
Constant-round interactive proof systems for
AC0[2] and NC1

Oded Goldreich and Guy N. Rothblum

Abstract. We present constant-round interactive proof systems for suf-
ficiently uniform versions of AC0[2] and NC1. Both proof systems are
doubly-efficient, and offer a better trade-off between the round complex-
ity and the total communication than the work of Reingold, Rothblum,
and Rothblum (STOC, 2016). Our proof system for AC0[2] supports a
more relaxed notion of uniformity and offers a better trade-off between
the number of rounds and the round complexity that our proof sys-
tem for NC1. We observe that all three aforementioned systems yield
constant-round doubly-efficient proof systems for the All-Pairs Shortest
Paths problem.

An early version of this work appeared as TR18-069 of ECCC. The current
revision follows the high-level strategy employed in the original version, but
differs from it in many low-level details (esp., in Section 2).

1 Introduction

The notion of interactive proof systems, put forward by Goldwasser, Micali, and
Rackoff [9], and the demonstration of their power by Lund, Fortnow, Karloff,
and Nisan [12] and Shamir [16] are among the most celebrated achievements of
complexity theory. Recall that an interactive proof system for a set S is associ-
ated with an interactive verification procedure, V , that can be made to accept
any input in S but no input outside of S. That is, there exists an interactive
strategy for the prover that makes V accepts any input in S, but no strategy can
make V accept an input outside of S, except with negligible probability. (See [3,
Chap. 9] for a formal definition as well as a wider perspective.)

The original definition does not restrict the complexity of the strategy of
the prescribed prover and the constructions of [12, 16] use prover strategies of
high complexity. Seeking to make interactive proof systems available for a wider
range of applications, Goldwasser, Kalai and Rothblum [8] put forward a no-
tion of doubly-efficient interactive proof systems. In these proof systems the
prescribed prover strategy can be implemented in polynomial-time and the ver-
ifier’s strategy can be implemented in almost-linear-time. (We stress that unlike
in argument systems, the soundness condition holds for all possible cheating
strategies, and not only for feasible ones.) Restricting the prescribed prover to
run in polynomial-time implies that such systems may exist only for sets in
BPP, and thus a polynomial-time verifier can check membership in such sets
by itself. However, restricting the verifier to run in almost-linear-time implies

Constant-round interactive proof systems for AC0[2] and NC1 313

that something can be gained by interacting with a more powerful prover, even
though the latter is restricted to polynomial-time.

The potential applicability of doubly-efficient interactive proof systems was
demonstrated by Goldwasser, Kalai and Rothblum [8], who constructed such
proof systems for any set that has log-space uniform circuits of bounded depth
(e.g., log-space uniform NC). A more recent work of Reingold, Rothblum, and
Rothblum [15] provided such (constant-round) proof systems for any set that
can be decided in polynomial-time and a bounded amount of space (e.g., for
all sets in SC). In our prior works [5, 7], we presented simpler and more efficient
constructions of doubly-efficient interactive proof systems for some special cases:
In particular, in [5] we considered a class of “locally-characterizable sets”, and
in [7] we considered the problem of counting t-cliques in graphs.

In this work we consider the construction of constant-round doubly-efficient
interactive proof systems for (sufficiently uniform) versions of AC0[2] and NC1.
We mention that the proof systems for NC constucted by Goldwasser, Kalai
and Rothblum [8] use O(d(n) log n) rounds, where d(n) is the depth of the nth

circuit. Building on their techniques, Kalai and Rothblum have observed the
existence of a constant-round proof system for a highly-uniform version of NC1,
but their notion of uniformity was quite imposing and they never published their
work [11]. In Section 3, we use similar ideas towards presenting a constant-round
proof system for a sufficiently uniform version of NC1, which we believe to be
less imposing (see also the overview in Section 1.4), but our main contribution
is in presenting such a proof system for a sufficiently uniform version of AC0[2]:
The latter proof system is more efficient and refers to a more relaxed notion of
uniformity.

1.1 Our main result: A proof system for AC0[2]

We present constant-round doubly-efficient interactive proof systems for sets
acceptable by (sufficiently uniform) constant-depth polynomial-size Boolean cir-
cuits of unbounded fan-in and parity gates (i.e., the class AC0[2]). Note that this
class contains “seemingly hard problems in P” (e.g., the t-CLIQUE problem for
n-vertex graphs can be expressed as a highly uniform DNF with nt terms (each
depending on

(
t
2

)
variables)). Postponing, for a moment, a clarification of what

is meant by “sufficiently uniform”, our result reads

Theorem 1.1 (constant-round doubly-efficient interactive proofs for AC0[2],
loosely stated): For constants c, d ∈ N, suppose that {Cn : {0, 1}n → {0, 1}}
is a sufficiently uniform family of Boolean circuits with unbounded fan-in parity
and conjunction gates such that Cn has size at most nc and depth d. Then, for
every δ ∈ (0, 1], the set {x : C|x|(x) = 1} has a O(cd/δ)-round interactive proof

system in which the verifier runs in time O(n1+o(1)), the prescribed prover can
be implemented in time O(nc+o(1)), and the total communication is nδ.

314 Oded Goldreich and Guy N. Rothblum

We mention that the work of Reingold, Rothblum, and Rothblum [15] im-
plies that log-space uniform AC0[2] (actually, even log-space uniform NC1)1

has constant-round doubly-efficient interactive proof systems. One advantage of
our construction over [15] is that, being tailored to AC0[2], it is much simpler
and more transparent. In addition, the round complexity of our proof systems
is considerably better than the round-complexity in [15]; specifically, we present
a O(1/δ)-round system with total communication nδ, whereas in [15] obtaining

total communication nδ requires exp(Õ(1/δ)) many rounds.

Corollaries. Using Theorem 1.1, we obtain a constant-round doubly-efficient
interactive proof system for the All Pairs Shortest Path (APSP) problem (see
background in [18]). Such a proof system follows also from the work of [15], but
this fact was not observed before. The key observation is that verifying the value
of APSP can be reduced to matrix multiplication in the (min,+)-algebra via a
doubly-efficient NP-proof system.

Recall that matrix multiplication in the (min,+)-algebra refers to the case
that multiplication is replace by addition and the sum is replace by the minimum;
that is, the product of the matrices A = (ai,j)i,j∈[n] and B = (bi,j)i,j∈[n], denoted
A ∗ B, equals C = (ci,j)i,j∈[n] such that ci,j = mink∈[n]{ai,k + bk,j} for every
i, j ∈ [n]. Given a possibly weighted n-vertex digraph G, we consider the matrix
W = (wi,j)i,j∈[n] such that wi,j denotes the weight (or length) of the edge
from i to j, whereas wi,i = 0 and wi,j = ∞ if there is no edge from i to j.
Then, the shortest paths in G can be read from An, and the foregoing NP-
proof consists of the prover sending the matrices A1, A2, ..., Adlog2 ne such that
A0 = A and Ai = Ai−1 ∗ Ai−1 for all i. Hence, the verification of APSP is
reduced to the verification of log n claims regarding matrix multiplication in
the (min,+)-algebra, which can be verified in parallel. Focusing on the latter
problem, or rather on the set {(A,B,A ∗ B) : A,B ∈

⋃
n∈N Rn×n}, we observe

that membership can be recognized in SC (hence the result of [15] applies) as
well as by highly uniform AC0 circuits.

Corollary 1.2 (a constant-round doubly-efficient interactive proof for APSP):
Let APSP consists of pairs (G,L) such that L is a matrix recoding the lengths of
the shortest paths between each pair of vertices in the weighted graph G. For every
constant δ > 0, the APSP has a O(1/δ)-round interactive proof system in which
the verifier runs in time O(n2+o(1)), the prescribed prover can be implemented
in time O(n4+o(1)), where n denotes the number of vertices in the graph and
weights are restricted to [− exp(no(1)), exp(no(1))]. Furthermore, except for the
first prover message, in each subsequent round, the prover sends nδ bits.

As with Theorem 1.1, the application of [15] to APSP would have yielded exp(Õ(1/δ))
rounds.

Another problem to which Theorem 1.1 is applicable is the set of graphs
having no t-cliques, denoted t-no-CLIQUE. For any contant t, constant-round

1 Actually, the result of [15] can be applied to NC1 circuits that can be constructed
in polynomial time and no(1)-space.

Constant-round interactive proof systems for AC0[2] and NC1 315

doubly-efficient interactive proof systems for t-no-CLIQUE are implicit or explicit
in several prior works. In particular, such proof systems are implied by the
aforementioned result of [15] as well as by [5, Sec. 4.3], and were explicitly
presented in [7, Sec. 2]. Noting that the said set can be recognized by highly
uniform CNFs of size O(nt) and using Theorem 1.1, we obtain yet another
alternative proof system for t-no-CLIQUE.

Corollary 1.3 (a constant-round doubly-efficient interactive proof for t-no-CLIQUE):
For every constants t ∈ N and δ > 0, the set t-no-CLIQUE has a O(t/δ)-round
interactive proof system in which the verifier runs in time O(n2+o(1)), the pre-
scribed prover can be implemented in time O(nt+o(1)), and the total communi-
cation is nδ, where n denotes the number of vertices in the graph.

In the following table, we compare Corollary 1.3 to the prior proof systems known
for the t-no-CLIQUE problem.

rounds total comm. verifier time prover time
obtained (in)

via SC [15] exp(Õ(1/δ)) nδ Õ(m) poly(nt)

via “local characterization” [5] t/δ nδ Õ(m) nt+1

directly [7] t Õ(n) Õ(m) n0.791t

via AC0[2] (this work) O(t/δ) nδ+o(1) n2+o(1) nt+o(1)

Table 1. Comparison of different constant-round interactive proof systems for the t-
no-CLIQUE problem, for the constants t and δ > 0, where n (resp., m > n) denotes the
number of vertices (resp., edges).

