
Oded (June 21, 2022): The simplest yet derandomization of BPP based on HSG

In continuation to my choice Nr. 324, following is my take on the proof presented in Appendix A of
the paper of Cheng and Hoza (ECCC, TR20-016). Let HSG(s, n) denotes a hitting set (generated)
for circuits of size s that take n input bits.

Theorem 1 (the result): Suppose that HSG(s, n) can be computed in time T (s) ∈ [s, 2o(n)]. Then,
BPtime(t) is contained in Dtime(T (T (poly(t)))).

Actually, the result is meaningful only if T (T (m)) < 2m.

Proof: By standard error reduction, we may assume that, on input x, the BPtime algorithm,
denoted A, has error probability ϵ = 1/2T (s(|x|) + O(n′)) and runs in time t′, where n′ = t′(n) =
O(t(n) log(1/ϵ)) and s(n) = poly(t′(n)) is the size of the circuit Cx : {0, 1}n′ → {0, 1} such that
Cx(r) = A(x, r). (Formally we set ϵ slightly smaller to avoid a vicious cycle.)1

For a generic n-bit input x to the algorithm A, we consider the following (s(n) + O(n′))-sized

circuits C ′
x,w : {0, 1}n′ → {0, 1} such that C ′

x,w(r)
def
= ¬Cx(w ⊕ r), for all w ∈ {0, 1}n′

. Letting
s′ = s(n) +O(n′), we consider the following dichotomy regarding the C ′

x,w’s.

Case of x being a no-instance: For every ω ∈ {0, 1}n′
it holds that

Prr[C
′
x,ω(r)=1] ≥ 1− ϵ > 1/2.

Since each C ′
x,ω has size s′, it follows that for every ω, there exists r ∈ HSG(s′, n′) such that

C ′
x,ω(r) = 1 (equiv., Cx(ω ⊕ r) = 0).

Case of x being a yes-instance: For every r ∈ {0, 1}n′
it holds that

Prω[C
′
x,r(ω)=1] ≤ ϵ.

It follows that for every R ⊆ {0, 1}n′
it holds that

Prω[∃r∈R s.t. C ′
x,r(ω)=1] ≤ |R| · ϵ.

Equivalently, Prω[∃r∈R s.t. Cx(ω ⊕ r)=0] ≤ |R| · ϵ.

In particular, for H ← HSG(s′, n′), considering C ′′
x : {0, 1}n′ → {0, 1} such that C ′′

x(ω)
def
=∧

r∈H Cx(ω ⊕ r), we have

Prω[C
′′
x(ω)=1] ≥ 1− T (s′) · ϵ = 1/2,

since |H| < T (s′). Observing that C ′′
x has size at most s′′ = T (s′) · (s′ + 1), it follows that

there exists ω ∈ HSG(s′′, n′) such that C ′′
x(ω) = 1 (equiv., for every r ∈ H it holds that

Cx(ω ⊕ r) = 1).

1Recall that s(n) = poly(t(n) log(1/ϵ)), whereas we set ϵ to be somewhat smaller than 1/2T (s(n) +O(n′)). Using
T (s) < 2o(n), it follows that ϵ ≥ exp(o(s(n))), which avoids a vicious cycle. For simplicity, we may just set ϵ = 2−n,
and get s(n) = poly(t(n)). However, if both t and T is polynomials, then we may set ϵ = 1/poly(n), for a sufficiently
large poly.

1

In contrast, recall that if x is a no-instance, then for every ω ∈ HSG(s′′, n′) there exists r ∈ H such
that Cx(ω ⊕ r) = 0.

This dichotomy yields a deterministic decision procedure, which on input x ∈ {0, 1}n, determines
n′, s′ and s′′, computes H ← HSG(s′, n′) and H ′ ← HSG(s′′, n′), and accepts if and only if there
exists ω ∈ H ′ such that for every r ∈ H it holds that A(x, ω⊕ r) = 1. This decision procedure runs
in time

T (s′) + T (s′′) + T (s′) · T (s′′) · t′(n) < 2 · T (s′) · T (T (s′) · (s′ + 1)) · t′(n)
= T (poly(t(n))) · T (T (poly(t(n))) · poly(t(n)))) · poly(t(n)),

since s′ = O(s(n)) = poly(t′(n)) and t′(n) = o(t(n) · n). Using T (m) ≥ m, we get a bound of
T (poly(t(n))) · T (T (poly(t(n)))) · poly(t(n)), which is upper-bounded by T (T (poly(t(n)))).

Corollary 2 (a special case): Suppose that HSG(s, n) can be computed in poly(s)-time. Then,
BPtime(t) is contained in Dtime(poly(t)).

Remark 3 (a finer analysis): Recall that we used |HSG(s, n)| ≤ T (s). Using a finer bound of the
form |HSG(s, n)| ≤ N(s), we can use s′′ = N(s′) · (s′ + 1), and assuming that N(s) > s, we bound
the running-time of the decision procedure by

T (s′) + T (s′′) +N(s′) ·N(s′′) · t′(n) ≤ T (N(poly(t(n)))),

while using s′′ ≤ N(s′)2 ≤ N(poly(t(n))) and N(N(poly(t(n)))3 ≤ T (N(poly(t(n)))).

2

