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Abstract

We study methods of converting algorithms that distinguish pairs of distributions with a gap
that has an absolute value that is noticeable into corresponding algorithms in which the gap is
always positive (and noticeable). Our focus is on designing algorithms that, in addition to the
tested string, obtain a fixed number of samples from each distribution. Needless to say, such
algorithms can not provide a very reliable guess for the sign of the original distinguishability
gap, still we show that even guesses that are noticeably better than random are useful in this
setting.
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1 The problem and its solutions

This work addresses a generic technical problem that arises in the context of trying to establish the
computational indistinguishability of certain pairs of probability ensembles. The problem refers
to the fact that computational (and also statistical) indistinguishability is defined in terms of the
absolute difference between probabilities, whereas it is typically easier to manipulate the difference
itself. Thus, we seek a method of converting a non-negligible absolute difference into a non-negligible
difference; that is, we wish the difference itself (rather than its absolute value) to be positive.

1.1 A motivational example

Many security definitions are formulated by referring to two pairs of probability ensembles that
are indexed by strings, and requiring that these pairs of probability ensembles are computationally
indistinguishable (see, e.g., the definitions of computational zero-knowledge [2, Sec. 4.3.1.2] and
secure two-party computation [3, Sec. 7.2]). Such a probability ensemble {Zα}α∈S consists of (an
infinite number of) “random variables” Zα’s, which are each distributed over some finite set (related
to its index, α). Two such ensembles, {Xα}α∈S and {Yα}α∈S , are said to be computationally
indistinguishable if for every probabilistic polynomial-time algorithm D it holds that

gD(α)
def
= |Pr[D(α,Xα)=1] − Pr[D(α, Yα)=1]| (1)

is negligible as a function of |α| (i.e., for every positive polynomial p and all sufficiently long α’s
the value of gD(α) is upper bounded by 1/p(|α|)).

The aforementioned formulation mandates that the value of gD(α) is small for every α ∈ S.
A weaker requirement, which suffices in practice, is that it is infeasible to find α ∈ S for which
the value of gD(α) is not small. This requirement may be formulated as mandating that for every
probabilistic polynomial-time algorithm F , representing a potential finder that given 1n outputs
an n-bit long string α ∈ S, the expected value of gD(α) (when defined as in Eq. (1)) is negligible
(as a function of n); that is, E[gD(F (1n))] is negligible in n. This condition means that

∑

α

Pr[F (1n)=α] · |Pr[D(α,Xα)=1] − Pr[D(α, Yα)=1]| (2)

is negligible as a function of n.
When trying to establish a condition as in Eq. (2) it is often easier to establish a corresponding

condition in which the absolute value operator is dropped. Indeed, suppose that for every F and
D as above it holds that

∑

α

Pr[F (1n)=α] · (Pr[D(α,Xα)=1] − Pr[D(α, Yα)=1]) (3)

is negligible (as a function of n). Can we infer that Eq. (2) holds too?
In the case that both ensembles are polynomial-time sampleable, a positive answer is implicit

in many works. Essentially, given a probabilistic polynomial-time algorithm D such that Eq. (2)
is not negligible, one derives a probabilistic polynomial-time algorithm D′ such that Eq. (3) is not
negligible by estimating the difference between Pr[D(α,Xα)=1] and Pr[D(α, Yα)=1] and flipping
D’s output if the estimated difference is negative. Thus, the construction of D′ depends also on gD

(which determines the adequate level of approximation). In particular, the time complexity of D′

is (polynomially) related to gD. Our goal is to get rid of this dependency; in particular, we wish to
avoid the aforementioned approximation.
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1.2 A generic problem and one solution

The generic problem we face is converting an algorithm D that distinguishes Xα and Yα (i.e.,
|Pr[D(α,Xα) = 1] − Pr[D(α, Yα) = 1]| is noticeable) into an algorithm D′ that on input (α,Xα)
outputs 1 with probability that is noticeably higher than Pr[D(α, Yα) = 1]. We stress that we
wish this transformation to hold for every α, whereas it may be that for some α’s the difference
Pr[D(α,Xα)=1]−Pr[D(α, Yα)=1] is positive while for other α’s the difference is negative. Clearly,
D′ must know something about Xα and Yα in order for this to be possible, and indeed we provide D′

with samples taken from Xα and Yα (or, actually, with algorithms for sampling these distributions).
Thus, the problem we face is actually the following one. We are given a probabilistic polynomial-

time algorithm D and sampling algorithms for two ensembles, {Xα}α∈S and {Yα}α∈S (i.e., prob-
abilistic polynomial-time algorithms X and Y such that on any input α it holds that Xα ≡ X(α)
and Yα ≡ Y (α)). Our task is to construct a probabilistic polynomial-time algorithm D′ such that
for some function ρ : (0, 1]→ (0, 1] it holds that

Pr[D′(α,Xα)=1] − Pr[D′(α, Yα)=1] ≥ ρ (|Pr[D(α,Xα)=1] − Pr[D(α, Yα)=1]|) . (4)

We stress that the r.h.s of Eq. (4) refers to the absolute difference between two probabilities, whereas
the l.h.s refers to a corresponding difference that is not taken in absolute value and yet is required
to be positive (whenever the former difference is positive).

