
Algorithmic Aspects of Property Testing in the Dense Graphs Model∗

Oded Goldreich†

Department of Computer Science
Weizmann Institute of Science

Rehovot, Israel.
oded.goldreich@weizmann.ac.il

Dana Ron‡

Department of EE–Systems
Tel-Aviv University

Ramat-Aviv, Israel.
danar@eng.tau.ac.il

March 13, 2011

Abstract

In this paper we consider two basic questions regarding the query complexity of testing
graph properties in the adjacency matrix model. The first question refers to the relation be-
tween adaptive and non-adaptive testers, whereas the second question refers to testability within
complexity that is inversely proportional to the proximity parameter, denoted ǫ. The study of
these questions reveals the importance of algorithmic design in this model. The highlights of
our study are:

• A gap between the complexity of adaptive and non-adaptive testers. Specifically, there
exists a natural graph property that can be tested using Õ(ǫ−1) adaptive queries, but
cannot be tested using o(ǫ−3/2) non-adaptive queries.

• In contrast, there exist natural graph properties that can be tested using Õ(ǫ−1) non-
adaptive queries, whereas Ω(ǫ−1) queries are required even in the adaptive case.

We mention that the properties used in the foregoing conflicting results have a similar flavor,
although they are of course different.

Keywords: Property Testing, Adaptivity vs. Non-adaptivity, Graph Properties,

∗An extended abstract of this work appeared in the proceedings of RANDOM 2009, Springer LNCS 6302, pages
520–533.

†Partially supported by the Israel Science Foundation (grants No. 460/05 and 1041/08).
‡Partially supported by the Israel Science Foundation (grants No. 89/05 and 246/08).

i

Contents

1 Introduction 1
1.1 Two Related Studies . 1

1.1.1 Adaptivity vs. Non-adaptivity . 2
1.1.2 Complexity linearly related to the proximity parameter 2

1.2 Our Results . 3
1.3 A Complexity Theoretic Perspective . 5
1.4 Organization . 6

2 Preliminaries 6
2.1 Basic Notions . 7
2.2 The Graph Properties to be Studied . 7
2.3 On Proving Lower Bound for Property Testing . 8
2.4 Annoying Technicalities . 9

3 The Adaptive Query Complexity of Clique Collection 9

4 The Non-Adaptive Query Complexity of Clique Collection 17
4.1 The Lower Bound . 17

4.1.1 The two sets . 17
4.1.2 The indistinguishability result . 18

4.2 A Matching Upper-Bound . 21
4.2.1 The structure of the set of witnesses . 23
4.2.2 The existence of effective witnesses . 33
4.2.3 Proof of Claim 4.4.3 . 36

5 Larger Adaptive versus Non-adaptive Complexity Gaps 39
5.1 The Adaptive Query Complexity of Bi-Clique Collection 39
5.2 Non-Adaptive Lower-Bound for Bi-Clique Collection 49

5.2.1 The two sets . 49
5.2.2 The indistinguishability result . 50

5.3 Non-Adaptive Lower-Bound for Super-Cycle Collection 53
5.3.1 The two sets . 53
5.3.2 The indistinguishability result . 54

5.4 A Candidate Adaptive Tester for Super-Cycle Collection 57

6 Non-Adaptive Testing with Õ(1/ǫ) Complexity 60
6.1 Clique and Bi-Clique . 61
6.2 Collection of a Constant Number of Cliques . 61

7 Conclusions 68

Bibliography 70

i

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g., a
couple of recent surveys [R1, R2]). Loosely speaking, property testing typically refers to sub-linear
time probabilistic algorithms for deciding whether a given object has a predetermined property
or is far from any object having this property. Such algorithms, called testers, obtain bits of the
object by performing queries, which means that the object is seen as a function and the testers get
oracle access to this function. Thus, a tester may be expected to work in time that is sub-linear in
the length of the description of this object.

Much of the aforementioned work (see, e.g., [GGR, AFKS, AFNS]) was devoted to the study
of testing graph properties in the adjacency matrix model, which is also the setting of the current
work. In this model, introduced in [GGR], graphs are viewed as symmetric Boolean functions
over a domain consisting of all possible vertex-pairs. Namely, an N -vertex graph G = ([N], E) is
represented by the function g : [N] × [N] → {0, 1} such that {u, v} ∈ E if and only if g(u, v) = 1.
Consequently, an N -vertex graph represented by the function g : [N] × [N] → {0, 1} is said to be
ǫ-far from some predetermined graph property if more than ǫ · N2 entries of g must be modified
in order to yield a representation of a graph that has this property. We refer to ǫ as the proximity
parameter. Given this representation, the algorithm may query whether there is an edge between
any pair of vertices of its choice, and the query and time complexity of testing are stated in terms
of ǫ and possibly the number, N , of vertices in the graph. We note that this model is most suitable
for testing dense graphs, that is, graphs in which the number of edges is Ω(N2). This is true
both because the adjacency matrix is an appropriate representation of dense graphs, and because
distance between graphs is related to their size, Θ(N2). Discussion of other models, more suitable
for sparse graphs, can be found, in [GR02, PR, KKR].

Interestingly, many natural graph properties can be tested in the adjacency matrix model
with query complexity that depends only on the proximity parameter; see [GGR], which presents
testers with query complexity poly(1/ǫ), and [AFNS], which characterizes the class of properties
that are testable within query complexity that depends only on the proximity parameter (where
this dependence may be an arbitrary function of ǫ). However, a common phenomenon in all the
aforementioned works is that they utilize quite naive algorithms and their focus is on the analysis of
these algorithms, which is often quite sophisticated. This phenomenon is no coincidence: As shown
in [AFKS, GT], when ignoring a quadratic blow-up in the query complexity, property testing in
this model reduces to sheer combinatorics. Specifically, without loss of generality, the tester may
just inspect a random induced subgraph (of an appropriate size) of the input graph.

In this paper we demonstrate that a more refined study of property testing in this model reveals
the importance of algorithmic design also in this model. This is demonstrated both by studying the
advantage of adaptive testers over non-adaptive ones as well as by studying the class of properties
that can be tested within complexity that is inversely proportional to the proximity parameter.

1.1 Two Related Studies

We start by reviewing the two related studies conducted in the current work.

1

1.1.1 Adaptivity vs. Non-adaptivity

A tester is called non-adaptive if it determines all its queries independently of the answers obtained
for previous queries, and otherwise it is called adaptive. Indeed, by [AFKS, GT], the benefit of
adaptivity (or, equivalently, the cost of non-adaptivity) is polynomially bounded: Specifically, any
(possibly adaptive) tester, for any graph property, of query complexity q(N, ǫ) can be transformed
into a non-adaptive tester of query complexity O(q(N, ǫ)2). But is this quadratic gap an artifact
of the known proofs (of [AFKS, GT]) or does it reflect something inherent?

A recent work by [GR07] suggests that the latter case may hold: For every ǫ > 0, they showed
that the set of N -vertex bipartite graphs of maximum degree O(ǫN) is ǫ-testable (i.e., testable with
respect to proximity parameter ǫ) by Õ(ǫ−3/2) queries, while by [BT] a non-adaptive tester for this
set must use Ω(ǫ−2) queries. Thus, there exists a case where non-adaptivity has the cost of increasing
the query complexity; specifically, for any c < 4/3, the query complexity of the non-adaptive tester
is greater than a c-power of the query complexity of the adaptive tester (i.e., Õ(ǫ−3/2)c = o(ǫ−2)).
We stress that the result of [GR07] does not refer to property testing in the “proper” sense; that
is, the complexity is not analyzed with respect to a varying value of the proximity parameter for
a fixed property. It is rather the case that, for every value of the proximity parameter, a different
property, which depends on this parameter, is considered. The upper bounds and lower bounds
refer to this combination of a property tailored for a fixed value of the proximity parameter. Thus,
the work of [GR07] leaves open the question of whether there exists a single graph property such that
adaptivity is beneficial for any value of the proximity parameter (as long as ǫ > N−Ω(1)). That is,
the question is whether adaptivity is beneficial for the standard asymptotic-complexity formulation
of property testing.

1.1.2 Complexity linearly related to the proximity parameter

As shown in [GGR], many natural graph properties can be tested within query complexity that is
polynomial in the reciprocal of the proximity parameter and independent of the size of the graph.
We ask whether a linear complexity is possible at all, and if so which properties can be tested with
query complexity that is linear (or almost linear) in the reciprocal of the proximity parameter, that
is, with query complexity Õ(1/ǫ).1

The first question is easy to answer even when avoiding trivial properties. We say that a graph
property Π is trivial for testing if for every ǫ > 0 there exists N0 > 0 such that for every N ≥ N0

either all N -vertex graphs belong to Π or all of them are ǫ-far from Π. Note that the property of
being a clique (equiv., an independent set) can be tested by O(1/ǫ) queries, even when these queries
are non-adaptive (e.g., make O(1/ǫ) random queries and accept if and only if all return 1). Still,
we ask whether “more interesting” graph theoretical properties can also be tested within similar
complexity, either only adaptively or also non-adaptively. In particular, the property of being a
clique (or an independent set) is viewed as “non-interesting” since it contains a single N -vertex
graph (per each N) and is represented by a constant function.

1Note that Ω(1/ǫ) queries are required for testing any of the graph properties considered in the current work; for
a more general statement see the beginning of Section 6.

2

1.2 Our Results

We address the foregoing questions by studying a sequence of natural graph properties, which are
defined formally in Section 2.2. The first property in the sequence, called clique collection and
denoted CC, is the set of graphs such that each graph consists of a collection of isolated cliques.
Testing this property corresponds to the following natural clustering problem: can a set of possibly
related elements be partitioned into “perfect clusters” (i.e., two elements are in the same cluster
if and only if they are related)? For this property, CC, we prove a gap between adaptive and non-
adaptive query complexity, where the adaptive query complexity is almost linear in the reciprocal
of the proximity parameter. That is:

Theorem 1.1 (the query complexity of clique collection):

1. There exists an adaptive tester for CC whose query complexity is Õ(ǫ−1). Furthermore, this
tester has one-sided error and runs in time Õ(ǫ−1).2

2. Any non-adaptive tester for CC must have query complexity Ω(ǫ−4/3).

3. There exists a non-adaptive tester for CC whose query complexity is O(ǫ−4/3). Furthermore,
this tester has one-sided error and runs in time O(ǫ−4/3).

Note that the complexity gap between Parts 1 and 2 of Theorem 1.1 matches the gap established
by [GR07] for “non-proper” testing. A larger gap is established for a property of graphs, called
bi-clique collection and denoted BCC, where a graph is in BCC if it consists of a collection of
isolated bi-cliques (i.e., complete bipartite graphs). We note that bi-cliques may be viewed as the
bipartite analogues of cliques (w.r.t. general graphs), and indeed they arise naturally in clustering
applications that are modeled by bipartite graphs over two types of elements.

Theorem 1.2 (the query complexity of bi-clique collection):

1. There exists an adaptive tester for BCC whose query complexity is Õ(ǫ−1). Furthermore, this
tester has one-sided error and runs in time Õ(ǫ−1).

2. Any non-adaptive tester for BCC must have query complexity Ω(ǫ−3/2). Furthermore, this
holds even if the input graph is promised to be bipartite.

The furthermore clause in Part 2 of Theorem 1.2 holds also for the model studied in [AFN], where
the bi-partition of the graph is given.

Theorem 1.2 asserts that the gap between the query complexity of adaptive and non-adaptive
testers may be a power of 1.5 − o(1). Recall that the results of [AFKS, GT] assert that the gap
may not be larger than quadratic. We conjecture that this upper bound can be matched.

Conjecture 1.3 (an almost-quadratic complexity gap): For every positive integer t ≥ 5, there
exists a graph property Π for which the following holds:

1. There exists an adaptive tester for Π whose query complexity is Õ(ǫ−1).

2. Any non-adaptive tester for Π must have query complexity Ω(ǫ−2+(2/t)).

2We refer to a model in which elementary operations regarding pairs of vertices are charged at unit cost.

3

3. There exists an efficient non-adaptive tester for Π whose query complexity is Õ(ǫ−2+2t−1
).

Furthermore, Π consists of graphs that are each a collection of “super-cycles” of length t, where
a super-cycle is a set of t independent sets arranged on a cycle such that each pair of adjacent
independent sets is connected by a complete bipartite graph.

We were able to prove Part 2 of Conjecture 1.3, but failed to provide a full analysis of an algorithm
that we designed for Part 1. However, we were able to prove a promise problem version of Con-
jecture 1.3; specifically, this promise problem (stated in Theorem 5.7) refers to inputs promised to
reside in a set Π′ ⊃ Π and the tester is required to distinguish graphs in Π from graphs that are
ǫ-far from Π.

In contrast to the foregoing results that aim at identifying properties with a substantial gap
between the query complexity of adaptive versus non-adaptive testing, we also study cases in which
no such gap exists. Since query complexity that is linear in the reciprocal of the proximity parameter
is minimal for many natural properties, and, in fact, for any property that is “non-trivial for testing”
(as defined at the end of Subsection 1.1), we focus on non-adaptive testers that approximately meet
this bound. Among the results obtained in this direction, we highlight the following one.

Theorem 1.4 (the query complexity of collections of O(1) cliques): For every positive integer c,
there exists a non-adaptive tester of query complexity Õ(ǫ−1) for the set of graphs such that each
graph consists of a collection of up to c cliques. Furthermore, this tester has one-sided error and
runs in time Õ(ǫ−1).

Theorem 1.4 should be viewed as a first step in the study of graph properties that are the simplest
to test; that is, the class of graph properties that have a non-adaptive of query complexity Õ(ǫ−1).
We mention that a second step, which significantly generalizes Theorem 1.4, has been subsequently
taken in [A09, AG].

Discussion. Our results demonstrate that a finer look at property testing of graphs in the ad-
jacency matrix model reveals the role of algorithm design in this model. In particular, in some
cases (see, e.g., Theorems 1.1 and 1.2), carefully designed adaptive algorithms outperform any non-
adaptive algorithm. Indeed, this conclusion stands in contrast to [GT, Thm. 2], which suggests
that a less fine view, which ignores polynomial blow-ups,3 deems algorithm design irrelevant to
this model. We also note that, in some cases (see, e.g., Theorem 1.4 and Part 3 of Theorem 1.1),
carefully designed non-adaptive algorithms outperform canonical ones.

As discussed previously, one of the goals of this work was to study the relation between adaptive
and non-adaptive testers in the adjacency matrix model. Our results demonstrate that, in this
model, the relation between the adaptive and non-adaptive query-complexities is not fixed, but
rather varies with the computational problem at hand. In some cases (e.g., Theorem 1.4) the
complexities are essentially equal, indeed, as in the case of sampling [CEG]. In other cases (e.g.,
Theorem 1.1), these complexities are related by a fixed power (e.g., 4/3) that is strictly between
1 and 2. And, yet, in other cases (e.g., Theorem 5.7) the non-adaptive complexity is quadratic
in the adaptive complexity, which is the maximum gap possible (by [AFKS, GT]). Furthermore,

3Recall that [GT, Thm. 2] asserts that canonical testers, which merely select a random subset of vertices and rule
according to the induced subgraph, have query-complexity that is at most quadratic in the query-complexity of the
best tester. We note that [GT, Thm. 2] also ignores the time-complexity of the testers.

4

by Theorem 5.7, for any t ≥ 4, there exists a promise problem for which the aforementioned
complexities are related by a power of 2− (2/t).

Needless to say, the fundamental relation between adaptive and non-adaptive algorithms was
studied in a variety of models, and the current work studies it in a specific natural model (i.e.,
of property testing in the adjacency matrix representation). In particular, this relation has been
studied in the context of property testing in other domains. Specifically, in the setting of testing
the satisfiability of linear constraints, it was shown that adaptivity offers absolutely no gain [BHR].
A similar result holds for testing monotonicity of sequences of positive integers [F04]. In contrast,
an exponential gap between the adaptive and non-adaptive complexities may exist in the context
of testing other properties of functions [F04]. Lastly, we mention that an even more dramatic
gap exists in the setting of testing graph properties in the bounded-degree model (of [GR02]);
see [RS06].

1.3 A Complexity Theoretic Perspective

Let us start by rephrasing Conjecture 1.3, while recalling that it refers to properties for which
testing requires (adaptive) query complexity that is at least linear in the reciprocal of the proximity
parameter (see Proposition 6.1).

Conjecture 1.3 (rephrased). For every integer t ≥ 2, there exists a (natural) graph property
Πt such that non-adaptively testing Πt has query complexity Θ̃(q2−(2/t)), where q = q(N, ǫ) denotes
the query complexity of (adaptively) testing Πt.

Recall that it is known that the non-adaptive query complexity of testing any graph property
is at most quadratic in the adaptive query complexity. We stress that Conjecture 1.3 not only
asserts that this upper bound is essentially tight, but rather asserts an infinite hierarchy of possible
functional relations between the non-adaptive and adaptive query complexity.

The results in this work refer to “two and a half” elements in the conjectured hierarchy as well
as to a corresponding hierarchy of promise problems. Specifically, denoting the (adaptive) query
complexity by q = q(N, ǫ), we have:

• Theorem 1.4 establishes the conjecture for t = 2. Specifically, Theorem 1.4 presents natural
graph properties that have non-adaptive query complexity Θ̃(q).

• Theorem 1.1 establishes the conjecture for t = 3. Specifically, Theorem 1.1 presents a natural
graph property that has non-adaptive query complexity Θ̃(q4/3).

• Theorem 1.2 establishes half of the conjecture for t = 4. Specifically, Theorem 1.2 presents a
natural graph property that has non-adaptive query complexity Ω̃(q3/2).

• Theorem 5.7 fully establishes the conjecture in the setting of promise problems. We stress
that these promise problems are fixed (independently of the proximity parameter).

Indeed, in all our results q = q(N, e) = Ω̃(1/ǫ). We also mention that in all our results the upper
bounds are established by one-sided error testers, whereas the lower bounds hold also for general
(i.e., two-sided error) testers.

5

Open problems. In addition to the resolution of Conjecture 1.3, our study raises many other
open problems; the most evident ones are listed next.

1. What is the non-adaptive query complexity of BCC? Note that Theorem 1.2 only establishes
a lower bound of Ω(ǫ−3/2). We conjecture that an efficient non-adaptive algorithm of query
complexity Õ(ǫ−3/2) can be devised.

2. For which constants c ∈ [1, 2] does there exist a property that has adaptive query complexity
of q(ǫ) and non-adaptive query complexity of Θ̃(q(ǫ)c)? Note that Theorem 1.1 shows that
4/3 is such a constant, and the same holds for the constant 1 (see, e.g., Theorem 1.4). We
conjecture (see Conjecture 1.3) that, for any t ≥ 2, it holds that the constant 2 − (2/t) also
satisfies the foregoing requirement. It may be the case that these constants are the only ones
that satisfy this requirement.

3. Characterize the class of graph properties for which the query complexity of non-adaptive
testers is almost linear in the query complexity of adaptive testers. Note that this class may
not contain the property of bipartiteness [GR07].

4. Characterize the class of graph properties for which the query complexity of non-adaptive
testers is almost quadratic in the query complexity of adaptive testers.

5. Characterize the class of graph properties for which the query complexity of adaptive (resp.,
non-adaptive) testers is almost linear in the reciprocal of the proximity parameter.

The last characterization project may be the most feasible among the three foregoing characteriza-
tion projects. We mention that this is partially addressed in [A09, AG], which significantly extends
and builds upon Theorem 1.4. Finally, we recall the well-known open problem, partially addressed
in [AS], of providing a characterization of the class of graph properties that are testable within
query complexity that is polynomial in the reciprocal of the proximity parameter.

1.4 Organization

Section 2 contains a review of the basic notions underlying this work as well as formal definitions of
the graph properties that we study. In Section 3 we present an adaptive tester for Clique Collection
that has almost-linear query complexity. This result stands in contrast to the tight lower bound
on the query complexity of non-adaptive testers for Clique Collection, presented in Section 4.
Theorem 1.1 follows by combining the results in these sections. Larger gaps between the query
complexity of adaptive versus non-adaptive testers (i.e., Theorems 1.2 and 5.7) are presented in
Section 5. On the other hand, in Section 6, we present non-adaptive testers of query complexity
that is almost linear in the reciprocal of the proximity parameter. We conclude this paper, in
Section 7, by explicitly presenting three perspectives on our results.

2 Preliminaries

In this section we review the definition of property testing, when specialized to graph properties in
the adjacency matrix model. We also define several natural graph properties, which will serve as
the pivot of our study.

6

2.1 Basic Notions

For an integer n, we let [n] = {1, . . . , n}. A generic N -vertex graph is denoted by G = ([N], E),
where E ⊆ {{u, v} : u, v ∈ [N]} is a set of unordered pairs of vertices. Any set of such graphs
that is closed under isomorphism is called a graph property. By oracle access to such a graph
G = ([N], E) we mean oracle access to the Boolean function that answers the query {u, v} (or
rather (u, v) ∈ [N]× [N]) with the bit 1 if and only if {u, v} ∈ E.

Definition 2.1 (property testing for graphs in the adjacency matrix model): A tester for a graph
property Π is a probabilistic oracle machine that, on input parameters N and ǫ and access to an
N -vertex graph G = ([N], E), outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π then the tester accepts with probability at least 2/3.

2. If G is ǫ-far from Π then the tester accepts with probability at most 1/3, where G is ǫ-far
from Π if for every N -vertex graph G′ = ([N], E′) ∈ Π it holds that the symmetric difference
between E and E′ has cardinality that is greater than ǫN2.4

If the tester accepts every graph in Π with probability 1, then we say that it has one-sided error. A
tester is called non-adaptive if it determines all its queries based solely on its internal coin tosses
(and the parameters N and ǫ); otherwise it is called adaptive.

The query complexity of a tester is the number of queries it makes to any N -vertex graph oracle,
as a function of the parameters N and ǫ. We say that a tester is efficient if it runs in time that is
polynomial in its query complexity, where basic operations on elements of [N] (and in particular,
uniformly selecting an element in [N]) are counted at unit cost. We note that all testers presented
in this paper are efficient, whereas the lower bounds hold also for non-efficient testers.

We shall focus on properties that can be tested with query complexity that only depends on
the proximity parameter, ǫ. Thus, the query complexity upper bounds that we state hold for any
values of ǫ and N , but will be meaningful only for ǫ > 1/N2 or so. In contrast, the lower bounds
(e.g., of Ω(1/ǫ)) cannot possibly hold for ǫ < 1/N2, but they will indeed hold for any ǫ > N−Ω(1).
Alternatively, one may consider the query-complexity as a function of ǫ, where for each fixed value
of ǫ > 0 the value of N tends to infinity.

Notation and a convention. For a fixed graph G = ([N], E), we denote by Γ(v) = {u :{u, v}∈
E} the set of neighbors of vertex v. At times, we look at E as a subset of [N] × [N]; that is, we
often identify E with {(u, v) :{u, v}∈E}. For two sets V1, V2 ⊆ [N], we denote by E(V1, V2) the set
of pairs (u, v) ∈ E ∩ (V1 × V2).

If a graph G = ([N], E) is not ǫ-far from a property Π then we say that G is ǫ-close to Π; this
means that at most ǫN2 edges should be added and/or removed from G such to yield a graph in
Π.

2.2 The Graph Properties to be Studied

The set of graphs that consists of a collection of isolated cliques is called clique collection and is
denoted CC; that is, a graph G = ([N], E) is in CC if and only if the vertex set [N] can be partitioned

4Indeed, it is more natural to require that this symmetric difference should have cardinality that is greater than
ǫ ·

`
N
2

´
. The current convention is adopted for the sake of convenience.

7

into (C1, . . . , Ct) such that the subgraph induced by each Ci is a clique and there are no edges with
endpoints in different Ci’s (i.e., for every u < v ∈ [N] it holds that {u, v} ∈ E if and only if there
exists an i such that u, v ∈ Ci). In other words, the relation defined by the graph edges is transitive.
If t ≤ c then we say that G is in CC≤c; that is, CC≤c is the subset of CC that contains graphs that
are each a collection of up-to c isolated cliques.

A bi-clique is a complete bipartite graph (i.e., a graph G = (V,E) such that V is partitioned
into (S, V \ S) such that {u, v} ∈ E if and only if u ∈ S and v ∈ V \ S). Note that a graph is a
bi-clique if and only if its complement is in CC≤2. The set of graphs that consists of a collection of
isolated bi-cliques is called bi-clique collection and denoted BCC; that is, a graph G = ([N], E) is in
BCC if and only if the vertex set [N] can be partitioned into (V1, . . . , Vt) such that the subgraph
induced by each Vi is a bi-clique and there are no edges with endpoints in different Vi’s (i.e., each
Vi is partitioned into (Si, Vi \ Si) such that for every u < v ∈ [N] it holds that {u, v} ∈ E if and
only if there exists an i such that (u, v) ∈ Si × (Vi \ Si)).

Generalizations of BCC are obtained by considering collections of “super-paths” and “super-
cycles” respectively. A super-path (of length t) is a sequence of disjoint sets of vertices, S1, . . . , St,
such that vertices u, v ∈ ⋃

i∈[t] Si are connected by an edge if and only if for some i ∈ [t − 1] it
holds that u ∈ Si and v ∈ Si+1. Note that a bi-clique can be viewed as a super-path of length
two. We denote the set of graphs that consists of a collection of isolated super-paths of length t
by SPtC (e.g., SP2C = BCC). Similarly, a super-cycle (of length t) is a sequence of disjoint sets of
vertices, S1, . . . , St, such that vertices u, v ∈ ⋃

i∈[t] Si are connected by an edge if and only if for
some i ∈ [t] it holds that u ∈ Si and v ∈ S(i mod t)+1. Note that a bi-clique that has at least two
vertices on each side can be viewed as a super-cycle of length four (by partitioning each of its sides
into two parts). We denote the set of graphs that consists of a collection of isolated super-cycles of
length t by SCtC (e.g., SC4C ⊂ BCC, where the strict containment is due to the pathological case
of bi-cliques having at most one node on one side).

2.3 On Proving Lower Bound for Property Testing

All our lower bounds employ the following method, which is commonly attributed to Yao [Y77]. To
prove that a certain class, C, of algorithms cannot decide a certain (promise) problem, we present
two distributions, one concentrated on yes-instances and the other concentrated on no-instances
and prove that any algorithm in C cannot distinguish these two distributions. In the context of
property testing, the first distribution, D1, is over objects that have the predetermined property
Π, whereas the second distribution, D2, is over objects that are ǫ-far from Π, where ǫ is the value
of the proximity parameter for which we seek to prove the hardness of testing. Now, if T is a tester
for Π, then on input proximity parameter ǫ, it should hold that:

1. With probability at least 2/3 (taken over both D1 and T ’s internal coin tosses), when given
access to an object selected according to D1 the tester T accepts.

2. With probability at most 1/3 (taken over both D2 and T ’s internal coin tosses), when given
access to an object selected according to D2 the tester T accepts.

Let us define the distinguishing gap of M between D1 and D2 as |p1 − p2| where pi denotes the
probability that M outputs 1 (“accept”) when given access to an object drawn according to Di.
Thus, T must be able to distinguish, with a gap of at least 1/3 between objects distributed according
to D1 and objects distributed according to D2. Therefore, in order to prove a query complexity

8

lower bound q, we show that oracle machines M making fewer than q queries cannot distinguish
such distributions with gap at least 1/3. In other words, it suffices to establish an upper bound on
the distinguishing gap of any oracle machine that makes a number of queries that is smaller than
the claimed lower bound. Using an averaging argument (and relying on the lack of a uniformity
condition), it suffices to establish this upper bound for deterministic machines.

Finally, when considering non-adaptive testers, it suffices to consider a fixed sequence of queries,
and the distribution of answers provided by objects selected according to the two distributions.
Thus, for non-adaptive oracle machines, the distinguishing gap is upper bounded by the statistical
difference between these two distributions of answers. Recall that the statistical difference between
two distributions A and B is

max
S
{Pre∼A[e ∈ S]− Pre∼B[e ∈ S]} =

1

2
·
∑

v

|Pre∼A[e = v]− Pre∼B[e = v]| (1)

where Pre∼D[P (e)] denotes the probability that an element drawn according to distribution D
satisfies the predicate P .

2.4 Annoying Technicalities

We allowed ourselves various immaterial inaccuracies. For example, various quantities (e.g.,
log2(1/ǫ)) are treated as if they are integers, whereas one should actually use some rounding and
compensate for the rounding error. At times, we ignore events that occur with probability that is
inversely proportional to the number of vertices; for example, when we select a random sample of
s = O(1) (or s = Õ(1/ǫ)) vertices, we often analyze it as if sampling was done with repetitions.
In some places, we do not specify the “high” (constant) probability with which some events occur;
but such missing details are easy to fill-up. In other places, we specify high constants that are not
the best ones possible.

3 The Adaptive Query Complexity of Clique Collection

In this section we study the (adaptive) query complexity of clique collection, presenting an almost
optimal (adaptive) tester for this property. Loosely speaking, the tester starts by finding a few
random neighbors of a few randomly selected start vertices, and then examines the existence of
edges among the neighbors of each start vertex as well as among these neighbors and the non-
neighbors of each start vertex. Note that if for some vertex v the algorithm either finds two
neighbors of v that do not have an edge between them, or the algorithm finds a neighbor of v and
a non-neighbor of v that have an edge between them, then it has evidence that the graph is not a
clique collection.

We highlight the fact that adaptivity is used in order to perform queries that refer only to pairs
of neighbors of the same start vertex. To demonstrate the importance of this fact, consider the
case that the N -vertex graph is partitioned into O(1/ǫ) connected components each having O(ǫN)
vertices. Suppose that we wish to tell whether the connected component that contains the vertex v
is indeed a clique, or there is a constant fraction of missing edges between the neighbors of v. Using

adaptive queries we may first find a constant number of neighbors of v, by selecting t
def
= O(1/ǫ)

random vertices and checking whether each selected vertex is adjacent to v. We can then check
whether these constant number of neighbors are adjacent to each other. In contrast, intuitively,

9

a non-adaptive procedure cannot avoid making all
(t
2

)
possible queries, since it “does not know”

which of the t vertices are neighbors of v.
The foregoing adaptive procedure is tailored to the case that the N -vertex graph is partitioned

into O(1/ǫ) (“strongly connected”) components, each having O(ǫN) vertices. In such a case, it
suffices to check that a constant fraction of these components are in fact cliques (or rather close to
being so), as described in the foregoing adaptive procedure, and that there are no edges (or rather
relatively few edges) between the cliques. However, if the components (and potential cliques) are
larger, then we should check more of them. Fortunately, due to their larger size, finding neighbors
requires less queries, and the total number of queries remains invariant.

Thus, the algorithm, described next, works in iterations, where the iterations differ in the
number of start vertices selected and in the size of the sample used to get uniformly selected
neighbors (and non-neighbors) of these start vertices. Each iteration is designed to detect the
existence of vertices with a certain, iteration dependent, lower bound on their degree, for which
the following holds. Either there are relatively many missing edges between their neighbors, or
there are relatively many “superfluous” edges between their neighbors and their non-neighbors.
The quantification of “relatively many” is also dependent on the iteration. As we show in our
correctness proof, if the graph is ǫ-far from CC, then there must be relatively many such vertices
for at least one of the iterations (where again, the quantification of “relatively many” depends on
the iteration and is related to the number of start vertices that are selected in the iteration).

Algorithm 3.1 (adaptive tester for CC): On input N and ǫ and oracle access to a graph G =

([N], E), set t = Θ(log3(1/ǫ)), and proceed in ℓ
def
= log2(1/ǫ) + 2 iterations as follows: For i =

1, . . . , ℓ, select uniformly 10 · 2i start vertices and for each selected vertex v ∈ [N] perform the
following sub-test, denoted sub-testi(v):

1. Select at random a sample, S, of t/(2iǫ) vertices.

2. Determine ΓS(v) = S ∩ Γ(v), by making the queries (v,w) for each w ∈ S.

3. If |ΓS(v)| ≤
√
t/2iǫ then check that for every u,w ∈ ΓS(v) it holds that (u,w) ∈ E. Otherwise

(i.e., |ΓS(v)| >
√
t/(2iǫ)), select a sample of t/(2iǫ) pairs in ΓS(v)×ΓS(v) and check that each

selected pair is in E.

4. Select a sample of t/(2iǫ) pairs in ΓS(v)× (S \ ΓS(v)) and check that each selected pair is not
in E.

The sub-test (i.e., sub-testi(v)) accepts if and only if all checks were positive (i.e., no edges were
missed in Step 3 and no edges were detected in Step 4). The tester itself accepts if and only if all∑ℓ

i=1 10 · 2i invocations of the sub-test accepted.

The query complexity of this algorithm is
∑ℓ

i=1 10 · 2i · O(t/(2iǫ)) = O(ℓ · t/ǫ) = Õ(1/ǫ), and the
running time is of the same order as the query complexity. Clearly, this algorithm accepts with
probability 1 any graph that is in CC. It remains to analyze its behavior on graphs that are ǫ-far
from CC, and thus establish Part 1 of Theorem 1.1, which states that there exists an adaptive
(one-sided error) tester for CC whose complexity is Õ(ǫ−1).

