
Testing Graph Blow-Up

Lidor Avigad and Oded Goldreich

Abstract. Referring to the query complexity of testing graph properties
in the adjacency matrix model, we advance the study of the class of
properties that can be tested non-adaptively within complexity that is
inversely proportional to the proximity parameter. Arguably, this is the
lowest meaningful complexity class in this model, and we show that it
contains a very natural class of graph properties. Specifically, for every
fixed graph H , we consider the set of all graphs that are obtained by a
(possibly unbalanced) blow-up of H . We show a non-adaptive tester of

query complexity eO(1/ǫ) that distinguishes graphs that are a blow-up of
H from graphs that are ǫ-far from any such blow-up.

Keywords: Property Testing, Adaptivity vs Non-adaptivity, One-sided
vs Two-sided Error, Graph Properties, Graph Blow-up.

This work is based on the M.Sc. thesis of the first author [A], which was com-
pleted under the supervision of the second author.

1 Introduction

The general context of this work is that of testing graph properties in the ad-
jacency matrix representation (as initiated in [GGR]). In this model graphs are
viewed as (symmetric) Boolean functions over a domain consisting of all possible
vertex-pairs (i.e., an N -vertex graph G = ([N], E) is represented by the function
g : [N] × [N] → {0, 1} such that {u, v} ∈ E if and only if g(u, v) = 1). Conse-
quently, an N -vertex graph represented by the function g : [N] × [N] → {0, 1}
is said to be ǫ-far from some predetermined graph property if more than ǫ ·N2

entries of g must be modified in order to yield a representation of a graph that
has this property. We refer to ǫ as the proximity parameter, and the complexity
of testing is stated in terms of ǫ and the number of vertices in the graph (i.e.,
N).

Interestingly, many natural graph properties can be tested within query com-
plexity that depends only on the proximity parameter; see [GGR], which presents
testers with query complexity poly(1/ǫ), and [AFNS], which characterizes the
class of properties that are testable within query complexity that depends only
on the proximity parameter (where this dependence may be an arbitrary func-
tion of ǫ). A well-known open problem in this area is to characterize the class of
graph properties that can be tested within query complexity poly(1/ǫ). We men-
tion that such a characterization has been obtained in the special case of induced
subgraph freeness properties [AS], but the general case seems quite difficult.

153

In light of this state of affairs, it was suggested in [GR08] to try to characterize
lower query complexity classes, and in particular the class of graph properties
that can be tested non-adaptively within query complexity Õ(1/ǫ). As a first
step towards this goal, it was shown in [GR08, Sec. 6] that, for every constant
c, the set of graphs that each consists of at most c isolated cliques is such a
property.

In this work we significantly extend the latter result by showing that the class
of graph properties that can be tested non-adaptively within query complexity
Õ(1/ǫ) contains all graph blow-up properties. For any fixed graph H = ([h], F),
we say that a graph G = ([N], E) is a blow-up of H if the vertices of G can be
clustered in up to h clusters such that the edges between these clusters reflect
the edge relation of H . That is, vertices in the ith and jth cluster are connected
in G if and only if (i, j) ∈ F . Note that, unlike in the case of balanced blow-up
(cf. [GKNR]), the clusters are not required to have equal size.1 Also note that
the “collection of c cliques” property studied in [GR08, Sec. 6] can be cast as the
property of being a blow-up of a c-vertex clique (by considering the complement
graph).

Theorem 1.1 (main result): For every fixed H, the property of being a blow-

up of H is testable by Õ(1/ǫ) non-adaptive queries. Furthermore, the tester has

one-sided error (i.e., it always accepts graphs that are blow-ups of H) and runs

in poly(1/ǫ)-time.

We mention that the aforementioned property cannot be tested by o(1/ǫ) queries,
even when adaptivity and two-sided error are allowed (see [GR08, Prop. 6.1]).

We also mention that, by [GR08, Prop. 6.2], a tester of Õ(1/ǫ) query complexity
cannot be canonical (i.e., it cannot rule by inspecting an induced subgraph).

Additional results. We also consider the complexity of testing “balanced blow-
up” properties, showing that the two-sided error query complexity is quadratic
in 1/ǫ for both adaptive and non-adaptive testers; see Proposition 2.4. Finally,
we present proximity oblivious testers (cf. [GR09]) for any (general) blow-up
property; see Theorem 5.2.

Techniques. Theorem 1.1 is proved by presenting a suitable tester and analyz-
ing it. Recall that this tester cannot be canonical; indeed, this tester selects at
random a sample of Õ(1/ǫ) vertices, but it inspects (or queries) only Õ(1/ǫ) of
the vertex pairs in this sample. Consequently, the tester (and the analysis) has
to deal with partial knowledge of the subgraph induced by the sample. A pivotal
notion regarding such partial views is of “inconsistency” between vertices (w.r.t
a given partial view), which means that these vertices have different neighbor
sets and thus cannot be placed in the same cluster (of a blow-up of H (or any
other graph)). Specifically, the tester considers all sets of up to h + 1 pairwise

1 We note that testing balanced blow-up properties requires Ω(1/ǫ2) queries. For de-
tails, see Section 2.2.

154

inconsistent vertices, and accepts if and only if each such set (along with the
known incidence relations) can be embedded in H . As usual, the technically
challenging part is analyzing the behavior of the tester on arbitrary graphs that
are far from being blow-ups of H . Our analysis proceeds in iterations, where
in each iteration some progress is made, but this progress is not necessarily re-
flected by a growing number of incidence constraints but rather in the decreasing
density of the violations reflected in the incidence constraints. This progress is
captured in Lemma 4.4 (which refers to notions introduced in Section 4.1). Here
we merely stress that the number of iterations is polylogarithmic in ǫ−1 rather
than being O(h2). (The degree of the polylogarithmic function depends on h.)

Organization. The core of this paper is presented in Sections 3 and 4, which
contain a description of the tester and its analysis, respectively. (Indeed, this part
establishes Theorem 1.1.) Section 2 provides preliminaries, which may be skipped
by the experts, as well as a side discussion (and result) regarding “balanced
blow-up” properties. Section 5 provides another secondary discussion; this one
regarding proximity oblivious testers.

2 Preliminaries

In this section we review the definition of property testing, when specialized
to graph properties in the adjacency matrix model. We also define the blow-up
properties (and discuss the case of balanced blow-up).

