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Summary: We consider testing three basic properties of Boolean functions of the form
f : {0, 1}ℓ → {0, 1}:

1. Dictatorship: The case where the value of f depends on a single Boolean variable
(i.e., f(x) = xi ⊕ σ for some i ∈ [ℓ] and σ ∈ {0, 1}).

2. Junta (of size k): The case where the value of f depends on at most k Boolean
variables (i.e., f(x) = f ′(xI) for some k-subset I ⊂ [ℓ] and f ′ : {0, 1}k → {0, 1}).

3. Monomial (of size k): The case where the value of f is the conjunction of exactly
k Boolean variables (i.e., f(x) = ∧i∈I(xi ⊕ σi) for some k-subset I ⊆ [ℓ] and
σ1, ..., σℓ ∈ {0, 1}).

We present two different testers for dictatorship, where one generalizes to testing k-
Juntas and the other generalizes to testing k-Monomials.

These notes are based on the works of Parnas, Ron, and Samorodnitsky [29]1 and Fischer, Kindler,
Ron, Safra, and Samorodnitsky [15].

1 Introduction

Boolean functions f : {0, 1}ℓ → {0, 1} that depend on very few of their Boolean variables arise in
many applications. Such variables are called relevant variables, and they arise in the study of natural
phenomena, where there are numerous variables (or attributes) that describe the phenomena but
only few of them are actually relevant.

Typically, one does not know a priori which of the ℓ variables are relevant, and a natural task
is to try to find this out. But before setting out to find the relevant variables, one may want to
find out how many variables are actually relevant. Furthermore, in some cases (as shown in the
next lecture), just knowing a good upper bound on the number of influential variables is valuable.

Assuming that there are k ≤ ℓ influential variables, finding the set of influential variables requires
making Ω(2k + k log ℓ) queries to the function, because the number of functions f : {0, 1}ℓ → {0, 1}

that have k influential variables is of the order of
(ℓ
k

)
·22k

, minus a lower order term of
( ℓ
k−1

)
·22k−1

.
Our goal is to test whether f has k influential variables (or is ǫ-far from having this property) using
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1See discussions regarding the relation to the work of Bellare, Goldreich, and Sudan [4].
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only poly(k/ǫ) queries; in particular, the complexity we seek is independent of ℓ, which is especially
valuable when ℓ is very large compared to k.

Functions having at most k influential variables will be called k-juntas, and in case of k = 1
they will be called dictatorships. We shall start with the latter case; in Section 2 we present a
tester of dictatorships, which views dictatorships as linear functions that depend on one variable.
Hence, this tester will first check whether the function is linear, and then check (via self-correction)
whether this linear function is a dictatorship. This approach is abstracted in Section 2.3, which is
highly recommended.

Section 3 deals with the more general problem of testing whether a function is a k-junta, where
k ≥ 1 is a parameter that is given to the tester. This tester uses different ideas, and thus it yields
an alternative tester for dictatorship. (The analysis of this tester is more complex than the analysis
of the tester for dictatorship presented in Section 2.)

Teaching note: We suggest leaving the overview section that discusses testing monomials (i.e., Sec-

tion 2.2) for advanced independent reading.

2 Testing dictatorship via self-correction

Here we consider testing two related properties of Boolean functions f : {0, 1}ℓ → {0, 1}, called
dictatorship and monotone dictatorship. First, we note that the object being tested is of size n = 2ℓ,
and so query complexity that is logarithmic in ℓ (which can be obtained via proper learning (see
first lecture))2 is considered sub-linear. Still, we shall seek testers of lower complexity; specifically,
we seek complexity that is independent of the size of the object.

Definition 1 (dictatorship and monotone dictatorship): A function f : {0, 1}ℓ → {0, 1} is called
a monotone dictatorship if for some i ∈ [ℓ] it holds that f(x) = xi. It is called a dictatorship if for
some i ∈ [ℓ] and σ ∈ {0, 1} it holds that f(x) = xi ⊕ σ.

Note that f is a dictatorship if and only if either f or f ⊕ 1 is a monotone dictatorship. Hence,
the set of dictatorships is the union of Π and {f : f ⊕ 1 ∈ Π}, where Π is the set of monotone
dictatorships. Using the closure of property testing under unions (see the first lecture), we may
reduce testing dictatorship to testing monotone dictatorship.3 Thus, we shall focus on the latter
task.

A detour: dictatorship and the Long Code. The Long Code, which was introduced in [4] and
plays a pivotal role in many PCP constructions (see, e.g., [4, 22, 23, 31, 14, 24, 25, 28])4, encodes k-

bit long strings by 22k

-bit strings such that x ∈ {0, 1}k is encoded by the sequence of the evaluations

2This uses the fact that there are only 2ℓ different dictatorship functions.
3In fact, we also use the fact that testing {f : f ⊕ 1 ∈ Π} reduces to testing Π. Indeed, this holds for any property

Π of Boolean functions.
4The Long Code is pivotal especially in PCP constructions aimed at optimizing parameters of the query complexity,

which are often motivated by the desire to obtain tight inapproximability results. We refer to this line of research
as the “second generation” of PCP constructions, which followed the “first generation” that culminated in the
establishing of the PCP Theorem [3, 2]. In contrast, the Long Code is not used (or need not be used) in works of the
“third generation” that focus on other considerations such as proof length (e.g., [19, 5]), combinatorial constructions
(e.g., [13, 11]), and lower error via few multi-valued queries (e.g., [27, 12]).
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of all n = 22k
Boolean functions g : {0, 1}k → {0, 1} at x. That is, the gth location of the codeword

C(x) ∈ {0, 1}n equals g(x). Now, look at fx = C(x) as a function from {0, 1}2
k

to {0, 1} such

that fx(〈g〉) = g(x), where 〈g〉 ∈ {0, 1}2
k

denotes the truth-table of g : {0, 1}k → {0, 1} and 〈g〉x
denotes the bit corresponding to location x in 〈g〉 (which means that 〈g〉x equals g(x)). Note that

the 2k (bit) locations in 〈g〉 correspond to k-bit strings. Then, the function fx : {0, 1}2
k

→ {0, 1}
is a monotone dictatorship, since its value at any input 〈g〉 equals 〈g〉x (i.e., fx(〈g〉) = g(x) = 〈g〉x
for every 〈g〉). Hence, the Long Code (encoding k-bit strings) is the set of monotone dictatorship

functions from {0, 1}2
k

to {0, 1}, which means that the Long Code corresponds to the case that ℓ
is a power of two.

2.1 The tester

One key observation towards testing monotone dictatorships is that these functions are linear; that
is, they are parity functions (where each parity function is the exclusive-or of a subset of its Boolean
variables). Hence, we may first test whether the input function f : {0, 1}ℓ → {0, 1} is linear (or
rather close to linear), and rejects otherwise. Assuming that f is close to the linear function f ′, we
shall test whether f ′ is a (monotone) dictatorship, by relying on the following dichotomy, where
x ∧ y denotes the bit-by-bit and of the ℓ-bit strings x and y:

• On the one hand, if f ′ is a monotone dictatorship, then

Prx,y∈{0,1}ℓ [f
′(x) ∧ f ′(y)=f ′(x ∧ y)] = 1. (1)

This holds since if f ′(x) = xi, then f ′(y) = yi and f ′(x ∧ y) = xi ∧ yi.

• On the other hand, if f ′(x) = ⊕i∈Ixi for |I| > 1, then

Prx,y∈{0,1}ℓ [f
′(x) ∧ f ′(y) = f ′(x ∧ y)]

= Prx,y∈{0,1}ℓ [(⊕i∈Ixi) ∧ (⊕i∈Iyi) = ⊕i∈I(xi ∧ yi)]

= Prx,y∈{0,1}ℓ [⊕i,j∈I(xi ∧ yj) = ⊕i∈I(xi ∧ yi)] (2)

Our aim is to show that Eq. (2) is strictly smaller than one. It will be instructive to analyze
this expression by moving to the arithmetics of the two-element field. Hence, Eq. (2) can be
written as

Prx,y∈{0,1}ℓ




∑

i,j∈I:i6=j

xi · yj = 0


 (3)

Observing that the expression in Eq. (3) is a non-zero polynomial of degree two, we conclude
that it equals zero with probability at most 3/4 (see Exercise 1). It follows that in this case

Prx,y∈{0,1}ℓ [f
′(x) ∧ f ′(y)=f ′(x ∧ y)] ≤ 3/4. (4)

The gap between Eq. (1) and Eq. (4) should allow us to distinguish these two cases. However, there
is also a third case; that is, the case that f ′ is the all-zero function. This pathological case can be
discarded by checking that f ′(1ℓ) = 1, and rejecting otherwise.

Of course, we have no access to f ′, but assuming that f ′ is close to f , we can obtain the value
of f ′ at any desired point by using self-correction (on f) as follows. When seeking the value of
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f ′(z), we select uniformly at random r ∈ {0, 1}ℓ, query f at r and at r ⊕ z, and use the value
f(r)⊕f(r⊕ z). Indeed, the value f(r)⊕f(r⊕ z) can be thought of as a random vote regarding the
value of f ′(z). If f ′ is ǫ-close to f , then this vote equals the value f ′(z) with probability at least
Prr[f

′(r)=f(r) & f ′(r⊕ z)=f(r⊕ z)] ≥ 1− 2ǫ, since f ′(z) = f ′(r)⊕ f ′(r⊕ z) (by linearity of f ′).
This discussion leads to a natural tester for monotone dictatorship, which first checks whether f

is linear and if so checks that the linear function f ′ that is close to f is a monotone dictatorship. We
check that f ′ is a dictatorship by checking that f ′(x ∧ y) = f ′(x) ∧ f ′(y) for uniformly distributed
x, y ∈ {0, 1}ℓ and that f ′(1ℓ) = 1, where in both cases we use self-correction (for the values at x∧ y
and 1ℓ).5 Indeed, in Step 2 (below), the random strings r and s are used for self-correction of the
values at x ∧ y and 1ℓ, respectively.

Below, we assume for simplicity that ǫ ≤ 0.01. This assumption can be made, without loss of
generality, by redefining ǫ← min(ǫ, 0.01). (It follows that any function f is ǫ-close to at most one
linear function, since the linear functions are at distance 1/2 from one another whereas ǫ < 0.25.)6

Algorithm 2 (testing monotone dictatorship): On input n = 2ℓ and ǫ ∈ (0, 0.01], when given
oracle access to a function f : {0, 1}ℓ → {0, 1}, the tester proceeds as follows.

1. Invokes the linearity tester on input f , while setting the proximity parameter to ǫ. If the
linearity test rejected, then halt rejecting.

Recall that the known linearity tester makes O(1/ǫ) queries to f .

2. Repeat the following check for O(1/ǫ) times.7

(a) Select x, y, r, s ∈ {0, 1}ℓ uniformly at random.

(b) Query f at the points x, y, r, s as well as at r ⊕ (x ∧ y) and s⊕ 1ℓ.

(c) If f(x) ∧ f(y) 6= f(r)⊕ f(r ⊕ (x ∧ y)), then halt rejecting.

