
A Sample of Samplers: A Computational

Perspective on Sampling

Oded Goldreich

Abstract. We consider the problem of estimating the average of a huge
set of values. That is, given oracle access to an arbitrary function f :
{0, 1}n → [0, 1], we wish to estimate 2−n

P
x∈{0,1}n f(x) upto an additive

error of ǫ. We are allowed to employ a randomized algorithm that may
err with probability at most δ.
We survey known algorithms for this problem and focus on the ideas
underlying their construction. In particular, we present an algorithm that
makes O(ǫ−2 · log(1/δ)) queries and uses n + O(log(1/ǫ)) + O(log(1/δ))
coin tosses, both complexities being very close to the corresponding lower
bounds.

Keywords: Sampling, randomness complexity, saving randomness, pair-
wise independent random variables, Expander graphs, random walks on
graphs, information theoretic lower bounds.

An earlier version of this survey appeared as TR97-020 of ECCC. The current
version includes a quantitative improvement in Theorem 6.1, which is obtained
by the subsequent work of [26].

Preface. The idea of writing this survey occurred to me when finding out that
a brilliant, young researcher who has worked in very related areas was unaware
of the Median-of-Averages Sampler (of [7]). It then occurred to me that many
of the results surveyed here have appeared in papers devoted to other subjects
(indeed, the Median-of-Averages Sampler is an excellent example), and have thus
escaped the attention of a wider community, which might have cared to know
about them. I thus decided to write a survey that focuses on these very basics.

1 Introduction

In many settings repeated sampling is used to estimate the average value of
a huge set of values. Namely, one has access to a value function ν, which is
defined over a huge space (say, ν : {0, 1}n → [0, 1]), and wishes to approximate

ν̄
def
= 1

2n

∑
x∈{0,1}n ν(x) without having to inspect the value of ν on the entire

domain. It is well-known that sampling ν at sufficiently many (random) points
yields such an approximation, but we are interested in the complexity of the
approximation. Specifically, (1) how many samples are required? (2) how much
randomness is required to generate these samples? and (3) is this generation
procedure efficient?

2

We comment that it is essential to have the range of ν be bounded (or
else no reasonable approximation may be possible). Our convention of having
[0, 1] be the range of ν is adopted for simplicity, and the problem for other
(predetermined) ranges can be treated analogously.

1.1 Formal Setting

Our notion of approximation depends on two parameters: accuracy (denoted
ǫ) and error probability (denoted δ). We wish to have an algorithm that, with
probability at least 1 − δ, gets within ǫ of the correct value. This leads to the
following definition.

Definition 1.1 (sampler): A sampler is a randomized algorithm that on input

parameters n (length), ǫ (accuracy) and δ (error), and oracle access to any
function ν : {0, 1}n→ [0, 1], outputs, with probability at least 1 − δ, a value that

is at most ǫ away from ν̄
def
= 1

2n

∑
x∈{0,1}n ν(x). Namely,

Pr [|samplerν(n, ǫ, δ) − ν̄| > ǫ] < δ, (1)

where the probability is taken over the internal coin tosses of the sampler.

We are interested in “the complexity of sampling” quantified as a function of the
parameters n, ǫ and δ. Specifically, we will consider three complexity measures:

1. Sample Complexity: The number of oracle queries made by the sampler.
2. Randomness Complexity: The number of (unbiased) coin tosses performed by

the sampler.
3. Computational Complexity: The running-time of the sampler.

We say that a sample is efficient if its running-time is polynomial in the total
length of its queries (i.e., polynomial in both its sample complexity and in
the length parameter, n).

We will focus on efficient samplers. Furthermore, we will focus on efficient sam-
plers that have optimal (upto a constant factor) sample complexity, and will be
interested in having the randomness complexity be as low as possible.

1.2 Overview

The straightforward method (or the naive sampler) consists of uniformly and

independently selecting sufficiently many sample points (queries), and outputting
the average value of the function on these points. Using Chernoff Bound one

can easily show that O(log(1/δ)
ǫ2) sample points suffice. The naive sampler is

optimal (upto a constant factor) in its sample complexity, but is quite wasteful
in randomness. In Section 2, we discuss the naive sampler and present lower (and
upper) bounds on the sample and randomness complexities of samplers. These
bounds will guide our quest for improvements.

3

Pairwise-independent sampling yields a great saving in the randomness com-
plexity. In Section 3 we present the Pairwise-Independent Sampler, and discuss
its advantages and disadvantages. Specifically, for constant δ > 0, the Pairwise-
Independent Sampler is optimal upto a constant factor in both its sample and
randomness complexities. However, for small δ (i.e., δ = o(1)), its sample com-
plexity is wasteful.

An additional idea is required for going further, and a relevant tool – random
walks on expander graphs (see Appendix A) – is also used. In Section 4, we
combine the Pairwise-Independent Sampler with the Expander Random Walk
Technique to obtain a new sampler. Loosely speaking, the new sampler uses

a random walk on an expander to generate a sequence of ℓ
def
= O(log(1/δ))

(related) random pads for ℓ invocations of the Pairwise-Independent Sampler.
Each of these invocations returns an ǫ-close approximation with probability at
least 0.99. The expander walk technique yields that, with probability at least
1−exp(−ℓ) = 1−δ, most of these ℓ invocations return an ǫ-close approximation.
Thus, the median value is an (ǫ, δ)-approximation to the correct value (i.e., an
approximation that, with probability at least 1 − δ, is within an additive term
of ǫ of the correct value). The resulting sampler, called the Median-of-Averages

Sampler, has sample complexity O(log(1/δ)
ǫ2) and randomness complexity 2n +

O(log(1/δ)).
In Section 5 we present an alternative sampler that improves over the pairwise-

independent sampler. Maintaining the sample complexity of the latter (i.e.,
O(1/δǫ2)), the new sampler has randomness complexity n+O(log(1/δǫ)) (rather
than 2n). Combining this new sampler with the Expander Random Walk Tech-

nique, we obtain sample complexity O(log(1/δ)
ǫ2) and randomness complexity n+

O(log(1/δ)) + O(log(1/ǫ)). Better bounds are obtained for the case of “Boolean
samplers” (i.e., algorithms that must only well-approximate Boolean functions).
In addition, in Section 5 we present two general techniques for improving existing
samplers.

We conclude with some open problems (see Section 6). In particular, we
discuss the notion of “oblivious” (or “averaging”) samplers, which is closely
related to the notion of randomness extractors (see Section 7.2 and more details
in [28]).1 Section 7 sketches the outline of an alternative survey that focuses on
the notion of “averaging” samplers and on their relation to general samplers, on
the one hand, and to randomness extractors, on the other hand.

The Hitting Problem. In order to distinguish the all-zero function from a function
having at least an ǫ fraction of non-zero values, the sampler must query the
function at a non-zero value (or “hit” some non-zero value). Thus, any sampler
solves the hitting problem, as surveyed in Appendix C. That is, given an oracle to
a Boolean function having at least an ǫ fraction of 1’s, the “hitter” is required to

1 Indeed, the current text focuses on general samplers, which are not necessarily of the
“averaging” type (e.g., the aforementioned Median-of-Averages Sampler). Thus, this
survey barely mentions the vast body of work that focuses on randomness extractors,
and the interested reader is indeed referred to [28].

4

find an input that evaluates to 1. As noted above, each sampler can be used for
this purpose, but this is an over-kill. Indeed, all results and techniques regarding
samplers (presented in the main text of this survey) have simpler analogues for
the hitting problem. Thus, Appendix C can be read as a warm-up towards the
rest of the survey.

2 The Information Theoretic Perspective

The Naive Sampler, presented below, corresponds to the information theoretical
(or statistician) perspective of the problem. We augment it by a lower bound on
the sample complexity of samplers, which is in the spirit of these areas. We con-
clude with lower and upper bounds on the randomness complexity of samplers.
The latter lower bound is also information theoretic in nature, but it refers to a
concern that is more common in computer science.

2.1 The Naive Sampler

The straightforward sampling method consists of randomly selecting a small
sample set S and outputting 1

|S|

∑
x∈S ν(x) as an estimate to ν̄. More accurately,

we select m independently and uniformly distributed strings in {0, 1}n, denoted

s1, ..., sm, and output 1
m

∑
i=1 ν(si) as our estimate. Setting m = ln(2/δ)

2ǫ2 , we
refer to this procedure as to the Naive Sampler.

To analyze the performance of the Naive Sampler, we use the Chernoff Bound.
Specifically, we define m independent random variables, denoted ζ1, ..., ζm, such

that ζi
def
= ν(si), where the si’s are independently and uniformly distributed in

{0, 1}n. By Chernoff Bound:

Pr

[∣∣∣∣∣ν̄ − 1

m

m∑

i=1

ζi

∣∣∣∣∣ > ǫ

]
≤ 2 exp

(
−2ǫ2m

)
(2)

< δ (3)

where Eq. (3) is due to m = ln(2/δ)/2ǫ2. Observing that 1
m

∑m
i=1 ζi represents

the estimate output by the Naive Sampler, we have established that the Naive
Sampler indeed satisfies Definition 1.1 (i.e., is indeed a sampler). We now con-
sider the complexity of the Naive Sampler

– Sample Complexity: m
def
= ln(2/δ)

2ǫ2 = Θ(log(1/δ)
ǫ2).

– Randomness Complexity: m · n = Θ(log(1/δ)
ǫ2 · n).

– Computational Complexity: indeed efficient.

In light of Theorem 2.1 (below), the sample complexity of the Naive Sampler is
optimal upto a constant factor. However, as we will shortly see, it is extremely
wasteful in its usage of randomness. In fact, the rest of this survey is devoted to
presenting ways for redeeming the latter aspect.

5

2.2 A Sample Complexity Lower Bound

We first assert that the Naive Sampler is quite good as far as sample complex-
ity is concerned. The following theorem is analogous to many results known in
statistics, though we are not aware of a reference prior to [10] where it can be
found.

Theorem 2.1 [10]: Any sampler has sample complexity bounded below by

min

{
2(n−4)/2,

ln(1/O(δ))

4ǫ2

}

provided ǫ ≤ 1
8 and δ ≤ 1

6 .

Note that a (constant factor) gap remains between the lower bound asserted
here and the upper bound established by the Naive Sampler. We conjecture that
the lower bound can be improved. Motivated by the lower bound, we say that a

sampler is sample-optimal if its sample complexity is O(log(1/δ)
ǫ2).

