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Invitation to 
Complexity Theory

In focusing attention on computa-
tional tasks and algorithms, comput-
ability theory has set the stage for the 
study of the computational resources 
(like time) required by such algo-
rithms. When this study focuses on 
the resources that are necessary for 
any algorithm that solves a particular 
task (or a task of a particular type), it 
is viewed as belonging to the theory 
of computational complexity (also 
known as “complexity theory”). In con-
trast, when the focus is on the design 
and analysis of specific algorithms 
(rather than on the intrinsic complex-
ity of the task), the study is viewed as 
belonging to a related area that may be 
called “algorithmic design and analy-
sis.” Furthermore, algorithmic design 
and analysis tends to be subdivided 
according to the domain of math-
ematics, science, and engineering in 
which the computational tasks arise. 
In contrast, complexity theory typi-
cally maintains a unity of the study of 
computational tasks that are solvable 
within certain resources (regardless of 
the origins of these tasks).

Complexity theory is a central field 
of the theoretical foundations of com-
puter science. It is concerned with the 

study of the intrinsic complexity of 
computational tasks. That is, a typi-
cal complexity theoretic study refers to 
the computational resources required 
to solve a computational task (or a 
class of such tasks), rather than refer-
ring to a specific algorithm or an algo-
rithmic schema. Actually, research in 
complexity theory tends to start with 
and focuses on the computational re-
sources themselves, and addresses the 
effect of limiting these resources on 
the class of tasks that can be solved. 
Thus, computational complexity is the 
general study of what can be achieved 
within limited time (and/or other limi-
tations on natural computational re-
sources).

ABSOLUTE GOALS AND RELATIVE 
RESULTS
Saying that complexity theory is con-
cerned with the study of the intrinsic 
complexity of computational tasks 
means that its “final” goal is the de-
termination of the complexity of any 
well-defined task. An additional goal 
would be obtaining an understand-
ing of the relations between various 
computational phenomena (e.g., relat-

The striving for efficiency is ancient and universal, as time and other resources are 
always in shortage. Thus, the question of which tasks can be performed efficiently 
is central to the human experience. A key step toward the systematic study of the 
aforementioned question is a rigorous definition of the notion of a task and of 

procedures for solving tasks. These definitions were provided by computability theory, 
which emerged in the 1930s with the work of Alan Turing (and others). This theory focuses 
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As stated in the body of this article, 
absolute results are not known 
for many of the “big questions” of 
complexity theory (most notably the P 
versus NP question). However, several 
highly non-trivial absolute results 
have been proved. For example, it was 
shown that using negation can speed-
up the computation of monotone 
functions (which do not require 
negation for their mere computation). 
In addition, many promising 
techniques were introduced and 
employed with the aim of providing a 
low-level analysis of the progress of 
computation. The interested reader 
is referred to Arora and Barak’s 
textbook Complexity Theory: A Modern 
Approach (Cambridge University 
Press, 2009).

Absolute  
Results  
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Bounds)
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ing one fact regarding computational 
complexity to another). Indeed, we may 
say that the former is concerned with 
absolute answers regarding specific 
computational phenomena, whereas 
the latter is concerned with questions 
regarding the relation between com-
putational phenomena.

Interestingly, so far complexity the-
ory has been more successful in cop-
ing with goals of the latter (“relative”) 
type. In fact, the failure to resolve ques-
tions of the “absolute” type led to the 
flourishing of methods for coping with 
questions of the “relative” type. Let 
us say that, in general, the difficulty 
of obtaining absolute answers may 
naturally lead to seeking conditional 
answers, which may in turn reveal in-
teresting relations between phenom-
ena. Furthermore, the lack of absolute 
understanding of individual phenom-
ena seems to facilitate the develop-
ment of methods for relating different 
phenomena. Anyhow, this is what hap-
pened in complexity theory.