(d) If f(s)⊕ f(s⊕ 1ℓ) = 0, then halt rejecting.

If none of the iterations rejected, then halt accepting.

(Actually, in Step 2d, we can use r instead of s, which means that we can re-use the same random-
ization in both invocations of the self-correction.)8 Recalling that linearity testing is performed
by invoking a three-query proximity-oblivious tester for O(1/ǫ) times, it is begging to consider the
following proximity-oblivious tester (POT) instead of Algorithm 2.

Algorithm 3 (POT for monotone dictatorship): On input n = 2ℓ and oracle access to a function
f : {0, 1}ℓ → {0, 1}, the tester proceeds as follows.

5Values at these points require self-correction, since these points are not uniformly distributed in {0, 1}ℓ. In
contrast, no self-correction is required for the values at the uniformly distributed points x and y. See Section 2.3 for
a general discussion of the self-correction technique.

6
Advanced comment: The uniqueness of the linear function that is ǫ-close to f is not used explicitly in the

analysis, but the analysis does require that ǫ < 1/16 (see proof of Lemma 4).
7Step 2c is self-correction form of the test f(x) ∧ f(y)

?
= f(x ∧ y), whereas Step 2d is self-correction form of the

test f(1ℓ)
?
= 1.

8This takes advantage of the fact that, in the analysis, for each possible f we rely only on one of the three rejection
options.
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1. Invokes the three-query proximity-oblivious tester (of linear detection probability) for linear-
ity.9 If the linearity test rejected, then halt rejecting.

2. Check closure to bit-by-bit conjunction.

(a) Select x, y, r ∈ {0, 1}ℓ uniformly at random.

(b) Query f at the points x, y, r and r ⊕ (x ∧ y).

(c) If f(x) ∧ f(y) 6= f(r)⊕ f(r ⊕ (x ∧ y)), then reject.

3. Check that f is not the all-zero function.

(a) Select s ∈ {0, 1}ℓ uniformly at random.

(b) Query f at the points s and s⊕ 1ℓ.

(c) If f(s)⊕ f(s⊕ 1ℓ) = 0, then reject.

If none of the foregoing steps rejected, then halt accepting.

As shown next, Algorithm 3 is a nine-query POT with linear detection probability. The same
holds for a four-query algorithm that performs one of the three steps at random (i.e., each step is
performed with probability 1/3).10

Theorem 4 (analysis of Algorithm 3): Algorithm 3 is a one-sided error proximity oblivious tester
for monotone dictatorship with rejection probability ̺(δ) = Ω(δ).

Proof: The proof merely details the foregoing discussion. First, suppose that f : {0, 1}ℓ → {0, 1} is
a monotone dictatorship, and let i ∈ [ℓ] such that f(x) = xi. Then, f is linear, and so Step 1 never
rejects. (Hence, f(r)⊕ f(r⊕ z) = f(z) for all r, z). Furthermore, f(x)∧ f(y) = xi ∧ yi = f(x∧ y),
which implies that Step 2 never rejects. Lastly, in this case, f(1ℓ) = 1, which implies that Step 3
never rejects. It follows that Algorithm 3 always accepts f .

Now, suppose that f is at distance δ > 0 from being a monotone dictatorship. Letting δ′ =
min(0.9δ, 0.01), we consider two cases.11

1. If f is δ′-far from being linear, then Step 1 rejects with probability Ω(δ′) = Ω(δ).

2. If f is δ′-close to being linear, then it is δ′-close to some linear function, denoted f ′. Note
that f ′ cannot be a dictatorship function, since this would mean that f is δ′-close to being a
monotone whereas δ′ < δ.

We first note that if f ′ is the all-zero function, then Step 3 rejects with probability greater
than 1− 2 · 0.01 = Ω(δ), since

Prs[f(s)⊕ f(s⊕ 1ℓ) = 0] ≥ Prs[f(s)=f ′(s) & f(s⊕ 1ℓ)=f ′(s ⊕ 1ℓ)]

≥ 1−Prs[f(s) 6=f ′(s)]−Prs[f(s⊕ 1ℓ) 6=f ′(s⊕ 1ℓ)]

≥ 1− 2 · δ′.

9Such a POT, taken from [8], was presented in a prior lecture.
10See Exercise 2.
11

Advanced comment: Any choice of δ′ ≤ 0.06 such that is δ′ ∈ [Ω(δ), δ) will do. In fact, 0.06 can be replaced
by any constant in (0, 1/16).
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Hence, we are left with the case that f ′(x) = ⊕i∈Ixi, where |I| ≥ 2. Relying on the hypothesis
that f is 0.01-close to f ′ and using f ′(r) ⊕ f ′(r ⊕ (x ∧ y)) = f ′(x ∧ y), we observe that the
probability that Step 2 rejects equals

Prx,y,r[f(x) ∧ f(y) 6= f(r)⊕ f(r ⊕ (x ∧ y))]

≥ Prx,y,r[f
′(x) ∧ f ′(y) 6= f ′(r)⊕ f ′(r ⊕ (x ∧ y))]

− Prx,y,r[f(x) 6=f ′(x) ∨ f(y) 6=f ′(y) ∨ f(r) 6=f ′(r) ∨ f(r ⊕ (x ∧ y)) 6=f ′(r ⊕ (x ∧ y))]

≥ Prx,y[f
′(x) ∧ f ′(y) 6= f ′(x ∧ y)]− 4 ·Prz[f(z) 6=f ′(z)]

≥ 0.25− 4 · 0.01

where the second inequality uses a union bound as well as f ′(r)⊕ f ′(r⊕ (x∧ y)) = f ′(x∧ y),
and the last inequality is due to Eq. (4). Hence, in this case, Step 2 rejects with probability
greater than 0.2 = Ω(δ).

To summarize, in each of the two cases, the algorithm rejects with probability Ω(δ), and the theorem
follows.

Digest. Note that self-correction was applied for obtaining the values of f ′(x∧ y) and f ′(1ℓ), but
not for obtaining f ′(x) and f ′(y), where x and y were uniformly distributed in {0, 1}ℓ. Indeed,
there is no need to apply self-correction when seeking the value of f ′ at a uniformly distributed
point. In contrast, the points 1ℓ and x ∧ y are not uniformly distributed: the point 1ℓ is fixed,
whereas x ∧ y is selected from a distribution of ℓ-bit long strings in which each bit is set to 1 with
probability 1/4 (rather than 1/2), independently of all other bits. For further discussion of the
self-correction paradigm, see Section 2.3.

2.2 Testing monomials

The ideas that underly the tests of (monotone) dictatorship can be extended towards testing the
set of functions that are (monotone) k-monomials, for any k ≥ 1.

Definition 5 (monomial and monotone monomial): A function f : {0, 1}ℓ → {0, 1} is called a
k-monomial if for some k-subset I ⊆ [ℓ] and σ = σ1 · · · σℓ ∈ {0, 1}

ℓ it holds f(x) = ∧i∈I(xi⊕ σi). It
is called a monotone k-monomial if σ = 0ℓ.

Indeed, the definitions of (regular and monotone) dictatorship coincide with the notions of (regular
and monotone) 1-monomials. (In particular, f is a dictatorship if and only if either f or f ′(x) =
f(x⊕ 1ℓ) = f(x)⊕ 1 is a monotone dictatorship).

Teaching note: Alternative procedures for testing (regular and monotone) monomials are presented in

the next lecture (on testing via implicit sampling). These alternative procedures are obtained as a simple

application of a general paradigm, as opposed to the the direct approach, which is only outlined here. In

light of these facts, the reader may skip the current section and procede directly to Section 2.3.
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2.2.1 A reduction to the monotone case

Note that f is a k-monomial if and only if for some σ ∈ {0, 1}ℓ the function fσ(x) = f(x ⊕ σ) is
a monotone k-monomial. Actually, it suffices to consider only σ’s such that f(σ ⊕ 1ℓ) = 1, since if
fσ is a monotone monomial, then fσ(1ℓ) = 1 must hold. This suggests the following reduction of
testing k-monomials to testing monotone k-monomials.

Algorithm 6 (reducing testing monomials to the monotone case): Given parameters k and ǫ and
oracle access to a function f : {0, 1}ℓ → {0, 1}, we proceed as follows if ǫ < 2−k+2.

1. Select uniformly a random O(2k)-subset of {0, 1}ℓ, denoted S, and for each σ ∈ S query f at
σ ⊕ 1ℓ. If for every σ ∈ S it holds that f(σ⊕ 1ℓ) = 0, then reject. Otherwise, pick any σ ∈ S
such that f(σ ⊕ 1ℓ) = 1, and proceed to Step 2.

2. Invoke the ǫ-tester for monotone k-monomials, while proving it with oracle access to f ′ such
that f ′(x) = f(x⊕ σ).

If ǫ ≥ 2−k+2, then use O(1/ǫ) samples in order to distinguish the case of |f−1(1)| ≤ 0.25ǫ · 2ℓ from
the case of |f−1(1)| ≥ 0.75ǫ · 2ℓ. Accept in the first case and reject in the second case. (That is,
reject if less than a 0.5ǫ fraction of the sample evaluates to 1, and accept otherwise.)

Note that the restriction of the actual reduction to the case that ǫ < 2−k+2 guarantees that the
(additive) overhead of the reduction, which is O(2k), is upper-bounded by O(1/ǫ). On the other
hand, when ǫ ≥ 2−k+2, testing is reduced to estimating the density of f−1(1), while relying on the
facts that any k-monomial is at distance exactly 2−k from the all-zero function. In both cases, the
reduction yields a tester with two-sided error (even when using a tester of one-sided error for the
monotone case).

Theorem 7 (analysis of Algorithm 6): If the ǫ-tester for monotone k-monomials invoked in Step 2
has error probability at most 1/4, then Algorithm 6 constitutes a tester for k-monomials.

Proof: We start with the (main) case of ǫ < 2−k+2. Note that if |f−1(1)| < 2ℓ−k, then f cannot
be a k-monomial, and it is OK to reject it. Otherwise (i.e., |f−1(1)| ≥ 2ℓ−k), with probability at
least 0.9, Step 1 finds σ such that f(σ ⊕ 1ℓ) = 1. Now, if f is a k-monomial, then f ′ as defined in
Step 2 (i.e., f ′(x) = f(x⊕ σ)) is a monotone k-monomial, since all strings in f−1(1) agree on the
values of the bits in location I, where I denotes the indices of the variables on which f depends.12

Thus, any k-monomial is accepted by the algorithm with probability at least 0.9 · 0.75 > 2/3.
On the other hand, if f is ǫ-far from being a k-monomial, then either Step 1 rejects or (as

shown next) f ′ is (also) ǫ-far from being a (monotone) k-monomial, and Step 2 will reject it with
probability at least 3/4 > 2/3. To see that f ′ is ǫ-far from being a k-monomial (let alone ǫ-far from
being a monotone k-monomial), we consider a k-monomial g′ that is supposedly ǫ-close to f ′ and
derive a contradiction by considering the function g such that g(x) = g′(x ⊕ σ), where σ is as in
Step 2 (i.e., f ′(x) = f(x ⊕ σ)). Specifically, g maintains the k-monomial property of g′, whereas
δ(f, g) = δ(f ′, g′) ≤ ǫ (since f(x) = f ′(x⊕ σ)).