2.3 Randomness Complexity Lower and Upper Bounds

We first assert that the Naive Sampler is quite bad as far as randomness complex-
ity is concerned. First evidence towards our claim is provided by a non-explicit
(and so inefficient) sampler:

Theorem 2.2 [10]: There exists a (non-efficient) sampler with sample complex-

ity
2 ln(4/δ)

ǫ2 and randomness complexity n + 2 log2(2/δ) + log2 log2(1/ǫ).

The proof is by a probabilistic argument that, given the Naive Sampler, asserts
the existence of a relatively small set of possible coin tosses under which this
sampler behaves almost as under all possible coin tosses (with respect to any
possible function ν). Actually, the randomness bound can be improved to n +
log2(1/δ)− log2 log2(1/δ) while using a constant factor larger sample complexity
and more sophisticated techniques [30]. More generally:

Theorem 2.3 [30]: For every function s : [0, 1]2 → R such that s(ǫ, δ) ≥
2 log

2
(1/δ)

ǫ2 , there exists a (non-efficient) sampler with sample complexity s(ǫ, δ)
and randomness complexity

n + log2(1/δ) + 2 log2(4/ǫ)− log2 s(ǫ, δ)

This gets us very close to the following lower bound.

Theorem 2.4 [10]: Let s : N × [0, 1]2 → R. Any sampler that has sample com-

plexity at most s(n, ǫ, δ), has randomness complexity at least

n + log2(1/δ) − log2 s(n, ǫ, δ) − log2(1 − 2ǫ)−1 − 2,

provided ǫ, δ < 0.5 and s(n, ǫ, δ) ≤ 2n−1.

6

The dependency of the lower bound on the sample complexity should not come
as a surprise. After all, there exists a deterministic sampler that queries the
function on the entire domain. Furthermore, the upper bound of Theorem 2.3
does express a similar trade-off between randomness complexity and sample
complexity. Similarly, one should not be surprised at the effect of 1 − 2ǫ on the
bound: For example, when ǫ = 0.5, a sample may merely output ν̃ = 1

2 as its
estimate and always be within ǫ of the average of any function ν : {0, 1}n → [0, 1].

Using Theorem 2.4, we obtain a lower bound on the randomness complexity
of any sample-optimal sampler:

Corollary 2.5 [10]: Any sampler that has sample complexity O(log(1/δ)
ǫ2), has

randomness complexity at least2

n + (1 − o(1)) · log2(1/δ) − 2 log2(1/ǫ),

provided ǫ, δ < 0.4 and
log(1/δ)

ǫ2 = o(2n).

3 The Pairwise-Independent Sampler

To motivate the Pairwise-Independent Sampler, let us confront two well-known
central limit theorems: Chernoff Bound, which refers to totally independent ran-
dom variables, and Chebyshev’s Inequality, which refers to pairwise-independent

random variables

Chernoff Bound: Let ζ1, ..., ζm be totally independent random variables, each
ranging in [0, 1] and having expected value µ. Then,

Pr

[∣∣∣∣∣µ − 1

m

m∑

i=1

ζi

∣∣∣∣∣ > ǫ

]
≤ 2 exp

(
−2ǫ2m

)

Chebyshev’s Inequality: Let ζ1, ..., ζm be pairwise-independent random variables,
each ranging in [0, 1] and having expected value µ. Then,

Pr

[∣∣∣∣∣µ − 1

m

m∑

i=1

ζi

∣∣∣∣∣ > ǫ

]
≤ 1

4ǫ2m

Our conclusion is that these two bounds essentially agree when m = O(1/ǫ2).
That is, in both cases Θ(1/ǫ2) identical random variables are necessary and
sufficient to guarantee a concentration within ǫ with constant probability. Thus,
if this is what we want, then there is no point in using the more sophisticated
Chernoff Bound, which requires more of the random variables.

In the context of sampling, our conclusion is that for achieving an approxima-
tion to within ǫ accuracy with constant error probability, using O(1/ǫ2) pairwise-
independent random sample points is as good as using O(1/ǫ2) totally indepen-
dent random sample points. Furthermore, in the first case we may be save a lot
in terms of randomness.

2 The o(1) term is actually log
2

O(log(1/δ))

log
2
(1/δ)

.

7

The Pairwise-Independent Sampler [12]: On input parameters n, ǫ and δ, set

m
def
= 1

4ǫ2δ and generate a sequence of m pairwise-independently and uniformly

distributed strings in {0, 1}n, denoted s1, ..., sm. Using the oracle access to ν,
output 1

m

∑
i=1 ν(si) as the estimate to ν̄. Using Chebyshev’s Inequality, one can

easily see that the Pairwise-Independent Sampler indeed satisfies Definition 1.1
(i.e., is indeed a sampler).

There are two differences between the Naive Sampler and the Pairwise-
Independent Sampler. Whereas the former uses independently selected sample
points, the latter uses a sequence of pairwise independent sample points. As we
shall see, this allows the latter sampler to use much less randomness. On the

other hand, the Naive Sampler uses O(log(1/δ)
ǫ2) samples (which is optimal upto

a constant factor), whereas the Pairwise-Independent Sampler uses O(1
ǫ2δ) sam-

ples. However, for constant δ, both samplers use essentially the same number of
sample points. Thus, for constant δ, the Pairwise-Independent Sampler offers a
saving in randomness while being sample-optimal.

Generating a Pairwise-Independent sequence: Whereas generating m totally in-
dependent random points in {0, 1}n requires m · n unbiased coin flips, one can
generate m (m ≤ 2n) pairwise-independent random points using only O(n) un-
biased coin flips. We present two well-known ways of doing this.

1. Linear functions over finite fields: We associate {0, 1}n with the finite field

F
def
= GF(2n). Let α1, ..., αm be m ≤ |F | distinct elements of F . To generate

a (pairwise-independent) sequence of length m, we uniformly and indepen-

dently select s, r ∈ F , and let the ith element in the sequence be ei
def
= r+αis

(where the arithmetic is that of F). The analysis of this construction “re-
duces” the stochastic independence of ei and ej to the linear independence
of the vectors (1 , αi) and (1 , αj): For every i 6= j and every a, b ∈ F , we
have

Prr,s [ei = a ∧ ej = b] = Prr,s

[(
1 αi

1 αj

) (
r
s

)
=

(
a
b

)]

= Prr,s

[(
r
s

)
=

(
1 αi

1 αj

)−1 (
a
b

)]

=
1

|F |2 .

Only 2n random coins are required in this construction, but the drawback is
that we need a representation of the field F (i.e., an irreducible polynomial
of degree n over GF(2)) which may not be easy to find in general.3 Still, for
specific values of n a good representation exists: Specifically, for n = 2 · 3ℓ

(with ℓ integer), the polynomial xn + xn/2 + 1 is irreducible [17, p. 96], and
so we obtain a representation of GF(2n) for such n’s.

3 Things are not better if we wish to work with a large field of prime cardinality; since
we need to find such a prime.

8

2. Toeplitz matrices: To avoid problems with non-trivial representation, one may
use the following construction. We associate {0, 1}n with the n-dimensional
vector space over GF(2). Let v1, ..., vm be m ≤ 2n distinct vectors in this vec-
tor space. A Toeplitz matrix is a matrix with all diagonals being homogeneous;
that is, T = (ti,j) is a Toeplitz matrix if ti,j = ti+1,j+1, for all i, j. Note that
a Toeplitz matrix is determined by its first row and first column (i.e., the
values of t1,j’s and ti,1’s). To generate a (pairwise-independent) sequence of
length m, we uniformly and independently select an n-by-n Boolean Toeplitz
matrix, T , and an n-dimensional Boolean vector u. We let the ith element

in the sequence be ei
def
= Tvi + u (where the arithmetic is that of the vector

space). The analysis of this construction is given in Appendix B. Here, we
merely note that 3n− 1 random coins suffice for this construction,

Plugging-in either of these constructions, we obtain the following complexities
for the Pairwise-Independent Sampler

– Sample Complexity: 1
4δǫ2 .

– Randomness Complexity: 2n or 3n−1, depending on which of the constructions
is used.

– Computational Complexity: Indeed efficient.

We note that for constant δ, the sample and randomness complexities match
the lower bounds upto a constant factor. However, as δ decreases, the sample
complexity of the Pairwise-Independent Sampler increases faster than the cor-
responding complexity of the Naive Sampler. Redeeming this state of affairs is
our next goal.

4 The (Combined) Median-of-Averages Sampler

Our goal here is to decrease the sample complexity of the Pairwise-Independent
Sampler while essentially maintaining its randomness complexity. To motivate
the new construction we first consider an oversimplified version of it.

Median-of-Averages Sampler (oversimplified): On input parameters n, ǫ and

δ, set m
def
= Θ(1

ǫ2) and ℓ
def
= Θ(log(1/δ)), generate ℓ independent m-element

sequences, each being a sequence of m pairwise-independently and uniformly

distributed strings in {0, 1}n. Denote the sample points in the ith sequence

by si
1, ..., s

i
m. Using the oracle access to ν, compute ν̃i def

= 1
m

∑m
j=1 ν(si

j), for

i = 1, ..., ℓ, and output the median value among these ν̃i’s. Using Chebyshev’s
Inequality (as in previous section), for each i, it holds that

Pr[|ν̃i − ν̄| > ǫ] < 0.1

and so

Pr

[
|{i : |ν̃i − ν̄| > ǫ}| ≥ ℓ

2

]
<

ℓ∑

j=ℓ/2

(
ℓ

j

)
· 0.1j · 0.9ℓ−j

9

< 2ℓ · 0.1ℓ/2

≤ δ,

where the last inequality is due to the choice of ℓ. Thus, the oversimplified version
described above is indeed a sampler and has the following complexities

– Sample Complexity: ℓ · m = O(log(1/δ)
ǫ2).

– Randomness Complexity: ℓ · O(n) = O(n · log(1/δ)).
– Computational Complexity: Indeed efficient.

Thus, the sample complexity is optimal (upto a constant factor), but the ran-
domness complexity is higher than what we aim for. To reduce the randomness
complexity, we use the same approach as above, but take dependent sequences
rather than independent ones. The dependency we use is such that essentially
preserves the probabilistic behavior of independent choices. Specifically, we use
random walks on expander graphs (cf., Appendix A) to generate a sequence
of ℓ “seeds” each of length O(n). Each seed is used to generate a sequence of
m pairwise independent elements in {0, 1}n, as above. Let us generalize this
construction as follows.