Our proof system for t-no-CLIQUE is very similar to the one in [5]. The dif-
ference is that we apply the sum-check protocol to an arithmetic circuit defined
over an extension field (of size n2δ) of GF(2), whereas in [5] it is implicitely
applied to an arithmetic circuit defined over a field of prime characteristic that
is larger than

(
n
t

)
. Furthermore, here the arithmetic circuit is a pseudorandom

linear combination of the
(
n
t

)
tiny circuits that identify specific t-cliques, whereas

in [5] the arithmetic circuit counts these t-cliques.

1.2 Notions of sufficiently uniform circuits

Some notion of uniformity is essential for a result such as Theorem 1.1, since
the claim regarding the input x refers to satisfying a poly(|x|)-sized circuit C|x|,
whereas the verifier is restricted to almost-linear time. In the context of this
work, we seek the most liberal notion that we can support.

Our notion of uniformity is stronger than the notion of log-space uniformity
used in [8] (let alone even weaker notions of uniformity that can be supported
when applying the result of Reingold, Rothblum, and Rothblum [15] (see Foot-
note 1)). Specifically, we consider the complexity of a succinct (implicit) repre-
sentation of the circuit, rather than the complexity of constructing the circuit

316 Oded Goldreich and Guy N. Rothblum

itself (i.e., its explicit representation). We consider three such succinct repre-
sentations, where in all cases we denote by n the length of the input to the
poly(n)-size circuit, and assume that the circuit is layered (in the sense detailed
below):

Adjacency predicate: Such a predicate indicates, for each pair of gates (u, v),
whether or not gate u is fed by gate v. Specifically, dealing with circuits of size
s(n) = poly(n), we consider the adjacency predicate adj : [s(n)]× [s(n)]→
{0, 1},

Incidence function: Such a function indicates, for each gate u and index i,
the identity of the ith gate that feeds the gate u, where 0 indicates that u
is fed by less than i gates. Specifically, for a predetermined fan-in bound
b(n) ≤ s(n) − 1, we consider the incidence function inc : [s(n)] × [b(n)] →
[s(n)] ∪ {0}.

Input assignment in canonical formulae: Here we consider a fixed struc-
ture of the circuit as a formula, and specify only the input bit assigned to
each leaf of the formula, where the same bit is typically assigned to many
leaves. The assignment is merely a function from leaf names to bit loca-
tions in the input. Specifically, we consider the input assignment function
ia : [s(n)] → [n + 2], where location i ∈ {n + 1, n + 2} is assigned the
constant i mod 2 in the “augmented” n-bit input (which holds n+ 2 bits).2

In all cases, we assume that the (depth d) circuit is layered in the sense that, for
each i ∈ [d], gates at layer i − 1 are fed by gates at layer i only, where layer i
consists of all gates at distance i from the output gate. Indeed, the output gate
is the only gate at layer 0, and the gates at layer d are called leaves, since they
are not fed by gates but are rather assigned input bits.3 (Indeed, for simplicity,
we do not allow leaves at other layers.)4 Furthermore, when using the adjacency
predicate and the incidence function representations, we shall assume that (for
each i ∈ [n]) the ith leaf is assigned the ith input bit (and for i ∈ {n+ 1, n+ 2}
the constant i mod 2 is assigned to the ith leaf); but in the canonical formulae
representation the assignment of input bits to leaves is the only aspects of the
circuit that varies.

In all three cases, we make two additional simplifying assumptions. The first
is that the circuit contains no “negation” gates (i.e., not-gates). This can be
assumed, without loss of generality, because we can replace not-gates by parity-
gates (fed by the desired gate and the constant 1, which is the reason for allowing

2 The need to feed both constants arises from the following conventions by which the
circuit is layered and all gates in the same layer compute the same functionality.

3 We stress that the term ‘leaf’ is used here also in the case that the circuit is not
a formula (i.e., does not have a tree structure). One may prefer using the terms
‘terminal’ or ‘source’ instead.

4 This can be assumed, without loss of generality, by replacing such a potential leaf
at layer i with an auxiliary path of dummy gates that goes from layer d to layer i so
that this path indirectly feeds the value of the desired input bit to the corresponding
gate at layer i.

Constant-round interactive proof systems for AC0[2] and NC1 317

to feed leaves with the constant 1). The second assumption is that, for each
i ∈ [d], all gates at layer i− 1 have the same functionality (gate-type).5

Theorem 1.1 holds under each of the three representations, when requiring
that the corresponding function, which implicitly describes the poly(n)-size cir-
cuit Cn, can be represented by a formula of size no(1) than can be constructed in
time n1+o(1). (Recall that the input to the latter formula is of length O(log n).)

1.3 Overview of our main construction

The construction underlying Theorem 1.1 combines a central ingredient of the
interactive proof system of Goldwasser, Kalai, and Rothblum [8] with the approx-
imation method of Razborov [14] and Smolensky [17]. Specifically, we first reduce
the verification of the claim that the input satisfies the predetermined Boolean
circuit to an analogous claim regarding an Arithmetic circuit (over GF(2)) that
is derived from the Boolean circuit using the approximation method. The crucial
fact is that that all multiplication gates in the Arithmetic circuit have small fan-
in (whereas the fan-in of addition gates may be large). With high probability,
this approximation does not affect the computation on the given input, but it
does introduces a “completeness error” in the verification procedure, which we
eliminate later (so to obtained perfect completeness).

Next, following [8], we consider a computation of the Arithmetic circuit (on
the given input), and encode the values of the gates at each layer by a low degree
polynomial over a large (extension) field (of GF(2)). Here we use the fact that, by
virtue of the approximation method, the gates in the Arithmetic circuit compute
polynomials of low degree, whereas in [8] obtaining low degree polynomials relied
on “refreshing the variables” after each layer of the circuit (see also Eq. (15) in
Section 3). That is, unlike in [8], we do not use a generic low-degree extension of
the Boolean values (computed by the gates of the Boolean circuit), but rather
use the polynomials that are computed by the gates of the Arithmetic circuit
(i.e., the formal polynomials that are defined by the circuit). More importantly
(and in fact crucially), relying on the foregoing uniformity condition, we express
the relation between the values of the gates at adjacent layers (of the circuit) by
low degree polynomials. These polynomials are derived from the small Boolean
formulas that compute the adjacency relation.

Lastly, following [8], we reduce the verification of a claim regarding the val-
ues at layer i − 1 in the circuit to a claim regarding the values at layer i, by
using the Sum-Check protocol in each reduction step. Specifically, we use the
Sum-Check protocol with respect to variables in a relatively large alphabet (of
size nδ), so that the number of rounds is a constant (i.e., O(1/δ)). Actually,
this refers to the way in which addition gates of unbounded fan-in are han-
dled, where each such poly(n)-way addition is written as a sum over a O(1/δ)-
long sequence of indices over an alphabet of size nδ (i.e.,

∑
i∈[m] T (i) is written

5 This can be assumed, without loss of generality, by replacing each layer by three
consecutive layers so that one layer is devoted to and-gates, one to or-gates, and one
to parity-gates.

318 Oded Goldreich and Guy N. Rothblum∑
i1,...,it∈[m1/t] T (i1, .., it)). In contrast, multiplication gates, which are of log-

arithmically bounded fan-in, are treated in a straightforward manner (i.e., we
branch to verify each of the logarithmically many claimed values).6

To summarize: Using the approximation method allows us to replace or-gates
(and/or and-gates) of unbounded fan-in by multiplication gates of logarithmic
fan-in, while introducing parity gates of unbounded fan-in. Each layer of parity
gates can be handled by the Sum-Check protocol such that each iteration of this
protocol cuts the fan-in of the parity gates by a factor of nδ. The degree bound
on which the Sum-Check protocol relies is due to the uniformity of the original
Boolean circuit and to the fact that the multiplication gates have small fan-
in. Specifically, a sufficient level of uniformity of the Boolean circuit implies an
upper bound on the degree of the polynomials that relate the values of the gates
at adjacent layers (of the circuit), whereas the small fan-in of the multiplication
gates implies an upper bound on the degree of the polynomial that expresses the
values of the various gates.

We mention that the idea of using the approximation method towards em-
ulating AC0[2] by low degree arithmetic circuits, in the context of interactive
proof systems, was used before by Kalai and Raz [10]. Both in [10] and here, this
causes a (small) error probability (in the completeness condition).7

We regain perfect completeness by letting the prover point out a gate in which
an approximation error occurs (with respect to the input), and prove its claim.
That is, we let the verifier accept in case it is convinced of such a claim (of
approximation error), which means that we increase the soundness error (rather
than introduce a completeness error).

1.4 The proof system for NC1

Generalizing and somewhat simplifying the proof systems constructed by Gold-
wasser, Kalai, and Rothblum [8], we obtain constant-round doubly-efficient inter-
active proof systems for sufficiently uniformNC1 (specifically, canonical formulas
with a sufficiently uniform input assignment function as discussed in Section 1.2).
The simplification is due to relying on a stronger notion of uniformity than the
one used in [8], whereas the generalization allows us to reduce the round com-
plexity of [8] by a log-squared factor. Recall that, when handling a (bounded
fan-in) circuit Cn : {0, 1}n → {0, 1} of depth d(n), the proof system of [8] has
O(d(n) · log n) rounds. This is due to invoking the Sum-Check Protocol for each
layer in the circuit, and using a version that handles summations over the binary

6 Indeed, we could reduce the verification of these logarithmically many claims to the
verification of a single claim, by using a curve that passes through all the points
in these claims, as done in [8]. But since here the number of rounds is a constant,
we can afford an overhead that is exponential in the number of rounds (i.e., the

overhead is O(logn)d
′
, where d′ is the number of layers having multiplication gates).