2.1 Basic notions

For an integer n, we let [n]
def
= {1, ..., n}. A generic N -vertex graph is denoted

by G = ([N], E), where E ⊆ {{u, v} :u, v∈ [N]} is a set of (unordered) pairs of
vertices.2 Any set of (such) graphs that is closed under isomorphism is called a
graph property. By oracle access to such a graph G = ([N], E) we mean oracle
access to the Boolean function that answers the query {u, v} (or rather (u, v) ∈
[N] × [N]) with the bit 1 if and only if {u, v} ∈ E. At times, we look at E as a
subset of [N] × [N]; that is, we often identify E with {(u, v) :{u, v}∈E}.

Definition 2.1 (property testing for graphs in the adjacency matrix model):
A tester for a graph property Π is a probabilistic oracle machine that, on input

parameters N and ǫ and access to an N -vertex graph G = ([N], E), outputs a

binary verdict that satisfies the following two conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.
2. If G is ǫ-far from Π then the tester accepts with probability at most 1/3,

where G is ǫ-far from Π if for every N -vertex graph G′ = ([N], E′) ∈ Π it

holds that the symmetric difference between E and E′ has cardinality that is

greater than ǫN2.

2 Thus, we consider simple graphs, with no self-loops nor parallel edges.

155

If the tester accepts every graph in Π with probability 1, then we say that it

has one-sided error. A tester is called non-adaptive if it determines all its queries

based solely on its internal coin tosses (and the parameters N and ǫ); otherwise

it is called adaptive.

The query complexity of a tester is the number of queries it makes to any N -
vertex graph oracle, as a function of the parameters N and ǫ. We say that a
tester is efficient if it runs in time that is polynomial in its query complexity,
where basic operations on elements of [N] are counted at unit cost. We note that
all testers presented in this paper are efficient, whereas the lower-bounds hold
also for non-efficient testers.

We shall focus on properties that can be tested within query complexity that
only depends on the proximity parameter, ǫ. Thus, the query-complexity upper-
bounds that we state hold for any values of ǫ and N , but will be meaningful
only for ǫ > 1/N2 or so. In contrast, the lower-bounds (e.g., of Ω(1/ǫ)) cannot
possibly hold for ǫ < 1/N2, but they will indeed hold for any ǫ > N−Ω(1).
Alternatively, one may consider the query-complexity as a function of ǫ, where
for each fixed value of ǫ > 0 the value of N tends to infinity.

2.2 The blow-up properties

Following the discussion in the introduction, we first define the blow-up proper-
ties that are the subject of our study.

Definition 2.2 (graph blow-up): We say that the graph G = ([N], E) is a blow-
up of the graph H = ([h], F) if there is an h-way partition (V1, ..., Vh) of the

vertices of G such that for every i, j ∈ [h] and (u, v) ∈ Vi × Vj it holds that

(u, v) ∈ E if and only if (i, j) ∈ F . We stress that the Vi’s are not required to be

of equal size and that some of them may be empty. We denote by BU(H) (resp.,
BUN (H)) the set of all graphs (resp., N -vertex graphs) that are blow-ups of H.

In contrast to Definition 2.2, let us briefly consider the more rigid (and popular)
definition of a balanced blow-up.

Definition 2.3 (balanced blow-up): We say that the graph G = ([N], E) is

a balanced blow-up of the graph H = ([h], F) if there is an h-way partition

(V1, ..., Vh) of the vertices of G such that the following two conditions hold:

1. For every i, j ∈ [h] and (u, v) ∈ Vi × Vj it holds that (u, v) ∈ E if and only

if (i, j) ∈ F .
2. For every i ∈ [h] it holds that |Vi| ∈ {⌊N/h⌋, ⌈N/h⌉}.

We denote by BBU(H) (resp., BBUN (H)) the set of all graphs (resp., N -vertex
graphs) that are balanced blow-ups of H.

It is easy to see that, except for trivial cases (i.e., when H consists of isolated
vertices), balanced blow-up cannot be tested with one-sided error and complexity
that does not depend on the size of the graph. The two-sided error testing
complexity of this property is Θ(1/ǫ2), as shown next.

156

Proposition 2.4 (on the complexity of testing balanced blow-up): For every

H = ([h], F) such that F 6= ∅, testing the property BBU(H) requires Ω(1/ǫ2)
queries even if adaptive testers of two sided error are allowed. On the other

hand, for any H = ([h], F), there exists a non-adaptive tester of query complexity

O(1/ǫ2) (and two-sided error) for the property BBU(H).

Proof: The lower bound follows directly from the known lower bounds on
estimating the average (cf. [CEG]). Specifically, distinguishing Boolean functions
defined over [N] and having an average value of 0.5 from Boolean functions
having an average of 0.5 − ǫ can be reduced to distinguishing N -vertex graphs
that consist of two isolated cliques of the same size from graphs that consist of
two isolated cliques of sizes (0.5 − ǫ) ·N and (0.5 + ǫ) ·N , respectively. (Given
oracle access to a function f : [N] → {0, 1} consider the graph G = ([N], {(u, v) :
f(u)=f(v)}).)

In describing the tester, we first assume that H = ([h], F) is not a blow-up
of any smaller graph H ′. Also, anticipating the extension to the general case, we
generalize the balanced blow-up property into a proportional blow-up property.
Here, for a fixed graph H = ([h], F) and sequence of densities ρ = (ρ1, .., ρh), the
graph G is a ρ-blow-up of H if Definition 2.3 holds with Condition 2 replaced
by |Vi| ∈ {⌊ρiN⌋, ⌈ρiN⌉}. The non-adaptive tester for ρ-blow-up of H , where H
is not a blow-up of any smaller graph, proceeds as follows (on input a graph G):

1. Select uniformly a sample of Õ(1/mini{ρi}) vertices, denoted B, which will
be used as a basis for clustering in Step 2. Select uniformly a sample of
O(|B|/ǫ2) vertices, denoted S. Finally, select uniformly a sample of O(h2/ǫ)
vertex pairs in S × S, denoted T .

2. Query all pairs (u, v) ∈ (B × S)∪ T , and cluster the vertices in S according

to their neighbors in B. That is, for every v ∈ [N], let sgB(v)
def
= {u∈B :

(u, v)∈E}, and, for every set B′ ⊆ B, let SB′

def
= {v∈S : sgB(v)=B′}.

3. If the number of non-empty sets SB′ exceeds h, then reject. Otherwise, con-

sider all possible 1-1 mappings from C
def
= {B′ : SB′ 6= ∅} to [h], and for each

such mapping φ determine whether or not the following two conditions hold.
(a) For every B′ ∈ C it holds that |SB′ | = (1 ± ǫ/2) · ρφ(B′) · |S|.
(b) For every (u, v) ∈ T it holds that (u, v) ∈ E if and only if (φ(sgB(u)), φ(sgB(v))) ∈

F ,
The test accepts if and only if there exists a mapping φ that satisfies both
the above conditions.

