
Oded (October 13, 2023): Constructing PRG based on arbitrary OWF (following Mazor and Pass)

1 Introduction

The fact that any one-way function can be used to construct a pseudorandom generators is one
of the most fundamental results of complexity theory and cryptography (see, e.g., [3, Sec. 8.2.5]
and [2, Sec. 3.5], resp.). This result, proved by [10], improves on prior results of [1, 17] and [4]
in which additional requirements were imposed on the one-way function. On the other hand, it
has served as the starting point for a quest of simpler and more efficient constructions, where the
main efficiency measures are the seed length (in terms of the length of inputs on which the one-way
function is queried) and the number of such queries (see [11, 6, 7, 16, 8, 14]).

Indeed, all constructions are presented as algorithms that use the one-way function as a black
box, or rather as oracle machines that make queries to (the forward direction of) the one-way
function. Specifically, using an one-way function on n-bit strings, till recently, the best known
complexity bounds are due to [16], which builds on [7]: It uses Õ(n3) oracle calls and a seed of
length Õ(n3), where the Õ-notation can actually be replaced by any efficiently computable and
super-linear function. Expositions aimed at simpler proofs were provided in [8, 14]. Actually, the
work of [14] also improves both complexity bounds to o(n3).

The current text provides an overview of the work of Mazor and Pass [14], which deviates from
all prior works on the subject by using (next-bit) unpredictability rather than pseudorandomness
(i.e., indistinguishability from random) as its pivot. Indeed, in their “pure” form, these notions are
equivalent, but this equivalence does not seem to carry through to the relaxed forms. Specifically,
pseudoentropy means being indistinguishable from a distribution of high entropy, whereas quanti-
tative unpredictablity means that many bits (but not all) are unpredictable given the previous ones.
(Indeed, both notions are quantitative and come with a suitable parameter (which quantifies how
much is ‘high’ and how much is ‘many’).)1

Organization of the rest of this text. Our exposition proceeds as follows. First, we present the
definition of quantitative unpredictablity. Next, we show that any one-way function yields a function
that has more unpredictable bits than its input length. Finally, we show that a function with more
unpredictable bits than its input length can be used to construct a pseudorandom generartor. We
focus on providing an exposition in the model of non-uniform complexity (see Section 2). This model
allows for the presentation of non-uniform security reductions, which simplifies the description of
the hybrids used in the analysis. We later comment on the adaptation of these ideas to the uniform
complexity setting (see Section 3).

How is this different from [7]? While the proof of [14] is analogous to that of [7], the crucial
difference is that it abandons the notion of pseudorentropy and uses next-bit unpredictability
instead. Indeed, the proof [7] takes a crucial step in this direction: It is pivoted on the notion of
next-block pseudoentropy, where its real novelty (wrt prior work) is the next-block aspect. But, in
my opinion, keeping pseudorentropy around blurs the actual issues, and leads to an argument that
is somewhat more complicated both conceptually and technically.

1The notion of (next-bit) unpredictability may be viewed as a strengthening of the notion of next-block pseudoen-
tropy (which was introduced and studied in [7]).

1

2 The non-uniform complexity model

As stated above, the key notion is that of a function having several unpredictable bits. That is,
for some bit locations, but not necessarily all, predicting the next bit based on the prior ones
is infeasible. These unpredictable bit locations may vary based on the input, but the definition
provides a lower bound on their expected number (where the expectation is over the uniform choice
of the input). Viewing n as a varying parameter, we let all other parameters depend on it.

Definition 1 (quantitative unpredictability, non-uniform version) We say that g : {0, 1}ℓ(n) →
{0, 1}ℓ′(n) has m(n) bits that are (s(n), ϵ(n))-unpredictable if there exists a function I : {0, 1}ℓ(n) →
2[ℓ

′(n)] such that Ex∈{0,1}ℓ(n) [|I(x)|] ≥ m(n) and for every i (in the support of some I(x)) and for
every s(n)-sized circuit Cn it holds that

Prx∈{0,1}ℓ(n)

[
Cn(g(x)[i−1])=g(x)i|I(x) ∋ i

]
= 0.5± ϵ(n).