Putting aside for a moment the frus-
tration caused by the failure of obtain-
ing absolute answers, there is some-
thing fascinating in the success to 
relate different phenomena: In some 
sense, relations between phenomena 
are more revealing than absolute state-
ments about individual phenomena. 
Indeed, the first example that comes 
to mind is the theory of NP-complete-
ness. Let us consider this theory, for a 
moment, from the perspective of these 
two types of goals. 

P, NP, AND NP-COMPLETENESS
Complexity theory has failed to deter-
mine the intrinsic complexity of tasks 
such as finding a satisfying assign-
ment to a given (satisfiable) proposi-
tional formula or finding a 3-coloring 
of a given (3-colorable) graph. But it has 
succeeded in establishing that these 
two seemingly different computation-
al tasks are in some sense the same 
(or, more precisely, are computation-
ally equivalent). This success is amaz-
ing and exciting; hopefully the reader 
shares these feelings. The same feeling 
of wonder and excitement is generated 
by many of the other discoveries of 
complexity theory. Indeed, the reader 
is invited to join a fast tour of some of 

the other questions and answers that 
make up the field of complexity theory.

We will start with the P versus NP 
question. Our daily experience is that it 
is harder to solve a problem than it is to 
check the correctness of a solution (e.g., 
think of either a puzzle or a homework 
assignment). Is this experience merely 
a coincidence or does it represent a fun-
damental fact of life (i.e., a property of 
the world)? Could you imagine a world 
in which solving any problem is not 
significantly harder than checking a 
solution to it? Would the term “solv-
ing a problem” not lose its meaning in 
such a hypothetical (and impossible in 
our opinion) world? The denial of the 
plausibility of such a hypothetical world 
(in which “solving” is not harder than 
“checking”) is what “P different from 
NP” actually means, where P represents 
tasks that are efficiently solvable and 
NP represents tasks for which solutions 
can be efficiently checked.

The mathematically (or theoreti-
cally) inclined reader may also con-
sider the task of proving theorems ver-
sus the task of verifying the validity of 
proofs. Indeed, finding proofs is a spe-
cial type of the aforementioned task of 
“solving a problem” (and verifying the 
validity of proofs is a corresponding 
case of checking correctness). Again, 
“P different from NP” means that there 
are theorems that are harder to prove 
than to be convinced of their correct-
ness when presented with a proof. This 
means that the notion of a “proof” is 
meaningful; that is, proofs do help 
when seeking to be convinced of the 
correctness of assertions. Here NP rep-

resents sets of assertions that can be 
efficiently verified with the help of ad-
equate proofs, and P represents sets of 
assertions that can be efficiently veri-
fied from scratch (i.e., without proofs).

In light of the foregoing discussion, 
it is clear that the P versus NP question 
is a fundamental scientific question 
with far-reaching consequences. The 
fact that this question seems beyond 
our current reach led to the develop-
ment of the theory of NP-complete-
ness. Loosely speaking, this theory 
identifies a set of computational prob-
lems that are as hard as NP. That is, the 
fate of the P versus NP question lies 
with each of these problems: If any of 
these problems is easy to solve then 
so are all problems in NP. Thus, show-
ing that a problem is NP-complete 
provides evidence to its intractability 
(assuming, of course, P different than 
NP). Indeed, demonstrating the NP-
completeness of computational tasks 
is a central tool in indicating hardness 
of natural computational problems, 
and it has been used extensively both 
in computer science and in other disci-
plines. NP-completeness indicates not 
only the conjectured intractability of a 
problem but rather also its “richness,” 
in the sense that the problem is rich 
enough to encode any other problem 
in NP. The use of the term “encoding” 
is justified by the exact meaning of NP-
completeness, which in turn establish-
es relations between different compu-
tational problems (without referring to 
their absolute complexity). 