We seek a universal transformation of D into D′, whereas this transformation may use a pre-
determined number of auxiliary samples of the two distributions. That is, the resulting algorithm
D′ is given as input a single sample that is drawn from one of two distributions (i.e., either from
Xα or from Yα), but in addition it can obtain (a predetermined number of) samples from each of
the two distributions. Like D, algorithm D′ should distinguish the two cases (which correspond to
the source of its input). We stress that we wish the complexity of D′ (and specifically the number
of auxiliary samples it obtains) to be independent of gD(α). We note that such a transformation
(of D into D′) may be useful also in other settings. One such generic example is provided by
settings in which the notion of negligible probability being considered is significantly smaller than
the reciprocal of the complexity of the distinguishers (e.g., consider polynomial-time distinguishers
coupled with (sub-)exponentially small distinguishing gaps).

A simple transformation. One solution to the foregoing problem is to let D′ estimate the sign
of Pr[D(α,Xα) = 1] − Pr[D(α, Yα) = 1] by using a single sample of Xα and a single sample of Yα.
(Although this estimate is quite poor, it can be shown to suffice.) Specifically, on input (α and) z
(where z is taken from either Xα or Yα), algorithm D′ proceeds as follows:

1. Ignoring its (“main”) input (i.e., z), algorithm D′ generates a single sample x of Xα and a
single sample y of Yα, and computes σ ← D(α, x) and τ ← D(α, y);

2. If σ > τ then D′ invokes D on its input and outputs D(α, z).

If σ < τ then D′ outputs 1−D(α, z).

Otherwise (i.e., σ = τ), algorithm D′ outputs the outcome of a fair coin toss.

Indeed, we have assumed here (without loss of generality) that D always outputs a Boolean value.
Intuitively, σ − τ provides a probabilistic guess of the sign of Pr[D(α,Xα)=1]− Pr[D(α, Yα)=1],
and using this guess in the obvious manner yields the desired result.
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Proposition 1.1 Let D and D′ be as above. Then,

Pr[D′(α,Xα)=1] − Pr[D′(α, Yα)=1] = (|Pr[D(α,Xα)=1] − Pr[D(α, Yα)=1]|)2 .

Proof: For the analysis of the performance of D′, we consider an algorithm D′′, which may output
any number in [0, 1], such that

D′′(α, z)
def
=

1

2
·
(
1 + sign(D(α,Xα)−D(α, Yα)) · (−1)D(α,z)+1

)
, (5)

where sign(r) = 1 if r > 0 (resp., sign(r) = −1 if r < 0), and sign(0) = 0. Recall that in
Step 2 of D′(α, z), the output is set to D(α, z) if σ > τ , to 1 − D(α, z) if σ < τ , and is random
if σ = τ . Using D(α, z) ∈ {0, 1} and assuming σ 6= τ , the output of D′(α, z) can be written as
(1+sign(σ−τ)·(−1)D(α,z)+1)/2. Thus, D′(α, z) outputs 1 with probability D′′(α, z), and it suffices
to evaluate

E[D′′(α,Xα)]− E[D′′(α, Yα)] = Pr[D′(α,Xα)=1]− Pr[D′(α, Yα)=1]. (6)

Denoting p = Pr[D(α,Xα)=1] and q = Pr[D(α, Yα)=1] (and using X ′
α and Y ′

α to denote indepen-
dent copies of Xα and Yα), we evaluate Eq. (6) as follows.

gD′′(α)
def
= E[D′′(α,Xα)]− E[D′′(α, Yα)]

=
1

2
· E
[
1 + sign(D(α,X ′

α)−D(α, Y ′
α)) · (−1)D(α,Xα)+1

]

−1

2
· E
[
1 + sign(D(α,X ′

α)−D(α, Y ′
α)) · (−1)D(α,Yα)+1

]

=
1

2
· E
[
sign(D(α,X ′

α)−D(α, Y ′
α))
]
· E
[
(−1)D(α,Xα)+1 − (−1)D(α,Yα)+1

]

Using E[(−1)D(α,Xα)+1] = p− (1− p) = 2p − 1 and E[(−1)D(α,Yα)+1] = 2q − 1, we get

gD′′(α) = (p − q) · E [sign(D(α,Xα)−D(α, Yα))]

= (p − q) · (Pr[D(α,Xα)>D(α, Yα)]− Pr[D(α,Xα)<D(α, Yα)])

= (p − q) · (p · (1− q)− (1− p) · q)

which equals (p− q)2.

