Oded (March 16, 2023): Computing approximate majority in AC0

The standard notion of approximate majority refers to distinguishing between *n*-bit strings that have at least 2n/3 one-entries and *n*-bit strings that have at most n/3 one-entries. For sake of clarity and generality, we consider the following notion of approximating the Hamming weight of strings.

For $x = x_1 \cdots x_n \in \{0,1\}^n$, we let $\operatorname{wt}(x) \stackrel{\text{def}}{=} |\{i \in [n] : x_i = 1\}|$ denote the Hamming weight of x. The relative weight of a string x is $\overline{\operatorname{wt}}(x) \stackrel{\text{def}}{=} \operatorname{wt}(x)/|x|$. For fixed $\rho, \epsilon \in (0,1)$, we consider the promise problem in which the YES-instances are strings of relative weight at least ρ and the NO-instances are strings of relative weight at most $\rho - \epsilon$.

We first observe that, for every $x \in \{0,1\}^n$, if we select a random ℓ -subset, denoted $S \subset [n]$, where $\ell = \Theta(\log n)$, then, with probability at least $1 - n^{-3}$, it holds that $\overline{\mathrm{wt}}(x_S) = \overline{\mathrm{wt}}(x) \pm \epsilon/3$, where x_S denotes the projection of x on S.

Selecting $m = n^2$ such subsets $S_1, ..., S_m$, with probability at least $1 - 2^{-n}$, it holds that, for every $x \in \{0, 1\}^n$, more than m - n of the S_i 's satisfy $\overline{\mathrm{wt}}(x_{S_i}) = \overline{\mathrm{wt}}(x) \pm \epsilon/3$. This is the case because for every $x \in \{0, 1\}^n$ we have

$$\begin{aligned} \Pr_{S_1,\dots,S_m \in \binom{[n]}{\ell}} \left[\left| \{i \in [m] : |\overline{\mathrm{wt}}(x_{S_i}) - \overline{\mathrm{wt}}(x)| > \epsilon/3 \} \right| &\geq n \end{aligned} \\ &= \binom{m}{n} \cdot \Pr_{S \in \binom{[n]}{\ell}} \left[|\overline{\mathrm{wt}}(x_S) - \overline{\mathrm{wt}}(x)| > \epsilon/3 \} \right]^n \\ &< m^n \cdot (1/n^3)^n \\ &= n^{-n}. \end{aligned}$$

Hence, there exists a sequence of m sets, denoted $S_1, ..., S_m$, each of size ℓ , such that for every $x \in \{0, 1\}^n$ it holds that

$$\left|\left\{i \in [m] : |\overline{\mathrm{wt}}(x_{S_i}) - \overline{\mathrm{wt}}(x)| > \epsilon/3\right\}\right| < n.$$

Fixing this sequence, and defining $F : \{0,1\}^{\ell} \to \{0,1\}$ such that F(z) = 1 if and only if $\overline{\mathrm{wt}}(z) > \rho - (\epsilon/2)$, we consider the formula

$$\Phi(x) \stackrel{\mathrm{def}}{=} \bigvee_{j \in [n]} \ \bigwedge_{k \in [n]} F(x_{S_{(j-1)n+k}}).$$

Clearly, F can be implemented by a poly(n)-size CNF, and so the forgoing formula is in \mathcal{AC}^0 . Furthermore, Φ is a monotone formula, because F is a monotone function. We now show that this formula decides correctly on each input that satisfies the promise.

The case of YES-instances: If $\overline{\mathrm{wt}}(x) \ge \rho$, then $|\{i \in [m] : \overline{\mathrm{wt}}(x_{S_i}) \le \rho - \epsilon/2\}| < n$.

It follows that there exists a $j \in [n]$ such that for every $k \in [n]$ it holds that $F(x_{S_{(j-1)n+k}}) = 1$. Hence, $\Phi(x) = 1$.

The case of NO-instances: If $\overline{\mathrm{wt}}(x) \leq \rho - \epsilon$, then $|\{i \in [m] : \overline{\mathrm{wt}}(x_{S_i}) > \rho - \epsilon/2\}| < n$.

It follows that for every $j \in [n]$ there exists a $k \in [n]$ such that $F(x_{S_{(j-1)n+k}}) = 0$. Hence, $\Phi(x) = 0$.

Perspective: Recall that Majority is not in \mathcal{AC}^0 . In fact, any constant depth (unbounded fanin) circuit (with AND, OR, and NOT gates) that computes Majority must have sub-exponential size; specifically, computing *n*-way Majority in depth *d* requires size $\exp(\Omega(n^{1/2d}))$.