SOME ADVANCED TOPICS
The foregoing discussion of NP- 
completeness hints to the importance 
of representation, since it referred to 
different problems that encode one an-
other. Indeed, the importance of rep-
resentation is a central aspect of com-
plexity theory. In general, complexity 
theory is concerned with problems for 
which the solutions are implicit in the 
problem’s statement (or rather in the 
instance). That is, the problem (or rath-
er its instance) contains all necessary 
information, and one merely needs to 
process this information in order to 
supply the answer [1]. Thus, complexity 
theory is concerned with manipulation 
of information, and its transformation 

Invitation to 
Complexity Theory

Complexity theory 
is concerned with 
the study of the 
intrinsic complexity 
of computational 
tasks means that its 
“final” goal is the 
determination of the 
complexity of any 
well-defined task.



XRDS  •  s p r i n g 2 0 1 2 •  V o l . 1 8 •  n o . 320

from one representation (in which the 
information is given) to another rep-
resentation (which is the one desired). 
Indeed, a solution to a computational 
problem is merely a different repre-
sentation of the information given; 
that is, a representation in which the 
answer is explicit rather than implicit. 
For example, the answer to the ques-
tion of whether or not a given Boolean 
formula is satisfiable is implicit in the 
formula itself (but the task is to make 
the answer explicit). Thus, complexity 
theory clarifies a central issue regard-
ing representation; that is, the distinc-
tion between what is explicit and what 
is implicit in a representation. Further-
more, it even suggests a quantification 
of the level of non-explicitness.

In general, complexity theory pro-
vides new viewpoints on various phe-
nomena that were considered also by 
past thinkers. Examples include the 
aforementioned concepts of solutions, 
proofs, and representation as well as 
concepts like randomness, knowledge, 
interaction, secrecy, and learning. We 
next discuss the latter concepts and 
the perspective offered by complexity 
theory.

Randomness. The concept of ran-
domness has puzzled thinkers for 
ages. Their perspective can be de-
scribed as ontological: They asked 
“what is randomness” and wondered 
whether it exists at all (or is the world 
deterministic). The perspective of 
complexity theory is behavioristic: It 
is based on defining objects as equiva-
lent if they cannot be told apart by any 
efficient procedure. That is, a coin toss 
is (defined to be) “random” (even if one 
believes that the universe is determin-
istic) if it is infeasible to predict the 
coin’s outcome. Likewise, a string (or 
a distribution on strings) is “random” 
if it is infeasible to distinguish it from 
the uniform distribution (regardless 
of whether or not one can generate the 
latter). Interestingly, randomness (or 
rather pseudorandomness) defined 
this way is efficiently expandable; that 
is, under a reasonable complexity as-
sumption (to be discussed next), short 
pseudorandom strings can be deter-
ministically expanded into long pseu-
dorandom strings. Indeed, it turns 
out that randomness is intimately 
related to intractability. Firstly, note 

that the very definition of pseudoran-
domness refers to intractability (i.e., 
the infeasibility of distinguishing 
a pseudorandom object from a uni-
formly distributed object). Secondly, 
as stated, a complexity assumption, 
which refers to the existence of func-
tions that are easy to evaluate but hard 
to invert (called “one-way functions”), 
implies the existence of deterministic 
programs (or “pseudorandom genera-
tors”) that stretch short, random seeds 
into long pseudorandom sequences. 
In fact, it turns out that the existence 
of pseudorandom generators is equiv-
alent to the existence of one-way func-
tions.

Knowledge. Complexity theory of-
fers its own perspective on the concept 
of knowledge (and distinguishes it 
from information). Specifically, com-
plexity theory views knowledge as the 
result of a hard computation. Thus, 
whatever can be efficiently done by 
anyone is not considered knowledge. 
In particular, the result of an easy com-
putation applied to publicly available 
information is not considered knowl-
edge. In contrast, the value of a hard-
to-compute function applied to public-
ly available information is knowledge, 
and if somebody provides you with 
such a value then it has provided you 
with knowledge. This discussion is re-
lated to the notion of zero-knowledge 
interactions, which are interactions 
in which no knowledge is gained (see 
Figure 1). Such interactions may still 
be useful, because they may convince a 
party of the correctness of specific data 
that was provided beforehand. For ex-
ample, a zero-knowledge interactive 

proof may convince a party that a given 
graph is 3-colorable without yielding 
any 3-coloring.

