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Abstract. We present a candidate counterexample to the easy cylin-
ders conjecture, which was recently suggested by Manindra Agrawal and
Osamu Watanabe (see ECCC, TR09-019). Loosely speaking, the conjec-
ture asserts that any 1-1 function in P/poly can be decomposed into
“cylinders” of sub-exponential size that can each be inverted by some
polynomial-size circuit. Although all popular one-way functions have
such easy (to invert) cylinders, we suggest a possible counterexample.
Our suggestion builds on the candidate one-way function based on ex-
pander graphs (see ECCC, TR00-090), and essentially consists of iterat-
ing this function polynomially many times.
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1 The Easy Cylinders Conjecture

Manindra Agrawal and Osamu Watanabe [2, Sec. 4] have recently suggested the
following interesting conjecture. The conjecture refers to the notion of an easy

cylinder, defined next, and asserts that every 1-1 and length-increasing function

in P/poly has easy cylinders.

Definition 1 (easy cylinders, simplified1): A length function ℓ :N→N is admis-

sible if the mapping n 7→ ℓ(n) can be computed in poly(n)-time and there exists a

constant ǫ > 0 such that ℓ(n) ∈ [nǫ, n−nǫ]. A function f has easy cylinders if for

some admissible length function ℓ there exists mappings σ1, σ2 : {0, 1}∗ → {0, 1}∗

such that the following conditions hold:

1. For every x, it holds that |σ1(x)| = ℓ(|x|) and |σ2(x)| = |x| − ℓ(|x|).
2. The function σ(x) = (σ1(x), σ2(x)) is 1-1, polynomial-time computable and

polynomial-time invertible. The cylinders defined by σ1 consists of the col-

lection of sets {σ−1
1 (x′)|n : x′ ∈ {0, 1}ℓ(n)}n∈N, where σ−1

1 (x′)|n
def
= {x ∈

{0, 1}n : σ1(x) = x′}.
Each such set (i.e., σ−1

1 (x′)|n) is called a cylinder.

1 Our formulation is a special case of the formulation in [2], but we believe that our
candidate counterexample also holds for the definition in [2].
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3. For every n ∈ N and x′ ∈ {0, 1}ℓ(n), there exists a poly(n)-size circuit C =
Cx′ such that for every x ∈ σ−1

1 (x′)|n it holds that C(f(x)) = σ2(x).
Thus, the circuit C (effectively)2 inverts f on the cylinder σ−1

1 (x′)|n.

That is, when restricted to any such cylinder, the function f is easy to invert.

Needless to say, the existence of easy cylinders is interesting only in the case
that f is not polynomial-time invertible. Agrawal and Watanabe noted that all
popular candidates one-way functions have easy cylinders. Generalizing their
observations (and going somewhat beyond them), we first present four classes of
functions that are conjectured to be one-way and still have easy cylinders. Next
(in Section 3), we present our candidate counterexample.

2 Four Classes of Functions that have Easy Cylinders

The first class generalizes the multiplication function (i.e., (x′, x′′) 7→ x′ · x′′).
This class consists of (polynomial-time computable) functions f having the form
f(x) = g(σ1(x), σ2(x)) such that the σi’s satisfy the first two conditions in Defini-
tion 1 and the mapping (x′, x′′) 7→ (x′, g(x′, x′′)) is easy to invert (by an efficient
algorithm, denoted I). That is, whereas the mapping (x′, x′′) 7→ g(x′, x′′) may
be hard to invert, augmenting the output with x′ (i.e., considering (x′, x′′) 7→
(x′, g(x′, x′′))) makes the mapping easy to invert. Clearly, the cylinders defined
by σ1 are easy (since we can let Cσ1(x)(f(x)) output the second element in the
pair I(σ1(x), f(x))).