Although it may appear surprising (at least at first thought), it turns out that functions that have
more unpredictable bits than their input length are relatively easy to construct based on any one-
way function. Indeed, the analogous claim for any one-way permutation is well known (see [5]),
but the following result refers to any one-way function.

Theorem 2 (obtaining more unpredictable bits than the input length): Given a (non-uniformly
strong) one-way function f : {0, 1}n → {0, 1}n, consider the function

g(M,x)
def
= (M, g′(M,x)) = (M,M(f(x)),M(x)) (1)

where M is an n-by-n matrix and M(z) = Mz. Then, for every positive polynomial p, the function
g′ has n+log2 p(n) bits that are (p(n), 1/p(n))-unpredictable. Furthermore, the function I indicating
the unpredictable bits depends only on the second operand of g′ (i.e., x).

(Actually, it holds that Prx∈{0,1}n [|I(x)| < n+ log2 p(n)] < 1/p(n)2.)

Proof Sketch: We first prove the theorem for the special case that f is regular; that is, for some
r ∈ [n], each image of f has approximately 2r pre-images. In that case, the first n− r−O(log p(n))
bits of g′(M,x) (i.e., M(f(x))[n−r−O(log p(n))]) are o(1/p(n))-close to the uniform distribution over

{0, 1}n−r−O(log p(n)), because they are extracted from a source of min-entropy n− r. Likewise, even
when fixing the first n bits of g′(M,x), the next r − O(log p(n)) bits (i.e., M(x)[r−O(log p(n))]) bits

are o(1/p(n))-close to the uniform distribution over {0, 1}r−O(log p(n)) (because they are extracted
from a source of min-entropy r). Needless to say, this means that these n − O(log p(n)) bits
are unpredictable. The point is showing that the next O(log p(n)) bits (i.e., those in locations
n+ r −O(log p(n)) + 1, ..., n+ r +O(log p(n))) are also unpredictable.

The latter fact is proved by showing that, for every i ∈ [r−O(log p(n))+1, r+O(log p(n))], the bit
B′(M,x) = M(x)i is a hard-core predicate of the function F ′(M,x) = (M,f(x),M(x)[i−1]). Specifi-
cally, efficiently predictingM(x)i with non-negligible advantage ϵ (when given (M,f(x),M(x)[i−1]))
implies (via [5]) an efficient procedure R such that Pr[R(M,f(x),M(x)[i−1])=x] ≥ poly(1/ϵ).2

Pr
M∈{0,1}n2 ,x∈{0,1}n,u∈{0,1}i−1

[
R(M,f(x), u) ∈ f−1(f(x))

]
2Here, it is essential that the ith column of M is statistically independent of the rest of M .

2

≈ 2r · Pr
M∈{0,1}n2 ,x∈{0,1}n,u∈{0,1}i−1 [R(M,f(x), u) = x]

≥ 2r · 2−(i−1) · Pr
M∈{0,1}n2 ,x∈{0,1}n [R(M,f(x),M(x)[i−1]) = x]

≥ 2r+1−i · poly(ϵ),

where the first (approximate) equality holds because R is oblivious of the specific x that yields

f(x). Lastly, letting R′(y)
def
= R(M,y, u) such that M and u are selected uniformly at random,

implies that R′ inverts f with probability at least 2r−i ·poly(ϵ). Using i ≤ r+O(log p(n)), it follows
that the hypothesis that this bit can be predicted contradicts the one-wayness of f .

