-111 -

Foundations of Cryptography
Notes of lecture No. 10B & 11 (given on June 11 & 18, 1989)

taken by Sergio Rajsbaum

Summary

In this lecture we define unforgeable digital signatures and present such a signhature scheme based on the
assumption that one-way permutations with trapdoor exist.

1. Introduction.

The idea of a "digital signature" first appeared in Diffie and Hellman’s seminal paper, "New Directions
in Cryptography" [DH76]. They propose that each usepublishes a "public key", while keeping secret a
"secret key". UselJ’s signature for a messagris a valueo depending omm and his public and secret keys
such thatU can generate& and anyone can verify the validity af usingU’s public key. However, while
knowing U’s public key is sufficient to allow one to validatd’s signatures, it does not allow one to
efficiently forgeU’s signatures.

The most severe natural attack an enemy can mount on a signature scheme isdafitde chosen
message attaclor simply chosen message attack, dend@®A. In this type of attack the enemy is allowed
to useU as an "oracle"; he tries to forge a signature after getting ftbsignatures to messages of his own
choice. If there exists no probabilistic polynomial time algorithm that can forge a message in this way, we
say that the signature scheme is secure ag@ikBL

There exist several, weaker types of attackdilected chosen message attattie enemy is allowed to
obtain fromU valid signatures for messages, . . . , m, chosen based only di's public key. This attack is
nonadaptive: the entire message list is constructed before any signatures are seen. An even weaker type of
attack is callecknown message attachn this type of attack an adversary is only given signatures for mes-
sages selected at random.

The reason for requiring security agail@¥A, is that we do not want to asl to be careful about what
he signs, or to sign only meaningful messages of his own choice. We are not to decide what a "meaningful”
message is. The user should be able to use the signature scheme freely, and decide which documents he
wishes to sign without woring about technidiahitations of the scheme itself.

With respect to "breaking" a signature scheme there are also several definitions, we shall consider the
strongest: We say that an enemy is able to break the systeforgea signature if he can create in polyno-
mial time and with non-negligible probability, a pair of strings which he has not seen before, consisting of a

-112 -

message and its signature (even if the message has no "meaning" at all).

What we prove to be difficult iforgery, and not merely obtaining the secret keysed by the signing
algorithm. A signature scheme in which nobody can obtain in reasonable time the signing key, does not
necessary prevent an attacker from forging signatures. It could be possible to forge signatures without know-
ing s, or even to obtain only a crucial part sfwhich enables to forge signatures.

The signature scheme presented here is based on the work of Bellare and Micali [BM88]. It has the fol-
lowing important characteristics:

° Forgery is proven to be difficult for a "most general" enemy who can mo@GiA

° The properties we prove about the new signature scheme do not depend in any way on the set of mes-
sages which can be signed or on any assumptions about a probability distribution on the message set.

° The scheme is general in the sense that it can be based on generic "hard" problems (other than factor-
ing), yielding a signature scheme that is invulnerable tGMA even if the "hard" problem used
vulnerable to &£MA.

The way of proving that the signature scheme is secure agaist, will be to show that an enemy
cannot break the system unless he can perform some other task, which is assumed to be infeasible. In our case
we shall assume the existence of one-way permutations with trapdoor.

In the paper [NY89], Naor and Yung show a stronger result. They prove the existence of signature
schemes secure agail®VA, based on the existence of one-way permutations (without trapdoor).

2. Signature Schemes.

We recall now the basic notions and formal definitions of signature schemes given in the previous lec-
ture.

A signature schemis a triple of algorithms
(G sV)

with a security parametem. The key generatingalgorithm G is a probabilistic-polynomiakime algorithm
that generates ordered paiss ¢) of asigning keys, and averification keyv:

G(AM =(s V).

Sis asigningprobabilistic polynomial time algorithfnwhich produces signatures with respect to a given
key s produced byG (1"), for every messagen of lengthn, taken from some sé\:

1 The algorithmS does not have to be probabilistic. Even if it is, it can be transformed into a
deterministic one by thinking af ass's’, and including the coin tosses tiaiheeds irs’, while leavings as
the secret key.

-113 -
S(s, m) =0.

And V, averifying polynomial time algorithm (possibly probabilistic), which serves to check whedhsra
valid signature fom, with respect to the key. For every §, v) in the range ofG (1"), and everymM of
lengthn, if o is in the range of(s, m), then

V(v, m 0)=1,

otherwiseV (v, m, o) =0.

The last definition for the verifier can be replaced by a probabilistic definition that would allow for a
small probability of error: Forg, v) in the range of5(1"), and everymIM of lengthn, for everyc > 0, and
sufficiently largen

Pr[V(v, m, S(s, m)) # 1} < nklc

where the probability is taken over the coin tosses of algorit@ySandV (if any).