7 In contrast, when using the approximation method in the context of worst-case to
average-case reduction for the class AC0[2] presented in [6, Apdx A.2], the approxi-
mation error is absorbed by the (larger) error rate of the average-case solver.

Constant-round interactive proof systems for AC0[2] and NC1 319

alphabet. Instead, for any constant δ > 0, we invoke the Sum-Check protocol
for each block of δ log2 n consecutive layers in the circuit, and use a version that
handles summations over an alphabet of size nδ. Hence, we cut the number of
rounds by a factor of (δ log n)2.

Theorem 1.4 (constant-round doubly-efficient interactive proofs forNC1, loosely
stated): Let {Cn : {0, 1}n → {0, 1}} be a sufficiently uniform family of canonical
Boolean circuits of fan-in two and logarithmic depth. Then, for every δ ∈ (0, 1],
the set {x : C|x|(x) = 1} has a O(1/δ2)-round interactive proof system in which

the verifier runs in time O(n1+o(1)), the prescribed prover can be implemented
in polynomial-time, and the total communication is nδ+o(1).

We stress that Theorem 1.4 does not subsume Theorem 1.1. First, the proof
system in Theorem 1.4 uses a larger number of rounds as a function of total
communication complexity (i.e., O(1/δ2) rather than O(1/δ) rounds). Second,
the uniformity condition in Theorem 1.4 is stronger (cf., Theorem 3.1 and The-
orem 2.3).

1.5 Digest and organization

Our constant-round doubly-efficient interactive proof systems (for AC0[2] and
NC1) are based on the proof system of Goldwasser, Kalai and Rothblum [8].
Specifically, these proof systems are designed for proving that an input x sat-
isfies a circuit C|x| that is “efficiently constructable” based on |x| only. The
proof systems differ in the specific meaning given to the term “efficiently con-
structable” (see Section 1.2), and they are all pivoted in functions that represent
the values of the gates at different layers of the circuit (in its computation on
input x).

Typically, the latter functions are too large to be communicated, and their
values at specific points cannot be evaluated by the verifier itself (although they
are computable in polynomial-time). Still, given x, all these functions are well
defined, and they are related by the description of the circuit. The more struc-
tured the circuit, the simpler these relations are. In particular, the notions of
uniformity defined in Section 1.2 yield very simple relations between the func-
tions that describe the values of gates at adjacent layers.

These relations extend also to low-degree extensions of these functions (which
constitute error correcting codes of the explicit description of these functions),
and they allow for testing the function that corresponds to layer i− 1 by using
the function that corresponds to layer i. Specifically, the value of the former
function at a given point is verified by using the value of the latter function at a
few points. Lastly, in contrast to the functions that correspond to higher layers,
the function that corresponds to the lowest layer (i.e., the input layer) is known
to the verifier (who knows the input x).

In the interactive proof system for AC0[2], presented in Section 2 (and es-
tablishing Theorem 1.1), a strong notion of uniformity is used to directly relate

320 Oded Goldreich and Guy N. Rothblum

functions that describe the values of gates in adjacent layers of a related arith-
metic circuit (in a computation on input x). Here we rely on the hypothesis
that the original circuit has constant-depth, and capitalize on the fact that we
can obtain a corresponding arithmetic circuit that uses multiplication gates of
logarithmic fan-in.

In the interactive proof system for NC1, presented in Section 3 (and es-
tablishing Theorem 1.4), an even strong notion of uniformity is used to relate
functions that describe the values of gates that are δ log2 n layers apart. Here we
rely on the hypothesis that the original circuit has fan-in two and logarithmic
depth.

2 The interactive proof system for AC0[2]

Recall that we consider a sufficiently uniform family of layered circuits {Cn} of
constant depth d ∈ N and unbounded fan-in. For simplicity of our presentation,
we work with the adjacency predicate representation, while noting that the han-
dling of other representations can be reduced to it (as detailed in Section 2.5). We
also assume, for simplicity, that the circuit has only gates of the or and parity

type, since and-gates can be emulated by these. Letting s = s(n) = poly(n) be a
bound on the number of gates in Cn, for each i ∈ [d], we consider the no(1)-sized
formula ψi : [s]× [s]→ {0, 1} such that ψi(j, k) = 1 if and only if gate j resides
in layer i − 1 and is fed by the gate k (which resides in layer i). In doing so,
we associate [s] with {0, 1}`, where ` = log2 s, and view ψi as a function over
{0, 1}2`.

On input x ∈ {0, 1}n, we proceed in three steps: First, we reduce the Boolean
problem (of verifying that Cn(x) = 1) to an Arithmetic problem (of verifying
that a related Arithmetic circuit An evaluates to 1 on a related input (x, s)).
This reduction uses the approximation method and yields constant-depth arith-
metic circuits with multiplication gates of logarithmic fan-in. Next, we express
the latter problem as a sequence of O(d) functional equations that relate the
value of gates at adjacent layers of the circuit An. Here we shall use low degree
polynomials that extend the ψi’s, while deriving (succinct representations of)
these polynomials from the corresponding Boolean formulas that compute the
ψi’s. Using the fact that all multiplication gates are of small fan-in, it follows that
the resulting equations are all of low degree. Last, we present a constant-round
doubly-efficient interactive proof system for the verification of this sequence of
functional equations. Hence, we obtain a constant-round doubly-efficient inter-
active proof system for the set {x : C|x|(x)=1}.

2.1 Step 1: Approximation by Arithmetic circuits

The first step is a randomized reduction of solving the Boolean problem to solving
a corresponding Arithmetic problem. This reduction follows the ideas underlying
the approximation method of Razborov [14] and Smolensky [17], while working
with the field GF(2) (as [14], rather than with GF(p) for some prime p > 2

Constant-round interactive proof systems for AC0[2] and NC1 321

as [17]). Recall that this reduction replaces every or-gate by a O(log n)-way
multiplication of parity gates that each computed a random linear combination
of the values of the gates that feed the or-gate in the Boolean circuit.

When following this scheme, we replace the random choices made at each
gate by pseudorandom choices that are generated by a small bias generator [13];
specifically, we use a specific small-bias generator that uses a seed of logarithmic
(i.e., O(log n)) length such that its output bits can be succinctly represented by
a low-degree function in the bits of the binary extension of the bit’s location
(e.g., the third construction in [1]).8 We shall use the same seed to generate all
pseudorandom sequences used in the construction, but use different parts of the
sequence for each random combination at each gate.

Hence, for a fixed Boolean circuit Cn, on input x ∈ {0, 1}n, we randomly

reduce the question of whether Cn(x) = 1 to the question of whether A
(σ)
n (x) =

1, where σ ∈ {0, 1}O(logn) is selected uniformly at random, and A
(σ)
n is the

Arithmetic circuit that results when using σ as the seed for the small-biase
generator. Specifically, the choice of σ will be made by the verifier, and we

observe that Prσ[A
(σ)
n (x)=Cn(x)] = 1− s(n) · exp(−O(log n)) = 1− o(1). In the

rest of the analysis, we assume that the verifier was not extremely unlucky (in

its choice of σ), and so that A′n(x)
def
= A

(σ)
n (x) = Cn(x) holds. Indeed, we shall

fix σ for the rest of this description, and will use the shorthand A′n.

Let us stop for a moment and take a closer look at A′n. Recall that each
or-gate in Cn is essentially replaced by a O(log n)-way multiplication gate that
is fed by the inner-product of the values of the original feeding gates and a
pseudorandom sequence. Specifically, for `′ = O(log n), if the or-gate indexed j
(at layer i − 1 of Cn) was fed by gates indexed k1, ..., kn′ (of layer i), then it is
replaced in A′n by an arithmetic sub-circuit that computes the function

1 +
∏
j′∈[`′]

1 +
∑
t∈[n′]

G′((j − 1) · s · `′ + (j′ − 1) · s+ kt) · ykt

 (1)

where yk represents the output of the gate indexed k (at layer i of Cn), and
G′(k) = G(σ)(k) is the kth bit in the pseudorandom sequence generated based on
the aforementioned fixed seed σ. Note that the `′ different linear combinations
associated with the same or-gate use different portions of the pseudorandom

8 In the third construction of [1], the seed is viewed as a pair (ζ, r), where ζ ∈ GF(2k)
and r ∈ {0, 1}k, and the ith bit in the output is the inner-product (mod 2) of the
binary representation of ζi and r. Note that computing ζi reduces to computing∏
j≥0(ij · ζ2

j

+ (1 − ij)), where (ik′−1, ..., i0) ∈ {0, 1}k
′

is the binary expansion of

i ∈ [2k
′
] (and ζ2, ..., ζ2

k′−1

can be precomputed when ζ is fixed). Note that each
element of GF(2k) is represented as a k-bit long sequence over {0, 1} ≡ GF(2), and
so multiplication in GF(2k) corresponds to k bilinear forms in these representations

(and the product ij · ζ2
j

corresponds to the products of ij and the bits in the

representation of ζ2
j

).

322 Oded Goldreich and Guy N. Rothblum

sequence. Likewise, different or-gates use different portions of the pseudorandom
sequence (but this choice is immaterial).9

The analysis of the foregoing reduction, which uses related pseudorandom
sequences, is almost identical to the analysis of the original reduction (which
uses independent random sequences). On the one hand, if

∨
t∈[n′] ykt = 0, then

Eq. (1) equals 1 + (1 + 0)`
′

= 0. On the other hand, if
∨
t∈[n′] ykt = 1, then,

with probability at least 2−`
′

+ ε (over the choice of σ), it holds that Eq. (1)
equals 1 + 0 = 1, where ε denote the bias of the small-biased generator. Indeed,
we use the fact that `′ disjoint and non-zero linear combinations of the bits
of an ε-bias generator equal 0`

′
with probability at most 2−`

′
+ ε, since this

holds for any `′ linearly independent combinations. Recall that the aforementined
construction of [1] uses a seed of length O(log(L/ε)) in order to generate an ε-

biased sequence of length L. Hence, we can set L = Õ(s2) and ε = o(1/s),
and upper-bound the probability that an approximation-error occured in any
of the gate-replacements by using a union bound; that is, this probability is
upper-bounded by s · (2−`′ + ε) = o(1).

