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As defined in Sec. I.B (and more generally in Def. 2 of Sec. II.C), a product program (over a
multiplicative group G), is a sequence of triples P = (inp(i), ai,0, ai,1), where inp : [n] → [ℓ] and
ai,0, ai,1 ∈ G, and its value at x ∈ {0, 1}ℓ is defined as P (x) =

∏n
i=1 ai,xinp(i)

. For such product
programs, one may consider three natural computational problems:

1. Evaluation: Given such a program P and an assignment x to its variables, compute the value
P (x).

2. Satisfiability: Given such a program P and a value v, determine whether there exists an
assignment x such that P (x) = v. (The search problem version is to find such an x.)

3. Summation (reminiscent of counting): Given such a program P , compute the value
∑

x∈{0,1}ℓ P (x).

Product problems over different algebras have different expressive power, and this expressive power
lower bounds the complexity of the foregoing computational problems. Barrington’s celebrated
result says that, for every non-solvable group G, the computation of depth d Boolean circuits
(of bounded fan-in) can be expressed by G-programs of length exponential in d. The current
paper observes that the corresponding counting problem (i.e., counting the number of satisfiable
assignment to such a circuit) reduces to the foregoing summation problem (see Fact 1 in Sec. II.D);
but this is not the main point of the paper.

The main point of the paper is that the summation problem can be reduced to the computation
of the determinant (or the permanent) of matrices over the same algebra. This is what Thm. 5 (of
Sec. III.B) says. Actually, it says it only for the determinant, but as we shall see, for the matrices
used in the reduction the determinant equals the permanent.

I think it is beneficial to somewhat simplify and rephrase the exposition of the matrix MP

considered in the beginning of Sec. III.B (where also Ck and π1 are defined). Specifically, first,
assume without loss of generality, that all Ck’s are of odd size (greater than one); this can be
justified just as the author justifies that they are all of size greater than one (i.e., by possibly
introducing “dummy” or “neutral” program lines i such that inp(i) = k and ai,0 = ai,1 equal
the identity element). More importantly, note that MP has exactly two non-zero entries per each
line i ∈ [n] – the entry MP [i, i] = ai,0 and the entry MP [i, π1(i)] = ai,1. (In the paper, for each
k ∈ [ℓ], one of the rows in the π1-cycle (ik,1, ..., ik,|Ck |) carries the sign (−1)|Ck |−1, but by the first
simplification this is no longer needed.)

Next, recall that each permutation σ : [n] → [n] consists of a set of disjoint cycles. Hence, each
permutation σ that corresponds to a non-zero term in the determinant (or permanent) must consist
of singleton cycles and cycles that are generated by π1. The reason is that the term

∏n
i=1 MP [i, σ(i)]

is non-zero only if σ(i) ∈ {i, π1(i)} for all i’s, whereas σ(i) = π1(i) implies that σ agrees with π1 on

the cycle Cinp(i) = (i, π1(i), ..., π
|Cinp(i)|−1

1 (i)). This means that such σ must be consistent with some
input x; that is, its singleton cycles correspond to the zero-entries of x, whereas its π1-generated
cycles correspond to one-entries of x.

Hence, the value of the permanent of MP equals the value
∑

x∈{0,1}ℓ P (x). The same holds
for the determinant of MP , because each σ that is consistent with some x has sign 1 (since it is a
collection of odd-length cycles).