1.3 Other transformations

Two natural questions arise:

1. Is the foregoing construction of D′ optimal (with respect to all constructions that use a single
auxiliary sample from each of the two distributions)?

2. Can we do better if we obtain k auxiliary samples from each of the two distributions (rather
than one auxiliary sample from each of the two distributions)? How good can such a con-
struction be?

Before answering these questions we note that no construction (which is given a single test sample
from an unknown distribution) can outperform the variation distance between the tested distribu-
tions, (i.e., |p − q|, where p = Pr[D(α,Xα) = 1] and q = Pr[D(α, Yα) = 1]). We answer the above
questions as follows.

3



Main Result (informal). For every k ≥ 1, the best construction that uses k auxiliary samples
from each of the two distributions is the one that rules analogously to Eq. (5), when applying the
sign function to the difference between the average value of D in the two cases. Such a procedure
yields a gap that equals the minimum of Ω(

√
k) · (p− q)2 and (1− ǫp,q(k)) · |p− q|, where ǫp,q(k) =

exp(−Ω((p− q)2 · k)).
We stress that the above result holds both in the computational setting and in the information

theoretic setting.

2 The actual treatment

Let X and Y be 0-1 random variables (representing D(α,Xα) and D(α, Yα), respectively), and let
Xi’s (resp., Yi’s) be independent copies of X (resp., Y ) representing additional samples available
to us. We seek a randomized process Π : {0, 1}2k+1 → {0, 1} such that

E[Π(X1, ...,Xk, Y1, ..., Yk,X)]− E[Π(X1, ...,Xk, Y1, ..., Yk, Y )] (7)

is maximized (as a function of δ = |E[X]−E[Y ]|, when maximizing over all possible 0-1 random vari-
ables X and Y that are at statistical distance δ). Indeed, the probability that Π(a1, ..., ak, b1, ..., bk, c) =
1 is determined by a function f : {0, 1}2k+1 → [0, 1] such that

Pr[Π(a1, ..., ak , b1, ..., bk, c)=1] = f(a1, ..., ak, b1, ..., bk, c)

Thus, it suffices to seek such a function f that maximizes

E[f(X1, ...,Xk, Y1, ..., Yk,X)]− E[f(X1, ...,Xk, Y1, ..., Yk, Y )] (8)

(as a function of δ = |E[X] − E[Y ]|).
Let us formally define a more general optimization problem. For a function f : {0, 1}2k+1 →

[0, 1] and a pair (p, q) ∈ [0, 1], we denote by V(p,q)(f) the value of Eq. (8), when X and Y satisfy
p = E[X] and q = E[Y ]. Now, for any (possibly infinite) set (or class) of pairs in [0, 1], denoted

C, and any function f : {0, 1}2k+1 → [0, 1], we denote VC(f)
def
= min(p,q)∈C{V(p,q)(f)}. We seek a

function f for which VC(f) is maximal.

Overview. First, we will show that, without loss of generality, the function f(x1, ..., xk, y1, ...., yk, z)

may only depend on s
def
=
∑

i∈[k] xi, t
def
=
∑

i∈[k] yi and z, and furthermore that it can take a specific
canonical form (see Section 2.1). Next, in Section 2.2, we will show that in all natural cases (i.e.,
for “symmertic” classes) the canonical form can be further simplified to depend only on sign(s− t)
and z. Actually, this will yield a single optimal function. Lastly, in Section 2.3, we will analyze the
performance of this function.

2.1 Canonical functions

We will first show that it suffices to consider functions f of the form

f(a1, ...., ak , b1, ...., bk, c) =
1 + g

(∑
i∈[k] ai ,

∑
i∈[k] bi

)
· (−1)c

2
(9)

where g : N2 → [−1,+1]. We call such an f canonical. Note that the normalization (i.e., shifting
by 1 and dividing by 2) is used to map [−1,+1] to [0, 1]. (Note that an additive shift of f leaves
the value of Eq. (8) intact, whereas multiplying f by any factor has the same effect on the value of
Eq. (8).)
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Definition 2.1 (dominating strategies) We say that f ′ dominates f (w.r.t C) if for every (p, q) ∈ C
it holds that V(p,q)(f

′) ≥ V(p,q)(f).