Turning to the general case, the key observation is that the same argument can be applied here
too by decoupling f (or rather its domain) into n parts such that f is approximately 2r-to-1 on the
rth part. Discarding parts that have negligible density (in {0, 1}n), we observe that each part can be
analyzed separately by considering the corresponding conditional probability space and using the
fact that f must be hard to invert on each of these conditional spaces. Indeed, the unpredictable
bits in the rth part are 1, ..., n− r−O(log p(n)) and n+ r−O(log p(n))+ 1, ..., n+ r+O(log p(n)),
which means that different bits are unpredictable in different parts. However, this is accommodated
by Definition 1, which allows these locations to be determined arbitrarily as a function of the input
(to g′). Furthermore, here these locations are determined as a function of the input to f (only).

Motivation towards the final construction. The set of unpredictable bits of g′ is a random
variable, denoted I(x). This random variable is a function of the uniform distribution of x ∈ {0, 1}n.
Actually, it is a sequence of 2n binary random variables, corresponding to the events I(x) ∋ i for
all i ∈ [2n]. The only information available to us about this sequence (of 2n random variables) is
that its sum exceeds n+log2 p(n). This claim actually holds with probability at least 1−(1/p(n))2;
however, the original work only uses the fact that the expectation of this sum exceeds n+log2 p(n).
In any case, we have no information about the distribution of the individual binary variables,
whereas unpredictability holds with respect to individual locations relative to previous ones. The
solution is twofold:

1. Apply a transformation such that the random variables that represent unpredictability of
different bit locations in the resulting function are identically distributed. This is done by
taking t′ copies of the original distribution, selecting r ∈ [2n] uniformly, and omitting the
first r bits from the first copy and the last 2n− r bits of the last copy.

Hence, each location in the resulting function represent a uniformly distributed bit location
of the original function. The transformation comes with a cost: We have omitted 2n bits,
but for t′ = Ω(n/ log n) this lost is compensated by the larger total gain in the number of
unpredictable bits from the t′ copies.

2. Using t = ω(n2/ log n) copies of the resulting distribution, we obtain a t-by-(t′ − 1) · 2n
Boolean matrix in which, with probability 1− exp(−t · ((log n)/n)2), each column has at least
t · (0.5 + Ω((log n)/n)) unpredictable bits.

Applying a randomness extractor to each column, we can extract

((t′ − 1) · 2n) · (t · (0.5 + Ω((log n)/n))) = (t′ − 1) · t · (n+Ω(log n))

bits, which exceeds the t′ · t · n bits used to generate this matrix.

3

The following construction implements the foregoing suggestion.

Construction 3 (the two-step construction): For t′ = 2n/ log2 n, x = (x(1), ..., x(t
′)) ∈ ({0, 1}n)t′

and r ∈ [2n], let

g′′(r,M, x) = (g′(M,x(1))[r+1,2n], g
′(M,x(2)), ..., g′(M,x(t

′−1)), g′(M,x(t
′))[r]). (2)

For δ = (log2 n)/n, let Ext : {0, 1}t ×{0, 1}d → {0, 1}(0.5+δ)·t be a strong extractor for min-entropy
(0.5 + 2δ) · t with deviation that is negligible (in n).3 For z = (z(1), ..., z(t)) ∈ ({0, 1}t′n)t, r =
(r1, ..., rt) ∈ [2n]t and i ∈ [n′], where n′ = (t′−1)·2n, let gi(r,M, z) = (g′′(r1,M, z(1))i,, g

′′(rt,M, z(t))i);
that is, gi takes the ith bit of each of the t values g′′(r1,M, z(1)),, g′′(rt,M, z(t)). For s =
(s1, ..., sn′) ∈ ({0, 1}d)n′

, denoting Exts(z) = Ext(z, s), we construct the function

G(M, r, s, z)
def
= (M, r, s,Exts1(g1(r,M, z)), ...,Extsn′ (gn′(r,M, z))). (3)

Note that the length of the input to G is k(n)
def
= n2+ t · log2(2n)+n′ ·d+ t · t′n, whereas the length

of its output is n2+t log2(2n)+n′d+n′ ·(0.5+δ) ·t = k(n)+t ·((1+2δ) ·(t′−1)−t′) ·n, which equals
k(n) + (2δ · t′ − (1 + 2δ)) · tn > k(n) + δ · t′tn. Assuming that d = O(t), we get seed-length O(t′tn)
and a stretch of ω(t′t) bits. Given these mild requirements of a randomness extractor, we can just
use linear functions over a huge field or affine transformations effected by Toeplitz matrices.

