Oded (memo): Equivalnce of Matrix Inversion and Matrix Multiplication
The easy part is reducing matrix multiplication to matrix invertion. We show this first, and then show a reduction of matrix invertion to matrix multiplication.

Reducing matrix multiplication to matrix invertion. Here we observe that the inverse of the matrix

$$
M=\left(\begin{array}{ccc}
I & A & 0 \\
0 & I & B \\
0 & 0 & I
\end{array}\right)
$$

is

$$
M^{-1}=\left(\begin{array}{ccc}
I & -A & A B \\
0 & I & -B \\
0 & 0 & I
\end{array}\right)
$$

Hence, $A B$ is computed by computing M^{-1}.

Reducing matrix inversion to matrix multiplication. The reduction uses recursion. Specifically, we reduce inverting the matrix

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

to matrix multiplication by observing that if we multiply M on the left by the matrix

$$
F=\left(\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right)
$$

then we get the lower-triangular matrix matrix

$$
Q=\left(\begin{array}{cc}
A-B D^{-1} C & 0 \\
C & D
\end{array}\right)
$$

which is "easy to invert" (i.e., it is easy to write a formula for Q^{-1}). Specifically, note that the inverse of the lower-triangular matrix

$$
L=\left(\begin{array}{cc}
R & 0 \\
S & T
\end{array}\right)
$$

is

$$
L^{-1}=\left(\begin{array}{cc}
R^{-1} & 0 \\
-T^{-1} S R^{-1} & T^{-1}
\end{array}\right)
$$

Applying this formula to the foregoing matrix Q, we write its inverse (i.e., Q^{-1}) as

$$
\left(\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & 0 \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}
\end{array}\right)
$$

Now, $F M=Q$ implies that $M^{-1}=Q^{-1} F$. Hence, the inverse of the matrix M is obtained by computing F, Q and Q^{-1} and the product $Q^{-1} F$. Hence, M^{-1} is computed as follows.

1. We compute the inverse of D.
2. We compute the product $R=A-B D^{-1} C$.
3. We compute the inverse of R.
4. We compute the product $-D^{-1} C R$.
(This yields Q^{-1}, whereas F can be computed along the way for free.)
5. Lastly, we compute the product $Q^{-1} F$.

Now, letting $\operatorname{Inv}(m)$ (resp., $\operatorname{MM}(m)$) denote the complexity of performing m-by- m matrix inversion (resp., multiplication), we obtain the following recursion for the complexity of matrix inversion

$$
\begin{aligned}
\operatorname{Inv}(2 n) & =2 \cdot \operatorname{Inv}(n)+4 \cdot \operatorname{MM}(n)+\operatorname{MM}(2 n)+O\left(n^{2}\right) \\
& =2 \cdot \operatorname{Inv}(n)+O(\operatorname{MM}(n))
\end{aligned}
$$

where we use $\operatorname{MM}(2 n) \leq 8 \cdot \operatorname{MM}(n)$ and $\operatorname{MM}(n)>n^{2}$. This implies

$$
\operatorname{Inv}\left(2^{t}\right)=\sum_{i \in[t]} 2^{i} \cdot O\left(M\left(2^{t-i}\right)\right)=O\left(M\left(2^{t}\right)\right)
$$