Recall that Eq. (1) represents the function computed by a constant-depth
sub-circuit that replaces a generic or-gate. It will be convenient to think of
this function as being computed by a single gate, which we hereafter call an
augmented multiplication gate.

We highlight the following features of the Arithmetic circuit A′n: Its depth is
O(d), its size is O(log n)d · s(n), it computes a polynomial of degree O(log n)d,
and it has a succinct representation of size no(1) that can be constructed in
time n1+o(1). Furthermore, each of its gates computes a polynomial of degree
O(log n)d. (The forgoing assertions use the fact that, given σ, a circuit computing

G(σ) : {0, 1}log2(s
2`′) → {0, 1} can be constructed in poly(|σ|)-time, and that this

circuit corresponds to a multilinear function from GF(2)log2(s
2`′) to GF(2); see

Footnote 8.)

Indeed, as defined above, A′n : GF(2)n → GF(2) is an arithmetic circuit over
GF(2), consisting solely of addition and augmented multiplication gates. But we
can view A′n as an arithmetic circuit over F = GF(22δ log2 n), and consider its
value at x ∈ {0, 1}n, which is viewed as an n-long sequence over F . (It suffices
to have |F| ≥ nδ+Ω(1); on the other hand, we also use log2 |F| ≤ no(1).)

2.2 Step 2: Relating the values of layers in the computation

A key idea of Goldwasser, Kalai and Rothblum [8] consists of representing the
values of the gates at various levels of the circuit by functions, and relating
these functions by functions that represent the structure of the circuit. (These
functions are first viewed as functions from [s] to {0, 1}, and then as `-variant

9 This is the case since we bound the approximation error of A′n by employing a union
bound to the errors that may occur in the various gates, and these hold regardless
of the dependency between these error evants.

Constant-round interactive proof systems for AC0[2] and NC1 323

functions from {0, 1}` to {0, 1}, which serves as basis for considering their low
degree extensions over larger fields (i.e., F as above).)10

In our context, we use the functions αd, ..., α0 : [s]→ {0, 1} such that αi−1(j)
represents the value of gate j (at layer i − 1) in a computation of A′n(x). We
then relate their values by referring to ψi and to the functionality of the gates
in layer i. Recall that ψi(j, k) = 1 if gate j (of layer i − 1) is fed by gate k (of
layer i). In the case of an addition gate (i.e., a layer of addition gates), we have

αi−1(j) =
∑
k∈[s]

ψi(j, k) · αi(k). (2)

Hence, Eq. (2) can be viewed as relating functions that range over [s] by using a
function that ranges over [s]2. In the case of an augmented multiplication gate
(as represented by Eq. (1)), we have

αi−1(j) = 1+
∏
j′∈[`′]

1 +
∑
k∈[s]

G′((j − 1) · s · `′ + (j′ − 1) · s+ k) · ψi(j, k) · αi(k)


(3)

where (as before) G′(k) represents the kth bit in the output of the generator on
the fixed seed. Assuming, without loss of generality, that `′ > 2`+log2 `

′ (equiv.,
2`
′
> s2 · `′), we view Eq. (3) as relating functions that range over [s] by using

functions that range over [2`
′
] ⊃ [s]2 ∪ [s]2 × [`′].

The next step is viewing all functions as functions over binary strings rather
than over natural numbers; that is, we associate [s] with {0, 1}`, and [2`

′
] with

{0, 1}`′ . Furthermore, we consider the arithmetic formula ψ̂i : F`+` → F that
is derived from ψi : {0, 1}`+` → {0, 1} in the obvious manner (i.e., replacing
and-gates by multiplication gates and negation gates by gates that add the con-
stant 1). Recalling that ψi is a formula of size no(1), it follows that ψ̂i computes
a polynomial of degree no(1). Hence, Eq. (2) is replaced by

αi−1(j) =
∑

k∈{0,1}`
ψ̂i(j, k) · αi(k), (4)

where j ∈ {0, 1}`. Hence, the functions αi−1 : {0, 1}` → {0, 1} and αi : {0, 1}` →
{0, 1} are related by an equation that uses a low degree polynomial (i.e., ψ̂i). The
same consideration can be applied to Eq. (3), when recalling that G′ : [2`

′
] →

{0, 1} can be written as an explicit low-degree polynomial by using functions that
range over {0, 1}`′ ≡ [2`

′
]. Specifically, the corresponding low degree polynomial

10 Jumping ahead, we stress that the relation between these functions will be checked
by the interactive proof system presented in Section 2.3. This will be done by having
the verify ask the prover to provide the values of these functions in few places, while
relying on the fact that these functions can be evaluated in polynomial-time. Note
that these functions are too large to be communicated to the verifier (see analogous
discussion in Section 3.1.)

324 Oded Goldreich and Guy N. Rothblum

is Ĝ′ : F`′ → F such that Ĝ′(z`′ , ..., z1) is a specific linear combination (i.e., r)
of the bits of the field element

∏
j∈[`′](zj · τj + (1− zj)), where r as well as the

τj ’s are precomputed based on the fixed seed of the small-biased generator G
(see Footnote 8).11 Hence, we get

αi−1(j) = 1 +
∏

j′∈{0,1}log2 `′

1 +
∑

k∈{0,1}`
Ĝ′(j, j′, k) · ψ̂i(z, k) · αi(k)

 (5)

where j ∈ {0, 1}`.
At this point, the standard approach taken in [8] (and followed also in Sec-

tion 3) is to extend Eq. (4)-(5) to any j ∈ F` by using a low-degree extension
(see also Eq. (8)). This is redundent in the case of Eq. (4)-(5), since the r.h.s. of
these equations is well defined also when j ∈ F`. Hence, we can replace Eq. (4)
by

α̂i−1(z) =
∑
k∈Hm

ψ̂i(z, k) · αi(k), (6)

where z ∈ F`. Assuming that αi is also extended to a low-degree polynomial,
denoted α̂i, we can replace αi(k) by α̂i(k). In this case, the degree of α̂i−1 equal

the sum of the degrees of ψ̂i and α̂i, where the degree of ψ̂i is no(1). In the case
of Eq. (3), we get, for every z ∈ F`

α̂i−1(z) = 1 +
∏

j′∈{0,1}log2 `′

1 +
∑

k∈{0,1}`
Ĝ′(z, j′, k) · ψ̂i(z, k) · α̂i(k)

 , (7)

In this case the degree of α̂i−1 equal `′ times the sum of the degrees of ψ̂i, Ĝ′

and α̂i, where the degree of Ĝ′ is `′ (and the degree of ψ̂i is no(1)).
Note, however, that the foregoing can not be applied to αd, which is supposed

to encode the input x to A′n. This function is well-defined only over [s] ≡ {0, 1}`;
specifically, recall that αd(j) = xj for j ∈ [n], whereas αd(j) = j mod 2 for
j ∈ {n + 1, n + 2}, and αd(j) = 0 for j ∈ [s] \ [n + 2].12 Hence, we augment

11 Here we assume that the length of the seed is 2`′, which is justified by the fact that

we can afford any `′ = O(logn). Recall that, for (i`′ , ..., i1) ∈ {0, 1}`
′
, if τj = ζ2

j−1

,
then

∏
j∈[`′](ij · τj + (1− ij)) = ζi such that i =

∑
j∈[`′] ij ·2

j−1. (Recall the product

is over GF(2`
′
), but each multiplication over GF(2`

′
) is emulated by bilinear forms

in the bits of the representations of the GF(2`
′
)-elements.) In this case, Ĝ′(i`′ , ..., i1)

equals the inner product (mod 2) of r and the binary representation of ζi, where
(ζ, r) = σ is the seed of the generator.

12 Recall that we need to provide the circuit with the constants 1 and 0, hence we
set {αd(n + 1), αd(n + 2)} = {0, 1}. The setting of αd(j) = 0 for j ∈ [s] \ [n + 2]
is used in order to facilitate the evaluation of r.h.s. of Eq. (8), as discussed below
and used in Step 3; that is, this setting ensures that, for every u ∈ F`, it holds that

Constant-round interactive proof systems for AC0[2] and NC1 325

the foregoing definitions by postulating that α̂d is a low-degree extension of the
values of αd at {0, 1}`; that is, for z ∈ F`, we have

α̂d(z) =
∑

k∈{0,1}`
EQ(z, k) · αd(k), (8)

where EQ is the bilinear polynomial that extends the function that tests equality
over {0, 1}` (e.g., EQ(σ1 · · ·σ`, τ1 · · · τ`) =

∏
i∈[`](σiτi + (1 − σi)(1 − τi))). Note

that r.h.s. of Eq. (8) depends only on n+2 terms, since αd(j) = 0 for j 6∈ [n+2].