Lemma 3.2 If G = ([N], E) is ǫ-far from CC, then on input N, ǫ and oracle access to G, Algo-
rithm 3.1 rejects with probability at least 2/3.

10

Proof: We shall prove the contrapositive statement; that is, that if Algorithm 3.1 accepts a graph
G with probability at least 1/3, then G is ǫ-close to CC. The proof makes use of the following notion
of i-good start vertices (for i ∈ [ℓ]). We first show that if Algorithm 3.1 accepts with probability at
least 1/3, then the number of vertices with a relatively high degree that are not i-good is relatively
small, and next show how to use i-good vertices (with a relatively high degree) in order to construct
a partition of the vertices that demonstrates that the graph is ǫ-close to CC.

The following central definition of i-good vertices refers to a parameter γ, which is set to
c/t, where t is as determined in Algorithm 3.1 and c is a constant (which will be chosen to be
sufficiently large for the purposes of the analysis). In fact, it is useful to think of first setting γ to
be 1/(c′ log3(1/ǫ)) for some sufficiently large constant c′ (which ensures that we get a good partition
based on i-good vertices), and then setting t (which determines the sample sizes selected by the
algorithm) to be c/γ. In fact, at the heart of the analysis is a parameter β which is set to be 1/(c′′ℓ)
for a constant c′′, and γ is set to be β/(c′′′ℓ2) for a constant c′′′.

Definition 3.2.1 A vertex v is i-good if the following two conditions hold.

1. The number of missing edges in the subgraph induced by Γ(v) is at most γ · 2iǫ · |Γ(v)| ·N .

2. For every positive integer j ≤ j0
def
= log2(|Γ(v)|/(γ · 2iǫN)), the number of vertices in Γ(v)

that have at least γ · 2i+jǫ ·N neighbors that do not belong to Γ(v) is at most 2−j · |Γ(v)|.

Note that Condition 1 holds vacuously whenever |Γ(v)| < γ · 2iǫ ·N (since in such a case, |Γ(v)|2 <
γ · 2iǫ · |Γ(v)| · N). However, when |Γ(v)| is sufficiently larger than γ · 2iǫ · N , then Condition 1
implies that a large fraction of the vertices in Γ(v) neighbor almost all vertices in Γ(v), so that
Γ(v) is close to being a clique. Condition 2 implies that almost all vertices in Γ(v) have relatively
few neighbors outside of Γ(v), where “almost all” and “relatively few” are quantified and related.
On the other hand, as the next claim establishes, if a vertex v is not i-good (and has a sufficiently
high degree), then sub-testi(v) will detect it with high constant probability.

Claim 3.2.2 If v has degree at least γ ·2iǫ·N and is not i-good, then the probability that sub-testi(v)
accepts is less than 0.05.

Proof: Intuitively, the lower bound on |Γ(v)| implies that the violation of any of the two conditions
of Definition 3.2.1 is detected with high probability by sub-testi(v). For example, if a 0.01 fraction
of the vertices in Γ(v) have less than 0.99 · |Γ(v)| neighbors in Γ(v), then the residual sample ΓS(v)
(created by sub-testi(v)) is likely to contain a constant fraction of vertices that miss a constant
fraction of neighbors in ΓS(v). The actual proof, which refers to the two conditions of i-goodness,
follows. In this proof, whenever we say: “with high constant probability”, we mean with probability
at least 1 − δ, where δ is a constant that is sufficiently small, so that when we sum all failure
probabilities, we get at most 0.05.

Assume that Condition 1 of i-goodness does not hold for v, and let

ρ
def
=

γ · 2iǫ · |Γ(v)| ·N
|Γ(v)|2 =

γ · 2iǫ ·N
|Γ(v)| (2)

denote the lower bound on the fraction of missing edges in Γ(v). As noted in the discussion following
Definition 3.2.1, Condition 1 of i-goodness may be violated only if |Γ(v)| ≥ γ · 2iǫ ·N . Recall that

11

sub-testi(v) selects a sample, S of t/(2iǫ) vertices, and that t = c/γ (for a constant c). By a
multiplicative Chernoff bound, for a sufficiently large c, with high constant probability, it holds
that |ΓS(v)| ≥ m/2, where

m
def
=

t

ǫ2i
· |Γ(v)|

N
(3)

is the expected size of ΓS(v), and so m ≥ t · γ = c.
Assume from this point on that indeed |ΓS(v)| ≥ n = m/2, and note that the members of

ΓS(v) are distributed uniformly in Γ(v). Therefore, we may consider n = m/2 uniformly dis-
tributed vertices in Γ(v), and define the following 0/1-valued random variables ζj,k for every
1 ≤ j < k ≤ n. We let ζj,k = 1 if there is no edge between the jth and kth vertices in the
sample (of vertices in Γ(v)). Hence, Exp[ζj,k] ≥ ρ. We next give an upper bound (in terms of c) on

Var
[∑

j<k ζj,k

]
/Exp2

[∑
j<k ζj,k

]
, so that by applying Chebyshev’s Inequality, it will follow that,

with high constant probability, the fraction of edges that are missing in the subgraph induced by
the said sample is at least ρ/2.

By the definition of ζj,k, we have
(n
2

)
random variables, which are partially pairwise independent

(i.e., ζj,k is independent of ζj′,k′ if |{j, k, j′, k′}| = 4). Furthermore, these random variables assume
values in {0, 1} (and so ζ2

j,k = ζj,k) and it holds (by the definitions of n and ρ) that n · ρ = tγ/2 =
c/2. Assume, for simplicity that Exp[ζj,k] equals ρ (and is not only lower bounded by ρ). It

follows that Exp
[∑

j<k ζj,k

]
=

(n
2

)
· ρ > n2ρ/3 and Var

[∑
j<k ζj,k

]
< 4 · Exp

[∑
j<k,k′ ζj,kζj,k′

]
≤

4n · Exp
[∑

j<k ζj,k

]
< 2n3ρ. Thus,

Var[
P

j<k ζj,k]
Exp2[

P
j<k ζj,k]

< 18
nρ = 36

tγ = 36/c, which can be made an

arbitrary small constant by choosing c to be sufficiently large.
We thus obtain that if Condition 1 of i-goodness does not hold for v, then with high constant

probability, the fraction of pairs of vertices in ΓS(v) that do not have an edge between them is at least
ρ/2. Conditioned on this event, if |ΓS(v)| ≤

√
t/(2iǫ), so that Step 3 of sub-testi(v) checks whether

(u,w) ∈ E for every u,w ∈ ΓS(v), then we are done. Otherwise, the sub-test selects a random
sample of t

2iǫ
≥ tγ

ρ = c
ρ pairs of vertices in ΓS(v), and with probability at least 1 − (1 − ρ/2)c/ρ,

which is close to 1 for a sufficiently large c, it will detect a missing edge.
Next assume that Condition 2 of i-goodness does not hold for v; that is, there exists a j ≤ j0

such that more than 2−j · |Γ(v)| vertices in Γ(v) have each a “high out-degree”, that is, have each
at least γ · 2i+jǫ · N neighbors that do not belong to Γ(v). Using the same setting of m and n
as in the previous paragraph (as well as the premise of the claim: |Γ(v)| ≥ γ · 2iǫ · N), we note
(again) that |ΓS(v)| ≥ n = m/2 with high constant probability. Similarly, since there must be at
least γ · 2i+jǫ ·N vertices in [N] \Γ(v) (the neighbors of the high out-degree vertices that are not in
Γ(v)), the number of vertices in S \ Γ(v) is also at least half its expected value with high constant
probability. Assume that these events in fact hold.

Since v has at least 2−j · |Γ(v)| high out-degree neighbors, and S is a sample of t/(2iǫ) vertices,
once again by a multiplicative Chernoff bound, with high constant probability we have that ΓS(v)
contains at least

1

2
· |Γ(v)| · 2−j

N
· t
2iǫ

≥ 1

4
· 2j0 · γ2iǫ · 2−j · t

2iǫ
(4)

≥ 1

4
tγ =

c

4
(5)

such vertices (where these vertices are uniformly distributed among the high out-degree neighbors
of v). Consider a fixed choice of such a high out-degree vertex u in ΓS(v). Since the vertices in

12

S \ΓS(v) are uniformly distributed in [N]\Γ(v), with high constant probability (by a multiplicative
Chernoff bound), the number of neighbors that u has in S \ΓS(v) is at least half its expected value
(i.e., at least γ ·2i+jǫ · |S|/2). It follows by Markov’s inequality that with high constant probability,

the edge density in ΓS(v)× (S \ ΓS(v)) is at least ρ′
def
= 2−j · γ · 2i+jǫ/4 = γ · 2iǫ/4. Thus, a sample

of t
2iǫ

= c
γ·2iǫ

random pairs in ΓS(v) × (S \ ΓS(v)) will hit an edge with high constant probability

and cause Step 4 (of sub-testi(v)) to reject. The claim follows.

Claim 3.2.3 If Algorithm 3.1 accepts with probability at least 1/3, then, for every i ∈ [ℓ] the
number of vertices of degree at least γ · 2iǫ ·N that are not i-good is at most 2−i ·N/4.

Claim 3.2.3 follows by combining Claim 3.2.2 with the fact that Algorithm 3.1 invokes sub-testi
on 10 · 2i random vertices (and using (1 − 2−i/4)10·2

i
+ 0.05 < exp(−10/4) + 0.05 < 1/3). Next,

using the conclusion of Claim 3.2.3, we turn to construct a partition (C1, . . . , Ct) of [N] such that
the following holds: the total number of missing edges (in G) within the Ci’s is at most ǫ · N2/2
and the total number of (superfluous) edges between the Ci’s is at most ǫ ·N2/2. The partition is
constructed in iterations. We start with a motivating discussion.

Note that any i-good vertex, v, yields a set of vertices (i.e., Γ(v)) that is “close” to being a
clique, where “closeness” has a stricter meaning when i is smaller. Specifically, by Condition 1,
the number of missing edges between pairs of vertices in this set is at most γ · 2iǫ · |Γ(v)| · N .
But we should also care about how this set “interacts” with the rest of the graph, which is where
Condition 2 comes into play. Letting Cv contain only the vertices in Γ(v) that have less than |Γ(v)|
neighbors outside of Γ(v), we upper-bound the number of edges going out of Cv as follows: We
first note that these edges are either edges between Cv and Γ(v) \ Cv or edges between Cv and
[N] \ Γ(v). The number of edges of the first type is upper-bounded by |Cv| · |Γ(v) \ Cv|, whereas
|Γ(v) \ Cv| ≤ 2−j0 |Γ(v)| (by using Condition 2 with j = j0, while noting that γ · 2i+j0ǫN = |Γ(v)|
(since j0 = log2(|Γ(v)|/(γ · 2iǫN)))). Thus, the number of edges of the first type is upper-bounded
by |Cv|·2−j0|Γ(v)| = |Cv|·γ2iǫN ≤ γ2iǫ·|Γ(v)|·N . The number of edges of the second type is upper-
bounded by assigning each vertex u ∈ Cv to the smallest j ∈ [j0] such that |Γ(u)\Γ(v)| < γ ·2i+jǫ·N .
(This means that u violates Condition 2 w.r.t j− 1.) Thus, the number of edges of the second type
is upper-bounded by

j0∑

j=1

2−(j−1)|Γ(v)| · γ · 2i+jǫ ·N = 2j0 · γ2iǫ · |Γ(v)| ·N, (6)

where the equality follows from the definition of j0. Thus, the total number of the edges of both
types is upper-bounded by (2j0 +1) ·γ2iǫ · |Γ(v)| ·N , which is upper-bounded by 3ℓ ·γ2iǫ · |Γ(v)| ·N
(since j0 ≤ log2(1/(γ · 2iǫ)) ≤ log2(1/γǫ) = (1 + o(1)) · ℓ).

The foregoing paragraph identifies a single (good) clique, while we wish to identify all cliques.
Starting with i = 1, the basic idea is to identify new cliques by using i-good vertices that are not
covered by previously identified cliques. If we are lucky and the entire graph is covered this way,
then we halt. But it may indeed be the case that some vertices are left uncovered and that they
are not i-good. At this point we invoke Claim 3.2.3 and conclude that these vertices either have
low degree (i.e., have degree at most γ ·2iǫ ·N) or are relatively few in number (i.e., their number is
at most 2−i ·N/4). Ignoring (for a moment) the vertices of low degree, we deal with the remaining
vertices by invoking the same reasoning with respect to an incremented value of i (i.e., i← i+ 1).
The key observation is that the number of violations, caused by cliques identified in each iteration

13

i, is upper-bounded by the product of the number of vertices covered in that iteration (which is
linearly related to 2−i) and the “density” of violations caused by each identified clique (which is
linearly related to 2iǫ). Thus, intuitively, each iteration contributes O(ℓγǫ · N2) violations, and
after the last iteration (i.e., i = ℓ) we are left with at most 2−i ·N/4 < (ǫ/4)N vertices, which we
can afford to identify as a single clique (or alternatively as isolated vertices).

Two problems, which were ignored by the foregoing description, arise from the fact that vertices
that are identified as belonging to the clique Cv (of some i-good vertex v) may belong either to
previously identified cliques or to the set of vertices cast aside as having low degree. Our solution
is to use only i-good vertices for which the majority of their neighbors do not belong to these two
categories (i.e., vertices v such that most of Γ(v) belongs neither to previously identified cliques
nor have low degree). This leads to the following description.

The partition reconstruction procedure. The iterative procedure is initiated with C = L0 = ∅,
R0 = [N] and i = 1, where C denotes the set of vertices “covered” (by cliques) so far, Ri−1

denotes the set of “remaining” vertices after iteration i − 1 and Li−1 denotes the set of vertices
cast aside (as having “low degree”) in iteration i − 1. In each iteration, a set Fi is constructed,
where each vertex v ∈ Fi is used to determine a clique (or, more precisely, a subset that is close
to being a clique). The procedure refers to a parameter β = 1/(c3ℓ), where c3 > 1 is a sufficiently
large constant, which determines the “low degree” threshold (for each iteration). Recall that
γ = Θ(log−3(1/ǫ)) = Θ(1/ℓ3), so that γ = o(β). For i = 1, . . . , ℓ, the ith iteration proceeds as
follows, where Fi is initialized to ∅.

vertices in Γ(v) with many neighbors outside of Γ(v)

vertices in Γ(v) taken by C

v

u

C ′
v

Γ(v) Γ(u) \ Γ(v)

Figure 1: An Illustration for the clique collection partition reconstruction procedure.

1. Pick an arbitrary vertex v ∈ Ri−1 \ C that satisfies the following three conditions

(a) v is i-good.

(b) v has sufficiently high degree; that is, |Γ(v)| ≥ β · 2iǫ ·N .

(c) v has relatively few neighbors in C; that is, |Γ(v) ∩ C| ≤ |Γ(v)|/4.

If no such vertex exists, define Li = {v ∈ Ri−1\C : |Γ(v)| < β·2iǫ·N} and Ri = Ri−1\(Li∪C).
If i < ℓ then proceed to the next iteration, and otherwise terminate.

2. For a vertex v as selected in Step 1, let Cv = {u ∈ Γ(v) : |Γ(u) \ Γ(v)| < |Γ(v)|}. Form a new
clique with the vertex set C ′

v ← Cv \ C, and update Fi ← Fi ∪ {v} and C ← C ∪ C ′
v.

14

For an illustration, see Figure 1. Note that by Condition 1c, for every v ∈ Fi, it holds that |C ′
v| ≥

|Cv| − (|Γ(v)|/4), whereas by i-goodness5 (and j0 = log2(|Γ(v)|/(γ · 2iǫN)) ≥ log2(β/γ) = ω(1))
we have |Cv| > (1 − o(1)) · |Γ(v)|. Thus, quality guarantees that are quantified in terms of |Γ(v)|
translate well to similar guarantees in terms of |C ′

v|. This fact, combined with the fact that Cv

cannot contain many low degree vertices (i.e., vertices cast aside in prior iterations as having low
degree), plays an important role in the following analysis.

Claim 3.2.4 Assume that γ ≤ β/(48ℓ2). Referring to the partition reconstruction procedure, for
every i ∈ [ℓ], the following holds.

1. The number of missing edges inside the cliques formed in iteration i is at most 8γǫ ·N2; that
is, ∣∣∣∣∣∣

⋃

v∈Fi

{(u,w) ∈ C ′
v × C ′

v : (u,w) 6∈ E}

∣∣∣∣∣∣
≤ 8γǫ ·N2. (7)

2. The number of (“superfluous”) edges between cliques formed in iteration i and either Ri or
other cliques formed in the same iteration is at most 24ℓ · γǫ ·N2; actually,

∣∣∣∣∣∣

⋃

v∈Fi

{(u,w) ∈ C ′
v × (Ri−1 \ C ′

v) : (u,w) ∈ E}

∣∣∣∣∣∣
≤ 24ℓ · γǫ ·N2. (8)

3. |Ri| ≤ 2−i ·N and |Li| ≤ 2−(i−1) ·N .

Thus, the total number of violations caused by the cliques that are formed by the foregoing pro-
cedure is upper-bounded by (24 + o(1))ℓ2 · γǫ · N2 = o(ǫN2), assuming γ = o(ℓ−2). (Recall that

ℓ
def
= log2(1/ǫ) + 2, and that we shall set γ = Θ(log−3(1/ǫ)) and β = Θ(log−1(1/ǫ)).)

Proof: We prove all items simultaneously, by induction from i = 0 to i = ℓ. Needless to say, all
items hold vacuously for i = 0, and thus we focus on the induction step.

Starting with Item 1, we note that every v ∈ Fi is i-good and thus the number of edges missing
in C ′

v × C ′
v ⊆ Γ(v) × Γ(v) is at most γ2iǫ · |Γ(v)| · N < 2γ2iǫ · |C ′

v| · N , where the inequality
follows from |C ′

v| > |Γ(v)|/2 (which follows by combining |C ′
v| ≥ |Cv| − (Γ(v)|/4) and |Cv| ≥

(1 − 2−j0) · |Γ(v)|, where j0 = log2(|Γ(v)|/(γ · 2iǫN)) > 2). Observe that the i-goodness of v,
combined with |Γ(v)| ≥ β · 2iǫ · N and the relation between γ and β (i.e., γ = o(β)), implies
that Γ(v) contains at least 0.99 · |Γ(v)| vertices of degree exceeding 0.99 · |Γ(v)|. This implies that
|Γ(v) ∩ (

⋃
j∈[i−1]Lj)| < |Cv|/4, because |Γ(v)| ≥ β2iǫ · N whereas every vertex in

⋃
j∈[i−1] Lj has

degree at most β2i−1ǫ · N . Observing that C ′
v = (C ′

v ∩ Ri−1) ∪ (C ′
v ∩

⋃
j∈[i−1] Lj), it follows that

|⋃v∈Fi
C ′

v ∩Ri−1| > |
⋃

v∈Fi
C ′

v|/2, and thus
∑

v∈Fi
|C ′

v| ≤ 2|Ri−1|. Combining all these bounds, we
obtain ∣∣∣∣∣∣

⋃

v∈Fi

{(u,w) ∈ C ′
v × C ′

v : (u,w) 6∈ E}

∣∣∣∣∣∣
=

∑

v∈Fi

|{(u,w) ∈ C ′
v × C ′

v : (u,w) 6∈ E}| (9)

≤ 2γ2iǫ ·
∑

v∈Fi

|C ′
v| ·N (10)

≤ 2γ2iǫ · 2|Ri−1| ·N. (11)

5Every v ∈ Fi is i-good and thus satisfies |Cv| > (1 − 2−j0) · |Γ(v)|.

15

Using the induction hypothesis regarding Ri−1 (i.e., |Ri−1| < 2−(i−1) ·N), Item 1 follows.
Item 2 is proved in a similar fashion. Recall that in the motivating discussion (i.e., the text

preceding and following Eq. (6)) we showed that the i-goodness of v (which follows from v ∈ Fi)
implies that the number of edges in C ′

v× (Ri−1 \C ′
v) ⊆ Cv× ([N]\Cv) is at most 3ℓ ·γ2iǫ · |Γ(v)| ·N .

Since we have shown that |C ′
v| ≥ |Γ(v)|/2, this expression is upper-bounded by 6ℓ · γ2iǫ · |C ′

v| ·N .
Using again

∑
v∈Fi
|C ′

v| < 2|Ri−1| and |Ri−1| < 2−(i−1) ·N , we establish Item 2.

Turning to Item 3, we first note that Li ⊆ Ri−1 and thus |Li| ≤ |Ri−1| ≤ 2−(i−1) · N . As for
Ri, it may contain only vertices that are neither in Li nor in

⋃
v∈Fi

C ′
v. It follows that for every

v ∈ Ri either v is not i-good (although it has degree at least β · 2iǫ ·N) or it has at least |Γ(v)|/4
neighbors in previously identified cliques (which implies |Γ(v) ∩ (

⋃
w∈

S
j∈[i] Fj

C ′
w)| ≥ |Γ(v)|/4).

By Claim 3.2.3, the number of vertices of the first type is at most 2−i · N/4. As for vertices of
the second type, each such vertex v (in Ri) requires at least |Γ(v)|/4 ≥ β · 2iǫ · N/4 edges from

C ′ def
=

⋃
w∈

S
j∈[i] Fj

C ′
w to it (because C ′ is the set of vertices covered by previously identified cliques

at the time iteration i is completed). By Item 2, the total number of edges going out from C ′ to
Ri is at most i · 24ℓ · γǫ ·N2 ≤ 24ℓ2 · γǫ ·N2. On the other hand, as noted above, each vertex of the
second type has at least β · 2iǫ ·N/4 edges incident to vertices in C ′. Hence, the number of vertices
of the second type is upper-bounded by

24ℓ2 · γǫ ·N2

β · 2iǫ ·N =
24ℓ2 · γ
β

· 2−iN, (12)

Thus, |Ri| ≤ ((1/4) + 24ℓ2γβ−1) · 2−i ·N , and, for γ ≤ β/(48ℓ2), we get that |Ri| ≤ 2−i ·N .

Completing the reconstruction and its analysis. The foregoing construction leaves “unassigned” the
vertices in Rℓ as well as some of the vertices in L1, . . . , Lℓ. (Note that some vertices in

⋃ℓ−1
i=1 Li

may be placed in cliques constructed in later iterations, but there is no guarantee that this actually
happens.) We now assign each of these remaining vertices to a singleton clique (i.e., an isolated
vertex). The number of violations caused by this assignment equals the number of edges with both

endpoints in R′ def
= Rℓ∪

⋃ℓ
i=1 Li, because edges with a single endpoint in R′ were already accounted

for in Item 2 of Claim 3.2.4. Nevertheless, we upper-bound the number of violations by the total
number of edges adjacent at R′, which in turn is upper-bounded by

∑

v∈Rℓ∪
S

i∈[ℓ] Li

|Γ(v)| ≤ |Rℓ| ·N +

ℓ∑

i=1

∑

v∈Li

|Γ(v)| (13)

≤ ǫN

4
·N +

ℓ∑

i=1

2−(i−1)N · β2iǫN (14)

=
ǫ

4
·N2 + 2ℓ · β · ǫN2. (15)

For β ≤ 1/(8ℓ), it follows that the number of these edges is smaller than ǫN2/2. Combining this
with the bounds on the number of violating edges (or non-edges) as provided by Claim 3.2.4, the
lemma follows. Note that the foregoing uses β ≤ 1/(8ℓ) and well as γ ≤ β/(48ℓ2) = o(ℓ2), which
can be satisfied by setting β = Θ(log−1(1/ǫ)) and γ = Θ(log−3(1/ǫ)), since ℓ = log2(1/ǫ) + 2.

16

4 The Non-Adaptive Query Complexity of Clique Collection

In this section we study the non-adaptive query complexity of clique collection. We first establish
the lower bound claimed in Part 2 of Theorem 1.1, and next show that this lower bound is tight.

4.1 The Lower Bound

In this section we establish Part 2 of Theorem 1.1. Specifically, for every value of ǫ > 0, we consider
two different sets of graphs, one consisting of graphs in CC and the other consisting of graphs that
are ǫ-far from CC, and show that a non-adaptive algorithm of query complexity o(ǫ−4/3) cannot
distinguish between graphs selected at random in these sets. Each set is actually determined by a
single graph and all possible permutations of the vertex names.

4.1.1 The two sets

The first set, denoted CCǫ, contains all N -vertex graphs such that each graph consists of (3ǫ)−1

cliques, and each clique has size 3ǫ ·N . It will be instructive to partition these (3ǫ)−1 cliques into
(6ǫ)−1 pairs (each consisting of two cliques). The second set, denoted BCCǫ, contains all N -vertex
graphs such that each graph consists of (6ǫ)−1 bi-cliques, and each bi-clique has 3ǫ · N vertices
on each side. For an illustration, see Figure 2. Indeed, CCǫ ⊆ CC, whereas, as we show next, the
graphs in BCCǫ are all ǫ-far from CC.

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���. . .

1 2

CCǫ

BCCǫ

(6ǫ)−1

Figure 2: An Illustration for the lower bound construction that establishes Part 2 of Theorem 1.1.

Claim 4.1 Every graph in BCCǫ is ǫ-far from CC.
Proof: Let G = ([N], E) be a graph in BCCǫ, let (V 1

j , V
2
j) be the pair of sets of vertices in its jth

biclique, and let Vj = V 1
j ∪ V 2

j . For any partition P = (X1, . . . ,Xℓ) of [N], let ∆G(P) denote the
number of edge modifications that are required in order to make the sets X1, . . . ,Xℓ into cliques
with no edges between them. Then,

∆G(P) =

ℓ∑

i=1

|E(Xi)|+
∑

i<i′

|E(Xi,Xi′)| , (16)

where E(Xi) denotes the set of (unordered) pairs of (different) vertices in Xi that do not have an
edge between them. Thus, the distance between G and CC is N−2 times the minimum, taken over
all partitions P, of ∆G(P). We need to show that ∆G(P) > ǫN2, for every partition P.

17

We first observe that, without loss of generality, we may assume that each set Xi intersects at
most one Vj . This is true since otherwise, by refining the partition (i.e., replacing each Xi with
the collection of all nonempty Xi ∩ Vj), the value of ∆G(·) can only decrease (because there are no
edges between the different Vj ’s, hence this refinement causes no new violations). Next, we show
that, without loss of generality, we may also assume that each Vj intersects at most one Xi. To see
why this is true, consider the case that a set Vj has a non-empty intersection with more than one
Xi ⊆ Vj, and let αi = |V 1

j ∩Xi|/|V 1
j |, and βi = |V 2

j ∩Xi|/|V 2
j | (so that

∑
i αi = 1 and

∑
i βi = 1).

Let P ′ be the partition that replaces all Xi’s that intersect Vj with a single set. Then, if we denote
|V 1

j | = |V 2
j | by K, we have

∆G(P) −∆G(P ′) =
ℓ∑

i=1

|E(V 1
j ∩Xi, V

2
j \Xi)| (17)

−1

2
·

ℓ∑

i=1

|E(V 1
j ∩Xi, V

1
j \Xi)| −

1

2
·

ℓ∑

i=1

|E(V 2
j ∩Xi, V

2
j \Xi)| (18)

=

ℓ∑

i=1

(
αiK · (1− βi)K −

(
1

2
αiK(1− αi)K +

1

2
βiK(1− βi)K

))
(19)

=
K2

2
·

ℓ∑

i=1

(αi − βi)
2 ≥ 0 , (20)

where E(Y,Z) denotes the set of pairs of vertices in Y ×Z that do not have an edge between them.
Hence, ∆G(P) ≥ ∆G(P ′), meaning that the distance can only decrease by taking the union of all

sets Xi that intersect Vj. It follows that it suffices to compute ∆G(P) for the partition P = {Vj}1/6ǫ
j=1 .

For this partition we get

∆(P) =

1/6ǫ∑

j=1

(
|E(V 1

j , V
1
j)|+ |E(V 2

j , V
2
j)|

)
(21)

=
1

6ǫ
·
(
9ǫ2N2 − 3ǫN

)
> ǫN2 , (22)

using ǫ > 1/N . The claim follows.

4.1.2 The indistinguishability result

In order to motivate the claim that a non-adaptive algorithm of query complexity o(ǫ−4/3) cannot
distinguish between graphs selected at random in these sets, consider the (seemingly best such)
algorithm that selects o(ǫ−2/3) vertices and inspects the induced subgraph. Consider the partition
of a graph in CCǫ into (6ǫ)−1 pairs of cliques, and correspondingly the partition of a graph in BCCǫ

into (6ǫ)−1 bi-cliques. Then, the probability that a sample of o(ǫ−2/3) vertices contains at least
three vertices that reside in the same part (of 6ǫ ·N vertices) is o(ǫ−2/3)3 ·(6ǫ)2 = o(1). On the other
hand, if this event does not occur, then the answers obtained from both graphs are indistinguishable
(because in each case a random pair of vertices residing in the same part is connected by an edge
with probability very close to 1/2). As is outlined next, this intuition extends to an arbitrary
non-adaptive algorithm.

18

Specifically, by an averaging argument, it suffices to consider deterministic algorithms, which are
fully specified by the sequence of queries that they make and their decision on each corresponding
sequence of answers. Recall that these (fixed) queries are elements of [N]× [N]. We shall show that,
for every sequence of o(ǫ−4/3) queries, the answers provided by a randomly selected element of CCǫ

are statistically close to the answers provided by a randomly selected element of BCCǫ. We shall use
the following notation: For an N -vertex graph G and a query (u, v), we denote the corresponding
answer by ansG(u, v); that is, ansG(u, v) = 1 if {u, v} is an edge in G and ansG(u, v) = 0 otherwise.

Lemma 4.2 Let G1 and G2 be random N -vertex graphs uniformly distributed in CCǫ and BCCǫ, re-
spectively. Then, for every sequence (v1, v2), . . . , (v2q−1, v2q) ∈ [N]× [N], where the vi’s are not nec-
essarily distinct, it holds that the statistical difference between ansG1(v1, v2), . . . , ansG1(v2q−1, v2q)
and ansG2(v1, v2), . . . , ansG2(v2q−1, v2q) is O(q3/2ǫ2).

Part 2 of Theorem 1.1 follows (cf., also, Section 2.3).

Proof: We consider a 1-1 correspondence, denoted φ, between the vertices of an N -vertex graph
in CCǫ ∪ BCCǫ and triples in [(6ǫ)−1]× {1, 2} × [3ǫ ·N]. Specifically, φ(v) = (i, j, w) indicates that
v resides in the jth “side” of the ith part of the graph, and it is vertex number w in this set. That
is, for a graph in CCǫ the pair (i, j) indicates the jth clique in the ith pair of cliques, whereas for a
graph in BCCǫ the pair (i, j) indicates the jth side in the ith bi-clique. Consequently, the answers
provided by uniformly distributed G1 ∈ CCǫ and G2 ∈ BCCǫ can be emulated by the following two
corresponding random processes.

1. The process A1 selects uniformly a bijection φ : [N]→ [(6ǫ)−1]×{1, 2}× [3ǫ ·N] and answers
each query (u, v) ∈ [N] × [N] by 1 if and only if φ(u) and φ(v) agree on their first two
coordinates (and differ on the third). That is, for φ(u) = (i1, j1, w1) and φ(v) = (i2, j2, w2),
it holds that A1(u, v) = 1 if and only if both i1 = i2 and j1 = j2 (and w1 6= w2).

2. The process A2 selects uniformly a bijection φ : [N]→ [(6ǫ)−1]×{1, 2}× [3ǫ ·N] and answers
each query (u, v) ∈ [N] × [N] by 1 if and only if φ(u) = (i, j, w1) and φ(v) = (i, 3 − j, w2).
That is, for φ(u) = (i1, j1, w1) and φ(v) = (i2, j2, w2), it holds that A2(u, v) = 1 if and only
if i1 = i2 but j1 6= j2.

Let us denote by φ′(v) (resp., φ′′(v) and φ′′′(v)) the first (resp., second and third) coordinates of
φ(v); that is, φ(v) = (φ′(v), φ′′(v), φ′′′(v)). Then, both processes answer the query (u, v) with 0 if
φ′(u) 6= φ′(v), and the difference between the processes is confined to the case that φ′(u) = φ′(v).
Specifically, conditioned on φ′(u) = φ′(v) (and φ′′′(u) 6= φ′′′(v)), it holds that A1(u, v) = 1 if and
only if φ′′(u) = φ′′(v), whereas A2(u, v) = 1 if and only if φ′′(u) 6= φ′′(v). However, since the
(random) value of φ′′ is not present at the answer, the forgoing difference may go unnoticed. The
foregoing considerations apply to a single query, but things may change in case of several queries.
For example, if φ′(u) = φ′(v) = φ′(w) then the answers to (u, v), (v,w) and (w, v) will indicate
whether we are getting answers from A1 or from A2 (since A1 will answer positively on an odd
number of these queries whereas A2 will answer positively on an even number). In general, the
event that allows distinguishing the two processes is an odd cycle of vertices that have the same φ′

value. Minor differences may also be due to equal φ′′′ values, and so we also consider these in our
“bad” event. For sake of simplicity, the bad event is defined more rigidly as follows, where the first
condition represents the essential aspect and the second is a technicality.

