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ABSTRACT 
The existence of sparse pseudorandom distributions is proved. These are probability 
distributions concentrated in a very small set of strings, yet it is infeasible for any 
polynomial-time algorithm to distinguish between truly random coins and coins selected 
according to these distributions. It is shown that such distributions can be generated by 
(nonpolynomial) probabilistic algorithms, while probabilistic polynomial-time algorithms 
cannot even approximate all the pseudorandom distributions. Moreover, we show the 
existence of evasive pseudorandom distributions which are not only sparse, but also have 
the property that no polynomial-time algorithm may find an element in their support, 
except for a negligible probability. All these results are proved independently of any 
intractability assumption. 

1. INTRODUCTION 

In recent years, randomness has become a central notion in diverse fields of 
computer science. Randomness is used in the design of algorithms in fields such as 
computational number theory, computational geometry and parallel and distribut- 
ed computing, and is crucial to cryptography. Since in most cases the interest is in 
the behavior of efficient algorithms (modeled by polynomial-time computations), 
the fundamental notion of pseudorandomness arises. Pseudorandom distributions 
are those distributions which cannot be efficiently distinguished from the uniform 
distribution on strings of the same length. 

The importance of pseudorandomness is in the fact that any efficient prob- 
abilistic algorithm performs essentially as well when substituting its source of 
unbiased coins by a pseudorandom sequence. Algorithms can therefore be 
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analyzed assuming they use unbiased coin tosses, and later implemented using 
pseudorandom sequences. Such an approach is practically beneficial if pseudo- 
random sequences can be generated more easily than “truly random” ones. This 
gave rise to the notion of a pseudorandom generator - an efficient deterministic 
algorithm which expands random seeds into longer pseudorandom sequences. 

Most of the previous work on pseudorandomness has in fact focused on 
pseudorandom generators. Blum and Micali [l] and Yao [14] suggested the basic 
definitions and showed that pseudorandom generators can be constructed under 
certain (necessary) intractability assumptions.* Several works [4, 12, 10, 11, 6 ,  9, 
7,  31 further developed this direction. An important aspect of pseudorandom 
generation, namely its utility for deterministic simulation of randomized complex- 
ity classes, is further studied in [13]. 

In our article we investigate the notion of pseudorandomness when decoupled 
from the notion of efficient generation. This investigation is camed out using no 
unproven assumptions. The first question we address is the existence of nontrivial 
pseudorandom distributions, that is, pseudorandom distributions which substan- 
tially differ from the uniform distribution. Yao [14] suggests a particular example 
of such a distribution. Further properties of such distributions are developed here. 

We prove the existence of sparse pseudorandom distributions. A distribution is 
called sparse if it is concentrated on a negligible part of the set of all strings of a 
given length. For example, given a positive constant 6 < 1  we construct a 
probability distribution concentrated on 2’‘ of the strings of length k which 
cannot be distinguished from the uniform distribution on the set of all k-bit strings 
(and hence is pseudorandom). 

We show that sparse pseudorandom distributions can even be uniformly 
generated by probabilistic algorithms (that run in nonpolynomial time). These 
generating algorithms use less random coins than the number of pseudorandom 
bits they produce. Viewing these algorithms as generators which expand randomly 
selected short strings into much longer pseudorandom sequences, we can exhibit 
generators achieving subexponential expansion rate. This expansion is optimal as 
we show that no generator expanding strings into exponential longer ones can 
induce a pseudorandom distribution (which passes nonuniform tests). On the 
other hand, we use the subexponential expansion property in order to construct 
nonuniform generators of size slightly super-polynomial. An improvement to this 
result, namely, a proof of existence of nonuniform polynomial-size generators 
would separate nonuniform-P from nonuniform-NP, which would be a major 
breakthrough in Complexity Theory. 

We also prove the existence of sparse pseudorandom distributions that cannot 
be generated or even approximated by efficient algorithms. Namely, there exist 
pseudorandom distributions that are statistically far from any distribution which is 
induced by any probabilistic polynomial-time algorithm. In other words, even if 
efficiently generable pseudorandom distributions exist, they do not exhaust (nor 
even in an approximative sense) all the pseudorandom distributions. 

