The standard notion of approximayte majority refers to distinguishing between n-bit strings that have at least $2 n / 3$ one-entries and n-bit strings that have at most $n / 3$ one-entries. For sake of clarity and generality, we consider the following notion of approximating the Hamming weight of strings.

For $x=x_{1} \cdots x_{n} \in\{0,1\}^{n}$, we let $\mathrm{wt}(x) \stackrel{\text { def }}{=}\left|\left\{i \in[n]: x_{i}=1\right\}\right|$ denote the Hamming weight of x. The relative weight of a string x is $\overline{\mathrm{wt}}(x) \stackrel{\text { def }}{=} \mathrm{wt}(x) /|x|$. For fixed $\rho, \epsilon \in(0,1)$, we consider the promise problem in which the YES-instances are strings of relative weight at least ρ and the NO-instances are strings of relative weight at most $\rho-\epsilon$.

We first observe that, for every $x \in\{0,1\}^{n}$, if we select a random ℓ-subset, denoted $S \subset[n]$, where $\ell=\Theta(\log n)$, then, with probability at least $1-n^{-3}$, it holds that $\overline{\mathrm{wt}}\left(x_{S}\right)=\overline{\mathrm{wt}}(x) \pm \epsilon / 3$, where x_{S} denotes the projection of x on S.

Selecting $m=n^{2}$ such subsets S_{1}, \ldots, S_{m}, with probability at least $1-2^{-n}$, it holds that, for every $x \in\{0,1\}^{n}$, more than $m-n$ of the S_{i} 's satisfy $\overline{\mathrm{wt}}\left(x_{S_{i}}\right)=\overline{\mathrm{wt}}(x) \pm \epsilon / 3$. This is the case because for every $x \in\{0,1\}^{n}$ we have

$$
\begin{aligned}
& \operatorname{Pr}_{S_{1}, \ldots, S_{m} \in\binom{[n]}{\ell}}\left[\left|\left\{i \in[m]:\left|\overline{\mathrm{wt}}\left(x_{S_{i}}\right)-\overline{\mathrm{wt}}(x)\right|>\epsilon / 3\right\}\right| \geq n\right] \\
& \left.\quad=\binom{m}{n} \cdot \operatorname{Pr}_{S \in\binom{[n]}{\ell}}\left[\left|\overline{\mathrm{wt}}\left(x_{S}\right)-\overline{\mathrm{wt}}(x)\right|>\epsilon / 3\right\}\right]^{n} \\
& \quad<m^{n} \cdot\left(1 / n^{3}\right)^{n} \\
& \quad=n^{-n} .
\end{aligned}
$$

Hence, there exists a sequence of m sets, denoted S_{1}, \ldots, S_{m}, each of size ℓ, such that for every $x \in\{0,1\}^{n}$ it holds that

$$
\left|\left\{i \in[m]:\left|\overline{\mathrm{wt}}\left(x_{S_{i}}\right)-\overline{\mathrm{wt}}(x)\right|>\epsilon / 3\right\}\right|<n
$$

Fixing this sequence, and defining $F:\{0,1\}^{\ell} \rightarrow\{0,1\}$ such that $F(z)=1$ if and only if $\overline{\mathrm{wt}}(z)>$ $\rho-(\epsilon / 2)$, we consider the formula

$$
\Phi(x) \stackrel{\text { def }}{=} \bigvee_{j \in[n]} \bigwedge_{k \in[n]} F\left(x_{S_{(j-1) n+k}}\right)
$$

Clearly, F can be implemented by a poly (n)-size CNF , and so the forgoing formula is in $\mathcal{A C}^{0}$. Furthermore, Φ is a monotone formula, because F is a monotone function. We now show that this formula decides correctly on each input that satisfies the promise.

The case of YES-instances: If $\overline{\mathrm{wt}}(x) \geq \rho$, then $\left|\left\{i \in[m]: \overline{\mathrm{wt}}\left(x_{S_{i}}\right) \leq \rho-\epsilon / 2\right\}\right|<n$.
It follows that there exists a $j \in[n]$ such that for every $k \in[n]$ it holds that $F\left(x_{S_{(j-1) n+k}}\right)=1$. Hence, $\Phi(x)=1$.

The case of No-instances: If $\overline{\mathrm{wt}}(x) \leq \rho-\epsilon$, then $\left|\left\{i \in[m]: \overline{\mathrm{wt}}\left(x_{S_{i}}\right)>\rho-\epsilon / 2\right\}\right|<n$.
It follows that for every $j \in[n]$ there exists a $k \in[n]$ such that $F\left(x_{S_{(j-1) n+k}}\right)=0$. Hence, $\Phi(x)=0$.

Perspective: Recall that Majority is not in $\mathcal{A C}{ }^{0}$. In fact, any constant depth (unbounded fanin) circuit (with AND, OR, and NOT gates) that computes Majority must have sub-exponential size; specifically, computing n-way Majority in depth d requires size $\exp \left(\Omega\left(n^{1 / 2 d}\right)\right)$.