Theorem 4.1 (general median-composition [7]): Suppose we are given an effi-

cient sampler of sample complexity s(n, ǫ, δ) and randomness complexity r(n, ǫ, δ).
Then:

1. There exists an efficient sampler with sample complexity O(s(n, ǫ, 0.01) ·
log(1/δ)) and randomness complexity r(n, ǫ, 0.01) + O(log(1/δ)).

2. For any c > 4, there exists an α > 0 and an efficient sampler with sample

complexity O(s(n, ǫ, α) · log(1/δ)) and randomness complexity r(n, ǫ, α) + c ·
log2(1/δ).

Proof: For Item 1, let r
def
= r(n, ǫ, 0.01). We use an explicit construction of

expander graphs with vertex set {0, 1}r, degree d and second eigenvalue λ so
that λ/d < 0.1. We consider a random walk of (edge) length ℓ−1 = O(log(1/δ))
on this expander, and use each of the ℓ vertices along the path as random coins
for the given sampler. Thus, we obtain ℓ estimates to ν̄ and output the median
value as the estimate of the new sampler. To analyze the performance of the
resulting sampler, we let W denote the set of coin tosses (for the basic sampler)
that make the basic sampler output an estimate that is ǫ-far from the correct
value (i.e., ν̄). Thus, W denotes the set of coin tosses that are bad for the basic

sampler, and by the hypothesis |W |
2r ≤ 0.01. Using Theorem A.4 (with some Wi’s

set to W and the others set to {0, 1}r), we infer that the probability that at
least ℓ/2 vertices of the path reside in W is smaller than

ℓ∑

j=ℓ/2

(
ℓ

j

)
· 0.02j/2 < 2ℓ · 0.02ℓ/4

≤ δ.

10

Note that we have used ℓ · s(n, ǫ, 0.01) samples and r + (ℓ − 1) · log2 d = r +
O(log(1/δ)) coin tosses. Item 1 follows.

Item 2 is proved using the same argument but using Ramanujan Graphs
(and slightly more care). Specifically, we use Ramanujan graphs (i.e., expanders

with λ ≤ 2
√

d − 1) with vertex set {0, 1}r, where r
def
= r(n, ǫ, α) and α = (λ

d)2.

Repeating the foregoing argument, with ℓ−1 = 2 log
2
(1/δ)

log
2
(α/8) , we obtain an efficient

sampler that uses ℓ ·s(n, ǫ, α) samples and r+(ℓ−1) · log2 d = r+(4+ 16
(log

2
d)−8) ·

log2(1/δ) coin tosses. Since this can be done with a sufficiently large d, Item 2
follows.

Combining the Pairwise-Independent Sampler with Theorem 4.1, we get

Corollary 4.2 (The Median-of-Averages Sampler [7]): There exists an efficient

sampler with

– Sample Complexity: O(log(1/δ)
ǫ2).

– Randomness Complexity: O(n + log(1/δ)).

Furthermore, we can obtain randomness complexity 2n + (4 + o(1)) · log2(1/δ)).

In the next section, we further reduce the randomness complexity of samplers
(from 2n + O(log(1/δ))) to n + O(log(1/ǫ) + log(1/δ)), while maintaining the
sample complexity (up-to a multiplicative constant).

Generalizing Theorem 4.1. A close look at the proof of Theorem 4.1 reveals
the fact that the median value obtained via an expander random walk (on the
vertex set {0, 1}r) is used as a sampler of accuracy 0.49 and error probability
δ. This suggests the following generalization of Theorem 4.1: Suppose we are

given two efficient samplers such that the ith sampler has sample complexity

si(n, ǫ, δ) and randomness complexity ri(n, ǫ, δ). Then, for every δ0 ∈ (0, 0.5),
there exists an efficient sampler of sample complexity s2(r, 0.5−δ0, δ) ·s1(n, ǫ, δ0)

and randomness complexity r2(r, 0.5−δ0, δ), where r
def
= r1(n, ǫ, δ0). Theorem 4.1

is derived as a special case, when using the expander random walk as the second
sampler and setting δ0 = 0.01.

5 The Expander Sampler and Two Generic
Transformations

The main result of this section is the following:

Theorem 5.1 [7, 16]: There exists an efficient sampler that has

– Sample Complexity: O(log(1/δ)
ǫ2).

– Randomness Complexity: n + log2(1/ǫ) + O(log(1/δ)).

11

The theorem is proved by applying Theorem 4.1 to a new efficient sampler that
makes O(1

δǫ2) oracle queries and tosses n+log2(1/ǫ) coins. We start by presenting
a sampler for the special case of Boolean functions.

Definition 5.2 (Boolean sampler): A Boolean sampler is a randomized algo-

rithm that on input parameters n, ǫ and δ, and oracle access to any Boolean
function ν :{0, 1}n→{0, 1}, outputs, with probability at least 1 − δ, a value that

is at most ǫ away from ν̄
def
= 1

2n

∑
x∈{0,1}n ν(x). Namely,

Pr[|samplerν(n, ǫ, δ) − ν̄| > ǫ] < δ

where the probability is taken over the internal coin tosses of the sampler.

That is, unlike (general) samplers, a Boolean sampler is required to work well
only when given access to a Boolean function. The rest of this section is organized
as follows:

In Section 5.1 we present the Expander Sampler, which is a Boolean sampler
of sample complexity O(1/δǫ2) and randomness complexity n. This sample
complexity is obtained by using Ramanujan Graphs (rather than arbitrary
expanders).

In Section 5.2 we present a (general) transformation of Boolean samplers to
general ones.

In Section 5.3 we revisit the Expander Sampler, while using an arbitrary ex-
pander. More importantly, we present another generic composition of sam-
plers, and obtain an alternative construction by using this composition in
conjunction with the aforementioned sampler. Unlike the composition method
that underlies Theorem 4.1, which reduces the error complexity (in an effi-
cient manner), the current composition reduces the sample complexity.

Theorem 5.1 is proved by combining the ideas of Sections 5.1 and 5.2. An alter-
native proof of a somewhat weaker result is obtained by combining the ideas of
Sections 5.1 and 5.3.

5.1 A Sampler for the Boolean Case

We start by presenting a sampler for the special case of Boolean functions. Our
sampling procedure is exactly the one suggested by Karp, Pippinger and Sipser
for hitting a witness set [22] (cf., Appendix C), yet the analysis is somewhat more
involved. Furthermore, to get an algorithm that samples the universe only on
O(1/δǫ2) points, it is crucial to use a Ramanujan graph in role of the expander
in the Karp-Pippinger-Sipser method.

The sampler. We use an expander of degree d = 4/δǫ2 second eigenvalue bounded
by λ and associate the vertex set of the expander with {0, 1}n. The sampler con-
sists of uniformly selecting a vertex, v, (of the expander) and averaging over the

12

values assigned (by ν) to all the neighbors of v; that is, the algorithm outputs

the estimate

ν̃
def
=

1

d

∑

u∈N(v)

ν(u), (4)

where N(v) denotes the set of neighbors of vertex v.

This algorithm has

– Sample Complexity: O(1
δǫ2).

– Randomness Complexity: n.

– Computational Complexity: Indeed efficient; that is, polynomial in n, ǫ−1 and
δ−1.

Lemma 5.3 [16]: The foregoing algorithm constitutes an efficient Boolean sam-

pler.

Proof: We denote by B the set of bad choices for the algorithm; namely, the set
of vertices that once selected by the algorithm yield a wrong estimate. That is,
v ∈ B if ∣∣∣∣∣∣

1

d

∑

u∈N(v)

ν(u) − ν̄

∣∣∣∣∣∣
> ǫ. (5)

Denote by B′ the subset of v ∈ B for which

1

d

∑

u∈N(v)

ν(u) > ν̄ + ǫ. (6)

It follows that each v ∈ B′ has ǫd too many neighbors in the set A
def
= {u : ν(u)=

1}; namely,

|{u∈N(v) : u∈A}| > (ρ(A) + ǫ) · d, (7)

where ρ(A)
def
= |A|

N and N
def
= 2n. Using the Expander Mixing Lemma (i.e.,

Lemma A.2), we get that

ǫ · ρ(B′) =

∣∣∣∣
|B′| · (ρ(A) + ǫ)d

dN
− ρ(B′) · ρ(A)

∣∣∣∣

≤
∣∣∣∣
|(B′ × A) ∩ E|

|E| − |A|
|V | ·

|B′|
|V |

∣∣∣∣

≤ λ

d
·
√

ρ(A) · ρ(B′).

Thus,

ρ(B′) ≤
(

λ

dǫ

)2

· ρ(A). (8)

13

Using λ ≤ 2
√

d and d = 4
δǫ2 , we get ρ(B′) ≤ δ · ρ(A). Using a similar argument,4

we can show that ρ(B \ B′) ≤ δ · (1 − ρ(A)). Thus, ρ(B) ≤ δ, and the claim
follows.

Comment 5.4 [16]: Observe that if we were to use an arbitrary d-regular graph

with second eigenvalue λ, then the foregoing proof would hold provided that

λ

d
≤

√
δǫ2. (9)

This yields, for any such d-regular graph, an efficient Boolean sampler with sam-
ple complexity d and randomness complexity n.

5.2 From Boolean Samplers to General Samplers

The following generic transformation was suggested to us by Luca Trevisan.

Theorem 5.5 (Boolean samplers imply general ones): Suppose we are given an

efficient Boolean sampler of sample complexity s(n, ǫ, δ) and randomness com-

plexity r(n, ǫ, δ). Then, there exists an efficient sampler with sample complexity

s(n + log2(1/ǫ), ǫ/2, δ) and randomness complexity r(n + log2(1/ǫ), ǫ/2, δ).

Proof: As a mental experiment, given an arbitrary function ν : {0, 1}n → [0, 1],

we define a Boolean function µ : {0, 1}n+ℓ → {0, 1}, where ℓ
def
= log2(1/ǫ),

as follows: For every x and i = 1, ..., ǫ−1, we set µ(x, i)
def
= 1 if and only if

ν(x) > (i − 0.5) · ǫ (i.e., iff i < ǫ−1ν(x) + 0.5). Then, for every x, it holds that

|ν(x) − ǫ · ∑1/ǫ
i=1 µ(x, i)| ≤ ǫ/2. Thus, if we were to sample µ and obtain an

ǫ/2-approximation of µ̄ then we get an ǫ-approximation of ν̄. Now, although we
don’t have actual access to µ we can emulate its answers given an oracle to ν.