Finally, we introduce the notion of evasive probability distributions. These 

Intractability assumptions for constructing (polynomial-time) pseudorandom generators are unavoid- 
able as long as we cannot prove the existence of one-way functions and, in particular, that P f NP. We 
stress that such a generator constitutes by itself a one-way function. 
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probability distributions have the property that any efficient algorithm will fail to 
find strings in their support* (except with a negligible probability). Certainly, 
evasive probability distributions are sparse, and cannot be efficiently approxi- 
mated by probabilistic algorithms. We show the existence of evasive pseudo- 
random distributions. 

Interestingly, we have applied the “abstract-flavored’ results presented here in 
order to resolve two open questions concerning the sequential and parallel 
composition of zero-knowledge interactive proofs. This application is presented in 
a companion paper (51. 

2. DEFINITIONS 

The formal definition of pseudorandomness (given below) is stated in asymptoti- 
cal terms, so we shall not discuss single distributions but rather collections of 
probability distributions called probability ensembles. 

Definition. A probability ensemble ll is a collection of probability distributions 
{ rk} k E K ,  such that K is an infinite set of indices (nonnegative integers) and for 
every k E K, rk is a probability distribution on the set of (binary) strings of length 
k .  In articular, an ensemble {rk}keK in which rk is a uniform distribution on 
(0, I} is called a uniform ensemble. 

Next, we give a formal definition of a pseudorandom ensemble. This is done in 
terms of polynomial indistinguishability between ensembles. 

P. 

Definition. Let ll = { rk} and Ti’ = { r ; }  be two probability ensembles. Let T be 
a probabilistic polynomial time algorithm outputting 0 or 1 (T is called a statistical 
rest). Denote by p,(k)  the probability that T outputs 1 when fed with an input 
selected according to the distribution rk. Similarly, p; (k )  is defined with respect 
to r ; .  The test T distinguishes between II and IT’ if and only if there exists a 
constant c > O  and infinitely many k’s such that Ip,(k) - p;(k) l>  k-‘. The 
ensembles II and Ti’ are called polynomially indistinguishable if there exists no 
polynomial-time statistical test that distinguishes between them. 

Definition. 
indistinguishable from a uniform ensemble. 

A probabilistic ensemble is called Pseudorandom if it is polynomially 

Remark. Some authors define pseudorandomness by requiring that pseudo- 
random ensembles be indistinguishable from uniform distributions even by 
nonuniform (polynomial) tests. We stress that the results (and proofs) in this 
article also hold for these stronger definitions. 

Notice that since probabilistic algorithms are fed with random bits chosen 
according to the uniform distribution, it is trivial for them to output uniform 
ensembles. Here we are interested in the question of whether nontrivial pseudo- 
random ensembles can be effectively sampled by means of probabilistic al- 
gorithms. The following definition captures the notion of “samplability.” 

* The support of a probability distribution is the set of elements that it assigns nonzero probability. 



166 GOLDREICH AND KFAWCZYK 

Definition. A sampling algorithm is a probabilistic algorithm A that on input a 
string of the form l", outputs a string of length n.  The probabilhtic ensemble 
I I A  = {T:} ,  induced by a sampling algorithm A is defined by ~ a ( y )  = 
Prob(A(1") = y ) ,  where the probability is taken over the coin tosses of algorithm 
A. A samplable ensemble is a probabilistic ensemble induced by a sampling 
algorithm. If the sampling algorithm uses, on input l", less than n random bits, 
then we call the ensemble strongly-samplable. 

Traditionally, pseudorandom generators are defined as efficient deterministic 
algorithms expanding short seeds into longer bit strings. Using the above ter- 
minology we can view them as strong-sampling algorithms (the seed is viewed as 
the random coins for the sampling algorithm). 

We consider a pseudorandom ensemble to be trivial if it is "close" to a uniform 
ensemble. The meaning of "close" is formalized in the next definition. 

Definition. Two probabilistic ensembles ll and II' are statistically close if for any 
positive c and any sufficiently large n, 

c I T " ( X )  - ?r;(x)l< n - c .  
XE(O.1)"  

A special case of nontrivial pseudorandom ensembles are those ensembles we call 
"sparse. " 

Definition. A probabilistic ensemble is called sparse if (for sufficiently large n's) 
the support of T,, is a set of negligible size relative to the set {0,1}" (i.e., for every 
c>O and sufficiently large n,  

Clearly, a sparse pseudorandom ensemble cannot be statistically close to a 
uniform ensemble. 

Notation. lk will denote the set (0, l}k. 

3. THE EXISTENCE OF SPARSE PSEUDORANDOM ENSEMBLES 

The main result in this section is the following Theorem. 

