
On the Effect of the Proximity Parameter on

Property Testers

Oded Goldreich

August 18, 2019

Abstract

This note refers to the effect of the proximity parameter on the
operation of (standard) property testers. Its bottom-line is that, except
in pathological cases, the effect of the proximity parameter is restricted
to determining the query complexity of the tester. The point is that,
in non-pathological cases, the mapping of the proximity parameter to
the query complexity can be reversed in an adequate sense.

A preliminary version of this note was posted in 2012 on ECCC, as TR12-
012. The current revision is minimal. On top of slightly improving the
presentation, two additions were made: Footnote 2 was augmented (in light
of [3]), and Remark 3 was added (while include a reference to [2]).

1 Introduction

Property Testing is the study of super-fast (randomized) algorithms for ap-
proximate decision making. These algorithms are given direct access to
items of a huge data set, and determine whether this data set has some
predetermined (global) property or is far from having this property. Re-
markably, this approximate decision is made by accessing a small portion
of the data set. Thus, property testing is a relaxation of decision problems
and it focuses on algorithms, called testers, that can only read parts of the
input.

A basic consequence of the foregoing description is that the testers should
be modeled as oracle machines and the input should be modeled as a function
to which the tester has oracle access. This modeling convention is explicit in
almost all studies of property testing, but what is sometimes not explicit is
that the tester also gets ordinary inputs (i.e., inputs that are given as strings

1

and are read for free by the tester). These inputs include (1) the proximity
parameter, denoted ǫ, and (2) parameters that describe the domain of the
function (at the very least the size of the domain is given as input).1 Note
that the description of the domain must be provided so to allow the tester to
make adequate queries.2 The proximity parameter must also be provided,
for reasons detailed next.

Recall that the standard definition of a tester (see Section 2)3 requires
that it accepts (with probability at least 2/3) any function that has some pre-
determined property but rejects (with probability at least 2/3) any function
that is ǫ-far from the set of functions having the property, where distances
between functions are defined as the fraction of the domain on which the
functions disagree. Note that, except in degenerated cases, one may avoid
querying the function on its entire domain D only if ǫ > 1/|D|. Thus, the
tester must know that this is the case (i.e., that ǫ > 1/|D|), if it is to make
less than |D| queries. In general, the query complexity of the tester typi-
cally depends on ǫ, and so the tester must obtain ǫ in order to determine
the number of queries it is allowed to make. The question addressed in this
note is whether or not ǫ is needed for any other purpose.

The foregoing natural question has also a concrete motivation. Various
studies of property testing seem to assume that the tester only uses the
proximity parameter to determine its query complexity (see, e.g., [7, 8]).
We show that this assumption is essentially justified: See Section 2.

2 Technical Treatment

An asymptotic analysis is enabled by considering an infinite (indexed) se-
quence of domains, functions, and properties. That is, for any s ∈ N, we
consider functions from Ds to Rs. Indeed, s may be thought of as a descrip-
tion of the domain Ds, and typically it is related to |Ds| (e.g., s = |Ds|).

1For example, if the domain is a finite field, then one may need to provide its rep-
resentation (and not merely its size), especially when no standard representation can be
assumed (e.g., as in the case that the field has 2n elements). Another example refers to
the bounded-degree graph model (cf. [5]), where one should also provide the degree bound
rather than just its product with the number of vertices; actually, one typically provides
the degree bound and the number of vertices (and does not provide their multiple).

2This crucial fact was overlooked in [7], as pointed out in [1, 8]. Actually, the assertion
itself is inaccurate; one may consider alternative models (cf. [3]) in which the tester is
given sampling access to the domain (instead of its description).

3We refer to the standard definition (as in, e.g., [4, 9]), and not to the definition of a
proximity-oblivious tester (cf. [6]).

2

Definition 1 (property tester): Let Π =
⋃

s∈N Πs, where Πs contains func-
tions defined over the domain Ds and range Rs. A tester for a property Π is
a probabilistic oracle machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for
every s ∈ N and f ∈ Πs (and every ǫ > 0), it holds that Pr[T f (s, ǫ)=
1] ≥ 2/3.