Proposition 2.2 (strong optimality): For every C and every f : {0, 1}2k+1 → [−1,+1] there exists
a canonical function that dominates f .

Proof: Given any function f , we consider the function f ′ such that for every a, b ∈ {0, 1, ..., k}
and c ∈ {0, 1}, the value f ′(a, b, c) equals the average of f(a1, ...., ak, b1, ...., bk, c) taken over all
(a1, ...., ak), (b1, ...., bk) ∈ {0, 1}k that satisfy

∑
i∈[k] ai = a and

∑
i∈[k] bi = b. Then, for every (p, q),

we have V(p,q)(f
′) = V(p,q)(f). Note that the value of f ′ at any (a, b) and c ∈ {0, 1} can be written

as

1 + (−1)c

2
· f ′(a, b, 0) +

1− (−1)c

2
· f ′(a, b, 1)

=
1

2
·
(
f ′(a, b, 0) + f ′(a, b, 1)

)
+

(−1)c

2
·
(
f ′(a, b, 0) − f ′(a, b, 1)

)

= g0(a, b) + g1(a, b) · (−1)c

where g0(a, b) = (f ′(a, b, 0) + f ′(a, b, 1))/2 and g1(a, b) = (f ′(a, b, 0) − f ′(a, b, 1))/2. Note that
g1(a, b) ∈ [−0.5,+0.5] and that replacing g0(a, b) by 0.5 does not change the value of V(p,q)(f

′).
Thus, setting f ′′(a, b, c) = (1 + 2g1(a, b) · (−1)c)/2, we obtain a canonical function that dominates
f (because V(p,q)(f

′′) = V(p,q)(f
′) = V(p,q)(f)).

Conclusion and Notation. At this point we can limit our search for good functions (i.e., func-
tions that maximize Eq. (8)) to canonical functions. That is, for every function g : N2 × {0, 1} →
[−1,+1] and every k ∈ N, we define f

(k)
g as in Eq. (9), and consider the value V(p,q)(f

(k)
g ). To

estimate V(p,q)(f
(k)
g ), we let X and Y be 0-1 random variables with E[X] = p and E[Y ] = q and get

V(p,q)(f
(k)
g ) =

1

2
· E

g



∑

i∈[k]

Xi ,
∑

i∈[k]

Yi


 · (−1)X


− 1

2
· E

g



∑

i∈[k]

Xi ,
∑

i∈[k]

Yi


 · (−1)Y


 (10)

Using the independence of X,Y and the Xi’s and Yi’s, we rewrite Eq. (10) as

V(p,q)(f
(k)
g ) =

1

2
· E


g




∑

i∈[k]

Xi ,
∑

i∈[k]

Yi







 · E
[
(−1)X − (−1)Y

]
. (11)

Recalling that E[(−1)X ] = (1− p)− p = 1− 2p and E[(−1)Y ] = 1− 2q, we get E[(−1)X − (−1)Y ] =
2(q − p) and so

V(p,q)(f
(k)
g ) = (q − p) · E[g(X ′, Y ′)], (12)

where X ′ =
∑

i∈[k] Xi and Y ′ =
∑

i∈[k] Yi. Denoting B(p, i, k) =
(k

i

)
· pi · (1− p)k−i, we get

V(p,q)(f
(k)
g ) = (q − p) ·

∑

i,j∈{0,1,...,k}
B(p, i, k) ·B(q, j, k) · g(i, j) (13)
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2.2 Symmetric classes

We focus on symmetric classes of pairs, where C is symmetric if for every (p, q) ∈ C it also holds
that (q, p) ∈ C. In contrast, if C contains only pairs (p, q) such that p > q, then we may set k = 0
and use the identity function (because E[X]−E[Y ] = p− q = StatDiff(X,Y )). We show that, for
symmetric classes, the “sign of the difference” function (i.e., sd(a, b) = sign(b− a) ∈ {−1, 0,+1})
is optimal as a function g.

Proposition 2.3 (optimality): For every symmetric C and every k ∈ N and g : N2 → [−1,+1], it

holds that VC(f (k)
sd

) ≥ VC(f (k)
g ), where sd(a, b) = sign(b− a).

Recall that sign(d) = −1 if d < 0 (resp., sign(d) = 1 if d > 0), and sign(0) = 0.