Theorem 1. There exist strongly-samplable sparse pseudorandom ensembles. 

In order to prove this theorem we present an ensemble of sparse distributions 
which are pseudorandom even against nonuniform distinguishers. These dis- 
tributions assign equal probability to the elements in their support. We use the 
following definitions. 

Definition. Let C be a (probabilistic) circuit with k inputs and a single output. 
We say that a set S C_ ZL is r(k)-distinguished by the circuit C if 



SPARSE PSEUDORANDOM DISTRIBUTIONS 167 

where p c ( S )  (resp. pc(Z,)) denotes the probability that C outputs 1 when given 
elements of S (resp. I,), chosen with uniform probability. 

A set S C_ I, is called (7(k) ,  c(k))-pseudorandom if it is not E(k))-distinguished 
by any circuit of size at most ~(k). 

Note that a collection of uniform distributions on a sequence of sets S,, S,, . . . 
where each S, is a (7(k) ,  E(k))-pseudorandom set, constitutes a pseudorandom 
ensemble, provided that both functions 7 ( k )  and E -‘(k) are super-polynomial 
(i.e., grow faster than any polynomial). Our goal is to prove the existence of such 
a collection for which the ratio IS,l/2k is negligibly small. 

Remark. In the following we consider only deterministic circuits (tests). The 
ability to toss coins does not add power to nonuniform tests. Using a standard 
averaging argument one can show that a deterministic nonuniform distinguisher 
C‘ with distinguishing probability 6 ‘(k) can be obtained from a probabilistic 
nonuniform distinguisher C with distinguishing probability 6(k), where 6 ‘(k) 2 

6(k). The circuit C’ is obtained from C by setting the bits on the random tape of 
C to values that achieve the largest distinguishing probability among all assign- 
ments of values to the random tape. 

The next lemma measures the number of sets which are ~ ( k ) -  distinguished by 
a given circuit. Notice that this result does not depend on the circuit size. 

Lemma 2. 
S C Ik of size N b e(k)-distinguished by C is at most 2e 

For any k-input Boolean circuit C ,  the probability that a random set 
- 2Ne 2 ( k )  

Proof. Let L,(k) be the set { x  E I, : C(x) = l}. Thus, 

Consider the set of strings of length k as an urn containing 2k balls. Let those balls 
in Lc(k)  be painted white and the others black. The proportion of white balls in 
the urn is clearly pc(Zk), and the proportion of white balls in a sample S of N balls 
from the urn is p, (S) .  (We consider here a sample without replacement, i.e., 
sampled balls are not replaced in the urn.) 

Lemma 2 follows by using the Chernoff-type inequality due to W. Hoeffding 
[8] (see Appendix) 

- 2 Ne 2 ( k )  
P M l  P m  - PCUk)IL 44 < 2e 

where the probability is taken over all the subsets S I,, of size N ,  with uniform 
probability. 

Corollary 3. For any positive integers k and N ,  and functions T( - ) and E (  - ), the 
proportion of subsets of Ik of size N which are ( ~ ( k ) ,  E(k))-pseudorandom is at 
least 1 - 2  r*(k) - 2Ne2(k )  
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Proof. The number of Boolean circuits of sue ~ ( k )  is at most 272(k). Therefore, 
using Lemma 2 we get that the proportion of sets SCZ, of size N which are 
E(k)-distinguished by any k-input Boolean circuit of size T(k) is at most 

272(k)  . 2e-2Nc2(k) < 2 ~ * ( k ) - 2 N c ~ ( k )  m 

The following Corollary shows there are pseudorandom ensembles composed 
of uniform distributions with very sparse support. 

Corollary 4. Let k(n) be any subexponential function of n ( i .e . ,  k(n) = 2"'"').* 
There are super-polynomial functions T( - ) and € - I (  * ), and a sequence of sets S ,  , 
S, ,  . . . such that S, is a (T(k(n)), E(k(n)))-pseudorandom subset of Zk(,,, and 
IS"] = 2". 

Proof. 
S C_ 

Using Corollary 3 we get that a (T(k(n)),€(k(n)))-pseudorandom set 
of size 2" exists provided that 

2"e2(k(n)) > T2(k(n)) (1) 

It is easy to see that for any subexponential function k(n) we can find super- 
polynomial functions €- ' ( - )  and .(.) such that inequality (1) holds for each 
value of n.  m 

The following lemma states that the sparse pseudorandom ensembles presented 
above are strongly-samplable. This proves Theorem 1. 