To utilize the signature schem¥, creates a pairg(v) using the algorithmG. He then stores in the
public file (v appears in the public file undéF's name), and keepssecret. WhetJ wants to sigh a message
m he execute$(s, m) and obtains the string which is the signature fom. Everybody can verify that is a
valid signature fom by checking that the result &f(v, m, o) is actually 1.

Security Against CMA.

In the scenario o€EMA, an algorithmF that tries toforge a signature has access to the signing algorithm
Swith key s, denoteds; (but F has no knowledge of the kesy; it can obtain the signatures with respecsto
of any messages it chooses, and use them to tigrtge a another signature; we denote FE))% such an execu-
tion of algorithmF. By forging we mean the ability df, on inputv, to produce a paim, ¢ (which it has not
seen before), such that(v, m, o) =1. A signature scheme secure against CMAf for all probabilistic,
polynomial-timeforgering algorithmd=, for all ¢ > 0, and for alln sufficiently large,

Pr[FSﬁ(v) forges} < ic
n

where the probability is taken over the coin tosses of the algorithn@s, S V, and the pairsqv) as gen-
erated byG (1").

3. The Signature Scheme.

Our aim is to prove that under the assumption that there exist one-way permutations with trapdoor, there
exist signature schemes secure agaidi\. The scheme that we shall present is based on the work of Bellare
and Micali [BM88] and we shall refer to it aBM scheme. However, the underlying ideas of this scheme

-114 -

appear already in the work by Goldwasser, Micali and Rivest [GMR], where a stronger complexity assump-
tion is used.

3.1 General Description.

We saw in the previous lecture, that a scheme of the type of Rabin’s [Ra78] signature scheme is not
secure againsEMA. An attacker could obtain enough information from several signatures of properly chosen
messages to be able to break the system.BMescheme solves this problem using two simple and ingenious
ideas. We can state them informally as follows.

(i) Do not sign twice with the "same key".

(i) Do not sign "directly" the document chosen by the signee; sign only messages created by yourself.

Consider for example, Rabin’s scheme wherpublishes composite numbansproduct of two primes,
as his public key, and keepés prime factorization as his secret key. The signature of a messdgequa-
dratic residue modulm) is its square root modula. Verification is done by squaring moduto It is well
known that this scheme is not secure aga®stA: an enemy could ask for the signature of the square of a
random number? generated by himself, with the hope that this signature will correspond to a radct of
modulon, different from the only roots that he knows, namelgnd-r; this information would enable him to
break the system. Therefore, it seems that if we could combine the two ideas above with Rabin’s scheme, a
secure system could be obtained.

Let us be more specific. Suppose that we had a signature sBtewith the property that it is secure,
provided it is used only once. We would like to use it to sign a messgag&Vhat we do, is to generate a new
systemS,, and then, use the old syste®g to sign bothm; andS;. By systemwe mean an instance of the sig-
nature scheme with specific kegsv. Hence, by signing a system we mean signing these parameters (or parts
of them while keeping the other parts as in the old system). When we want to sign another message, say
we do it with the systen$;, and we prepare another syst&x which will be signed withs,, etc. In this way
we areimplementingprinciple (i), that is, signing messages created by others only once with the same system
(i.e. the same pair of keys).

In terms of Rabin’s scheme, the signaturengfis a square root afn; modulong, whereng is the com-
posite stored in the public file. Then, whenwants to sign a new messag®, he randomly generates another
compositen, (to generate the new system). The signaturmgfis the square root af; modulong (the sig-
nature of the new system with respect to the old oniegetherwith the square root aih, modulon;. In gen-
eral, the signature ofry, consists of the whole sequence of square rootg; of modulon;, 0<i <t -1,
together with the square root of modulon;_;.

With this scheme, the length of a signature grows linearly with the number of messages signed so far,
because in order to validate the signature of a message the whole patlSy, Sq, . .., § is needed; one

-115 -

needs to check th& was properly signed witls 1, for all 1< j <i, and then check thaty ,; was properly

signed withS . Suppose that instead of creating one sysBat thej —th step, we create two syster§sy and

S, 1. As before, each one of these systems is used twice, once to sign a docoraadtonce to sighwo new
systems. In fact we are now using a binary tree, and thus, although the signature still includes the whole path
from the root, the length of this path (and of the signature) is only logarithmic in the number of messages
signed so far.