12To see this claim, let f(x) = ∧i∈I(xi ⊕ τi), for some k-set I ⊆ [ℓ] and τ ∈ {0, 1}ℓ. Then, f(σ ⊕ 1ℓ) = 1 if and
only if ∧i∈I(σi ⊕ 1⊕ τi) = 1, which holds if and only if σi = τi for every i ∈ I . Hence, f ′(x) = f(x⊕ σ) = f(x⊕ τ ) is
a monotone monomial.
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Figure 1: Detail for the proof of Theorem 7. The algorithmic decision is depicted by a dashed
arrow that refers to the estimated value (in multiples of ǫ2ℓ), and the analysis is depicted by solid
arrows that refers to the real value of |f−1(1)|.

We complete the proof by considering the case of ǫ ≥ 2−k+2. In this case, if |f−1(1)| > 0.25ǫ ·2ℓ,
which implies |f−1(1)| > 2ℓ−k, then f is not a k-monomial, and it is OK to reject it. On the other
hand, if |f−1(1)| ≤ 0.75ǫ ·2ℓ, then f is 0.75ǫ-close to the all-zero function, which is 2−k-close to a k-
monomial, and so it is OK to accept f , because f is ǫ-close to a k-monomial (since 0.75ǫ+2−k ≤ ǫ).
Indeed, when |f−1(1)| ∈ (0.25ǫ2ℓ, 0.75ǫ2ℓ], any decision is fine (see Figure 1). Hence, it suffices to
guarantee rejection (w.p. 2/3) when |f−1(1)| ≥ 0.75ǫ2ℓ and acceptance (w.p. 2/3) when |f−1(1)| ≤
0.25ǫ2ℓ, as the algorithm does.

2.2.2 Testing monotone k-monomials – an overview

We start by interpreting the dictatorship tester in a way that facilitates its generalization. If f is a
monotone dictatorship, then f−1(1) is an (ℓ− 1)-dimensional affine subspace (of the ℓ-dimensional
space {0, 1}ℓ). Specifically, if f(x) = xi, then this subspace is {x ∈ {0, 1}ℓ : xi = 1}. In this case,
the linearity tester could be thought of as testing that f−1(1) is an arbitrary (ℓ − 1)-dimensional
subspace, whereas the “conjunction test” verifies that this subspace is an affine translation by 1ℓ

of a linear space that is spanned by ℓ− 1 unit vectors (i.e., vectors of Hamming weight 1).13

Now, if f is a monotone k-monomial, then f−1(1) is an (ℓ− k)-dimensional affine subspace. So
the idea is to first test that f−1(1) is an (ℓ− k)-dimensional affine subspace, and then to test that
it is an affine subspace of the right form (i.e., it has the form {x ∈ {0, 1}ℓ : (∀i ∈ I) xi = 1}, for
some k-subset I). Following are outlines of the treatment of these two tasks.

Testing affine subspaces. Supposed that the alleged affine subspace H is presented by a Boolean
function h such that h(x) = 1 if and only if x ∈ H. (Indeed, in our application, h = f .) We wish
to test that H is indeed an affine subspace.

(Actually, we are interested in testing that H has a given dimension, but this extra condition can
be checked easily by estimating the density of H in {0, 1}ℓ, since we are willing to have complexity

13That is, we requires that this subspace has the form
n

1ℓ +
P

j∈([ℓ]\{i}) cjej : c1, ..., cℓ ∈ {0, 1}
o

, where e1, ..., eℓ ∈

{0, 1}ℓ are the ℓ unit vectors (i.e., vectors of Hamming weight 1).
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that is inversely proportional to the designated density (i.e., 2−k).)14

This task is related to linearity testing and it was indeed solved in [29] using a tester and an
analysis that resembles the standard linearity tester of [8]. Specifically, the tester selects uniformly
x, y ∈ H and z ∈ {0, 1}ℓ and checks that h(x + y + z) = h(z) (i.e., that x + y + z ∈ H if and only if
z ∈ H). Indeed, we uniformly sample H by repeatedly sampling {0, 1}ℓ and checking whether the
sampled element is in H.

Note that, for co-dimension k > 1, the function h is not affine (e.g., h(x) = h(y) = 0, which
means x, y 6∈ H, does not determine the value of h(x + y) (i.e., whether x + y ∈ H)). Still, testing
affine subspaces can be reduced to testing linearity, providing an alternative to the presentation
of [29] (see [20, Sec. 4] or Exercises 8–10).

Testing that an affine subspace is a translation by 1ℓ of a linear subspace spanned by

unit vectors. Suppose that an affine subspace H ′ is presented by a Boolean function, denoted

h′, and that we wish to test that H ′ has the form
{
1ℓ +

∑
i∈[ℓ]\I ciei : c1, ..., cℓ ∈ {0, 1}

}
, where

e1, ..., eℓ ∈ {0, 1}
ℓ are unit vectors, and I ⊆ [ℓ] is arbitrary. That is, we wish to test that h′(x) =

∧i∈Ixi.
This can be done by picking uniformly x ∈ H ′ and y ∈ {0, 1}ℓ, and checking that h′(x∧y) = h′(y)

(i.e., x ∧ y ∈ H ′ if and only if y ∈ H ′). Note that if H ′ has the form 1ℓ + L, where L is a linear
subspace spanned by the unit vectors {ei : i ∈ [ℓ] \ I} for some I, then h′(z) = ∧i∈Izi holds for all
z ∈ {0, 1}ℓ and h′(x ∧ y) = h′(x) ∧ h′(y) holds for all x, y ∈ {0, 1}ℓ. On the other hand, as shown
in [29], if H ′ is an affine subspace that does not have the foregoing form, then the test fails with
probability at least 2−k−1.

However, as in the case of k = 1, we do not have access to h′ but rather to a Boolean function
h that is (very) close to h′. So we need to obtain the value of h′ at specific points by querying h
at uniformly distributed points. Specifically, the value of h′ at z is obtained by uniformly selecting
r, s ∈ h−1(1) and using the value h(r + s + z). In other words, we self-correct h at any desired
point by using the value of h at random elements of h−1(1), while actually hoping that these points
reside in the affine subspace H ′. This hope is likely to materialize when h is 0.01 · 2−k-close to h′.

The foregoing is indeed related to the conjunction check performed in Step 2 of Algorithm 3,
and the test and the analysis in [29] resemble the corresponding parts in Section 2.1. An alternative
approach, which essentially rediuces the general case (of any k ≥ 1) to the special case (of k = 1),
appears in [20, Sec. 5].

Conclusion. To recap, the overall structure of the resulting tester resembles that of Algorithm 3,
with the exception that we perform a density test in order to determine the dimension of the affine
subspace. We warn, however, that the analysis is significantly more involved (and the interested
reader is referred to [29]). Lastly, we stress that the tester of monotone k-monomials has two-sided
error probability, which is due to its estimation of the density of the affine subspace. We wonder
whether this is inherent.

Open Problem 8 (one-sided error testers for monomials): For any k ≥ 2, is there a one-sided
error test for monotone k-monomials with query complexity that only depends on the proximity
parameter? Ditto for testing monotone k-monomials.

14Recall that if ǫ < 2−k+2, then O(2k) = O(1/ǫ), and otherwise (i.e., for ǫ ≥ 2−k+2) we can proceed as in
Algorithm 6.
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It seems that when the arity of the monomial (i.e., k) is not specified, one-sided testing is possible
by modifying the tester of [29] such that the size check is avoided. Indeed, in such a case, one may
fail to sample f−1(1) using O(1/ǫ) random queries, but we can avoid rejection in this case because
it occurs with noticeable probability only when the function f is 0.5ǫ-close to the all-zero function,
which implies that f is ǫ-close to the monotone ℓ-monomial (provided that 2−ℓ ≤ 0.5ǫ).15

2.3 The self-correction paradigm: an abstraction

Recall that self-correction was used in the analysis of the linearity and low-degree tests, but in
Section 2.1 we used this paradigm as part of the tester. We now abstract the self-correction
paradigm as an algorithmic paradigm (rather than as a tool of analysis).

In general, the self-correction of a function f that is close to a function g is based on a “random
self-reduction” feature of g, which is the ability to easily recover the value of g at any fixed z in
the g’s domain based on the value of g on few uniformly distributed points in g’s domain. We
stress that each of these points is uniformly distributed in g’s domain, but they are not necessarily
independent of one another.

The foregoing description of random self-reduction is lacking, because, for a fixed function g,
nothing prevents the recovery algorithm from just computing g(z). In the context of complexity
theory this is avoided by requiring the recovery algorithm to have lower computational complexity
than any algorithm computing g. In the current context, where the focus is information theoretic
(i.e., on the query complexity), we can not use this possibility. Instead, we define random self-
reducibility for sets of functions.

Definition 9 (random self-reduction): Let Π be a set of functions ranging over D. We say that
functions in Π are randomly self-reducible by q queries if there exist a randomized (query generating)
algorithm Q and a (recovery) algorithm R such that for every g ∈ Π and every z ∈ D the following
two conditions hold:

1. Recovery: For every sequence of queries (r1, ..., rq) generated by Q(z), it holds that

R(z, r1, ..., rq, g(r1), ..., g(rq)) = g(z).

2. Query distribution: For each i ∈ [q], the ith element in Q(z) is uniformly distributed in D;
that is, for every e ∈ D, it holds that

Pr(r1,...,rq)←Q(z)[ri =e] =
1

|D| .

Indeed, various generalizations are possible.16 For example, we may allow the recovery algorithm
to be randomized and (only) require that it is correct with probability 2/3.

The self-correction paradigm amounts to using such a random self-reduction, while observing
that if f is only ǫ-close to g ∈ Π (rather than f being in Π), then, with probability at least 1− q · ǫ,

15Otherwise (i.e., if ǫ < 2−ℓ+1), we can just recover f by making 2ℓ = O(1/ǫ) queries.
16

Advanced comment: One generalization, which only matters when one considers the computational efficiency
of the recovery algorithm R, is providing R with the coins used by Q (rather than with the generated q-long sequence
of queries). Needless to say, the recovery algorithm still gets z as well as the oracle answers g(r1), ..., g(rq). That
is, denoting by Q(z;ω) the output of Q on input z, when using coins ω, we replace the recovery condition by
R(z, ω, g(r1), ..., g(rq)) = g(z) for every ω, where (r1, ...., rq) = Q(z; ω).
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the value obtained by applying R on the answers obtained by querying f on Q(z) matches g(z).
This observation is captured by the following theorem.

Theorem 10 (self-correction): Let Π be a set of functions ranging over D. Suppose that functions
in Π are randomly self-reducible by q queries, and denote the corresponding query-generating and
recovery algorithms by Q and R, respectively. Then, for every f that is ǫ-close to some f ′ ∈ Π and
for every z ∈ D, it holds that

Pr(r1,...,rq)←Q(z)[R(z, r1, ..., rq , f(r1), ..., f(rq)) = f ′(z)] ≥ 1− q · ǫ.

