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Foundations of Cryptography
Notes of lecture No.5B (given on Apr. 2nd)

Notes taken by Eyal Kushilevitz

Summary

In this (half) lecture we introduce and define the concept ofsecure encryption. (It is assumed that the

reader is familiar with the notions of private-key and public-key encryption, but we will define these notions

too for the sake of self-containment).

1. Secure encryption - motivation.

Secure encryption is one of the fundamental problems in the field of cryptography. One of the important

results of this field in the last years, is the success to give formal definitions to intuitive concepts (such as

secure encryption), and the ability to suggest efficientimplementationsto such systems. This ability looks

more impressive when we take into account the strong requirements of these definitions.

Loosely speaking, an encryption system is called "secure", if seeing the encrypted message does not

give any partial information about the message, that is not known beforehand. We describe here the properties

that we would like the definition of encryption system to capture:

g Computational hardness -As usual, the definition should deal with efficient procedures. That is, by

saying that the encryption does not give any partial information about the message, we mean that no

efficient algorithm is able to gain such an information Clearly, we also require that the encryption and

decryption procedures will be efficient.

g Security with respect to any probability distribution of messages -The encryption system should be

secure independently of the probability distribution of the messages we encrypt. For example: we do

not want a system which is secure with respect to messages taken from a uniform distribution, but not

secure with respect to messages written in English. Namely, we do not want that a user of an encryption

scheme will have to predetermine what is the probability distribution of messages for which he intend to

use the system. Therefore, the designer of an encryption system has no idea about the probability distri-

bution of messages that the user will send. (One possible idea, is to condense the messages space into a

space with a uniform distribution. However, this may be a solution to the problem of how to construct

encryption systems but can not be considered as a definition of such a system.)

g Hardness of gaining any partial information - It should be hard not only to findm given E (m) but

also to findany partial information aboutm, such as part ofm bits etc. This requirement may seems to
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be somewhat as a "paranoia", but it is needed since we would like to protect any "important" informa-

tion. However, we do not know how the user intends to use the system and therefore we cannot define

what is the "important" information. In particular, he may use the system in a way that the most

"secret" part of his messages is exactly the partial information which is easy to find. Therefore we call

an encryption system secure, only if any partial information is hard to find.

g Hardness against a-priori information - We require that even if the "enemy" has some a-priori infor-

mation about the message (e.g. in what language it is written, or that the message is either "yes" or "no")

then it will not help him to achieve significant information about the message, which is not follows from

his a-priori knowledge. We remark that this requirement is very similar to the requirement of being

robust against any probability distribution. We discuss this similarity later.

At this point of the course, since we assume that one-way functions do exist, one may suggest that we

will use one-way functions as an encryption. We remark here that one-way functions may not satisfy the

requirements stated above. Namely, iff is a one-way function it is only guaranteed that givenf (m) it is hard

on the average to findm, assuming thatm is taken from the uniform probability distribution. It is also not

guaranteed that it is hard to gain some partial information aboutm, or that if we a-priori know certain bits of

m we will not be able to find all the other bits. For example, theRSA function which is considered one-way,

has the property that the Jacobi-symbol of the encrypted message is equal to that of the original message.

Thus, if the Jacobi-symbol ofm is an important information about the messages, it is not hidden byRSA(m).

One should pay attention that if we have only a "small" number of possible messages, we can not expect

a deterministic public-key encryption-system to be secure. This is because the enemy, givenE (m), may

encrypt by himself all the possible messages and check which of them givesE (m).

2. Formal definitions

We start with the formal definition of a public-key (private-key) encryption system. Next, we will define

the notion of semantic security.

Definition 1: A Public-key Encryption system consists of three probabilisticpolynomial-timealgorithms

(G,E,D) as follows:

1) G is an algorithm for generating keys. That is,G(1n)=(e,d) wheree is the public-key,d is the private-

key,n is a security parameter, and| e | = | d | =n.

2) E is an encryption algorithm andD is a decryption algorithm. For every messagem of size | m | =n, and

every pair (e,d) generated byG on input 1n, and all the possible coin tosses ofE,

D(E(m,e),d)=m (*)
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The definition ofprivate-key encryption system is the same except for requiring thatd =e. We also

remark that one can make the definition more liberal by requiring that (*) will be satisfied only for almost all

coin tosses of the algorithmsG,E andD.