19

Definition 4.2.1 We say that φ is bad (w.r.t. the sequence (v1, v2), . . . , (v2q−1, v2q) ∈ [N]× [N]),
if any of the following two conditions hold:

1. For some i ∈ [(6ǫ)−1], the subgraph Qi = (Vi, Ei), where Vi = {vk : k ∈ [2q] ∧ φ′(v) = i} and
Ei = {{v2k−1, v2k} : v2k−1, v2k ∈ Vi}, contains a simple cycle.

2. There exists i 6= j ∈ [2q] such that φ′′′(vi) = φ′′′(vj).

Indeed, the query sequence (v1, v2), . . . , (v2q−1, v2q) will be fixed throughout the rest of the proof,
and so we shall omit it from our terminology.

Claim 4.2.2 The probability that a uniformly distributed bijection φ is bad is at most

6000 · q3/2ǫ2 +
2q2

3ǫN
(23)

Proof: We start by upper-bounding the probability that the second event in Definition 4.2.1 holds.
This event is the union of

(2q
2

)
sub-events, and each sub-event holds with probability 1/(3ǫ · N).

Thus, we obtain a probability (upper) bound of 2q2/3ǫN . As for the first event, for every t ≥ 3, we
upper-bound the probability that some Qi contains a simple cycle of length t. We observe that the
query graph Q = (VQ, EQ), where VQ = {vk : k∈ [2q]} and EQ = {{v2k−1, v2k} : k∈ [q]}), contains
at most (2q)t/2 cycles of length t (cf. [A81, Thm. 3]), whereas the probability that a specific simple
t-cycle is contained in some Qi is (6ǫ)t−1. Thus, the probability of the first event is upper-bounded
by

∑

t≥3

(2q)t/2 · (6ǫ)t−1 <
∑

t≥3

(√
2q · 6 · ǫ(t−1)/t

)t
(24)

<
∑

t≥3

(
9
√
q · ǫ2/3

)t
, (25)

which is upper-bounded by 2 · (9√q · ǫ2/3)3 < 1500q3/2ǫ2, provided 9
√
q · ǫ2/3 < 1/2 (and the claim

holds trivially otherwise).

Claim 4.2.3 Conditioned on the bijection φ not being bad, the sequences
(A1(v1, v2), . . . , A1(v2q−1, v2q)) and (A2(v1, v2), . . . , A2(v2q−1, v2q)) are identically distributed.

Proof: Noting that Definition 4.2.1 only refers to φ′ and φ′′′, we fix any choice of φ′ and φ′′′ that
yields a good φ and consider the residual random choice of φ′′. Referring to the foregoing subgraphs
Qi’s, recall that pairs with endpoints in differentQi’s are answered by 0 in both processes. Note that
(by the second condition in Definition 4.2.1) the hypothesis implies that φ′′′ assigns different values
to the different vertices in {vk : k ∈ [2q]}, and it follows that φ′′ assigns these vertices values that are
uniformly and independently distributed in {1, 2}. Now, using the first condition in Definition 4.2.1,
the hypothesis implies that each Qi is a forest. This implies that, for each of the two processes, the
answer assigned to each edge in Qi is independent of the answer given to other edges of Qi. That
is, we assert that (in each of the two processes) the edges of each forest Qi = (Vi, Ei) are assigned

a sequence of answers that is uniformly distributed in {0, 1}|Ei|. To formally prove this assertion,
consider the constraints on the φ′′-values (of Vi) that arise from any possible sequence of answers.

20

These constraints form a system of |Ei| linear equations over GF (2) with variables corresponding
to the possible φ′′-values and constant terms encoding possible equality and inequality constraints.6

Note that the (coefficients of the) linear systems are not affected by the identity of the process,
which does effect the free terms. Furthermore, this linear system is of full rank; and thus, for each
of the two processes and each sequence of answers, the corresponding system has 2|Vi|−|Ei| = 2
solutions (i.e., possible assignments to φ′′ restricted to Vi). Thus, in each of the two processes, each
query is answered by the value 1 with probability exactly 1/2, independently of the answers to all
other queries. The claim follows.

Combining Claims 4.2.2 and 4.2.3, it follows that the statistical distance between the sequences
(A1(v1, v2), . . . , A1(v2q−1, v2q)) and (A2(v1, v2), . . . , A2(v2q−1, v2q)) is at most O(q3/2ǫ2 +q2(ǫN)−1),
and the lemma follows for sufficiently large N .

4.2 A Matching Upper-Bound

In this section we establish Part 3 of Theorem 1.1. We mention that this improves over the Õ(ǫ−2)
bound of [AS, Thm. 2] (which is based on inspecting the subgraph induced by a random set of
O(ǫ−1 log(1/ǫ)) vertices).

Algorithm 4.3 (non-adaptive test for CC): On input N and ǫ and oracle access to a graph G =
([N], E), set ℓ = log2(1/ǫ) and proceeds as follows.

1. Select a random sample of s
def
= Θ(ǫ−2/3) vertices, denoted S, and examine all vertex pairs (in

S × S).

2. For i = 1, . . . , (2ℓ/3)+Θ(1), uniformly select a subset Si ⊆ S of cardinality si
def
= Θ(2i) and a

sample of Θ̃(ǫ−1)/si vertices (in [N]), denoted Ri, and examine all the vertex pairs in Si×Ri.

3. The tester accepts if and only if its view of the graph as obtained in Steps 1-2 is consistent
with some graph in CC. Namely, let g′ : ((S × S) ∪⋃ℓ′

i=1(Si × Ri)) → {0, 1} be the function
determined by the answers obtained in Steps 1–2. Then, the tester accepts if and only if for
S′ = S ∪⋃ℓ′

i=1Ri, the function g′ can be extended to a function over S′ × S′ that represents
a graph in CC.

The query complexity of Algorithm 4.3 is dominated by Step 1, which uses O(ǫ−2/3)2 = O(ǫ−4/3)
queries. Step 3 can be implemented efficiently by first constructing the connected components of
the graph defined by the positive answers obtained in Steps 1–2, and then checking whether or not
all the negative answers (obtained in Steps 1–2) refer to pairs that reside in different components.

Clearly, Algorithm 4.3 accepts (with probability 1) any graph that is in CC. It remains to
analyze its behavior on graphs that are ǫ-far from CC.

Lemma 4.4 If G = ([N], E) is ǫ-far from CC, then on input N, ǫ and oracle access to G, Algo-
rithm 4.3 rejects with probability at least 2/3.

Part 3 of Theorem 1.1 follows.

6The condition A1(u, w) = 1 iff φ′′(u) = φ′′(v) is encoded by φ′′(u) +φ′′(v) = A1(u, w) + 1, whereas the condition
A2(u,w) = 1 iff φ′′(u) 6= φ′′(v) is encoded by φ′′(u) + φ′′(v) = A2(u,w).

21

Overview of the proof of Lemma 4.4. We say that a triple (v, u,w) of (different) vertices
(resp., a 3-set {v, u,w} ⊂ [N]) is a witness (for rejection) if the subgraph of G induced by {v, u,w}
contains exactly two edges. Indeed, Algorithm 4.3 rejects if (and only if), for some witness (v, u,w),
the algorithm has made all three relevant queries (i.e., the queries (v, u), (u,w), and (w, v)).7 A
sufficient condition for this to happen is that either {v, u,w} ⊂ S or, for some i, two of the vertices
in {v, u,w} belong to Si, and the third belongs to Ri. Thus, we say that a witness is effective with
respect to the said samples (i.e., S and the Ri’s) if the foregoing sufficient condition holds. We
shall show that, with probability at least 2/3, the samples contain an effective witness.

Let G′ = (V,E′) be a graph in CC that is closest to G = (V,E), and let (V1, . . . , Vt) be its
partition into cliques. For the sake of simplicity, we shall refer to the Vi’s as cliques, even though
they are not (necessarily) cliques in G, and we shall refer to the partition (V1, . . . , Vt) as the best
possible partition for G. Two main observations regarding this partition follow.

Observation 1: For every i ∈ [t] and every S ⊆ Vi, it holds that |E∩(S×(Vi\S))| ≥ |S×(Vi\S)|/2,
because otherwise replacing the clique Vi by two cliques, S and Vi\S, yields a better partition
for G.

Observation 2: For every i 6= j ∈ [t], it holds that |E∩ (Vi×Vj)| ≤ |Vi×Vj|/2, because otherwise
replacing the two cliques Vi and Vj by a single clique Vi ∪ Vj , yields a better partition for G.

Now, since G is ǫ-far from CC, either there are at least ǫ
2 · N2 missing edges (in G) within these

Vi’s or there are at least ǫ
2 · N2 superfluous edges between distinct Vi’s. We show that in either

case, with high constant probability, the samples produced by Algorithm 4.3 contain an effective
witness.

The pivot of the analysis is relating the fraction of bad vertex pairs (i.e., either missing “internal”
edges or superfluous “external” edges) to the fraction of witnesses. Specifically, we shall show that
the existence of ǫ

2 ·N2 missing internal edges (resp., ǫ
2 ·N2 superfluous external edges) implies the

existence of Ω(ǫ2N3) witnesses. Intuitively, missing internal edges yield many witnesses, because
(v, u) ∈ (Vi×Vi)\E form a witness with any w ∈ Vi∩Γ(v)∩Γ(u), whereas Observation 1 implies that
|Vi∩Γ(v)| ≥ |Vi|/2 and most pairs in (Vi\Γ(v))×(Vi∩Γ(v)) are edges. Similar considerations, which
rely on Observation 2, can be shown to imply that superfluous external edges yield many witnesses,
intuitively because (v, u) ∈ (Vi × Vj) ∩E form a witness with any w such that |Γ(w) ∩ {u, v}| = 1,
whereas many w ∈ Vi ∪ Vj satisfy this condition. These combinatorial considerations are detailed
in Section 4.2.1.

It is tempting to think that we are done as soon as we establish the existence of Ω(ǫ2N3) wit-
nesses. Unfortunately, this is not quite true. Indeed, if we were to select independently at random
O(ǫ−2) triples and examine their internal edge relation, then we would have hit a witness with high
probability. However, while Algorithm 4.3 does inspect the internal edge relations of Ω(ǫ−2) triples
(and each triple is uniformly distributed), these triples are not independently distributed. Thus,
we shall establish additional features of the structure of the set of witnesses, and use these features
to show that with high probability the random sample (as produced by Algorithm 4.3) contains an
effective witness. That is, these additional features, which are established in the elaborate parts of
Claims 4.4.1 and 4.4.2, are instrumental to the detection of a witness (as analyzed in Claim 4.4.3).

Unfortunately, the implementation of the foregoing strategy is quite lengthy and complicated.
Some readers may prefer to skip it and proceed directly to Section 5.

7We note that only the (easy to establish) sufficiency of the foregoing rejection condition is used in the analysis.

22

4.2.1 The structure of the set of witnesses

To facilitate the exposition, for every two sets A,B ⊂ [N], we let E(A,B) denote the set of edges

with one endpoint in A and another endpoint in B (i.e., E(A,B)
def
= E ∩ (A×B)). For each vertex

v and j ∈ [t], let

Γj(v)
def
= Vj ∩ Γ(v) = {u∈Vj : {u, v} ∈ E} (26)

and
Γj(v)

def
= Vj \ (Γ(v) ∪ {v}) = {u∈(Vj \ {v}) : {u, v} 6∈ E} . (27)

If v ∈ Vi, then we use the shorthand: Γ(v) = Γi(v). Indeed, Γ(v) corresponds to the set of internal
edges that are missed by vertex v.

Γi(v) ∪ {v}

v

Γ(v)

u

w
Vi

Figure 3: An Illustration for the proof of Claim 4.4.1.

Introduction to Claim 4.4.1. For every vertex v, the set Γ(v) × Γ(v) contains pairs of vertices that
may form witnesses together with v; that is, (u,w) ∈ Γ(v) × Γ(v) forms a witness with v if and
only if (u,w) ∈ E. The basic claim asserts that the number of such pairs is at least Ω(|Γ(v)|2)
(even when restricting w to the same Vi as v; see illustration in Figure 3). Moving to the elaborate
claim, we encourage the reader to first consider the case that F = ∅. (In fact, this case is one of
the two cases that will be actually used.) The point of Part 1 (in the elaborate claim) is to set the
stage for Part 2, which upper-bounds the number of designated witnesses in which each w appears,
where this upper-bound is instrumental for the probabilistic analysis provided by Claim 4.4.3.

Claim 4.4.1 (using missing internal edges):

Basic claim: For every vertex v, the number of witnesses that contain v is Ω(|Γ(v)|2).

Elaborate claim: For every (possibly empty) set F of (“forbidden”) vertex-pairs, where F ⊆
(
[N]
2

)
\

E, the following holds:

1. For every v ∈ [N] there exists a set Wv ⊆ Γ(v) \ {u : {v, u} ∈ F} such that

∑

v∈[N]

|Wv| >




∑

v∈[N]

|Γ(v)|
4


 − 2 · |F | (28)

and for every u ∈ Wv there exists a set Wv,u ⊆ (Γ(v) ∩ Γ(u)) of size at most |Wv| such
that ∑

u∈Wv

|Wv,u| ≥ |Wv|2/4. (29)

23

Moreover, if F = ∅ then for every v it holds that |Wv| ≥ |Γ(v)|/4.
(Indeed, each (u, v,w) such that u ∈Wv and w ∈Wv,u constitutes a witness.)

2. For the sets Wv and Wv,u as in Part 1 of the claim, letting U
(2)
w

def
= {{v, u} : w∈Wv,u} it

holds that if each set Wv has cardinality at most ǫ2/3N/2 then each U
(2)
w has cardinality

at most ǫ4/3N2.

It follows that the total number of witnesses is Ω(
∑

v∈[N] |Γ(v)|2). In particular, if the number of

missing internal edges is at least ǫ
2 · N2 (i.e.,

∑
v∈[N] |Γ(v)| ≥ ǫ · N2), then the total number of

witnesses is at least N · Ω((ǫN)2) = Ω(ǫ2 ·N3).

Proof: Using Observation 1, we note that for any choice of i ∈ [t] and for every v ∈ Vi it holds that

|Γ(v)| = |Vi \ {v}| − |E({v}, Vi \ {v})| ≤
|Vi| − 1

2
≤ |Γi(v)| (30)

and

|E(Γ(v),Γi(v)| = |E(Γ(v),Γi(v) ∪ {v})| >
1

2
· |Γ(v)| · |Γi(v)| . (31)

Letting Tv = {(v, u,w) : (u,w)∈Γ(v) × Γi(v)}, it follows that at least half of the triples (v, u,w)
in Tv are witnesses (i.e., (u,w) ∈ E, (u, v) 6∈ E, and (w, v) ∈ E), whereas |Tv| ≥ |Γ(v)|2. This
establishes the basic claim.

Let us first establish the elaborate claim for the special case of F = ∅. In this case, for every v ∈ Vi,
we consider the set

Wv
def
=

{
u∈Γ(v) : |E({u},Γi(v))| ≥

|Γi(v)|
4

}
. (32)

By Eq. (31),
∑

u∈Γ(v) |E({u},Γi(v))| ≥ |Γ(v)| · |Γi(v)|/2. It follows that |Wv| ≥ |Γ(v)|/4. We note

that (by Eq. (32)), for every u ∈ Wv, it holds that |Γi(v) ∩ Γ(u)| ≥ |Γi(v)|/4 ≥ |Wv|/4. Next, for
every u ∈Wv, let Wv,u be an arbitrary subset of |Wv|/4 elements in Γi(v)∩Γ(u). Note that, indeed
Wv ⊆ Γ(v) and for every u ∈ Wv it holds that Wv,u ⊆ Γ(v) ∩ Γ(u). Recalling that |Wv| ≥ |Γ(v)|/4
and |Wv,u| = |Wv|/4, Part 1 follows.

To establish Part 2, we first note that if we select Wv,u uniformly among all (|Wv |/4)-subsets

of Γi(v) ∩ Γ(u), then, for any w ∈ Vi, the expected size of U
(2)
w is upper-bounded by

∑

v∈Vi

∑

u∈Wv

|Wv|/4
|Γi(v) ∩ Γ(u)| ≤

∑

v∈Vi

∑

u∈Wv

|Wv|/4
|Vi|/8

=
2

|Vi|
·
∑

v∈Vi

|Wv|2 (33)

where the inequality uses |Γi(v)∩Γ(u)| ≥ |Γi(v)|/4 ≥ |Vi|/8. Thus, if 2
|Vi|
·∑v∈Vi

|Wv|2 ≤ ǫ4/3N2/2

then, with overwhelmingly high probability, it holds that |U (2)
w | ≤ ǫ4/3N2. Picking the sets (i.e.,

the Wv,u’s) so that none of the negligible probability events (associated with the different w ∈ Vi)

occurs, we infer that |U (2)
w | > ǫ4/3N2 implies that

∑
v∈Vi
|Wv|2 > ǫ4/3N2|Vi|/4 (which implies the

existence of v such that |Wv| > ǫ2/3N/2). Part 2 follows.
Note that so far we have established the (elaborate) claim for the special case of F = ∅. We now

establish the general case by reduction to the former special case. We first modify the sets Wv, by
omitting from each Wv each vertex u such that {v, u} ∈ F . This modification decreases

∑
v |Wv| by

at most 2|F |. Next, we modify the sets Wv,u by omitting from each Wv,u a few elements, selected

24

at random, so that |Wv,u| = |Wv|/4 holds (for the modified sets Wv). Clearly, Part 1 holds for the
modified sets. To see that Part 2 holds too, we note that the foregoing argument only relies on
the fact that Wv,u is a random (|Wv|/4)-size subset of Γi(v) ∩ Γ(u), which is unaffected by F . The
claim follows.

Another piece of notation. For every i ∈ [t] and every v ∈ Vi, let

Γ′(v)
def
= Γ(v) \ Vi (34)

denote the set of vertices outside of Vi that have a superfluous edge to v. That is, Γ′(v) =
⋃

j 6=i Γj(v).

Introduction to Claim 4.4.2. For every vertex v, the set Γ′(v) contains vertices u such that v and u
are part of a witness; specifically, (v, u,w) is a witness if u ∈ Γ′(v) and |Γ(w) ∩ {v, u}| = 1. The
basic claim asserts that the number of such pairs is at least Ω(|Γ′(v)|2). Moving to the elaborate
claim, we note that the greater complexity of Claim 4.4.2 (when compared to Claim 4.4.1) is
reflected in the fact that even in the “simple” case of F = ∅ (which is treated in Part 1) we do not
obtain a uniform bound on all Wv, but rather allow some exceptional vertices (which are shown to
have small contribution to the sum of Γ′(·)s). Furthermore, in this case, the basic claim does not
follow from Part 1. In Part 2 we deal with a general forbidden set F , and get results analogous
to (but quantitatively weaker than) the general case of Claim 4.4.1. Analogously to Claim 4.4.1,
Part 2a sets the stage for Part 2b, which upper-bounds the number of designated witnesses in which
each w appears, where this upper-bound is instrumental for the probabilistic analysis provided by
Claim 4.4.3.

Claim 4.4.2 (using superfluous external edges):

Basic claim: For every vertex v, the number of witnesses that contain v is Ω(|Γ′(v)|2).

Elaborate claim: There exist positive constants c1, . . . , c4 such that the following holds:

1. For every α > 0, if ∑

v∈[N]

|Γ′(v)| > 125

α
·

∑

v∈[N]

|Γ(v)| , (35)

then for every v ∈ [N] there exists a set Wv ⊆ Γ′(v) such that letting V ′ = {v : |Wv| ≥
|Γ′(v)|/c1} it holds that

∑

v∈V ′

|Γ′(v)| ≥ (1− α) ·
∑

v∈[N]

|Γ′(v)| . (36)

In addition, for every u ∈ Wv there exists a set Wv,u, which is either a subset of Γ(v) \
Γ(u) or a subset of Γ(u) \ Γ(v), such that |Wv,u| ≥ |Wv|/c2.
(Indeed, each (v, u,w) such that u ∈Wv and w ∈Wv,u constitutes a witness.)

2. Let F be any set of “forbidden” vertex-pairs, where F ⊆ ⋃
i6=j E(Vi, Vj), and let F (v)

def
=

{u : {v, u} ∈ F} ⊆ Γ′(v), for every v ∈ [N]. Then:

(a) For each vertex v, there exists a subset Wv ⊆ Γ′(v) \ F (v) such that

∑

v∈[N]

|Wv| >
1

c3
·




∑

v∈[N]

|Γ′(v)|


 − c4 · |F | . (37)

25

In addition, as in Part 1, for every u ∈Wv, there exists a set Wv,u, which is either
a subset of Γ(v) \ Γ(u) or a subset of Γ(u) \ Γ(v), such that |Wv,u| ≥ |Wv|/c2.

(b) For the sets Wv,u as in Part 2a, let U
(2)
w

def
= {(v, u) : w∈Wv,u}. Then, if for every v

it holds that |Γ′(v) \ F (v)| ≤ ǫ2/3N/2, then U
(2)
w has cardinality at most 10ǫ4/3N2.

In all cases, it holds that |Wv,u| ≤ |Wv|.

It follows that the total number of witnesses is Ω(
∑

v∈[N] |Γ′(v)|2). In particular, if the number of

superfluous external edges is at least ǫ
2 ·N2 (i.e.,

∑
v∈[N] |Γ′(v)| ≥ ǫ ·N2), then the total number of

witnesses is at least N · Ω((ǫN)2) = Ω(ǫ2 ·N3).

Proof: The claim is proved by a (rather tedious) case analysis, which refers to a generic vertex v.
In each of the cases, it is relatively easy to prove the basic claim, and things get more complicated
when moving to Part 1 of the elaborate claim, and more so when moving to Part 2. Indeed, in our
presentation we first establish Part 1, and only then move to Part 2 (which refers to a general set
of forbidden pairs F).

Each case deals with a different subset of vertices. With the exception of one case, Part 1 is
proved by presenting, for every relevant vertex v (i.e., v that satisfies the case hypothesis), a subset
Wv ⊆ Γ′(v) of size at least |Γ′(v)|/c1 and adequate sets Wv,u for each u ∈Wv. Furthermore, it will
be shown that the vertices covered by these (non-exceptional) cases account for at least a 1 − α
fraction of the sum

∑
v |Γ′(v)|.

As in the proof of Claim 4.4.1, when we prove Part 2 we use Wv ⊆ Γ′(v) \ F (v) and select
the sets Wv,u as random Θ(|Wv|)-subsets of the sets of admissible elements. We note that when

establishing Part 2, for each of the foregoing cases, we consider the restriction of U
(2)
w to pairs (v, u)

such that v obeys the case hypothesis. We show that if |Γ′(v)| ≤ ǫ2/3N/2 for every such v, then

the total contribution to U
(2)
w of the corresponding pairs (v, u) is at most ǫ4/3N2. Since there are

less than ten cases, Part 2 follows.
We stress that, while the following analysis refers to possible cases that may apply to a generic

vertex v, we actually consider the set of all vertices that satisfy the hypothesis of each of these
cases. Hence, when we say that Part 1 (resp., Part 2) is established for the vertices that satisfy
a particular case hypothesis, we mean that the contribution of these vertices is as claimed in the
corresponding part. We now turn to the actual case analysis.

Case 1: Much of Γ′(v) is contained in a single Vj; that is, there exists an index j such that
|Γj(v)| > |Γ′(v)|/10. Fixing such an index j, we distinguish two subcases regarding the fraction of
Vj that is not covered by Γ′(v) (i.e., the relative density of Γj(v) in Vj). For v 6∈ Vj , the natural
case is that |Γj(v)| ≥ |Vj |/10 (see Case 1.1), and in this case we seek witnesses of the form (v, u,w)
such that (u,w) ∈ (Γj(v)×Γj(v))∩E (i.e., Wv ⊆ Γj(v) and Wv,u ⊆ Γj(v)∩Γj(u)). The other case
(i.e., Case 1.2) is that |Γj(v)| < |Vj |/10, where we seek witnesses of the form (v, u,w) such that v
and w resides in the same Vi, while u resides in Vj, and (v, u), (v,w) ∈ E, while (u,w) /∈ E. Details
follow.

Case 1.1: |Γj(v)| ≥ |Vj|/10. In this case, we let Wv be a subset of the neighbors that v has in
Vj , that is, a subset of Γj(v). For each u ∈Wv we let Wv,u be a subset of the non-neighbors
of v in Vj that are neighbors of w, that is, a subset of Γj(v) ∩ Γj(u). Thus, for every u ∈Wv

and w ∈ Wv,u, the triple (v, u,w) is a witness. For an illustration, see Figure 4. Combining

26

this case hypothesis (which asserts that v has many non-neighbors in Vj) with Observation 1
(which guarantees many edges between neighbors and non-neighbors of v in Vj), we obtain
many (i.e., Ω(|Γ′(v)|2)) such witnesses, and the basic claim follows.

v

|Γj(v)| ≥ |Vj|/10

|Γj(v)| ≥ |Γ′(v)|/10
Vj

u

w

Figure 4: An Illustration for Case 1.1 in the proof of Claim 4.4.2.

In order to actually prove Parts 1 and 2, we now provide a more detailed description of the
choice of Wv and Wv,u. Let the subset of vertices for which the case (1.1) hypothesis holds

be denoted by V 1.1. For each vertex v ∈ V 1.1, let ξ(v)
def
= j if j is the smallest integer such

that |Γj(v)| > |Γ′(v)|/10. Next, we define the set

Wv
def
= {u∈Γξ(v)(v) : |Γ(u) ∩ (Γξ(v)(v))| ≥ |Γξ(v)(v)|/4}, (38)

and note that (by the case hypothesis) for every u ∈ Wv it holds that |Γ(u) ∩ (Γξ(v)(v))| ≥
|Vξ(v)|/40. By Observation 1, |E(Γξ(v)(v),Γξ(v)(v))| ≥ |Γξ(v)(v)| · |Γξ(v)(v)|/2. Noting that

|E(Γξ(v)(v),Γξ(v)(v))| =
∑

u∈Γξ(v)(v) |Γ(u) ∩ (Γξ(v)(v))| and referring to the definition of Wv,

it follows that |Wv| ≥ |Γξ(v)(v)|/4 ≥ |Γ′(v)|/40. We complete the proof of Part 1 by noting

that, for every u ∈ Wv, the set Γξ(v)(v) ∩ Γ(u) contains at least |Γξ(v)(v)|/4 ≥ |Vξ(v)|/40
elements, whereas each such element w yields a witness (v, u,w) (since (u, v) ∈ E and w ∈
Γξ(v)(v) ∩ Γ(u)).

Towards proving Part 2, we first omit from the foregoing Wv all elements of F (v); that is, we
redefine Wv as the set of all u ∈ Γξ(v)(v) \ F (v) such that |Γ(u) ∩ (Γξ(v)(v))| ≥ |Γξ(v)(v)|/4.
Surely, this decreases

∑
v |Wv| by at most

∑
v |F (v)| = 2|F |. Now, for every u ∈Wv, let Wv,u

be a random subset of |Wv|/40 elements in Γξ(v)(v) ∩ Γ(u), while recalling that the latter set

has size at least |Γξ(v)(v)|/4 ≥ |Vξ(v)|/40. Thus, Part 2a follows.

In order to establish Part 2b, we fix an arbitrary j, and let V 1.1j
def
= {v ∈ V 1.1 : ξ(v) = j}.

We first note that, for any w ∈ Vj , the expected size of U
(2)
w is upper-bounded by

∑

v∈V 1.1j

∑

u∈Wv

|Wv|/40
|Γj(v) ∩ Γ(u)| ≤

1

|Vj |
·

∑

v∈V 1.1j

|Wv|2 (39)

where the inequality uses |Γj(v)∩Γ(u)| ≥ |Vj |/40. As in the proof of Claim 4.4.1, it is possible

to choose the subsets Wv,u so that the sizes of the sets U
(2)
w are not much larger than (the

upper bounds on the value of) their expected sizes. It follows that if some w ∈ Vj satisfies

27

|U (2)
w | > ǫ4/3N2, then

∑
v∈V 1.1j |Wv|2 > ǫ4/3N2|Vj |/2. Assume, contrary to the claim, that

|Γ′(v) \ F (v)| ≤ ǫ2/3N/2 (so that |Wv| ≤ ǫ2/3N/2) for every v, but |U (2)
w | > ǫ4/3N2 for some

w ∈ Vj (so that
∑

v∈V 1.1j |Wv|2 > ǫ4/3N2|Vj |/2). In such a case we have:

|E(V 1.1j , Vj) \ F | ≥
1

2

∑

v∈V 1.1j

|Wv| (40)

≥ 1

2

∑

v∈V 1.1j

|Wv|2
ǫ2/3N/2

(41)

>
1

2
|Vj | · ǫ2/3N . (42)

It follows that there exists a vertex u ∈ Vj such that |Γ′(u)\F (u)| ≥ |(Γ(u)\F (u))∩V 1.1j | >
ǫ2/3N/2, and we have reached a contradiction. Thus, Part 2 follows in this case.

Case 1.2: |Γj(v)| ≤ |Vj|/10 (i.e., |Γj(v)| ≥ 0.9|Vj |). Let i be such that v ∈ Vi. We first note
that |Γi(v)| ≥ 0.8|Γj(v)|, because otherwise we would obtain a better partition by moving the
vertex v from Vi to Vj (since the gain from such a move is at least (|Γj(v)|− |Γj(v)|)−|Γi(v)|,
whereas |Γj(v)| − |Γj(v)| ≥ 0.8|Vj | ≥ 0.8|Γj(v)|). It follows that |Γi(v)| ≥ 0.8 · |Γ′(v)|/10 >
|Γ′(v)|/13. We consider two subcases regarding the cardinality of the set Γi(v):

1. If |Γi(v)| ≥ 0.9 · |Vi|, then we let Wv be a subset of Γj(v), and for each u ∈ Wv, we let
Wv,u be a subset of Γi(v) \ Γ(u). Thus each triple (v, u,w) where u ∈Wv and w ∈Wv,u

is a witness. For an illustration, see Figure 5. Combining the case hypotheses (which
asserts that Vj × Vi is essentially covered by Γj(v) × Γi(v)) with Observation 2 (which
guarantees many non-edges in Vj × Vi), we obtain Ω(|Γ′(v)|2) such witnesses. Details
follow.

Let us denote the subset of vertices (in Vi) for which the case hypothesis holds by V 1.2
i ,

and for each v ∈ V 1.2
i define ξ(v) as in Case 1.1. Fixing any i and v ∈ V 1.2

i , let

Wv
def
= {u∈Γξ(v)(v) : |Γi(v) \ Γ(u)| ≥ |Γi(v)|/10} . (43)

Note that for any u ∈ Wv it holds that |Γi(v) \ Γ(u)| ≥ 0.1|Γi(v)| ≥ 0.08|Γj(v)|, where

j
def
= ξ(v). Using Observation 2 we have that

|E(Γj(v),Γi(v))| ≤ |E(Vj , Vi)| (44)

≤ 1

2
· |Vj| · |Vi| (45)

≤ 1

2
· |Γj(v)|

0.9
· |Γi(v)|

0.9
(46)

< 0.7 · |Γj(v)| · |Γi(v)| . (47)

Hence there are at least 0.3 · |Γj(v)| · |Γi(v)| pairs (u,w) ∈ Γj(v) × Γi(v) such that
(u,w) /∈ E; that is,

∑
u∈Γj(v) |Γi(v) \ Γ(u)| > 0.3 · |Γj(v)| · |Γi(v)|. It follows that

|Wv| > |Γj(v)|/5, where by the hypothesis of Case 1 this value is greater than |Γ′(v)|/50.
Next, recalling that for any u ∈Wv it holds that |Γi(v)\Γ(u)| ≥ 0.08|Γj(v)|, we let Wv,u

be an arbitrary 0.08|Wv |-size subset of Γi(v) \ Γ(u) ⊆ Γ(v) \ Γ(u), and note that indeed

28

for every u ∈ Wv and w ∈ Wv,u it holds that u,w ∈ Γ(v) and (u,w) 6∈ E. Thus, Part 1
follows in this case.