Theorem 4 (the pseudorandomness of Construction 3): Suppose that, for every positive poly-
nomial p, the function g′ : {0, 1}n2+n → {0, 1}2n has n + log2 p(n) bits that are (p(n), 1/p(n))-
unpredictable. Furthermore, suppose that the locations of unpredictability are determined by the

second operand of g; that is, I(M,x) is independent of M , allowing us to use I(x)
def
= I(M,x).

Then, G as defined in Construction 3 is a pseudorandom generator.

Proof Sketch: We first note that, for every polynomial p, the function g′′ : [2r]{0, 1}n2+t′n →
{0, 1}(t′−1)·2n has (t′ − 1) · (n + log2 p(n)) bits that are (p(n), 1/p(n))-unpredictable. Recall that
n′ = (t− 1) · 2n and that G has seed-length O(t′tn) and a stretch of Ω(t′t · log n) bits.

To analyze G, we use a hybrid argument, where (for i ∈ {0, 1, ..., n′}) the ith hybrid distribution
is

H(i) def
= (M, r, s,Exts1(g1(r,M, z)), ...,Extsi(gi(r,M, z)), U(n′−i)·t). (4)

where M, s, r and z are distributed uniformly (as in Eq. (3)), and Um denotes the uniform distri-
bution over m-bit strings.

Note thatH(n′) coincides with the output distribution ofG whereasH(0) is uniformly distributed
over the set of all strings of corresponding length. The indistinguishability ofH(i) andH(i−1) follows
by observing that gi(r,M, z) has at least (0.5 + 2δ) · t pseudorandom bits with respect to (equiv.,
when given) (M, r, s, g1(r,M, z), ..., gi−1(r,M, z). Specifically, we use the following facts.

1. The number of bits in the ith column that are unpredictable with respect to their own row
is the sum of t independent (and identically) distributed binary variables that have each
expectation at least 0.5 + ((log2 p(n))/2n) > 0.5 + 3δ. Hence, with probability at least
1− exp(−Ω(t · δ2)) = 1− exp(−ω(log n)), this number is at least (0.5 + 2δ) · t.

3Recall that a function F : {0, 1}n × {0, 1}d → {0, 1}m is called a strong (k, ϵ)-extractor if, for every random
variables of min-entropy at least k (i.e., maxx{Pr[X=x]} ≤ 2−k), it holds that the total variation distance between
(Ud, F (X,Ud)) and Ud+m is upper-bounded by ϵ.

4

2. This sequence of individually unpredictable bits (wrt their own rows) is pseudorandom with
respect to all prior columns. Here we use another hybrid argument (i.e., on the t rows of the
t-by-n′ matrix).

Hence, we can replace these unpredictable bits by random one, and obtain a column that has
min-entropy at least (0.5 + 2δ) · t. Applying randomness extraction, the indistinguishability claim
follows.

The seed length. Construction 3 does improve (slightly) the complexity bounds on the number
of invocations of the one-way function (from ω(n3) to ω(n3/ log2 n)), but the seed-length it uses is
ω(n4/ log2 n). To improve the seed-length, one may apply the “re-cycling” technique of [16], and
this is indeed what is done in [14, Sec. 8]. This allows to cut the seed-length by a factor of Ω(t′),
yielding seed-length ω(n4/ log n).