Interaction. The foregoing para-
graph has explicitly referred to interac-
tion, viewing it as a vehicle for gaining 
knowledge and/or gaining confidence. 
Let us highlight the latter application 
by noting that it may be easier to verify 
an assertion when allowed to interact 
with a prover rather than when read-
ing a proof. Put differently, interaction 
with a good teacher may be more ben-
eficial than reading any book. The add-
ed power of such interactive proofs is 
rooted in their being randomized (i.e., 
the verification procedure is random-
ized), because if the verifier’s questions 
can be determined beforehand then 
the prover may just provide the tran-
script of the interaction as a traditional 
written proof.

Secrecy. Another concept related 
to knowledge is that of secrecy. Knowl-
edge is something that one party may 
have while another party does not have 
(and cannot feasibly obtain by itself)— 
thus, in some sense knowledge is a 
secret. In general, complexity theory 
is related to cryptography, where the 
latter is broadly defined as the study of 
systems that are easy to use but hard to 
abuse. Typically, such systems involve 
secrets, randomness, and interaction 
as well as a complexity gap between 
the ease of proper usage and the infea-
sibility of causing the system to devi-
ate from its prescribed behavior. Thus, 
much of cryptography is based on com-
plexity-theoretic assumptions and its 
results are typically transformations of 
relatively simple computational primi-

Figure 1. An illustration of the concept of zero-knowledge proof.
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Acomputational 
complexity gap, 
captured in the defi-
nition of one-way 

functions, is a necessary and 
sufficient condition for much 
of modern cryptography. 
Loosely speaking, one-way 
functions are functions that 
are easy to compute but hard 
to invert (in an average-case 
sense). The existence of 
one-way functions implies 
that P is different from NP, 
which means that such a 
complexity gap is only widely 
conjectured to exist (rather 
than known for a fact). We 
demonstrate the use of 
this gap in the case of the 
archetypical cryptographic 
task of providing secret com-
munication, which in turn is 
reduced to the construction 
of encryption schemes. 

Encryption schemes are 
supposed to provide secret 
communication between 
parties in a setting in which 
these communications 
may be eavesdropped by an 
adversary. There are two 
cases differing according 
to whether or not the 
communicating parties have 
agreed on a common secret 
prior to the communication. 
In both cases, the encryption 
scheme consists of three 
efficient procedures: key 
generation, encryption 
(denoted by E), and 
decryption (D). Loosely 
speaking, on input a 
security parameter n, the 

key-generation procedure 
outputs a (random) pair of 
corresponding (n-bit long) 
encryption and decryption 
keys, (e, d), such that for 
every bit string x, it  
holds that Dd(Ee(x)) = x, 
where Ee(x) (resp., Dd(y)) 
denotes the output of the 
encryption (resp., decryption) 
procedure on input (e, x) 
(resp., (d, y)).

The difference between 
the two cases lies in the 
way in which the scheme is 
employed and this will be 
reflected in the definition of 
security. In the first case, 
known as the private-key 
case, a set of mutually 
trustful parties jointly 
employ the key-generation 
process, prior to the actual 
communication, obtaining a 
pair of keys (e, d). We stress, 
in this case, the encryption 
key e is known to all trusted 
parties and to them only. 
Later, each trusted party 
may encrypt messages by 
applying Ee, and retrieve 
them (i.e., decrypt) by 
applying Dd. The information 
available to the adversary, 
in this case, is a sequence of 
encrypted messages, sent 
over the channel, using a 
fixed encryption key unknown 
to it. (The total amount 
of information encrypted 
using this encryption key 
may be much greater than 
the length of the key, and so 
perfect information theoretic 
secrecy is not possible).