As for Part 2, we first omit from Wv all vertices in F (v) (i.e., we redefine Wv as the set
of all u ∈ Γξ(v)(v) \ F (v) satisfying |Γi(v) \ Γ(u)| ≥ |Γi(v)|/10), and let each Wv,u be a
random 0.08|Wv |-size subset of Γi(v) \Γ(u) ⊆ Γ(v) \Γ(u). This establishes Part 2a, and

so we turn to Part 2b. We then note that, for every w ∈ Vi, the expected size of U
(2)
w

(when restricted to pairs (v, u) with v ∈ V 1.2
i) is upper-bounded by

∑

v∈Vi

∑

u∈Wv

0.08|Wv |
|Γi(v) \ Γ(u)| ≤

0.08

0.09|Vi|
·
∑

v∈Vi

|Wv|2 (48)

where the inequality uses |Γi(v) \ Γ(u)| ≥ 0.1|Γi(v)| ≥ 0.09|Vi|. Again, we may select

the sets Wv,u such that for each w ∈ Vi it holds that |U (2)
w | <

∑
v∈Vi
|Wv|2/|Vi|. Thus,

if some w ∈ Vi satisfies |U (2)
w | > ǫ4/3N2, then

∑
v∈Vi
|Wv|2 > ǫ4/3N2|Vi|. It follows that

there exists a vertex v ∈ Vi such that |Wv| > ǫ2/3N , and Part 2 follows.

2. If |Γi(v)| ≤ 0.9·|Vi|, then we proceed somewhat differently than in the other cases (this is
the exceptional case mentioned at the preamble of the proof). Recall that Γ(v) = Γi(v) =
Vi \ Γ(v), and so |Γ(v)| ≥ 0.1 · |Vi| ≥ 0.008 · |Γ′(v)| (because |Vi| ≥ |Γi(v)| ≥ 0.8|Γj(v)|
and |Γj(v)| ≥ |Γ′(v)|/10). For the basic claim, we invoke Claim 4.4.1, translating the
lower bound in terms of |Γ(v)| (provided by Claim 4.4.1) into a lower bound in terms of
|Γ′(v)|. For the elaborate claim, we set Wv = ∅ for every v as in the case hypothesis (i.e.,
the current Case 1.2.2). Thus, we trivially have that |Wv,u| ≥ |Wv|/c2 for every u ∈Wv,
and Part 2 of the claim holds trivially as well. Finally, we use the hypothesis of Eq. (35)
(i.e.,

∑
v∈[N] |Γ′(v)| > (125/α)

∑
v∈[N] |Γ(v)|) to infer that the current subcase (in which

|Γ′(v)| ≤ 125|Γ(v)|) may account for less than an α fraction of the sum
∑

v∈[N] |Γ′(v)|.
All other vertices v will be placed in V ′, and hence Eq. (36) holds.

This completes the treatment of the current case (i.e., Case 1.2), which in turn completes the
treatment of Case 1. (We thus proceed to the following complementary Case 2.)

Case 2: No single Vj contains much of Γ′(v); that is, for every j it holds that |Γj(v)| ≤
|Γ′(v)|/10. As in Case 1, we consider two subcases regarding the relative part of each Vj

covered by Γ′(v), but in the current case we consider a partition of the set J
def
= {j : |Γj(v)| ≥

1} and distinguish cases regarding the intersection of Γ′(v) with the sets Vj in each part.8

Specifically, we let J ′ def
= {j : |Γj(v)| > 0.9|Vj |}, where each Vj with j ∈ J ′ is analogous to

Case 1.2, except that having several such Vj calls for seeking witnesses of the form (v, u,w)
such that (u,w) ∈ (Γ(v)×Γ(v))\E. The case that

∑
j∈J ′ |Γj(v)| accounts for much of |Γ′(v)|

is treated first (in Case 2.1), and the complementary case is postponed to Case 2.2.

Case 2.1:
∑

j∈J′ |Γj(v)| ≥ 0.5 · |Γ′(v)|. In this case J ′ has cardinality at least five (since∑
j∈J ′ |Γj(v)| ≥ 0.5 · |Γ′(v)| and |Γj(v)| ≤ 0.1 · |Γ′(v)| for every j). Let Cv =

⋃
j∈J ′ Γj(v)

(note that the vertices in Cv belong to several cliques Vj). In this case we let Wv be
a subset of Cv, and for each u ∈ Cv we let Wv,u be a subset of Cv \ Γ(u). We shall

8We note that the threshold for relative density is also different in the current case.

29

show that the case hypothesis implies that there are many missing edges between pairs
of vertices in Cv. Intuitively, this holds because Cv essentially covers

⋃
j∈J ′ Vj , whereas

(by Observation 2) for any j1 6= j2 there are many non-edges in Vj1 × Vj2 . This ensures
that we have many witnesses of the form (v, u,w), where u ∈Wv and w ∈Wv,u. Details
follow.

For every j1 6= j2 ∈ J ′, by Observation 2 (and since |Γj(v)| > 0.9|Vj | for every j ∈ J ′),
it holds that

|E(Γj1(v),Γj2(v))| ≤
1

2
· |Vj1 | · |Vj2| < 0.7 · |Γj1(v)| · |Γj2(v)| (49)

(cf. the derivation of Eq. (47) from Eq. (44)).

Letting M
def
=

∑
j1 6=j2∈J ′ |(Γj1(v)× Γj2(v)) \ E|, we first observe that

M =
∑

j1 6=j2∈J ′

(|Γj1(v)| · |Γj2(v)| − |E(Γj1(v),Γj2(v))|) (50)

≥
∑

j1 6=j2∈J ′

(1− 0.7) · |Γj1(v)| · |Γj2(v)| (51)

= 0.3 ·







∑

j∈J ′

|Γj(v)|




2

−
∑

j∈J ′

|Γj(v)|2

 (52)

≥ 0.3 ·
(
(0.5 · |Γ′(v)|)2 − 0.1 · |Γ′(v)|2

)
, (53)

where the last inequality uses the hypotheses of Cases 2 and 2.1. Therefore, |(Cv×Cv)\
E| ≥M > 0.04 · |Γ′(v)|2.
Defining

Wv
def
= {u∈Cv : |Cv \ Γ(u)| ≥ 0.02 · |Γ′(v)|} , (54)

we note that |Wv| ≥ 0.02 · |Γ′(v)|. Next, we let Wv,u be any 0.02 · |Wv|-size subset of
Cv \ Γ(u) ⊆ Γ′(v) \ Γ(u). As in the previous cases, Part 1 follows by the definition of
these sets.

Establishing Part 2 (or rather Part 2b) is slightly more complicated in the current
case, and so we first make the simplifying assumption that |F (v)| < 0.01|Wv |, for every
vertex v. This simplifying assumption implies that |F (v)| < 0.01|Γ′(v)|, which means
that for every u ∈ Wv it holds that |(Cv \ Γ(u)) \ F (v)| > 0.01|Γ′(v)|. Now, we omit
from Wv all vertices in F (v) (i.e., redefine Wv as the set of u ∈ Cv \ F (v) such that
|Cv \ Γ(u)| ≥ 0.02 · |Γ′(v)|), and let each Wv,u be a random 0.01|Wv |-size subset of
(Cv \ Γ(u)) \ F (v). Part 2a follows, and so we turn to establishing Part 2b. Again, for

any fixed w, the expected size of U
(2)
w is upper-bounded by

∑

v∈[N]:Cv∋w

∑

u∈Wv

0.01 · |Wv|
|(Cv \ Γ(u)) \ F (v)| ≤

∑

v∈[N]:(Γ′(v)\F (v))∋w

∑

u∈Wv

0.01 · |Cv|
0.01 · |Cv|

(55)

=
∑

v∈Γ′(w)\F (w)

|Wv| (56)

30

where the inequality uses |(Cv \ Γ(u)) \ F (v)| ≥ 0.01 · |Γ′(v)| and Wv ⊆ Cv ⊆ Γ′(v).

We conclude that the existence of w ∈ Vj such that |U (2)
w | > ǫ4/3N2 implies that∑

v∈Γ′(w)\F (w) |Wv| > ǫ4/3N2/2, which in turn implies that either |Γ′(w) \ F (w)| >
ǫ2/3N/2 or |Wv| > ǫ2/3N for some v ∈ Γ′(w) \ F (w). Thus, Part 2 follows (under the
assumption that |F (v)| < 0.01|Wv |).
It remains to handle the case in which for some v it holds that |F (v)| ≥ 0.01|Wv |. In
this case we just reset Wv to the empty set, and the foregoing analysis still applies
(establishing Part 2b). We need, however, to examine the effect of this modification on
Part 2a. The key observation is that the sum of the sizes of the Wv’s decreases at most
by 200|F |, because the case of |F (v)| ≥ 0.01|Wv | (where Wv is reset to empty) causes
a loss of at most |Wv| < 100|F (v)|, whereas the case of |F (v)| < 0.01|Wv | (in which we
avoid F (v)) causes (as usual) a loss of at most |F (v)|. Thus, Part 2 holds in Case 2.1.

Case 2.2:
∑

j∈J\J′ |Γj(v)| ≥ 0.5 · |Γ′(v)|. Let J ′′ def
= J \ J ′ = {j : 1 ≤ |Γj(v)| ≤ 0.9|Vj |},

and note that for j ∈ J ′′ (as considered in this case) it may be that |Γj(v)| ≪ |Vj | and
consequently for j1 6= j2 ∈ J ′′ it may hold that E(Γj1(v),Γj2(v)) ≈ |Γj1(v)| · |Γj2(v)|.
More generally, redefining Cv

def
=

⋃
j∈J ′′ Γj(v), it may be that |E(Cv , Cv)| ≈

(|Cv|
2

)
, and

so the approach of Case 2.1 may not work in general (although it will work in the first

subcase). Letting J ′′′ def
= {j ∈ J ′′ : |Vj | ≤ |Γ′(v)|/10}, we consider two subcases:

1. If
∑

j∈J ′′′ |Γj(v)| ≥ 0.4 · |Γ′(v)|, then we redefine Cv
def
=

⋃
j∈J ′′′ Γj(v) and show that

|E(Cv , Cv)| ≤ 0.9
(|Cv|

2

)
. Once the latter fact is established, we reach a situation as

in Case 2.1 (where we only used
(|Cv|

2

)
− |E(Cv , Cv)| > 0.04|Γ′(v)|2) and proceed

essentially as in that case. (The only modification is that here we only have
(
|Cv|
2

)
−

|E(Cv , Cv)| > 0.002|Γ′(v)|2, and so we let Wv consists of all vertices u ∈ Cv such
that |Cv \ Γ(u)| ≥ 0.001|Γ′(v)|, so that |Wv| ≥ 0.001 · |Γ′(v)|, and we let Wv,u be
a 0.001 · |Wv|-size random subset of Cv \ Γ(u).) Thus, we focus on establishing
that |E(Cv , Cv)| ≤ 0.9

(|Cv|
2

)
, by showing that otherwise one obtains a contradiction

to the optimality of the partition (by replacing the sub-partition (Vj)j∈J ′′′ with
(Cv, (Vj \ Cv)j∈J ′′′), where Vj \ Cv = Γj(v)). Details follow.

Assuming, towards the contradiction, that |E(Cv, Cv)| > 0.9
(
|Cv|
2

)
, we lower-bound

the gain from the aforementioned replacement as follows. Combining all Cv ∩ Vj ’s
(into Cv) and splitting each Vj (to (Cv ∩ Vj , Vj \ Cv)), yields a gain of at least

∆
def
=

∑

j1<j2∈J ′′′

|E(Cv ∩ Vj1, Cv ∩ Vj2)| −
∑

j1<j2∈J ′′′

|E(Cv ∩ Vj1, Cv ∩ Vj2)|

−
∑

j∈J ′′′

|E(Cv ∩ Vj , Vj \ Cv)| (57)

where E(Y,Z) denotes the set of pairs of vertices in Y ×Z that do not have an edge
between them. Thus:

∆ ≥ |E(Cv , Cv)| −
∑

j∈J ′′′

|E(Cv ∩ Vj, Cv ∩ Vj)|

−|E(Cv , Cv)| −
∑

j∈J ′′′

|E(Cv ∩ Vj, Vj \ Cv)| (58)

31

= |E(Cv , Cv)| − |E(Cv , Cv)| −
∑

j∈J ′′′

|E(Cv ∩ Vj, Vj)| (59)

≥ |E(Cv , Cv)| − |E(Cv , Cv)| − |Cv| · max
j∈J ′′′

{Vj}. (60)

By the contradiction hypothesis |E(Cv , Cv)| > 0.9
(|Cv|

2

)
(and |E(Cv, Cv)| <

0.1
(|Cv|

2

)
), whereas maxj∈J ′′′{|Vj |} ≤ |Γ′(v)|/10 and |Γ′(v)| ≤ 2.5|Cv | (by the def-

inition of J ′′′ and the subcase hypothesis, respectively). Hence, ∆ > 0.8
(
|Cv|
2

)
−

0.25|Cv |2 > 0, in contradiction to the optimality of the partition.

2. If
∑

j∈J ′′\J ′′′ |Γj(v)| ≥ 0.1 · |Γ′(v)|, then we proceed similarly to Case 1.1. That is,
we try to obtain witnesses of the form (v, u,w) such that (u,w) ∈ ⋃

j∈J ′′\J ′′′(Γj(v)×
Γj(v)) ∩ E; see Figure 7. Indeed, the only difference between Case 1.1 and the
current subcase is that here j ∈ J ′′ \ J ′′′ may not be unique, but as we shall see this
issue has little consequences. Specifically, we define

Wv
def
=

⋃

j∈J ′′\J ′′′

{
u ∈ Γj(v) : |Γj(u) ∩ Γj(v)| ≥

|Γj(v)|
4

}
(61)

and note that Wv ⊆ Γ′(v) and that for every j ∈ J ′′ \ J ′′′ it holds that |Wv ∩ Vj | ≥
|Γj(v)|/4 (since E(Γj(v), Vj \ Γj(v)) ≥ |Γj(v)| · |Vj \ Γj(v)|/2). Using the subcase
hypothesis, it follows that |Wv| ≥

∑
j∈J ′′\J ′′′ |Γj(v)|/4 ≥ |Γ′(v)|/40, and using j ∈

J ′′ \ J ′′′ every u ∈ Wv satisfies |Γj(u) ∩ Γj(v)| ≥ |Γj(v)|/4 ≥ |Vj |/40 ≥ |Γ′(v)|/400.
Next, for every j ∈ J ′′ \ J ′′′ and every u ∈Wv ∩ Vj , we define Wv,u to be a random
subset of size |Γ′(v)|/400 of Γj(u) ∩ Γj(v). Indeed, for every u ∈ Wv and w ∈ Wv,u

it holds that w 6∈ Γ′(v) and w ∈ Γ(u) \ Γ′(u). Given the lower bounds on the sizes
of the sets Wv and Wv,u, Part 1 follows.
Again, proving Part 2 amounts to omitting from the foregoing Wv all elements of
F (v); that is, we redefine Wv as the set of all u ∈ ⋃

j∈J ′′\J ′′′ Γj(v) \ F (v) such that

|Γj(u) ∩ (Γj(v))| ≥ |Γj(v)|/4}. Similarly, the sets Wv,u are random subsets of size
|Γ′(v)|/400 of Γj(u) ∩ Γj(v). Thus, Part 2a follows.

To establish Part 2b, we note that, for any fixed w ∈ Vj, the expected size of U
(2)
w

is upper-bounded by

∑

v∈[N]\Vj

∑

u∈Wv∩Vj

|Γ′(v) \ F (v)|/400
|Γj(u) ∩ Γj(v)|

≤
∑

v∈[N]\Vj

∑

u∈Γj(v)\F (v)

|Γ′(v) \ F (v)|
10|Vj |

(62)

=
∑

v∈[N]\Vj

|Γj(v) \ F (v)| · |Γ′(v) \ F (v)|
10|Vj |

where the inequality uses |Γj(u) \ Γj(v)| ≥ |Vj \ Γj(v)|/4 ≥ |Vj |/40. Here too it is

possible to choose the subsets Wv,u so that the sizes of the sets U
(2)
w are not much

larger than (the upper bounds on the value of) their expected sizes. Again, it follows

that if some w ∈ Vj satisfies |U (2)
w | > ǫ4/3N2, then

∑

v∈[N]\Vj

|Γ′(v) \ F (v)| · |Γj(v) \ F (v)| > 5ǫ4/3N2|Vj |, (63)

32

which implies that either for some v ∈ [N]\Vj it holds that |Γ′(v)\F (v)| > ǫ2/3N or
that

∑
v∈[N]\Vj

|Γj(v) \F (v)| > ǫ2/3N |Vj|. In the latter case, there must be a vertex

u ∈ Vj such that |Γ′(u) \F (v)| > ǫ2/3N . Thus, Part 2b holds also in this subcase of
Case 2.2.

Thus, we have established the claim for all subcases of Case 2.2.

Having completed the treatment of the two complementary cases of Case 2 (i.e., Cases 2.1
and 2.2), we complete the treatment of Case 2.

Having completed the treatment of the two complementary cases (i.e., Cases 1 and 2), the claim
follows.

4.2.2 The existence of effective witnesses

Combining the hypothesis of Lemma 4.4 with (the basic parts of) Claims 4.4.1 and 4.4.2, we infer
the existence of Ω(ǫ2N3) witnesses. Moreover, the elaborate parts of these claims provide us with
some structure that will be useful towards proving that (with high probability) the sample taken
by Algorithm 4.3 contains at least one effective witness (i.e., a witness whose three vertex-pairs are
inspected by the algorithm). We shall use the following technical claim, which will be proved in
Section 4.2.3. Essentially, the claim asserts that under some circumstances (i.e., those detailed in
the conditions), a random set of adequate size (i.e., of size O(ǫ−2/3)) contains a witness. Loosely
speaking, the first condition means that the expected number of witnesses in the sample exceeds

any desired constant, whereas the upper bounds on the sizes of the sets Wv,Wv,u, U
(1)
v and U

(2)
v

(stated in the other conditions) guarantee sufficient concentration around the expected value.

Claim 4.4.3 (on the existence of witnesses in a sample of vertices): Suppose that the following
conditions hold:

1.
∑

v∈[N]

∑
u∈Wv

|Wv,u| = Ω(ǫ2 ·N3)

2. For every v ∈ [N], it holds that |Wv| < ǫ2/3N and for U
(1)
v

def
= {x : v ∈ Wx} and U

(2)
v

def
=

{(x, y) : v ∈Wx,y}, it holds that |U (1)
v | < ǫ2/3N and |U (2)

v | < ǫ4/3N2.

3. For every v ∈ [N] and u ∈Wv, it holds that |Wv,u| < ǫ2/3N .

Then, for a sufficiently large constant c that depends only on the constant in the Omega-notation,
with probability at least 2/3, a uniformly selected sample of c·ǫ−2/3 vertices contains a triple (v, u,w)
such that u ∈Wv and w ∈Wv,u.

The proof of Claim 4.4.3 appears in Section 4.2.3. Using Claims 4.4.1, 4.4.2 and 4.4.3, we finally
prove Lemma 4.4.

Completing the proof of Lemma 4.4. Recall that
∑

v∈[N](|Γ(v)| + |Γ′(v)|) ≥ ǫ · N2 (by

the lemma’s hypothesis). Thus, for any constant β > 0, either
∑

v∈[N] |Γ(v)| ≥ β · ǫ · N2 or∑
v∈[N] |Γ′(v)| ≥ (1 − β) · ǫ ·N2. We analyze these two cases, while postponing the determination

of the constant β ∈ (0, 1) to the treatment of the second case.

Case of
∑

v∈[N] |Γ(v)| ≥ β · ǫ · N2. We consider two subcases (and use claim 4.4.3 only in the
second one):

33

1. The easier subcase is when large sets Γ(·) have a relatively large contribution to
∑

v∈[N] |Γ(v)|.
In this case, we apply Claim 4.4.1 with F = ∅ and obtain all that we need by using Part 1 of
this claim, while observing that Algorithm 4.3 inspects all vertex pairs that arise from this
analysis. (We note that this case refers to triples in

⋃
k<(2ℓ/3)+O(1)Rk × Sk × Sk, where the

bound on k is related to the bound on large sets.)

Specifically, if
∑

v∈[N]:|Γ(v)|≥ǫ2/3N/2 |Γ(v)| ≥ (β/10) · ǫ · N2, then applying Claim 4.4.1 with

F = ∅ we obtain sets Wv’s and Wv,u’s such that Part 1 of Claim 4.4.1 holds. In particular, it
follows that

∑

v∈[N]:|Wv|≥ǫ2/3N/8

|Wv| ≥
∑

v∈[N]:|Γ(v)|≥ǫ2/3N/2

|Γ(v)|
4

(64)

≥ (β/10) · ǫ ·N2

4
= Ω(ǫ ·N2). (65)

Recall that ℓ = log2(1/ǫ). Thus, there exists k ∈ {1, . . . , (2ℓ/3) + 3} such that for V ∗ def
= {v ∈

[N] : 2−kN ≤ |Wv| < 2−k+1N} it holds that
∑

v∈V ∗ |Wv| = Ω(ǫ ·N2/ℓ). Fixing this k, we note
that |V ∗| = Ω(2kǫ ·N/ℓ) and thus Pr[Rk ∩ V ∗ 6= ∅] > 8/9, where Rk is as selected in Step 2
of Algorithm 4.3 (i.e., Rk is a random set of size Ω((2kǫ/ℓ)−1)). For the sake of the analysis,
view Sk (which is a uniformly selected subset of S that has size Θ(2k) and is also selected
in Step 2) as the union of two independently selected subsets of equal size, denoted S1

k and
S2

k . Fixing any v ∈ Rk ∩ V ∗, we have |Wv| ≥ 2−kN and so Pr[S1
k ∩Wv 6= ∅] > 8/9. Finally,

fixing any u ∈ S1
k ∩Wv, since |Wv,u| = Ω(|Wv|) = Ω(2−kN), we have Pr[S2

k ∩Wv,u 6= ∅] > 8/9.
Noting that all pairs (Rk × Sk)∪ (Sk × Sk) are inspected by Algorithm 4.3, the claim follows
(i.e., with probability at least 2/3, the sample taken by Algorithm 4.3 contains a witness).

2. The other subcase is when large sets Γ(·) have a relatively small contribution to
∑

v∈[N] |Γ(v)|.
In this case, we apply Claim 4.4.1 while setting F so to eliminate all large sets. Here we use
both parts of the claim, where Part 2 provides the conditions required by the non-trivial
probabilistic analysis captured in Claim 4.4.3. (We note that this case refers to triples in
S × S × S.)

Specifically, if
∑

v∈[N]:|Γ(v)|≥ǫ2/3N/2 |Γ(v)| < (β/10) · ǫ · N2, then we set F = {{u, v} : u ∈
Γ(v), |Γ(v)| ≥ ǫ2/3N/2}, which means that F (v) = Γ(v) if |Γ(v)| ≥ ǫ2/3N/2 and F (v) = ∅ oth-
erwise. Applying Claim 4.4.1 with this F , and noting that |F | = ∑

v∈[N]:|Γ(v)|≥ǫ2/3N/2 |Γ(v)|,
we obtain sets Wv’s and Wv,u’s such that Claim 4.4.1 holds. In particular (by Part 1), we
have that

∑

v∈[N]

|Wv| ≥
∑

v∈[N]

|Γ(v)|
4
− 2|F | (66)

≥
(
β

4
− 2 · β

10

)
· ǫ ·N2 = Ω(ǫ ·N2), (67)

whereas |Wv| ≤ |Γ(v) \ F (v)| < ǫ2/3N/2 holds for every v ∈ [N]. Recall that |Wv,u| ≤ |Wv|
holds for every u ∈Wv.

Letting U
(1)
w

def
= {v : w ∈Wv}, for every w it holds that |U (1)

w | < ǫ2/3N/2 (because v ∈ U (1)
w

implies w ∈ Γ(v) and (v,w) 6∈ F). Also, by Part 2, we get |U (2)
w | < ǫ4/3N2 for every w. Thus,

34

all conditions of Claim 4.4.3 hold, and we conclude that (in this case), with high probability,
the sample S selected in Step 1 (of Algorithm 4.3) contains a witness (i.e., a triple (v, u,w)
such that u ∈Wv and w ∈Wv,u).

This completes the treatment of the case in which
∑

v∈[N] |Γ(v)| ≥ β · ǫ · N2. The treatment of

the case in which
∑

v∈[N] |Γ′(v)| ≥ (1− β) · ǫ ·N2 is analogous. Specifically, we consider analogous
subcases (with different constants in the differentiating thresholds), and invoke Claim 4.4.2 (while
setting α, β > 0 to be sufficiently small such that all calculations work out).

Case of
∑

v∈[N] |Γ′(v)| ≥ (1−β) ·ǫ ·N2. We may also assume that
∑

v∈[N] |Γ(v)| < β ·ǫ ·N2, since

otherwise the previous case applies. Thus,
∑

v∈[N] |Γ′(v)| > 1−β
β ·

∑
v∈[N] |Γ(v)|, which for β ≤ 1/2

is at least 1
2β ·

∑
v∈[N] |Γ(v)|. Therefore, the premise of the (elaborate part of) Claim 4.4.2 holds

with α = 250β and hence the conclusions of the claim hold as well. We consider two subcases,
which are determined by a parameter γ that will be set in the course of the analysis. In what
follows, recall that c1, c2, c3 and c4 are constants that are defined by Claim 4.4.2.

1. If
∑

v∈[N]:|Γ′(v)|≥ǫ2/3N/2 |Γ′(v)| ≥ γ ·∑v∈[N] |Γ′(v)|, then, by Part 1 of Claim 4.4.2, for every

v ∈ [N] we obtain a set Wv ⊆ Γ′(v) such that:

∑

v∈[N]:|Γ′(v)|≥ǫ2/3N/2& |Wv|≥|Γ′(v)|/c1

|Γ′(v)| ≥ (γ − α) · (1− β) · ǫ ·N2 (68)

= (γ − 250β) · (1− β) · ǫ ·N2 , (69)

If β and γ are set so that γ ≥ 251β, then,

∑

v∈[N]:|Wv|≥ǫ2/3N/(2c1)

|Wv| ≥
∑

v∈[N]:|Γ′(v)|≥ǫ2/3N/2 & |Wv|≥|Γ′(v)|/c1

|Γ′(v)|
c1

(70)

≥ β · (1− β)

c1
· ǫ ·N2 = Ω(ǫ ·N2) . (71)

Recall that ℓ = log2(1/ǫ). Thus, there exists k ∈ {1, . . . , (2ℓ/3) + log2(2c1)} such that for

V ∗ def
= {v ∈ [N] : 2−kN ≤ |Wv| < 2−k+1N} it holds that

∑
v∈V ∗ |Wv| = Ω(ǫ · N2/ℓ). Fixing

this k, we note that |V ∗| = Ω(2kǫ · N/ℓ) and thus Pr[Rk ∩ V ∗ 6= ∅] > 8/9, where Rk is as
selected in Step 2 of Algorithm 4.3 (i.e., Rk is a random set of size Ω((2kǫ/ℓ)−1)).

For the sake of the analysis, consider viewing Sk (which is a uniformly selected subset of S
that has size Θ(2k) and is also selected in Step 2) as the union of two independently selected
subsets of equal size, S1

k and S2
k . Fixing any v ∈ Rk ∩ V ∗, we have |Wv| ≥ 2−kN and so

Pr[S1
k ∩Wv 6= ∅] > 8/9. Finally, fixing any u ∈ S1

k ∩Wv, since |Wv,u| ≥ |Wv|/c2 = Ω(|Wv|) =
Ω(2−kN), (where Wv,u ⊂ (Γ(v) \ Γ(u)) ∪ (Γ(u) \ Γ(v))) we have Pr[S2

k ∩Wv,u 6= ∅] > 8/9.
Noting that all pairs (Rk × Sk)∪ (Sk × Sk) are inspected by Algorithm 4.3, the claim follows
for this subcase (i.e., with probability at least 2/3, Algorithm 4.3 finds a witness).

2. If
∑

v∈[N]:|Γ′(v)|≥ǫ2/3N/2 |Γ′(v)| < γ ·∑v∈[N] |Γ′(v)|, then we apply Part 2 of Claim 4.4.2 with

F = {{u, v} : u ∈ Γ′(v), |Γ′(v)| ≥ ǫ2/3N/2}. For every v ∈ [N] we obtain a set Wv ⊆

35

Γ′(v) \ F (v) (where F (v) = {u : {v, u} ∈ F}) such that if we set γ = 1
2c3c4

then

∑

v∈[N]

|Wv| ≥
1

c3
·




∑

v∈[N]

|Γ′(v)|


 − c4 · |F | (72)

≥ (1/c3 − c4 · γ) ·
∑

v∈[N]

|Γ′(v)| (73)

≥ 1

2c3
· (1− β)ǫN2 = Ω(ǫ ·N2) . (74)

Observe that by the constraint on the relation between β and γ that was imposed by the
previous subcase, it suffices to set β ≤ 1

502c3c4
. Since for every v ∈ [N] and for every u ∈ Wv

we have that |Wv,u| ≥ |Wv|/c2, Equation (74) implies that

∑

v∈[N]

∑

u∈Wv

|Wv,u| ≥
∑

v∈[N]

|Wv|2/c2 = Ω(ǫ2N3) . (75)

On the other hand, we have the following upper bound on the size of each Wv: |Wv| ≤
|Γ′(v) \ F (v)| < ǫ2/3N/2, and |Wv,u| ≤ |Wv| holds (for every u ∈ Wv). Letting U

(1)
w

def
= {v :

w ∈Wv}, for every w it holds that |U (1)
w | < ǫ2/3N/2 (because v ∈ U

(1)
w implies w ∈ Γ′(v)

and (v,w) 6∈ F). Also, by Part 2b, we get |U (2)
w | ≤ 10ǫ4/3N2 for every w. By applying

Claim 4.4.3 (with ǫ set to 10ǫ so that |U (2)
w | < ǫ4/3N2 for the new setting, while we still have

that
∑

v∈[N]

∑
u∈Wv

|Wv,u| = Ω(ǫ2N3) for this setting), we have that, with high probability,
the sample S selected in Step 1 of Algorithm 4.3 contains a witness (i.e., a triple (v, u,w)
such that u ∈Wv and w ∈Wv,u).

Thus, based on Claim 4.4.3 (to be proven next), we completed the proof of Lemma 4.4.

4.2.3 Proof of Claim 4.4.3

We denote the random sample by S, and denote its elements by v1, . . . , vs, u1, . . . , us, w1, . . . , ws.
We shall prove that, with probability at least 1− O(s−1ǫ−2/3), there exists a triple (i, j, k) ∈ [s]3

such that uj ∈ Wvi and wk ∈ Wvi,wj . The proof boils down to applying Chebyshev’s Inequality to∑
i,j,k∈[s] ζi,j,k, where ζi,j,k = 1 if uj ∈ Wvi and wk ∈Wvi,uj , and ζi,j,k = 0 otherwise. We first note

that

µ
def
= ExpS




∑

i,j,k∈[s]

ζi,j,k


 (76)

= s3 · Prv,u,w∈[N][u ∈Wv ∧ w ∈Wv,u] (77)

= s3 · 1

N3
·

∑

v∈[N]

∑

u∈Wv

|Wv,u| (78)

= Ω(s3 · ǫ2) (79)

36

where the last line follows by the first condition in the hypothesis. By Chebyshev’s Inequality it
follows that

Pr




∑

i,j,k∈[s]

ζi,j,k = 0


 ≤

Var[
∑

i,j,k∈[s] ζi,j,k]

Exp[
∑

i,j,k∈[s] ζi,j,k]
2

(80)

= µ−2 ·


Exp







∑

i,j,k∈[s]

ζi,j,k




2
 − Exp




∑

i,j,k∈[s]

ζi,j,k




2
 (81)

= µ−2 ·







∑

ℓ∈[s]6

Exp[ζi1,j1,k1 · ζi2,j2,k2]


 − µ2


 (82)

where ℓ = (i1, i2, j1, j2, k1, k2). The upper bounds on |Wv|, |Wv,u|, |U (1)
w | and |U (2)

w | will be used in
upper-bounding the large sum (i.e.,

∑
ℓ∈[s]6 Exp[ζi1,j1,k1 · ζi2,j2,k2]). We decompose the latter sum

into partial sums that correspond to the following cases (regarding the relations between i1-vs-i2,
j1-vs-j2, and k1-vs-k2).

Case of i
def
= i1 = i2, j

def
= j1 = j2, and k

def
= k1 = k2. There are s3 such terms, each having

value Exp[ζ2
i,j,k] = Exp[ζi,j,k], which equals Prv,u,w∈[N][u ∈ Wv ∧ w ∈ Wv,u] = µ/s3. Thus,

the total contribution of this case is µ.

Case of i
def
= i1 = i2, j

def
= j1 = j2, and k1 6= k2. There are less than s4 such terms, each hav-

ing value Exp[ζi,j,k1 · ζi,j,k2], which equals

Prv,u,w1,w2∈[N][u ∈Wv ∧ w1, w2 ∈Wv,u]

≤ Prv,u,w1∈[N][u ∈Wv ∧ w1 ∈Wv,u] · max
v,u,w1∈[N]

{
Prw2∈[N][w2 ∈Wv,u]

}

<
µ

s3
· ǫ2/3 (83)

where the last inequality is due to |Wv,u| < ǫ2/3N . Thus, the total contribution of this case
is smaller than sǫ2/3 · µ.