Given a Boolean sampler, B, we construct a general sampler, A, as follows.
On input n, ǫ, δ and access to an arbitrary ν as above, algorithm A sets n′ = n+ℓ,
ǫ′ = ǫ/2, and δ′ = δ, and invoke B on input n′, ǫ′, δ′. When B makes a query
(x, i) ∈ {0, 1}n × {0, 1}ℓ, algorithm A queries for ν(x) and returns 1 if and only
if ν(x) > (i − 0.5) · ǫ. When B halts with output v, algorithm A does the same.
The theorem follows.

Combining the sampler of Section 5.1 with Theorem 5.5, we get

Corollary 5.6 (The Expander Sampler, revisited): There exists an efficient

sampler that has

– Sample Complexity: O(1
δǫ2).

– Randomness Complexity: n + log2(1/ǫ).

Theorem 5.1 follows by combining Corollary 5.6 with Theorem 4.1.

4 That is, we consider the set B′′ def
= B \B′, and observe that every v ∈ B′′ has ǫd too

many neighbours in A′′ def
= {0, 1}n \ A. Hence, we conclude that ρ(B′′) ≤ δ · ρ(A′′).

14

5.3 An Alternative Construction

Using an arbitrary expander graph (with d = poly(1/ǫδ) and λ
d <

√
δǫ2) and

invoking Comment 5.4, we have an efficient Boolean sampler with sample com-
plexity poly(1/ǫδ) and randomness complexity n. Using Theorem 5.5, we get

Corollary 5.7 (The Expander Sampler, revisited again): There exists an effi-

cient sampler with sample complexity poly(1/ǫδ) and randomness complexity
n + log2(1/ǫ).

To derive (a weaker form of) Theorem 5.1 via the foregoing sampler, we first
need to reduce its sample complexity. This is done via the following general
transformation. We say that a sampler is of the averaging type if its output
is the average value obtained on its queries, which in turn are determined as
a function of its own coin tosses (independently of the answers obtained on
previous queries).

Theorem 5.8 (reducing sample complexity (or “sampling the sample”)): Sup-

pose we are given two efficient samplers such that the ith sampler has sample

complexity si(n, ǫ, δ) and randomness complexity ri(n, ǫ, δ). Further suppose that

the first sampler is of the averaging type. Then, there exists an efficient sampler

of sample complexity s2(log2 s1(n, ǫ/2, δ/2), ǫ/2, δ/2) and randomness complexity

r1(n, ǫ/2, δ/2)+ r2(log2 s1(n, ǫ/2, δ/2), ǫ/2, δ/2). Furthermore, if also the second

sampler is of the averaging type, then so is the resulting sampler.

Proof: We compose the two samplers as follows. Setting m
def
= s1(n, ǫ/2, δ/2), we

invoke the first sampler and determine the m queries it would have asked (given
a particular choice of its coins).5 We then use the second sampler to sample these
m queries (invoking it with parameters log2 m, ǫ/2 and δ/2). Specifically, we let

the second sampler make virtual queries into the domain [m]
def
= {1, ..., m} and

answer a query q ∈ [m] by the value of the function at the ith query specified
by the first sampler. That is, given access to a function ν : {0, 1}n → [0, 1], and
determining a sequence r of coins for the first sampler, we consider the function
νr : [m] → [0, 1] defined by letting νr(i) = ν(qr,i) where qr,i is the ith query
made by the first sampler on coins r. We run the second sampler providing it
virtual access to the function νr in the obvious manner, and output its output.
Thus, the complexities are as claimed and the combined sampler errs if either
|ν̄ − 1

m

∑m
i=1 ν(qr,i)| > ǫ

2 or | 1
m

∑m
i=1 ν(qr,i)− ν̃r| > ǫ/2, where ν̃r is the estimate

output by the second sampler when given virtual access to νr. Observing that
the first event means that the first sampler errs (here we use the hypothesis
that this sampler is averaging) and that the second event means that the second
sampler errs (here we use

∑m
i=1 ν(qr,i) = ν̄r), we are done.

5 Here we use the hypothesis that the first sampler is non-adaptive; that is, its queries
are determined by its coin tosses (independently of the answers obtained on previous
queries).

15

It is tempting to try to improve the sample complexity of the sampler asserted
in Corollary 5.7 by combining it with the Pairwise-Independent Sampler, via
Theorem 5.8. The problem is that the former sampler, which we wish to use in
the role of the outer sampler, is not of the averaging type. Indeed, the expander
sampler (of Comment 5.4) is of the averaging type, but the proof of Theorem 5.5
does not preserve this feature. Instead, as shown in Theorem 5.10 (below), any
Boolean sampler of the averaging type is a general sampler of the averaging time,
except that its accuracy and error probability may increase by a constant factor.
Thus, combining the sampler of Comment 5.4 with the Pairwise-Independent
Sampler, via Theorem 5.8, we obtain:

Corollary 5.9 (sampling the Expander Sampler): There exists an efficient sam-

pler that has

– Sample Complexity: O(1
δǫ2).

– Randomness Complexity: n + O(log(1/ǫ)) + O(log(1/δ)).

Indeed, the sampler asserted in Corollary 5.9 operates by selecting a random
vertex in an expander and taking a pairwise-independent sample of its neighbor
set. A weaker form of Theorem 5.1 (i.e., with an O(log(1/ǫ) term rather than
with a log2(1/ǫ) term) follows by combining Corollary 5.9 with Theorem 4.1.

It is left to establish the aforementioned claim by which any Boolean sampler
of the averaging type is a general sampler (of the averaging time), except that
its accuracy and error probability may increase by a constant factor. (A similar
statement was proved in [30].)

Theorem 5.10 (Boolean vs general samplers of the averaging type): Every

Boolean sampler of the averaging type, having sample complexity s(n, ǫ, δ) and

randomness complexity r(n, ǫ, δ), is a general sampler (of the averaging type)
with sample complexity s(n, ǫ/4, δ/3) and randomness complexity r(n, ǫ/4, δ/3).

Proof: For any function ν : {0, 1}n → [0, 1], we consider a random function
ρ :{0, 1}n→{0, 1} such that, for every x, we set ρ(x) = 1 with probability ν(x),
independently of the setting of all other arguments. Clearly, with probability
1 − exp(−2ǫ22n) > 1 − δ, it holds that |ν̄ − ρ̄| < ǫ. Furthermore, fixing any
possible outcome of the sampler’s coins, with probability at least 1−exp(−8ǫ2s)
over the choice of ρ, the average of the ρ-values queried by the sampler is 2ǫ-
close to the average of the ν-values, where s denotes the number of queries. Since
(by Theorem 2.1) s > ǫ−2 log(1/δ)/8, with probability at least 1 − δ over the
choice of ρ, the average that the Boolean sampler outputs when given access to
ν is 2ǫ-close to the average it would have output on a random ρ, which in turn
(with probability at least 1 − δ over the sampler’s coins) is ǫ-close to ρ̄. Thus,
with probability at least 1− 3δ (over the sampler’s coins), the Boolean sampler
outputs a value that is 4ǫ-close to ν̄,

16

6 Conclusions and Open Problems

The main results surveyed in the text are summarized in Figure 1. The first
row tabulates Ω(ǫ−2 log(1/δ)) as a lower bound on sample complexity and the
subsequent three rows refer to sample-optimal samplers (i.e., samplers of sample
complexity O(ǫ−2 log(1/δ))). The last row refers to a sampler (cf., Thm. 6.1
below) that has randomness complexity closer to the lower bound. However,
this sampler is not sample-optimal.

sample complexity randomness complexity pointer

lower bound Ω(log(1/δ)

ǫ2
) Thm. 2.1

lower bound for O(log(1/δ)

ǫ2
) n + (1 − o(1)) · log2(1/δ) − 2 log2(1/ǫ) Cor. 2.5

upper bound O(log(1/δ)

ǫ2
) n + log2(1/δ) Thm. 2.3

algorithm O(log(1/δ)

ǫ2
) n + O(log(1/δ)) + log2(1/ǫ) Thm. 5.1

algorithm poly(ǫ−1, log(1/δ)) n + (1 + α) · log2(1/δ), ∀α > 0 Thm. 6.1

Fig. 1. Summary of main results.

The randomness complexity of sample-optimal samplers. A closer look at the
randomness complexity of sample-optimal samplers is provided in Figure 2. The
first two rows tabulate lower and upper bounds, which are 2 log2(1/ǫ) + O(1)
apart. Our conjecture is that the lower bound can be improved to match the
upper bound.6 The efficient samplers use somewhat more than n + 4 · log2(1/δ)
coins, where one factor of 2 is due to the use of expanders and the other to the
“median-of-averages paradigm”. As long as we stick to using expanders in the
Median-of-Averages Sampler, there is no hope to reduce the first factor, which
is due to the relation between the expander degree and its second eigenvalue.
In fact, achieving a factor of 4 rather than a bigger factor is due to the use of
Ramanujan Graphs (which have the best possible such relation).

Boolean samplers vs general ones. Another fact presented in Figure 2 is that we
can currently do better if we are guaranteed that the oracle function is Boolean
(rather than mapping to the interval [0, 1]). We stress that the lower bound holds
also with respect to samplers that need only to work for Boolean functions.

Adaptive vs non-adaptive. All known samplers are non-adaptive; that it, they
determine the sample points (queries) solely as a function of their coin tosses.
In contrast, adaptive samplers may determine the next query depending on the

6 Partial support for this conjecture was offered to us recently by Ronen Shaltiel (priv.
comm., 2010). He observed that one log2(1/ǫ) term can be shaved off the lower
bound in the special case of averaging samplers (see below), by using the connection
to randomness extractors and a lower bound on entropy loss due to [25].

17

lower bound (even for Boolean) n + log2(1/δ) − 2 log2(1/ǫ) − log2 log2(1/δ) − O(1)

upper bound n + log2(1/δ) − log2 log2(1/δ)

efficient samplers n + (4 + α) log2(1/δ) + log2(1/ǫ), for any α > 0

efficient Boolean samplers n + (4 + α) log2(1/δ), for any α > 0

Fig. 2. The randomness complexity of samplers that make Θ(log(1/δ)

ǫ2
) queries.

value of the function on previous queries. Intuitively, adaptivity should not help
the sampler. Indeed, all lower bounds refer also to adaptive samplers, whereas all
upper bound only utilizes non-adaptive samplers. This indicates that the differ-
ence between adaptive samplers and non-adaptive ones can not be significant. In
a preliminary version of this survey we advocated providing a direct and more
tight proof of the foregoing intuition. When referring to the sample complex-
ity, such a simple proof was provided in [6, Lem. 9]: It amounts to observing
that adapting queries made to a random isomorphic copy of a function f are
equivalent to uniformly and independently distributed queries made to f . Thus,
adaptivity offers no advantage in this setting.

