.(Hint: lower-bound the said probability by Prx;y[f(x) 6= h(x)]�(Prx;y[f(x) 6= h(x)^f(y) 6=h(y)] + Prx;y [f(x) 6= h(x) ^ f(x+ y) 6= h(x+ y)]).)Note that the lower-bound "(f) � 3�(f) � 6�(f)2 increases with �(f) only in thecase that �(f) � 1=4. Furthermore, the lower-bound is useless in the case that�(f) � 1=2. Thus an alternative lower-bound is needed in case �(f) approaches1=2 (or is larger than it); see Exercise 9.21.Exercise 9.21 (a better analysis of the BLR Linearity Test (cf. [40])) In con-tinuation to Exercise 9.20, use the following guidelines in order to prove that"(f) � min(1=6; �(f)=2). Speci�cally, focusing on the case that "(f) < 1=6, showthat f is 2"(f)-close to some homomorphism (and thus "(f) � �(f)=2).1. De�ne the vote of y regarding the value of f at x as �y(x) def= f(x+y)�f(y), andde�ne �(x) as the corresponding plurality vote (i.e., �(x) def= argmaxv2Hfjfy2G : �y(x)=vgjg).Prove that, for every x 2 G, it holds that Pry[�y(x) = �(x)] � 1� 2"(f).Extra guideline: Fixing x, call a pair (y1; y2) good if f(y1) + f(y2 � y1) = f(y2)and f(x+y1)+f(y2�y1) = f(x+y2). Prove that, for any x, a random pair (y1; y2)is good with probability at least 1� 2"(f). On the other hand, for a good (y1; y2),it holds that �y1(x) = �y2(x). Show that the graph in which edges correspond togood pairs must have a connected component of size at least (1� 2"(f)) � jGj. Notethat �y(x) is identical for all vertices y in this connected component, which in turncontains a majority of all y's in G.

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 4612. Prove that � is a homomorphism; that is, prove that, for every x; y 2 G, itholds that �(x) + �(y) = �(x + y).Extra guideline: Prove that �(x) + �(y) = �(x + y) holds by considering thesomewhat �ctitious expression px;y def= Prr2G[�(x) + �(y) 6= �(x+ y)], and showingthat px;y < 1 (and hence �(x) + �(y) 6= �(x+ y) is false). Prove that px;y < 1, byshowing that px;y � Prr " �(x) 6=f(x+ r)� f(r)_ �(y) 6=f(r)� f(r � y)_ �(x+ y) 6=f(x+ r)� f(r � y) # (9.10)and using Item 1 (and some variable substitutions) for upper-bounding by 2"(f) <1=3 the probability of each of the three events in Eq. (9.10).3. Prove that f is 2"(f)-close to �.Extra guideline: Denoting B = fx2G : Pry2G[f(x) 6= �y(x)] � 1=2g, prove that"(f) � (1=2) � (jBj=jGj). Note that if x 2 G nB then f(x) = �(x).We comment that better bounds on the behavior of "(f) as a function of �(f) areknown.Exercise 9.22 (testing matrix identity) Let M be a non-zero m-by-n matrixover GF(p). Prove that Prr;s[r>Ms 6= 0] � (1 � p�1)2, where r (resp., s) is arandom m-ary (resp., n-ary) vector.Guideline: Prove that if v 6= 0n then Prs[v>s = 0] = p�1, and that ifM has rank � thenPrr[r>M = 0n] = p��.Exercise 9.23 (low-degree tests (following [195])) For a �eld of prime car-dinality F and integers m and d < jF j�1, we consider the set, denoted Pm;d, of allm-variate polynomials of total degree at most d over F . We consider the low-degreetest that, when given oracle access to any function f : Fm ! F , selects uniformlyx; y 2 Fm, queries f at the points (x + i � y)i=0;:::;d+1, and accepts if and only ifPd+1i=0 �if(x+ i �y) = 0, where �i = (�1)i+1 ��d+1i �. It is well-known (cf. [195]) thatf 2 Pm;d if and only if for every x; y 2 Fm it holds that Pd+1i=0 �if(x+ i � y) = 0.1. Following the outline of Exercise 9.20, prove that the test rejects f withprobability at least (d + 2) � �(f) � (d + 2)(d + 1) � �(f)2, where �(f) =ming2Pm;dfPrx2Fm [f(x) 6= g(x)]g.2. Following the outline of Exercise 9.21, prove that "(f) � min((d+2)�2; �(f))=2,where "(f) denotes the probability that the test rejects f . That is, prove thatif "(f) < (d+ 2)�2=2 then f is 2"(f)-close to some function in Pm;d.Guideline: De�ne �y(x) def= Pd+1i=1 �if(x+ i � y), and note that "(f) = Prx;y2Fm [f(x) 6=�y(x)]. Part 1 follows by lower-bounding the probability that, for random x; y 2 Fm,there exists a unique i 2 f0; 1; :::; d + 1g such that f(x + i � y) 6= g(x + i � y), whereg 2 Pm;d is the low-degree polynomial closest to f . Part 2 follows by de�ning �(x) =