3 Adaptation to the uniform complexity model

Working in the model of non-uniform complexity allows for hiding the non-uniformity of the security
reductions (i.e., reducing the inversion of f to the violation of the pseudorandomness of G). In
the current context, following [13], non-uniform steps are typically done in the definition of hybrid
distributions. The current source of the problem is the fact that the function I : {0, 1}n → 2[2n]

that indicates the unpredictable bits is unlikely to be efficiently computable. Fortunately, as noted
in [14, Apdx A], this problem can be addressed by using suitable results regarding “hard-core
regions” (see [14, Lem A.3], which follows [7], which in turn follows [12]). Details follow.

The first step is to prove a strengthening of Theorem 2. In this stronger version, the un-
predictability holds also with respect to algorithms that make input-oblivious queries regarding
whether a specific bit is unpredictable with respect to a specific (other) input. This stronger ver-
sion will later allow us to conduct the hybrid argument that takes place in the proof of Theorem 4.
Specifically, we will provide the (single-instance) distinguisher that is used in the hybrid argument
with the foregoing oracle, which will enable this distinguisher to emulate the rest of the hybrid (by
sampling instances with corresponding unpredictable/predictable bits).

Actually, we outline two different (strong) versions of Theorem 2. The first version refers
to the function g′ as defined in Eq. (1), and is implicit in the first part of the proof of [14,
Lem. A.5].4 Specifically, this version establishes the average unpredictability of bits in g′(M,x) =
(M(f(x)),M(x)) (also when given input-oblivious access to an oracle that on input (M ′, x′, i′) indi-
cates whether or not (M ′(f(x′)),M ′(x′))i′ is unpredictable). The problem with this version is that
it leads to a seed length of Ω(t ·n2), because (in the uniform setting) t different n-by-n matrices are
used for the t copies of g′′. A second version proves an analogous result when referring to a related
function in which the (random) n-by-n matrix M is replaced by a hash function of description
length k′ = ω(n log n), which will yield seed length O(t · k′). Before detailing the construction of
this collection of hash functions, we outline the rest of the argument, which proceeds very much as
in [14, Apdx A.2].

The issue is that, here (unlike in the non-uniform version), the predicate that indicates whether
a bit is unpredictable depends not only on x but also on the matrix M (or the hash function
that replaces it). Thus, we cannot uses the same M in all t copies of g′, but rather have to use t

4The second part of the proof of [14, Lem. A.5] is analogous to [14, Sec. 6], which refers to g′′.

5

independently distributed M ’s (resp., hashing functions). Once we do so, the argument proceeds
analogously to the non-uniform case, when having gained the ability to construct the various
hybrids.

The alternative hash functions. In order to establish a (strong) version of Theorem 2, we
need the collection H of hash function that replaces all n-by-n matrices to satisfy two properties:

1. The collection should yield a strong randomness extractor; in particular, any collection in
which a uniformly selected function maps points in a pairwise independent manner will do.
That is, for every x ̸= x′ ∈ {0, 1}n and u, v ∈ {0, 1}n, it should hold that

Prh∈H[h(x)=u&h(x′)=v] = 2−2n.

Actually, a deviation by a factor of 1± (1/poly(n)) can be tolerated.

2. For every i ∈ [n] and every x ∈ {0, 1}n, the sub-collection of h ∈ H obtained by conditioning
on the value of h(x)[i−1] yields a hardcore predicate (akin to [5]). That is, there exists a
probabilistic polynomial-time oracle machine R such that, for every i ∈ [n], (x,w) ∈ {0, 1}n×
{0, 1}i−1, and P : H× {0, 1}n+i−1 → {0, 1} such that

Prh∈H[P (h, f(x), w)=h(x)i |h(x)[i−1]=w] ≥ 1

2
+

1

poly(n))

it holds that
Prh∈H[R

P (h, f(x), w)=x |h(x)[i−1]=w] ≥ 1/poly(n).