Case of i
def
= i1 = i2, j1 6= j2, and k

def
= k1 = k2. There are less than s4 such terms, each hav-

ing value Exp[ζi,j1,k · ζi,j2,k], which equals

Prv,u1,u2,w∈[N][u1, u2 ∈Wv ∧ w ∈Wv,u1 ∩Wv,u2]

≤ Prv,u1,w∈[N][u1 ∈Wv ∧ w ∈Wv,u1] · max
v,u1,w∈[N]

{
Pru2∈[N][u2 ∈Wv]

}

<
µ

s3
· ǫ2/3 (84)

where the last inequality is due to |Wv| < ǫ2/3N . Thus, the total contribution of this case is
smaller than sǫ2/3 · µ.

37

Case of i
def
= i1 = i2, j1 6= j2, and k1 6= k2. There are less than s5 such terms, each having

value Exp[ζi,j1,k1 · ζi,j2,k2], which equals

Prv,u1,u2,w1,w2∈[N][u1, u2 ∈Wv ∧ w1 ∈Wv,u1 ∧ w2 ∈Wv,u2]

≤ Prv,u1,w1∈[N][u1 ∈Wv ∧ w1 ∈Wv,u1]

· max
v,u1,w1∈[N]

{
Pru2,w2∈[N][u2 ∈Wv ∧ w2 ∈Wv,u2]

}

<
µ

s3
· (ǫ2/3)2 (85)

where the last inequality is due to |Wv| < ǫ2/3N and |Wv,u2 | < ǫ2/3N . Thus, the total
contribution of this case is smaller than (sǫ2/3)2 · µ.

Case of i1 6= i2, j
def
= j1 = j2, and k

def
= k1 = k2. There are less than s4 such terms, each

having value Exp[ζi1,j,k · ζi2,j,k], which equals

Prv1,v2,u,w∈[N][u ∈Wv1 ∩Wv2 ∧ w ∈Wv1,u ∩Wv2,u]

≤ Prv1,u,w∈[N][u ∈Wv1 ∧ w ∈Wv1,u] · max
v1,u,w∈[N]

{
Prv2∈[N][u ∈Wv2]

}

<
µ

s3
· ǫ2/3 (86)

where the inequality is due to |U (1)
u | < ǫ2/3N (and u ∈ Wv2 iff v2 ∈ U (1)

u). Thus, the total
contribution of this case is smaller than sǫ2/3 · µ.

Case of i1 6= i2, j1 6= j2, and k
def
= k1 = k2. There are less than s5 such terms, each having

value Exp[ζi1,j1,k · ζi2,j2,k], which equals

Prv1,v2,u1,u2,w∈[N][u1 ∈Wv1 ∧ u2 ∈Wv2 ∧ w ∈Wv1,u1 ∩Wv2,u2]

≤ Prv1,u1,w∈[N][u1 ∈Wv1 ∧ w ∈Wv1,u1] · max
v1,u1,w∈[N]

{
Pru2,v2∈[N][w ∈Wv2,u2]

}

<
µ

s3
· (ǫ2/3)2 (87)

where the last inequality is due to |U (2)
w | < ǫ4/3N2 (and w ∈Wv2,u2 iff (v2, u2) ∈ U (2)

w). Thus,
the total contribution of this case is smaller than (sǫ2/3)2 · µ.

Case of i1 6= i2, j
def
= j1 = j2, and k1 6= k2. There are less than s5 such terms, each having

value Exp[ζi1,j,k1 · ζi2,j,k2], which equals

Prv1,v2,u,w1,w2∈[N][u ∈Wv1 ∩Wv2 ∧ w1 ∈Wv1,u ∧ w2 ∈Wv2,u]

≤ Prv1,u,w1∈[N][u ∈Wv1 ∧ w1 ∈Wv1,u]

· max
v1,u,w1∈[N]

{
Prv2,w2∈[N][u ∈Wv2 ∧ w2 ∈Wv2,u]

}

<
µ

s3
· (ǫ2/3)2 (88)

where the last inequality is due to |U (1)
u | < ǫ2/3N and |Wv2,u| < ǫ2/3N . Thus, the total

contribution of this case is smaller than (sǫ2/3)2 · µ.

38

Case of i1 6= i2, j1 6= j2, and k1 6= k2. There are less than s6 such terms, each having value
Exp[ζi1,j1,k1 ·ζi2,jj ,k2] = Exp[ζi,j,k]

2, which equals (µ/s3)2. Thus, the total contribution of this
case is smaller than µ2.

Thus, we have one case (i.e., the first one) contributing µ, three cases (each) contributing sǫ2/3 · µ,
three cases (each) contributing (sǫ2/3)2 · µ, and one case (i.e., the last one) contributing µ2. Using
these upper bounds in Eq. (82), we obtain

Pr




∑

i,j,k∈[s]

ζi,j,k = 0


 < µ−2 ·

((
µ+ 3 · sǫ2/3 · µ+ 3 · (sǫ2/3)2 · µ+ µ2

)
− µ2

)

= µ−1 ·
(
1 + 3sǫ2/3 + 3(sǫ2/3)2

)
.

(89)

Using µ = Ω(s3ǫ2) and a sufficiently large s = O(ǫ−2/3), we obtain an error bound of
O((sǫ2/3)2/(s3ǫ2)) = O(s−1ǫ−2/3) < 1/3, and the claim follows.

5 Larger Adaptive versus Non-adaptive Complexity Gaps

We start by establishing Theorem 1.2, which refers to the adaptive versus non-adaptive complexity
gap of testing Bi-Clique Collections. We believe that the ideas underlying the adaptive algorithm
and the non-adaptive lower bound (presented in Sections 5.1 and 5.2) can serve as a basis for es-
tablishing the larger gap stated in Conjecture 1.3. Indeed, as shown in Section 5.3, this is the case
with respect to the non-adaptive lower bound (which indeed establishes Part 2 of Conjecture 1.3).
In Section 5.4 we outline an adaptive algorithm that we believe to be suitable for Part 1 of Con-
jecture 1.3. In Section 5.4, we also state and prove a promise problem version of Conjecture 1.3.

5.1 The Adaptive Query Complexity of Bi-Clique Collection

The tester for BCC is obtained by extending the ideas that underly the tester for CC (i.e., Algo-
rithm 3.1). The extension is relatively straightforward, but the analysis will have to address addi-
tional difficulties (i.e., beyond those encountered in the analysis of Algorithm 3.1). We mention,
however, that the current algorithm uses two levels of adaptivity (e.g., inspecting the edge relation
of selected neighbors) as compared with the single level of adaptivity employed by Algorithm 3.1
(which inspects, e.g., the edge relation of neighbors).

Algorithm 5.1 (adaptive tester for BCC): On input N and ǫ and oracle access to a graph G =
([N], E), set ℓ = log2(1/ǫ) + 2, t = Θ(ℓ4), and proceed in ℓ iterations as follows: For i = 1, . . . , ℓ,
uniformly select 100 · 2i start vertices and for each selected vertex v ∈ [N] perform the following
sub-test, denoted sub-testi(v):

1. Select, uniformly at random, a sample, S, of t/(2iǫ) vertices, and determine ΓS(v) = S ∩Γ(v)
by making the queries (v,w) for each w ∈ S. If ΓS(v) 6= ∅ then select u at random in ΓS(v)
and continue to the following steps. (Otherwise, halt and accept v.)

2. Determine ΓS(u) = S ∩ Γ(u) by making the queries (u,w) for each w ∈ S.

39

3. If |ΓS(v) × ΓS(u)| ≤ t/(2iǫ) then check that for every (w1, w2) ∈ ΓS(v) × ΓS(u) it holds that
(w1, w2) ∈ E. Otherwise (i.e., |ΓS(v) × ΓS(u)| > t/(2iǫ)), uniformly select a sample of t/(2iǫ)
pairs in ΓS(v)× ΓS(u) and check that each selected pair is in E.

4. Let B = (ΓS(v)×ΓS(v))∪(ΓS(u)×ΓS(u)). If |B| ≤ t/(2iǫ) then check that for every (w1, w2) ∈
B it holds that (w1, w2) 6∈ E. Otherwise (i.e., |B| > t/(2iǫ)), uniformly select a sample of
t/(2iǫ) pairs in B and check that each selected pair is in not E.

5. Select a sample of t/(2iǫ) pairs in (ΓS(v) ∪ ΓS(u))× (S \ (ΓS(v) ∪ ΓS(u))) and check that each
selected pair is not in E.

The sub-test (i.e., sub-testi(v)) accepts if and only if all checks were positive (i.e., no edges were
missed in Step 3 and no edges were detected in Steps 4 and 5). The tester itself accepts if and only
if all

∑ℓ
i=1 10 · 2i invocations of the sub-test accepted.

The query complexity of this algorithm is
∑ℓ

i=1(100 · 2i) ·O(t/(2iǫ)) = O(ℓ · t/ǫ) = Õ(1/ǫ). Clearly,
this algorithm accepts (with probability 1) any graph that is in BCC. It remains to analyze its
behavior on graphs that are ǫ-far from BCC.

Lemma 5.2 If G = ([N], E) is ǫ-far from BCC, then on input N, ǫ and oracle access to G, Algo-
rithm 5.1 rejects with probability at least 2/3.

Part 1 of Theorem 1.2 follows.

Proof: We proceed as in the proof of Lemma 3.2; that is, we will show that if Algorithm 5.1
accepts with probability at least 1/3 then the graph is ǫ-close to BCC. The proof makes use of a
revised notion of i-good start vertices, which is defined on top of the notion of i-good edges. The
definition refers to a parameter γ, which will be determined so that γ = Θ(1/t) = Θ(log−4(1/ǫ)).
Similarly to the analysis in the proof of Lemma 3.2, it is instructive to think of first setting γ (whose
setting is determined by another parameter, β2, which is introduced subsequently), and then t is
set to be a (sufficiently large) constant factor larger than 1/γ.

Definition 5.2.1 An edge (v, u) is i-good if the following three conditions hold.

1. The number of missing edges in Γ(v) × Γ(u) is at most γ · 2iǫ · |Γ(v, u)| · N edges, where

Γ(v, u)
def
= Γ(v) ∪ Γ(u); that is, |(Γ(v)× Γ(u)) \ E| ≤ γ · 2iǫ · |Γ(v, u)| ·N .

2. The number of edges in (Γ(v)× Γ(v)) ∪ (Γ(u)× Γ(u)) is at most γ · 2iǫ · |Γ(v, u)| ·N .

3. For every positive integer j ≤ j0 def
= log2(|Γ(v, u)|/(γ ·2iǫN)), the number of vertices in Γ(v, u)

that have at least γ · 2i+jǫ ·N edges going out of Γ(v, u) is at most 2−j · |Γ(v, u)|.

A vertex v is i-good if at least 0.8 · |Γ(v)| of its neighbors yield an edge that is i-good; that is, if
|{u ∈ Γ(v) : (v, u) is i-good}| ≥ 0.8 · |Γ(v)|.

Claim 5.2.2 If v has degree at least γ ·2iǫ·N and is not i-good, then the probability that sub-testi(v)
rejects is at least 0.1.

40

Proof: By the hypothesis |Γ(v)| ≥ γ · 2iǫ ·N , with high constant probability, Step 1 of sub-testi(v)
generates a non-empty sample of vertices in Γ(v). Conditioned on this event, since these vertices
are uniformly distributed in Γ(v), (and using the hypothesis that v is not i-good), with probability
at least 0.2 the vertex u ∈ Γ(v) selected in this sample is such that (v, u) is not i-good. We fix such
an edge (v, u) for the rest of this proof.

Assume that Condition 1 of i-goodness does not hold for (v, u), and let

ρ
def
=

γ · 2iǫ · |Γ(v, u)| ·N
|Γ(v)| · |Γ(u)| ≥ γ · 2iǫ ·N

min(|Γ(v)|, |Γ(u)|) (90)

denote a lower bound on the fraction of missing edges in Γ(v) × Γ(u). (Note that the foregoing
violation of Condition 1 may occur only if min(|Γ(v)|, |Γ(u)|) ≥ γ ·2iǫ·N .) Then, with high constant
probability, it holds that min(|ΓS(v)|, |ΓS(u)|) > m/2, where

m
def
=

t

ǫ2i
· min(|Γ(v)|, |Γ(u)|)

N
(91)

is the minimum of the expected sizes of |ΓS(v)| and |ΓS(u)|, and is lower bounded by t · γ which
is a (sufficiently large) constant. Also note that the members of ΓS(v) and ΓS(u) are distributed
uniformly in Γ(v) and Γ(u), respectively. Considering n = m/2 uniformly distributed vertices in
Γ(v) and n uniformly distributed vertices in Γ(u), it follows (as in the proof of Claim 3.2.2) that,
with high constant probability, the fraction of edges that are missing in the subgraph induced by
the said sample is at least ρ/2. This implies that Step 3 rejects with high constant probability
(regardless of whether it examines all pairs in ΓS(v) × ΓS(u) or just examines a random sample of
t

2iǫ
≥ tγ

ρ pairs).
The treatment of Condition 2 is similar, except that here we refer to the number of edges (in

(Γ(v)×Γ(v))∪(Γ(u)×Γ(u))) over |Γ(v)|2+ |Γ(u)|2 = Θ(|Γ(v, u)|2). We conclude that if Condition 2
(of i-goodness of (v, u)) is violated, then Step 4 of the test rejects with high constant probability.

Finally, we turn to Condition 3 of i-goodness. Assuming that this condition does not hold for
(v, u), we claim that Step 5 of the test rejects with high constant probability. The proof is analogous
to the analysis of Condition 2 in Claim 3.2.2, except that Γ(v, u) replaces Γ(v).

Thus (recalling the simple probabilistic assertions made at the start of the proof), sub-testi(v)
rejects with probability at least (1 − δ) · 0.2, where δ ∈ (0, 1) is an arbitrary small constant, and
the current claim follows.

Claim 5.2.3 If Algorithm 5.1 accepts with probability at least 1/3, then for every i ∈ [ℓ] the number
of vertices of degree at least γ · 2iǫ ·N that are not i-good is at most 2−i ·N/4.

Proof: Assuming to the contrary that the number of these vertices exceeds 2−i ·N/4, Claim 5.2.2
implies that a single invocation of sub-testi rejects with probability at least 0.025 · 2−i. Recalling
that Algorithm 5.1 invokes sub-testi on 100·2i uniformly selected random vertices, the claim follows.

Additional difficulties. As stated up-front, the current proof faces additional difficulties that were
not encountered in the proof of Lemma 3.2. These difficulties refer to the partition reconstruction
procedure, which is supposed to provide an approximately good partition of the graph to bi-cliques.
The first problem refers to the case that (v, u) is i-good, but most of Γ(v, u) belongs to previously
identified bi-cliques and furthermore these vertices reside in Γ(u) (rather than in Γ(v)). Thus, we

41

cannot “charge” these vertices to edges that are adjacent to v, but rather develop a charging rule
that allows us to charge v indirectly via its typical neighbors u. The second problem refers to
the treatment of low-degree vertices, and it arises from the fact that vertices in Γ(v, u) may have
vastly different degrees (which, indeed, occurs in the case that Γ(v) has a significantly different
cardinality than Γ(u)). Our solution is based on using two different degree thresholds (depending
on the relation between the degree of a vertex and the degree of most of its neighbors). With this
motivation in mind, we turn to the actual description of the (iterative) partition-reconstruction
procedure.

The partition reconstruction procedure. The iterative procedure is initiated with C = L0 = L
(1)
0 =

L
(2)
0 = L

(I)
0 = ∅, R0 = [N] and i = 1, where C denotes the set of vertices “covered” (by bi-cliques)

so far, Ri−1 denotes the set of “remaining” vertices after iteration i − 1 and Li−1 denotes the set
of vertices cast aside (as having “low degree”) in iteration i− 1. The set Li−1 is the union of three

sets, L
(1)
i−1, L

(2)
i−1, and L

(I)
i−1, where the first two sets correspond to two degree thresholds, denoted β1

and β2, and the third set consists of many subsets that use intermediate thresholds (for avoiding
a non-smooth transition). In each iteration, a set Fi of edges is constructed, where each edge in
Fi is used to determine a biclique (or, more precisely, a pair of subsets that are close to being a
biclique). We shall set β1 = Θ(1/ℓ) = Θ(log−1(1/ǫ)) and β2 = Θ(β1/ℓ) = Θ(1/ℓ2). Recall that
γ = Θ(log−4(1/ǫ), so that γ = O(β2/ℓ

2) (and in the analysis we shall determine the sufficient size
of the constant c such that γ = β2/(cℓ

2)).
The ith iteration proceeds as follows, where i = 1, . . . , ℓ and Fi is initialized to ∅.
1. Pick an arbitrary vertex v ∈ Ri−1 \ C that satisfies the following three conditions

(a) v is i-good.

(b) v has sufficiently high degree in the following sense: either |Γ(v)| ≥ β1 ·2iǫ ·N or for some
k ∈ [ℓ′], where ℓ′ = log0.9(β2/β1) = O(log ℓ), both |Γ(v)| ≥ 0.9k · β1 · 2iǫ · N and φk(v)
hold, where φk(v) represents the condition that a significant fraction of v’s neighbors
have a significantly higher degree than v itself; specifically, φk(v) holds if

∣∣∣∣
{
w∈Γ(v) : |Γ(w)| >

(
1.1 +

k

10ℓ′

)
· |Γ(v)|

}∣∣∣∣ >
|Γ(v)|
100ℓ .

(92)

Note that φℓ′(v) holds if |{w ∈ Γ(v) : |Γ(w)| > 1.2 · |Γ(v)|}| is greater than |Γ(v)|/100ℓ,
and the corresponding degree bound is β2 · 2iǫ ·N (because 0.9ℓ′ = β2/β1).

(c) There exists u ∈ Γ(v) \ C such that the edge (v, u) is i-good and
∣∣∣∣∣∣
(Γ(v, u) \ C) \




⋃

j≤i−1

Lj




∣∣∣∣∣∣
≥ |Γ(v, u)|

5

(i.e., relatively few vertices of Γ(v, u) are covered by C or cast aside in previous iterations
due to having low degree).

If no such vertex v exists, then define

L
(1)
i = {v ∈ Ri−1 \ C : ¬φ1(v) ∧ (|Γ(v)|<β1 · 2iǫ ·N)},

L
(I)
i =

⋃

k∈[ℓ′−1]

{v ∈ Ri−1 \ C : φk(v) ∧ ¬φk+1(v) ∧ (|Γ(v)|<0.9kβ1 · 2iǫ ·N)},

L
(2)
i = {v ∈ Ri−1 \ C : φℓ′(v) ∧ (|Γ(v)|<β2 · 2iǫ ·N)},

42

Li = L
(1)
i ∪ L

(I)
i ∪ L

(2)
i , and Ri = Ri−1 \ (Li ∪ C).

If i < ℓ then proceed to the next iteration, and otherwise terminate.

2. For a vertex v as selected in Step 1, pick an arbitrary u ∈ Γ(v) \ C satisfying Condition 1c.
Let Cv,u = {w ∈ Γ(v, u) : |Γ(w) \ Γ(v, u)| < |Γ(v, u)|}. Form a new bi-clique with the vertex
set C ′

v,u ← Cv,u \ C, and update Fi ← Fi ∪ {(v, u)} and C ← C ∪ C ′
v,u. This bi-clique will

have Γ′(v)
def
= Γ(v) ∩ C ′

v,u on one side and Γ′(u)
def
= Γ(u) ∩ C ′

v,u on the other side.

Note that by Condition 1c (and the definition of i-goodness), for every (v, u) ∈ Fi, it holds that
|Cv,u| > (1− o(1)) · |Γ(v, u)| and |Γ(v, u) \ C| ≥ |Γ(v, u)|/5. Thus, |C ′

v,u| ≥ |Cv,u| − |Γ(v, u) ∩ C| ≥
|Γ(v, u)|/6, which allows translating quality guarantees that are quantified in terms of |Γ(v, u)| to
similar guarantees in terms of |C ′

v,u|. In fact, |C ′
v,u \ (

⋃
j≤i−1 Lj)| ≥ |Γ(v, u)|/6, which enables

further translation of these guarantees to quantification in terms of |C ′
v,u ∩Ri−1|.

Claim 5.2.4 Referring to the partition reconstruction procedure, for every i ∈ [ℓ], the following
holds.

1. The number of missing edges inside the bi-cliques formed in iteration i is at most 12γǫ ·N2;
that is, ∣∣∣∣∣∣

⋃

(v,u)∈Fi

{(w1, w2) ∈ Γ′(v) × Γ′(u) : (w1, w2) 6∈ E}

∣∣∣∣∣∣
≤ 12γǫ ·N2.

2. The number of “superfluous” edges inside the bi-cliques formed in iteration i is at most
12γǫ ·N2; that is,

∣∣∣∣∣∣

⋃

(v,u)∈Fi

{(w1, w2) ∈ (Γ′(v)× Γ′(v)) ∪ (Γ′(u)× Γ′(u)) : (w1, w2) ∈ E}

∣∣∣∣∣∣
≤ 12γǫ ·N2.

3. The number of “superfluous” edges between bi-cliques formed in iteration i and either Ri or
other bi-cliques formed in the same iteration is at most 36ℓ · γǫ ·N2; actually,

∣∣∣∣∣∣

⋃

(v,u)∈Fi

{(w1, w2) ∈ C ′
v,u × (Ri−1 \ C ′

v,u) : (u,w) ∈ E}

∣∣∣∣∣∣
≤ 36ℓ · γǫ ·N2.

4. |Ri| ≤ 2−i ·N and |Li| ≤ 2−(i−1) ·N .

Thus, the total number of violations caused by the bi-cliques that are formed by the foregoing
procedure is upper-bounded by (36 + o(1))ℓ2 · γǫ ·N2 = o(ǫN2).

Proof: We prove all items simultaneously, by induction from i = 0 to i = ℓ. Needless to say, all
items hold vacuously for i = 0, and thus we focus on the induction step.

Starting with Item 1, we note that every (v, u) ∈ Fi is i-good and thus the number of edges
missing in Γ′(v)×Γ′(u) ⊆ Γ(v)×Γ(u) is at most γ2iǫ·|Γ(v, u)|·N . As in the proof of Claim 3.2.4, we
need to relate |Γ(v, u)| to |C ′

v,u∩Ri−1| (in order to upper-bound the contribution of all pairs in Fi).
We recall that C ′

v,u = Cv,u \C, where C is the set of vertices that are already covered when (v, u) is

43

added to Fi. Also recall that |Γ(v, u)\Cv,u| = o(1)·|Γ(v, u)| and |(Γ(v, u)\C)\L| ≥ |Γ(v, u)|/5, where

L
def
=

⋃
j∈[i−1]Lj. Using C ′

v,u = (C ′
v,u ∩Ri−1) ∪ (C ′

v,u ∩L), we get that C ′
v,u ∩Ri−1 = (Cv,u \C) \L

and it follows that |C ′
v,u ∩Ri−1| ≥ |(Γ(v, u) \C) \L| − o(|Γ(v, u)|) > |Γ(v, u)|/6. Combining all the

above (and recalling that the sets C ′
v,u are disjoint), we obtain

∣∣∣∣∣∣

⋃

(v,u)∈Fi

{(w1, w2) ∈ Γ′(v)× Γ′(u) : (w1, w2) 6∈ E}

∣∣∣∣∣∣
≤ γ2iǫ ·

∑

(v,u)∈Fi

|Γ(v, u)| ·N

≤ γ2iǫ · 6|Ri−1| ·N. (93)

Using the induction hypothesis regarding Ri−1 (i.e., |Ri−1| < 2−(i−1) ·N), Item 1 follows.
Item 2 is proved in a similar fashion. As for Item 3, we adapt the proof of Item 2 of Claim 3.2.4.

Specifically, the number of edges in Cv,u × ([N] \ Cv,u) is upper-bounded by the sum of |Cv,u ×
(Γ(v, u) \Cv,u)| and the number of edges in Cv,u× ([N] \ Γ(v, u)). Using Condition 3 of i-goodness
(of (v, u)), we upper-bound both |Γ(v, u)\Cv,u| and the number of edges of the second type. Hence,
the number of edges in C ′

v,u × (Ri−1 \ C ′
v,u) ⊆ Cv,u × ([N] \ Cv,u) is at most 3ℓ · γ2iǫ · |Γ(v, u)| ·N .

Using again
∑

(v,u)∈Fi
|Γ(v, u)| < 6|Ri−1| and |Ri−1| < 2−(i−1) ·N , we establish Item 3.

Turning to Item 4, we first note that Li ⊆ Ri−1 and thus |Li| ≤ |Ri−1| ≤ 2−(i−1) · N . As for
Ri, let us consider all the cases that might lead to placing a vertex v in Ri; that is, the various
violations of the three conditions in Step 1.

Violation of Condition (b): not having sufficiently high degree. We observe that vertices that violate
Condition (b) do not contribute to Ri, because each such vertex is either covered in iteration
i or ends-up in Li. Specifically, let v be an arbitrary vertex that violates Condition (b), and
let k(v) ∈ {0, 1, . . . , ℓ′} be the largest index k such that φk(v) holds (where φ0 is fictitiously
defined such that it always holds). Then, Condition (b) is equivalent to requiring that |Γ(v)| ≥
0.9k(v) · β1 · 2iǫ ·N holds. Indeed, if the latter condition does not hold, then v is placed in Li

(and the converse holds as well).

In the subsequent cases, we shall assume that Condition (b) holds with respect to the vertex
v.

Violation of Condition (a): not being i-good. Here we refer to vertices that are not i-good although
they have degree at least β2 · 2iǫ ·N > γ · 2iǫ ·N . By Claim 5.2.3, the number of vertices of
this type is at most 2−i ·N/4.

Violation of Condition (c). Here we refer to vertices that satisfy both Conditions (a) and (b) but
violate Condition (c), which refers to the existence of a good edge that yields a bi-clique
with sufficiently many new vertices. The rest of the proof is devoted to upper-bounding the
number of such vertices. Loosely speaking, this is done by using the upper bound established
in Item 3, while relying on the hypothesis that these vertices satisfy both Conditions (a)
and (b).

Recalling that we refer to vertices that satisfy both Conditions (a) and (b), we first upper-bound
the number of vertices that have relatively many neighbors in the current C, i.e., vertices v such
that |Γ(v) ∩ C| ≥ |Γ(v)|/8. As in the proof of Claim 3.2.4, each such vertex v requires at least

|Γ(v)|/8 ≥ β2 · 2iǫ ·N/8 edges from C ′ def
=

⋃
(v′,u′)∈

S
j∈[i] Fj

C ′
v′,u′ to it, whereas by Item 3 the total

44

number of edges going out from C ′ to Ri is at most i · 36ℓ · γǫ · N2 ≤ 36ℓ2 · γǫ · N2. Hence, the
number of vertices of this type is upper-bounded by

36ℓ2 · γǫ ·N2

β2 · 2iǫ ·N =
36ℓ2 · γ
β2

· 2−iN < 0.1 · 2−iN, (94)

where the last inequality uses γ < β2/(360ℓ
2).

In the rest of the proof we consider only vertices that have relatively few neighbors in the
current C (i.e., |Γ(v)∩C| ≤ |Γ(v)|/8). In particular, by the case hypothesis (i.e., v is i-good), there
exists u 6∈ C such that (v, u) is i-good (because the fraction of “non-good” pairs (v, u) is at most

0.2). Thus, we focus on the condition |(Γ(v, u) \C) \L| > |Γ(v, u)|/5, where L
def
=

⋃
j≤i−1 Lj and C

denotes the current set of covered vertices. We distinguish three cases with respect to the relation
between |Γ(v)| and |Γ(u)|. Actually, letting Uv denote the set of vertices u ∈ Γ(v) \ C such that
(v, u) is i-good, we consider three cases regarding the relations of |Γ(v)| and {|Γ(u)| : u ∈ Uv}.

Case 1: there exists u ∈ Uv such that |Γ(v)| > 1.3|Γ(u)|. We just pick an arbitrary such
u, and note that, using the case hypothesis (which implies |Γ(v)| > |Γ(v, u)|/2), it suffices to
show that |(Γ(v)\C)\L| > |Γ(v)|/2. Since |Γ(v)∩C| ≤ |Γ(v)|/8, we focus on upper-bounding
|Γ(v)∩L| for but a small number of vertices v (that fall under this case). The intuition is that
in the current case ¬φ1(v) holds, and so the fact that v 6∈ Li implies that |Γ(v)| ≥ β1 · 2iǫN .
On the other hand, each vertex in Γ(v)∩Lj has at most β2 ·2jǫN neighbors of degree at least
β1 · 2iǫN , which yields a total count of 2β2ǫN

2 edges in Lj × (Ri−1 \ Li). Thus, the number
of vertices v ∈ Ri−1 \ Li for which |Γ(v) ∩ L| > |Γ(v)|/8 holds is sufficiently small. Details
follow.

Using the hypothesis that (v, u) is i-good (and referring to Condition 2 of Definition 5.2.1),
we note that the number of edges with both endpoints in Γ(v) is at most γ ·2iǫ · |Γ(v, u)| ·N ≤
γ · 2i+1ǫ · |Γ(v)| ·N . Thus, less than a 1/(200ℓ) fraction of the vertices in Γ(v) have more than
200ℓ · γ · 2i+1ǫ ·N < β2 · 2iǫ ·N/100 ≤ |Γ(v)|/100 such edges, where the inequalities are due
to γ ≤ β2/40000ℓ and |Γ(v)| ≥ β2 · 2iǫ ·N (since v 6∈ Li). By Condition 3 of Definition 5.2.1,
at most a 1/(200ℓ) fraction of the vertices in Γ(v) have at least 200ℓ · γ · 2iǫ ·N < |Γ(v)|/100
edges going out of Γ(v, u). We conclude that less than a 1/(100ℓ) fraction of the vertices in
Γ(v) have degree exceeding |Γ(u)|+ 0.02|Γ(v)| < |Γ(v)|, and so ¬φ1(v) holds. The latter fact
allows us to increase our lower bound on |Γ(v)| (from |Γ(v)| ≥ β2 · 2iǫN) to |Γ(v)| ≥ β1 · 2iǫN
(using again v 6∈ Li). Thus, if |Γ(v)∩L| > |Γ(v)|/8 then there exist at least β1 · 2iǫN/8 edges
from L =

⋃
j≤i−1 Lj to v.

We upper-bound the number of such vertices v (i.e., for which |Γ(v) ∩ L| > |Γ(v)|/8), by
upper-bounding the number of edges that may go from L to any vertex of degree at least

β1 ·2iǫN . The contribution of each vertex in L
(2)
j to this number is at most β2 ·2jǫN , because

vertices in L
(2)
j have degree at most β2 · 2jǫN . As for the vertices in Lj \ L(2)

j , each such
vertex u′ violates φℓ′ and thus can contribute at most |Γ(u′)|/100ℓ to this number, because
at most a 1/(100ℓ) fraction of its neighbors have degree exceeding 1.2|Γ(u′)| < β1 · 2iǫN
(since |Γ(u′)| < β1 · 2jǫN and j ≤ i − 1), whereas we count edges to vertices of degree at
least β1 · 2iǫN . Thus, the contribution of each vertex in u′ ∈ Lj to the count is at most
max(β2 · 2jǫN, |Γ(u′)|/100ℓ) ≤ β1 · 2jǫN/100ℓ (since β2 ≤ β1/100ℓ and |Γ(u′)| < β1 · 2jǫN).
Recalling that |Lj| ≤ |Rj−1| ≤ 2−(j−1)N , it follows that the number of bad vertices (i.e.,

45

vertices v of degree at least β1 · 2iǫN with at least |Γ(v)|/8 neighbors in L) is at most

∑
j≤i−1 |Lj | · β1 · 2jǫ ·N/100ℓ

β1 · 2iǫN/8
≤ (i− 1) · β1 · 2ǫ ·N2/100ℓ

β1 · 2iǫN/8
(95)

< 0.16 · 2−iN, (96)

whereas the rest of the vertices v ∈ Ri−1 \ Li satisfy |Γ(v) ∩ L| ≤ |Γ(v)|/8. Recalling that
|Γ(v) ∩ C| ≤ |Γ(v)|/8, we conclude that |(Γ(v) \ C) \ L| > |Γ(v)|/2, and the claim follows;
that is, the current case is only responsible for 0.16 · 2−iN vertices violating Condition (c).

Case 2: for every u ∈ Uv it holds that |Γ(v)| < 0.7|Γ(u)|. We first show that for every
such u it holds that |Γ(u)∩L| ≤ |Γ(u)|/8, and later consider two subcases. In the first subcase
|Γ(u)∩C| ≤ |Γ(u)|/8 holds (for some relevant u), and so we obtain |(Γ(u)\C)\L| > |Γ(u)|/2
and use |Γ(u)| > |Γ(v, u)|/2 to conclude that v satisfies Condition (c). In the other subcase,
where |Γ(u) ∩ C| > |Γ(u)|/8 holds for all relevant u, we bound the number of vertices v for
which this may occur.