It follows that f cannot be at distance smaller than 1/2q from two different functions in Π. Hence,
functions in Π must be at mutual distance of at least 1/q; that is, if Π is random self-reducible by
q queries, then for every distinct f, g ∈ Π it holds that δ(f, g) ≥ 1/q (see Exercise 3).

(Indeed, Theorem 10 and its proof are implicit in Section 2.1 as well as in the analysis of the
linearity and low-degree tests.)

Proof: By the (recovery condition in the) hypothesis, we know that for every sequence of queries
(r1, ..., rq) generated by Q, it holds that R(z, r1, ..., rq , f

′(r1), ..., f
′(rq)) = f ′(z). Hence,

Pr(r1,...,rq)←Q(z)[R(z, r1, ..., rq, f(r1), ..., f(rq)) = f ′(z)]

≥ Pr(r1,...,rq)←Q(z)[(∀i ∈ [q]) f(ri) = f ′(ri)]

≥ 1−
∑

i∈[q]

Pr(r1,...,rq)←Q(z)[f(ri) 6= f ′(ri)]

= 1− q ·Prr∈D[f(r) 6= f ′(r)],

where the equality uses the (the query distribution condition in the) hypothesis by which each of
the queries generated by Q is uniformly distributed in D. Recalling that f is ǫ-close to f ′, the
claim follows.

An archetypical application. In the following result, we refer to the general notion of solving
a promise problem. Recall that a promise problem is specified by two sets, P and Q, where P
is the promise and Q is the question. The problem, denoted (P,Q), is define as given an input
in P , decide whether or not the input is in Q (where standard decision problems use the trivial
promise in which P consists of the set of all possible inputs). Equivalently, the problem consists of
distinguishing between inputs in P ∩Q and inputs in P \Q, and indeed promise problems are often
presented as pairs of non-intersecting sets (i.e., the set of yes-instances and the set of no-instances).
Lastly, note that here we consider solving such promise problems by probabilistic oracle machines,
which means that the answer needs to be correct (only) with probability at least 2/3.

Specifically, we shall refer to the promise problem (Π′,Π′′), where Π′ is randomly self-reducible
and testable within some given complexity bounds. We shall show that if (Π′,Π′′) is solvable within
some complexity, then Π′ ∩ Π′′ is testable within complexity that is related to the three given
bounds.

Theorem 11 (testing intersection with a self-correctable property): Let Π′ and Π′′ be sets of
functions ranging over D. Suppose that functions in Π′ are randomly self-reducible by q queries,
that Π′ is ǫ-testable using q′(ǫ) queries, and that the promise problem (Π′,Π′′) can be solved in
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query complexity q′′ (i.e., a probabilistic q′′-query oracle machine can distinguish between inputs in
Π′ ∩ Π′′ and inputs in Π′ \ Π′′). Then, Π′ ∩ Π′′ is ǫ-testable using O(q′(min(ǫ, 1/3q))) + q · Õ(q′′)
queries.

(Indeed, Theorem 11 and its proof are implicit in Section 2.1.) We stress that Theorem 11 does not
employ a tester for Π′′, but rather employs a decision procedure for the promise problem (Π′,Π′′).
However, as shown in Exercise 4, such a decision procedure is implied by any (1/q)-tester for Π′′,
since Π′ has distance at least 1/q (see Exercise 3).17

Proof: We propose the following tester for Π′ ∩Π′′. On input f , the tester proceeds in two steps:

1. It invokes the min(ǫ, 1/3q)-tester for Π′ on input f and rejects if this tester rejects.

2. Otherwise, it invokes the decision procedure for the promise problem (Π′,Π′′), while provid-
ing this procedure with answers obtained from f via the self-correction procedure (for Π′)
guaranteed by Theorem 10. Specifically, let Q and R be the query-generating and recov-
ery algorithms guaranteed by Theorem 10. Then, the query z is answered with the value
R(z, r1, ..., rq , f(r1), ..., f(rq)), where (r1, ..., rq) ← Q(z). Needless to say, the tester decides
according to the verdict of the decision procedure.

By using error reduction, we may assume that both the tester of Π′ and the solver of (Π′,Π′′) have
error probability at most 0.1. Likewise, we assume that the self-correction procedure has error
probability at most 0.1/q′′ (when invoked on any input that is 1/3q-close to Π′).18 Hence, Step 1
can be implemented using O(q′(min(ǫ, 1/3q))) queries, whereas Step 2 can be implemented using
q′′ ·O(q · log q′′) queries.

We now turn to the analysis of the proposed tester. If f ∈ Π′ ∩ Π′′, then Step 1 rejects
with probability at most 0.1, and otherwise we proceed to Step 2, which accepts with probability
at least 0.9 (since in this cases all answers provided by the self-correction procedure are always
correct). On the other hand, if f is ǫ-far from Π′ ∩Π′′, then we consider two cases.

Case 1: f is min(ǫ, 1/3q)-far from Π′. In this case, Step 1 rejects with probability at least 0.9.

Case 2: f is min(ǫ, 1/3q)-close to Π′. Let f ′ ∈ Π′ be min(ǫ, 1/3q)-close to f , and note that f ′ 6∈ Π′′

(since otherwise f would have been ǫ-close to Π′∩Π′′). Hence, the decision procedure employed
in Step 2 would have rejected f ′ with probability at least 0.9, since f ′ ∈ Π′ \ Π′′. However,
this procedure is not invoked with f ′, but is rather provided with answers according to the
self-correction procedure for Π′. Still, since f is 1/3q-close to f ′, each of these answers agrees
with f ′ with probability at least 1 − 0.1/q′′, which implies that with probability at least 0.9
all q′′ answers agree with f ′ ∈ Π′ \ Π′′. We conclude that Step 2 rejects with probability at
least 0.9 · 0.9.

Combining the two cases, we infer that any function that is ǫ-far from Π′ ∩ Π′′ is rejected with
probability greater than 0.8, and the theorem follows.

17
Advanced comment: In light of the latter fact, we would have gained nothing by considering a promise problem

version of testing Π′′ when promised that the input is in Π′ (rather than a tester for Π′′ or a solver for (Π′, Π′′). By
such a version we mean the task of distinguishing between inputs in Π′ ∩Π′′ and inputs in Π′ that are ǫ-far from Π′′,
where ǫ is a given proximity parameter as in standard testing problems. As stated above, if ǫ ≤ 1/q, then all inputs
in Π′ \ Π′′ are ǫ-far from Π′′ ∩ Π′.

18Specifically, we invoke the self-correction procedure for O(log q′′) times and take the value that appears most
frequently. Note that each invocation returns the correct value with probability at least 1 − q · 1/3q = 2/3.
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Detour: on the complexity of testing self-correctable properties. An interesting feature
of self-correctable properties is that the complexity of testing them is inversely proportional to the
proximity parameter. This is due to the fact that ǫ-testing a property that consists of functions
that are randomly self-reducible by t queries reduces to 1/2t-testing this property.19

Theorem 12 (proximity parameter reduction for self-correctable properties): Suppose that the
functions in Π are randomly self-reducible by t queries, and that Π has a tester of query complexity
q : N × (0, 1] → N. Then, Π has a tester of query complexity q′ : N × (0, 1] → N such that
q′(n, ǫ) = q(n, 1/2t) + O(t/ǫ). Furthermore, one-sided error probability is preserved.

Proof Sketch: On input f , the new tester proceeds as follows.20

1. Invoke the tester (hereafter denoted T ) guaranteed by the hypothesis with proximity param-
eter 1/2t. If T reject, then the new tester rejects.

2. Uniformly select a sample S of O(1/ǫ) elements in the domain of f , and compare the value of
f on each of these points to the value obtained via the self-correction procedure (which relies
on the random self-reducibility of Π).

Specifically, let Q and R denote the query-generating and recovery algorithms guaranteed by
the hypothesis. Then, for each x ∈ S, we compare the value of f(x) to R(x, r1, ..., rt, f(r1), ..., f(rt)),
where (r1, ..., rt)← Q(x), and accept if and only if no mismatch is found.

Note that when Step 2 is employed to any f ∈ Π, no mismatch is ever found. On the other hand,
any function that is 1/2t-far from Π is rejected in Step 1 with probability at least 2/3. Lastly,
suppose that the distance of f from Π denoted δ, resides in the interval (ǫ, 1/2t]. Let f ′ ∈ Π be at
distance δ from f , and let D denote the domain of f . In this case, we have

Prx∈D, (r1,...,rt)←Q(x)[f(x) 6= R(x, r1, ..., rt, f(r1), ..., f(rt))]

≥ Prx∈D, (r1,...,rt)←Q(x)[f(x) 6= f ′(x) = R(x, r1, ..., rt, f(r1), ..., f(rt))]

≥ Prx∈D[f(x) 6= f ′(x)] ·min
x∈D

{
Pr(r1,...,rt)←Q(x)[f

′(x) = R(x, r1, ..., rt, f(r1), ..., f(rt))]
}

≥ ǫ · (1− t · δ),

which is at least ǫ/2. The theorem follows.

3 Testing juntas

Here we consider testing a property of Boolean functions f : {0, 1}ℓ → {0, 1} called k-junta, which
consists of functions that depend on at most k of their variables. Indeed, the notion of a k-junta
generalizes the notion of a dictatorship, which corresponds to the special case of k = 1. For k ≥ 2,
the set of k-juntas is a proper superset of the set of k-monomials, which of course says nothing
about the relative complexity of testing these two sets.

19
Advanced comment: Actually, we can use a c/t-tester, for any constant c > 1. The point is that, when the

function is c/t-close to the property, we only need the self-corrector to yield the correct value with positive probability
(rather than with probability greater than 1/2).

20An alternative presentation views Step 2 as repeating a (t + 1)-query proximity-oblivious tester of detection
probability ̺(δ) = 1 − t · δ (see Exercise 6) for O(1/ǫ) times. Indeed, we can obtain a (q(n, 1/2t) + t + 1)-query
proximity-oblivious tester of detection probability ̺(δ) = Ω(δ) for Π.
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Definition 13 (k-juntas): A function f : {0, 1}ℓ → {0, 1} is called a junta of size k (or a k-
junta) if there exist k indices i1, ..., ik ∈ [ℓ] and a Boolean function f ′ : {0, 1}k → {0, 1} such that
f(x) = f ′(xi1 · · · xik) for every x = x1 · · · xℓ ∈ {0, 1}

ℓ.

In order to facilitate the exposition, let us recall some notation: For I = {i1, ..., it} ⊆ [ℓ] such that
i1 < · · · < it and x ∈ {0, 1}, let xI denote the t-bit long string xi1 · · · xit . Then, the condition
in Definition 13 can be restated as asserting that there exists a k-set I ⊆ [ℓ] and a function
f ′ : {0, 1}k → {0, 1} such for every x ∈ {0, 1}ℓ it holds that f(x) = f ′(xI). In other words, for
every x, y ∈ {0, 1}ℓ that satisfy xI = yI it holds that f(x) = f(y). An alternative formulation
of this condition asserts that there exists a (ℓ − k)-set U ⊆ [ℓ] that has zero influence, where the
influence of a subset S on f equals the probability that f(x) 6= f(y) when x and y are selected
uniformly subject to x[ℓ]\S = y[ℓ]\S (see Definition 15.1). Indeed, the two alternatives are related
via the correspondence between U and [ℓ] \ I.