(We comment that a related construction appears in [7, Sec. 4.1], but it requires some adaptation,
and it seems easier and nicer to provide a (partially) self-contained construction here.)

Focusing on the second property, we take the Cartesian product of n copies of a collection
that corresponds to a locally list-decodable code. Specifically, for ϵ = exp(−ω(log n)) and m =

poly(n/ϵ), we consider the code C : {0, 1}n → {0, 1}m, presented in [15, Sec. 4.2], and let H def
=

{hi1,...,in : i1, .., in∈ [m]} such that hi1,...,in(x) = (C(x)i1 , .., C(x)in). We stress that, as shown [15,
Sec. 4.3–4.4], for every δ ≥ ϵ, list-decoding all C-codewords that are (0.5− δ)-close to a given n-bit
string is performed in time poly(n/δ). Hence, H satisfies the second property. We also note that
the code C is linear and that all (nonzero) codewords are of Hamming weight (0.5± ϵ) ·m, which
implies that the first property is also satisfied. Lastly, note that the length of the description of
functions in H is n · log2m = O(n log(n/ϵ)).

Acknowledgments

I am grateful to Madhu Sudan for a helpful discussion.

References

[1] Manuel Blum and Silvio Micali. How to Generate Cryptographically Strong Sequences of
Pseudo Random Bits. SIAm J. on Comput., Vol. 13, pages 850–864, 1984. Preliminary version
in 23rd FOCS, 1982.

6

[2] Oded Goldreich. Foundations of Cryptography – Volume 1: Basic Tools. Cambridge University
Press, 2001.

[3] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[4] Oded Goldreich, Hugo Krawczyk, and Michael Luby, On the Existence of Pseudorandom
Generators. SIAM J. on Computing, Vol. 22-6, pages 1163–1175, 1993.

[5] Oded Goldreich and Leonid A. Levin. A Hard-Core Predicate for all One-Way Functions. In
21st STOC, 1989.

[6] Iftach Haitner, Danny Harnik, and Omer Reingold. On the Power of the Randomized Iterate.
In CRYPTO06, Springer LNCS (4117), pages 22–40, 2006.

[7] Iftach Haitner, Omer Reingold, and Salil Vadhan. Efficiency Improvements in Constructing
Pseudorandom Generators from One-Way Functions. SIAM Journal on Computing, Vol. 42 (3),
pages 1405–1430, 2013.

[8] Iftach Haitner and Salil Vadhan. The many entropies in one-way functions. Tutorials on the
Foundations of Cryptography: Dedicated to Oded Goldreich, pages 159–217, Springer, 2017.

[9] Johan Hastad. Pseudo-Random Generators under Uniform Assumptions. In 22nd STOC,
1990.

[10] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, Vol. (28) 4, pages 1363-
1396, 1999. Combines the results of [13] and [9].

[11] Thomas Holenstein. Pseudorandom Generators from One-Way Functions: A Simple Construc-
tion for Any Hardness. In 3rd TCC, 2006.

[12] Thomas Holenstein. Strengthening key agreement using hard-core sets. PhD thesis, ETH
Zurich, 2006

[13] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random Generation from
one-way functions. In 21st STOC, 1989.

[14] Noam Mazor and Rafael Pass. Counting Unpredictable Bits: A Simple PRG from One-way
Functions. ECCC, TR23-143, 2023.

[15] Madhu Sudan, Luca Trevisan, Salil P. Vadhan. Pseudorandom Generators without the XOR
Lemma. JCSS, Vol. 62 (2), pages 236–266, 2001.

[16] Salil Vadhan and Colin Jia Zheng. Characterizing pseudoentropy and simplifying pseudoran-
dom generator constructions. In 44th STOC, 2012.

[17] Andrew C. Yao. Theory and Applications of Trapdoor Functions. In 23rd FOCS, 1982.

7

	Introduction
	The non-uniform complexity model
	Adaptation to the uniform complexity model
	Acknowledgments
	Bibliography