Averaging (or oblivious) samplers. A special type of non-adaptive samplers are
ones that output the average value of the function over their sample points.
Such samplers were first defined in [9], where they were called “oblivious”, but
we prefer the term averaging. (Recall that we have already defined and used
such samplers in Section 5.3.) We mention that averaging samplers have some
applications not offered by arbitrary non-adaptive samplers (cf., [9] and [29]).
More importantly, averaging samplers are very appealing, since averaging over
a sample seem the natural thing to do. Furthermore, as pointed out in [30],
averaging samplers are closely related to randomness extractors (see Section 7
and more details in [28]). Note that the Naive Sampler, the Pairwise-Independent
Sampler, and the Expander Sampler are all averaging samplers, although they
differ in the way they generate their sample. However, the Median-of-Averages
Sampler, as its name indicates, is not an averaging sampler. Thus, obtaining an
averaging sampler of relatively low sample and randomness complexities requires
an alternative approach. The best results are obtained via the connection to
randomness extractors, and are summarized below.

Theorem 6.1 (efficient averaging samplers [26, Cor. 7.3]):7 For every constant

α > 0, there exists an efficient averaging sampler with

– Sample Complexity: poly(ǫ−1, log(1/δ)).
– Randomness Complexity: n + (1 + α) · log2(1/δ).

We stress that this sampler is not sample-optimal (i.e., the polynomial in ǫ−1 is
not quadratic). It would be interesting to obtain an efficient sample-optimal av-

eraging sampler of low randomness complexity, say, one that uses O(n+log(1/δ))

7 The result builds on [30], and uses [18, Thm. 1.5] in order to remove a mild restriction
on the value of ǫ.

18

coins. We mention that non-explicit sample-optimal averaging samplers of low
randomness complexity do exist; specifically, Theorems 2.2 and 2.3 holds with
averaging-samplers (see [10, 30], resp.).

7 Postscript: A Different Perspective

As stated in the introduction, the intention of the current survey was to provide a
wide audience of theoretical computer scientists with a basic tutorial regarding
samplers. The focus of this tutorial was on the complexity of sampling, and
our aim was to simultaneously minimize three complexity measures: (1) the
sample complexity, (2) the randomness complexity, and (3) the computational
complexity. We actually focused on the minimization of the first two, while
requiring that a minimal level of computational efficiency is maintained (i.e.,
that the sampler works in time that is polynomial in the total length of the
queries made).

From our perspective, averaging samplers are of no special interest, except
maybe for their natural appeal. An alternative perspective, strongly advocated
by Ronen Shaltiel and Amnon Ta-Shma, may put averaging samplers and their
relation to general samplers at the main focus. This is likely to yield a very
interesting survey, which we outline in the rest of this section, but it is not the
one we set out to write...

7.1 Average Samplers versus General Samplers

The alternative survey will focus on the question of whether non-averaging sam-
plers can outperform averaging samplers. As noted by Amnon and Ronen, a good
starting point for such a survey is the observation that the median of averages
operation can be used for improving the performance of samplers, but it yields
non-averaging samplers. Specifically, the median of averages operation can be
combined with simple averaging samplers (e.g., the pairwise independent ones)
to yield very strong and simple non-averaging samplers. Another interesting ob-
servation is that the currently known lower bound on the randomness complexity
of sample-optimal averaging samplers is higher than the currently know bound
for general samplers (see Footnote 6). Finally, when viewing the minimization
of sample complexity as the primary goal and the minimization of the random-
ness complexity as the secondary goal, the median of averages operation enables
constructing efficient samplers that are by far better (and also much simpler)
than the currently known efficient averaging samplers.

Another interesting parameter is the Boolean versus general distinction,
which was discussed in prior sections. Recall that in the case of averaging sam-
plers, the two notions are almost identical (see Theorem 5.10), whereas for gen-
eral sampler we currently lose a log2(1/ǫ) term in the randomness complexity
(see Theorem 5.5). Focusing on sample-optimal samplers, we summarize the cur-
rently known results in Figure 3, where the three first rows ignore the question

19

of efficiency (and the last row of Figure 3 is justified by combining Theorems 6.1
and 5.8).8

lower bound (even for Boolean) n + log2(1/δ) − 2 log2(1/ǫ) − ℓ − O(1)

lower bound for averaging samplers n + log2(1/δ) − log2(1/ǫ) − ℓ − O(1)

upper bound (by averaging samplers) n + log2(1/δ) − ℓ

efficient samplers n + (4 + α) · log2(1/δ) + log2(1/ǫ), ∀α > 0

efficient averaging samplers n + (1 + α) · log2(1/δ) + eO(s), ∀α > 0

Fig. 3. The randomness complexity of samplers that make s
def
= Θ(log(1/δ)

ǫ2
) queries,

where ℓ denotes log2 log2(1/δ).

7.2 Average Samplers versus Randomness Extractors

We start by recalling the basic definition of randomness extractors, while (slightly)
changing some common conventions to better fit our discussion.9 Loosely speak-
ing, a randomness extractor is a function Ext : {0, 1}r × [s] → {0, 1}n that uses
an (log2 s)-bit long random seed in order to transform an r-bit long (outcome
of a) weak source of randomness into an n-bit long string that is almost uni-
formly distributed in {0, 1}n. Specifically, we consider arbitrary weak sources
that are restricted (only) in the sense that, for a parameter k, no string appears
as the source outcome with probability that exceeds 2−k. Such sources are called
(r, k)-sources (and k is called the min-entropy). A special type of (r, k)-sources
are (r, k)-flat sources, which are sources in which each string appears with proba-
bility that equals either 2−k or 0. We say that two distributions are ǫ-close if the
statistical difference (a.k.a variation distance) between them is at most ǫ. Now,
Ext is called a (k, ǫ)-extractor if for any (r, k)-source X it holds that Ext(X, Us)
is ǫ-close to the uniform distribution over n-bit strings, where Us denotes the
uniform distribution over [s].

There is a close relationship between extractors and averaging samplers. In
order to discuss this relationship, it will be more convenient to state the per-
formance guarantees of the sampler (i.e., ǫ and δ) in terms of its complexities
(i.e., s and r), rather than the other way around (as done in the rest of this sur-
vey). Thus, we may say that a certain oracle machine (which has certain sample
and randomness complexities) is an (ǫ, δ)-sampler if it satisfies Eq. (1) for these
particular values of ǫ and δ.

We shall first show that any averaging sampler gives rise to an extractor.
Let G : {0, 1}r → ({0, 1}n)s be the sample generating algorithm of an averaging

8 Specifically, we invoke Theorem 5.8 when using the sampler of Theorem 6.1 as the
first (i.e., “outer”) sampler, and the Naive Sampler as the second (i.e., “inner”)
sampler.

9 Typically, extractors are defined as mapping {0, 1}n × {0, 1}s to {0, 1}m.

20

(ǫ, δ)-sampler. That is, G uses r bits of randomness and generates s sample points
in {0, 1}n such that, for every f : {0, 1}n → [0, 1] with probability at least 1− δ,
the average of the f -values of these s pseudorandom points resides in the interval

[f ± ǫ], where f
def
=

∑
x∈{0,1}n f(x)/2n. Define Ext : {0, 1}r × [s] → {0, 1}n such

that Ext(ω, i) is the ith sample generated by G(ω). We shall prove that Ext is a
(k, 2ǫ)-extractor, for k = r − log2(ǫ/δ).

Suppose towards the contradiction that there exists a (r, k)-source X such
that for some S ⊂ {0, 1}n it is the case that Pr[Ext(X, Us) ∈ S] > 2−n · |S|+ 2ǫ.
Then, without loss of generality, X is (r, k)-flat, and we consider the set

B = {x ∈ {0, 1}r : Pr[Ext(x, Us) ∈ S] > 2−n · |S| + ǫ}.

Then, |B| > ǫ ·2k = δ ·2r, where the inequality holds since Pr[Ext(X, Us) ∈ S] ≤
Pr[X ∈ B] + 2−n · |S| + ǫ. Defining f(z) = 1 if z ∈ S and f(z) = 0 otherwise, it
holds that f = |S|/2m. But, for every ω ∈ B, the f -average of the sample G(ω)
is greater than f + ǫ, in contradiction to the hypothesis that the sampler has
error probability δ (with respect to accuracy ǫ).

We now turn to show that extractors give rise to averaging samplers. Let
Ext : {0, 1}r×[s] → {0, 1}n be a (k, ǫ)-extractor. Consider the sample generation
algorithm G : {0, 1}r → ({0, 1}n)s defined by G(ω) = (Ext(ω, i))i∈[s]. We prove

that G corresponds to an averaging (ǫ, δ)-sampler, for δ = 2−(r−k−1).
Suppose towards the contradiction that there exists a function f : {0, 1}n →

[0, 1] such that for δ2r = 2k+1 strings ω ∈ {0, 1}r the average f -value of the
sample G(ω) deviates from f by more than ǫ. Suppose, without loss of generality,
that for at least half of these ω’s the average is greater than f + ǫ, and let B
denote the set of these ω’s. Then, for X that is uniformly distributed on B (and
is thus a (r, k)-source), we have

Exp[f(Ext(X, Us))] > Exp[f(U ′
n)] + ǫ,

where U ′
n denotes the uniform distribution on n-bit long strings. But, since

|f(z)| ≤ 1 for every z, this contradicts the hypothesis that Ext(X, Us) is ǫ-close
to U ′

n, because |Exp[f(Y)] − Exp[f(Z)]| is upper bounded by the statistical
difference between Y and Z (times maxz{|f(z)|}). Summarizing the foregoing
discussion, we obtain:

Theorem 7.1 (averaging samplers vs randomness extractors): Let r, s, k ∈ N

and ǫ, δ ∈ [0, 1]. Then:

1. If Ext : {0, 1}r×[s] → {0, 1}n is a (k, ǫ)-extractor, then the sample generating

algorithm G : {0, 1}r → ({0, 1}n)s defined by G(ω) = (Ext(ω, i))i∈[s] yields

an averaging (ǫ, δ)-sampler for δ = 2−(r−k−1) (i.e., r − k = log2(1/δ) + 1).
2. If G : {0, 1}r → ({0, 1}n)s is the sample generating algorithm of an averaging

(ǫ, δ)-sampler, then the algorithm Ext : {0, 1}r × [s] → {0, 1}n defined by

Ext(ω, i) = G(ω)i is a (k, 2ǫ)-extractor, for k = r − log2(ǫ/δ) (i.e., r − k =
log2(1/δ) − log2(1/ǫ)).