The second class consists of functions that are derived from collections of
finite one-way functions having a dense index set and dense domains.3 For ex-
ample, consider the DLP-based collection that consists of the functions {fp,g :
Zp → Zp}(p,g), where p is prime, g is a generator of the multiplicative group
modulo p, and fp,g(z) = gz mod p. For simplicity, we consider collections of
the form {fα : {0, 1}|α| → {0, 1}|α|}α∈I , where the index set I is dense (i.e.,
|I ∩{0, 1}n| > 2n/poly(n)). The one-wayness condition means that, for a typical
α ∈ I, the function fα is hard to invert, and so the “natural” cylinders defined
by σ1(α, z) = α are not easy. Nevertheless, the function F (α, z) = (α, fα(z)),
which is (weakly) one-way, has easy (“unnatural”) cylinders that are defined by
σ1(α, z) = z; specifically, it is trivial to extract σ2(α, z) = α from F (α, z) =
(α, fα(z)). (Indeed, in these easy cylinders, the “hard to invert part of F” is
fixed.)

The third class consists of functions that are derived from collections of
trapdoor one-way permutations. Unlike in the previous class, in the current case

2 For any x ∈ σ−1

1
(x′)|n, an f -preimage of y = f(x) is obtained by computing

σ−1(x′, C(y)).
3 Indeed, we consider a restricted case of [4, Def. 2.4.3]. On the other hand, note that

any collection of finite one-way functions with dense domains can be converted into
a collection of finite one-way functions over the set of all strings of a fixed length.
Thus, we may freely use the latter.
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a non-trivial index-sampling algorithm, denoted I, must exist. This algorithm
samples the index set along with corresponding trapdoors; that is, the coins
used to sample an index-trapdoor pair cannot be used as the index (because the
trapdoor must be hard to recover from the index). Let I1(r) denote the index
sampled on coins r, and let I2(r) denote the corresponding trapdoor (and sup-
pose that the domains are dense as before, which indeed restricts [4, Def. 2.4.4]).
Then, the function F (r, z) = (I1(r), fI1(r)(z)) is (weakly) one-way, but it has
easy cylinders that are defined by σ1(r, z) = r; specifically, we use the circuit
Cr(F (r, z)) = f−1

I1(r)(z), which in turn uses the trapdoor I2(r) that corresponds

to the index I1(r). (Note that the cylinders defined by σ1(r, z) = z are not easy
in this case, since I1 is hard to invert!)

The last class consists of all functions that are computable in NC0; that
is, functions in which each output bit depends on a constant number of input
bits. Recall that this class is widely conjectured to contain one-way functions
(cf., the celebrated work of Applebaum, Ishai, and Kushilevitz [1]). For every
such function f : {0, 1}n → {0, 1}n, if we let σ1 be the projection of the n-bit
input on n − n1/3 random coordinates, then, with high probability, we obtain
easy cylinders.4 The reason is that, with high probability, no output bit of the
function is influenced by more than one of the n1/3 remaining coordinates (and
so the residual function f(x) obtained after fixing the value of σ1(x) is essentially
a projection).

3 Our Candidate Counterexample to the Conjecture

We note that the last class of functions (i.e., NC0) contains the candidate one-
way function suggested by us [3]. However, we believe that iterating this function

for a polynomial (or even linear) number of times yields a function that has

no easy cylinders. For sake of self-containment, we recall the proposal of [3],
hereafter referred to as the basic function.

The basic function. We consider a collection of finite functions {fn : {0, 1}n →

{0, 1}n}n∈N such that fn is based a collection of d(n)-subsets, S1, ..., Sn ⊂ [n]
def
=

{1, ..., n}, and a predicate P : {0, 1}d(n) → {0, 1} (as follows).

1. The function d is relatively small; that is, d = O(log n) or even d = O(1),
but d > 2.

2. The predicate P : {0, 1}d → {0, 1} should be thought of as being a random
predicate. That is, it will be randomly selected, fixed, and “hard-wired” into
the function. For sure, P should not be linear, nor depend on few of its bit
locations.