2. Given ǫ > 0 and oracle access to any f that is ǫ-far from Π, the tester
rejects with probability at least 2/3; that is, for every ǫ > 0 and s ∈ N,
if f : Ds → Rs is ǫ-far from Πs, then Pr[T f (s, ǫ)=0] ≥ 2/3, where f
is ǫ-far from Πs if, for every g ∈ Πs, it holds that |{e ∈ Ds : f(e) 6=
g(e)}| ≥ ǫ · |Ds|.

If the tester accepts every function in Π with probability 1, then we say that
it has one-sided error; that is, T has one-sided error if for every f ∈ Πs and
every ǫ > 0, it holds that Pr[T f (s, ǫ)=1] = 1. A tester is called non-adaptive

if it determines all its queries based solely on its internal coin tosses (and
the parameters n and ǫ); otherwise it is called adaptive.

Our choice to define ǫ-far as being at (relative) distance at least ǫ rather than
being at (relative) distance greater than ǫ simplifies the formulation of The-
orem 2. Unfortunately, this choice is inconsistent with our own preference
(see, e.g., [2, Def. 1.6]). This issue is addressed in Remark 3.

The query complexity of T , viewed as a function of |Ds| and ǫ, is an
upper bound (which holds for all f : Ds → Rs) on the number of queries
that T makes on (explicit) input (s, ǫ).

For the sake of simplicity, we assume that s = |Ds|, which means that the
function’s domain is fully specified by its size. The following result holds
also when s is an arbitrary specification of the function’s domain, which
determines the domain’s size (or just allows to determine q(|Ds|, ǫ) for any
given ǫ).

Theorem 2 (on the restricted use of the proximity parameter): Let q :
N×(0, 1] → N be a computable function that is monotonically non-increasing
in its second variable. Suppose that the property Π has a tester T of query
complexity q. Then, Π has a tester T̂ of query complexity q that only uses
the proximity parameter to determine its query complexity; that is, on input
parameters (s, ǫ), this tester first computes and records q(s, ǫ), and then
continues after deleting ǫ from its records. Furthermore, if T has one-sided
error and/or is non-adaptive, then so is T̂ .

3

A typical case of a function q for which the hypothesis holds is q(s, ǫ)
def
=

⌈fs(ǫ)⌉ for some collection of continuous and monotonically decreasing func-
tions fs : (0, 1]→ R (e.g., fs(ǫ) = 100/ǫ2 or fs(ǫ) = 25/ǫ · log2 s).

Proof. Consider the following algorithm T̂ :

1. On input parameters s and ǫ, algorithm T̂ computes ρ ← ⌈sǫ⌉/s and
B ← q(s, ρ). (Both ǫ and ρ can be deleted at this point.)

(Note that ρ ≥ ǫ is the smallest multiple of 1/s that is at least as large
as ǫ, which implies that being ǫ-far from Π and being ρ-far from Π
coincide.)

2. Next, T̂ computes the minimal k ∈ N such that q(s, k/s)=B.

(Indeed, k/s ≤ ρ.)

3. Algorithm T̂ invokes T on input parameters s and k/s.

Note that T̂ only uses ǫ to determine its query bound B (in Step 1), and
that its actual activity (in Step 3) depend only on s and the query bound B
(which in turn also determine k). Furthermore, T̂ maintains many features of
T (e.g., non-adaptivity and one-sided error probability). The monotonicity
of q is used to infer that the query complexity does not increased when the
proximity parameter is rounded-up to the next multiple of 1/s. In typical
cases, the overhead in the time complexity (which arises from Steps 1 and 2)
is insignificant (since k can be determined by a binary search).

In analyzing T̂ , we first consider any s ∈ N and f ∈ Πs. In this case,
for every ǫ′, it holds that Pr[T f (s, ǫ′) = 1] ≥ c, where c = 1 if T has one-
sided error and c = 2/3 otherwise. Clearly, this holds also for ǫ′ = k/s,
where k is as determined in Steps 1 and 2, and therefore Pr[T̂ f (s, ǫ)=1] =
Pr[T f (s, k/s)=1] ≥ c.