462 CHAPTER 9. PROBABILISTIC PROOF SYSTEMSargmaxv2Ffjfy2Fm : �y(x)=vgjg, and proceeding analogously to the three steps in theproof of Exercise 9.21. For example, analogously to the �rst step, prove that for everyx 2 Fm it holds that Pry2Fm [�(x) = �y(x)] � 1� 2(d+ 1) � "(f). (Extra hint: Prove thatPry1;y22Fm [�y1(x) = �y2 (x)] � 1� 2(d + 1) � "(f).)52Exercise 9.24 (3SAT and CSP with two variables) Show that 3SAT is reducibleto gapCSPf1;:::;7g� for �(m) = 1=m, where gapCSP is as in De�nition 9.18. Further-more, show that the size of the resulting gapCSP instance is linear in the length ofthe input formula.Guideline: Given an instance of 3SAT, consider the graph in which vertices correspondto clauses of , edges correspond to pairs of clauses that share a variable, and the con-straints represent the natural consistency condition regarding partial assignments thatsatisfy the clauses. See a similar construction in Exercise 9.18.Exercise 9.25 (CSP with two Boolean variables) In contrast to Exercise 9.24,prove that for every positive function � : N ! (0; 1] the problem gapCSPf0;1g� issolvable in polynomial-time.Guideline: Reduce gapCSPf0;1g� to 2SAT.Exercise 9.26 Show that, for any �xed �nite � and constant c > 0, the problemgapCSP�c is in PCP(log; O(1)).Guideline: Consider an oracle that, for some satisfying assignment for the CSP-instance(G;�), provides a trivial encoding of the assignment; that is, for a satisfying assignment � :V ! �, the oracle responds to the query (v; i) with the ith bit in the binary representationof �(v). Consider a veri�er that uniformly selects an edge (u; v) of G and checks theconstraint �(u;v) when applied to the values �(u) and �(v) obtained from the oracle. Thisveri�er makes log2 j�j queries and reject each no-instance with probability at least c.Exercise 9.27 For any constant � and d � 14, show that gapCSP� can be reducedto itself such that the instance at the target of the reduction is a d-regular expander,and the fraction of violated constraints is preserved up to a constant factor. Thatis, the instance (G;�) is reduced to (G1;�1) such that G1 is a d-regular expandergraph and vlt(G1;�1) = �(vlt(G;�)). Furthermore, make sure that jG1j =O(jGj) and that each vertex in G1 has at least d=2 self-loops.Guideline: First, replace each vertex of degree d0 > 3 by a 3-regular expander of sized0, and connect each of the original d0 edges to a di�erent vertex of this expander, thusobtaining a graph of maximum degree 4. Maintain the constraints associated with theoriginal edges, and associate the equality constraint (i.e., �(�; �) = 1 if and only if � = �)52In the following probabilistic statements, we shall refer to uniformly distributed y1; y2 2 Fm.Note that �y1 (x) = Pd+1i1=1 �i1f(x + i1 � y1) which with probability at least 1 � (d � 1) � "(f)equals Pd+1i1=1 �i1�y2(x + i1 � y1). The latter expression equals Pd+1i1=1Pd+1i2=1 �i1�i2f(x + i1 �y1 + i2 � y2) =Pd+1i2=1 �i2�y1(x+ i2 � y2), which with probability at least 1� (d� 1) � "(f) equalsPd+1i2=1 �i2f(x+ i2 � y2) = �y2 (x).

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS 463to each new edge (residing in any of the added expanders). Next, augment the resultingN1-vertex graph by the edges of a 3-regular expander of size N1 (while associating withthese edges the trivially satis�ed constraint; i.e., �(�; �) = 1 for all �; � 2 �). Finally,add at least d=2 self-loops to each vertex (using again trivially satis�ed constraints), soto obtain a d-regular graph. Prove that this sequence of modi�cations may only decreasethe fraction of violated constraints, and that the decrease is only by a constant factor.The latter assertion relies on the equality constraints associated with the small expandersused in the �rst step.Exercise 9.28 (free-bit complexity zero) Note that only sets in coRP havePCPs of query complexity zero. Furthermore, Exercise 9.17 implies that only setsin P have PCP systems of logarithmic randomness and query complexity zero.1. Show that only sets in P have PCP systems of logarithmic randomness andfree-bit complexity zero.(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bitcomplexity zero.)2. In contrast, show that Graph Non-Isomorphism has a PCP system of free-bitcomplexity zero (and linear randomness-complexity).Exercise 9.29 (free-bit complexity one) In continuation to Exercise 9.28, provethat only sets in P have PCP systems of logarithmic randomness and free-bit com-plexity one.Guideline: Consider an application of the FGLSS-reduction to a set having a PCP offree-bit complexity one and randomness-complexity r. Note that the question of whetherthe resulting graph has an independent set of size 2r can be expressed as a 2CNF formulaof size poly(2r), and see Exercise 2.22.Exercise 9.30 (Proving Theorem 9.23) Using the following guidelines, pro-vide a proof of Theorem 9.23. Let S 2 NP and consider the 3CNF formulaethat are obtained by the standard reduction of S to 3SAT (i.e., the one providedby the proofs of Theorems 2.21 and 2.22). Decouple the resulting 3CNF formulaeinto pairs of formulae (x; �) such that x represents the \hard-wiring" of the in-put x and � represents the computation itself. Referring to the mapping of 3CNFformulae to low-degree extensions presented in x9.3.2.2, show that the low-degreeextension � that correspond to � can be evaluated in polynomial-time (i.e., poly-nomial in the length of the input to �, which is O(log j�j)). Conclude that thelow-degree extension that corresponds to x ^ � can be evaluated in time jxj2. Al-ternatively, note that it su�ces to show that the assignment-oracle A (consideredin x9.3.2.2) satis�es � and is consistent with x (and is a low-degree polynomial).Guideline: Note that the circuit constructed in the proof of Theorem 2.21 is highlyuniform. In particular, the relation between wires and gates in this circuit can be repre-sented by constant-depth circuits of unbounded fan-in and polynomial-size (i.e., size thatis polynomial in the length of the indices of wires and gates).