In the second case, 
known as the public-key 
case, the receiver invokes 
the key-generation process, 
publicizes the encryption 
key e (but not the decryption 
key d), and the sender uses 
e to generate encryptions 
as before. This allows 
everybody (not only parties 
that the receiver trusts) to 
send encrypted messages 
to the receiver; however, in 
such a case the adversary 
also knows the encryption 
key e. Thus, the information 
available to the adversary 
in this case is a sequence 
of encrypted messages, 
sent over the channel, 
using a fixed encryption key 
that is also known. In both 
cases, security amounts 
to asserting that it is 
infeasible for the adversary 
to learn anything from the 
information available to 
it. That is, whatever the 
adversary can efficiently 
compute from the public 
information can be efficiently 
computed from scratch.

Note that in the private-
key case, we may assume, 
without loss of generality, 
that e = d; whereas in the 
public-key case, d must 
be hard to compute from 
e. Private-key encryption 
schemes exist if and only 
if one-way functions exist. 
Public-key encryption 
schemes can be constructed 
based on a seemingly 
stronger assumption, yet 

this assumption is implied by 
widely believed conjectures 
such as the conjectured 
intractability of factoring 
integers.

BEYOND ENCRYPTION 
SCHEMES
Cryptography encompasses 
much more than methods 
for providing secret 
communication. Another 
basic cryptographic 
task is that of providing 
authenticated 
communication, which 
in turn is reduced to 
the construction of 
signature (and/or message 
authentication) schemes. 
In general, cryptography 
is concerned with the 
construction of schemes 
that maintain any desired 
functionality under malicious 
attempts aimed at making 
these schemes deviate from 
their prescribed functionality. 
Loosely speaking, a secure 
implementation of a multi-
party functionality is a multi-
party protocol in which the 
impact of malicious parties 
is effectively restricted to 
application of the prescribed 
functionality to inputs 
chosen by the corresponding 
parties. One major result 
in this area states that, 
under plausible assumptions 
regarding computational 
difficulty, any efficiently 
computed functionality can 
be securely implemented.

On the Use of Complexity 
In Cryptography
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tives (e.g., one-way functions) into 
more complex cryptographic applica-
tions (e.g., secure encryption schemes). 
(See Sidebar “On the Use of Complexity 
in Cryptography.”)

Learning. We have already men-
tioned the concept of learning when re-
ferring to learning from a teacher ver-
sus learning from a book. Recall that 
complexity theory provides evidence 
to the advantage of the former. This 
is in the context of gaining knowledge 
about publicly available information. 
In contrast, computational learning 
theory is concerned with learning ob-
jects that are only partially available to 
the learner (i.e., reconstructing a func-
tion based on its value at a few random 
locations or even at locations chosen 
by the learner). Still, complexity theory 
sheds light on the intrinsic limitations 
of learning (in this sense). 

Other computational tasks. Com-
plexity theory deals with a variety of 
computational tasks. We have already 
mentioned two fundamental types of 
tasks: searching for solutions (or rather 
finding solutions) and making deci-
sions (e.g., regarding the validity of as-
sertions). We have also hinted that in 
some cases these two types of tasks can 
be related. Now consider two additional 
types of tasks: counting the number of 
solutions and generating random solu-
tions. Clearly, both are at least as hard 
as finding arbitrary solutions to the cor-
responding problem, but it turns out 
that for some natural problems they are 
not significantly harder. Specifically, 
under some natural conditions on the 
problem, approximately counting the 
number of solutions and generating an 
approximately random solution is not 
significantly harder than finding an ar-
bitrary solution.