We now turn to the definition of semantic-security (in the next lecture another, equivalent, notion of

security will be defined). We start with an informal definition:

An encryption system will be calledsemanticly secure if for every probability distribution of mes-

sages, everything that can beefficiently computed given the encrypted message, can be

efficiently computedwithout it.

The main difference between this definition and Shannon’s definition of security is that here we require

security with respect to efficient computations while Shannon defined security from the point of view of

information theory.

For giving the formal definition of security we also need a definition of samplable probability distribu-

tions.

Definition 2: A probability distribution {πn} n is called polynomial-time samplable if there exists a proba-

bilistic polynomial-timealgorithmA such that for everys∈{0,1} n

Pr I
LA(1n)=sMO = πn(s)

We now give the definition of semantic security in both non-uniform and uniform formulation.

Definition 3: An encryption system (G,E,D) is calledsemanticly secure if for every probability distribution,

πn, every a-priori information function,h, every semantic function,f, and every probabilisticpolynomial-time

(non-uniform) algorithm,A, there exists a probabilisticpolynomial-time(non-uniform) algorithm,A‘, such

that for everyc >0, and sufficiently largen (the size of messages),

Pr I
LA(Ee(m),e,h(m),1n)=f(m)MO < Pr I

LA‘(h(m),1n)=f(m)MO+ n c

1hhh

where the left probability is taken over the coin tosses of the algorithmsA,E andG (e is the output ofG(1n))

and the probability distribution of messages (πn), and the right probability is taken over the coin tosses ofA‘

and the probability distribution of messages (πn).

Definition 3‘: An encryption system (G,E,D) is calleduniformly semanticly secure if for every samplable

probability distribution,πn, everypolynomial-timecomputable a-priori information function,h, every seman-

tic function, f, and every probabilisticpolynomial-timealgorithm,A, there exists a probabilistic polynomial-

time algorithm,A‘, such that for everyc >0, and sufficiently largen (the size of messages),

Pr I
LA(Ee(m),e,h(m),1n)=f(m)MO < Pr I

LA‘(h(m),1n)=f(m)MO+ n c

1hhh

12/27/95



- 53 -

where the left probability is taken over the coin tosses of the algorithmsA,E andG (e is the output ofG(1n))

and the probability distribution of messages (πn), and the right probability is taken over the coin tosses ofA‘

and the probability distribution of messages (πn).

We give here some remarks with respect to this definition:

g When dealing with a private-key encryption system,A does not gete as an input.

g If we take f as the identity function (f (m)=m) the definition requires that one, seeingE (m), can not

guessm significantly better than if he does not seeE(m).

g The definition has a meaning even when the semantic functionf is not computable. This is because the

algorithmsA andA‘ do not try to computef but only to approximate it. This means thatE(m) does not

help to achieve approximation off(m) which is better than what can be achieved without usingE (m).

g Giving 1n as an input toA‘, is needed in order to enable the (uniform) algorithm to runpolynomial-time

in the length ofm (otherwise it may not be able even to write its output), and so that the length ofm is

always given as an a-priori information onm. It can be shown that no "efficient encryption scheme" can

hide the length of messages encrypted by it.

g For the non-uniform definition, the a-priori information functionh is not needed. Namely, the definition

is equivalent even whenA andA‘ do not geth(m) as an input. This is since the a-priori informationh

can be combined with the probability distributionπn to create a new probability distributionπ‘n. The

encryption system is assumed to be robust also with respect to this new probability distribution and this

implies its security with respect toπn andh. The exact construction ofπ‘n from πn andh follows from

the proof of a theorem, that will be given in the next lecture, claiming the equivalence of the "seman-

ticly secure" notion to another notion of security called"indistinguishabilitysecurity".

g Finally, we remark that in the non-uniform case we can consider only deterministic algorithms. This fol-

lows from the fact that if there is a probabilistic algorithm which findsf(m) with a good probability,

then by an averaging argument there exists a sequence of random coins on which this algorithm has a

good probability of success. This sequence can be wired into the circuit.
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