Proof: Let (p, q) ∈ C be such that V(p,q)(f
(k)
sd

) = VC(f (k)
sd

). Then, VC(f (k)
g ) ≤ (V(p,q)(f

(k)
g ) +

V(q,p)(f
(k)
g ))/2 (by definition of VC(f (k)

g ) and the fact that (q, p) ∈ C [which follows by the symmetry

of C]), whereas VC(f (k)
sd

) ≥ V(p,q)(f
(k)
sd

) (by the choice of (p, q) ∈ C). Also note that V(p,q)(f
(k)
sd

) =

V(q,p)(f
(k)
sd

) (by the invariance of the function f
(k)
sd

under of this switch, as seen in Eq. (12)). Thus,
it suffices to show that

V(p,q)(f
(k)
sd

) + V(q,p)(f
(k)
sd

) ≥ V(p,q)(f
(k)
g ) + V(q,p)(f

(k)
g ). (14)

For every a, b ∈ {0, 1, ..., k}, we shall show that replacing g(a, b) by sign(b− a) may only increase

V(p,q)(f
(k)
g ) + V(q,p)(f

(k)
g ). Let us start by recalling Eq. (13), which yields

V(p,q)(f
(k)
g ) + V(q,p)(f

(k)
g ) = (q − p) ·

∑

i,j∈{0,1,...,k}
B(p, i, k)B(q, j, k) · g(i, j)

+(p− q) ·
∑

i,j∈{0,1,...,k}
B(q, i, k)B(p, j, k) · g(i, j)

= (q − p) ·
∑

i,j∈{0,1,...,k}
[B(p, i, k)B(q, j, k) −B(q, i, k)B(p, j, k)] · g(i, j).

Clearly, for i = j we have B(p, i, k)B(q, j, k) = B(q, i, k)B(p, j, k). For i < j (resp., j < i), it holds
that B(p, i, k)B(q, j, k) > B(q, i, k)B(p, j, k) if and only if p < q (resp., q < p). The latter claim
seems self-evident, yet we provide a detailed proof next (for the case p, q ∈ (0, 1)).

B(p, i, k)B(q, j, k) =

(
k

i

)
· pi · (1− p)k−i ·

(
k

j

)
· qj · (1− q)k−j

=

(
k

i

)
· (1− p)k ·

(
k

j

)
· (1− q)k · (p/(1 − p))i · (q/(1 − q))j

Thus, B(p,i,k)B(q,j,k)
B(q,i,k)B(p,j,k) equals

(p/(1− p))i · (q/(1− q))j

(q/(1− q))i · (p/(1− p))j
=

(q/(1− q))j−i

(p/(1− p))j−i

Note that we have p < q iff (p/(1−p)) < (q/(1−q)), and so p < q iff (p/(1−p))j−i < (q/(1−q))j−i.
It follows that p < q iff B(p, i, k)B(q, j, k) > B(q, i, k)B(p, j, k).
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Recall that for i < j, it holds that B(p, i, k)B(q, j, k) − B(q, i, k)B(p, j, k) > 0 if and only if
q > p. Thus, in this case, we maximize

(q − p) · [B(p, i, k)B(q, j, k) −B(q, i, k)B(p, j, k)] · g(i, j) (15)

by setting g(i, j) = 1 (because the first two factors have the same sign). Similarly, for j > i, it
holds that B(p, i, k)B(q, j, k)−B(q, i, k)B(p, j, k) > 0 if and only if q < p, and so the maximization
requires g(i, j) = −1. Indeed, for i = j, any setting of g(i, j) will do. Thus, an optimal setting of
g(i, j) is sign(j − i), which equals sd(i, j). The claim follows.

2.3 The performance of the function f
(k)
sd

We now turn to evaluating the performance of the optimal function; that is, we evaluate V(p,q)(f
(k)
sd

).
Recall that

V(p,q)(f
(k)
sd

) = (q − p) ·
∑

i,j∈{0,1,...,k}
B(p, i, k)B(q, j, k) · sd(i, j)

= (p− q) ·
∑

i,j∈{0,1,...,k}
B(p, i, k)B(q, j, k) · sign(i− j)

which yields V(p,q)(f
(k)
sd

) = (p− q) · vp,q, where

vp,q
def
= E



sign




∑

i∈[k]

Xi −
∑

i∈[k]

Yi







 (16)

such that the Xi’s (resp., Yi’s) are 0-1 i.i.d with expectation p (resp., q). Letting Ti = Xi − Yi, we
rewrite Eq. (16) as E[sign(

∑
i∈[k] Ti)], which equals

Pr




∑

i∈[k]

Ti > 0



− Pr




∑

i∈[k]

Ti < 0



 . (17)

Note that E[Ti] = p− q and Var[Ti] = p(1− p) + q(1− q).