Lastly, we wish to replace summation over {0, 1}` by summation over Hm,
where |H| = nδ and m = `

δ logn = O(1/δ). Towards this end, we introduce

a 1-1 mapping µ : H → {0, 1}`′′ , where `′′ = δ log n = `/m, such that µ(h)
returns the `′′-bit long binary representation of h ∈ H. Next, we extended µ :
H → {0, 1}`′′ to an `′′-long sequence of univariate polynomials of degree |H| − 1
over F ; that is, µ : F → F`′′ is defined as µ(z) = (µ`′′(z), ..., µi(z)) such that

µi(z) =
∑
h∈H

∏
h′∈H\{h}

z−h′
h−h′ · bini(h), where bini(h) is the ith bit in the

binary representation of h ∈ H ≡ {0, 1}`′′ . The next step is extending µ to m-
long sequences of such sequences; that is, we use µ̂ : Fm → (F`′′)m such that for
every h = (h1, ..., hm) ∈ Hm it holds that µ̂(h) = (µ(h1), ..., µ(hm)) ∈ {0, 1}m·`′′ ,
whereas m`′′ = `. Finally, we redefine the α̂i’s so that they range over Fm (rather
than over F`). Starting with Eq. (8), we have

α̂d(z) =
∑
k∈Hm

EQ(µ̂(z), µ̂(k)) · αd(µ̂(k)), (9)

where z ∈ Fm. (Alternatively, we could have defined αd over Hm, and presented
a direct equality-testing polynomial for sequences over Hm.) Turning to Eq. (6),
we replace it by

α̂i−1(z) =
∑
k∈Hm

ψ̂i(µ̂(z), µ̂(k)) · α̂i(k) (10)

where again z ∈ Fm. Lastly, Eq. (7) is replaced by

α̂i−1(z) = 1+
∏

j′∈{0,1}log2 `′

(
1 +

∑
k∈Hm

Ĝ′(µ̂(z), µ̂(j′), µ̂(k)) · ψ̂i(µ̂(z), µ̂(k)) · α̂i(k)

)
(11)

where we assume that {0, 1} ⊂ H. Denoting the degree of a polynomial p by
deg(p), we have deg(α̂d) = deg(EQ) · deg(µ̂) < ` · |H|. For i that is an addition

layer (i.e., Eq. (10)), we have deg(α̂i−1) = deg(ψ̂i)·deg(µ̂)+deg(α̂i) < no(1)·|H|+∑
k∈{0,1}` EQ(u, k) ·αd(k) equals

∑
k∈I EQ(u, k) ·αd(k), where I ⊂ {0, 1}` corresponds

to [n + 2]. Alternatively, we could have used the setting αd(j) = 1 for j ∈ [s] \ [n],
and rely on the fact that

∑
k∈{0,1}` EQ(u, k) equals 1.

326 Oded Goldreich and Guy N. Rothblum

deg(α̂i). Lastly, for i that is an augmented multiplication layer (i.e., Eq. (11)),
we have

deg(α̂i−1) < `′ ·
(
deg(Ĝ′) · |H|+ deg(ψ̂i) · |H|+ deg(α̂i)

)
= `′ · no(1) · |H|+ `′ · deg(α̂i).

Hence, deg(α̂0) < (O(log n)d + no(1)) · |H| = nδ+o(1).

2.3 Step 3: Obtaining an interactive proof system (with imperfect
completeness)

On input x ∈ {0, 1}n, the verifier selects uniformly σ ∈ {0, 1}O(logn), and sends

σ to the prover. The prover now attempts to prove that A′n(x)
def
= A

(σ)
n (x) = 1,

where a succinct representation of A′n (which has size no(1)) can be constructed
in time n1+o(1). The initial claim is re-interpreted as α̂0(µ−1(1`)) = 1, where
µ−1(1`) = (µ−1(1`/m), ..., µ−1(1`/m)) ∈ Hm ⊂ Fm. (Recall that α̂i : Fm → F
for every i, and that µ : H → {0, 1}`/m is a bijection).

The parties proceed in O(d) steps such that the ith step starts with a claim
regarding the value of α̂i−1 at few points, and ends with a claim regarding the
value of α̂i at few points, where the said number of points may increase by at
most a logarithmic factor. We distinguish between the case that the current layer
(i.e., i−1) is of addition gates and the case that it is of augmented multiplication
gates.

Handling a layer of addition gates: (Recall that these gates are supposed to sat-
isfy Eq. (10).) For each claim of the form α̂i−1(u) = v, where u ∈ Fm and
v ∈ F are known, we invoke the Sum-Check protocol on the r.h.s. of Eq. (10).
The execution of this (m-round) protocol results in a claim regarding the

value ψ̂i(µ̂(u), µ̂(r)) · α̂i(r) for a random r ∈ Fm selected via the execution.

Since the verifier can evaluate µ̂ and ψ̂i, it is left with a claim regarding the
value of α̂i at one point.
Recall that the Sum-Check protocol proceeds in m = O(1/δ) rounds, where
in each round the prover sends the value of the relevant univariate polyno-
mial. This is a polynomial of degree |H| · no(1) = nδ+o(1), where the degree

bound is due to the composition of the polynomials µ̂ and ψ̂i (and to the
degree of α̂i).

13

Handling a layer of augmented multiplication gates: (Recall that these gates are
supposed to satisfy Eq. (11).) For each claim of the form α̂i−1(u) = v, where
u and v are known, we let the prover send the values (v1, ..., v`′) such that

vj′
def
=

∑
k∈Hm

Ĝ′(µ̂(u), µ̂(j′), µ̂(k)) · ψ̂i(µ̂(u), µ̂(k)) · α̂i(k). (12)

13 Recall that the degree of ψ̂i is upper bounded by no(1), since it is obtained by
arithmetizing the formula ψi which has size no(1), whereas µ̂ has degree |H| − 1. As
for the degree of α̂i – see the end of Section 2.2.

Constant-round interactive proof systems for AC0[2] and NC1 327

The verifier checks that v = 1+
∏
j′∈[`′](1+vj′) holds, and the parties invoke

the `′ parallel executions of Sum-Check protocol in order to to verify that
each vj′ matches the r.h.s. of Eq. (12). The execution indexed by j′ ∈ [`′]

results in a claim regarding the value Ĝ′(µ̂(u), µ̂(j′), µ̂(r)) · ψ̂i(µ̂(u), µ̂(r)) ·
α̂i(r) for a random r ∈ Fm selected via the execution. Since the verifier can

evaluate µ̂, ψ̂i and Ĝ′, it is left with `′ = O(log n) claims, each regarding the
value of α̂i at one point.14

After O(d) steps, the verifier is left with polylogarithmically (i.e., O(log n)d)
many claims, where each claim refers to the value of α̂d at a single point u ∈ Fm.
Such a claim can be checked by the verifier itself using Eq. (9).

Note that a straightforward computation of the r.h.s. of Eq. (9) calls for
summing-up |Hm| = 2` = poly(n) terms, which the verifier cannot afford. How-
ever, all but n + 2 of these terms (of the form EQ(µ̂(u), µ̂(k)) · αd(µ̂(k))), are
identically zero, and so the verifier needs to compute only n + 2 terms. This
is the case because αd(k) = 0 for every k ∈ [s] \ [n + 2] (whereas αd(k) = xk
for every k ∈ [n] and {αd(n + 1), αd(d + 2)} = {0.1}). Hence, per each point
u ∈ Fm, computing α̂d(u) reduces to evaluating EQ(µ̂(u), µ̂(k))·αd(µ̂(k)) at n+2
points (only); that is, letting I denote the subset of Hm ≡ [2`] that correspond
to [n+ 2], the verifier just computes

∑
k∈I EQ(µ̂(u), µ̂(k)) · αd(µ̂(k)).

Analysis of the forgoing interactive proof system. We first observe that the com-
plexities of the foregoing protocol are as stated in Theorem 1.1. Specifically,
the protocol proceeds in O(d) steps and in each step a Sum-Check protocol
is invoked on a sum that ranges over Hm, where m = O(1/δ) and |H| =
nδ. Since the relevant polynomial is of degree nδ+o(1), the total (m-round)
communication is of this order.15 The total number of rounds is O(d · m) =
O(d lognδ s(n)) = O(d · c/δ), where s(n) = nc. The verification time is domi-
nated by the final check (i.e., evaluating α̂d on poly(log n) points), which runs

in time Õ(n) · no(1) = O(n1+o(1)). The complexity of the prescribed prover is
dominated by its operation in the Sum-Check protocol, which can be imple-
mented in time |H|m · no(1) = 2` · no(1) = s(n)1+o(1). Next, we show that this
protocol constitutes an interactive proof system (with imprefect completeness)
for {x : C|x|(x)=1}.

Claim 2.1 (imperfect completeness): If Cn(x) = 1 and the prover follows the
presecribed strategy, then the verifier accepts with probability 1− o(1).

Proof: The probability that the value of an or-gate, under a fixed setting of
its input wires, is correctly emulated by the multiplication of `′ random linear
combinations of these wires is at least 1−2−`

′
, where in case all wires feed 0 the

14 Indeed, we could afford letting the verifier use the same random choices in all `′

parallel executions, which would result in leaving it with a single claim regarding
the value of α̂i at one point (i.e., r).

15 This dominates the length of the initial verifier-message σ ∈ {0, 1}O(logn).

328 Oded Goldreich and Guy N. Rothblum

emulation is always correct. The same holds (approximately) when the random
linear combinations are replaced by inner products with a small biased sequence;
specifically, if the sequence is ε-biased, then the emulation is correct with prob-
ability at least 1− 2−`

′
+ ε. Using `′ = 2 log2 s(n) = O(log n) and ε = 2−`

′
, and

employing a union bound, it follows that with probability 1−o(1) over the choice

of the random seed σ ∈ {0, 1}O(logn), it holds that A
(σ)
n (x) = Cn(x). Observing

that the verifier always accepts when A
(σ)
n (x) = 1 (and the prover follows the

prescribed strategy), the claim follows.

Claim 2.2 (soundness): If Cn(x) = 0, then, no matter what strategy the prover
employs, the verifier accepts with probability at most o(1).