Note that the number of k-juntas is at most
(ℓ
k

)
· 22k

, and so this property can be ǫ-tested by
O(2k + k log ℓ)/ǫ queries via proper learning (see first lecture). Our aim is to present an ǫ-tester of
query complexity poly(k)/ǫ.

The key observation is that if f is a k-junta, then any partition of [ℓ] will have at most k subsets
that have positive influence. On the other hand, as will be shown in the proof of Theorem 15, if f
is δ-far from being a k-junta, then a random partition of [ℓ] into O(k2) subsets is likely to result in
more than k subsets that each have Ω(δ/k2) influence on the value of the function. To gain some
intuition regarding the latter fact, suppose that f is the exclusive-or of k + 1 variables. Then, with
high constant probability, the locations of these k + 1 variables will reside in k + 1 different subsets
of a random O(k2)-way partition, and each of these subsets will have high influence. The same
holds if f has k + 1 variables that are each quite influential (but this is not necessarily the case,
in general, and the proof will have to deal with that). In any case, the aforementioned dichotomy
leads to the following algorithm.

Algorithm 14 (testing k-juntas): On input parameters ℓ, k and ǫ, and oracle access to a function
f : {0, 1}ℓ → {0, 1}, the tester sets t = O(k2) and proceeds as follows.

1. Select a random t-way partition of [ℓ] by assigning to each i ∈ [ℓ] a uniformly selected j ∈ [t],
which means that i is placed in the jth part.

Let (R1, ..., Rt) denote the resulting partition.

2. For each j ∈ [t], estimate the influence of Rj on f , or rather check whether Rj has positive

influence on f . Specifically, for each j ∈ [t], select uniformly m
def
= Õ(t)/ǫ random pairs (x, y)

such that x and y agree on the bit positions in Rj = [ℓ] \Rj (i.e., xRj
= yRj

), and mark j as

influential if f(x) 6= f(y) for any of these pairs (x, y).

3. Accept if and only if at most k indices were marked influential.

The query complexity of Algorithm 14 is t ·m = (̃t2)/ǫ = Õ(k4)/ǫ.

Theorem 15 (analysis of Algorithm 14): Algorithm 14 is a one-sided tester for k-juntas.

Proof: For sake of good order, we start by formally presenting the definition of the influence of a
set on a Boolean function.21

21Recall that, for S ⊆ [ℓ] and x ∈ {0, 1}ℓ, we let xS denote the |S|-bit long string xi1 · · ·xis , where S = {i1, ..., is}
and i1 < · · · < is. Also, S = [ℓ] \ S.
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Definition 15.1 (influence of a set): The influence of a subset S ⊆ [ℓ] on the function f : {0, 1}ℓ →
{0, 1}, denoted IS(f), equals the probability that f(x) 6= f(y) when x and y are selected uniformly
subject to xS = yS; that is,

IS(f)
def
= Prx,y∈{0,1}ℓ:x

S
=y

S
[f(x) 6= f(y)]. (5)

Note that the substrings xS and yS are uniformly and independently distributed in {0, 1}|S|, whereas

the substring xS = yS is uniformly distributed in {0, 1}|S| (independently of xS and yS). Hence,
IS(f) equals the probability that the value of f changes when the argument is “re-randomized” in
the locations that correspond to S, while fixing the random value assigned to the locations in S.

In other words, IS(f) equals the expected value of Prx,y∈Ω
S,r

[f(x) 6= f(y)], where ΩS,r
def
= {z ∈

{0, 1}ℓ : zS = r} and the expectation is taken uniformly over all possible choices of r ∈ {0, 1}|S|;
that is,

IS(f) = E
r∈{0,1}|S|

[
Prx,y∈{0,1}ℓ:x

S
=y

S
=r[f(x) 6= f(y)]

]
(6)

The following two facts are quite intuitive, but their known proofs are quite tedious:22

Fact 1 (monotonicity): IS(f) ≤ IS∪T (f).

Fact 2 (sub-additivity): IS∪T (f) ≤ IS(f) + IT (f).

Now, if f is a k-junta, then there exists a k-subset J ⊆ [ℓ] such that [ℓ] \ J has zero influence on f ,
and so Algorithm 14 always accepts f (since for every partition of [ℓ] at most k parts intersect J).23

On the other hand, we first show (see Claim 15.2) that if f is δ-far from a k-junta, then for every
k-subset J ⊆ [ℓ] it holds that [ℓ] \ J has influence greater than δ on f . This, by itself, does not
suffice for concluding that Algorithm 14 rejects f (w.h.p.), but it will be used towards establishing
the latter claim.

Claim 15.2 (influences of large sets versus distance from small juntas): If there exists a k-subset
J ⊆ [ℓ] such that [ℓ] \ J has influence at most δ on f , then f is δ-close to being a k-junta.

Proof: Fixing J as in the hypothesis, let g(x)
def
= maju:uJ=xJ

{f(u)}. Then, on the one hand, g is
a k-junta, since the value of g(x) depends only on xJ . On the other hand, we shall show that f is
δ-close to g. Let g′ : {0, 1}k → {0, 1} be such that g(x) = g′(xJ) for every x. Then

Prx∈{0,1}ℓ [f(x) = g(x)] = Prx∈{0,1}ℓ [f(x) = g′(xJ)]

= Eα∈{0,1}k
[
Prx:xJ=α[f(x) = g′(α)]

]

= Eα∈{0,1}k [pα]

where pα
def
= Prx:xJ=α[f(x) = g′(α)]. Let Z denote the uniform distribution over {z ∈ {0, 1}ℓ :

zJ = α}. Then, pα = Pr[f(Z)= g′(α)] = maxv{Pr[f(Z)= v]}, by the definition of g′ (and g). It

22See [15, Prop. 2.4] or Exercise 11. An alternative proof appears in [6, Cor. 2.10], which relies on [6, Prop. 2.9].
Indeed, a simpler proof will be appreciated.

23This uses Fact 1. Specifically, for R such that R ∩ J = ∅, it holds that IR(f) ≤ I[ℓ]\J(f) = 0.
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follows that the collision probability of f(Z), which equals
∑

v Pr[f(Z)= v]2 = p2
α + (1 − pα)2, is

at most pα. Hence,

Prx∈{0,1}ℓ [f(x) = g(x)] = Eα∈{0,1}k [pα]

≥ Eα∈{0,1}k

[
∑

v

Prz:zJ=α[f(z) = v]2

]

= Eα∈{0,1}k [Prx,y:xJ=yJ=α[f(x) = f(y)] ]

= Prx,y:xJ=yJ
[f(x) = f(y)]

= 1− IJ(f).

Recalling that IJ(f) ≤ δ, it follows that f is δ-close to g, and recalling that g is a k-junta the claim
follows.

Recall that our goal is to prove that any function that is ǫ-far from being a k-junta is rejected
by Algorithm 14 with probability at least 2/3. Let us fix such a function f for the rest of the proof,
and shorthand IS(f) by IS . By Claim 15.2, every (ℓ− k)-subset has influence greater than ǫ on f .
This noticeable influence may be due to one of two cases:

1. There are at least k+1 elements in [ℓ] that have each a noticeable influence (i.e., each singleton
that consists of one of these elements has noticeable influence).

Fixing such a collection of k + 1 influential elements, a random t-partition is likely to have
these elements in separate parts (since, say, t > 10 · (k + 1)2), and in such a case each of
these parts will have noticeable influence, which will be detected by the algorithm and cause
rejection.

2. Otherwise (i.e., at most k elements have noticeable influence), the set of elements that are
individually non-influential is of size at least ℓ − k, and thus contains an (ℓ − k)-subset,
which (by Claim 15.2) must have noticeable influence. It is tempting to think that the t
parts in a random t-partition will each have noticeable influence, but proving this fact is not
straightforward at all. Furthermore, this fact is true only because, in this case, we have a
set that has noticeable influence but consists of elements that are each of small individual
influence.

Towards making the foregoing discussion precise, we fix a threshold τ = c · ǫ/t, where c > 0 is a
universal constant (e.g., c = 0.01 will do), and consider the set of elements H that are “heavy”
(w.r.t individual influence); that is,

H
def
= {i ∈ [ℓ] : I{i} > τ}. (7)

The easy case is when |H| > k. In this case (and assuming t ≥ 3 ·(k+1)2), with probability at least
5/6, the partition selected in Step 1 has more than k parts that intersect H (i.e., Pr(R1,..,Rt)[|{i ∈
[t] : Ri ∩H 6= ∅}| > k] ≥ 5/6).24 On the other hand, for each j ∈ [t] such that Rj ∩H 6= ∅, it holds
that IRj

≥ mini∈H{I{i}} > cǫ/t, where the first inequality uses Fact 1. Hence, with probability at

24Let H ′ be an arbitrary (k + 1)-subset of H . Then, the probability that some Rj has more than a single element
of H ′ is upper bounded by

`

k+1
2

´

· 1/t < (k + 1)2/2t.
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least 1 − (1 − cǫ/t)m ≥ 1 − (1/6t), Step 2 (which estimates IRj
by m = Õ(t)/ǫ experiments) will

mark j as influential, and consequently Step 3 will reject with probability at least (5/6)2 > 2/3.
We now turn to the other case, in which |H| ≤ k. By Claim 15.2 (and possibly Fact 1)25, we

know that IH > ǫ. Our aim is to prove that, with probability at least 5/6 over the choice of the
random t-partition (R1, ..., Rt), there are at least k + 1 indices j such that IRj

> cǫ/t. In fact, we
prove something stronger.26

Lemma 15.3 (on the influence of a random part): Let H be as in Eq. (7) and IH > ǫ. Then, for
every j ∈ [t], it holds that Pr[IRj∩H > ǫ/2t] > 0.9.

(We comment that the same proof also establishes that Pr[IRj∩H = Ω(ǫ/t log t)] > 1 − (1/6t),

which implies that with probability at least 5/6 each Rj has influence Ω(ǫ/t log t).)27 Calling j good
if IRj

> cǫ/t, Lemma 15.3 implies that the expected number of good j’s it at least 0.9t. Hence,

with probability at least 5/6, there exist 0.9t−(5/6)t
1/6 = 0.4t > k good j’s, and the bound on the

rejection probability of the algorithm holds (as in the easy case).

Proof: Denote R = Rj, and recall that each i ∈ [ℓ] is placed in R with probability 1/t, independently
of all other choices.

Things would have been simple if influence was additive; that is, if it were the case that IS =∑
i∈S I{i}. In this case, applying a multiplicative Chernoff Bound28 would have yielded the desired

bound. Specifically, defining random variables, ζ1, ...., ζℓ, such that ζi
def
= ζi(R) equals I{i} if i ∈

(R \ H) and zero otherwise, and observing that
∑

i∈[ℓ] E[ζi] > ǫ/t and ζi ∈ [0, τ ], we would have
obtained

PrR




∑

i∈[ℓ]

ζi(R) < ǫ/2t


 < exp(−Ω(τ−1ǫ/t))

which is smaller than 0.1 when c = tτ/ǫ > 0 is small enough. However, IS =
∑

i∈S I{i} does not
hold in general, and for this reason the proof of the current lemma is not so straightforward. In
particular, we shall use the following fact about the influence of sets.