Lemma 5. Let k(n) be any subexponential function of n. There are (nonpolyno- 
mial) generators which expand random strings of length n into pseudorandom 
strings of length k(n). 

Proof. Let T( - ) and E( ) be as in Corollary 4. We construct a generator which 
on input of a seed of length n finds the (~(k(n)), E(k(n)))-pseudorandom set 
S, C_ Zk( , )  whose existence is guaranteed by Corollary 4, and uses the n input bits 
in order to choose a random element from S,. Clearly, the output of the 
generator is pseudorandom. 

To see that the set S, can be effectively found, note that it is effectively 
testable whether a given set S of size 2" is ( ~ ( k ) ,  €(k))-pseudorandom. This can be 
done by enumerating all the circuits of size ~ ( k )  and computing for each circuit C 
the quantities p c ( S )  and pc(Zk). Thus, our generator will test all the possible sets 
S C Zk of size 2" until S, is found. 

Remark 1. Inequality (1) implies a tradeoff between the expansion function k(n) 
and the size of the tests (circuits) resisted by the generated ensemble. The 
pseudorandom ensembles we construct may be "very" sparse, in the sense that 
the expansion function k(n) can be chosen to be very large (e.g., 2*). On the 
other hand, if we consider "moderate" expansion functions such as k(n) = 2n, we 
can resist rather powerful tests, e.g., circuits of size 2""- 

* o(n) denotes any function f (n)  such that !& f (n ) /n  = 0. 
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Remark 2. The subexponential expansion, as allowed by our construction, is 
optimal since there is no generator which expands strings of length n into strings 
of length k(n) = 2""). To see this, consider a circuit C of size k(n)'(') (=(2")0'1') 
which incorporates the (at most) 2" strings of length k(n) output by the generator. 
On input a string of length k(n) the circuit C looks up whether this input appears 
in the incorporated list of strings output by the generator. Clearly, this circuit C 
constitutes a (nonuniform) test (of size polynomial in k(n)) which distinguishes the 
output of this generator from the uniform distribution on ZkCn,, 

Remark 3. The subexponential expansion implies that the supports of the 
resultant pseudorandom distributions are very sparse. More precisely, our con- 
struction implies the existence of generators which induce on strings of length k a 
support of size slightly super-polynomial (i.e., of size k"") for an arbitrary 
nondecreasing unbounded function w(k)) .  Thus, by wiring this support into a 
Boolean circuit, we are able to construct nonuniform generators of size slightly 
super-polynomial. (On input of a seed s the circuit (generator) outputs the sth 
element in this "pseudorandom" support.) Let us point out that an improvement 
of this result, i.e., a proof of the existence of nonuniform pseudorandom 
generators of polynomial size, will imply that nonuniform-P # nonuniform-NP. 
This follows by considering the language { x  E Zk : x is in the image of G} , where 
G is a pseudorandom generator in nonuniform-P. Clearly, this language is in 
nonuniform-NP, but not in nonuniform-P, otherwise a decision procedure for it 
can be transformed into a test distinguishing the output of G from the uniform 
distribution on Z,. 

Remark 4 .  The (uniform) complexity of the generators constructed in Lemma 5 
is slightly super-exponential, i.e., 2k0(k), for unbounded w (  ). (The complexity is, 

up to a polynomial factor, 2r2(k). (2" + 2,) - ( 2 n ) ,  and 2" is, as in Remark 3, 
slightly super-polynomial in k.)  We stress that the existence of pseudorandom 
generators running in exponential time, and with arbitrary polynomial expansion 
function, would have interesting consequences in Complexity Theory as BPP C 
n DTIME(2"') [14, 131. 

2k 

I >O 

4. THE COMPLEXITY OF APPROXIMATING PSEUDORANDOM ENSEMBLES 

In the previous section we have shown sparse pseudorandom ensembles which can 
be sampled by probabilistic algorithms running in super-exponential time. The 
question of whether it is possible to sample at least some pseudorandom ensemble 
by polynomial-time (or even exponential-time) algorithms can only be answered 
today in the affirmative by making a complexity assumption. This raises the 
natural question of whether or not all pseudorandom ensembles can be sampled 
by polynomial-time (or exponential-time) algorithms. We give here a negative 
answer to this question, proving (without any assumptions) that for any complexi- 
ty function $(. ) there exists a samplable pseudorandom ensemble which cannot 
be sampled nor even "approximated" by algorithms in RTIME(4). The notion of 
approximation is defined next. 
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Definition. A probabilistic ensemble ll is approximated by a sampling algorithm 
A if the ensemble TzA induced by A is statistically close to Tz. (See Section 2 for 
the definition of "statistically close)." 