Another difficulty with the scheme as described above, is thhas to keep in memory the whole path
(or tree in the case of the last improvement), in order to produce the next signature. One solution is to use a
pseudo-random generator to produce the new systems (actually, to produce the coins tosses for the algorithm
that generates the new systems), and remember the seedhitgdly. Then, whenU wants to sign a new
message, he can reproduce the sequence of systems used so far using the pseudo-random generator with the
same seed, or alternatively remember the state of the pseudo-random generator.

Implementing idea (i) is not enough: consider Rabin’s scheme in which giving to the enemy a single
signature could be enough for an enemy to break the system. We need to implement idea (ii), also.

Denote the bits ofnby a4, 05, ..., 0,. The uselJ stores in a public file a vector consisting af éan-
domly chosen stringg =a{?, a¥, af®, a®, ..., a©@, a®, and a string. If we had a one way permuta-
tion fy, with trapdoort (y), then a signature as required by (ii) would be:

™), s KR, *)
These strings are the "signature"rofwith respect toy anda, and will be denoted bé\/,a(m).
Anybody can verifyéyya(m) is valid form, by computingf, (using the keyy, stored in the public file) of
the corresponding components of the veatpand hence that it is indeed a signaturemfand not of some-

thing else. Moreover, nobody can forge a signature, since nobody can coﬁjbumihout having the trap-
doort (y) (which is difficult to compute frony), and hence that it wds who signed and not somebody else.

Note that it is important to avoid signing more than once with the spameda. For example, after see-
ing signatures for® and T, with respect toy anda, one can sign any message wy.anda.
If for example, we implement with Rabin’s new system, we would be computing square roots of

numbers generated by ourselves (the); an enemy can only decide of which of these numbers he wishes to
obtain the square root: either of the first element, or of the second element of tha Bhics™), 1<i <n.

With these ideas in mind, let us proceed to describe formall\Bikesignature scheme, which together
with its proof of security agains€EMA establishes the following theorem.

-116 -

Theorem.

If there exist one-way permutations with trapdoor, then there exist signature schemes secure against
CMA

3.2 Definition of the BM Signature Scheme.

In this subsection we formally define ti&M Signature scheme&3(S, V). First we define the tools
which we assume are available to build the signature scheme: a collection of one-way permutations with
trapdoor, with non-negligible domains. The following definition of a collection of one-way permutations with
trapdoor appears in Lecture No. 3, without condition 0).

(a) Complexity Assumptions.
Assume there exists a collection of one-way permutations with trapdoor, with non-negligible domains,
{fy:Dy - Dy}yny
whereY is an infinite set (of indices), anDy, for y 0 Y is a finite set. And the following conditions are
satisfied:

0) The domainD, have non-negligible size. Namely, there exists a constamich that for everyr and
y 0Yn{0,1}" |Dy|=2"n""

1) There exists a probabilistigolynomial-timealgorithm A; which on input £ samples a pairy(t(y)),
wherey 'Y, andt (y) is thetrapdoorfor y.

2) There exists a probabilistigolynomial-timealgorithm A, which for ally 00 Y samples elements out of
Dy.
3) There exist golynomial-timealgorithmAs; such that
Oy, Ox, Az(y, x) = fy(x)
4) There exist golynomial-timealgorithmA, such that

Ast(y), y, 2) = 1,'(2)

5) For any probabilistipolynomial-timealgorithmA”, for anyc > 0, and sufficiently large,
Pr[A*(fy(x), y) = x} <X
n

where the probability is taken over the coin tosse#\0f y chosen according t4;(1"), andx chosen
from Dy by A,.

-117 -

In the sequakl, we shall assume that the domBipare equal to { 0,11}, for |y | = n. As we shall now
see, there is no loss of generality as long as the domains are of non-negligible size.

Lemma: If there exists a collection of one-way permutations with trapdoor, with non-negligible domgins
then there there exists a collection of one-way permutations with trapdoor, such that foyefdengthn,
the setD, ={0,1}".

Proof: Given a (collection of) one-way trapdoor permutatifnon a subseD, of {0, 1}", such that
|Dy| 2 2"-n9, (for somed) extendf, to {0, 1}", by defining it to be the identity function on {0, I'}- D.
This yields a weak one-way permutatifgmn {0, 1}".

One can use the cross product construction of [Y], described in Lecture #2, to obtain a strong one-way
trapdoor permutation which fits our definition. In a few words, what one would do is to define a permutation
Fyon

{0,1}"x --- x{0, 1}"

by Fy(X1, ..y Xqd+2) = (?y(xl),...,?y(xnmz)). This will be hard to invert on all but a negligible fraction of its
domain. ®

(b) The Key GeneratorG.
The algorithmG(1") produces the following strings:

v, ty). o, B
whereG (1") producesy, t(y)) usingA4(1"), and
a=af af, a®, o), ..., a® ad,
B=p, B, BY, g, ..., BY, B

and thea’s andp{1)’s are chosen fromD |, |, usingAx(ly |).