4 In fact, the argument remain intact as long as ℓ(n) = n − o(n1/2) (rather than
ℓ(n) = n − n1/3). Actually, using n − o(n2/3) random coordinates would work too,
since then (w.h.p.) no output bit of the function is influenced by more than two
of the o(n2/3) remaining coordinates (and so a 2SAT solver can invert the residual
function on each of the individual cylinders).
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3. The collection S1, ..., Sn should be expanding: specifically, for some k, the
union of every k subsets should cover at least k + Ω(n) elements of [n] (i.e.,
for every I ⊂ [n] of size k it holds that |

⋃
i∈I Si| ≥ k +Ω(n)). Specifically, it

is suggested to have Si be the set of neighbors of the ith vertex in a d-regular
expander graph.

For x = x1 · · ·xn ∈ {0, 1}n and S ⊂ [n], where S = {i1, i2, ..., it} and ij < ij+1,
we denote by xS the projection of x on S; that is, xS = xi1xi2 · · ·xit

. Fixing P
and S1, ..., Sn as above, we define the function

fn(x)
def
= P (xS1

)P (xS2
) · · ·P (xSn

). (1)

Note that we think of d as being relatively small (i.e., d = O(log n)), and hope
that the complexity of inverting fn is related to 2n/O(1). Indeed, the hardness of
inverting fn cannot be due to the hardness of inverting P , but is rather supposed
to arise from the combinatorial properties of the collection of sets {S1, ..., Sn}
(as well as from the combinatorial properties of predicate P ). In general, the
conjecture is that the complexity of the inversion problem (for fn constructed
based on such a collection) is exponential in the “net expansion” of the collection
(i.e., the cardinality of the union minus the number of subsets).

We note that a non-uniform complexity version of this basic function (or
rather the sequence of fn’s) may use possibly different predicates (i.e., different
Pi’s) for the different n applications of P in Eq. 1.

The iterated function – the vanilla version. The candidate counterexample, F ,

is defined by F (x) = f
p(|x|)
|x| (x), where p is some fixed polynomial (e.g., p(n) = n)

and f i+1
n (x) = fn(f i

n(x)) (and f1
n(x) = fn(x)). We conjecture that this function

has no easy cylinders.

The iterated function, revisited. One possible objection to the foregoing func-
tion F as a counterexample to the easy cylinder conjecture is that F is unlikely
to be 1-1. Although we believe that the essence of the easy cylinder conjecture
is unrelated to the 1-1 property, we point out that this property may be ob-
tained by suitable modifications. One possible modification that may yield a
1-1 function is obtained by prepending the application of F with an adequate
expanding function (e.g., a function that stretches n-bit long strings to m(n)-
bit long strings, where m is a polynomial or even a linear function). Specif-
ically, for a function m : N → N such that m(n) ∈ [2n, poly(n)], we define
gn : {0, 1}n → {0, 1}m(n) analogously to Eq. 1 (i.e., here we use an expand-
ing collection of m(n) subsets), and let F ′(x) = F (g|x|(x)); that is, for every

x ∈ {0, 1}n, we have F ′(x) = f
p(m(n))
m(n) (gn(x)).

4 Conclusion

Starting with the aforementioned non-uniform complexity version of the basic
function fn, and applying different incarnations of this function in the different
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iterations, we actually obtain a rather generic counterexample. Alternatively,
we may directly consider functions Fn : {0, 1}n → {0, 1}m(n) such that the
function Fn has a poly(n)-sized circuit. Note that such a circuit may be viewed
as a composition of polynomially many circuits in NC0, which in turn may be
viewed as basic functions. Furthermore, a random poly(n)-sized circuit is likely
to be decomposed to NC0 circuits that correspond to basic functions in which
the collection of sets (of input bits that influence individual output bits) are
expanding. Needless to say, we believe that generic polynomial-size circuits have
no easy cylinders.

It seems that the existence of easy cylinders in all popular candidate one-way
functions is due to the structured nature of these candidates. Such a structure
will not exist in the generic case, and so we conjecture that the Easy Cylinders

Conjecture is false.
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