Proof: As shown in the proof of Claim 2.1, with probability 1 − o(1) it holds

that A
(σ)
n (x) = Cn(x). Recalling that the soundness error of the Sum-Check

protocol is proportional to the ratio of the degree of the polynomial over the size
of the field, it follows that the prover can fool the verifier into accepting a wrong

value of A
(σ)
n (x) with proability O(dm) · |H| ·no(1)/|F| = nδ+o(1)−2δ = o(1), since

|F| = n2δ. The claim follows.

2.4 Getting rid of the completeness error

Claims 2.1 and 2.2 assert that the foregoing protocol constitutes a proof system
for {x : C|x|(x) = 1}, but this proof system carries a completeness error (see
Claim 2.1). Recalling that this error is only due to the (unlikely) case that

A
(σ)
n (x) 6= Cn(x), the begging fix is to have the prover prove to the verifier that

this case has occurred (with respect to the random seed σ chosen by the verifier).

Specifically, the (unlikely) case that A
(σ)
n (x) 6= Cn(x) may occur only when at

least one or-gate of Cn is badly emulated by A
(σ)
n ; that is, the value of this

gate is 1 in the computation of Cn(x) whereas the corresponding (augmented

multiplication) gate in A
(σ)
n (x) evaluates to 0. This means that at least one of

the gates (in A
(σ)
n) that correspond to the children of the or-gate in Cn evaluates

to 1, whereas the gate (in A
(σ)
n) that corresponds to the or-gate (of Cn) evaluates

to 0. So all that the prover needs to do is point out these two gates in A
(σ)
n , and

prove that their values are as stated. Hence, we regain perfect completeness,
whereas the soundness claim remains valid (since in order to cheat the prover

has to prove a false claim regarding the value of a gate in A
(σ)
n). Thus, we obtain:

Theorem 2.3 (Theorem 1.1, restated): For constants c, d ∈ N, let {Cn : {0, 1}n →
{0, 1}} be a family of layered Boolean circuits with unbounded fan-in or, and,
and parity gates such that Cn has size at most nc and depth d. Suppose that
Cn can be described by an adjacency predicate that is computable by a no(1)-size
formula that can be constructed in n1+o(1)-time. Then, for every δ ∈ (0, 1], the
set {x : C|x|(x) = 1} has a O(cd/δ)-round interactive proof system of perfect

completeness in which the verifier runs in time O(n1+o(1)), the prescribed prover
can be implemented in time O(nc+o(1)), and the total communication is nδ+o(1).

Constant-round interactive proof systems for AC0[2] and NC1 329

Note that the foregoing adjacency predicate refers to gates of Cn, which are iden-
tified by `-bit long strings, where ` = O(log n). Thus, the uniformity condition
postulates that this predicate can be computed by a formula of size exp(o(`))
(equiv., by a bounded fan-in circuit of depth o(`)) that can be constructed in
time exp(`/O(1)).

2.5 Using the other two succinct representations

The foregoing presentation refers to Bollean circuits Cn that are succinctly rep-
resented by their adjacency predicates. Specifically, we referred to the adjacency
predicates ψi : {0, 1}2` → {0, 1}, which were extended to ψ̂i : F2` → F . In this
section we show that the presentation can be adapted to the other two succinct
representations of circuits discussed in Section 1.2.

From incidence functions to adjacency predicate. Suppose that the circuit Cn
is represented by incidence functions of the form φi : [s] × [s] → [s] ∪ {0},
which we view as φi : {0, 1}2` → {0, 1}`+1, where [s] ≡ {0, 1}` is identified with
{1σ : σ ∈ {0, 1}`} and 0 ≡ 0`+1. Using a multi-linear extenstion of φi, denoted

φ̂i : F2` → F`+1, for any j, k ∈ [s] ≡ {0, 1}`, we replace the adjacency value

ψ̂i(j, k) by the expression
∑
p∈{0,1}` EQ(φ̂i(j, p), 1k), since the latter expression

equals 1 if and only if ψ̂i(j, p) = 1k for a unique p ∈ [s] (which means that k

feeds j). Actually, ψ̂i(j, k) is replaced by
∑
p∈Hm EQ(φ̂i(j, µ̂(p)), 1k). This means

that, in the invocations of the Sum-Check protocol, the relevant summations are
over H2m rather than over Hm.

Handling canonical circuits. In this case, the s-sized circuit of depth d has the
form of a w-ary tree of depth d such that w = s1/d, and the input assign-
ment is represented by a function of the form π : {0, 1}` → [n + 2]. Hence, we
effectively refer to the adjacency predicate ψi : [w]d × [w]d → {0, 1} such that
ψi(j1 · · · jd, k1 · · · kd) = 1 if and only if j1 · · · ji−1ji+1 · · · jd = k1 · · · ki−1ki+1 · · · kd
(or rather ψi : [w]i−1× [w]i → {0, 1} such that ψi(j1 · · · ji−1, k1 · · · ki) = 1 if and
only if j1 · · · ji−1 = k1 · · · ki−1).16 In addition, instead of Eq. (8) (or rather
Eq. (9)), letting I be a subset of Hm that corresponds to [n + 2], for z ∈ Fm,
we have

α̂d(z) =
∑
k∈Hm

EQ(µ̂(z), µ̂(k)) ·
∑
p∈I

EQ(p, π̂(µ̂(k))) · xp (13)

where xp = p mod 2 for p ∈ {n + 1, n + 2} and π̂ is polynomial that is ob-
tained by transforming the Boolean formula that computes π to a corresponding
arithmetic formula. The outer sum (in Eq. (13), along with EQ(µ̂(z), µ̂(k))) im-
plements a selector of one of the leaves in the canonical circuit (i.e., if z ∈ Hm,
then leaf z is selected). In contrast, the inner sum (along with EQ(p, π̂(µ̂(k))))
implements a selector of a variable (i.e., xi for i ∈ [n]) or the constants 0 and 1

16 Indeed, we can replace Eq. (2) by αi−1(j1 · · · jd) =
∑
ki∈[w] αi(j1 · · · ji−1kiji+1 · · · jd)

(or rather by αi−1(j1 · · · ji−1) =
∑
ki∈[w] αi(j1 · · · ji−1ki)), and ditto for Eq. (3).

330 Oded Goldreich and Guy N. Rothblum

(i.e., {xn+1, xn+2} = {0, 1} by definition). Hence, for k ∈ Hm, it holds that
α̂d(k) =

∑
p∈I EQ(p, π̂(µ̂(k))) ·xp, which equals xπ̂(µ̂(k))), since π̂(k′) ∈ [n+ 2] for

every k′ ∈ {0, 1}`.
Recall that once the O(d) iterations are completed, the verifier is left with

the verification of polylogarithmically many claims, where each claim refers to
the value of α̂d at a single point u ∈ Fm. Here we cannot afford having the
verifier evaluate α̂d at u by itself (since this requires evaluating the |H|m = s
terms of the outer sum). Instead, we instruct the parties to run the Sum-Check
protocol on Eq. (13), and the verifier is left with a claim referring to the value
of EQ(µ̂(u), µ̂(r)) ·

∑
p∈I EQ(p, π̂(µ̂(r))) ·xp at a random point r ∈ Fm, which can

be verified in time |I| · no(1) = n1+o(1).

3 The interactive proof system for NC1

In this section we prove the following result.

Theorem 3.1 (Theorem 1.4, restated): For a logarithmic function d : N → N,
let {Cn : {0, 1}n → {0, 1}} be a family of canonical Boolean circuits of fan-in two
and depth d. Suppose that the input assignment of Cn can be computed by a no(1)-
size formula that can be constructed in n1+o(1)-time. Then, for every δ ∈ (0, 1],
the set {x : C|x|(x)=1} has a O(d(n)/δ log n)2-round interactive proof system of

perfect completeness in which the verifier runs in time O(n1+o(1)), the prescribed
prover can be implemented in polynomial-time, and the total communication is
nδ+o(1).

We leave open the question of whether the round complexity can be reduced to
O(δ−1 · (d(n)/ log n)2), meeting the bound in Theorem 2.3.

3.1 Overview

The construction generalizes and somewhat simplifies the proof systems con-
structed by Goldwasser, Kalai, and Rothblum [8]. The simplification is due to
working with canonical circuits rather than with general (log-space) uniform
circuits as in [8], whereas the generalization allows us to reduce the round com-
plexity of [8] by a log-squared factor. Specifically, the canonical form of the
circuit allows us to relate the values of layers in the circuit that are at distance
δ log2 n apart, whereas [8] relate values at adjacent layers (only). In addition,
we use a version of the sum-check protocol that handles summations over an
alphabet of size nδ (rather than over the alphabet {0, 1}).

Fixing a constant δ ∈ (0, 1), let `′ = δ log2 n. The core of the proof system
asserted in Theorem 3.1 is an iterative process in which a claim about the values
of the gates that are at layer (i− 1) · `′ is reduced to a claim about the values of
the gates at layer i · `′. We stress that each of these claims refers to the values
of the polynomially many gates at a specific layer of the circuit C|x| during
the computation on input x, but these poly(|x|) values are not communicated

Constant-round interactive proof systems for AC0[2] and NC1 331

explicitly but rather only referred to. Nevertheless, in t = d(|x|)/`′ iterations, the
claim regarding the value of the output gate (i.e., the value C|x|(x)) is reduced
to a claim regarding the values of the bits of the input x, whereas the latter
claim (which refers to x itself) can be verified in almost linear time.

Each of the aforementioned claims regarding the values of the gates at layer
i · `′, where i ∈ {0, 1, ..., t}, is actually a claim about the value of a specified
location in the corresponding encoding of the (string that describing all the) gate-
values at layer i · `′. Specifically, the encoding used is the low degree extension
of the said string (viewed as a function), and the claims are claims about the
evaluations of these polynomials at specific points.

