
Oded (July 17, 2023): Arithmetization in probabilistic proof systems

This brief note refers to two fundamental theorems regarding probabilistic proof systems that
are proved by using “arithmetization”. We refer to coNP (and even #P) having interactive
proof systems and to NP having low complexity PCPs (i.e., PCPs of polynomial length and
polylogarithmic query complexity). In both cases, an input CNF formula ϕ is being “arithmetized”
and a probabilistic proof system is applied to the derived arithmetic expression, via the celebrated
sum-check process. However, the similarity is rather superficial. First, the arithmetization is
radically different, and second the proof system employed is fundamentally different.

The first case: #P ⊆ IP. In this case, the input is a CNF formula ϕ and an integer N , and the
task is verifying that ϕ has exactly N satisfying assignments. Here verification should be performed
in polynomial-time with the “assistance” of an “untrusted” prover.

Viewing ϕ, which has n variables, as a function from {0, 1}n to {0, 1}, we first consider a low-
degree extension of ϕ to a finite field F of size greater than 2n (but smaller than, say, 2n+1).
Denoting this low-degree extension by ϕ̂ : Fn → F , the sum-check protocol is used to verify that∑

α∈{0,1}n
ϕ̂(α) = N, (1)

where α ∈ {0, 1}n is viewed as an n-long sequence over F . The verification process involves n rounds
of interaction, and at its end the verifier computes ϕ̂(r), for a value r ∈ Fn that was determined
during the interactive process, and compares it to a value v ∈ F that was also determined during
this process.

The second case: NP ⊆ PCP[log,poly log]. In this case, the input is a 3CNF formula ϕ, and
the task is verifying that ϕ is satisfiable. Here verification should be performed in polynomial-time
with the “assistance” of a polynomially-long alleged proof that may be queries only at few (i.e.,
poly-logarithmically many) points.

Here we consider an arithmetization of a function that describes the 3CNF formula ϕ; that is,
assuming that ϕ has n variables and m = O(n3) clauses, we consider the function Dϕ : [m]×[2n]3 →
{0, 1} such that Dϕ(i, j1, j2, j3) indicates whether, for every k ∈ [3], the kth literal of the ith clause
of ϕ is the ithk literal (i.e., is the (ik/2)

th variable if ik is even, and the negation of the ((ik +1)/2)th

variable otherwise). Next, we observe that, for any truth assignment A : {0, 1}n → {0, 1}, it holds
that A satisfies ϕ if and only if for every i ∈ [m] the following holds (over the integers)∑

j1,j2,j3∈[2n]

Dϕ(i, j1, j2, j3) ·
∏
k∈[3]

(1−A′(j1)) = 0, (2)

where A′(j) = A(j/2) if the jth literal is non-negated and A′(j) = 1− A((j + 1)/2) otherwise (i.e,
if j = 2j′ + b, where b ∈ {0, 1}, then Q′(j) = (1− b) · A(j′) + b · (1− A(j))). At this point, letting
ℓ = log2(max(m, 2n)), we consider a low-degree extension of Dϕ : {0, 1}4ℓ → {0, 1} to a finite field

F of poly(log n)-size. Denoting this low-degree extension by D̂ : F4ℓ → F and viewing A and A′

as functions from F ℓ to F , we wish to verify

(∀i ∈ [m])
∑

j1,j2,j3∈[2n]

D̂ϕ(i, j1, j2, j3) ·
∏
k∈[3]

(1−A′(j1)) = 0, (3)
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where i ∈ [m] and j1, j2, j3 ∈ [2n] are viewed as ℓ-long sequences over F . To verify Eq. (3), the
verifier selects r ∈ Fm from a small-biased sample space (of size poly(m)) such that R(i) the ith

element in r, and uses the sum-check process to verify that∑
i∈[m]

R(i) ·
∑

j1,j2,j3∈[2n]

D̂ϕ(i, j1, j2, j3) ·
∏
k∈[3]

(1−A′(j1)) = 0, (4)

The verification process involves 4ℓ steps, in which the verifier obtains adequate answers by queries
to the oracle. After these steps, the verifier needs to verify a claim of the type D̂ϕ(i, j1, j2, j3) ·∏

k∈[3](1−A′(j1)) = v, for some i, j1, j2, j3 ∈ F ℓ and v ∈ F that were determined by the process.

In addition, the verifier should check that A (which determines A′) is a low degree polynomial (i.e.,
it needs to employ a “good” low degree tester).

(Recall that the soundness of the sum-check process relies on the assumption that the expressions
that occur in it are low degree polynomials (i.e., have degree o(|F|/t), where t is the number of
iterations). This condition holds trivially in the case that the verifier determines by itself all
expressions in the original sum (as in Eq. (1)), but this is not the case in Eq. (4): Indeed, the
verifier does determine D̂ϕ but it has no control over A.)

We warn that the foregoing description yields a verifier of randomness complexity O(ℓ log |F|) =
Õ(log n), which falls (slightly) short of our goal of having logarithmic randomness complexity, which
corresponds to polynomial proof length. (In contrast, the query complexity is also O(ℓ log |F|),
which meets our goal.) To obtain the desired randomness complexity, we view the original functions
(i.e., Dϕ and A) as functions over a larger alphabet; specifically, as functions over an alphabet of
size s = O(log n). This allows to use ℓ = O((log n)/ log log n) (since sℓ ≥ max(2n,m)), and in that
case O(ℓ log |F|) = O(log n), as desired. Note that this will increase the query complexity of each
iteration by a factor of s, which is fine (i.e., we will get query complexity O(log n)2).

Needless to say, the same idea (i.e., using a larger alphabet) can be employed in the context of
#P ⊆ IP (cf., Eq. (1)), but the effect there is less dramatic. Specifically, using an alphabet of size s
will reduce the number of iterations by a factor of log2 s, but will increase the total communication
complexity by a factor of s/ log s.

Digest. As evident from the foregoing description, the arithmetization in the two cases is fun-
damentally different. The common theme is that in both cases a Boolean formula is being arith-
metized, an assertion regarding the number of evaluation-points on which the Boolean formula
evaluates to 1 is reduced to an assertion regarding the corresponding sum of the arithmetic expres-
sion, and the sum-check process is employed in order to verify the latter assertion.

In the first case (of #P ⊆ IP), the Boolean formula being arithmetized is the input CNF
formula, and the evaluation-points being counted are its satisfying assignments. In the second case
(of NP ⊆ PCP[log, poly log]), the Boolean formula being arithmetized is a function that describes
the clauses of the input 3CNF formula, and the evaluation-points are all 4-tuples (i, j1, j2, j3) such
that i is an index of a clause and jk is an index of a literal (i.e., a variable and a bit indicating possible
negation). Furthermore, the arithmetic expression also refers to a function that is supposedly a low
degree extension of an assignment that satisfies the input 3CNF formula, and the verifier is given
oracle access to this function. Hence, on top of employing the sum-check process, the verifier needs
to verify that the foregoing function is indeed a low degree polynomial.
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