Suppose, on the other hand, that f : Ds → Rs is ǫ-far from Π. Recalling
that ρ = ⌈sǫ⌉/s (i.e., ρ is obtained by rounding-up ǫ to the next multiple
of 1/s) and using the fact that the distance between functions over Ds is a
multiple of 1/s, it follows that f is ρ-far from Π. Using k/s ≤ ρ, we conclude
that f is k/s-far from Π. Hence, Pr[T̂ f (s, ǫ)=0] = Pr[T f (s, k/s)=0] ≥ 2/3,
and the theorem follows.

Comment. An alternative presentation may suggest to invoke T on prox-
imity parameter ǫ′ that is chosen as the minimum for which q(s, ǫ′) = B
holds. This, seemingly more elegant approach, requires assuming that for

4

every s,B ∈ N the set {ǫ∈(0, 1] : q(s, ǫ)=B} is either empty or has a mini-
mum element. More annoyingly, this minimum may have an infinite binary
expansion, and so an actual algorithm will need to use a truncation of it
anyhow. Indeed, one may always assume that the value of the proximity
parameter is a multiple of 1/s.

Remark 3 (a cumbersome version that fits [2, Def. 1.6]): As noted above,
our definition of ǫ-far as being at (relative) distance at least ǫ simplifies the
formulation of Theorem 2. However, many sources (see, e.g., [2, Def. 1.6])
define ǫ-far as being at (relative) distance greater than ǫ. Theorem 2 can be
adapted to this variant, with the query complexity of T̂ possibly increasing
to q̂(s, ǫ) = q(s, (⌊sǫ⌋+ 0.99)/s) ≤ q(s, (sǫ− 0.01)/s).4 In the revised proof,
we let ρ ← (⌊sǫ⌋ + 0.99)/s and later pick the minimal k ∈ N such that
q(s, (k + 0.99)/s)=q(s, ρ).

References

[1] N. Alon and A. Shapira. A Characterization of the (natural) Graph
Properties Testable with One-Sided. SIAM Journal on Computing,
Vol. 37 (6), pages 1703–1727, 2008.

[2] O. Goldreich. Introduction to Property Testing. Cambridge Uni-
versity Press, 2017.

[3] O. Goldreich. Flexible models for testing graph properties. ECCC,
TR18-104, 2018.

[4] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its
connection to learning and approximation. Journal of the ACM,
pages 653–750, July 1998.

[5] O. Goldreich and D. Ron. Property testing in bounded degree
graphs. Algorithmica, pages 302–343, 2002.

[6] O. Goldreich and D. Ron. On Proximity Oblivious Testing. SIAM
Jour. on Comput., Vol. 40, No. 2, pages 534–566, 2011.

4Indeed, we use ⌊sǫ⌋ + 0.99 ≥ sǫ − 0.01 and the hypothesis that q(s, ǫ′) ≤ q(s, ǫ′′) for
every ǫ′ ≥ ǫ′′ > 0. Actually, typically q̂(s, ǫ) = q(s, ǫ) holds, since sǫ − 0.01 ≈ sǫ, let
alone that ⌊sǫ⌋+ 0.99 > sǫ may hold. (This is indeed the case when ǫ is a multiple of 1/s
(as advocated in the previous comment).) Lastly, note that 0.99 may be replaced by any
non-negative δ(s) < 1 (in which case 0.01 is replaced by 1 − δ(s)).

5

[7] O. Goldreich and L. Trevisan. Three theorems regarding testing
graph properties. Random Structures and Algorithms, Vol. 23 (1),
pages 23–57, August 2003.

[8] O. Goldreich and L. Trevisan. Errata to [7].
Manuscript, August 2005. Available from
http://www.wisdom.weizmann.ac.il/∼oded/p ttt.html

[9] R. Rubinfeld and M. Sudan. Robust characterization of polynomi-
als with applications to program testing. SIAM Journal on Com-
puting, 25(2), pages 252–271, 1996.

6