21

Note that starting with a (k, 2ǫ)-extractor and applying both parts of Theo-
rem 7.1, we obtain a (k′, 2ǫ)-extractor for k′ = k + 1 + log2(1/ǫ). Thus, the
translation offered by Theorem 7.1 is not optimal, yet the bounds provided in
both directions are (in general) tight.10

The connection to averaging samplers and the desire to have averaging sam-
plers of optimal sample and randomness complexities calls attention to a research
direction regarding extractors that did not receive much attention. We refer to
the construction of extractors with strongly optimal seed length and almost op-
timal extraction rate. That is, the seed length, which is log2 s in terms of this
section, should be optimal up to a constant additive term, whereas the extraction
rate (i.e., n/k) (or rather the inverse loss rate (i.e., (r − k)/(n − k))) should be
close to 1.

Acknowledgments

I would like to thank Noga Alon, Nabil Kahale, Ronen Shaltiel, Amnon Ta-Shma,
Luca Trevisan, and Salil Vadhan for useful discussions.

References

1. M. Ajtai, J. Komlos, E. Szemerédi, “Deterministic Simulation in LogSpace”, Proc.

19th STOC, 1987, pages 132–140.
2. N. Alon, “Eigenvalues, Geometric Expanders, Sorting in Rounds and Ramsey The-

ory”, Combinatorica, 6 (1986), pages 231–243.

3. N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth, “Construction of Asymptotically
Good, Low-Rate Error-Correcting Codes through Pseudo-Random Graphs”, IEEE

Transactions on Information Theory 38 (1992), pages 509–516.

4. N. Alon and V.D. Milman, λ1, Isoperimetric Inequalities for Graphs and Super-
concentrators, J. Combinatorial Theory, Ser. B 38 (1985), pages 73–88.

10 To see the tightness of Part 1, consider an arbitrary (k, ǫ)-extractor, Ext : {0, 1}r ×
[s] → {0, 1}n, and modify it such that, for every x′ ∈ {0, 1}k and i ∈ [3ǫ · s], it holds
that Ext(0r−kx′, i) = 0n. Then, the modified extractor is a (k +2, 2ǫ)-extractor, but
the resulting averaging sampler has error probability at least 2−r+k with respect to
deviation 2ǫ. (Recall that Part 1 asserts that the resulting averaging sampler has
error probability at most 2−(r−k−3) with respect to deviation 2ǫ.) To see the tightness
of Part 2, consider an arbitrary avearging (ǫ, δ)-sampler with a sample generating
algorithm G : {0, 1}r → ({0, 1}n)s, and modify the latter to be identically zero on
δ2r seeds; that is, for an arbitrary B ⊂ {0, 1}r of size δ2r, redefine G such that for
every x ∈ B it holds that G(x) = (0n)s. Then, the modified averaging sampler is an
(ǫ, 2δ)-sampler, but (as shown next) the resulting extractor can be a (k′, cǫ)-extractor

only if k′ > k + log2(1/ǫ) − c′, where k
def
= r − log2(1/δ) and c′ = log2(c + 1). The

lower bound on k′ holds because a (k′, r)-source may assign B probability 2k−k′

,

whereas 0n should be assigned probability at most cǫ+2−n. Thus, 2k−k′ ≤ cǫ+2−n,
which implies k′ − k > log2(1/ǫ) − c′. (Recall that Part 2 asserets that the resulting
construct is a (k′, 2ǫ)-extractor for k′ = k + log2(1/ǫ) + 1.)

22

5. N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc.,
1992.

6. Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Sampling Algorithms: Lower Bounds
and Applications”, 33rd STOC, pages 266–275, 2001.

7. M. Bellare, O. Goldreich, and S. Goldwasser, “Randomness in Interactive Proofs”,
Computational Complexity, Vol. 4, No. 4 (1993), pages 319–354. Extended abstract
in 31st FOCS, 1990, pages 318–326.

8. M. Bellare, O. Goldreich, and S. Goldwasser. Addendum to [7], available from
http://theory.lcs.mit.edu/˜oded/papers.html, May 1997.

9. M. Bellare, and J. Rompel, “Randomness-efficient oblivious sampling”, 35th FOCS,
1994.

10. R. Canetti, G. Even and O. Goldreich, “Lower Bounds for Sampling Algorithms
for Estimating the Average”, IPL, Vol. 53, pages 17–25, 1995.

11. L. Carter and M. Wegman, “Universal Classes of Hash Functions”, J. Computer

and System Sciences, Vol. 18, pages 143–154 (1979).
12. B. Chor and O. Goldreich, “On the Power of Two–Point Based Sampling,” Jour.

of Complexity, Vol 5, 1989, pages 96–106.
13. A. Cohen and A. Wigderson, “Dispensers, Deterministic Amplification, and Weak

Random Sources”, 30th FOCS, 1989, pages 14–19.
14. O. Gaber and Z. Galil, “Explicit Constructions of Linear Size Superconcentrators”,

JCSS, 22 (1981), pages 407–420.
15. O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman, “Se-

curity Preserving Amplification of Hardness”, 31st FOCS, pages 318–326, 1990.
16. O. Goldreich and A. Wigderson. Tiny Families of Functions with Random Prop-

erties: A Quality–Size Trade–off for Hashing. Journal of Random structures and

Algorithms, Vol. 11, Nr. 4, December 1997, pages 315–343.
17. S. W. Golomb, Shift Register Sequences, Holden-Day, 1967. (Aegean Park Press,

Revised edition, 1982.)
18. V. Guruswami, C. Umans, and S. Vadhan. Unbalanced Expanders and Random-

ness Extractors from Parvaresh-Vardy Codes. JACM, Vol. 56 (4), Article No. 20,
2009. Preliminary version in 22nd CCC, 2007.

19. S. Hoory, N. Linial, and A. Wigderson. Expander Graphs and their Applications.
Bull. AMS, Vol. 43 (4), pages 439–561, 2006.

20. R. Impagliazzo and D. Zuckerman, “How to Recycle Random Bits”, 30th FOCS,
1989, pages 248–253.

21. N. Kahale, “Eigenvalues and Expansion of Regular Graphs”, Journal of the ACM,
42(5):1091–1106, September 1995.

22. R.M. Karp, N. Pippinger and M. Sipser, “A Time-Randomness Tradeoff”, AMS

Conference on Probabilistic Computational Complexity , Durham, New Hampshire
(1985).

23. A. Lubotzky, R. Phillips, P. Sarnak, “Explicit Expanders and the Ramanujan Con-
jectures”, Proc. 18th STOC, 1986, pages 240–246.

24. G.A. Margulis, “Explicit Construction of Concentrators”, Prob. Per. Infor. 9 (4)
(1973), 71–80. (In Russian, English translation in Problems of Infor. Trans. (1975),
325–332.)

25. J. Radhakrishnan and A. Ta-Shma: Bounds for Dispersers, Extractors, and Depth-
Two Superconcentrators. SIAM J. Discrete Math., Vol. 13 (1), pages 2–24, 2000.

26. O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-Zag Graph
Product, and New Constant-Degree Expanders and Extractors. ECCC, TR01-018,
2001. Preliminary version in 41st FOCS, pages 3–13, 2000.

23

27. M. Sipser, “Expanders, Randomness or Time vs Space”, Structure in Complexity

Theory (proceedings), 1986.

28. R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. In
Current Trends in Theoretical Computer Science: The Challenge of the New Cen-

tury, Vol 1: Algorithms and Complexity, World scietific, 2004. (Editors: G. Paun,
G. Rozenberg and A. Salomaa.) Preliminary version in Bulletin of the EATCS 77,
pages 67–95, 2002.

29. L. Trevisan, “When Hamming meets Euclid: The Approximability of Geometric
TSP and MST”, 29th STOC, pages 21–29, 1997.

30. D. Zuckerman. Randomness-Optimal Oblivious Sampling. Journal of Random

Structures and Algorithms, Vol. 11, Nr. 4, December 1997, pages 345–367. Prelim-
inary version in 28th STOC, pages 286–295, 1996.

Appendix A: Expanders and Random Walks

This appendix provides more background on expanders than the very minimum
that is needed for the main text. On the other hand, there is much more to be
learned about this subject (see, e.g., [19]).

A.1 Expanders

An (N, d, λ)-expander is a d-regular graph with N vertices such that the ab-
solute value of all eigenvalues (except the biggest one) of its adjacency matrix
is bounded by λ. A (d, λ)-family is an infinite sequence of graphs so that the
nth graph is a (2n, d, λ)-expander. We say that such a family is efficiently con-

structible if there exists a polynomial-time algorithm that given a vertex, v,

in the expander and an index i ∈ [d]
def
= {1, ..., d}, returns the ith neighbor of

v. We first recall that for d = 16 and some λ < 16, efficiently constructible
(16, λ)-families do exist (cf., [14]).11

In our applications we use (parameterized) expanders satisfying λ
d < α and

d = poly(1/α), where α is an application-specific parameter. Such (parameter-
ized) expanders are also efficiently constructible. For example, we may obtain
them by taking paths of length O(log(1/α)) on an expander as above. Specif-
ically, given a parameter α > 0, we obtain an efficiently constructible (D, Λ)-
family satisfying Λ

D < α and D = poly(1/α) as follows. We start with a con-

structible (16, λ)-family, set k
def
= log16/λ(1/α) = O(log 1/α) and consider the

paths of length k in each graph. This yields a constructible (16k, λk)-family, and

indeed both λk

16k < α and 16k = poly(1/α) hold.

11 These are minor technicalities, which can be easily fixed. Firstly, the Gaber–Galil
expanders are defined (only) for graph sizes that are perfect squares [14]. This suffices
for even n’s. For odd n’s, we may use a trivial modification such as taking two copies
of the graph of size 2n−1 and connecting each pair of corresponding vertices. Finally,
we add multiple edges so that the degree becomes 16, rather than being 14 for even
n’s and 15 for odd n’s.