The proof that |Γ(u) ∩ L| ≤ |Γ(u)|/8 is supported by the intuition that almost all vertices in
Γ(u) have approximately the same degree as v and satisfy φℓ′ (since most of their neighbors
have degree approximately |Γ(u)| > (10/7)|Γ(v)|), which implies that they cannot be in L
(because vertices in L that satisfy φℓ′ have degree at most β2 · 2i−1ǫN , whereas v ∈ Ri−1 \Li

has degree at least β2 · 2iǫN). Details follow.

We start by showing that almost all vertices in Γ(u) satisfy φℓ′ . Analogously to the previous
case, at most a 0.01 fraction of the vertices in Γ(u) have more than 0.02 · |Γ(v)| neighbors
not in Γ(v). On the other hand, by using Condition 1 of Definition 5.2.1, at least a 0.99
fraction of the vertices in Γ(u) have at least 0.99 · |Γ(v)| neighbors in Γ(v), whereas at least
a 0.99 fraction of the vertices in Γ(v) have degree at least 0.99 · |Γ(u)|. Let us denote by
Y the subset of Γ(u) containing vertices v′ such that |Γ(v′)| ≤ 1.02 · |Γ(v)| and Γ(v′) ∩ Γ(v)
contains at least 0.98 · |Γ(v)| vertices of degree at least 0.99 · |Γ(u)|. Then, |Y | > 0.98|Γ(u)|,
because a 0.98 fraction of the vertices in Γ(u) have both degree at most 1.02 · |Γ(v)| and
at least 0.99 · |Γ(v)| neighbors in Γ(v) (whereas at most a 0.01 fraction of the vertices in
Γ(v) have degree smaller than 0.99 · |Γ(u)|). We note that each vertex in Y has degree at
most 1.02 · |Γ(v)| < 0.72 · |Γ(u)|, whereas at least a 0.98/1.02 fraction (which is significantly
greater than (100ℓ)−1) of its neighbors have degree at least 0.99 · |Γ(u)| > 1.2 · 0.72 · |Γ(u)|,
which implies that each vertex in Y satisfies φℓ′ . Using the latter fact and recalling that each
vertex in Y has degree at least 0.99 · |Γ(v)| ≥ 0.99 · β2 · 2iǫN (since v 6∈ Li), we show that
Y ∩ L = ∅. The latter claim follows by noting that for every v′ ∈ L that satisfies φℓ′ it holds
that |Γ(v′)| < β2 ·2i−1ǫN , whereas every v′ ∈ Y satisfies both φℓ′ and |Γ(v′)| > 0.99 ·β2 ·2iǫN .
Finally, using Y ∩ L = ∅ and |Y | ≥ 0.98|Γ(u)|, we get |Γ(u) ∩ L| ≤ |Γ(u) \ Y | ≤ 0.02|Γ(u)|.
Having established |Γ(u)∩L| ≤ |Γ(u)|/8, one may attempt to provide a similar upper bound
for |Γ(u) ∩ C|. However, unlike in the previous case (or rather in the preliminary proof that
Γ(v)∩C is small), here we cannot directly charge the vertices in Γ(u)∩C to edges going out
from C to v. Still, an indirect charging rule will work; that is, we first charge such vertices
to u, and then distribute the charge to u’s neighbors. This will yield an upper bound on the
number of vertices v for which there exists no u ∈ Uv such that |Γ(u) ∩ C| ≤ |Γ(u)|/8. In
light of the foregoing, we consider two subcases.

46

1. The easy subcase is the one where there exists u ∈ Uv such that |Γ(u) ∩ C| ≤ |Γ(u)|/8
(and |Γ(u)| > |Γ(v)|/0.7, by the case hypothesis). In this subcase, we conclude that v
satisfies Condition (c), since

|(Γ(v, u) \ C) \ L| > |Γ(u)|/2 > |Γ(v, u)|/2 .

That is, this subcase does not contribute any vertices that violate Condition (c).

2. The other subcase refers to the case that for every u ∈ Uv it holds that |Γ(u) ∩ C| >
|Γ(u)|/8. This means that there are at least |Γ(u)|/8 edges going out from C to u.
Wishing to charge these edges to the initial vertex v (while considering all initial v ∈
Ri−1 \ Li), we charge each neighbor of u by one eighth of an edge (i.e., 1/8 unit) as its
share in the total number of edges going from C to u. That is, these |Γ(u) ∩ C| edges
generate a charging of |Γ(u)|/8 units, which is distributed equally among all vertices in
Γ(u). (No overcharging occurs since |Γ(u) ∩ C| > |Γ(u)|/8.)
(Indeed, an important observation is that we are not concerned with the existence of a
specific u ∈ Uv that violates |Γ(u) ∩C| ≤ |Γ(u)|/8, but should be concerned only if this
violation occurs for all u ∈ Uv (such that |Γ(u)| > |Γ(v)|/0.7), since otherwise we are
done by the first subcase. Thus, we get into trouble with v only if, for every u ∈ Uv

both |Γ(u)| > |Γ(v)|/0.7 and |Γ(u) ∩ C| > |Γ(u)|/8 holds.)9

Let us denote the set of such bad (initial) vertices by B; that is, v ∈ B if for every
u ∈ Uv both |Γ(u)| > |Γ(v)|/0.7 and |Γ(u) ∩ C| > |Γ(u)|/8 holds. Note that each vertex
v ∈ B is charged with at least (|Γ(v)|/2) · (1/8) > β2 · 2iǫN/16 (units that account for)
edges going from C to Γ(v), where |Γ(v)|/2 is a lower bound on the number of vertices
u ∈ Γ(v) such that u 6∈ C and (v, u) is i-good.10 Since the total number of edges going
out from C is at most 36ℓ2 · γǫ ·N2, we upper-bound |B| by 0.1 · 2−iN (as in Eq. (94),
except that here we use γ < β2/(6000ℓ

2)).11

To re-cap, note that we showed that the current case is only responsible for 0.1 ·2−iN vertices
that violate Condition (c).

Case 3: there exists u ∈ Uv such that 0.7|Γ(u)| ≤ |Γ(v)| ≤ 1.3|Γ(u)|. In addition, we as-
sume here that Case 1 does not hold. We first note that the analysis of |Γ(u) ∩ C| (for all
u ∈ Uv) as presented in Case 2 still holds. Thus, for all but 0.1 · 2−iN vertices v, there exists
a vertex u such that for every u ∈ Uv it holds that |Γ(u) ∩ C| ≤ |Γ(u)|/8. These vertices
will contribute to violation of Condition (c), but we shall show that all other vertices satisfy
Condition (c).

Thus, we consider any arbitrary v such that there there exists a vertex u ∈ Uv that satisfies
|Γ(u) ∩ C| ≤ |Γ(u)|/8 (and |Γ(v)| ≤ 1.3|Γ(u)|). We shall show, below, that |Γ(u) ∩ L| ≤
|Γ(u)|/8, and conclude that |(Γ(u) \ C) \ L| ≥ |Γ(u)|/2, which in turn is lower-bounded by
|Γ(v, u)|/5 (since |Γ(u)| ≥ |Γ(v, u)|/2.3, which follows from |Γ(v)| ≤ 1.3|Γ(u)|).

9Again, these conditions are guaranteed by the case and subcase hypotheses.
10Recall that the fraction of vertices u ∈ Γ(v) such that u ∈ C is at most 1/8, whereas the fraction of vertices

u ∈ Γ(v) such that (v, u) is not i-good is at most 0.2 < 3/8.
11Specifically, here we have

36ℓ2 · γǫ ·N2

β2 · 2iǫ ·N/16
=

576ℓ2 · γ

β2
· 2−iN < 0.1 · 2−iN,

where the last inequality uses γ < β2/(6000ℓ
2).

47

The claim |Γ(u)∩L| ≤ |Γ(u)|/8 is supported by the intuition that almost all vertices in Γ(u)
have approximately the same degree as v. However, in the current case these vertices do
not necessarily satisfy φℓ′ and so their being in L does not necessarily mean their having
degree below β2 · 2i−1ǫN , which is significantly smaller than |Γ(v)| ≥ β2 · 2iǫN . So we need a
different method to argue that being in L is inconsistent with having degree approximately
|Γ(v)|. Indeed, the source of trouble is that for two different thresholds β′ > β′′ it may
be the case that v 6∈ Li holds because |Γ(v)| ≥ β′′ · 2iǫN , whereas v′ ∈ Lj holds because
|Γ(v′)| < β′ · 2jǫN . Here is where the intermediate thresholds (and the different φk) come
into play: we shall show that whenever the foregoing happens it holds that β′ is very close to
β′′ (rather than β′ > 2β′′, which would have not given anything). Specifically, we shall show
that if φk(v) holds then φk−1(v

′) must hold for almost all v′ ∈ Γ(u). Thus, if v 6∈ Li due to
|Γ(v)| ≥ 0.9kβ1 · 2iǫN (and φk(v) holds), then v′ ∈ Lj implies that |Γ(v′)| < 0.9k−1β1 · 2jǫN ,
which yields the desired contradiction. Details follow.

Using arguments as in the previous two cases, we first establish that at least a 0.99 fraction
of the vertices in Γ(u) have degree at most (1+ ℓ−2) · |Γ(v)| and have at least (1− ℓ−2) · |Γ(v)|
neighbors in Γ(v). (Here the argument relies on γ ≤ β2/(500ℓ

2) and |Γ(u)| ≥ |Γ(v)|/1.3 ≥
β2 ·2iǫN/1.3.) Let us denote this (large) subset of Γ(u) by Y , and note that v ∈ Y . Similarly,
one can show that at least 1 − (200ℓ)−1 of the vertices in Γ(v) have degrees in the interval
[(1− (300ℓ′)−1) · |Γ(u)|, (1 + (300ℓ′)−1) · |Γ(u)|], which we denote in short by [(1± (300ℓ′)−1) ·
|Γ(u)|]. Hence, for every v′ ∈ Y , it holds that |Γ(v′)| is in the interval (1± (300ℓ′)−1) · |Γ(v)|,
whereas at least 1−(200ℓ)−1

1+ℓ−2 > 1 − (100ℓ)−1 of its neighbors (i.e., the vertices in Γ(v′)) have

degrees in the interval [(1 ± (300ℓ′)−1) · |Γ(u)|]. Denoting (for every v′ ∈ Y),

ρ(v′)
def
= max

S⊆Γ(v′) s.t. |S|=|Γ(v′)|/100ℓ

{
min
u′∈S

{ |Γ(u′)|
|Γ(v′)|

}}
(97)

we infer that for every v′ ∈ Y (including v) it holds that ρ(v′) = (1±(300ℓ′)−1)·|Γ(u)|
(1±(300ℓ′)−1)·|Γ(v)|

= (1 ±
(100ℓ′)−1) · |Γ(u)|

|Γ(v)| . It follows that ρ(v′) ≥ 1−(100ℓ′)−1

1+(100ℓ′)−1 · ρ(v) > (1− (30ℓ′)−1) · ρ(v).
Recall that k(v′) ∈ {0, 1, . . . , ℓ′} is the largest index k such that φk(v

′) holds (where φ0

always holds). Indeed, ρ(v) > 1.1 + k(v)
10ℓ′ and |Γ(v)| ≥ 0.9k(v) · β1 · 2iǫ · N (because v 6∈ Li).

Combining ρ(v′) > (1 − (30ℓ′)−1) · ρ(v) and ρ(v) > 1.1 + k(v)
10ℓ′ , it follows that for every

v′ ∈ Y it holds that ρ(v′) > 1.1 + k(v)−1
10ℓ′ , which implies k(v′) ≥ k(v) − 1. It follows that

Y ∩ L = ∅, because otherwise we obtain, for some j ≤ i − 1, a vertex v′ ∈ Y ∩ Lj such
that |Γ(v′)| < 0.9k(v′) · β1 · 2jǫ ·N ≤ 0.9k(v)−1 · β1 · 2i−1ǫ ·N ≤ |Γ(v)|/1.8, which contradicts
|Γ(v′)| ≥ (1 − (300ℓ′)−1) · |Γ(v)| > Γ(v)|/1.8. Recalling that |Y | ≥ 0.99 · |Γ(u)|, we conclude
that |Γ(u) ∩ L| ≤ 0.01|Γ(u)|.

Combining the preliminary bound (of Eq. (94)) and the bounds of the foregoing three cases, we
conclude that at most (0.1 + 0.16 + 0.1 + 0.1) · 2−iN < 0.5 · 2−iN vertices satisfy Conditions (a)
and (b) but violate Condition (c).

Recall that Ri only contains vertices that satisfy Condition (b) but violate either Condition (a)
or Condition (c). The number of the former was upper-bounded by 2−iN/4, whereas the number
of the latter was just upper-bounded by 0.5 · 2−iN . Thus, |Ri| ≤ (0.25 + 0.5) · 2−i ·N , and Item 4
follows. This completes the proof of the current claim.

48

Completing the reconstruction and its analysis. The foregoing construction leaves “unassigned” the
vertices in Rℓ as well as some of the vertices in L1, . . . , Lℓ. (Note that some vertices in

⋃ℓ−1
i=1 Li may

be placed in bi-cliques constructed in later iterations, but there is no guarantee that this actually
happens.) We assign each of these remaining vertices to a two-vertex bi-clique (i.e., an isolated pair
of vertices connected by an edge). Ignoring the number of edges used in these bi-cliques (which is
negligible), the number of violations caused by this assignment equals the number of edges with

both endpoints in R′ def
= Rℓ ∪ (

⋃ℓ
i=1 Li), because edges with a single endpoint in R′ were already

accounted for in Item 3 of Claim 5.2.4. Nevertheless, we upper-bound the number of violations by
the total number of edges incident to R′, which in turn is upper-bounded by

∑

v∈Rℓ∪(
S

i∈[ℓ] Li)

|Γ(v)| ≤ |Rℓ| ·N +

ℓ∑

i=1

∑

v∈Li

|Γ(v)| (98)

≤ ǫN

4
·N +

ℓ∑

i=1

2−(i−1)N · β12
iǫN (99)

=
ǫ

4
·N2 + 2ℓ · β1 · ǫN2. (100)

By the foregoing setting of β1 (i.e., β1 ≤ 1/4ℓ), it follows that the number of these edges is smaller
than ǫN2/2. Combining this with the bounds on the number of violating edges (or non-edges) as
provided by Claim 5.2.4, the lemma follows.

5.2 Non-Adaptive Lower-Bound for Bi-Clique Collection

In this section we establish Part 2 of Theorem 1.2 by adapting the proof presented in Section 4.1.
Specifically, for every value of ǫ > 0, we consider two different classes of graphs, one consisting
of graphs in BCC and the other consisting of graphs that are ǫ-far from BCC, and show that a
non-adaptive algorithm of query complexity o(ǫ−3/2) cannot distinguish between graphs selected
at random in these classes.

5.2.1 The two sets

The first class, denoted BCCǫ, contains all N -vertex graphs such that each graph consists of (16ǫ)−1

bi-cliques, and each bi-clique has 8ǫ · N vertices on each side. It will be instructive to partition
these (16ǫ)−1 bi-cliques into (32ǫ)−1 pairs (each consisting of two bi-cliques), and view each of these
bi-cliques as a super-cycle of length four with 4ǫ · N vertices in each of its four independent sets.
The second class, denoted SC8Cǫ, contains all N -vertex graphs such that each graph consists of
(32ǫ)−1 super-cycles of length 8, and each of these super-cycles has 4ǫ · N vertices in each of its
eight independent sets. For an illustration, see Figure 8. Indeed, BCCǫ ⊆ BCC, whereas, as we show
next, each graph in SC8Cǫ is ǫ-far from BCC. Note that both classes contain only bipartite graphs.

Claim 5.3 Every graph in SC8Cǫ is ǫ-far from BCC.

Proof: Let G = ([N], E) be a graph in SC8Cǫ, let (V 1
j , . . . , V

8
j) be the eights sets of vertices in

its jth super-cycle, and let Vj =
⋃8

s=1 V
s
j . For any partition P = ((X1

1 ,X
2
1) . . . , (X1

ℓ ,X
2
ℓ)) into

49

“potential bicliques”, we let ∆G(P) denote the number of edge modifications that are required in
order to convert the pairs of sets (X1

i ,X
2
i), . . . , (X1

ℓ ,X
2
ℓ) into a collection of bicliques (with no edges

between the bicliques). Then,

∆G(P) =

ℓ∑

i=1

(
|E(X1

i ,X
1
i)|+ |E(X2

i ,X
2
i)|+ |E(X1

i ,X
2
i)|

)
+

∑

i<i′

|E(Xi,Xi′)| , (101)

where Xi = X1
i ∪X2

i and E(X1
i ,X

2
i) denotes the set of pairs of vertices in X1

i ×X2
i that do not

have an edge between them. Thus, the distance between G and BCC is N−2 times the minimum,
taken over all partitions P, of ∆G(P). We need to show that ∆G(P) > ǫN2, for every partition P.

Similarly to the proof of Claim 4.1, we first observe that, without loss of generality, we may
assume that each set Xi intersects at most one Vj . This is true since otherwise, by refining the
partition (i.e., replacing each (X1

i ,X
2
i) with the collection of all nonempty (X1

i ∩ Vj,X
2
i ∩ Vj)), the

value of ∆G(·) can only decrease (because there are no edges between the different Vj’s).
Our next observation is that we may assume, without loss of generality, that each V s

j intersects

at most one Xi (i.e., one pair (X1
i ,X

2
i)). This is true because (for every j ∈ [(32ǫ)−1], s ∈ [8],

i ∈ [ℓ], and b ∈ {1, 2}) the contribution of each vertex v ∈ V s
j ∩Xb

i to Eq. (101) comes only from

pairs (v, u) such that either u 6∈ V s
j or u ∈ V s

j ∩ X3−b
i . In particular, this contribution does not

depend on |V s
j ∩Xb

i | nor on |V s
j ∩Xb′

i′ | for any i 6= i′ and b, b′ ∈ {1, 2}. Therefore, if V s
j contains

vertices of both Xb
i and Xb′

i′ for some i 6= i′ and b, b′ ∈ {1, 2}, then it is possible to either move
all V s

j ∩ Xb′

i′ to V s
j ∩ Xb

i or the other way around without increasing ∆G(P) (and possibly even
decreasing it).

Having concluded that each V s
j is contained in some Xi, we observe that either X1

i ∩ V s
j = ∅

or X2
i ∩ V s

j = ∅. This holds because, using the same reasoning as above, if both V s
j ∩X1

i 6= ∅ and

V s
j ∩X2

i 6= ∅ then by combining both sets into either V s
j ∩X1

i or V s
j ∩X2

i we only decrease ∆G(P).

We have shown that, for every i ∈ [ℓ] and b ∈ {1, 2}, there exists j ∈ [(32ǫ)−1] and S ⊆ [8] such
that Xb

i =
⋃

s∈S V
s
j . Thus, we may think of assigning pairs of the form (i, b) to the eight slots on

the cycle (i.e., V 1
j , ..., V

8
j), and we note that assigning (i, b) and (i′, b′) to (cyclically) adjacent slots

incurs a cost of K2 if and only if (i′, b′) 6= (i, 3 − b). In addition, assigning (i, b) and (i, 3 − b) to
non-adjacent slots also incurs a cost of K2. Noting that it is impossible to assign these pairs at
a cost of less than 3K2, it follows that the assignment to each V j contributed to ∆G(P) at least
3K2 = 48ǫ2N2 violating vertex pairs. Combining the contribution of all j ∈ [(32ǫ)−1], the claim
follows.

5.2.2 The indistinguishability result

In order to motivate the claim that a non-adaptive algorithm of query complexity o(ǫ−3/2) cannot
distinguish between graphs selected at random in these classes, consider the algorithm that selects
o(ǫ−3/4) vertices and inspects the induced subgraph. Consider the partition of a graph in SC8Cǫ
into (32ǫ)−1 pairs of bi-cliques (equiv., super-cycles of length 4), and correspondingly the partition
of a graph in SC8Cǫ into (32ǫ)−1 super-cycles of length 8. Then, the probability that a sample of
o(ǫ−3/4) vertices contains at least four vertices that reside in the same part (of 32ǫ · N vertices)
is o(ǫ−3/4)4 · (32ǫ)3 = o(1). On the other hand, one may show that if this event does not occur,
then the answers obtained from both graphs are indistinguishable. As will be shown below, this
intuition extends to an arbitrary non-adaptive algorithm.

50

As in Section 4.1, it suffices to consider deterministic algorithms. We shall show that, for every
set of o(ǫ−3/2) queries, the answers provided by a randomly selected element of BCCǫ are statistically
close to the answers provided by a randomly selected element of SC8Cǫ. As in Section 4.1, for an
N -vertex graph G and a query (u, v), we denote the corresponding answer by ansG(u, v).

Lemma 5.4 Let G1 and G2 be random N -vertex graphs uniformly distributed in BCCǫ

and SC8Cǫ, respectively. Then, for every sequence (v1, v2), . . . , (v2q−1, v2q) ∈ [N] × [N],
where the vi’s are not necessarily distinct, it holds that the statistical difference between
ansG1(v1, v2), . . . , ansG1(v2q−1, v2q) and ansG2(v1, v2), . . . , ansG2(v2q−1, v2q) is O(q2ǫ3).

Part 2 of Theorem 1.2 follows.

Proof: We adapt the proof of Lemma 4.2. Here, we consider a 1-1 correspondence, denoted φ,
between the vertices of an N -vertex graph in BCCǫ ∪SC8Cǫ and triples in [(32ǫ)−1]×{0, 1, . . . , 7}×
[4ǫ ·N]. Specifically, φ(v) = (i, j, w) indicates that v resides in the (j + 1)st independent set of the
ith part of the graph, and it is vertex number w in this set. Recall that in the case of a graph
in BCCǫ the eight independent sets are arranged in two super-cycles (each of length 4), whereas
in the case of a graph in SC8Cǫ the eight independent sets are arranged in a single super-cycle of
length 8. (See Figure 8.) Consequently, the answers provided by uniformly distributed G1 ∈ BCCǫ

and G2 ∈ SC8Cǫ can be emulated by the following two corresponding random processes.

1. The process A1 selects uniformly a bijection φ : [N] → [(32ǫ)−1] × {0, 1, . . . , 7} × [4ǫ · N]
and answers each query (u, v) ∈ [N] × [N] by 1 if and only if for φ(u) = (i1, j1, w1) and
φ(v) = (i2, j2, w2) it holds that both i1 = i2 and j1 = (j2 ± 1 mod 4) + ⌊j2/4⌋ · 4.

2. The process A2 selects uniformly a bijection φ : [N] → [(32ǫ)−1] × {0, 1, . . . , 7} × [4ǫ · N]
and answers each query (u, v) ∈ [N] × [N] by 1 if and only if for φ(u) = (i1, j1, w1) and
φ(v) = (i2, j2, w2) it holds that both i1 = i2 and j1 = j2 ± 1 mod 8.

Let us denote by φ′(v) (resp., φ′′(v) and φ′′′(v)) the first (resp., second and third) coordinates of
φ(v); that is, φ(v) = (φ′(v), φ′′(v), φ′′′(v)). Then, both processes answer the query (u, v) with 0 if
φ′(u) 6= φ′(v), and the difference between the processes is confined to the case that φ′(u) = φ′(v).
Specifically, conditioned on φ′(u) = φ′(v), it holds that A1(u, v) = 1 if and only if φ′′(u) = (φ′′(v)±
1 mod 4)+⌊φ′′(v)/4⌋·4, whereas A2(u, v) = 1 if and only if φ′′(u) = φ′′(v)±1 mod 8. However, since
the (random) value of φ′′ is not present at the answer, the foregoing difference may go unnoticed.
These considerations apply to a single query, but things may change in case of several queries. In
general, the event that allows distinguishing the two processes is a simple cycle of at least four
vertices that have the same φ′ value. Minor differences may also be due to equal φ′′′ values, and so
we also consider these in our “bad” event.

Definition 5.4.1 We say that φ is bad (w.r.t. the sequence (v1, v2), . . . , (v2q−1, v2q) ∈ [N]× [N]),
if any of the following two conditions hold:

1. For some i ∈ [(32ǫ)−1], the subgraph Qi = (Vi, Ei), where Vi = {vk : k∈ [2q] ∧ φ′(v)= i} and
Ei = {{v2k−1, v2k} : v2k−1, v2k ∈ Vi}, contains a simple cycle of length at least four.

2. There exists i 6= j ∈ [2q] such that φ′′′(vi) = φ′′′(vj).

51

Indeed, the query sequence (v1, v2), . . . , (v2q−1, v2q) will be fixed throughout the rest of the proof,
and so we shall omit it from our terminology.

Claim 5.4.2 The probability that a uniformly distributed bijection φ is bad is upper bounded by

O(q2ǫ3) +
q2

16ǫN
.

Proof: We start by upper-bounding the probability that the second event in Definition 5.4.1 holds.
We have

(2q
2

)
sub-events, and each holds with probability 1/(32ǫ · N). As for the first event, for

every t ≥ 4, we upper-bound the probability that some Qi contains a simple cycle of length t. As in
the proof of Claim 4.2.2, we observe that the query graph contains at most (2q)t/2 cycles of length
t (cf. [A81, Thm. 3]), whereas the probability that a specific simple t-cycle is contained in some Qi

is (32ǫ)t−1. Thus, the probability of the first event is upper-bounded by

∑

t≥4

(2q)t/2 · (32ǫ)t−1 <
∑

t≥4

(√
2q · 32 · ǫ(t−1)/t

)t
<

∑

t≥4

(
50
√
q · ǫ3/4

)t
,

which is upper-bounded by 2 · (50√q · ǫ3/4)4 = O(q2ǫ3), provided that 50
√
q · ǫ3/4 < 1/2 (and the

claim holds trivially otherwise).

Claim 5.4.3 Conditioned on the bijection φ not being bad, the sequences
(A1(v1, v2), . . . , A1(v2q−1, v2q)) and (A2(v1, v2), . . . , A2(v2q−1, v2q)) are identically distributed.

Proof: Noting that Definition 5.4.1 only refers to φ′ and φ′′′, we fix any choice of φ′ and φ′′′ that
yields a good φ and consider the residual random choice of φ′′. Referring to the foregoing subgraphs
Qi’s, recall that pairs with endpoints in different Qi’s are answered by 0 in both processes. Note
that (by the second condition in Definition 5.4.1) the hypothesis implies that φ′′′ assigns different
values to the different vertices in {vk : k ∈ [2q]}, and it follows that φ′′ assigns these vertices values
that are uniformly and independently distributed in {0, 1, . . . , 7}. Now, using the first condition
in Definition 5.4.1, the hypothesis implies that the only simple cycles appearing in Qi = (Vi, Ei)
have length three. We shall show that this implies that (in each of the two processes) the answer
assigned to each edge in Qi is independent of the answer given to other edges of Qi.

We first note that, in each of the two processes, every query (v2k−1, v2k) such that φ′′(v2k−1) ≡
φ′′(v2k−1) (mod 2) is answered negatively (i.e., in such a case, A1(v2k−1, v2k) = A2(v2k−1, v2k) =
0). Thus, fixing any (random) values of (φ′′(vk) mod 2 : k∈ [2q]), we may omit from Qi = (Vi, Ei)
all edges that connect vertices that have the same value of φ′′ (mod 2), because the answers to
these queries are already determined (as 0, in each of the two processes). This omission eliminates
(from Qi) all cycles of length three, which are the only simple cycles in the original Qi, and thus
each modified Qi is a forest. We can now proceed analogously to the proof of Claim 4.2.3, although
things are slightly more complex here. Specifically, we consider the residual random values of φ′′

(conditioned on φ′′ mod 2); that is, we augments the fixed values of φ′′ mod 2 with the random
values of ⌊φ′′/2⌋, which are uniformly distributed in {0, 1, 2, 3}. We view these random selections
as taking place in an order determined by some fixed traversal of each tree (of the aforementioned
forest), and note that at each step (and in each of the processes) the new random value (uniformly
distributed in {0, 1, 2, 3}) yields answer 1 (to the corresponding query) with probability 1/2.

52

1. In the case of A1, the query/edge (u, v) ∈ Ei (which satisfies φ′(u) = i = φ′(v) and φ′′(u) ≡
φ′′(v) + 1 (mod 2)) is answered 1 if and only if φ′′(u) = (φ′′(v) ± 1 mod 4) + ⌊φ′′(v)/4⌋ · 4
holds (which means that ⌊φ′′(u)/4⌋ = ⌊φ′′(v)/4⌋). Thus, A1(u, v) = 1 with probability 1/2.

2. In the case of A2, the query/edge (u, v) ∈ Ei (which satisfies φ′(u) = i = φ′(v) and φ′′(u) ≡
φ′′(v) + 1 (mod 2)) is answered 1 if and only if φ′′(u) = φ′′(v) ± 1 mod 8 holds. Thus,
A2(u, v) = 1 with probability 2/4.

Thus, in each of the two processes, each query is answered by the value 1 with probability ex-
actly 1/2, independently of the answers to all other queries. The claim follows.

Combining Claims 5.4.2 and 5.4.3, it follows that the statistical distance between the sequences
(A1(v1, v2), . . . , A1(v2q−1, v2q)) and (A2(v1, v2), . . . , A2(v2q−1, v2q)) is at most O(q2ǫ3 + q2(ǫN)−1),
and the lemma follows for sufficiently large N .

5.3 Non-Adaptive Lower-Bound for Super-Cycle Collection

In this section we establish a lower bound on the non-adaptive query complexity of testing Super-
Cycle Collections. We do so by generalizing the ideas presented in Section 5.2.

Specifically, fixing any t ≥ 4, for every value of ǫ > 0, we consider two different classes of graphs,
one consisting of graphs in SCtC and the other consisting of graphs that are ǫ-far from SCtC, and
show that a non-adaptive algorithm of query complexity o(ǫ−(2t−2)/t) cannot distinguish between
graphs selected at random in these classes.

5.3.1 The two sets

The first class, denoted SCtCǫ, contains all N -vertex graphs such that each graph consists of (t2ǫ)−1

super-cycles of length t, and each super-cycle has tǫ ·N vertices in each of its t independent sets.
It will be instructive to partition these (t2ǫ)−1 super-cycles into (2t2ǫ)−1 pairs. The second class,
denoted SC2tCǫ, contains all N -vertex graphs such that each graph consists of (2t2ǫ)−1 super-cycles
of length 2t, and each super-cycle has tǫ · N vertices in each of its 2t independent sets. For an
illustration, see Figure 9. Indeed, SCtCǫ ⊆ SCtC, whereas, as we show next, each graph in SC2tCǫ is
ǫ-far from SCtC.

Claim 5.5 Every graph in SC2tCǫ is ǫ-far from SCtC.

Proof: Let G = ([N], E) be a graph in SC2tCǫ, let (V 1
j , . . . , V

2t
j) be the 2t sets of vertices in its

jth super-cycle, and let Vj =
⋃2t

s=1 V
s
j . For any partition P = ((X1

1 , ...,X
t
1) . . . , (X

1
ℓ , ...,X

t
ℓ)) into

“potential t-super-cycles”, we let ∆G(P) denote the number of edge modifications that are required
in order to convert P into a collection of t-super-cycles (with no edges between the t-super-cycles).

Similarly to the proof of Claim 5.3, we observe that, without loss of generality, we may assume
that (1) each set Xi =

⋃
r X

r
i intersects at most one Vj, and (2) each V s

j intersects at most one Xi.
Furthermore, we may also assume, without loss of generality, that each V s

j intersects at most one

Xb
i (but in this case the argument does not necessarily decrease ∆G(P), although it never increases

it).
Thus, for every i ∈ [ℓ] and b ∈ {1, ..., t}, there exists j ∈ [(2t2ǫ)−1] and S ⊆ [2t] such that

Xb
i =

⋃
s∈S V

s
j . Now, we may think of assigning pairs of the form (i, b) to the 2t slots on the cycle

(i.e., V 1
j , ..., V

2t
j), and we note that assigning (i, b) and (i′, b′) to (cyclically) adjacent slots incurs a

53

cost of K2 if and only if (i′, b′) 6∈ {(i, b−1), (i, b+1)}, where K
def
= tǫN and addition is modulo t. In

addition, assigning (i, b) and (i, b± 1) to non-adjacent slots also incurs a cost of K2. Note that it is
impossible to assign these pairs at a cost of less than 3K2, because such an assignment mandates
having at most two adjacent pairs that are assigned different values of i, whereas a consecutive
run of t values of any i contains either an adjacent pair that does not have the form (i, b) and
(i, b ± 1) or a non-adjacent pair of (i, b) and (i, b ± 1). It follows that the assignment to each V j

contributed to ∆G(P) at least 3K2 = 3t2ǫ2N2 violating vertex pairs. Combining the contribution
of all j ∈ [(2t2ǫ)−1], the claim follows.