The cases of k = 1 and k = 2. For small k, we can write explicit expressions for Eq. (17); for
example, for k = 1 Eq. (17) yields Pr[T1 > 0] − Pr[T1 < 0] = p(1 − q) − q(1 − p) = p − q, and so

V(p,q)(f
(1)
sd

) = (p − q)2. For k = 2, we have

Pr[T1 + T2 >0]− Pr[T1 + T2 <0] = Pr[T1 + T2 =2] + 2Pr[T1 =1 ∧ T2 =0]

− (Pr[T1 + T2 =−2] + 2Pr[T1 =−1 ∧ T2 =0])

= p2(1− q)2 + 2p(1− q)(pq + (1− p)(1− q))

−
(
q2(1− p)2 + 2q(1 − p)(pq + (1− p)(1− q))

)

= (1 + (1− p)(1− q) + pq) · (p− q)

and so V(p,q)(f
(2)
sd

) = (1+(1−p)(1−q)+pq)·(p−q)2 (see alternative proof following Proposition 2.4).
Thus, the improvement of the case of k = 2 over the case of k = 1 is a factor of (1+(1−p)(1−q)+pq),
which is greater than 1 unless {p, q} = {0, 1} (where a single sample is as good as k samples, for
any k > 1).
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The general case of k > 1. We now turn to a general analysis of Eq. (17) (and V(p,q)(f
(k)
sd

)).
Specifically, we consider the increase in the value of Eq. (17) when going from k to k + 1; that is,
we define

∆(p,q)(k)
def
= E



sign




∑

i∈[k+1]

Ti







− E



sign




∑

i∈[k]

Ti







 (18)

and note that V(p,q)(f
(k+1)
sd

) = V(p,q)(f
(k)
sd

) + (p− q) ·∆(p,q)(k).

Proposition 2.4 (the growth of V(p,q)(f
(k)
sd

) as a function of k): For every k ≥ 1, it holds that

∆(p,q)(k) = (p− q) · Pr[Sk =0], where Sk
def
=
∑

i∈[k] Ti.

It follows that V(p,q)(f
(k+1)
sd

) = V(p,q)(f
(k)
sd

)+ (p− q)2 ·Pr[Sk =0], and so V(p,q)(f
(k+1)
sd

) ≥ V(p,q)(f
(k)
sd

),
where equality holds if and only if {p, q} = {0, 1} (when ignoring the case of p = q). Proposition 2.4

can also be used to re-establish V(p,q)(f
(2)
sd

) = (1 + pq + (1− p)(1− q)) · (p− q)2, since V(p,q)(f
(1)
sd

) =
(p− q)2 and Pr[S1 =0] = pq + (1− p)(1− q).

Proof: Starting with Eq. (18), we have

∆(p,q)(k) = E[sign(Sk + Tk+1)]− E[sign(Sk)]

=
∑

s∈{−1,0,1}
Pr[Sk =s] · E[sign(s + Tk+1)− sign(s)]

= Pr[Sk =0] · (Pr[Tk+1 =1]− Pr[Tk+1 =−1])

+Pr[Sk =−1] · Pr[Tk+1 =1]− Pr[Sk =1] · Pr[Tk+1 =−1]

By symmetry (e.g., consider the case of k = 1), it is rather self-evident that Pr[Sk =−1] ·Pr[Tk+1 =
1] = Pr[Sk =1] · Pr[Tk+1 =−1], yet we provide a detailed proof next.

Pr[Sk =−1] · Pr[Tk+1 =1] = p(1− q) ·
k∑

j=1

B(p, j − 1, k)B(q, j, k)

= p(1− q) ·
k∑

j=1

(
k

j − 1

)
pj−1(1− p)k−j+1

(
k

j

)
qj(1− q)k−j

=
k∑

j=1

(
k

j − 1

)
pj(1− p)k+1−j

(
k

j

)
qj(1− q)k−j+1

= (1− p)q
k∑

j=1

(
k

j − 1

)
pj(1− p)k−j

(
k

j

)
qj−1(1− q)k−j+1

= (1− p)q ·
k∑

j=1

B(p, j, k)B(q, j − 1, k)

= Pr[Sk =1] · Pr[Tk+1 =−1]

Hence, ∆(p,q)(k) = Pr[Sk = 0] · (Pr[Tk+1 =1]− Pr[Tk+1 =−1]), and the claim follows (because
Pr[Tk+1 =1]− Pr[Tk+1 =−1] = p− q).
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Proposition 2.4 yields another expression for V(p,q)(f
(k)
sd

):

V(p,q)(f
(k)
sd

) = V(p,q)(f
(1)
sd

) + (p− q) ·
k−1∑

ℓ=1

∆(p,q)(ℓ) (19)

= (p− q)2 + (p− q)2 ·
k−1∑

ℓ=1

Pr[Sℓ =0] (20)