The number of queries performed by the tester is O(|B|2/ǫ2) = O(1/ǫ2). We
first consider what happens if G is a ρ-blow-up of H . In this case, with high
probability, (1) the sample B contains at least one representative from each
cluster of G, and (2) for each i ∈ [h] the sample S contains (1 ± ǫ/2) · ρi · |S|
representatives of the ith cluster. In this case, the tester accepts. We now turn
to the case that G = ([N], E) is ǫ-far from being a ρ-blow-up of H . In this case,
for any choice of B, we can consider the clustering of the entire graph according
to sgB, and denote the h largest clusters by V1, ..., Vh (where some of these Vi’s

157

may be empty). Letting V
def
=

⋃
i∈[h] Vi, we note that if |V | < (1− ǫ/2) ·N , then

with high probability we reject at the onset of Step 3 due to seeing more than
h clusters in the sample.3 Otherwise, we consider all possible mappings of the
vertices of the h largest clusters to [h]. For each such mapping ψ : V → [h] such
that φ(u) = φ(v) iff u, v ∈ Vi for some i, either there exists an i ∈ [h] such that
|Vi| 6∈ (1±ǫ/4)·ρiN or there exist at least ǫN2/4 violating pairs (i.e., vertex pairs
(u, v) ∈ V ×V that have an edge relation in G that does not fit the edge relation
of (ψ(u), ψ(v)) in H). In the first case, with high probability, the sample S will
contain a deviating fraction of vertices from Vi, whereas in the second case, with
high probability, the sample T will hit some of these violations.4 In either cases,
with high probability, the tester will reject. This completes the treatment of the
case (of ρ-blow-up) of a graph H = ([h], F) that is not a blow-up of any smaller
graph.

Finally, suppose that H([h], F) is a blow-up of some smaller graph H ′, and
suppose that H ′ is minimal (i.e., it is not a blow-up of any smaller graph). Then,
testing the property BBU(H) reduces to testing a proportional blow-up property
regarding H ′, where the proportions are determined according to the blow-up of
H ′ into H (and the densities are multiples of 1/h).

3 The BU(H)-Tester and its Basic Features

Recall that a tester of the type we seek (i.e., a non-adaptive tester of Õ(1/ǫ)
query complexity) cannot operate by inspecting an induced subgraph, because
by [GR08, Prop. 6.2] such a subgraph will have to be induced by Ω(1/ǫ) vertices,
which would yield query complexity Ω(1/ǫ2). Thus, like in [GR08, Sec. 6.2], our
non-adaptive tester operates by using a less straightforward querying procedure.
Specifically, it does select a sample of Õ(1/ǫ) vertices, but does not query all
vertex pairs.

Algorithm 3.1 (testing BU(H), for a fixed graph H = ([h], F)): On input

parameters, N and ǫ, and access to an oracle g : [N]× [N] → {0, 1}, representing

a graph G = ([N], E), the algorithm sets ℓ = log2(1/ǫ) + O(log log(1/ǫ)) and

proceeds as follows.

1. For every i ∈ [ℓ], it selects uniformly a sample of poly(ℓ)·2i vertices, denoted

Ti.

Denote T =
⋃

i∈[ℓ] Ti.

2. For every i, j ∈ [ℓ] such that i + j ≤ ℓ, the algorithm queries all pairs in

Ti × Tj.

3 If |Vh| ≥ (ǫ/2h)·N , then with high probability S will contain a vertex from each Vi as
well as a vertex that does not belong to V . On the other hand, if |Vh| ≤ (ǫ/2h) · N ,
then with high probability S will contain h + 1 vertices from different clusters in
[N] \ V .

4 Note that a 1/h2 fraction of these foregoing violations can be attributed to one of
2 ·

`
h

2

´
events that correspond to the existence or non-existence of edges between

some pair of clusters.

158

3. The algorithm accepts if and only if the answers obtained in Step 2 are

consistent with some blow-up of H. That is, let K : T × T → {0, 1, ∗} be a

partial description of the subgraph of G induced by T such that K(u, v) =
g(u, v) if query (u, v) was made in Step 2, and otherwise K(u, v) = ∗. Then,

the acceptance condition seeks a mapping φ : T → [h] such that if K(u, v) = 1
then (φ(u), φ(v)) ∈ F and if K(u, v) = 0 then (φ(u), φ(v)) 6∈ F .

Indeed, at this point we ignore the computational complexity of implementing
Step 3. We shall return to this issue at the end of the current section. But, first,
let us note that the query complexity of Algorithm 3.1 is

∑

i,j:i+j≤ℓ

poly(ℓ) · 2i+j = poly(ℓ) · 2ℓ = Õ(1/ǫ). (1)

It is also clear that Algorithm 3.1 is non-adaptive and that it accept every
G ∈ BU(H) with probability 1 (i.e., it has one-sided error). The bulk of this
work (see Section 4) is devoted to showing that if G is ǫ-far from BU(H), then
Algorithm 3.1 rejects it with probability at least 2/3.

Relaxing the acceptance condition of Algorithm 3.1. A straightforward imple-
mentation of Step 3 amounts to considering all h|T | mappings of T to [h], and
checking for each such mapping φ whether the clustering induced by φ fits the
graph H . Relaxing the acceptance condition (used in Step 3 of Algorithm 3.1)
yields a more time-efficient algorithm. Actually, the relaxed acceptance condi-
tion (defined next) seems easier to analyze than the original one. The notion of
pairwise inconsistent rows (of K) is pivotal to this relaxed acceptance condition.
(Indeed, it will be instructive to think of K as a matrix, and to view rectangular
restrictions of K as sub-matrices.)

Definition 3.2 (pairwise inconsistent rows): Let K ′ : R × C → {0, 1, ∗} be a

sub-matrix of K : T ×T → {0, 1, ∗}; that is, R,C ⊆ T and K ′(r, c) = K(r, c) for

every (r, c) ∈ R × C. Then, the rows r1, r2 ∈ R are said to be inconsistent (wrt
K ′) if there exists a column c ∈ C such that K ′(r1, c) and K ′(r2, c) are different

Boolean values (i.e., K ′(r1, c),K
′(r2, c) ∈ {0, 1} and K ′(r1, c) 6= K ′(r2, c)). A

set of rows of K ′ is called pairwise inconsistent (wrt K ′) if each pairs of rows is

inconsistent (wrt K ′).