Approximation. Having mentioned 
the notion of approximation, the study 
of the complexity of finding “approxi-
mate solutions” is also of natural im-
portance. One type of approximation 
problems refers to an objective func-
tion defined on the set of potential so-
lutions: Rather than finding a solution 
that attains the optimal value, the ap-
proximation task consists of finding a 
solution that attains an “almost opti-
mal” value, where the notion of almost 
optimal may be understood in different 
ways giving rise to different levels of 

approximation. Interestingly, in many 
cases, even a very relaxed level of ap-
proximation is as difficult to obtain as 
solving the original (exact) search prob-
lem (i.e., finding an approximate solu-
tion is as hard as finding an optimal 
solution). Surprisingly, these hardness 
of approximation results are related 
to the study of probabilistically check-
able proofs, which are proofs that allow 
for ultra-fast probabilistic verification. 
Amazingly, every proof can be efficient-
ly transformed into one that allows 
for probabilistic verification based on 
probing a constant number of bits (in 
the alleged proof). Turning back to ap-
proximation problems, in other cases 
a reasonable level of approximation is 
easier to achieve than solving the origi-
nal (exact) search problem. 

Average-case complexity. Approxi-
mation is a natural relaxation of vari-
ous computational problems. Another 
natural relaxation is the study of aver-
age-case complexity, where the “aver-
age” is taken over some “simple” dis-
tributions (representing a model of the 
problem’s instances that may occur in 
practice). Although it was not stated 
explicitly, the entire discussion so far 
has referred to “worst-case” analysis of 
algorithms. Worst-case complexity is a 
more robust notion than average-case 
complexity. For starters, one avoids 
the controversial question of what are 
the instances that are “important in 
practice” and correspondingly the se-
lection of the class of distributions for 
which average-case analysis is to be 
conducted. Nevertheless, a relatively 
robust theory of average-case complex-
ity has been suggested, albeit it is less 
developed than the theory of worst-
case complexity. 

Randomness extractors. In view of 
the central role of randomness in com-
plexity theory (as evident, say, in the 
study of pseudorandomness, proba-
bilistic proof systems, and cryptogra-
phy), one may wonder as to whether the 
randomness needed for the various ap-
plications can be obtained in real life. 
One specific question, which received a 
lot of attention, is the possibility of “pu-
rifying” randomness (or “extracting 
good randomness from bad sources”). 
That is, can we use “defective” sources 
of randomness in order to implement 
almost perfect sources of randomness. 

The answer depends, of course, on the 
model of such defective sources. This 
study turned out to be related to com-
plexity theory, where the tightest con-
nection is between a certain type of 
randomness extractor and a certain 
type of pseudorandom generator.

Space complexity. So far we have fo-
cused on the time complexity of com-
putational tasks, while relying on the 
natural association of efficiency with 
time. However, time is not the only 
resource one should care about. An-
other important resource is space: The 
amount of (temporary) memory con-
sumed by the computation. The study 
of space complexity has uncovered 
several fascinating phenomena, which 
seem to indicate a fundamental dif-
ference between space complexity and 
time complexity. For example, in the 
context of space complexity, verifying 
proofs of validity of assertions (of any 
specific type) has the same complexity 
as verifying proofs of invalidity for the 
same type of assertions.

SUMMARY
In case the reader feels dizzy, it is no 
wonder. We took an ultra-fast aerial 
tour of some mountain tops, and diz-
ziness is to be expected. More leisurely 
paced touring experiences are prob-
ably offered in courses given by your 
university. 

Further Reading

The P versus NP question and NP-completeness are 
covered in many basic textbooks. I’ve written about 
this subject in P, NP, and NP-Completeness: The 
Basics of Complexity Theory, published by Cambridge 
University Press. If you are interested in advanced 
topics, Computational Complexity: A conceptual 
perspective (Cambridge University Press, 2008) is more 
comprehensive.
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Note

[1] In contrast, in other disciplines, solving a problem 
may require gathering information that is not available in 
the problem’s statement. This information may either be 
available from auxiliary (past) records or be obtained by 
conducting new experiments.
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