The public key vstored in the public file consists gfa andp. Thesecret key sontains the strings of
together witht (y).

Conventions for Signing and Verification

The message space $ the set of all binary strings af bits. The signeiJ receives requests for
signatures of a sequence of messagesditithé = 1, message of the sequence is denotediby

-118 -

The vectora will be used to "sign” the messages(as in (*)), while the vectop will be used to "sign"
new systems, that is, neyls that allow the use of new permutatiofyss. The same vectors andp will be
used in all the new systems createdUbythus onlyy's will be signed.

Letyo =y. Denote the bits of; by t; 1, .. ., Tj 5, and the bits of the messageby g 1, ..., Oj .

(c) The Signing Algorithm S

The algorithmS uses as a building block an algorithél which has the role of "signing” a string
X = 0,0, - - - O, With respect to a key and a vectoy, as in (*) :

S,y00 = F1), 16S?), L YY),

AssumeU has already signetimessages. To sign the messaqge;, userU generates a numbef
using algorithmA; with input 1". Thesignaturefor m,,; with respect tes consists of:

° The sequence of strings

Y. Y2, Vi1
which were generated for the signatures of the previous messages, together with

° the new string
Yi
° For 0<i <t - 1, a "signature” of}, ,; with respect toy; andp. Namely
S p0ie0) = fEEED), fLBED), L, @)
° A "signature” ofm.; with respect toy, anda.

Spa(ma) = @), @), ..., @y,

Note that eacly; is used twice, one to "sigry, .1 (w.r.t. B), and one to sigm . (W.r.t. o).

(d) The Verifying Algorithm V.

The procedure for verifying that a given signature is valid should be clear: Anybody can read the values
a, B andy, stored in the public file, and check that for everg D<t-1, the stringy;.; has been "signed"
with respect toy; andp, and then thatn,; has been "signed" with respectyoanda.

-119 -

3.3 Security of theBM Signature Scheme.

In this subsection we shall complete the proof of the Theorem. Namely, we shall prove tBa thig-
nature scheme is secure agai@8A. The proof is by contradiction; we assume that there exists an efficient
forger F that has access to the signing algorit&rand forges with respect 8 We show that this implies
that by using- one can invert a one-way permutatifn a task assumed to be impossible jotynomial-time
algorithms.

Specification of a Forger.

Assume for contradiction tha is a probabilisticpolynomial-timealgorithm that can forge signatures,
that is, there exists > 0, and an infinite sequence 6 such that

Pr{FSS(v) forges] > ic
n

We start by introducing some notation, and describing how does a forged signature looks like.

Suppose thdf forges a signature for some message,rsayVe know what the format of a signature for
any messagen looks like. It consists of a sequence of strings v1, . . ., Yi-1, together with their "signa-
tures"éyi,[g(yi +1), for0<i<t -1, and a "signature" o, éyl_l,a(m), whereyy, a andp appear undet)’s

name in the public file.
Therefore, whatever string claims is a signature should have this structure. So denote by
S'/O!g/li ""S’/t (:r’h:)
the strings appearing iR’s forged signature ton=m,. wherey; = m (we take the liberty of identifying

with m). Thus,F should be able to present appropriate "signatures}; af with respect toy;, for 0<j <t.
Also note thatyg =Y.

Moreover F forged the signature, which means that it is different from the signafutess obtained via
the chosen message attack. gt yq,...,V:, wherey; =m, be the sequence used in théh signature
obtained by the chosen message attack. (Noteythat in U’s public file, the other;’s, 1<i<t, are chosen
by the signer while onlyn, is chosen byF). Recall,y;2y;. Hence, there is a location in the sequence wkere
“forges" for the first time, i.e. there is@ 1<q <t, such thaty; =y; fori <q, andyq # §/q. ThereforeF was
able to create the "signature" ﬁa‘ with respect to/y-1.

Now, before presenting the algorithm which inverts a one-way permutation, some explanations about
the random choices that are going to be made.

Assume, without loss of generality, that algoritifralways asks for the signatures loiessages, and

forges a signature for some messaget <I. The algorithm which we shall describe guesses the "place"
whereF forges; namely, it guesses three numlzgrs andk specified in the sequal.

-120 -

If Fis able to forge with non-negligible probability, it is able to forge for the first time, with non-
negligible probability, at a certain step This is becauskis polynomial inn, and a non-negligible probabil-
ity divided by a polynomial remains non-negligible. Therefore, we can choose at rasqmdom

There are two possibilities fd¥, either

q=t: forge directly a message, i.e. "sign, w.r.t. yq;.
or
g<t: forge a "signature” of a systeﬁa W.I.L Yg-1.