Another pivotal notion, which was alluded to before, is the notion of being
consistent with some blow-up of H , which we now term H-mappability.

Definition 3.3 (H-mappable sub-matrices): Let K ′ : R × C → {0, 1, ∗} be a

sub-matrix of K : T × T → {0, 1, ∗}. We say that K ′ is H-mappable if there

exists a mapping φ : R → [h] such that if K ′(u, v) = 1 then (φ(u), φ(v)) ∈ F and

if K ′(u, v) = 0 then (φ(u), φ(v)) 6∈ F . We call such a φ an H-mapping of K ′ (or
R) to [h].

Note that if K is H-mappable, then every two inconsistent rows of K must be
mapped (by φ as in Definition 3.3) to different vertices of H . In particular, if

159

a sub-matrix K ′ : R × C → {0, 1, ∗} of K has pairwise inconsistent rows, then
any H-mapping of K to [h] must be injective. Hence, if K contains more than
h pairwise inconsistent rows, then K is not H-mappable.

Definition 3.4 (the relaxed acceptance condition (of Algorithm 3.1)): The re-

laxed algorithm accept if and only if each set of pairwise inconsistent rows in K
is H-mappable. That is, for every set R of pairwise inconsistent rows in K, we

check whether the sub-matrix K ′ : R × T → {0, 1, ∗} is H-mappable, where the

pairwise inconsistency condition mandates that this mapping of R to [h] be 1-1.

In particular, if K has more than h pairwise inconsistent rows, then the relaxed

acceptance condition fails.

Note that the relaxed acceptance condition can be checked by considering all
s-subsets of T , for all s ≤ h + 1. For each such subset that consists of pairwise
inconsitent rows, we consider all possible 1-1 mappings of this subset to [h], and

check consistency with respect to H . This can be performed in time
(
|T |
h+1

)
·(h!) <

|T |h+1 = poly(1/ǫ), where the polynomial depends on h.
Clearly, ifG ∈ BU(H), then for every T ⊆ [N] it holds that the corresponding

matrix K satisfies Definition 3.4. Thus, the relaxed algorithm always accepts
graphs in BU(H). Section 4 is devoted to showing that if G is ǫ-far from BU(H),
then the relaxed algorithm rejects with high probability.

4 The Acceptance Condition and Graphs that are far
from BU(H)

In light of the above, Theorem 1.1 follows from the fact that the relaxed version
of Algorithm 3.1 (which uses the condition in Definition 3.4) rejects with very
high probability any graph G that is ǫ-far from BU(H). This fact is established
next.

Lemma 4.1 (main lemma): Suppose that G = ([N], E) is ǫ-far from BUN (H),
and let T =

⋃
i∈[ℓ] Ti be selected at random as in Step 1 of Algorithm 3.1. Then,

with probability at least 2/3, there exists a set R ⊂ T of pairwise inconsistent

rows in the corresponding matrix K : T × T → {0, 1, ∗} that is not H-mappable,

Before embarking on the actual proof of Lemma 4.1, we provide a very rough
outline.

Outline of the proof of Lemma 4.1. Our very rough plan of action is to partition

the selection of T (and each of its parts, i.e., T0, T1, ..., Tℓ) into p(ℓ)
def
= 2ℓh many

phases such that in the jth phase we select at random samples T j
0 , T

j
1 , ..., T

j
ℓ

such that |T j
i | = poly(ℓ) · 2i. Thus, we let each Ti equal

⋃p(ℓ)
j=1 T

j
i , but we shall

consider the queries as if they are made in phases such that in the jth phase

we only consider queries between T j def
=

⋃
i∈[ℓ] T

j
i and T [j] def

=
⋃

k≤j T
k. Letting

Kj : T [j] × T [j] → {0, 1, ∗} denote the partial information obtained on G in the

160

first j phases, we consider a certain set Rj of pairwise inconsistent rows of Kj .
If this set Rj is not H-mappable, then we are done. Otherwise, we show that,
with high probability over the choice of the sample T j+1, we obtain a new set
Rj+1 of pairwise inconsistent rows such that Rj+1 has a higher index than Rj ,
where the indices refer to an order over sequences of length at most h over [ℓ].
Since the number of such sequences is

∑
k∈[h] ℓ

k < p(ℓ), with high probability,

this process must reach a set Rj that is not H-mappable, and so we are done.
Needless to say, the crucial issue is the progress achieved in each phase; that

is, the fact that at each phase j the index of the new set Rj+1 is higher than the
index of the old set Rj . Intuitively, this progress is achieved because the current
(H-mappable) set Rj induces a clustering of all vertices of G that extends this
H-mapping, whereas this mapping must contain many vertex pairs that violate
the edge relation of H . The sample taken in the current phase (i.e., T j+1) is
likely to hit these violations, and this gives rise to a set Rj+1 with higher index.

4.1 Basic notions and notations

In addition to the foregoing notations, T j
i , T

j and T [j], we shall use the following
notations.

– A pair (R,C) is called a j-basic pair if C ⊆ T [j] and R ⊆ C. Indeed, j-basic
pairs correspond to restrictions of the sample available at phase j (i.e., T [j]).

– The j-index of a vertex v ∈ T [j], denoted idx
j(v), is the smallest index i such

that v ∈ T
[j]
i , where T

[j]
i

def
=

⋃
k≤j T

k
i . (Note that idx(·) depends on T , but

this dependence is not shown in the notation.)
A key observation is that for every u, v ∈ T , it holds that K(u, v) = g(u, v)
if and only if idxp(ℓ)(u) + idx

p(ℓ)(v) ≤ ℓ. Othewise, K(u, v) = ∗ (indicating
that (u, v) was not queried by Algorithm 3.1.
We comment that, with extremely high probability, for each j and v ∈ T [j],
there exists a unique i ∈ [ℓ] and k ∈ [j] such that v ∈ T k

i . Thus, for any
v ∈ T [j], we may assume that idxj+1(v) = idx

j(v).
– The indices of individual vertices in T [j] are the basis for defining the index

of sets in T [j]. Specifically, the j-index of a set S ⊆ T [j], denoted idx
j(S), is

the multi-set consisting of all values idxj(v) for v ∈ S. It will be instructive
to consider an ordered version of this multi-set; that is, we redefine idx

j(S)
as (i1, ..., i|S|) such that (1) for every k < |S| it holds that ik ≥ ik+1, and
(2) for every i ∈ [ℓ] it holds that |{k∈ [|S|] : ik = i}| = |{v ∈ S : idxj(v)= i}|.