The different codewords (or polynomials) are related via the structure of the
circuit C|x|, which is the case of canonical circuit is straightforward to implement
(avoiding a main source of technical difficulty in [8] (see also [4])). Indeed, this
reduces a claim regarding one value in the encoding of layer (i−1) ·`′ to 2`

′
= nδ

analogous claims regarding layer i · `′, but (as in [8]) “batch verification” is
possible, reducing these 2`

′
claims to a single claim.

3.2 The actual construction

For simplicity (and w.l.o.g.), we assume that Cn contains only NAND-gates of
(fan-in two), where NAND(a, b) = ¬(a ∧ b). Viewing this gate as operating in a
finite field that contains {0, 1}, we have NAND(a, b) = 1− (a · b) for a, b ∈ {0, 1}.
The function computed by tree of depth i of such gates is given by

NANDi(b1, ..., b2i) = 1− (NANDi−1(b1, ..., b2i−1) · NANDi−1(b2i−1+1, ..., b2i)), (14)

where b1, ..., b2i ∈ {0, 1} are the values at its leaves and NAND0(b) = b; indeed,
NAND1 = NAND.

For sake of simplifying the notation, we fictitiously augment the circuit with
gates that are fed by no gate (and feed no gate), where (by convention) gates that
are fed nothing always evaluate to 0, so that all layers of the circuits have the
same number of gates. Hence, we present the circuit as having d(n) + 1 layers of
gates such that each layer has exactly k(n) = 2d(n) = poly(n) gates. As usual, the
gates at layer i are only fed by gates at layer i+ 1, and the leaves (at layer d(n))
are input-variables or constants. Recall that the latter assignment is represented
by the function π : {0, 1}` → [n + 2], where ` = d(n) and [k(n)] ≡ {0, 1}`,
such that the jth leaf is fed the variable xπ(j) if π(j) ∈ [n] (and the constant
π(j) mod n otherwise). The output is produced at the first gate of layer zero.

The high level protocol. On input x ∈ {0, 1}n, the prescribed prover computes the
values of all layers. Letting d = d(n) and k = k(n), we denote the values at the
ith layer by αi ∈ {0, 1}k; in particular, α0 = Cn(x)0k−1 and αd is the sequence of
values given by xπ(0`), ..., xπ(1`), where xj = j mod 2 for j ∈ {n+1, n+2}. For a
sufficiently large finite field, denoted F , consider an arbitrary fixed set H ⊂ F of
size 2`

′
, where `′ = δ · log2 n, and let m = log|H| k = log2 k

log2 |H|
= d/`′ = O(1/δ).17

17 The fact that the value `′ = δ · log2 n is used both for log2 |H| and for the distance
between layers that we relate is a consequence of the fact that both parameters are

332 Oded Goldreich and Guy N. Rothblum

For each i ∈ {0, 1, ..., d − 1}, viewing αi as a function from Hm ≡ [k] to {0, 1},
the prover encodes αi by a low degree polynomial α̂i : Fm → F that extends it
(i.e., α̂i(σ) = αi(σ) for every σ ∈ Hm); that is,

α̂i(z1, ..., zm) =
∑

σ1,...,σm∈H
EQ(z1 · · · zm, σ1 · · ·σm) · αi(σ1, ..., σm) (15)

where EQ is a low degree polynomial in the zi’s that tests equality over Hm (i.e.,
EQ(z1 · · · zm, σ1 · · ·σm) =

∏
i∈[m] EQσi(zi) and EQσ(z) =

∏
β∈H\{σ}(z − β)/(σ −

β)). Actually, recalling that all but the first 2i gates of layer i evaluate to 0, we
re-write Eq. (15), for i’s that are multiples of `′, as

α̂i′·`′(z1, ..., zm) =
∑

σ1,...,σi′∈H
EQ(z1 · · · zm, 1m−i

′
σ1 · · ·σi′) · αi(1, ..., 1, σ1, ..., σi′)

(16)
Either way, α̂i is a polynomial of individual degree |H| − 1.

In light of the foregoing, proving that Cn(x) = 1 is equivalent to proving that
α̂0(1m) = 1, where 1m ∈ Hm corresponds to the fixed (e.g., first) location of the
output gate in the zero layer. This proof is conducted in t = d/`′ iterations, where
in each iteration a multi-round interactive protocol is employed. Specifically, in
ith iteration, the correctness of the claim α̂(i−1)·`′(ri−1) = vi−1, where ri−1 ∈ Fm
and vi−1 ∈ F are known to both parties, is reduced (via the interactive protocol)
to the claim α̂i·`′(ri) = vi, where ri ∈ Fm and vi ∈ F are determined (by
this protocol) such that both parties get these values. We stress that, with the
exception of i = t, the α̂i·`′ ’s are not known (or given) to the verifier; still,
the claims made at the beginning (and at the end) of each iteration are well
defined (i.e., each claim refers to a predetermined low degree polynomial that
extends the values assigned to the gates (of a certain layer) of the circuit in a
computation of the circuit on input x ∈ {0, 1}n).

Once the last iteration is completed, the verifier is left with a claim of the
form α̂d(rt) = vt, where α̂d is defined as in Eq. (13). Recall that Eq. (13) has the

form α̂d(y) =
∑
k∈{0,1}` EQ(y, k) · I(k), where I(z)

def
=
∑
v∈[n+2] EQ(v, π̂(z)) · xv

and π̂ is polynomial that is obtained by transforming the Boolean formula that
computes π to a corresponding arithmetic formula. Hence, the verifier cannot
evaluate α̂d by itself, but it can verify its value via the Sum-Check protocol,
since I is a low degree polynomial that can be evaluated in almost linear (in
n) time. So, at this point, the parties run the Sum-Check protocol (see the last
paragraph in Section 2.5).

A single iteration. The core of the iterative proof is the interactive protocol that
is performed in each iteration. This protocol is based on the relation between

subject to the same trade-off. Each of these parameters cuts the number of rounds
by its value (i.e., `′), while incuring an exponential overhead (i.e., 2`

′
) in the total

volume of communication.

Constant-round interactive proof systems for AC0[2] and NC1 333

subsequent αi’s, which is based on the canonical structure of the circuit. Specif-
ically, recall that the ith iteration reduces a claim regarding α̂(i−1)·`′ to a claim
regarding α̂i·`′ , where these polynomials encode the values of the correspond-
ing layers in the circuit (i.e., layers (i − 1) · `′ and i · `′). The relation between
these layers is given by the following equation that relates the value at a specific
(non-dummy) gate of level (i−1) · `′ to the value of 2`

′
= |H| gates of layer i · `′:

α(i−1)·`′(1
m−(i−1), u1, ..., ui−1) = NAND`′((αi·`′(1

m−i, u1, ..., ui−1, u))u∈H) (17)

where 1, u1, ..., ui−1 ∈ H ≡ {0, 1}`
′

and NAND`′ is as defined in Eq. (14). Com-
bining Eq. (16) with Eq. (17), it holds that α̂(i−1)·`′(z1, ..., zm) equals

∑
u1,...,ui−1∈H

EQ(z1 · · · zm, 1m−i+1u1 · · ·ui−1) · NAND`′((α̂i·`′(1m−i, u1, ..., ui−1, u))u∈H).

(18)
In preparation to applying the Sum-Check protocol to Eq. (18), we observe that
the corresponding (i−1)-variate polynomial is of individual degree O(2`

′ · |H|) =
O(n2δ). This is the case because, for any fixed point (r′, r′′) ∈ Fm−i+1 × F i−1,
we can write Eq. (18) as

EQ(r′, 1m−i+1) ·
∑

u1,...,ui−1∈H
EQ(r′′, u1 · · ·ui−1) · NAND`′((α̂i·`′(1m−i, u1, ..., ui−1, u))u∈H)

= EQ(r′, 1m−i+1) ·
∑

u1,...,ui−1∈H
Pr′′(u1, ..., ui−1),

where Pr′′(y1, ..., yi−1)
def
= EQ(r′′, y1 · · · yi−1)·NAND`′((α̂i·`′(1m−i, y1, ..., yi−1, u))u∈H)

is a low degree (i − 1)-variate polynomial; specifically, its individual degree is
dominated by the product of the total degree of NAND`′ and the individual degree
of α̂i·`′ , which are 2`

′
and |H| − 1, respectively.

Applying the Sum-Check protocol to Eq. (18) allows to reduce a claim regard-
ing the value of α̂(i−1)·`′ at a specific point ri−1 = (r′i−1, r

′′
i−1) ∈ Fm−i+1×F i−1

to a claim regarding the value of the polynomial Pr′′i−1
at a random point

(r′′1 ,, r
′′
i−1) in F i−1, which in turn depends on the values of α̂i·`′ at 2`

′
points

in Fm (i.e., the points ((1, ..., 1, r′′1 , ..., r
′′
i−1, u))u∈H)).

To reduce this claim to a claim regarding the value of α̂i·`′ at a single point,
we let the prover send these 2`

′
values and perform “batch verification” for them.

Specifically, the prover provides a low degree polynomial that describes the value
of α̂i·`′ on the axis-parallel line that goes through these points, and the claim
to be proved in the next iteration is that the value of α̂i·`′ at a random point

334 Oded Goldreich and Guy N. Rothblum

on this line equals the value provided by the polynomial sent by the prover.18

Hence, the full protocol that is run in iteration i is as follows.

Construction 3.2 (reducing a claim about α̂(i−1)·`′ to a claim about α̂i·`′): For
known ri−1 ∈ Fm and vi−1 ∈ F , the entry claim is α̂(i−1)·`′(ri−1) = vi−1. The
parties proceed as follows.