We assume| < I; the proof for the other case is similar.

We have then,
yq—l =Yq-1
Ya % Yq

and thus, instead of the "signature"

~

S/q—lvé(yq)
given by algorithmS there is the forged "signature" whithmanaged to produce with non-negligible proba-
bility

%’q—liﬁ(yq)'

Since the stringy, and;?q are different, they are different at some hitAgain, if we choose a random
j, then there is a non-negligible probability that the striy@andyq differ at thejth bit. This is because they
differ at somebit with non-negligible probability, and because there are ontyssible values fof.

Finally, we choosé randomly from { 0,1 }. Ifk =0, we assume that, ; = 0 while in the stringflq, the
bit ;q,j =1; otherwise we assume thag; =1, and ;q,j =0. One of these possibilities holds with non-
negligible probability, hence, we may assume that the first one holds.

An Algorithm to Invert the One-way Permutation.

We now present an algorithii”, which usingF is able to invert the one-way permutatidp (a
contradiction to property 5) in section 3.2); namely, its input and output are :

Input: Yy, fy(x)
Output: X (with non-negligible probability)
Namely, there exist a constant> 0, and an infinite sequencg, n»,... and for everyi

Pr[F*(fy(x)) = x} 2 nlc

-121 -

where the probability space is defined over the inpud$ lengthn; with uniform distribution, the stringg as
produced byA;(1"), the vectorsa andf as produced byA,, the sequences of inner coin tosses=6f for
inputs of lengtm;, with uniform distribution.

Algorithm F” (input:y, fy(x). Output:x.)

(0) Randomly choosg, j andk, 1<qg<Il,1<j<n,0<k<1. /*ExpectF toforge at stem, and bitj. */

(1) Choose two vectorg; andy, each with 2 entries randomly chosen from,. Let a = fy(y;) and
B = fy(y2).

(2) ReplaceB(M) by f,(x). /* replaceB® by f,(x), w.l.0.g. letk =1 */

(3) Choosd pairs /o, t(Yo)), Y1, t(Y1)), s &i-1, (t(V1-1)) , using algorithmA,(1"). Replaceyy-1 by y;
assume that thigh bit of y, is 0, otherwise start all over.

(4) LetF ask for signatures dfmessagem,, . .., m, reply toF the corresponding signatures.
/* this can be done as shown in Claim 1 */

(5) Take the output of, for stepq : é/q-l, 5(37q),
Output the jth component Oé,q_l‘ () /*whichis equalto fil, (B{") with non-negligible proba-
bility */.

end

To complete the proof of the Theorem, we shall prove the following two claims.

Claim 1: Algorithm F” is able to compute the signatures at step (4).

Proof: We show thaF " is able to compute the signatures requiredbyFori # q — 1, it can compute both,

~

S, a(M1)
and
§5/i, p(Yi+1)
because in step (3) the algoritim generateq; together with the trapdootsy;), fori # q — 1.

Fori =q -1, algorithmF" has usey in role of y;. AlthoughF" does not "know't (y) it "knows" the
value off)‘,1 all all a’s and allf’s (except the input string replacirﬁjl)), sinceF " has produced theses and
B's by selecting somgs and applyingf, to them! It follows thate" can compute

~

S, a(my)

since it is not more than a subset (definecyy of the components of,. Algorithm F” can also compute

-122 -

S, 8(Yq)
because what it has to compute is a subset (defingg)oyf the components of,. Note that this subset does

not include the component correspondingﬁf&), which is the only place whereé” would have trouble. That
is, F" is not asked to computi® f,(x). M

Claim 2: The output ofF " is x, with non-negligible probability.
Proof: Provided thatg, j andk were guessed correctly, with non-negligible probability, the output of the

algorithm is indeed : The jth component oé/q_l, g(;?q) is f;ql_l (Bj(l)) since we are assuming thE{qg =1

Also, B{Y = f,(x), andy,—, =y, and therefore
fre, (BY) = 5 (fy(¥)).

Namely, the output is correct provided that fitie bit of y, is 0, andF forges the "signature” fq?q, s.t. thejth

bit of §/q is 1. Our assumption is that these conditions hold with non-negligible probability, when the public-
key is chosen by the key generator and the ojfisrare selected by the signing algorithm. We stress that the
a’s, B's, andy;’s chosen byF " together with the inpuy have the same probability distribution! It follows
thatF" invertsf, with non-negligible probability, a contradictiol