– We consider a natural lexicographic order over sequences, denoted ≻, such
that for two (monotonicly non-increasing) sequences of integers, a = (a1, ..., am)
and b = (b1, ..., bn), it holds that a ≻ b if

• either there exists i ≤ min(n,m) such that (a1, ..., ai−1) = (b1, ..., bi−1)
and ai > bi.

• or m > n and (a1, ..., an) = (b1, ..., bn).

Note that ≻ is a total order on the set of monotonicly non-increasing (finite)
sequences of integers.

161

As hinted in the overview, a key notion in our analysis is the notion of a clustering
of the vertices of G that is induced by an H-mapping of some small subset of
vertices. Actually, the clustering is induced by a partial knowledge sub-matrix
K ′ : R× C → {0, 1, ∗} as follows.

Definition 4.2 (the clustering induced by K ′): Let K ′ : R×C → {0, 1, ∗} be a

sub-matrix of K : T ×T → {0, 1, ∗} such that K ′ has pairwise inconsistent rows.
Then, for every r ∈ R, we denote by Vr(K

′) the set of vertices v ∈ [N] that are

consistent with row r in K ′. That is,

Vr(K
′)

def
= {v∈ [N] : (∀c∈C) g(v, c)∼=K ′(r, c)} (2)

where, for σ, τ ∈ {0, 1, ∗}, we write σ∼= τ if either σ = τ or σ = ∗ or τ = ∗.
The vertices that are inconsistent with all rows, are placed in the leftover set

L(K ′)
def
= [N] \

⋃
r∈R Vr(K

′).

Indeed, rows r1, r2 ∈ R are inconsistent wrt K ′ (as per Definition 3.2) if there
exists a column c ∈ C such thatK ′(r1, c) 6∼=K ′(r2, c) (which means thatK ′(r1, c)
and K ′(r2, c) are both in {0, 1} but are different). Thus, the hypothesis that
the rows of K ′ are pairwise inconsistent implies that the sets in Eq. (2) are
disjoint. Hence, the clustering in Definition 4.2 is indeed a partition of the vertex
set of G (since v ∈ L(K ′) if for every r ∈ R there exists c ∈ C such that
g(v, c) 6∼=K ′(r, c)). This motivates our focus on sub-matrices having pairwise
inconsistent rows. The following definition adds a requirement (regarding such
sub-matrices) that refers to the relation between the index of row r and the
density of the corresponding set Vr(K

′).

Definition 4.3 (nice pairs): Let (R,C) be a j-basic pair and K ′ : R × C →
{0, 1, ∗} be the corresponding sub-matrix of K. We say that (R,C) is a j-nice
pair if the following two conditions hold.

1. R are pairwise inconsistent with respect to K ′.

2. For every r ∈ R it holds that ind
j(r) ≤ ρ(Vr(K

′)) + 1, where ρ(S)
def
=

⌈log(N/|S|)⌉.

As a sanity check, suppose that r ∈ R was selected in phase j (i.e., r ∈ T j).
Then, it is very likely that r (or some other member of Vr(K

′)) is selected
in T j

ρ(Vr(K′))−1, because T j

ρ(Vr(K′))−1 is a random set of cardinality poly(ℓ) ·

2ρ(Vr(K′))−1 = poly(ℓ) ·N/|Vr(K
′)|.

For each phase j, we shall show the existence of a j-nice pair. Furthermore,
we shall show that the corresponding set of rows has a higher index than all sets
of rows associated with previous phases. The furthermore claim is the crux of the
analysis, and is captured by the Progress Lemma presented in Section 4.2. But
let us first establish the mere existence of j-nice pairs. Indeed, for every j ≥ 1,
we may pick an arbitrary r ∈ T 1

1 , and consider the j-nice pair ({r}, {r}), while
noting that idx1(r) = 1 and ρ(Vr(K

′) ≥ 0 (where K ′ : {r} × {r} → {0, 1, ∗}).

162

4.2 The Progress Lemma

Recall that G = ([N], E) is ǫ-far from BU(H), where H = ([h], F). Furthermore,
we consider the partial view K : T × T → {0, 1, ∗} obtained by Algorithm 3.1,
where T =

⋃
i∈[ℓ],j∈[p(ℓ)] T

j
i is the random sample is selected. Throughout the

rest of this section, we say that an event has negligible probability if it occurs with
probability that vanishes faster than any polynomial in ǫ. Since we shall consider
only poly(ℓ) many events, we can safely ignore these negligible probabilities.5 We
say that an event occurs with overwhelmingly high probability if the probability
that it does not occur is negligible.

Lemma 4.4 (Progress Lemma): Let (R,C) be a j-nice pair and K ′ : R× C →
{0, 1, ∗} be the corresponding sub-matrix of K. If K ′ is H-mappable then, with

overwhelmingly high probability over the choice of T j+1, there exists a (j+1)-nice

pair (R′, C′) such that indj+1(R′) ≻ ind
j(R).

Recalling that a (trivial) 1-nice pair always exists and that the number of pos-
sible indices is smaller than p(ℓ), we conclude that, with overwhelmingly high
probability (over the choice of T), there exists a j < p(ℓ) and a j-nice pair
that is not H-mappable. Lemma 4.1 follows. Thus, all that remains is proving
Lemma 4.4, which we undertake next.

Proof: We consider the partition induced by K ′, as per Definition 4.2, and

consider two cases regarding the size of L
def
= L(K ′):

Case 1: ρ(L) ≤ ℓ. In this case (i.e., |L| ≥ 2−ℓ · N), with overwhelmingly high
probability, the sample T j+1 contains a vertex u ∈ L(K ′). Using this u, we
shall obtain a (j + 1)-nice pair with a set of rows that has a higher index
than R. Intuitively, since (g(u, c))c∈C is inconsistent with all rows of K ′,
we may add u as a row to K ′ while possibly omitting rows of K ′ that are
consistent with (K(u, c))c∈C (see below), obtaining a sub-matrix that has
a larger index (than the index of K ′). The detailed analysis of this case is
presented in Claim 4.4.2.