1. Applying the Sum-Check protocol to the entry claim, when expanded accord-
ing to Eq. (18), determines r′ ∈ F i−1 and a value v ∈ F such that the
residual claim for verification is

EQ(ri−1, 1
m−(i−1)r′) · NAND`′((α̂i·`′(1, ..., 1, r′, u))u∈H) = v. (19)

2. The prover sends a univariate polynomial p′ of degree smaller than m · |H|
such that p′(z) = α̂i(1, ..., 1, r

′, z).
3. Upon receiving the polynomial p′, the verifier checks whether v equals

EQ(ri−1, 1
m−(i−1)r′) · NAND`′((p′(u))u∈H), (20)

and continues only if equality holds (otherwise it rejects).
4. The verifier selects a random r ∈ F , and sends it to the prover. Both parties

set ri = (1, ..., 1, r′, r) and vi = p′(r).

The exit claim is α̂i·`′(ri) = vi.

The complexities of Construction 3.2 are dominated by the application of the
Sum-Check protocol, which refers to a polynomial of degree O(2`

′ ·|H|) = O(n2δ).
In particular, this implies that the verifier’s strategy can be implemented in time
Õ(n2δ), provided that |F| = poly(n). In this case, the prescribed prover strategy

(as defined in Construction 3.2) can be implemented in time Õ(2d(n)) = poly(n),
Recall that after the last iteration of Construction 3.2, the resulting claim

is checked by the Sum-Check protocol (applied to Eq. (13)), which leaves the

verifier with the task of evaluating I, where I(z)
def
=
∑
v∈[n+2] EQ(v, π̂(z)) · xv.

Using the hypothesis regarding π, it follows that the verifier runs in n1+o(1)-time.
The round complexity of the ith iteration of Construction 3.2 is i ≤ m, and so
the total round complexity is m ·m+m = O(d(n)/δ log n)2.

One can readily verify that if the entry claim is correct, then the exit claim
is correct, whereas if the entry claim is false, then with probability at least
1 − O(m · 2`′ · |H|/|F|) the exit claim is false. Recall that the soundness error
of the entire protocol is upper-bounded by the probability that there exists an
iteration in which the entry claim is false but the exist claim is true. Hence, the
total soundness error is O(n2δ/|F|) = o(1).

18 We mention that the fact that these 2`
′

points reside on a line makes the argument
simpler, but not in a fundamental way. In general, the prover could have picked a
curve of degree 2`

′
− 1 that goes through any 2`

′
points of interest, and provide a

low degree polynomial describing the value of α̂i·`′ on this curve. In this case, the
claim to be proved in the next iteration would have been that the value of α̂i·`′ at
a random point on this curve equals the value provided by the polynomial sent by
the prover.

Constant-round interactive proof systems for AC0[2] and NC1 335

Appendix: The Sum-Check protocol

The Sum-Check protocol, designed by Lund, Fortnow, Karloff, and Nisan [12],
is a key ingredient in the constructions that we present.

Fixing a finite field F and a set H ⊂ F (e.g., H may be a two-element set),
we consider an m-variate polynomial P : Fm → F of individual degree d. Given
a value v, the Sum-Check protocol is used to prove that∑

σ1,...,σm∈H
P (σ1, ..., σm) = v, (21)

assuming that the verifier can evaluate P by itself. The Sum-Check protocol
proceeds in m iterations, such that in the ith iteration the number of summations
(over H) decreases from m− i+ 1 to m− i. Specifically, the ith iteration starts
with a claim of the form

∑
σi,...,σm∈H P (r1, ..., ri−1, σi, ..., σm) = vi−1, where

r1, ..., ri−1 and vi−1 are as determined in prior iterations (with v0 = v), and ends
with a claim of the form

∑
σi+1,...,σm∈H P (r1, ..., ri, σi+1, ..., σm) = vi, where ri

and vi are determined in the ith iteration. Initializing the process with v0 = v,
in the ith iteration the parties act as follows.

Prover’s move: The prover computes a univariate polynomial of degree d over
F

Pi(z)
def
=

∑
σi+1,...,σm∈H

P (r1, ..., ri−1, z, σi+1, ..., σm) (22)

where r1, ..., ri−1 are as determined in prior iterations, and sends Pi to the
verifier (claiming that

∑
σ∈H Pi(σ) = vi−1).

Verifier’s move: Upon receiving a degree d polynomial, denoted P̃ , the verifier
checks that

∑
σ∈H P̃ (σ) = vi−1 and rejects if inequality holds. Otherwise, it

selects ri uniformly in F , and sends it to the prover, while setting vi ← P̃ (ri).

If all m iterations are completed successfully (i.e., without the verifier rejecting
in any of them), then the verifier conducts a final check. It computes the value
of P (r1, ..., rm) and accepts if and only if this value equals vm.

Clearly, if Eq. (21) holds (and the prover acts according to the protocol), then
the verifier accepts with probability 1. Otherwise (i.e., Eq. (21) does not hold),
no matter what the prover does, the verifier accepts with probability at most
m ·d/|F|, because in each iteration if the prover provides the correct polynomial,
then the verifier rejects (since

∑
σ∈H Pi(σ) = Pi−1(ri−1) 6= vi−1), and otherwise

the (degree d) polynomial sent agrees with Pi on at most d points.19

19 If Pi does not satisfy the current claim (i.e.,
∑
σ∈H Pi(σ) 6= vi−1), then the prover

can avoid upfront rejection only if it sends a degree d polynomial P̃ 6= Pi. But in
such a case, P̃ and Pi may agree on at most d points, since they are both degree
d polynomials. Hence, if the chosen ri ∈ F is not one of these points, it holds that
vi = P̃ (ri) 6= Pi(ri), which means that the next iteration will also start with a false
claim. Hence, starting with a false claim (i.e.,

∑
σ∈H P1(σ) 6= v0 since Eq. (21) does

not hold), with probability at least 1−m · d/|F|, after m iterations we reach a false
claim regarding the value of P at a single point.

336 Oded Goldreich and Guy N. Rothblum

The complexity of verification is dominated by the complexity of evaluating P
(on a single point). As for the prescribed prover, it may compute the relevant Pi’s
by interpolation, which is based on computing the value of P at (d+ 1) · |H|m−i
points, for each i ∈ [m]. (That is, the polynomial Pi is computed by obtaining
its values at d + 1 points, where the value of Pi at each point is obtained by
summing the values of P at |H|m−i points.)20

Acknowledgements

As noted in the body of the paper, an unpublished work by Yael Kalai and Guy
Rothblum [11] proposed a constant-round doubly-efficient proof system for NC1
under a very strict notion of uniformity. This unpublished work has inspired our
own work, and we thank Yael for her contribution to it as well as for many other
helpful conversations on these topics.

References

1. Noga Alon, Oded Goldreich, Johan Hastad, and Rene Peralta. Simple Construc-
tion of Almost k-wise Independent Random Variables. Random Structures and
Algorithms, Vol. 3 (3), pages 289–304, 1992.

2. David A. Mix Barrington, Neil Immerman, and Howard Straubing. On Uniformity
within NC1. Journal of Computer and System Science, Vol. 41 (3), pages274–306,
1990.

3. Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008.

4. Oded Goldreich. On the doubly-efficient interactive proof systems of GKR. ECCC,
TR17-101, 2017.

5. Oded Goldreich and Guy N. Rothblum. Simple doubly-efficient interactive proof
systems for locally-characterizable sets. ECCC, TR17-018, 2017.

6. Oded Goldreich and Guy N. Rothblum. Worst-case to Average-case reductions for
subclasses of P. ECCC TR17-130, 2017.

7. Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-case to average-
case reductions and direct interactive proof systems. ECCC TR18-046, 2018.

8. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating Compu-
tation: Interactive Proofs for Muggles. Journal of the ACM, Vol. 62(4), Art. 27:1-
27:64, 2015. Extended abstract in 40th STOC, pages 113–122, 2008.

9. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity
of Interactive Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186–208,
1989. Preliminary version in 17th STOC, 1985.

10. Yael Tauman Kalai and Ran Raz. Interactive PCP. In 35th International Collo-
quium on Automata, Languages and Programming (Part II), pages 536–547, 2008.

11. Yael Tauman Kalai and Guy N. Rothblum. Constant-round interactive proofs for
NC1. Unpublished observation, 2009.

20 Specifically, the value of Pi at p is obtained from the values of P at the points
(r1, ..., ri−1, p, σ), where σ ∈ Hm−i.

Constant-round interactive proof systems for AC0[2] and NC1 337

12. Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic meth-
ods for interactive proof systems. Journal of the ACM, Vol. 39, No. 4, pages
859–868, 1992. Extended abstract in 31st FOCS, 1990.

13. Joseph Naor and Moni Naor. Small-Bias Probability Spaces: Efficient Construc-
tions and Applications. SIAM Journal on Computing, Vol. 22 (4), pages 838–856,
1993. Preliminary version in 22nd STOC, 1990.

14. Alexander A. Razborov. Lower bounds on the size of bounded-depth networks over
a complete basis with logical addition. In Matematicheskie Zametki, Vol. 41, No. 4,
pages 598–607, 1987 (in Russian). English translation in Mathematical Notes of
the Academy of Sci. of the USSR, Vol. 41 (4), pages 333–338, 1987.

15. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round inter-
active proofs for delegating computation. In 48th ACM Symposium on the Theory
of Computing, pages 49–62, 2016.

16. Adi Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869–877,
1992. Preliminary version in 31st FOCS, 1990.

17. Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean
Circuit Complexity. In 19th ACM Symposium on the Theory of Computing pages
77–82, 1987.

18. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In 46th ACM
Symposium on the Theory of Computing, pages 664–673, 2014.