Note that for {p, q} = {0, 1} this expression (i.e., Eq. (20)) equals 1 (for any k ≥ 1), whereas
for p = q it equals 0. In all other cases (i.e., 0 < (p − q)2 < 1) Eq. (20) grows with k. Using
Pr[Sℓ =0] =

∑ℓ
j=0 B(p, j, ℓ)B(q, j, ℓ), we get

V(p,q)(f
(k)
sd

) = (p − q)2 + (p − q)2 ·
k−1∑

ℓ=1

ℓ∑

j=0

(
ℓ

j

)2

(pq)j((1− p)(1− q))ℓ−j (21)

In the special case of p = 0, Eq. (21) yields

V(0,q)(f
(k)
sd

) = q2 + q2 ·
k−1∑

ℓ=1

(1− q)ℓ

= q2 + q ·
(
(1− q)− (1− q)k

)

which converges to q = |p − q| when k → ∞. Similarly, V(1,q)(f
(k)
sd

) converges to 1 − q = |p − q|
(where p = 1). Note that in these cases convergence occurs with k ≫ |p − q|−1. As we shall see
next, in the other cases (i.e., p, q ∈ (0, 1)), convergence occurs with k ≫ |p−q|−2. We note that the
constants in the approximation given next depend on the distance of p and q from the boundaries
of (0, 1); that is, these constants depends on min(p, q, 1 − p, 1− q).

Proposition 2.5 (the approximate value of V(p,q)(f
(k)
sd

)): For any fixed p, q ∈ (0, 1) and every

k > 2, it holds that V(p,q)(f
(k)
sd

) = v · |p − q|, where v = Θ(
√

k) · |p − q| if k ≤ 5(p − q)−2 and
v ≥ 1− exp(−(p− q)2k/3) otherwise.

The (rather technical) proof appears in the appendix.

3 Conclusion

The obvious way of using statistical information (e.g., a binary guess that is positively correlated
with the correct value) is to amplify the confidence level of the information and use it as if it were
certainly correct. The current work studies an alternative method of using statistical information
and shows that in some settings using unreliable information directly works quite well. This was
demonstrated already in Section 1.2, whereas the rest of this work studies the question of how to
make the best use of multiple independent copies of such statistical information.
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Appendix: Proof of Proposition 2.5

We shall approximate V(p,q)(f
(k)
sd

) by using Eq. (16) (rather than Eq. (21)). Recall that by Eq. (16)
we have

V(p,q)(f
(k)
sd

) = (p− q) · E[sign(Sk)] (22)

where Sk =
∑k

i=1 Ti (and Ti = Xi − Yi). We assume, without loss of generality, that p > q and
lower bound the value of E[sign(Sk)], using E[Ti] = p− q. We distinguish three cases according to
the relation between k and p− q:

Case 1: k ≥ 5(p− q)−2. In this case we use the (standard additive) Chernoff Bound, and derive

E[sign(Sk)] = Pr[Sk >0]− Pr[Sk <0]

> 1− 2 · Pr[Sk≤0]

> 1− 2 · exp

(
−(p− q)2 · k

2

)

.

This establishes the relevant part of the claim (i.e., V(p,q)(f
(k)
sd

) = v · |p − q|, where v =
1− 2 exp(−(p − q)2k/2) > 1− exp(−(p − q)2k/3)).

The following complemantary two cases are distinguished according to a constant c ≥ 5 that

depends only on γp,q
def
=
√

p(1− p) + q(1− q).

Case 2: k ∈ [c · (p− q)−1, 5(p − q)−2]. In this case we use the Berry–Esseen estimate of the Cen-
tral Limit Theorem (cf., e.g., [1, Sec. XVI.5]). Specifically, we approximate E[sign(Sk)] by
E[sign(S̃k)], where S̃k is the normal distribution approximation of Sk; that is,

S̃k
def
= k · (p− q) +

√
k · γp,q ·N(0, 1), (23)

where N(0, 1) denotes the normal distribution (with mean 0 and variance 1), and
√

k · γp,q

replaces
√

Var[Sk] =
√

k ·
√

(p(1− p) + q(1− q)). More formally, we use the fact that for
every r it holds that that

|Pr[Sk >r]− Pr[S̃k >r]| < ǫ
def
=

3ρ

γp,q
3
√

k
(24)
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where ρ = E[|T1 − (p − q)|3] < 2 · γp,q
2. It follows that

E[sign(Sk)] = Pr[Sk >0]− Pr[Sk <0] (25)

= Pr[S̃k >0]− Pr[S̃k <0]± 2ǫ (26)

= 2Pr[S̃k >0]− 1± 2ǫ. (27)

Now, we analyze Pr[S̃k >0] via

Pr[(p− q)k +
√

kγp,q ·N(0, 1) > 0] = Pr

[
N(0, 1) > −p− q

γp,q
·
√

k

]
(28)

Setting r
def
= (p − q)

√
k ≤ 1, it follows that Pr[N(0, 1) > −r/γp,q] = 0.5 + Θ(r). So Eq. (27)

yields Θ(
√

k · (p − q)) − Θ(k−1/2), which is lower bounded by Θ(
√

k · (p − q)), when using
k ≥ c · (p − q)−1 (where c is large enough w.r.t the above hidden constants). It follows

V(p,q)(f
(k)
sd

) = Θ(
√

k) · (p − q)2, which establishes the other part of the claim for the current
case.