Case 2: ρ(L) > ℓ. In this case (i.e., |L| < 2−ℓ ·N < ǫN/2), the partition induced
by (Vr(K

′))r∈R contains many pairs that violate the edge relation of H ,
since the number of pairs adjacent at L is smaller than ǫN2/2. We shall
show that, with overwhelmingly high probability, the sample T j+1 contains
a vertex w such that augmenting K ′ with the column corresponding to w
yields a sub-matrix K ′′ such that ρ(L(K ′′)) < ℓ. Intuitively, pairs of vertices

in V (K ′)
def
=

⋃
r∈R Vr(K

′) that violate the edge relation of H , yield vertices
w that effectively shrink V (K ′) in the sense that adding w as a column to
K ′ moves many vertices from V (K ′) to L(K ′′). In particular, we shall show
that |L(K ′′)| = Ω(ǫN/ℓ), which means that ρ(L(K ′′)) < log2(O(ℓ)/ǫ) < ℓ.

5 In fact, it would have sufficed to define as negligible any probability that vanishes
faster than any polynomial in 1/ℓ (i.e., faster than any polylogarithmic function of
ǫ).

163

At this point we may proceeds as in Case 1. (Formally, in this case, the
j+1st phase is partitioned into two sub-phases, where in each sub-phase we
use half of each of the samples T j+1

i .) The detailed analysis of this case is
presented in Claim 4.4.3.

Our analysis of the two cases combines straightforward probabilistic arguments
with manipulations of sub-matrices. The latter manipulations include adding
rows and columns and truncating the sub-matrix so as to leave only rows that
have an index that is lower-bounded by some value. It is thus instructive to
discuss these three operations first.

Adding an arbitrary column from T j+1. Suppose that (R,C) is j-nice with a cor-
responding sub-matrix K ′. Then, adding any column v ∈ T j+1 to K ′ re-
sults in a sub-matrix K ′′ such that the corresponding pair (R,C ∪ {v}) is
(j + 1)-nice. Clearly, adding a column may only add inconsistencies, and
so the pairwise inconsistency condition of K ′ is preserved. For any r ∈ R,
the densities of Vr(·) may only drop when moving from K ′ to K ′′, and so
ind

j(r) ≤ ρ(Vr(K
′)) + 1 implies indj+1(r) ≤ ρ(Vr(K

′′)) + 1.

Adding a row that belongs to L(K ′) ∩ T j+1
ρ(L(K′)). It is tempting to think that if

(R,C) is j-nice, then adding any row v ∈ T j+1
ρ(L(K′)) ∩L(K ′)∩C to K ′ results

in a sub-matrix K ′′ such that the corresponding pair (R∪ {v}, C) is (j+1)-
nice. It is true that indj+1(r) ≤ ρ(Vr(K

′′))+1 holds for each row r, including
the added row v (because indj+1(v) = ρ(L(K ′)) and ρ(Vv(K ′′)) ≥ ρ(L(K ′)),
since Vv(K ′′) ⊆ L(K ′)). However, although for every r ∈ R there exists c ∈ C
such that g(v, c) 6∼=K ′(r, c) (since v 6∈ Vr(K

′)), it not necessarily the case that
the row v in K is inconsistent with all rows in K ′ (i.e., it may be the case
that, for some r ∈ R and each c ∈ C, it holds that K(v, c)∼=K ′(r, c), since
K(v, c) ∈ {g(v, c), ∗} and ∗∼=K ′(r, c)). Coping with this problem, which
arises from the fact that K may have 8-values, leads us to introduce the
following truncation operator.

Truncating at an added row. Suppose that (R,C) is j-nice with a corresponding
sub-matrix K ′, and let v ∈ L(K ′) ∩ T j+1

ρ(L(K′)). Then, consider first adding v

as a new row and column to K ′, and then leaving in the resulting sub-matrix
only the rows that have a (j + 1)-index that is at least as large as the one
of v (i.e., row r remains if and only if indj+1(r) ≥ ind

j+1(v)). We claim
that these rows are pairwise inconsistent, and thus the resulting sub-matrix
is (j + 1)-nice.

It suffices to prove that the new row v (ofK) is inconsistent with any row that
was left from K ′; that is, fixing any r ∈ R such that indj+1(r) ≥ ind

j+1(v),
we claim that there exists c ∈ C such that K(v, c) 6∼=K ′(r, c). Since v ∈
L(K ′), we know that there exists c ∈ C such that g(v, c) 6∼=K ′(r, c), which
implies that K ′(r, c) ∈ {0, 1}, which in turn implies ind

j(r) + ind
j(c) ≤ ℓ

(by definition of K). Now, using ind
j+1(v) ≤ ind

j+1(r) ≤ ind
j(r), we get

ind
j+1(v)+ind

j(c) ≤ ℓ, which implies that K(v, c) = g(v, c). Recalling that
g(v, c) 6∼=K ′(r, c), we obtain K(v, c) 6∼=K ′(r, c), and the claim follows.

164

Note that the truncation of K ′ : R × C → {0, 1, ∗} at the added row v always
contains the new row v, and that it may result in |R| + 1 rows (i.e., no “real
truncation”). Another key feature of the truncation-at-an-added-row operation
is that it yields a set of rows with an index larger than the index of R.

Claim 4.4.1 (the effect of truncation): Suppose that (R,C) is j-nice with a

corresponding sub-matrix K ′, and let v ∈ L(K ′) ∩ T j+1
ρ(L(K′)). Then, truncating

the sub-matrix that corresponds to (R∪{v}, C∪{v}) at row v yields a (j+1)-nice

pair with a row set having an index larger than ind
j(R).

Proof: The first part of this claim was already established above. Denoting the
resulting set of rows by R′, we need to prove that indj+1(R′) ≻ ind

j(R). If R′ =
R∪{u} then the claim is trivial, and so we consider the case that indj+1(R′) =
(i1, ..., it), where t ≤ |R| and it = ind

j+1(v). This means that a non-trivial trun-
cating took place, and that all omitted rows had index smaller than it, which im-
plies that (i1, ..., it) ≻ ind

j+1(R) (because ind
j+1(R) = (i1, ..., it−1, dt, ..., d|R|)

with dt < it). ⊓⊔

Claim 4.4.2 (case 1): Suppose that (R,C) is j-nice and that ρ(L) ≤ ℓ, where

L = L(K ′). Then, with overwhelmingly high probability (over the choice of
T j+1

ρ(L(K′))), the sample T j+1
ρ(L(K′)) contains a vertex u ∈ L(K ′) such that adding u

to K ′ (both as a row and a column) and truncating the resulting sub-matrix at

row u yields a (j + 1)-nice pair (R′, C′) such that indj+1(R′) ≻ ind
j(R).