Fact 3 (diminishing marginal gain): For every S, T,M ⊆ [ℓ] and every f , it holds that

IS∪T∪M (f)− IS∪T (f) ≤ IS∪M(f)− IS(f).

(This fact may not be as intuitive as Facts 1 and 2, but it is quite appealing; see Exercise 12 or [15,
Prop. 2.5].)

25Fact 1 is used in case |H | < k. In this case we consider an arbitrary k-superset H ′ ⊃ H and use IH ≥ I
H′ > ǫ.

Alternatively, one could have stated Claim 15.2 with respect to set of size at most k, while observing that its current
proof would have held intact.

26The significant strengthening is in arguing on each individual Rj rather than on all of them. The fact that the
lemma refers to IRj∩H rather than to IRj

is less significant. While the weaker form suffices for our application, we

believe that the stronger form is more intuitive (both as a statement and as a reflection of the actual proof).
27Using this bound would have required to use (in Step 2) a value of m that is a factor of log t larger.
28The standard formulation of the multiplicative Chernoff Bound refers to independent random variables, ζ1, ...., ζℓ,

such that ζi ∈ [0, 1] and µ =
P

i∈[ℓ] E[ζi], and asserts that for γ ∈ (0, 1) it holds that Pr

h

P

i∈[ℓ] ζi < (1 − γ) · µ
i

<

exp(−Ω(γ2µ)). We shall use ζi ∈ [0, τ ], and thus have Pr

h

P

i∈[ℓ] ζi < (1 − γ) · µ
i

< exp(−Ω(γ2τ−1µ)).
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Now, we consider the following (less straightforward) sequence of random variables, ζ1, ...., ζℓ,

such that ζi
def
= ζi(R) equals I[i]\H − I[i−1]\H if i ∈ R and zero otherwise.29 Observe that

1. The ζi’s are independent random variables, since the value of ζi only depends on whether or
not i ∈ R.

2. Each ζi is assigned values in the interval [0, τ ], since 0 ≤ I[i]\H − I[i−1]\H ≤ τ , where the
first inequality is due to Fact 1 and the second inequality follows by combining Fact 2 and
I{i}\H ≤ τ . (Indeed, if i ∈ H, then I{i}\H = I∅ = 0, and otherwise I{i}\H = I{i} ≤ τ .)

3. The expected value of
∑

i∈[ℓ] ζi equals IH/t, since E[ζi] = (I[i]\H − I[i−1]\H)/t whereas∑
i∈[ℓ](I[i]\H − I[i−1]\H) equals I[ℓ]\H − I∅ = IH .

4. As shown next, for every fixed set F , it holds that

∑

i∈[ℓ]

ζi(F ) ≤ IF∩H . (8)

Therefore, PrR

[
IR∩H > ǫ/2t

]
≤ Pr

[∑
i∈[ℓ] ζi(F ) > ǫ/2t

]
, and so upper-bounding the latter

probability suffices for establishing the lemma.

The proof of Eq. (8) uses Fact 3, and proceeds as follows:30

∑

i∈[ℓ]

ζi(F ) =
∑

i∈F

(I[i]\H − I[i−1]\H)

=
∑

i∈F\H

(I([i−1]\H)∪{i} − I[i−1]\H)

≤
∑

i∈F\H

(I(([i−1]\H)∩F )∪{i} − I([i−1]\H)∩F ))

=
∑

i∈[ℓ]

(I([i]\H)∩F − I([i−1]\H)∩F )

= I([ℓ]\H)∩F

= IF∩H

where the inequality uses Fact 3 (with S = ([i−1]\H)∩F , T = ([i−1]\H)∩F and M = {i},
and so S ∪ T = [i− 1] \H).

Hence, ζ =
∑

i∈[ℓ] ζi is the sum of ℓ independent random variables, each ranging in [0, cǫ/t], such
that E[ζ] > ǫ/t. Applying a multiplicative Chernoff Bound implies that under these conditions it
holds that Pr[ζ ≤ ǫ/2t] < exp(−Ω(1/c)) < 0.1, and the lemma follows (by Eq. (8), when using
F = R and recalling that ζi = ζi(R)).

Let us recap. Assuming that f is ǫ-far from being a k-junta, we have defined the set H (in
Eq. (7)) and showed that if |H| > k then the algorithm rejects with probability at least 5/6.

29Indeed, we define [0] = ∅, which implies I[0]\H = I∅ = 0.
30The second equality (i.e., moving from summation over F to summation over F \H) uses the fact that for every

i ∈ H it holds that [i] \ H = [i − 1] \ H . Likewise, the third equality (i.e., moving from summation over F \ H to
summation over [ℓ]) uses the fact that for every i ∈ H ∪ F it holds that ([i] \ H) ∩ F = ([i − 1] \ H) ∩ F .
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On the other hand, if |H| ≤ k, then the hypothesis of Lemma 15.3 holds, and iit follows that
Pr[IRj

> ǫ/2t] > 0.9 for each j] ∈ [t]. As shown above, this implies that the algorithm rejects with
probability at least 5/6 also in this case. The theorem follows.

Digest. The main difficulty is establishing Theorem 15 is captured by the proof of Lemma 15.3,
which can be abstracted as follows. For a function ν : 2[ℓ] → [0, 1] assigning values to subsets of
[ℓ] such that ν([ℓ]) ≥ ǫ and maxi∈[ℓ]{ν({i})} ≤ τ ≪ ǫ/t, we wish to show that PrR[ν(R) < ǫ/2t] is
small, when R is selected at random by picking each element with probability 1/t independently
of all other elements.31 Of course, this is not true in general, and some conditions must be made
on ν such that PrR[ν(R) < ǫ/2t] is small. The conditions we have used are (1) monotonicity,
(2) sub-additivity, and (3) diminishing marginal gain. These conditions correspond to Facts 1-3,

respectively, which were established for ν(S)
def
= IS(f). Hence, we actually established the following

(which is meaningful only for τ ≪ ǫ/t).

Lemma 16 (Lemma 15.3, generalized): Let ν : 2[ℓ] → [0, 1] be monotone, sub-additive, and having
diminishing marginal gain such that ν([ℓ]) ≥ ǫ and maxi∈[ℓ]{ν({i})} ≤ τ . Suppose that R is selected
at random by picking each element with probability 1/t independently of all other elements. Then,
PrR[ν(R) < ǫ/2t] < exp(−Ω(τ−1ǫ/t)).

Recall that ν is monotone if ν(S∪T ) ≥ ν(S) for all S, T ⊆ [ℓ], it is sub-additive if ν(S∪T ) ≤ ν(S)+
ν(T ) for all S, T ⊆ [ℓ], and it has diminishing marginal gain if ν(S∪T∩M)−ν(S∪T ) ≤ ν(S∪M)−ν(S)
for all S, T,M ⊆ [ℓ],

4 Historical notes, suggested reading, a comment, and exercises

The presentation of testing dictatorship via self-correction (Section 2.1) is based on the work of
Parnas, Ron, and Samorodnitsky [29]. As noted in Section 2.1, the Long Code (presented by Bellare,
Goldreich, and Sudan [4]) yields a family of Boolean functions that coincide with dictatorship
functions when ℓ is a power of two. Interestingly, the monotone dictatorship tester of [29] is almost
identical to the tester of the Long Code presented in [4]. This tester has played a pivotal role in
the PCP constructions of [4] as well as in numerous subsequent PCP constructions including those
in [4, 22, 23, 31, 14, 24, 25, 28].

The problem of testing monomials was also studied by Parnas, Ron, and Samorodnitsky [29],
and the overview provided in Section 2.2 is based on their work. An alternative procedure for
testing monomials is presented in the next lecture (on testing via implicit sampling).

The problem of testing juntas was first studied by Fischer, Kindler, Ron, Safra, and Samorod-
nitsky [15], and the presentation provided in Section 3 is based on their work. Recall that the query
complexity of the k-junta tester presented as Algorithm 14 is Õ(k4)/ǫ. Several alternative testers
are known, culminating in a tester of Blais [6] that has query complexity O(k/ǫ) + Õ(k), which is
almost optimal. For further discussion, see the survey [7].

Self-correction. The self-correction paradigm, as an algorithmic tool towards the construction of
property testers, was introduced by Blum, Luby, and Rubinfeld [8]. The self-correction paradigm

31Indeed, this formulation refers to the case of H = ∅, and captures the essence of Lemma 15.3.
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has been used extensively in constructions of PCP schemes, starting with [9]. As explained in
Section 2.3, this paradigm is based on random self-reducibility, which seems to have first appeared
in the “index calculus” algorithms [1, 26, 30] for the Discrete Logarithm Problem. Random self-
reducibility was extensively used in (the complexity theoretic foundations of) cryptography, starting
with the work of Goldwasser and Micali [21]. (These applications, which have a hardness ampli-
fication flavor, may be viewed as applying self-correction to a hypothetical adversary, yielding an
algorithm that is postulated not to exist, and thus establishing specific limitations on the success
probability of efficient adversaries.)

Comment: Invariances. We note that all properties considered in this lecture are invariant
under a permutation of the variables; that is, for each of these properties Π, the function f :
{0, 1}ℓ → {0, 1} is in Π if and only if for every permutation π : [ℓ]→ [ℓ] the function fπ(x1, ..., xℓ) =
f(xπ(1), ..., xπ(ℓ)) is in Π. (Note that such permutations of the ℓ variables induce a permutation of the

domain {0, 1}ℓ; that is, the permutation π : [ℓ] → [ℓ] induces a permutation Tπ : {0, 1}ℓ → {0, 1}ℓ

such that Tπ(x) = (xπ(1), ..., xπ(ℓ)).)

Basic exercises

Exercise 1 states a well-known and widely used classic.

Exercise 1 (The Schwartz–Zippel Lemma [32, 33, 10]): Prove the following two claims.

Large field version: Let p : Fm → F be a non-zero m-variate polynomial of total degree d over a
finite field F . Then, Prx∈Fm [p(x)=0] ≤ d/|F|.

Small field version: Let p : Fm → F be a non-zero m-variate polynomial of total degree d over a
finite field F . Then, Prx∈Fm [p(x)=0] ≤ 1− |F|−d/(|F|−1).

Note that the individual degree of p is at most |F| − 1, and so d ≤ m · (|F| − 1). The large field
version, which is meaningful only for |F| > d, is called the Schwartz–Zippel Lemma.32 When
establishing Eq. (4), we used the small field version with |F| = 2.