24

Comment: To obtain the best constants in Sections 4 and 5, one may use ef-
ficiently constructible Ramanujan Graphs [23]. Furthermore, using Ramanujan
Graphs is essential for our proof of the second item of Theorem 4.1 as well as
of Lemma 5.3. Ramanujan Graphs satisfy λ ≤ 2

√
d − 1 and so, setting d = 4/α,

we obtain λ
d < α, where α is an application-specific parameter. Here some mi-

nor technicalities arise since these graphs are given only for certain degrees and
certain sizes. Specifically, they can be efficiently constructed for 1

2 · qk · (q2k − 1)
vertices, where q is a prime such that q ≡ d − 1 ≡ 1 mod 4 and d − 1 is a prime
that is a quadratic residue modulo q (cf., [3, Sec. II]). This technical difficulty
may be resolved in two ways:

1. Fixing d and ǫ, N , we may find q and k satisfying the foregoing conditions
with 1

2 ·qk ·(q2k−1) ∈ [(1−ǫ)·N, N], in time polynomial in 1/ǫ (and in log N).
This defines a Ramanujan Graph that is adequate for all our applications
(since it biases the desired sample in [N] only by ǫ).

2. Fixing d and ǫ, N , we may find q and k satisfying the foregoing conditions
with 1

2 · qk · (q2k − 1) ∈ [N, 2N], in time polynomial in log N . We may easily
modify our applications so that whenever we obtain a vertex not in [N]
we just ignore it. One can easily verify that the analysis of the application
remains valid.

A.2 The Expander Mixing Lemma

The following lemma is folklore and has appeared in many papers. Loosely speak-
ing, the lemma asserts that expander graphs (for which d ≫ λ) have the property
that the fraction of edges between two large sets of vertices approximately equals
the product of the densities of these sets. This property is called mixing.

Lemma A.2 (Expander Mixing Lemma): Let G = (V, E) be an expander graph

of degree d and λ be an upper bound on the absolute value of all eigenvalues,

except the biggest one, of the adjacency matrix of the graph. Then, for every two

subsets, A, B ⊆ V , it holds

∣∣∣∣
|(A × B) ∩ E|

|E| − |A|
|V | ·

|B|
|V |

∣∣∣∣ ≤
λ
√
|A| · |B|

d · |V | <
λ

d .

The lemma (and a proof) appears as Corollary 2.5 in [5, Chap. 9].

A.3 Random walks on Expanders

A fundamental discovery of Ajtai, Komlos, and Szemerédi [1] is that random
walks on expander graphs provide a good approximation to repeated independent
attempts to hit any arbitrary fixed subset of sufficient density (within the vertex
set). The importance of this discovery stems from the fact that a random walk
on an expander can be generated using much fewer random coins than required
for generating independent samples in the vertex set. Precise formulations of
the foregoing discovery were given in [1, 13, 15] culminating in Kahale’s optimal
analysis [21, Sec. 6].

25

Theorem A.3 (Expander Random Walk Theorem [21, Cor. 6.1]): Let G =
(V, E) be an expander graph of degree d and λ be an upper bound on the absolute

value of all eigenvalues, except the biggest one, of the adjacency matrix of the

graph. Let W be a subset of V and ρ
def
= |W |/|V |. Then, the fraction of random

walks (in G) of (edge) length ℓ that stay within W is at most

ρ ·
(

ρ + (1 − ρ) · λ

d

)ℓ

.

(10)

A more general bound (which is weaker for the above special case) was pointed
out to us by Nabil Kahale (personal communication, April 1997):

Theorem A.4 (Expander Random Walk Theorem – general case): Let G =
(V, E), d and λ be as in Theorem A.3. Let W0, W1, ..., Wℓ be subsets of V with

densities ρ0, ..., ρℓ, respectively. Then the fraction of random walks (in G) of

(edge) length ℓ that intersect W0 × W1 × · · · × Wℓ is at most

√
ρ0ρℓ ·

ℓ∏

i=1

√

ρi + (1 − ρi) ·
(

λ

d

)2

.

(11)

Theorem A.4 improves over a previous bound of [7] (see [8]). Comments regarding
the proofs of both theorems follow.

On the proofs of Theorems A.3 and A.4. The basic idea is viewing events
occuring during the random walk as an evolution of a corresponding probability
vector under suitable transformations. The transformations correspond to tak-
ing a random step in G and to passing through a “sieve” that keeps only the
entries that correspond to the current set W . The key observation is that the
first transformation shrinks the component that is orthogonal to the uniform
distribution, whereas the second transformation shrinks the component that is
in the direction of the uniform distribution. Details follow.

Let A be a matrix representing the random walk on G (i.e., A is the adjacency
matrix of G divided by the degree, d). Let λ̄ denote the absolute value of the

second largest eigenvalue of A (i.e., λ̄
def
= λ/d). Let P (resp., Pi) be a 0-1 matrix

that has 1-entries only on its diagonal such that entry (j, j) is set to 1 if and
only if j ∈ W (resp., j ∈ Wi). Then, we are interested in the vector obtained
when applying (PA)ℓ (resp., PℓA · · ·P1A) to the vector representing the uniform
distribution; that is, the probability that we are interested in is the sum of the
component of the resulting vector.

The best bounds are obtained by applying the following technical lemma,
which refer to the effect of a single PA application. For any n-by-n stochastic
matrix M , we let ‖M‖ denote the norm of M defined as the maximum of ‖Mx‖
taken over all normal vectors x (i.e., x ∈ R

n with ‖x‖ = 1), where ‖x‖ denote
the Euclidean norm of x ∈ R

n.

26

Lemma A.5 ([21, Lem. 3.2] restated): Let M be a symmetric stochastic matrix

and let δ denote the absolute value of the second largest eigenvalue of M . Let P
be a 0-1 matrix that has 1’s only on the diagonal and let ρ be the fraction of 1’s

on the diagonal. Then, ‖PMP‖ ≤ ρ + (1 − ρ) · δ.

A proof of a weaker bound is presented below.

Proof of Theorem A.3: Let u ∈ R
n be the vector representing the uniform

distribution over V ≡ {1, ..., n} (i.e., u = (n−1, ..., n−1)). Let P be a 0-1 matrix
such that the only 1-entries are in entries (i, i) with i ∈ W . Thus, the probability
that a random walk of length ℓ stays within W is the sum of the entries of the
vector

x
def
= (PA)ℓPu. (12)

In other words, denoting by ‖x‖1 the L1 norm of x, we are interested in an upper
bound on ‖x‖1. Since x has at most ρn non-zero entries (i.e., x = Px′ for some
x′), we have ‖x‖1 ≤ √

ρn · ‖x‖. Invoking Lemma A.5 we get

‖x‖1 ≤ √
ρn · ‖(PA)ℓPu‖

≤ √
ρn · ‖PAP‖ℓ · ‖Pu‖

≤ √
ρn ·

(
ρ + (1 − ρ) · λ̄

)ℓ ·
√

ρ/n

and the theorem follows.

Proof of Theorem A.4: Using the same argument, we need to upper bound
the L1 norm of x given by

x
def
= PℓA · · ·P1AP0u. (13)

We observe that ‖PjA‖ =
√
‖PjA2Pj‖ and use Lemma A.5 to obtain ‖PjA

2Pj‖ ≤
ρj + (1 − ρj) · λ̄2. Thus, we have

‖x‖1 ≤ √
ρℓn · ‖PℓA · · ·P1AP0u‖

≤ √
ρℓn ·

ℓ∏

j=1

‖PjA‖ · ‖P0u‖

≤ √
ρℓn ·

ℓ∏

j=1

√
ρj + (1 − ρj) · λ̄2 ·

√
ρ0/n

and the theorem follows.

Proof of a weak version of Lemma A.5. Rather than proving that ‖PMP‖ ≤
ρ + (1 − ρ) · δ, we shall only prove that ‖PMP‖ ≤ ‖PM‖ ≤

√
ρ + δ2. That is,

we shall prove that, for every z, it holds that ‖PMz‖ ≤ (ρ + δ2)1/2 · ‖z‖. Intu-
itively, M shrinks the component of z that is orthogonal to the uniform vector u,

27

whereas P shrinks the component of z that is in the direction of u. Specifically,
we decompose z = z1 + z2 such that z1 is the projection of z on u and z2 is
the component orthogonal to u. Then, using the triangle inequality and other
obvious facts (which imply ‖PMz1‖ = ‖Pz1‖ and ‖PMz2‖ ≤ ‖Mz2‖), we have

‖PMz1 + PMz2‖ ≤ ‖PMz1‖ + ‖PMz2‖
≤ ‖Pz1‖ + ‖Mz2‖
≤ √

ρi · ‖z1‖ + δ · ‖z2‖

where the last inequality uses the fact that P shrinks any uniform vector by
eliminating 1−ρi of its elements, whereas M shrinks the length of any eigenvector
except u by a factor of at least δ. Using the Cauchy-Schwartz inequality12, we
get

‖PMz‖ ≤
√

ρi + δ2 ·
√
‖z1‖2 + ‖z2‖2

=
√

ρi + δ2 · ‖z‖,

where the equality is due to the fact that z1 is orthogonal to z2.

Appendix B: Analyzing the Toeplitz Matrix Construction

For every i 6= j and a, b ∈ GF(2)n, we have

PrT,u

[
ei = a
ej = b

]
= PrT,u [ei = a|ei ⊕ ej = a ⊕ b] · PrT,u [ei ⊕ ej = a ⊕ b]

= PrT,u [Tvi + u = a|Tw = c] · PrT [Tw = c] ,

where w = vi ⊕ vj 6= 0n and c = a ⊕ b. Clearly, for any c ∈ GF(2)n and any T ′:

PrT,u[Tvi + u = a|Tw = c] = Pru[T ′vi + u = a]

= 2−n

It is thus left to show that, for any w 6= 0n, when T is a uniformly chosen
Toeplitz matrix, the vector Tw is uniformly distributed over GF(2)n. It may
help to consider first the distribution of Mw, where M is a uniformly distributed
n-by-n matrix. In this case Mw is merely the sum of several (not zero) uniformly
and independently chosen column vectors, and so is uniformly distributed over
GF(2)n. The argument regarding a uniformly chosen Toeplitz matrix is slightly
more involved.

Let f be the first non-zero entry of w = (w1, ..., wn) 6= 0n (i.e., w1 = · · · =
wf−1 = 0 and wf = 1). We make the mental experiment of selecting T = (ti,j),
by uniformly selecting elements determining T as follows. First we uniformly

12 That is, we get
√

ρi‖z1‖+δ‖z2‖ ≤
p

ρi + δ2 ·
p

‖z1‖2 + ‖z2‖2, by using
Pn

i=1 ai ·bi ≤`Pn
i=1 ai

2
´1/2 ·

`Pn
i=1 bi

2
´1/2

, with n = 2, a1 =
√

ρi, b1 = ‖z1‖, etc.