The main result of this section is stated in the following theorem. 

Theorem 6. For any complexity (conshuctive) function 4( - ), there is a strongly 
samplable pseudorandom ensemble that cannot be approximated by any algorithm 
whose running time is bounded by 4. 

Proof. 
if 

We say that two probability distributions IT and IT' on a set X are $-close 

c IIT(x) - IT+)[ < $ . 
X E X  

We say that a sampling algorithm M $-approximates a set S C I,, if the probability 
distribution TY induced by M on Zk and the uniform distribution Us on S are 
$ -close. 

We show that €or any sampling algorithm M most subsets of Zk of size 2" are 
not $-approximated by M (for k sufficiently large with respect to n). This follows 
from the next lemma. 

Lemma 7 .  Let ?r be a probability distribution on Zk.  The probability that ?r and 
Us are f-close, for S randomly chosen over the subsets of Zk of size 2", is less than 
(1 /2),,-"-'. 

Proof. Notice that if two different sets S and T are 4-close, €or S randomly 
chosen over the subsets of zk of size 2", is less than (1/2)k-"-1. 

Using the triangle inequality we conclude that 

c l U A 4  - U&)I < 1 
X € I ,  

Denoting the last sum by u and the symmetric difference of S and T by D, we 
have that ID1 - - < u < 1 (this follows from the fact that Us and U, assign 
uniform probability to the 2" elements of S and T, respectively). But this implies 
that 101<2", and then (using IS l+ITI=IDl+2 . ISn  TI) weget I S f l  T(>2"/2. 
Let T be a particular subset of Zk of size 2" which is $-close to T. From the above 
argument it follows that the collection of subsets of size 2" which are $-close to T 
is included in the collection { S C Zk : IS1 = 2", IS f l  TI > 272). Thus, we are able 
to bound the probability that ?r is f-close to a random set S of size 2", by the 
probability of the following experiment. Fix a set T G I k  of size 2", and take at 
random a set S of 2" elements among all the strings in Zk. We are interested in the 

probability that IS n TI > 2"/2. Clearly, the expectation of IS n TI is - 
2k . 

1 
2" 

ISl.ITI 
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Using Markov inequality for nonnegative random variables we have 

and then 

P ~ o ~ ( [ s  n T I  > 2 ~ 2 )  <2/2'-" (2) 
The lemma follows. 

We now extend the pseudorandom generator constructed in Lemma 5 ,  in order 
to obtain a generator for a pseudorandom ensemble which is not approximated by 
any 4-time sampling algorithm. On input a string of length n,  the generator 
proceeds as in Lemma 5 .  Once a (T(k(n)), E(k(n)))-pseudorandom subset S, is 
found, the generator checks whether S, is $-approximated by all of the first n 
Turing machines, in some canonical enumeration, by running each of them as a 
sampling algorithm for +(k(n)) steps. Clearly, it is effectively testable whether a 
given machine M $-approximates a given set S. If the set S, is $-approximated by 
any one of these machines, it is discarded and the next S C 1 ' 7  IS( = 2" is checked 
(first for pseudorandomness and then for approximation). 

By Corollary 3 we have that for a suitable choice of the functions (T (  ) and 
e(.  ) the probability that a set S is (T(k(n)),  e(k(n)))-pseudorandom is almost 1. 
On the other hand, the probability that a set S is $-approximated by n sampling 
machines is, using Lemma 7, less than r1/2'(")-"-~ . For suitable k(.), e.g., 
k(n)  r 2 n ,  this probability is negligible. Thus, we are guaranteed to find a set S, 
which is (T(k(n)),  e(k(n)))-pseudorandom as well as not $-approximated by the 
first n sampling algorithms running 4-time. The resultant ensemble is as stated in 
the theorem. 

Remark. The result in Theorem 6 relies on the fact that the sampling algorithms 
we have run are uniform ones. Nevertheless, if we use Hoeffding inequality (see 
Appendix) to bound the left side in (2), we derive a much better bound, which 
implies that for any constant a < 1, there exist strongly-samplable pseudorandom 
ensembles that cannot be approximated by Boolean circuits of size 2"". 