Guideline: Both versions are proved by induction on the number of variables, m. The base case of
m = 1 follows by the fact that p 6≡ 0 has at most d roots, whereas in the small field version we use
the fact that d

|F| ≤ 1− |F|−d/(|F|−1) for every d ∈ [0, |F| − 1] (which is trivial for |F| = 2).33 In the

induction step, assuming that p depends on all its variables, write p(x) =
∑d

i=0 pi(x1, ..., xm−1) ·x
i
m,

where pi is an (m − 1)-variate polynomial of degree at most d− i, and let i be the largest integer
such that pi is non-zero. Then, using x′ = (x1, ..., xm−1), observe that

Prx∈Fm [p(x) = 0] ≤ Prx′∈Fm−1 [pi(x
′) = 0] + Prx′∈Fm−1 [pi(x

′) 6= 0] ·Prx∈Fm[p(x) = 0|pi(x
′) 6= 0].

Using the induction hypothesis, prove the induction claim (in both versions).34

32There is also a version for infinite fields. It asserts that for every finite set S such that S ⊆ F , where F is an
arbitrary field (which is possibly infinite), and for any non-zero m-variate polynomial p : Fm → F of total degree d,
it holds that Prx∈Sm [p(x)=0] ≤ d/|S|.

33In general, for a = 1/|F| and b = (ln |F|)/(|F|−1), we need to show that f(x)
def
= 1−ax−e−bx is non-negative for

every integer x ∈ [0, |F|−1]. This can be shown by observing that f decreases at x if and only if x > τ
def
= (1/b) ln(b/a).

Since τ > 0, this means that minx∈[0,|F|−1]{f(x)} equals min(f(0), f(|F| − 1)) = 0.
34A rather careless approach suffices for the large field case (i.e., we can use Prx[p(x) = 0] ≤ Prx′ [pi(x

′) = 0] +
Prx[p(x) = 0|pi(x

′) 6= 0]), but not for the small field case (where one better keep track of the effect of Prx′ [pi(x
′) 6= 0]).
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Exercise 2 (a variant of Algorithm 3): Consider a variant of Algorithm 3 in which one selects
uniformly i ∈ [3] and performs only Step i of Algorithm 3, while accepting if and only if this step
did not reject. Show that this four-query algorithm is a one-sided error proximity oblivious tester
for monotone dictatorship with rejection probability ̺(δ) = Ω(δ).

Guideline: Reduce the analysis to the statement of Theorem 4.

Exercise 3 (random self-reducibility mandates distance): Prove that if Π is random self-reducible
by q queries, then for every distinct g, h ∈ Π it holds that δ(g, h) ≥ 1/q.

Guideline: This can be proved by invoking Theorem 10 twice (with z on which g and h disagree):
In the first invocation we use f = f ′ = g and ǫ = 0, and in the second invocation (f, f ′) = (g, h)
and ǫ = δ(g, h) < 1/q.

Exercise 4 (testing intersection with a self-correctable property): Let Π′ and Π′′ be sets of func-
tions. Suppose that functions in Π′ are randomly self-reducible by q queries, and that Π′ and Π′′

are ǫ-testable using q′(ǫ) and q′′(ǫ) queries, respectively. Then, for every ǫ0 < 1/q, the property
Π′ ∩Π′′ is ǫ-testable using O(q′(min(ǫ, 1/3q))) + q · Õ(q′′(ǫ0)) queries.

Guideline: Using the fact that Π′ has distance at least 1/q (see Exercise 3), show that the tester for
Π′′ implies that the promise problem (Π′,Π′′) can be solved in query complexity q′′(ǫ0). Finally,
invoke Theorem 11.

Exercise 5 (generalizing Theorem 10): Consider a relaxation of Definition 9 in which R is allowed
to be randomized as long as it recovers the correct value with probability at least 2/3. Suppose that
functions in Π are randomly self-reducible by q queries, in this relaxed sense. Prove that for every
f that is ǫ-close to some f ′ ∈ Π and for every z ∈ D, self-correction succeeds with probability at
least 2

3 · (1− q · ǫ); that is,

Pr(r1,...,rq)←Q(z)[R(z, r1, ..., rq , f(r1), ..., f(rq)) = f ′(z)] ≥
2

3
· (1− q · ǫ).

Exercise 6 (POTs for self-correctable properties – take 1):35 Show that if the functions in Π
are randomly self-reducible by t queries, then Π has a (t + 1)-query proximity-oblivious tester of
detection probability ̺(δ) = (1 − t · δ) · δ. (Indeed, this is meaningful only to functions that are
1/t-close to Π, and Π may be hard to test in general (i.e., for δ ≥ 1/t).)36

Guideline: The POT selects uniformly a random element in the function’s domain and compares
the value of the function on it to the value obtained via the self-correction procedure.

Exercise 7 (POTs for self-correctable properties – take 2): In continuation to Exercise 6, suppose
that the functions in Π are randomly self-reducible by t queries. Furthermore, suppose that the
recovery algorithm is extremely sensitive to the function values in the sence that for every sequence
(z, r1, ..., r1, v1, ...., v1) and for every i ∈ [t], the mapping

z 7→ R(z, r1, ..., rt, v1, ..., vi−1, z, vi+1, ..., vt)

35See proof of Theorem 12.
36See results regarding k-linearity in the lecture notes on lower bound techniques.
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is a bijection. Show that Π has a (t + 1)-query proximity-oblivious tester of detection probability
̺(δ) = (t + 1) · (1− t · δ) · δ. (Indeed, the partial analysis of the linearity tester follows as a special
case.)

Guideline: The tester is the same as in Exercise 6, but detection is due not only to the case that
the value of the function at the selected point is wrong but also to the cases that correspond the
corruption of a single value at one of the queries made by the self-correction procedure.

Additional exercises

The following exercises actually present proof sketches of various results and facts. Exercises 8–10
outline reductions of the task of testing affine subspaces to the task of testing linearity. They are
highly recommended. Exercises 11 and 12 call for proving Facts 1-3 that were used in the proof
of Theorem 15. These facts are of independent interest, and proofs that are simpler and/or more
intuitive than those presented in our guidelines will be greatly appreciated.

Exercise 8 (testing affine subspaces – a reduction to the linear case):37 Show that testing whether
a Boolean function h : {0, 1}ℓ → {0, 1} describes a (ℓ− k)-dimensional affine subspace (i.e., h−1(1)
is such an affine space) can be reduced to testing whether a Boolean function h′ : {0, 1}ℓ → {0, 1}
describes a (ℓ − k)-dimensional linear subspace (i.e., {x : h′(x)= 1} is such a linear space), where
the reduction introduces an additive overhead of O(2k) queries.

Guideline: Note that if h describes a (ℓ− k)-dimensional affine subspace, then (w.h.p.) a sample of
O(2k) random points in {0, 1}ℓ contains a point on which h evaluates to 1. On the other hand, for

any u such that h(u) = 1, consider the function h′(x)
def
= h(x + u).

Exercise 9 (reducing testing linear subspaces to testing linearity):38 Let h : {0, 1}ℓ → {0, 1} be
a Boolean function. Show that testing whether h−1(1) is an (ℓ − k)-dimensional linear subspace
is reducible to testing linearity, while increasing the complexities by a factor of 2k. Specifically,

define a function g : {0, 1}ℓ → {0, 1}k ∪ {⊥} such that if H
def
= h−1(1) is linear then g (ranges

over {0, 1}k and) is linear and g−1(0k) = H. The definition of g is based on any fixed sequence of
linearly independent vectors v(1), ..., v(k) ∈ {0, 1}ℓ such that for every non-empty I ⊆ [k] it holds
that

∑
i∈I v(i) 6∈ H. (If H is an (ℓ − k)-dimensional affine space, then these v(i)’s form a basis

for a k-dimensional space that complements H.) Fixing such a sequence, define g : {0, 1}ℓ →
{0, 1}k ∪{⊥} such that g(x) = (c1, ..., ck) if (c1, ..., ck) ∈ {0, 1}k is the unique sequence that satisfies
x +

∑
i∈[k] civ

(i) ∈ H and let g(x) = ⊥ otherwise. (Whenever we say that g is affine, we mean, in

particular, that it never assumes the value ⊥.)39

• Show that H is an (ℓ − k)-dimensional linear space if and only if g (as defined above) is a
surjective linear function.

• Show that if H is an (ℓ − k)-dimensional linear space, then a sequence as underlying the
definition of g can be found (w.h.p.) by making O(2k) queries to h.

37Based on [20, Sec. 4.1].
38Based on [20, Sec. 4.2]. The argument can be generalized to the case of affine subspaces, while also using a

reduction of testing affinity to testing linearity (of functions); but, in light of Exercise 8, such a generalization is not
needed.

39Indeed, when emulating g for the linearity tester, we shall reject if we ever encounter the value ⊥.
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• Assuming that g is linear, show that testing whether it is surjective can be done by making
O(2k) queries to h. (It is indeed easier to perform such a check by using O(2k) queries to g.)

Combining the above ideas, present the claimed reduction. Note that this reduction has two-sided
error, and that the resulting tester has query complexity O(2k/ǫ) (rather than O(1/ǫ), all in case
ǫ < 2−k+2).40

Guideline: Let V be a k-by-ℓ full rank matrix such that cV ∈ H implies c = 0k (i.e., the rows of
V are the v(i)’s of the hypothesis). Recall that g : {0, 1}ℓ → {0, 1}k is defined such that g(x) = c
if c ∈ {0, 1}k is the unique vector that satisfies x + cV ∈ H (and g(x) = ⊥ if the number of such
vectors is not one). Note that g−1(0k) ⊆ H always holds (since g(x) = c implies x + cV ∈ H),
and that when g never assumes the value ⊥ equality holds (since in this case x + cV ∈ H implies
that g(x) = c). Now, on the one hand, if H is an (ℓ− k)-dimensional linear space, then, for some
full-rank (ℓ−k)-by-ℓ matrix G, it holds that H = {yG : y ∈ {0, 1}ℓ−k}. In this case, g is a surjective
linear function (since for every x there exists a unique representation of x as yG+cV , which implies
x + cV = yG ∈ H, and so g(x) = c). On the other hand, if g is a surjective linear function (i.e.,
g(x) = xT for some full-rank ℓ-by-k matrix T ), then H = {x : g(x) = 0k}, which implies that H
is an (ℓ− k)-dimensional linear subspace. It follows that if g is ǫ-close to being a surjective linear
function, then g−1(0k) is ǫ-close to being an ((ℓ − k)-dimensional) linear space (i.e., the indicator
functions of these sets are ǫ-close). In light of the above, consider the following algorithm.

1. Using O(2k) queries to h, try to find a k-by-ℓ matrix V such that for any non-zero c ∈ {0, 1}k

it holds that cV 6∈ H. (The matrix V can be found in k iterations such that in the ith iteration
we try to find a vector v(i) such that

∑
j cjv

(j) 6∈ H holds for every (c1, ..., ci) ∈ {0, 1}
i \{0i}.)

If such a matrix V is found, then proceed to the next step. Otherwise, reject.

2. Test whether the function g : {0, 1}ℓ → {0, 1}k (defined based on this V ) is linear, and reject
if the linearity tester rejects. When the tester queries g at x, query h on x + cV for all
c ∈ {0, 1}k , and answer accordingly; that is, the answer is c if c is the unique vector satisfying
h(x+cV ) = 1, otherwise (i.e., g(x) = ⊥) the execution is suspended and the algorithm rejects.