28

and independently select t1,n, ..., t1,f . Next, we select t2,f , ..., tn,f (here it is im-
portant to select tj,f before tj+1,f). Finally, we select tn,f−1, ..., tn,1. Clearly,
this determines a uniformly chosen Toeplitz matrix, denoted T . We conclude by
showing that each of the bits of Tw is uniformly distributed given the previ-
ous bits. To prove the claim for the jth bit of Tw, consider the time by which
t1,n, ..., t1,f , ..., tj−1,f were determined. Note that these determine the first j − 1
bits of Tw. The key observation is that the value of the jth bit of Tw is a linear
combination of the above determined values xored with the still undetermined
tj,f . (Here we use the hypothesis that w1 = · · · = wf−1 = 0 and wf = 1.) Thus,
uniformly selecting tj,f makes the jth bit of Tw be uniformly distributed given
the past.

Appendix C: The Hitting problem

The hitting problem is a one-sided version of the Boolean sampling problem.
Given parameters n (length), ǫ (density) and δ (error), and oracle access to any
function σ : {0, 1}n → {0, 1} such that |{x : f(x)=1}| ≥ ǫ2n, the task to find a
string that is mapped to 1. That is:

Definition C.1 (hitter): A hitter is a randomized algorithm that on input pa-

rameters n, ǫ and δ, and oracle access to any function σ :{0, 1}n→{0, 1}, such

that |{x : f(x)=1}| ≥ ǫ2n, satisfies

Pr[σ(hitterσ(n, ǫ, δ)) = 1] > 1 − δ.

Observe that, on input parameters n, ǫ and δ, any sampler must be able to
distinguish the all-zero function from any function σ :{0, 1}n→{0, 1} such that
|{x : f(x)=1}| ≥ 2ǫ2n. Thus, in the latter case, the sampler must obtain (with
probability at least 1−δ) the value 1 for at least one of its queries, and outputting
such a query satisfies the requirement for a hitter (w.r.t parameters n, 2ǫ and
δ).

We note that all results and techniques regarding sampling (presented in the
main text), have simpler analogous with respect to the hitting problem. In fact,
this appendix may be read as a warm-up towards the main text.

C.1 The Information Theoretic Perspective

Analogously to the Naive Sampler, we have the Naive Hitter that independently

selects m
def
= ln(1/δ)

ǫ uniformly distributed sample points and queries the oracle
on each. Clearly, the probability that the hitter fails to sample a point of value
1 is at most (1 − ǫ)m = δ. The complexities of this hitter are as follows

– Sample Complexity: m
def
= ln(1/δ)

ǫ = Θ(log(1/δ)
ǫ).

– Randomness Complexity: m · n = Θ(log(1/δ)
ǫ · n).

– Computational Complexity: Indeed efficient.

29

It is easy to prove that the Naive Hitter is sample-optimal. That is:

Theorem C.2 (sample complexity lower bound): Any hitter has sample com-

plexity bounded below by

min

{
2n−O(1),

ln(1/2δ)

2ǫ

}

provided ǫ ≤ 1
8 .

Proof Sketch: Let A be a hitter with sample complexity m = m(n, ǫ, δ) and let
σ be a function selected at random by setting its value independently on each
argument such that Pr(σ(x)=1) = 1.5ǫ. Then,

Prσ[σ(Aσ(n, ǫ, δ)) 6= 1] = (1 − 1.5ǫ)m,

where the probability is taken over the choice of σ and the internal coin tosses
of A. On the other hand, using a Multiplicative Chernoff Bound:

Prσ[|{x : σ(x)=1}| < ǫ2n] = 2 exp(−Ω(ǫ2n)).

We may assume that Ω(ǫ2n) > log2(1/δ) and so the probability that σ has at
least ǫ fraction of 1’s and yet algorithm A fails is at least (1 − 1.5ǫ)m − δ > δ,

unless m > ln(1/2δ)
ln(1−1.5ǫ) > ln(1/2δ)

2ǫ .

Theorem C.3 (randomness complexity lower bound): Let s : N × [0, 1]2 →
R. Any sampler that has sample complexity at most s(n, ǫ, δ), has randomness

complexity at least

r > n − log2 s(n, ǫ, δ) + log2((1 − ǫ)/δ).

Proof Sketch: Let A be a hitter with sample complexity s = s(n, ǫ, δ), and
randomness complexity r = r(n, ǫ, δ). Consider any subset of δ2r possible se-
quence of coin tosses for A and all δ2r · s points that are queried at any of these
coin-sequences. We argue that δ2r · s > (1 − ǫ)2n must hold, or else there exists
a function σ that evaluates to 0 on each of these points and to 1 otherwise (con-
tradicting the requirement that this function be “hit” with probability at least
1 − δ). Thus, r > n + log2(1 − ǫ) − log2 s + log2(1/δ).

C.2 The Pairwise-Independent Hitter

Using a pairwise-independent sequence of uniformly distributed sample points
rather than a totally independent one, we obtain the pairwise-independent hitter.

Here we set m
def
= 1−ǫ

δǫ . Letting ζi represent the σ-value of the ith sample point,

30

considering only σ’s with an ǫ-fraction of 1-values,13 and using Chebyshev’s
Inequality we have

Pr

[
m∑

i=1

ζi = 0

]
≤ Pr

[∣∣∣∣∣mǫ −
m∑

i=1

ζi

∣∣∣∣∣ ≥ ǫm

]

≤ m · (1 − ǫ)ǫ

(ǫm)2

= δ.

Recalling that we can generate 2n − 1 pairwise-independent samples using 2n
coins, the pairwise-independent hitter achieves

– Sample Complexity: 1
δǫ (reasonable for constant δ).

– Randomness Complexity: 2n
– Computational Complexity: Indeed efficient.

C.3 The combined Hitter

Our goal here is to decrease the sample complexity of the Pairwise-Independent
Hitter while essentially maintaining its randomness complexity. To motivate the
new construction we first consider an oversimplified version of it.

Combined Hitter (oversimplified): On input parameters n, ǫ and δ, set m
def
= 2

ǫ

and ℓ
def
= log2(1/δ), generate ℓ independent m-element sequences, each being a se-

quence of m pairwise-independently and uniformly distributed strings in {0, 1}n.
Denote the sample points in the ith sequence by si

1, ..., s
i
m. We merely try all

these ℓ · m samples as hitting points. Clearly, for each i = 1, ..., ℓ,

Pr[(∀j ∈ {1, .., m}) σ(si
j)=0] <

1

2

and so the probability that none of these si
j “hits σ” is at most 0.5ℓ = δ. Thus,

the oversimplified version described above is indeed a hitter and has the following
complexities:

– Sample Complexity: ℓ · m = O(log(1/δ)
ǫ).

– Randomness Complexity: ℓ · O(n) = O(n · log(1/δ)).
– Computational Complexity: Indeed efficient.

Thus, the sample complexity is optimal (upto a constant factor), but the ran-
domness complexity is higher than what we aim for. To reduce the randomness
complexity, we use the same approach as above, but take dependent sequences

13 Considering only σ’s with exactly an ǫ-fraction of 1-values implies that Var[ζi] =
(1− ǫ)ǫ. Needless to say, if the hitter works well for all these functions, then it works
well for all functions having at least an ǫ-fraction of 1-values.

31

rather than independent ones. The dependency we use is such that essentially
preserves the probabilistic behavior of independent choices. Specifically, we use
random walks on expander graphs (cf., Appendix A) to generate a sequence of
ℓ “seeds” each of length O(n). Each seed is used to generate a sequence of m
pairwise independent elements in {0, 1}n, as above. Thus, we obtain:

Corollary C.4 (The Combined Hitter): There exists an efficient hitter with

– Sample Complexity: O(log(1/δ)
ǫ).

– Randomness Complexity: 2n + O(log(1/δ)).

Furthermore, we can obtain randomness complexity 2n+ (2 + o(1)) · log2(1/δ)).

Proof Sketch: We use an explicit construction of expander graphs with vertex
set {0, 1}2n, degree d and second eigenvalue λ so that λ/d < 0.1. We consider a
random walk of (edge) length ℓ − 1 = log2(1/δ) on this expander, and use each
of the ℓ vertices along the path as random coins for the Pairwise-Independent

Hitter, which in turn makes m
def
= ǫ/3 trials. To analyze the performance of

the resulting algorithm, we let W denote the set of coin tosses (for the basic
hitter) on which the basic hitter fails to output a point that evaluates to 1.

By the hypothesis, |W |
22n ≤ 1/3, and using Theorem A.3, the probability that all

vertices of a random path reside in W is bounded above by (0.34 + 0.1)ℓ < δ.
The furthermore clause follows by using a Ramanujan Graph and an argument
as in the proof of Item 2 of Theorem 4.1.

C.4 The Expander Hitter

Our goal here is to decrease the randomness complexity of hitters from 2n +
O(log(1/δ)) to n+O(log(1/δ)), while preserving the sample complexity of O(ǫ−1 log(1/δ)).
The first step is to get an analogous improvement with respect to the Pairwise-
Independent Hitter (which has sample complexity O(1/δǫ)).

We use a Ramanujan Graph of degree d = O(1/ǫδ) and vertex-set {0, 1}n.
The hitter uniformly selects a vertex in the graph and use its neighbors as a

sample. Suppose we try to hit a 1-value of a function σ and let S
def
= {u : σ(u)=

1}. Let B
def
= {v : N(v) ∩ S = ∅} be the set of bad vertices (i.e., choosing any of

these results in not finding a preimage of 1). Using the Expander Mixing Lemma
we have

ρ(B)ρ(S) =

∣∣∣∣
|(B × S) ∩ E|

|E| − ρ(B)ρ(S)

∣∣∣∣

≤ λ

d
·
√

ρ(B)ρ(S)

Hence, ρ(B)ρ(S) ≤ (λ/d)2 = ǫδ and using ρ(S) ≥ ǫ we get ρ(B) ≤ δ. The
complexities of this hitter are as follows:

– Sample Complexity: O(1
δǫ)

32

– Randomness Complexity: n
– Computational Complexity: Indeed efficient.

Adapting the argument in the proof of Corollary C.4, we obtain

Corollary C.5 (The Combined Hitter, revisited): There exists an efficient hit-

ter with

– Sample Complexity: O(log(1/δ)
ǫ).

– Randomness Complexity: n + (2 + o(1)) · log2(1/δ)).