5. EVASIVE PSEUDORANDOM ENSEMBLES 

In this section we prove the existence of pseudorandom ensembles which have the 
property that no polynomial-time sampling algorithm will output an element in 
their support, except for a negligible probability. 

Definition. A probability ensemble II = { 7rk} k.EK is called polynomial-time eva- 
sive if for any polynomial-time sampling algorithm A ,  any constant c and 
sufficiently large k ,  

Prob(A(lk) E support(7rk)) < k-' 

(support(7rk) denotes the set {I E Zk : 7rk(x) > 0)). 
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Notice that evasiveness does not imply pseudorandomness. For example, any 
evasive ensemble remains evasive if we add to each string in the support a leading 
“0,” while the resultant distributions are obviously not pseudorandom. On the 
other hand, an evasive pseudorandom ensemble is clearly sparse. 

The following is the main result of this section. 

Theorem 8. 
random ensembles. 

There are (strongly-samplable) polynomial-time evasive pseudo- 

Proof. The proof outline is similar to the proof of Theorem 6. We again extend 
the generator of Lemma 5 by testing whether the (.r(k(n)), E(k(n))-pseudorandom 
set S,, found by that generator on input of length n,  evades the first n Turing 
machines (run as polynomial-time sampling algorithms). We have to show that for 
each sampling algorithm M there is a small number of sets S C z k  of She 2“ for 
which machine M outputs an element of S with significant probability. Through- 
out this proof we shall consider as “significant” a probability that is greater than 
22”/2k. (Any negligible portion suffices here.) Thus, we are assuming k 2 3n. We 
need the following technical lemma. 

Lemma 9. 
S C U denote P(S)  = c n-(s). Then 

Let n- be a fixed probability distribution on a set U of size K .  For any 

‘+ SES 

N 
Prob(rr(S) > E )  < - EK 

where the probability is taken over all the sets S C U of size N with uniform 
probability. 

Proof. Consider a random sample of N distinct elements from the set U. Let X i ,  
1 I i I N ,  be random variables so that Xi assumes the value n-(u) if the ith 
element chosen in thg sample is u. Define the random variable X to be the sum of 

the Xi’s (i.e., X =  c Xi . Clearly, each Xi has expectation 1 / K  and then the 
i = l  

expectation of X is N I K .  Using Markov inequality for nonnegative random 
variables we get 

E ( X )  N Prob(X> E )  < - = - 
E E K  

proving the lemma. 0 

Let n-: be the probability distribution induced by the sampling algorithm M on 
zk. Consider a randomly chosen S C Ik of size 2“. Lemma 9 states that 

Thus, we get that only 1/2” of the subsets S fail the evasivity test for a single 
machine. Running n such tests the portion of failing sets is at most n/2”.  
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Therefore, there exists a set passing all the distinguishing and evasivity tests. 
(Actually, using Corollary 3, we get that most of the sets of size 2” pass these 
tests.) This completes the proof of the Theorem. W 

Remark. Actually, we have proven that for any uniform time-complexity class 
C, there exist pseudorandom ensembles which evades any sampling algorithm of 
the class C. Notice that no restriction on the running time of the sampling 
machines is required. Thus, the results in these sections imply the results of 
Section 4 on unapproximability by uniform algorithms, but not the unapprox- 
imability by nonuniform circuits (see remark after the proof of Theorem 6). We 
stress that we cannot find ensembles evading the output of nonuniform circuits of 
polynomial-size, since for each set S there exists a circuit which outputs an 
element of S with probability 1. In [5]  we construct collections of pseudorandom 
sets which are also “evasive” for nonuniform polynomial-time algorithms, in the 
sense that such an algorithm cannot find, for most sets in the collection, an 
element in that set, except for a negligible probability. 
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APPENDIX: HOEFFDING INEQUALITY [8] 

Suppose an urn contains u balls of which w are white and u - w are black. 
Consider a random sample of s balls from the urn (without replacing any balls in 
the urn at any stage). 

Hoeffding inequality states that the proportion of white balls in the sample is 
close, with high probability, to its expected value, i.e., to the proportion of white 
balls in the urn. More precisely, let x be a random variable assuming the number 
of white balls in a random sample of size s. Then, for any E ,  0 5 E 5 1 

This bound is often used for the case of binomial distributions (i.e., when drawn 
balls are replaced in the urn). The inequality for that case is due to H. Chernoff 
[2]. More general inequalities appear in Hoeffding’s (81, as well as a proof that 
these bounds apply also for the case of samples without replacement. 
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