5.3.2 The indistinguishability result

As in Section 5.2, we motivate the claim that a non-adaptive algorithm of query complexity
o(ǫ−(2t−2)/t) cannot distinguish between graphs selected at random in these classes by consider-
ing a specific algorithm that inspects the subgraph induced by a random set of o(ǫ−(t−1)/t) vertices.
The probability that a sample of o(ǫ−(t−1)/t) vertices contains at least t vertices that reside in the

same part (of (2t2ǫ) · N vertices) is
(o(ǫ−(t−1)/t)

t

)
· (2t2ǫ)t−1 = o(1), where the o-notation refers to

a fixed value of t and a varying value of ǫ > 0. On the other hand, one may show that if this
event does not occur, then the answers obtained from both graphs are indistinguishable. As will
be shown below, this intuition extends to an arbitrary non-adaptive algorithm. Following the same
conventions as in Section 5.2, it suffices to prove the following

Lemma 5.6 (Lemma 5.4, generalized): For every fixed t ≥ 4, let G1 and G2 be ran-
dom N -vertex graphs uniformly distributed in SCtCǫ and SC2tCǫ, respectively. Then, for ev-
ery sequence (v1, v2), . . . , (v2q−1, v2q) ∈ [N] × [N], where the vi’s are not necessarily dis-
tinct, it holds that the statistical difference between ansG1(v1, v2), . . . , ansG1(v2q−1, v2q) and
ansG2(v1, v2), . . . , ansG2(v2q−1, v2q) is O(qt/2ǫt−1).

Part 2 of Conjecture 1.3 follows. Indeed, Lemma 5.4 can be obtained as a special case of Lemma 5.6
by setting t = 4. The following proof is slightly different from the proof provided in Section 5.2.

Proof: We generalize the proof of Lemma 5.4. We consider a bijection, denoted φ, between the
vertices of an N -vertex graph in SCtCǫ∪SC2tCǫ and triples in [(2t2ǫ)−1]×{0, 1, . . . , 2t−1}× [tǫ ·N].
Specifically, φ(v) = (i, j, w) indicates that v resides in the (j+1)st independent set of the ith part of
the graph, and that it is vertex number w in this set. Recall that in the case of a graph in SCtCǫ the
2t independent sets in each part are arranged in two super-cycles (each of length t), whereas in the
case of a graph in SC2tCǫ the 2t independent sets are arranged in a single super-cycle of length 2t.
Consequently, the answers provided by uniformly distributed G1 ∈ SCtCǫ and G2 ∈ SC2tCǫ can be
emulated by the following two corresponding random processes.

1. The process A1 selects uniformly a bijection φ : [N]→ [(2t2ǫ)−1]×{0, 1, . . . , 2t− 1}× [tǫ ·N]
and answers each query (u, v) ∈ [N] × [N] by 1 if and only if for φ(u) = (i1, j1, w1) and
φ(v) = (i2, j2, w2) it holds that both i1 = i2 and j1 = (j2 ± 1 mod t) + ⌊j2/t⌋ · t.

2. The process A2 selects uniformly a bijection φ : [N]→ [(2t2ǫ)−1]×{0, 1, . . . , 2t− 1}× [tǫ ·N]
and answers each query (u, v) ∈ [N] × [N] by 1 if and only if for φ(u) = (i1, j1, w1) and
φ(v) = (i2, j2, w2) it holds that both i1 = i2 and j1 = j2 ± 1 mod 2t.

54

Again, let us denote by φ′(v) (resp., φ′′(v) and φ′′′(v)) the first (resp., second and third) coordinates
of φ(v); that is, φ(v) = (φ′(v), φ′′(v), φ′′′(v)). Then, both processes answer the query (u, v) with 0
if φ′(u) 6= φ′(v), and the difference between the processes is confined to the case that φ′(u) = φ′(v).
Specifically, conditioned on φ′(u) = φ′(v), it holds that A1(u, v) = 1 if and only if φ′′(u) = (φ′′(v)±
1 mod t) + ⌊φ′′(v)/t⌋ · t, whereas A2(u, v) = 1 if and only if φ′′(u) = φ′′(v) ± 1 mod 2t. In general,
the event that allows distinguishing the two processes is a simple cycle of at least t vertices that
have the same φ′ value. Minor differences may also be due to equal φ′′′ values, and so we also
consider these in our “bad” event.

Definition 5.6.1 (Definition 5.4.1, generalized): We say that φ is bad (w.r.t. the sequence of
queries (v1, v2), . . . , (v2q−1, v2q) ∈ [N]× [N]), if any of the following two conditions hold:

1. For some i ∈ [(2t2ǫ)−1], the subgraph Qi = (Vi, Ei), where Vi = {vk : k∈ [2q] ∧ φ′(v)= i} and
Ei = {{v2k−1, v2k} : v2k−1, v2k ∈ Vi}, contains a simple cycle of length at least t.

2. There exists i 6= j ∈ [2q] such that φ′′′(vi) = φ′′′(vj).

The query sequence (v1, v2), . . . , (v2q−1, v2q) will be fixed throughout the rest of the proof, and so
we shall omit it from our terminology.

Claim 5.6.2 (Claim 5.4.2, generalized): The probability that a uniformly distributed bijection φ is
bad is upper bounded by

(3t)2t · qt/2 · ǫt−1 +
q2

t2ǫN
.

Proof: We start by upper-bounding the probability that the second event in Definition 5.6.1 holds.
We have

(2q
2

)
sub-events, and each holds with probability 1/(2t2ǫ · N). As for the first event, for

every ℓ ≥ t, we upper-bound the probability that some Qi contains a simple cycle of length ℓ by
(2q)ℓ/2 · (2t2ǫ)ℓ−1 (once again using the fact that a subgraph with 2q edges contains at most (2q)ℓ/2

cycles of length ℓ (cf. [A81, Thm. 3])). Thus, the probability of the first event is upper-bounded by

∑

ℓ≥t

(2q)ℓ/2 · (2t2ǫ)ℓ−1 <
∑

ℓ≥t

(
3t2
√
q · ǫ(t−1)/t

)ℓ
.

If 3t2
√
q · ǫ(t−1)/t < 1/2, then this expression is upper bounded by 2 · (3t2√q · ǫ(t−1)/t)t ≤ (3t)2t ·

qt/2 · ǫt−1. But if 3t2
√
q · ǫ(t−1)/t ≥ 1/2, so that qt/2 ≥ 6−t · t−2t · ǫ−(t−1), then (3t)2t · qt/2 · ǫt−1 > 1,

so that the claim hold trivially.

Claim 5.6.3 (Claim 5.4.3, generalized): Conditioned on the bijection φ not being bad, the sequences
(A1(v1, v2), . . . , A1(v2q−1, v2q)) and (A2(v1, v2), . . . , A2(v2q−1, v2q)) are identically distributed.

Proving this claim is the only difficulty in extending the proof of Lemma 5.4 to the current setting.
Indeed, the following proof yields a slightly different proof of Claim 5.4.3.

Proof: Again, we fix any choice of φ′ and φ′′′ that yields a good φ, and consider the residual random
choice of φ′′(v1), . . . , φ

′′(v2q), which (by the second hypothesis in Definition 5.6.1) are uniformly
and independently distributed in {0, 1, . . . , 2t− 1}. Considering any of the aforementioned graphs
Qi = (Vi, Ei), we note that this graph does not contain simple cycles of length greater than t− 1.

55

We now consider φ′′ : Vi → {0, 1, . . . , 2t− 1} as being selected at random in two stages. In the
first stage we assign each vertex a random value mod t, and in the second stage we assign each
vertex a random bit representing its most significant bit; that is, for each vertex v ∈ Vi, we first
determine (at random) the value φ′′(v) mod t, which we denote by ψ′′(v), and next determine (at
random) the bit ⌊φ′′(v)/t⌋, which we denote by π′′(v). Thus, φ′′(v) = ψ′′(v) + π′′(v) · t, and it will
be instructive to depict the graphs as in Figure 9. Fixing an arbitrary setting of values for the first
stage, we shall consider what may happen in the second stage.

For every fixed setting of ψ′′, we consider the residual graph Q′
i = (Vi, E

′
i), where E′

i contains
only the queries in Ei that are still undetermined (given ψ′′); that is, (u, v) ∈ Ei is placed in E′

i if and
only if ψ′′(u) ≡ ψ′′(v)± 1 (mod t), whereas all the other queries (or rather the answers to them)
are already determined (as being answered by 0). We shall consider the connected components of
Q′

i, and show that (conditioned on the foregoing setting of ψ′′) the answers provided to the queries
in E′

i under A1 are distributed identically to the answers provided under A2. Specifically, for each
possible sequence of answers, we shall show a 1-1 correspondence between the assignments of π′′

that yield these answers under A1 and the assignments of π′′ that yield these answers under A2.
(Recall that φ′′(v) = ψ′′(v) + π′′(v) · t.) That is, for each possible sequence of answers and each
connected component of Q′

i, we shall show that the number of assignments of π′′ that yield these
answers under Aj is independent of j ∈ {1, 2}.

Let C = (V ′′
i , E

′′
i) be an arbitrary connected component of Q′

i = (Vi, E
′), and let A′′ : E′′

i →
{0, 1} describe an arbitrary sequence of answers to the queries E′′

i . Our aim is proving that the
number of assignments of π′′ that yield these answers under Aj (i.e., satisfy Aj(u,w) = A′′(u,w)
for every (u,w) ∈ E′′

i) is independent of j ∈ {1, 2}. Furthermore, we shall show that this number is
either two or zero (when considering only the assignment of π′′ to V ′′

i). Consider any spanning tree
T of C, rooted at an arbitrary vertex v ∈ V ′′

i . For each choice of σ ∈ {0, 1}, we shall prove that
there exists a unique assignment π′′ : V ′′

i → {0, 1} such that π′′(v) = σ and π′′ is consistent with A′′

and A1 (resp., A2) on the edges of T . That is, the resulting π′′ is such that the answers as mandated
by A′′ for the edges of T fit the answers that A1 (resp., A2) provides with respect to φ′′ = ψ′′+t ·π′′.
As we shall see, these assignments might be inconsistent with the value of A′′ on edges that do not
belong to the spanning tree. However, we shall show that there is an inconsistency when fitting A1

if and only if there is an inconsistency when fitting A2. Details follow.

Fitting the process A1: Recall that the value of π′′ on the root of T was set to σ. The value of
π′′ on all other vertices is set, by traversing the tree T , in the following manner. When
traversing the tree edge (u,w) from a vertex u for which π′′(u) was already determined to a
new w (for which π′′(w) is still undetermined), we set π′′(w) ← π′′(u) if A′′(u,w) = 1 and
π′′(w)← 1− π′′(u) otherwise (i.e., if A′′(u,w) = 0).

Note that this process determines the values of the bits π′′(w) for all w ∈ V ′′
i such that the

tree-neighbors u and w are assigned the same bit if and only if A′′(u,w) = 1. This is indeed
consistent with the definition of A1. Furthermore, the setting of the values of π′′ is uniquely
determined by the requirement to be consistent with A1.

Fitting the process A2: We assign values exactly as in the case of fitting A1, with a single exception
that refers to the case that the tree-edge (u,w) ∈ E′′

i satisfies {ψ′′(u), ψ′′(w)} = {0, t − 1}.
In this case (where vertex u has already been assigned a value), we set π′′(w)← 1− π′′(u) if
A′′(u,w) = 1 and π′′(w)← π′′(u) otherwise (i.e., if A′′(u,w) = 0).

That is, in this case (i.e., {ψ′′(u), ψ′′(w)} = {0, t − 1}), the process determines the value

56

of π′′(w) such that the tree-neighbors u and w are assigned the opposite bits if and only if
A′′(u,w) = 1.

As noted in the foregoing discussion, while each of the two assignments is consistent with A′′ (and
the corresponding Aj) on the edges of the spanning tree T , there may be inconsistencies with the
edges of E′′

i that are not tree edges. It remains to show that there is an inconsistency with respect
to the process A1 if and only if there is an inconsistency with respect to the process A2.

We shall say that an edge (u,w) ∈ E′′
i (e.g., an edge of the spanning tree T) is a crossing edge

if {ψ′′(u), ψ′′(w)} = {0, t − 1}. By definition of the two assignments, the only difference between
them is caused when traversing a tree edge that is a crossing edge. For such an edge, the value of
π′′ is flipped when fitting the process A2 if and only if it is not flipped when fitting the process
A1. Thus, for each u ∈ V ′′

i , the value assigned to π′′(u) when fitting A2 is the XOR of the value
assigned to π′′(u) when fitting A1 and the parity of the number of crossing edges that belong to
the tree path from (the root) v to u.

Now, consider an edge (u,w) ∈ E′′
i that is not an edge in the spanning tree T . Consider the

simple tree paths from the root v to vertices u and w, respectively, and let us denote their branching
point by v′. Let pu (resp., pw) be the path on the spanning tree T leading from v′ to u (resp., w),
and p′u be the path from v′ to u obtained by augmenting pw with the (non-tree) edge (w, u). Then,
the union of pu and p′u constitutes a simple cycle, which by the hypothesis has length smaller than
t. As we shall show in the next paragraph, it follows that the parity of the number of crossing
edges on pu equals the parity of the number of crossing edges on p′u. In other words, the parity of
the number of crossing edges on pu equals the parity of the number of crossing edges on pw if and
only if (u,w) is not a crossing edge. Assuming that (u,w) is not a crossing edge, consider the value
assigned to π′′(u) and π′′(w) when fitting A1 (by following the paths from the root to u and w,
respectively). Then, A′′(u,w) is inconsistent with π′′(u) and π′′(w) as determined when fitting the
process A1 if and only if A′′(u,w) is inconsistent with π′′(u) and π′′(w) as determined when fitting
the process A2, because in both cases π′′(u) ⊕ π′′(w) is the same value (since the total number
of crossing edges on pv and pw is even). A similar argument holds when (u,w) is a crossing edge
(since then π′′(u)⊕ π′′(w) flips from A1 to A2), and the claim follows.

To verify the assertion regarding the parity of the number of crossing edges on pu and on p′u,
consider the values assigned by ψ′′ to the vertices in the union of pu and p′u. Since the union
of pu and p′u is a cycle of length less than t, these values must belong to a proper subset, S, of
{0, . . . , t− 1}. If this set does not contain {0, t − 1}, then we are done (since neither of the paths
may contain a crossing edge). Otherwise, for some j, it holds that S is a subset of the union of
S1 = {j+1, . . . , t−1} and S2 = {0, . . . , j−1}. If ψ′′(v′) and ψ′′(u) belong to the same Sk, then the
parity of the number of crossing edges on both pu and p′u is even (since these paths can only move
from one subset to the other via a crossing edge).12 Similarly, if ψ′′(v′) and ψ′′(u) do not belong
to the same subset then the parity on each of these paths must be odd.

Combining Claims 5.6.2 and 5.6.3, the lemma follows.

5.4 A Candidate Adaptive Tester for Super-Cycle Collection

In this section we outline an adaptive Õ(ǫ−1)-query algorithm that we conjecture to be a tester for
SCtC, where t ≥ 5 is fixed. The algorithm is a generalization of Algorithm 5.1, and we focus on

12Note that the ψ′′-values of intermediate vertices along any path must be “adjacent” modulo t, and so moving
between {j + 1, . . . , t− 1} and {0, . . . , j − 1} is only possible via (t− 1, 0).

57

outlining the corresponding sub-test, denoted sub-testi(v).
Recall that in Algorithm 5.1 this sub-test consists, essentially, of finding an edge (v, u) and

checking the potential bi-clique induced by it (i.e., Γ(u) × Γ(v)). In the current context we try
to find a t-cycle (v0, v1, . . . , vt−1) such that v0 = v and for every j ∈ {0, . . . , t − 1} it holds that
vj ∈ Γ(vj−1 mod t) ∩ Γ(vj+1 mod t) and Γ(vj−1 mod t) 6= Γ(vj+1 mod t). Given such a candidate t-

cycle v, letting Ij(v)
def
= Γ(vj−1 mod t) ∩ Γ(vj+1 mod t), we check that Ij(v) × Ij+1 mod t(v) is a bi-

clique, and that Γ(vj) = Ij−1 mod t(v) ∪ Ij+1 mod t(v). Each of these tasks is to be performed
by making poly(log(1/ǫ))/(2iǫ) queries. The implementation of the various checks is similar to
the implementation of similar checks performed in Algorithm 5.1, and so we focus on finding the
aforementioned t-cycle.

Starting with v0
def
= v, we obtain v1 ∈ Γ(v) just as (u was obtained) in Algorithm 5.1. In

fact, we may obtain vt−1 ∈ Γ(v) in the same way, except that we need to verify that the latter
vertex is actually in a different independent set than v1. This is done by checking that Γ(vt−1)
is different from Γ(v1), where any w in the symmetric difference of Γ(v1) and Γ(vt−1) can serve
as a witness. (Indeed, w ∈ Γ(v1) \ Γ(vt−1) can be used as v2.) Similarly, when holding a partial
path (vt−j , . . . , v0, . . . , vk), we seek a vertex vk+1 (resp., vt−(j+1)) such that Γ(vk+1) and Γ(vk−1)
(resp., Γ(vt−(j+1)) and Γ(vt−(j−1))) are different. When the path reaches length t− 1 (i.e., holds t
vertices), we treat it as a candidate t-cycle.

We note that, as in the case of Algorithm 5.1, it may happen that the foregoing algorithm
fails to find a t-cycle, (v0, . . . , vt−1). In this case, the algorithm performs only a subset of the
checks mentioned above. Specifically, suppose that the algorithm failed to extend the partial path

v
def
= (vt−j , . . . , v0, . . . , vk) any further. Then, for intermediate vertices, the checks are as before,

but for the extremes we should proceed with more care. For example, assuming the path contains

at least four vertices, we let It−j(v)
def
= Γ(vt−j+1 mod t) \ It−j+2 mod t(v).

Clearly, the foregoing algorithm always accepts any graph in SCtC, and we conjecture that it
(or possibly a slight variant of it) rejects with high probability graphs that are ǫ-far from SCtC.
In the next theorem we prove that a simplified version of this algorithm can distinguish with high

probability between graphs in SCtC and graphs in SC2tC′ def
=

⋃
i≥5 SC2tC2−i that are ǫ-far from SCtC.

We refer to this promise problem as Πt.

Theorem 5.7 (an almost-quadratic complexity gap for promise problems): For every positive
integer t ≥ 3, the promise problem Πt satisfies the following:

1. There exists an adaptive tester of query complexity O(ǫ−1) for Πt. Furthermore, this tester
has one-sided error and runs in time O(ǫ−1).

2. Any non-adaptive tester for Πt must have query complexity Ω(ǫ−2+(2/t)).

3. There exists a non-adaptive tester of query complexity O(ǫ−2+(2/t)) for Πt. Furthermore, this
tester has one-sided error and runs in time O(ǫ−2+(2/t)).

Indeed, in light of Theorems 1.1 and 1.2, the cases of t ∈ {3, 4} are of little interest, but there are
given here for the sake of uniformity (and since Theorem 1.2 lacks Part 3). We also stress that the
hidden constants in the O-notation may depend on (the constant) t.

Proof: As noted above, Part 2 follows from Lemma 5.6 (which actually holds also in the case of
t = 3). Specifically, for ℓ = log2(1/ǫ), Lemma 5.6 asserts that an algorithm of query complexity

58

q
def
= o(ǫ−2+(2/t)) cannot distinguish between graphs that are uniformly distributed in SCtC2−ℓ and

graphs that are uniformly distributed in SC2tC2−ℓ , since its distinguishing gap is O(qt/2ǫt−1) = o(1).
Part 2 follows since SCtC2−ℓ ⊂ SCtC, whereas all graphs in SC2tC2−ℓ are both in SC2tC′ and ǫ-far
from SCtC.

Turning to Part 1, as noted above, this part can be proved by using the algorithm outlined
above. Actually, for the current task of testing the promise problem Πt, a degenerate version of the
foregoing algorithm will do, and we detail and analyze such a version next. The key observation
underlying this simplified version is that in the current context the input is guaranteed (by the
promise problem formulation, cf. [ESY]) to consist of a collection of super-cycles. On input G =
([N], E) and proximity parameter ǫ > 0, our (simplified) algorithm proceeds as follows.

1. Select arbitrarily a vertex v0.

2. Select at random a sample S1 of Θ(1/ǫ) vertices, and query all pairs (v0, u) for u ∈ S1. If
S1 ∩ Γ(v0) = ∅, then accept. Otherwise, select arbitrarily a vertex v1 ∈ S1 ∩ Γ(v0).

3. For i = 1, ..., t− 1, attempt to find a vertex vi+1 ∈ Γ(vi) such that vi+1 does not reside in the
same independent set as vi−1 (i.e., Γ(vi+1) = Γ(vi−1)). This is done as follows.

(a) Select at random a sample Si+1 of Θ(1/ǫ) vertices, and query all pairs (vi, u) for u ∈ Si.

(b) If Si+1 ∩ Γ(vi) = ∅, then accept. Otherwise, we let T
def
= Si+1 ∩ Γ(vi), and proceed as

follows.

(c) Select at random a set U of O(1) vertices in T , and an auxiliary sample R of O(1/ǫ)

vertices of G. Query all pairs (U ∪ {vi−1}) × R, and determine ΓR(u)
def
= R ∩ Γ(u) for

each u ∈ U ∪ {vi−1}. If for every u ∈ U , it holds that ΓR(u) = ΓR(vi−1), then accept.
Otherwise, select arbitrarily a vertex vi+1 ∈ U such that ΓR(vi+1) 6= ΓR(vi−1).

4. Select at random an auxiliary sample R of O(1/ǫ) vertices, and query all pairs ({v0, vt})×R.
Accept if and only if ΓR(vt) = ΓR(v0).

This algorithm has query complexity O(1/ǫ) (recall that t is a constant) and it accepts any graph
in SCtC, since whenever a path (v0, v1, ..., vt) is found, it is the case that v0 and vt reside in the
same independent set (and hence satisfy Γ(v0) = Γ(vt)). On the other hand, if G ∈ SC2tC′ is ǫ-far
from SCtC, then it must be that G ∈ SC2tC2−j , for some j ≤ log2 4/ǫ. In this case, with high
constant probability, the algorithm does not accept G in Step 2, since the sample S1 is likely to hit
the set Γ(v0) (which has cardinality 2−jN ≥ ǫN/4). Similarly, with high constant probability, the
algorithm does not accept G in any iteration of Step 3, since the sample Si+1 is likely to contain
at least one vertex u in Γ(vi) that does not reside in the same independent set as vi−1 (and the
auxiliary sample R is likely to contain some vertex in (Γ(u) ∪ Γ(vi−1)) \ (Γ(u) ∩ Γ(vi−1))). Lastly,
observe that for the constructed path (v0, v1, ..., vt) it holds that v0 and vt do not reside in the
same independent set, and furthermore Γ(v0) ∩ Γ(vt) = ∅. Thus, Step 4 rejects with high constant
probability.

Finally, we turn to Part 3, which is established by a (canonical) tester that inspects the subgraph
induced by a uniformly selected set of O(ǫ−1+(1/t)) vertices, and rejects if and only if this set contains
t vertices such that the subgraph induced by these t vertices is a simple path (i.e., contains only the
t−1 edges of this path). This algorithm never rejects any graph G ∈ SCtC, because if the subgraph
of G induced by some set of t vertices contains a t-vertex path, denoted (v1, ..., vt), then either

59

each vi resides in a different independent set of the same super-cycle (which implies that vt and
v1 are connected) or some vi and vi+2 reside in the same independent set (which yields the 4-cycle
containing (vi−1, vi, vi+1, vi+2)). In contrast, for every j ≤ log2 4/ǫ, every graph in G ∈ SC2tC2−j

contains sets of t vertices such that the subgraph induced by each such set is a simple t-vertex path.
Furthermore, with high constant probability, a random sample of O(ǫ−1+(1/t)) vertices contains such
a set, because such a sample contains at least (3t)! random t-vertex sets that are each contained in
the same super-cycle,13 and with probability at least 1/(2t)! each such t-vertex set induces a path.

6 Non-Adaptive Testing with Õ(1/ǫ) Complexity

We first note that Ω(1/ǫ) (adaptive) queries are required for testing any graph property that is
non-trivial for testing, where a graph property Π is non-trivial for testing if there exists ǫ0 > 0 such
that for infinitely many N ∈ N there exist N -vertex graphs G1 and G2 such that G1 ∈ Π and G2

is ǫ0-far from Π. We note that all properties considered in this work are non-trivial for testing.
On the other hand, the negation of this (non-triviality) condition means that for every ǫ > 0 and
all sufficiently large N ∈ N either Π contains no N -vertex graph or all N -vertex graphs are ǫ-close
to Π. In such a case (for every such ǫ and N), the tester may decide without even looking at the
graph.14 Turning back to properties that are non-trivial for testing, we prove that any tester for
such a property must have query complexity Ω(1/ǫ).

Proposition 6.1 Let Π be a property that is non-trivial for testing. Then, any tester for Π has
query complexity Ω(1/ǫ).

Note that the claim holds also for general properties (i.e., arbitrary sets of functions).

Proof: Let ǫ0 > 0 be as in the definition, and consider any N ∈ N such that Π contains some
N -vertex graphs and there exist some N -vertex graphs that are ǫ0-far from Π. Let G0 be any
N -vertex graph that is ǫ0-far from Π, let G1 ∈ Π be an N -vertex graph closest to G0, and let δ > ǫ0
denote the relative distance between G0 and G1. Let D denote the set of vertex pairs on which G0

and G1 differ; indeed, |D| = δ · N2. Now, for every ǫ ≤ ǫ0 (and ǫ > N−2), consider a graph, G,
obtained at random from G0 and G1 by uniformly selecting a random R ⊆ D of cardinality ǫ ·N2

and letting G agree with G0 on all pairs in R and agree with G1 otherwise. Clearly, any tester
that makes o(ǫ0/ǫ) queries cannot distinguish G from G1 (because regardless of its query selection
strategy, its next query resides in R with probability at most |R|/|D| ≤ ǫ/ǫ0). Thus, such a tester
cannot decide correctly on both G and G1 (because G is ǫ-far from Π whereas G1 ∈ Π). Recalling
that ǫ0 is a fixed constant, the proposition follows.

To justify the fact that all our testers are inherently non-canonical, we show that (for any property
that is non-trivial for testing) canonical testers must use Ω(ǫ−2) queries.

13The claim follows by using a generalized birthday problem. In our case we have B = 2j bins and claim that,
with high constant probability, assigning at random b = eO(t) · B1−(1/t) balls to these bins results in having some
bin contain t balls. This can be proved by considering a t-step process, so that at each step O(log t) · B1−(1/t) balls
are assigned. For j = 1, ..., t, we claim that after the jth step, with probability at least 1 − o(1/t), there are at least
B1−(j/t) bins that contain j balls each. This claim is easily proved by induction on j.

14Indeed, there exists natural graph properties that are trivial for testing (e.g., connectivity, non-planarity, having
no vertex of odd degree); see [GGR, Sec. 10.2.1].

60

Proposition 6.2 Let Π be a property that is non-trivial for testing. Then, any canonical tester
for Π has query complexity Ω(1/ǫ2).

Proof: We adapt the proof of Proposition 6.1 so as to force any canonical tester to sample Ω(1/ǫ)
vertices. Let ǫ0 > 0, G0 = ([N], E0) and G1 = ([N], E1) ∈ Π be as in that proof. Then, there exists
a set of at least ǫ0N/2 vertices, denoted B, such that for every v ∈ B the symmetric difference
between the sets {u : {v, u} ∈ E0} and {u : {v, u} ∈ E1} has size at least ǫ0N/2. Now, for every
ǫ ≤ ǫ0/2 (and ǫ > N−1), consider a graph, G, obtained from G0 and G1 by arbitrarily selecting
a subset D ⊆ B of cardinality (2ǫ/ǫ0) · N and letting G agree with G0 on all vertex pairs that
intersect D and agree with G1 otherwise. Clearly, G is ǫ-far from Π, but any canonical tester that
selects o(ǫ0/ǫ) random vertices cannot distinguish G from G1. Thus, such a tester cannot decide
correctly on both G and G1 (because G is ǫ-far from Π whereas G1 ∈ Π). Recalling that ǫ0 is a
fixed constant, the proposition follows.

6.1 Clique and Bi-Clique

We start with the problem of testing whether the given graph is a clique (or, equivalently, an
independent set). The algorithm consists of selecting uniformly O(1/ǫ) vertex-pairs and checking
whether each of these pairs is connected by an edge. Clearly, if the graph is ǫ-far from being a
clique, then a randomly selected pair of vertices is connected with probability at most 1 − ǫ. The
foregoing algorithm and analysis seem to provide the simplest example of a graph property that
can be tested by O(1/ǫ) non-adaptive queries. A somewhat less simple example is provided by
testing the property of being a bi-clique.

Algorithm 6.3 (non-adaptive test of bi-cliqueness): On input N and ǫ and oracle access to a graph
G = ([N], E), set t = Θ(1/ǫ) and select arbitrarily a start vertex s (e.g., s = 1). For i = 1, . . . , t,
uniformly select a pair of vertices (ui, vi), and make the queries (s, ui), (s, vi), and (ui, vi). Accept
if and only if for every i an even number of the answers are positive (i.e., indicate the existence of
an edge).

Clearly, if G is a bi-clique then for every i either all vertices reside on the same side (and so (s, ui),
(s, vi), and (ui, vi) are all non-edges) or a single vertex is in solitude (and is thus adjacent to the
other two vertices). To analyze what happens when G is ǫ-far from being a bi-clique we observe that
s induces a partition of the graph to neighbors and non-neighbors (i.e., the 2-partition (Γ(s), [N] \
Γ(s))). That is, if G were a bi-clique then every vertex v ∈ Γ(s) (resp., v ∈ [N] \ Γ(s)) would have
satisfied Γ(v) = [N] \ Γ(s) (resp., Γ(v) = Γ(s)).15 However, since G is ǫ-far from being a bi-clique,
it follows that either there are at least ǫ

2 ·N2 edges in (Γ(s)× Γ(s)) ∪ (([N] \ Γ(s))× ([N] \ Γ(s)))
or at least ǫ

2 ·N2 edges are missing from Γ(s) × ([N] \ Γ(s)). Thus, the sample of t pairs will hit
such an edge with probability at least 2/3.

6.2 Collection of a Constant Number of Cliques

For any constant c, we consider the set of graphs that each consists of a collection of (up to) c
cliques; that is, the property CC≤c. Note that the special case of CC≤2 is analogous to bi-clique,

15Indeed, this is a simple application of the “induced partition” idea, which underlies the analysis of many of the
testers of [GGR].

61

because a graph G = ([N], E) is in CC≤2 if and only if its complement graph ([N], ([N]× [N]) \E)
is a bi-clique. Here we deal with the general case of a constant c ≥ 3.

To motivate the following non-adaptive tester (Algorithm 6.4), consider first the case in which
the input graph consists of c+ 1 cliques such that the smallest clique has size 2

√
ǫN . In this case,

with high probability, a sample of O(ǫ−1/2) random vertices contains an independent set of size
c+ 1, which will be discovered if we probe the entire induced subgraph. This case will be detected
in Step 1 of the algorithm. To motivate Step 2, consider the case that, for some α ∈ (3ǫ, o(

√
ǫ)), the

graph consists of two cliques of size (1−α)N/2 and a third clique of size αN such that each vertex
in the third clique is connected to an ǫ/α fraction of the vertices in each of the large cliques. In
this case, Step 1 is unlikely to sample a vertex of the small clique (and will thus fail to detect that
this graph is ǫ-far from CC≤c), but a sample as in Step 2 (with i = log2(α/ǫ)) is likely to contain a
vertex of the small clique as well as a neighbor from each of the two large cliques.

Algorithm 6.4 (non-adaptive test for CC≤c): On input N and ǫ and oracle access to a graph
G = ([N], E), set ℓ = log2(8c

2/ǫ) and proceed as follows.

1. Select a uniform sample of Θ(ǫ−1/2) vertices, denoted S, and examine all vertex pairs in S.

2. For i = 1, . . . , ℓ select, uniformly at random, samples of Θ(log(1/ǫ)/(2iǫ)) and Θ(2i) vertices
in [N] denoted T 1

i and T 2
i , respectively, and a sample of Θ(min{2i, 1/(2iǫ)}) vertices in S,

denoted Si. Examines all the vertex pairs in Si × (T 1
i ∪ T 2

i) and in T 1
i × T 2

i .

3. Accept if and only if the view of the subgraph as obtained in Steps 1-2 is consistent with some

graph in CC≤c. Namely, let g′ :
(
(S × S) ∪

(⋃ℓ
i=1

(
(Si × (T 1

i ∪ T 2
i)) ∪ (T 1

i × T 2
i)

)))
→ {0, 1}

be the function determined by the answers obtained in Steps 1-2. Then, the test accepts if and
only if g′ can be extended to a function over S′ × S′ that represents a graph in CC≤c, where

S′ def
= S ∪

(⋃ℓ
i=1(T

1
i ∪ T 2

i)
)
.