Proof: With overwhelmingly high probability, the sample T j+1
ρ(L(K′)) contains a

vertex u ∈ L(K ′), while using any such vertex yields the desired result (due to
Claim 4.4.1). ⊓⊔

Claim 4.4.3 (case 2): Suppose that (R,C) is j-nice and that the corresponding

sub-matrix K ′ is H-mappable. Further suppose that ρ(L) > ℓ, where L = L(K ′).
Then, with overwhelmingly high probability (over the choice of T j+1), the sample

T j+1 contains a vertex w such that adding the column w to K ′ yields a (j +
1)-nice pair (R,C ∪ {w}) such that the corresponding sub-matrix K ′′ satisfies

ρ(L(K ′′)) ≤ ℓ

Proof: We combine the hypothesis that G is ǫ-far from BU(H) with the hypothe-
sis thatK ′ isH-mappable, and denote the correspondingH-mapping by φ : R →

[h]. Extending this mapping to V (K ′)
def
=

⋃
r∈R Vr(K

′) such that φ(v) = φ(r)

for every v ∈ Vr(K
′), and using the hypothesis that |L(K ′)| < 2−ℓN < ǫN/2, we

conclude that there are at least ǫN2/2 vertex pairs that violate the edge relation
of H (i.e., pairs (u, v) ∈ V (K ′)×V (K ′) such that (u, v) ∈ E iff (φ(u), φ(v)) 6∈ F).
Actually, we should consider all h! possible injections (from R to [h]), and apply
the argument to each of them, but this only increases the error probability by a
factor of h!. These violations can be of one of the following two types.

1. Edges (u, v) ∈ E such that (φ(u), φ(v)) 6∈ F . If the number of such pairs
exceeds ǫN2/4, then we select a pair (r, s) ∈ R×R such that there exist at
least ǫN2/4h2 pairs (u, v) ∈ E for which (φ(u), φ(v)) = (φ(r), φ(s)) 6∈ F .

165

2. Non-edges (u, v) 6∈ E such that (φ(u), φ(v)) ∈ F . If the number of such pairs
exceeds ǫN2/4, then we select a pair (r, s) ∈ R×R such that there exist at
least ǫN2/4h2 pairs (u, v) 6∈ E for which (φ(u), φ(v)) = (φ(r), φ(s)) ∈ F .

Fixing (r, s) as above we have at least ǫN2/4h2 violating pairs in Vr(K
′)×Vs(K

′).
Next, we select an integer m ∈ [ℓ] such that there exists a set W ⊆ Vr(K

′) of
cardinality 2−m · N and every w ∈ W participates in at least ǫ2mN/4h2ℓ >
2−(ℓ−m−3) · N violating pairs (with vertices of Vs(K

′)). Clearly, ρ(W) = m,
and so with overwhelmingly high probability T j+1

m contains a vertex w ∈ W .
Adding any such w as a column to K ′, we obtain a sub-matrix K ′′ and claim
that ρ(L(K ′′)) ≤ ℓ −m. Specifically, we show that every u ∈ Vs(K

′) such that
(u,w) is a violating pair must be in L(K ′′), and recall that the number of such
violating pairs in which w participates exceeds 2−(ℓ−m−3) ·N .

Lastly, letting Uw denote the set of all u ∈ Vs(K
′) such that (u,w) is a

violating pair, we prove that Uw ⊆ L(K ′′). Let u be an arbitrary vertex in
Vs(K

′) (and recall that w ∈ Vr(K
′)).

1. We first note that indj(r) ≤ ρ(Vr(K
′))+1 (by the nicety condition), whereas

ρ(Vr(K
′)) ≤ ρ(W) = m. Similarly, indj(s) ≤ ρ(Vs(K

′))+1, whereas ρ(Vs(K
′)) ≤

ρ(Uw) ≤ ℓ−m− 3 (since Vs(K
′) ⊇ Uw and |Uw| > 2−(ℓ−m−3) ·N).

2. Combining the two foregoing facts, we conclude that indj(r) + ind
j(s) ≤ ℓ,

which implies that K ′(r, s) = g(r, s).
3. Since w ∈ Vr(K

′), it must be that g(w, s)∼=K ′(r, s), which implies g(w, s) =
g(r, s) (when combined with K ′(r, s) = g(r, s)). Since φ is an H-mapping
it must be that g(s, w) = g(s, r) fits the edge relation of (φ(s), φ(w)) =
(φ(s), φ(r)) with respect to H .

4. On the other hand, if (u,w) is a violating pair, then g(u,w) does not fit the
edge relation of (φ(u), φ(w)) = (φ(s), φ(r)) with respect to H .

5. Combining Items 3 and 4, we infer that g(u,w) 6= g(s, w), which implies
g(u,w) 6∼=K ′′(s, w) (because K ′′(s, w) = g(s, w) by virtue of ind

j+1(s) +
ind

j+1(w) ≤ (ℓ−m−2)+m< ℓ, where w ∈ T j+1
m by the hypothesis). Thus,

u is not in Vs(K
′′), although it is in Vs(K

′).
6. We observe that, for every r ∈ R\{s}, vertex u ∈ Vs(K

′) is not in Vr(K
′′) ⊆

Vr(K
′), since the rows of K ′ are pairwise inconsistent.

7. Combining Items 5 and 6, we conclude that u 6∈
⋃

r∈R Vr(K
′′), and hence

u ∈ L(K ′′).

The claim follows (since |L(K ′′)| ≥ |Uw| ≥ 2−(ℓ−m−3) ·N > 2−ℓN). ⊓⊔

Completing the proof of Lemma 4.4. In accordance with the motivating discus-
sion, we now complete the proof of the lemma by using the two latter claims.
Specifically, if Case 1 holds (i.e., ρ(L(K ′)) ≤ ℓ), then we invoke Claim 4.4.2 anre
are done. Otherwise, Case 2 holds (i.e., ρ(L(K ′)) > ℓ), and we take the following
two steps. Recall that, as stated in the beginning of the proof, in this case (i.e.,
Case 2) we partition the sample T j+1 into two parts, and use a different part
in each step. In the first step we apply Claim 4.4.3 to the first part, and get
into Case 1; that is, we obtain a new K ′ such that ρ(L(K ′)) ≤ ℓ. Next, in the

166

second step, we apply Claim 4.4.3 to the resulting K ′ and the second part of the
sample, and are done.

5 Proximity Oblivious Testing of Blow-Up

In this section we derive, for every fixed graph H , a constant-query proximity
oblivious tester of BU(H). That is, we refer to the following definition of [GR09],
when specialized to the dense graph model.

Definition 5.1 (proximity oblivious testing for graphs in the adjacency matrix
model): A proximity oblivious tester for a graph property Π is a probabilistic

oracle machine that, on input parameter N and access to an N -vertex graph

G = ([N], E), outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability 1.