3. Test whether g is surjective. Assuming that g is linear, the task can be performed as follows.

(a) Select uniformly at random a target image c ∈ {0, 1}k .

(b) Select uniformly at random a sample S of t = O(2k) elements in {0, 1}ℓ, and accept if
and only if there exists x ∈ S such that x + cV ∈ H (i.e., g(x) = c).

We stress that we do not compute g at x, which would have required 2k queries to h,
but rather check whether g(x) = c by making a single query to h (i.e., we query h at
x + cV ).

Exercise 10 (improving the efficiency of the reduction of Exercise 9):41 Let h : {0, 1}ℓ → {0, 1} be
a Boolean function. In Exercise 9, we reduced ǫ-testing whether h−1(1) is an (ℓ − k)-dimensional
linear subspace to ǫ-testing the linearity of a function g, where the value of g at any point can be

40Needless to say, we would welcome a one-sided error reduction. Note that the case ǫ ≥ 2−k+2 can be handled as
in Algorithm 6. A complexity improvement for the main case (of ǫ < 2−k+2) appears in Exercise 10.

41Based on [20, Sec. 4.3], while being inspired by [18] (as presented in [16, Sec. 7.1.3]). Again, the argument can
be generalized to the case of affine subspaces.
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computed by making 2k queries to h. (Indeed, that reduction made O(2k) additional queries to h.)
This yields an ǫ-tester of time complexity O(2k/ǫ) for testing linear subspaces. Recall that, for every
ǫ0 < 1/4, if g is ǫ0-close to being a linear function, then it is ǫ0-close to a unique linear function g′,
which can be computed by self-correction of g (where each invocation of the self-corrector makes two
queries to g and is correct with probability at least 1− 2ǫ0). This suggests the following algorithm.

1. Invoke the algorithm of Exercise 9 with proximity parameter set to a suyfficiently small con-
stant ǫ0 > 0. If the said invocation rejects, then reject. Otherwise, let V be the matrix found
in Step 1 of that invocation, and let g be the corresponding function. Let g′ denote the linear
function closest to g.

2. Test that h is ǫ-close to h′ : {0, 1}ℓ → {0, 1}, where h′(x) = 1 if and only if g′(x) = 0k.

We implement this step in complexity Õ(1/ǫ) by taking a sample of m = O(1/ǫ) pairwise
independent points in {0, 1}ℓ such that evaluating g′ on these m points only requires time
O(m + 2k · Õ(log m)). Specifically, for t = ⌈log2(m + 1)⌉, select uniformly s(1), ...., s(t) ∈
{0, 1}ℓ, compute each g′(s(j)) via self-correcting g, with error probability 0.01/t, and use the
sample points r(J) =

∑
j∈J s(j) for all non-empty subsets J ⊆ [t].

Assuming that g′ is surjective, show that the foregoing algorithm constitutes an ǫ-tester of time
complexity O(ǫ−1 + 2k · Õ(log(1/ǫ))) for (ℓ− k)-dimensional linear subspaces. The assumption can
be removed by slightly augmenting the algorithm.

Guideline: Note that g′(
∑

j∈J s(j)) =
∑

j∈J g′(s(j)), and show that the r(J)’s are pairwise indepen-
dent.

Exercise 11 (the influence of sets is monotone and sub-additive): Prove that for every S, T ⊆ [ℓ]
and every f : {0, 1}ℓ → {0, 1} it holds that

1. IS(f) ≤ IS∪T (f).

2. IS∪T (f) ≤ IS(f) + IT (f).

Guideline: The key observation is that IS(f) equals twice the expectation over r of Vz∈{0,1}ℓ:z
S
=r

S
[f(z)],

where r is distributed uniformly in {0, 1}ℓ; that is,

0.5 · IS(f) = Er∈{0,1}ℓ

[
Vz∈{0,1}ℓ:z

S
=r

S
[f(z)]

]
. (9)

This is the case since

IS(f) = Er∈{0,1}ℓ

[
Prx,y∈{0,1}ℓ:x

S
=y

S
=r

S
[f(x) 6= f(y)]

]

= Er∈{0,1}ℓ [2 · pr · (1− pr)]

where pr
def
= Prz∈{0,1}ℓ:z

S
=r

S
[f(z) = 1], while observing that Vz∈{0,1}ℓ:z

S
=r

S
[f(z)] = pr · (1 − pr).

The two parts of the exercise are proven by manipulation of the relevant quantities when expressed
as expectation of variances (i.e., as in Eq. (9)).

Part 1 is proved by considering, without loss of generality, the case that S and T are disjoint
(since otherwise we can use S and T \ S). When proving it, use the “law of total variance”, which
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considers a random variable Z that is generated by first picking x← X and outputting Zx, where
X and the Zx’s are independent random variables. The said law asserts that the variance of Z
(i.e., V[Z]) equals Ex←X [V[Zx]]+Vx←X [E[Zx]] (and its proof is via striaghtforward manipulations,
which only use the definition of variance).42 Now, assume, for simplicity of notation, that S = [1, a]
and T = [a + 1, b], and consider selecting uniformly w ∈ {0, 1}ℓ−b and (u, v) ∈ {0, 1}a × {0, 1}b−a.
Then, we have

0.5 · IS∪T (f) = Ew∈{0,1}ℓ−b [Vuv∈{0,1}b [f(uvw)]]

= Ew∈{0,1}ℓ−b

[
Ev∈{0,1}b−a [Vu∈{0,1}a [f(uvw)]] + Vv∈{0,1}b−a [Eu∈{0,1}a [f(uvw)]]

]

≥ Ew∈{0,1}ℓ−b

[
Ev∈{0,1}b−a [Vu∈{0,1}a [f(uvw)]]

]

= Evw∈{0,1}ℓ−a

[
Vu∈{0,1}a [f(uvw)]

]

= 0.5 · IS(f)

In Part 2 we again assume that S and T are disjoint, but now the justification is by Part 1 (which
implies IT\S(f) ≤ IT (f)). In the proof itself, using the same notations as in the proof of Part 1,
we have

0.5 · IS∪T (f) = Ew∈{0,1}ℓ−b

[
Ev∈{0,1}b−a [Vu∈{0,1}a [f(uvw)]] + Vv∈{0,1}b−a [Eu∈{0,1}a [f(uvw)]]

]

≤ Ew∈{0,1}ℓ−b

[
Ev∈{0,1}b−a [Vu∈{0,1}a [f(uvw)]] + Eu∈{0,1}a [Vv∈{0,1}b−a [f(uvw)]]

]

= Evw∈{0,1}ℓ−a

[
Vu∈{0,1}a [f(uvw)]

]
+ Euw∈{0,1}a+ℓ−b

[
Vv∈{0,1}b−a [f(uvw)]

]

= 0.5 · IS(f) + 0.5 · IT (f)

where the inequality is proved by using the definition of variance.43 Indeed, we could have assumed,
w.l.o.g., that b = ℓ (and avoided taking the expectation over w), since for every A ⊆ S ∪ T it holds

42The proof is as follows

V[Z] = E[Z2] − E[Z]2

= Ex←X [E[Z2
x]] − Ex←X [E[Zx]]2

= Ex←X [V[Zx] + E[Zx]2] − Ex←X [E[Zx]]2

= Ex←X [V[Zx]] + Ex←X [E[Zx]2] − Ex←X [E[Zx]]2

= Ex←X [V[Zx]] + Vx←X [E[Zx]]

where the last equality refers to a random variables that is assigned the value E[Zx] with probability Pr[X =x].
43For any w ∈ {0, 1}ℓ−b, letting fw(uv) = f(uvw), prove that

Vv∈{0,1}b−a [Eu∈{0,1}a [fw(uv)]] ≤ Eu∈{0,1}a [Vv∈{0,1}b−a [fw(uv)]],

using V[Z] = E[(Z − E[Z])2] = E[Z2] − E[Z]2 and E[Z]2 ≤ E[Z2] (which is implied by it). Specifically, we have

Vv∈{0,1}b−a [Eu∈{0,1}a [fw(uv)]] = Ev[(Eu[fw(uv)] − Ev′ [Eu[fw(uv′)])2]

= Ev[(Eu[fw(uv)] − Eu[Ev′ [fw(uv′)])2]

= Ev[Eu[fw(uv) − Ev′ [fw(uv′)]]2]

≤ Ev[Eu[(fw(uv) − Ev′ [fw(uv′)])2]]

= Eu[Ev[(fw(uv) − Ev′ [fw(uv′)])2]]

= Eu[Vv[fw(uv)]]
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that IA(f) = Ew[IA(fw)], where fw(uv) = f(uvw).

Exercise 12 (the influence of sets has diminishing marginal gain): Prove that for every S, T,M ⊆
[ℓ] and every f , it holds that

IS∪T∪M(f)− IS∪T (f) ≤ IS∪M(f)− IS(f).

Guideline: As shown next, we may focus on the case that S, T and M are disjoint. Considering
only T and M that are disjoint of S is without loss of generality, since we may consider T \ S
and M \ S, respectively. Focusing on disjoint M and T is justified by monotonicity (i.e., Part 1 of
Exercise 11). Furthermore, we can assume, w.l.o.g., that S ∪ T ∪M = [ℓ] (see comment at the end
of the guideline for Exercise 11).

Now, assume, for simplicity of notation, that S = [1, a], T = [a + 1, b], and M = [b + 1, ℓ], and
consider selecting uniformly (u, v,w) ∈ {0, 1}a×{0, 1}b−a×{0, 1}ℓ−b. Then, using Eq. (9), we have

0.5 · IS∪M (f)− 0.5 · IS(f)

= Ev∈{0,1}b−a [Vuw∈{0,1}a+ℓ−b [f(uvw)]] − Evw∈{0,1}ℓ−a [Vu∈{0,1}a [f(uvw)]]

= Ev∈{0,1}b−a [Vw∈{0,1}ℓ−b [Eu∈{0,1}a [f(uvw)]] + Ew∈{0,1}ℓ−b [Vu∈{0,1}a [f(uvw)]]]

−Evw∈{0,1}ℓ−a [Vu∈{0,1}a [f(uvw)]]

= Ev∈{0,1}b−a [Vw∈{0,1}ℓ−b [Eu∈{0,1}a [f(uvw)]]]

where the second equality uses the “law of total variance” (see guideline to Exercise 11). Similarly,

0.5 · IS∪T∪M(f)− 0.5 · IS∪T (f) = Vw∈{0,1}ℓ−b [Euv∈{0,1}b [f(uvw)]].

Letting g(vw) = Eu∈{0,1}a [f(uvw)], we have

0.5 · IS∪M(f)− 0.5 · IS(f)

= Ev∈{0,1}b−a [Vw∈{0,1}ℓ−b [g(vw)]]

≥ Vw∈{0,1}ℓ−b [Ev∈{0,1}b−a [g(vw)]]

= 0.5 · IS∪T∪M (f)− 0.5 · IS∪T (f)

where the inequality is proved by using the definition of variance (as in Footnote 43).
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