Step 3 can be implemented efficiently by constructing the connected components of the graph
defined by the positive answers (cf. discussion following Algorithm 4.3). It is instructive to spell
out several implications of the acceptance criterion that underlies Step 3. Indeed, this criterion
implies that the following four conditions hold (or equivalently, if any one of them is violated, then
the algorithm will reject):

(i) The subgraph induced by S is in CC≤c.

In such a case, we denote the corresponding cliques by C1, . . . , Cc′ , where c′ ≤ c.

(ii) For every i ∈ [ℓ] and every v ∈ T 1
i ∪ T 2

i , either Γ(v) ∩ Si = ∅ or, for some j ∈ [c′], it holds that
Γ(v) ∩ Si = Cj ∩ Si.

(iii) For every i ∈ [ℓ], if |{j : Cj ∩ Si 6= ∅}| = c then every v ∈ T 1
i ∪ T 2

i has at least one neighbor in
Si.

(iv) For every i ∈ [ℓ] and for every v ∈ T 1
i and u ∈ T 2

i such that Γ(v) ∩ Si 6= ∅ and Γ(u) ∩ Si 6= ∅
the following holds. If Γ(v) ∩ Si = Γ(u) ∩ Si then (v, u) ∈ E, while if Γ(v) ∩ Si 6= Γ(u) ∩ Si,
then (v, u) /∈ E.

62

(We mention that it is considerably easier to design and analyze an adaptive tester of query com-
plexity O(1/ǫ) for CC≤c; see a more general result in [A09, Sec. 4].) Algorithm 6.4 has query
complexity

|S|2 +
ℓ∑

i=1

(
|Si| · (|T 1

i |+ |T 2
i |) + |T 1

i | · |T 2
i |

)
= O(1/ǫ) + log(1/ǫ) ·O(log(1/ǫ)/ǫ) (102)

= Õ(1/ǫ) (103)

and accepts every graph in CC≤c with probability 1. We thus turn to analyze the case that the
input graph G = ([N], E) is ǫ-far from CC≤c. Namely, we show:

Lemma 6.5 If G is ǫ-far from CC≤c then Algorithm 6.4 rejects with probability at least 2/3.

Theorem 1.4 follows.

Proof: The analysis relies on the fact that CC≤c is a hereditary property (i.e., any induced subgraph
of any graph in CC≤c is also in CC≤c), which implies that any independent set of size c + 1 is a
witness for the input graph not being in CC≤c. Thus, considering only the sample S (selected in
Step 1), we show that, with high constant probability, either S contains such an independent set
(and the algorithm rejects) or S induces a partition of almost all the graph’s vertices. In the latter
case, with high constant probability, the auxiliary samples and queries made in Step 2 will cause
the algorithm to reject. Details follow.

We start by considering the choice of S (in Step 1 of the algorithm). We think of S as being
selected in c+1 phases (where c is a constant), such that in phase t ∈ [c+1], a new uniform sample
St, of Θ(ǫ−1/2) vertices, is selected. Intuitively, the objective of the first c phases is to ensure, with
high (constant) probability, that as long as the number of vertices that do not have any neighbor
among the vertices selected so far is relatively big, we obtain such a vertex in the next phase. After
c phases we use the selected vertices to define a partition of the graph vertices into at most c subsets
with some exceptional vertices (which either do not have any neighbor among the vertices selected
in the previous phases or are somehow inconsistent with these vertices). The objective of phase
c+ 1 is to ensure that (with high probability) the number of exceptional vertices is relatively small
(or else, cause rejection).

For each t ∈ [c + 1], let S≤t =
⋃t

k=1 S
k. Recall that the algorithm queries all vertex pairs in

S × S. Hence, if for any t ∈ [c + 1], the subgraph induced by S≤t is not a collection of at most c
cliques, then the algorithm rejects, and we are done. Otherwise, let Ct

1, . . . , C
t
b(t)

denote the b(t) ≤ c
cliques in the subgraph induced by S≤t. For each t ∈ [c + 1], we define the following partition of
the set [N] of all graph vertices:

V t
j

def
= {v : Γ(v) ∩ S≤t = Ct

j} for 1 ≤ j ≤ b(t) ,
Rt

0
def
= {v : Γ(v) ∩ S≤t = ∅} ,

Rt
1

def
= [N] \

(
Rt

0 ∪
(⋃

1≤j≤b(t)

V t
j

))
.

That is, for every j ∈ [b(t)], the subset V t
j consists of the vertices that neighbor all vertices in Ct

j

and no other vertex in S≤t, the subset Rt
0 consists of all vertices that have no neighbor in S≤t, and

63

Rt
1 consists of all vertices that either neighbor only some of the vertices in one of the cliques Ct

j

(but not all) or have neighbors in more than one of the cliques.
Given the above notation, we make the following observations. First, for any choice of S, it

holds that V t+1
j ⊆ V t

j for every j ∈ [b(t)], and likewise Rt+1
0 ⊆ Rt

0 while Rt+1
1 ⊇ Rt

1. Next, we turn
to probabilistic assertions, which refer to random choices of S.

1. For any t ∈ [c] and any fixing of S≤t, if |Rt
1| > 1

4ǫ
1/2N , then the algorithm rejects with high

probability (where the probability is taken over the choice of St+1).

This holds because, under the hypothesis, it is very likely that St+1 will contain some vertex
in Rt

1, whereas in this case the subgraph induced by S≤(t+1) is not a collection of (at most c)
cliques, and the algorithm rejects.

2. For any t ∈ [c] and any fixing of S≤t, if |Rt
0| > 1

4ǫ
1/2N , then, with high probability, b(t+1) ≥

b(t) + 1 (where the probability is taken over the choice of St+1).

This holds because, under the hypothesis, it is very likely that St+1 will contain some vertex
in Rt

0, whereas such a vertex cannot fit to any of the existing cliques.

3. For any t ∈ [c] and any fixing of S≤t, for every j ∈ [b(t)] such that |V t
j | ≥ ǫ−1/2

2c N , with high

probability (over the choice of St+1), it holds that

|Ct+1
j |
|St+1| ≥ 0.9 ·

|V t
j |
N

. (104)

This follows by an application of the standard multiplicative Chernoff bound.

Combining the foregoing observations, we infer that for, say, a 0.99 fraction of the possible choices
of S either the subgraph induced by S is not in CC≤c or there exists t∗ ∈ [c] such that the following
conditions hold

(1) |Rt∗+1
1 |, |Rt∗+1

0 | ≤ 1
4ǫ

1/2N ,

(2) b(t
∗+1) = b(t

∗), and

(3) for every j ∈ [b(t
∗+1)] such that |V t∗+1

j | ≥ ǫ−1/2

2c N it holds that |Ct∗+1
j |/|S| ≥ (2c)−1 · |V t∗+1

j |/N .

Thus, throughout the rest of our analysis, we shall assume that the latter three conditions hold.
(We later take into account the small constant probability that this is not the case and the algorithm
did not reject.)16

Fixing t∗ as above, we simplify the notation by using the following shorthands: Cj for Ct∗+1
j ,

Vj for V t∗+1
j , R0 for Rt∗+1

0 , R1 for Rt∗+1
1 , and c′ for b(t

∗+1). We also denote R0 ∪R1 by R.

16Specifically, if the algorithm accepts with probability at least, say, 0.001, then (by Observation 1) |Rt
1| ≤

1
4
ǫ1/2N

typically holds (for any t). By Observation 2, |Rt
0| >

1
4
ǫ1/2N typically implies b(t+1) > b(t), and so b(t+1) = b(t)

indicates that |Rt
0| ≤

1
4
ǫ1/2N (while |Rt+1

0 | ≤ |Rt
0| always holds). Noting that we cannot have b(t+1) > b(t) for every

t ∈ [c], it follows that for, say, a 0.99 fraction of the choices of S, there exists a t∗ ∈ [c] that satisfies conditions (1)
and (2). On the other hand, for a 0.999 fraction of the choices of S, for every t ∈ [c] and every j ∈ [b(t+1)] such that

|V t+1
j | ≥ ǫ−1/2

2c
N it holds that |Ct+1

j |/|St+1| ≥ 0.9|V t+1
j |/N . Using |S| = (c+ 1) · |St+1| and 0.9/(c + 1) > 1/2c, the

claim follows.

64

Recall that G is ǫ-far from CC≤c. This means that for every partition of the graph vertices into
at most c subsets, the total number of vertex pairs that either belong to the same subset but do
not have an edge between them, or belong to different subsets but do have an edge between them,
is greater than ǫN2. In particular, this holds for the partition of [N], denoted (Ṽj)j∈{0,1,...,c′}, that
we define as follows:

• For every j ∈ [c′], it holds that Vj ⊆ Ṽj.

• The vertices in R are partitioned among the Ṽj’s so as to minimize the number of violations
caused by pairs of the form (v,w) ∈ R × ([N] \ R). Specifically, for every vertex v ∈ R and
j ∈ [c′], let ej(v) = |Γ(v)∩ Vj| (resp., ēj = |Vj \Γ(v)|) denote the number of neighbors (resp.,

non-neighbors) that v has in Vj . If c′ = c then each vertex v ∈ R is placed in the subset Ṽj for
which ēj(v) +

∑
k∈[c′]\{j} ek(v) is minimized. If c′ < c then we do the same, except that every

vertex v ∈ R that satisfies
∑c′

k=1 ek(v) < minj∈[c′]{ēj(v)+
∑

k∈[c′]\{j} ek(v)} is placed in Ṽ0. In

particular, v is placed in Ṽ0 if and only if for every j ∈ [c′] it holds that ej(v) < ēj(v) (which is

equivalent to saying that for every j ∈ [c′] it holds that
∑c′

k=1 ek(v) < ēj(v)+
∑

k∈[c′]\{j} ek(v)).

We note that it may be the case that Ṽ0 = ∅; indeed, this always happens when c′ = c.

Recall that |R| ≤ 1
2ǫ

1/2N . Therefore, the total number of vertex pairs in R × R is at most 1
4ǫN

2.
It follows that if G is ǫ-far from CC≤c then (at least) one of the following three events must occur:

1. There are at least 1
4ǫN

2 missing edges between pairs of vertices that belong to the same subset

Vj ; that is,
∑c′

j=1 |(Vj × Vj) \ E| ≥ ǫ
4N

2.

2. There are at least 1
4ǫN

2 superfluous edges between pairs of vertices that belong to different

subsets Vj and Vk; that is,
∑c′−1

j=1

∑c′

k=j+1 |(Vj × Vk) ∩E| ≥ ǫ
4N

2.

3. The total number of missing and superfluous edges contributed by pairs of vertices in R ×
(
⋃c′

j=1 Vj) is at least 1
4ǫN

2. That is, if for each j ∈ [c′] and v ∈ R ∩ Ṽj we let

x(v) = ēj(v) +
∑

k∈[c′]\{j}

ek(v) , (105)

and for v ∈ R ∩ Ṽ0 we let
x(v) =

∑

1≤k≤c′

ek(v) , (106)

then
∑c′

j=0

∑
v∈R∩eVj

x(v) ≥ ǫ
4N

2. (Recall that Ṽ0 = ∅ whenever c′ = c.)

It remains to prove that in each of the three foregoing cases the algorithm rejects with probability at
least 5/6. Specifically, we shall show that, with probability at least 5/6, there exists an i ∈ [ℓ] such
that the sample Si∪T 1

i ∪T 2
i contains a set of vertices which induces a subgraph not in CC≤c that is

inspected by the algorithm. More specifically, this set will contain at most one vertex from each T b
i ,

and we shall use the fact that the algorithm inspects all pairs in (Si×(T 1
i ∪T 2

i))∪(T 1
i ×T 2

i)∪(Si×Si).
In what follows let ǫ′ = ǫ

8ℓc2
(and recall that ℓ = log2(8c

2/ǫ)).

65

Case 1:
∑c′

j=1 |(Vj × Vj) \ E| ≥ ǫ
4
N2. In this case there must be an index j∗ ∈ [c′] such that

the number of missing edges with both endpoints in Vj∗ is at least ǫ
4cN

2; that is,

∑

v∈Vj∗

|Vj∗ \ ({v} ∪ Γ(v))| ≥ ǫ

4c
N2 . (107)

In particular, this implies that |Vj∗ | ≥ ǫ1/2

2c1/2N . For each i ∈ [ℓ], we define a subset Bj∗,i of Vj∗ as
follows.

Bj∗,i =

{
v ∈ Vj∗ : |Vj∗ \ ({v} ∪ Γ(v))| ≥ N

2i

}

,

(108)

where Bj∗,0 = ∅. By Eq. (107) and since the contribution of vertices outside Bj∗,ℓ is at most
N · 2−ℓN = ǫN2/8c2, we have

ℓ∑

i=1

|Bj∗,i \Bj∗,i−1| ·
N

2i−1
>

ǫ

8c
N2 (109)

and thus there exists i∗ ∈ [ℓ] (i.e., a set Bj∗,i∗) such that

|Bj∗,i∗| >
2i∗−1ǫ

8cℓ
N > 2i∗ǫ′N . (110)

By the definition of Bj∗,i if Bj∗,i 6= ∅, then |Vj∗| ≥ N/2i∗ . Since Bj∗,i∗ 6= ∅, it holds that |Vj∗ | ≥ αN
where α = max{1/2i∗ , ǫ1/2

2c1/2 }. We shall show that, with high probability, the following three events

occur: (1) Si∗ contains at least one vertex w from Cj∗; (2) T 1
i∗ contains at least one vertex v from

Bj∗,i∗ ⊆ Vj∗ ; and (3) T 2
i∗ contains at least one vertex u from Vj∗ \ Γ(v). If the three events occur

then the algorithm rejects since it obtains evidence that the graph is not in CC≤c (in the form of
(w, v), (w, u) ∈ E and (v, u) /∈ E). (Indeed, v ∈ Γ(w) since w ∈ Cj∗ and v ∈ Vj∗, and u ∈ Γ(w)\Γ(v)
since u ∈ Vj∗ \Γ(v). Also note that the algorithm queries all pairs in (Si∗×(T 1

i∗∪T 2
i∗))∪(T 1

i∗×T 2
i∗).)

Let α be as defined in the foregoing discussion. Since |Vj∗ | ≥ αN and so |Cj∗ |/|S| ≥ |Vj∗|/2cN ,
the probability that the first event does not occur is at most (1−(α/2c))|Si∗ | which is a small constant
(due to our choice of |Si∗ | = Θ(1/α)). Similarly (by our choice of |T 1

i∗ | = Θ(log(1/ǫ)/(ǫ2i∗)) =
Θ(ℓ/(ǫ2i∗)) = Ω(1/(ǫ′2i∗))), the probability that T 1

i∗ does not contain any vertex from Bj∗,i∗ is
a small constant (due to the lower bound on the density of Bj∗,i∗ given in Eq. (110)). Finally,
assuming that T 1

i∗ contains a vertex v ∈ Bj∗,i∗ , the probability that T 2
i∗ (which has size Θ(2i∗)) does

not contain any vertex from Vj∗ \Γ(v) is a small constant as well (since, by definition of Bj∗,i∗ , the
set Vj∗ \ Γ(v) has density at least 2−i∗).

Case 2:
∑c′−1

j=1

∑c′

k=j+1 |(Vj × Vk) ∩ E| ≥ ǫ
4
N2. In this case there exists at least one pair of

subsets, Vj∗ and Vk∗ (where j∗ 6= k∗), such that |(Vj∗ × Vk∗) ∩ E| ≥ ǫ
4c2
N2. Assume, without loss

of generality, that |Vj∗ | ≥ |Vk∗ |, so that in particular |Vj∗ | ≥ ǫ1/2

2c N . Similarly to Case 1, it follows
that there exists a index i∗ ∈ {1, . . . , ℓ} and a subset Bj∗,i∗ ⊆ Vj∗ such that |Bj∗,i∗ | ≥ ǫ′2i∗N (recall
that ǫ′ = ǫ/(8c2ℓ)) and for every v ∈ Bj∗,i∗ it holds that |Vk∗ ∩ Γ(v)| ≥ N/2i∗ . Analogously to
Case 1, here we can show that, with high probability, the following three events occur: (1) Si∗

contains at least one vertex w from Cj∗ , (2) T 1
i∗ contains at least one vertex v from Bj∗,i∗ , and

(3) T 2
i∗ contains at least one vertex u from Vk∗∩Γ(v). If these three events occur then the algorithm

66

rejects since it obtains evidence that the graph is not in CC≤c (in the form of (w, v) ∈ E, (w, u) /∈ E
and (v, u) ∈ E). The probability that these three events occur is lower-bounded as in Case 1.

Case 3:
∑c′

j=0

∑
v∈R∩ eVj

x(v) ≥ ǫ
4
N2. For each v ∈ R, let x(v) be as defined in Eq. (105) & (106),

and let R′ def
=

{
v ∈ R : x(v) ≥ ǫ1/2

4 N
}
. Since |R| ≤ 1

2ǫ
1/2N , we have that

∑
v∈(R\R′) x(v) <

|R| · ǫ1/2

4 N ≤ ǫ
8N

2. Therefore, ∑

v∈R′

x(v) ≥ ǫ

8
N2. (111)

By the definition of R′, for every v ∈ R′, we have that x(v) ≥ N/2i for some i ≤ log2(4/ǫ
1/2).

Therefore, if we define Bi = {v : x(v) ≥ N/2i} for i ∈ [log2(4/ǫ
1/2)], then there is an index

i∗ ∈ [log2(4/ǫ
1/2)] such that

|Bi∗ | ≥
ǫ

8 log2(1/ǫ)
· 2i∗N > ǫ′2i∗N. (112)

Similarly to the previous cases, with high probability, the sample T 1
i∗ contains at least one vertex v

in Bi∗ . We next show that, for each fixed choice of such a vertex v ∈ Bi∗ , with high probability
over the choice of the samples Si∗ and T 2

i∗ , we obtain evidence containing v that G is not in CC≤c

(i.e., a set of vertices that induces a subgraph not in CC≤c, while having at most one vertex in each
T b

i∗).

Let j∗ ∈ {0, 1, . . . , c′} be such that v ∈ Ṽj∗, and define ē0(v) = e0(v) = 0. Observe that since

v ∈ Ṽj∗ we must have that

ēj∗(v)− ej∗(v) ≤ ēk(v)− ek(v) (∀k 6= j∗) , (113)

where if c′ = c then 1 ≤ k ≤ c′, while if c′ < c then 0 ≤ k ≤ c′. (Note that Eq. (113) holds
since otherwise v would be placed in Ṽk.) Eq. (113) will be useful when we consider the following
subcases (which refer to v ∈ Ṽj∗).

• We first consider the subcase in which j∗ = 0 (which may occur only when c′ < c). In this
subcase, since ēj∗(v) − ej∗(v) = 0− 0 = 0, for every k ∈ [c′] we have that ēk(v) ≥ ek(v). On

the other hand, since x(v) =
∑c′

k=1 ek(v) ≥ N/2i∗ , there exists at least one index k∗ ∈ [c′] such
that ek∗(v) ≥ N/(c2i∗). Since ēk∗(v) ≥ ek∗(v), we have that ēk∗(v) ≥ N/(c2i∗) as well. This
also implies that |Vk∗ |/N ≥ (c2i∗)−1, and so |Ck∗ |/|S| ≥ |Vk∗ |/2cN , we have that |Ck∗ |/|S| ≥
(2c22i∗)−1. Recall that |T 2

i∗ | = Θ(2i∗), and that |Si∗ | = Θ(min{2i∗ , 1/(ǫ2i∗)}) = Θ(2i∗), since
i∗ ≤ log2(4/ǫ

1/2).

Now, if |Ck∗ ∩ Γ(v)| ≥ |Ck∗ |/2, then, with high constant probability, the sample Si∗ contains
a vertex w in Ck∗ ∩ Γ(v) (since |Ck∗| = Ω(|S|/2i∗)), and T 2

i∗ contains a vertex u in Vk∗ \ Γ(v)
(since ēk∗(v) = Ω(N/2i∗)). Otherwise (i.e., |Ck∗ \ Γ(v)| ≥ |Ck∗ |/2), with high probability,
Si∗ contains a vertex w in Ck∗ \ Γ(v), and T 2

i∗ contains a vertex u in Vk∗ ∩ Γ(v) (since
ek∗(v) = Ω(N/2i∗)). In either case, w ∈ Ck∗ and u ∈ Vk∗, which implies (u,w) ∈ E, and
w ∈ Γ(v) iff u 6∈ Γ(v), which implies that |{(u,w), (w, v), (u, v)} ∩ E| = 2.

In the subsequent subcases we assume that j∗ > 0. Using Eq. (105) and the hypothesis
v ∈ Bi∗ , we have ēj(v) +

∑
k∈[c′]\{j} ek(v) ≥ N/2i∗ .

67

• We next consider the subcase in which both ēj∗(v) ≥ N/2i∗+1 and ej∗(v) ≥ N/2i∗+2 hold.
Setting k∗ ← j∗, we reach a situation as in the first subcase (since ēk∗(v) = Ω(N/2i∗) and
ek∗(v) = Ω(N/2i∗)), and we are done as in the first subcase (while noting that the first subcase
does not rely on j∗ 6= k∗).

• The next subcase refers to ēj∗(v) ≥ N/2i∗+1 and ej∗(v) < N/2i∗+2. In this subcase ēj∗(v) −
ej∗(v) > 0 and so it can occur only when c′ = c (since otherwise v would be placed in

Ṽ0, whereas here j∗ 6= 0). The fact that ēj∗(v) − ej∗(v) ≥ N/2i+2 implies that, for every
k ∈ [c′]\{j∗}, it holds that ēk(v) ≥ ek(v)+ ēj∗(v)−ej∗(v) ≥ N/2i∗+2. It follows that, for each
k ∈ [c′], it holds that |Ck|/|S| ≥ 1/2i∗+3 (since |Vk|/N ≥ 1/2i∗+2). Recall that |Si∗ | = Θ(2i∗)
(and |T 2

i∗ | = Θ(2i∗)).

If there exists k∗ ∈ [c′] such that |Ck∗ ∩ Γ(v)| ≥ |Ck∗ |/2, then with high probability, Si∗

contains a vertex in Ck∗ ∩ Γ(v), and T 2
i∗ contains a vertex in Vk∗ \ Γ(v). Otherwise (i.e.,

|Ck \ Γ(v)| ≥ |Ck|/2 for every k ∈ [c′]), with high probability, for every k ∈ [c′], the sample
Si∗ contains a vertex in Ck \ Γ(v), and recalling that c′ = c we obtain evidence (in the form
of an independent set of size c+ 1) that G is not in CC≤c.

• Lastly, we consider the subcase in which ēj∗(v) ≤ N/2i∗+1. Since ēj∗(v)+
∑

k∈[c′]\{j∗} ek(v) =

x(v) > N/2i∗ , we obtain
∑

k∈[c′]\{j∗} ek(v) ≥ N/2i∗+1. In such a case, there exists a k∗ ∈
[c′] \ {j∗} for which ek∗(v) ≥ N/(c2i∗+1). If ej∗(v) ≥ N/(c2i∗+2), then with high probability,
T 2

i∗ contains one vertex u in Vk∗ ∩ Γ(v) and one vertex u′ in Vj∗ ∩ Γ(v), while Si∗ contains
one vertex w in Ck∗ and one vertex w′ in Cj∗, and we have evidence that G is not a union of
cliques (since (v, u), (v, u′), (u,w), (u′, w′) ∈ E whereas (w,w′) 6∈ E, and all five vertex pairs
are inspected by the algorithm).17 Otherwise (i.e., ej∗(v) < N/(c2i∗+2)), by Eq. (113), we
have that ēk∗(v) ≥ ek∗(v) + ēj∗(v) − ej∗(v) ≥ N/(c2i∗+2), and we are in essentially the same
situation as the first subcase (since we have ek∗(v) = Ω(N/2i∗) and ēk∗(v) = Ω(N/2i∗)).

This completes the handling of all possible subcases of Case 3, and the lemma follows.

7 Conclusions

We presented various results regarding the complexity of testing graph properties in the adjacency
matrix model. All the properties we considered are easily testable in poly(1/ǫ)-time, and their
testing requires at least Ω(1/ǫ) queries. Our focus was on a finer study of their query complexity,
which distinguishes O(1/ǫ) queries from poly(1/ǫ) queries. While the particular properties con-
sidered are of natural appeal, our interest in them was as demonstrations of various phenomena
and/or perspectives. We conclude this paper by explicitly presenting three perspectives on our
results.

The role of algorithmic design in this model. Indeed, this is the perspective promoted by the
paper’s title, and it is delivered most eloquently by Theorems 1.2 and 1.4. In particular, Theorem 1.2
provides the strongest separation know between the query complexity of adaptive testers and non-
adaptive ones, whereas Theorem 1.4 (along with Proposition 6.2) provides the strongest separation

17Actually, note that it also holds that (u′, w) 6∈ E, and thus we obtain evidence in the form of the four vertex
pairs (v, u), (v, u′), (u,w), (u′, w). Note that we can obtain evidence in the form of three vertex pairs by considering
either (v, u′), (u′, w), (v, w) or (v, u), (u,w), (v, w).

68

possible between the query complexity of carefully designed non-adaptive testers and canonical
testers.

Indeed, with respect to this perspective, Theorem 1.2 supersedes Theorem 1.1, while Conjec-
ture 1.3 if true would supersede both. Theorem 5.7 provides evidence that Conjecture 1.3 may be
true.

Initiating a study of the general relation of adaptive versus non-adaptive testers (in
this model). Theorems 1.1 and 1.4 are the only results that establish a tight relation between
the query complexity of adaptive and non-adaptive testers. Furthermore, the upper bounds are
demonstrated by efficient one-sided error testers, whereas the lower bounds refer to the query
complexity of general (two-sided error) testers. These results assert that the exponent of the
relation may be 4/3 and 1, respectively. Theorem 1.2 does not supersede Theorem 1.1, because
Theorem 1.2 just partially establishes another relation exponent (i.e., it asserts that the exponent
may be at least 3/2).

With respect to this perspective, even if Conjecture 1.3 is true for any t > 4, this will not
supersede any of the above, but rather extrapolate them to all exponents of the form 2 − (2/t).
(Again, Theorem 5.7 provides evidence that Conjecture 1.3 may be true.)

We mention that Alon [A02] presented non-trivial graph properties that can be tested by O(1/ǫ)
non-adaptive queries, but these testers had two-sided error probability.18 We also mention that
approximating the edge density of a graph (or testing whether it is within some fixed interval) can
be performed by O(1/ǫ2) non-adaptive queries and does require Ω(1/ǫ2) queries (even if adaptivity
is allowed, cf. [CEG]).

Advancing the study of the properties that are testable in small complexity (i.e.,
poly(1/ǫ) queries). Indeed, Alon et al. [AFNS] provided a characterization of graph properties
that are testable in complexity that is only related to the proximity parameter ǫ, but we believe
that further study of the lower complexity classes is begging, where the lowest complexity classes
are firstly Õ(1/ǫ) and secondly poly(1/ǫ). This paper makes a small contribution to this direction,
while focusing on the first class and actually decoupling it to two classes: the class of properties
that are testable in Õ(1/ǫ) non-adaptive queries, and the rest of the class of properties that are
testable by Õ(1/ǫ) (adaptive) queries. Theorems 1.1, 1.2, and 1.4 all have something to say about
it.

Acknowledgments

We thank Lidor Avigad for comments regarding a previous version of this work and Michael Kriv-
elevich for discussions regarding related issues. We are also grateful to the reviewers for their helpful
comments and suggestions.

18Specifically, testing H-freeness, for any fixed bipartite graph H , can be performed by inspecting O(1/ǫ) uniformly
chosen vertex pairs and accepting if and only if no edge is seen (see Remark at the end of [A02, Sec. 2]). Alon [A02,
Thm. 1(i)] also shows that H-freeness can be tested by one-sided error testers of query complexity poly(1/ǫ), where
the polynomial depends on H .

69

References

[A81] N. Alon. On the number of subgraphs of prescribed type of graphs with a given number
of edges. Israel J. Math. 38, pages 116–130, 1981.

[A02] N. Alon. Testing subgraphs of large graphs. Random Structures and Algorithms, Vol. 21,
pages 359–370, 2002.

[AFKS] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. Efficient Testing of Large Graphs.
Combinatorica, Vol. 20, pages 451–476, 2000.

[AFN] N. Alon, E. Fischer, and I. Newman. Testing of bipartite graph properties. SIAM Journal
on Computing, Vol. 37, pages 959–976, 2007.

[AFNS] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization of
the Testable Graph Properties: It’s All About Regularity. In 38th STOC, pages 251–260,
2006.

[AS] N. Alon and A. Shapira. A Characterization of Easily Testable Induced Subgraphs.
Combinatorics Probability and Computing, 15:791–805, 2006.

[A09] L. Avigad. On the Lowest Level of Query Complexity in Testing Graph Properties.
Master Thesis, Weizmann Institute of Science, December 2009.

[AG] L. Avigad and O. Goldreich. Testing Graph Blow-Up. Unpublished manuscript, March
2010. Available from http://www.wisdom.weizmann.ac.il/∼oded/p lidor.html

[BHR] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. 3CNF properties are hard to test.
SIAM Journal on Computing, Vol. 35 (1), pages 1–21, 2005.

[BT] A. Bogdanov and L. Trevisan. Lower Bounds for Testing Bipartiteness in Dense Graphs.
In IEEE Conference on Computational Complexity, pages 75–81, 2004.

[CEG] R. Canetti, G. Even and O. Goldreich. Lower Bounds for Sampling Algorithms for
Estimating the Average. IPL, Vol. 53, pages 17–25, 1995.

[ESY] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-
plications to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159–173,
1984.

[F04] E. Fischer. On the strength of comparisons in property testing. Inform. and Comput.,
Vol. 189 (1), pages 107-116, 2004.

[GGR] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. Journal of the ACM, pages 653–750, July 1998.

[GR02] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

[GR08] O. Goldreich and D. Ron. On Proximity Oblivious Testing. ECCC, TR08-041, 2008.
Extended abstract in the proceedings of the 41st STOC, 2009.

70

[GT] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Ran-
dom Structures and Algorithms, Vol. 23 (1), pages 23–57, August 2003.

[GR07] M. Gonen and D. Ron. On the Benefit of Adaptivity in Property Testing of Dense
Graphs. In Proc. of RANDOM’07, LNCS Vol. 4627, pages 525–539, 2007. To appear in
Algorithmica (special issue of RANDOM and APPROX 2007).

[KKR] T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in
General Graphs. SIAM Journal on Computing, 33(6):1441–1483, 2004.

[PR] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algo-
rithms, Vol. 20 (2), pages 165–183, 2002.

[R1] D. Ron. Property Testing: A Learning Theory Perspective. Foundations and Trends in
Machine Learning, Vol. 1 (3), pages 307–402, 2008.

[R2] D. Ron. Algorithmic and Analysis Techniques in Property Testing. Foundations and
Trends in TCS, to appear.

[RS06] S. Raskhodnikova and A. Smith. A note on adaptivity in testing properties of bounded-
degree graphs. ECCC, TR06-089, 2006.

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2), pages 252–271, 1996.

[Y77] A.C. Yao. Probabilistic Computation, Towards a Unified Measure of Complexity. In
Proceedings of the Eighteenth Annual Symposium on Foundations of Computer Science,
pages 222–227, 1977.

71

Vj
v

w

u

|Γi(v)| ≥ 0.9|Vi|

|Γj(v)| ≥ |Γ′(v)|/10

|Γj(v)| ≥ 0.9|Vj |

Vi

|Γi(v)| > |Γ′(v)|/13

Vj
v

w

u

|Γi(v)| ≥ 0.9|Vi|

|Γj(v)| ≥ |Γ′(v)|/10

|Γj(v)| ≥ 0.9|Vj |

Vi

|Γi(v)| > |Γ′(v)|/13

Figure 5: An Illustration for the 1st subcase of Case 1.2 in the proof of Claim 4.4.2.

72

...

v

w

Cv

|Γj(v)| > 0.9|Vj |u

several sets Vj such that |Γj(v)| < |Γ′(v)|/10

Figure 6: An Illustration for Case 2.1 in the proof of Claim 4.4.2.

...

C(v)

v

u

w |Γj(v)| ≥ |Vj|/10

(|Vj | > |Γ′(v)|/10)several sets Vj

Figure 7: An Illustration for the 2nd subcase of Case 2.2 in the proof of Claim 4.4.2.

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

01

2 3

67

4 5

01

2 3

67

4 5

Figure 8: A single part, consisting of eight independent sets in BCCǫ and SC8Cǫ (that is, either two
bicliques, viewed as two super-cycles of length 4, or a single super-cycle of length 8).

73

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������

��������
��������
��������
��������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������������
������������
������������
������������

������������
������������
������������
������������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

0

1

0

1

t-1t-1

Figure 9: A single part, consisting of 2t independent sets, in SCtCǫ and SC2tCǫ, respectively. The
ellipses indicate the values of ψ′′.

74