2. There exists a monotone function ρ : (0, 1] → (0, 1] such that, for every graph

G = ([N], E) 6∈ Π, it holds that the tester rejects G with probability at least

ρ(δΠ(G)), where δΠ(G) denotes the (relative) distance of G from the set of

N -vertex graphs that are in Π.

The function ρ is called the detection probability of the tester.

Combining Lemma 4.1 and the ideas underlying [GR09, Thm. 6.3], we obtain.

Theorem 5.2 For every fixed graph H = ([h], F), there exists a O(h2)-query

proximity oblivious tester of BU(H). Furthermore, the tester has detection prob-

ability ρ(ǫ) = ǫO(h).

This extends the result of [GR09, Prob. 4.11], which corresponds to the special
case in which H is a h-vertex clique. We also mention that, for constant-query
proximity oblivious testers of BU(H), detection probability of the form ρ(ǫ) =
ǫΩ(h) is essential (cf. [GR09, Prob. 4.3]).

Proof: While a direct application of [GR09, Thm. 6.3] would yield a detection

bound of ρ(ǫ) = ǫO(h2), we obtain a quantative improvement by using a version
of [GR09, Thm. 6.3] that is specialized to the dense graph model. This version
refers to any graph property Π having a standard tester T (of error probability
1/3) that satisfies the following three conditions:

1. T is non-adaptive;

2. for a monotonically non-decreasing ν : (0, 1] → N, on proximity parameter

ǫ, the queries of T refer to at most ν(ǫ) vertices; and

3. for some fixed s ∈ N, the tester T rejects if and only if it sees a partial

view of some s-vertex subgraph that cannot occur in any graph in Π . (Such
a partial view is called a witness for non-membership.)

167

In such a case, Π has an
(

s
2

)
-query proximity-oblivious tester with detection

probability at least ρ(ǫ) = Ω(ǫ/ν(ǫ/2)s). We mention that a direct applica-
tion of [GR09, Thm. 6.3] would have yielded a detection bound of ρ(ǫ) =

Ω(ǫ/q(ǫ/2)(
s

2
)), where q < ν2 denotes the query complexity of the original tester.

The foregoing claim is easily proved by following the ideas that underly the
proof of [GR09, Thm. 6.3]. Specifically, the proximity oblivious tester select i ∈
{1, ..., ⌈log2N⌉} with probability 2−i, invokes the query-generator procedure of T
on input ((alleged) proximity parameter) 2−i, selects uniformly s vertices among
those that appear in the generated queries, makes (only) the corresponding

(
s
2

)

queries, and accept if and only if the induced subgraph is not a witness for non-
membership. Clearly, the resulting tester rejects any graph that is 2−i-far from

Π with probability at least 2−i · 2
3 ·

(
µ(2−i)

s

)−1
.

It remains to show that, when applied to Π = BU(H), the (non-adaptive)
tester in Algorithm 3.1 (when using the relaxed condition of Definition 3.4)
rejects based on a witness for non-membership that contains O(h) vertices. Es-
sentially, this holds since the condition in Definition 3.4 refers to a set of at
most h + 1 pairwise inconsistent rows that are not H-mappable, whereas (as
shown next) only n − 1 columns are required in order to establish that n rows
are pairwise inconsistent. Thus, it suffices to augment the set of rows R by at
most |R| − 1 additional vertices, and derive a witness for non-membership that
contains at most 2h+ 1 vertices.

Lastly, we prove that n − 1 columns suffice for establishing the fact that n
rows are pairwise inconsistent. Starting with a row r of the largest index, we
pick an arbitrary column that witnesses the inconsistence of row r with some
other row r′. This column c partitions the set of rows to two non-trivial sets: the
set of rows having the same value as r on column c, and the set of rows having
the opposite value on this column. (Note that all rows have a binary value on
column c, since we started with a row r of largest index.) The process continues,
separately, with each of these two sets, and the key observation is that each split
requires only one (possibly new) column.

6 Conclusions

We have shown a non-adaptive tester of query complexity Õ(1/ǫ) for BU(H).
The degree of the polynomial in the polylogarithmic factor that is hidden in the
Õ() notation is h + O(1), where h is the number of vertices in H . We wonder
whether the query complexity can be reduced to p(h log(1/ǫ))) · ǫ−1, where p
is a fixed polynomial. We mention that such a dependence on h was obtained
in [GR08, Sec. 6.2] for the special case in whichH is an h-clique. Furthermore, we
wonder whether non-adaptive testing of BU(H) is possible in query complexity
poly(h) · ǫ−1. We mention that such a result is only known for h = 2 (cf. [GR08,
Sec. 6.1]), whereas an adaptive tester of query complexity O(h2/ǫ) is known
(cf. [A, Sec. 4]).

168

Acknowledgments

We are grateful to Dana Ron for comments regarding a previous version of this
work.

References

[AFKS] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. Efficient Testing of Large
Graphs. Combinatorica, Vol. 20, pages 451–476, 2000.

[AFNS] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Character-
ization of the Testable Graph Properties: It’s All About Regularity. In 38th

STOC, pages 251–260, 2006.
[AS] N. Alon and A. Shapira. A Characterization of Easily Testable Induced Sub-

graphs. Combinatorics Probability and Computing, 15:791–805, 2006.
[A] L. Avigad. On the Lowest Level of Query Complexity in Testing Graph Prop-

erties. Master thesis, Weizmann Institute of Science, December 2009.
[CEG] R. Canetti, G. Even and O. Goldreich. Lower Bounds for Sampling Algorithms

for Estimating the Average. IPL, Vol. 53, pages 17–25, 1995.
[GGR] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection

to learning and approximation. Journal of the ACM, pages 653–750, July
1998.

[GKNR] O. Goldreich, M. Krivelevich, I. Newman, and E. Rozenberg. Hierarchy The-
orems for Property Testing. ECCC, TR08-097, 2008. Extended abstract in
the proceedings of RANDOM’09.

[GR08] O. Goldreich and D. Ron. Algorithmic Aspects of Property Testing in the
Dense Graphs Model. ECCC, TR08-039, 2008.

[GR09] O. Goldreich and D. Ron. On Proximity Oblivious Testing. ECCC, TR08-041,
2008. Extended abstract in the proceedings of the 41st STOC, 2009.

[GT] O. Goldreich and L. Trevisan. Three theorems regarding testing graph prop-
erties. Random Structures and Algorithms, Vol. 23 (1), pages 23–57, August
2003.

[RS] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2), pages
252–271, 1996.