Case 3: k ≤ c · (p− q)−1. It suffices to establish that V(p,q)(f
(k)
sd

) = Θ(
√

k) · (p − q)2, for k ≤
(p−q)−1. This is done by writing Ti as T ′

i +(1−T ′
i )·T ′′

i , where T ′
i ∈ {0, 1} and T ′′

i ∈ {−1, 0, 1}
are independent random variables satisfying Pr[T ′

i = 1] = p − q and Pr[T ′′
i = 1] = Pr[T ′′

i =
−1] = q−pq

1−(p−q) . Letting S′
k =

∑
i∈[k] T

′
i and S′′

k =
∑

i∈[k] T
′′
i , we have

E[sign(Sk)] =
k∑

j=0

Pr[S′
k = j] · E[sign(S′′

k−j + j)] (29)

=
k∑

j=0

Pr[S′
k = j] ·

(
E[sign(S′′

k−j)] + 2 · Pr[0 ≤ S′′
k−j < j]

)
(30)

where S′′
k−j represents the sum of the k− j variables T ′′

i that correspond to the indices i that
satisfy T ′

i = 0 (i.e., S′′
k−j represents

∑
i∈I T ′′

i , where I = {i : T ′
i = 0}). Since E[sign(S′′

k−j)] = 0
(becuase E[T ′′

i ] = 0), Eq. (30) simplifies to

2 ·
k∑

j=1

Pr[S′
k = j] · Pr[0 ≤ S′′

k−j < j]. (31)

The lower bound in the claim (i.e., v = Ω(
√

k · (p − q))) follows once we prove that Pr[S′
k =

1] · Pr[S′′
k−1 =0] = Ω(

√
k · (p − q)). We start by noting that

Pr[S′
k = 1] · Pr[S′′

k−1 = 0] = k · (p− q)(1− (p − q))k−1 · Pr[S′′
k−1 = 0] (32)

>
(p− q)k

3
· Pr[S′′

k−1 = 0] (33)

In order to estimate Pr[S′′
k−1 = 0], we write S′′

k−1 as the difference of
∑

i∈[k−1] X
′′
i and∑

i∈[k−1] Y
′′
i , where the X ′′

i ’s and Y ′′
i ’s are iid 0-1 random valiables (i.e., p′′ = Pr[X ′′

i = 1]

satisfies p′′(1− p′′) = (1−p)q
1−(p−q)). We get

Pr[S′′
k−1 = 0] ≥

∑

j=(k−1)p′′±
√

k−1

Pr



∑

i∈[k−1]

X ′′
i = j


 · Pr



∑

i∈[k−1]

Y ′′
i = j
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=
∑

j=(k−1)p′′±
√

k−1

Pr



∑

i∈[k−1]

X ′′
i = j




2

>
Pr
[∑

i∈[k−1] X
′′
i = (k − 1)p′′ ±

√
k − 1

]2

2
√

k − 1 + 1

>
Pr
[√

(k − 1)γp′′,p′′ · N(0, 1) = ±
√

k − 1
]2
− o(1)

2
√

k − 1 + 1

where the last inequality uses the Berry–Esseen estimate of the Central Limit Theorem.
Observing that Pr[N(0, 1) = ±1/γp′′,p′′ ] = Ω(1), it follows that Pr[S′′

k−1 = 0] = Ω(1/
√

k − 1),

and so Eq. (32) is Ω((p− q)k/
√

k − 1) (and the same holds w.r.t Eq. (31)). To upper bound
Eq. (31), we note that it can be upper bounded by

2 ·
k∑

j=1

Pr[S′
k = j] · j · Pr[S′′

k−j = 0] < 2 ·
k∑

j=1

(
k

j

)
· (p− q)j · j · Pr[S′′

k−j = 0]

= O((p− q)k · Pr[S′′
k−1 = 0])

and the claim follows because Pr[S′′
k−1 = 0] = O(1/

√
k). This establishes V(p,q)(f

(k)
sd

) =

Θ(
√

k) · (p − q)2 also in the current case.

The proposition follows.
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