
The Theory of Computing: A S
ienti�
 Perspe
tiveOded Goldrei
h� Avi WigdersonyWritten May 1996, augmented June 2001, revised August 2009Abstra
tWe provide an assessment of the Theory of Computing (TOC), as a fundamental s
ienti�
dis
ipline, highlighting the following points:� TOC is the s
ien
e of
omputation. It seeks to understand
omputational phenomena, beit natural, man-made or imaginative.� Resear
h in TOC has been extremely su

essful and produ
tive in the few de
ades ofits existen
e, with
ontinuously growing momentum. This resear
h has revolutionizedthe understanding of
omputation and has deep s
ienti�
 and philosophi
al
onsequen
es,whi
h will be further re
ognized in the future. Moreover, this resear
h and its dissemi-nation through edu
ation and intera
tion has been responsible for enormous te
hnologi
alprogress.Contents1 Introdu
tion 11.1 Culture, S
ien
e and Te
hnology : 11.2 Individual s
ienti�
 dis
iplines : 22 On the fundamental nature of TOC and its su

ess so far 23 On the impa
t of TOC on Te
hnology 54 On the impa
t of TOC on other s
ien
es 75 Four
on
rete topi
s of investigation in TOC 85.1 One-way fun
tions (do they exist?) : 95.2 Solving problems versus verifying solutions : 95.3 Computational View of Phenomena and Con
epts : : : : : : : : : : : : : : : : : : : 115.4 The Sear
h for More EÆ
ient Pro
edures : 13
�Department of Computer S
ien
e and Applied Mathemati
s, Weizmann Institute of S
ien
e, Rehovot, Israel.E-mail: oded�wisdom.weizmann.a
.ilyInstitute for Advan
ed Study, Prin
eton, NJ. E-mail: avi�ias.edu

1 Introdu
tionThe revolutionary impa
t of Computing Te
hnology on our so
iety does not ne
essarily fa
ilitatethe appre
iation of the intelle
tual
ontents of the Theory of Computing (TOC). Typi
ally, peopleare so overwhelmed by the wonders of the
omputing te
hnology that they fail to wonder aboutthe theory underlying it. Furthermore, they tend not to think of
omputing in general termsbut rather in the
on
rete terms in whi
h they have lastly en
ountered it. Consequently, theintelle
tual
ontents of the Theory of Computing is rarely
ommuni
ated and rarely understood(by non-spe
ialists).Our aim is to help to redeem this sour state of a�airs and try to
ommuni
ate the intelle
tual
ontents of the Theory of Computing. But before doing so, we expli
itly state the philosophi
albeliefs that underly our view of s
ien
e in general.1.1 Culture, S
ien
e, and Te
hnologyThe sear
h for truth and beauty is the essen
e of
ivilization. Sin
e the Renaissan
e, the sear
hfor truth takes the form of (or is
alled) S
ien
e. Te
hnology is an important by-produ
t of thes
ienti�
 progress, not its raison d'etre. Furthermore, philosophi
al reasoning as well as experien
eshow that te
hnology is best served by a free s
ienti�
 pro
ess; that is, a s
ienti�
 pro
ess whi
hevolves a

ording to its own intrinsi
 logi
 and is not harnessed to the immediate te
hnologi
alneeds. Su
h free s
ienti�
 pro
ess evolves by formulating and addressing intermediate goals whi
hare aimed at narrowing the gap between the ultimate goals of the dis
ipline and the understandinga
hieved so far.It is ironi
 that as the
ontribution of s
ien
e to te
hnology be
omes wide-spread, a populardemand arises to have more. Namely, the su

ess of s
ien
e and in parti
ular the bene�ts of itste
hnologi
al by-produ
ts
auses the popula
e to turn against s
ien
e (in the form of demandsthat s
ien
e deliver even more
onsumable
ommodities). Still, one has to oppose these demands.S
ien
e is to maintain its autonomy whi
h is
orrelated to its su

ess. In the long run, this is alsothe best way to serve te
hnology.Te
hnology evolves mostly via applied s
ientists and engineers who use the s
ienti�
 knowledgethey have a
quired and their own
reative for
es to the development of spe
i�
 appli
ations. Con-trary to popular beliefs, the most important
ontributions of s
ien
e to te
hnology do not stemfrom the harnessing of s
ientists to engineering tasks, but rather from the fa
t that s
ientists in-stru
t and enri
h the thinking of these engineers. The edu
ation of engineers does not redu
e tothe a
quisition of information. Its more important features are the development of
on
eptualiza-tion and problem-solving abilities. The
on
eptual frameworks of the dis
ipline are o�ered to thestudent and the better these frameworks are the better an engineer he/she may be
ome. This formof edu
ation is most e�e
tive when done by good s
ientists who enjoy the freedom to pursue theirown resear
h interests.It is important to note that the nature of the pro
ess by whi
h s
ien
e e�e
ts te
hnology makesit very hard for the laymen, and sometimes even the expert, to tra
e a te
hnologi
al breakthroughto its s
ienti�
 origins. Almost always these breakthroughs depend on the
on
eptual s
ienti�
framework and very often they utilize spe
i�
 dis
overies whi
h were
onsidered totally impra
ti
alat the time of dis
overy (e.g.,
omplex numbers and ele
tri
ity).
1

1.2 Individual s
ienti�
 dis
iplinesThe s
ienti�
 dis
iplines are de�ned by the questions they address. For example, the formative ques-tions of Biology refer to (stru
tural and operational) properties of living beings, those of Chemistryrefer to (stru
tural and operational) properties of (natural and arti�
ial) substan
es, and those ofPhysi
s refer to (motion and intera
tion) properties of matter and energy. (Jumping ahead, weidentify the formative questions of the Theory of Computation as referring to general properties of
omputation be it natural, man-made, or imaginary.)The importan
e of a dis
ipline is determined by the nature of its formative questions. Themore fundamental these questions are the more important the dis
ipline is. Edu
ated laymen and
ertainly s
ientists
an usually assess how fundamental major s
ienti�
 questions are.The su

ess of a dis
ipline is measured by the progress it a
hieves on its own formative questions.To measure the amount of progress one has to understand the questions and the state of knowledgeof the dis
ipline with respe
t to these questions. This usually requires the understanding of experts,but
an be
onveyed to s
ientists of other dis
iplines.Neither the importan
e nor the su

ess of a s
ienti�
 dis
ipline
an be measured by the impa
tof its
urrent dis
overies on te
hnology (or on other dis
iplines). If the dis
ipline is indeed importantand su

essful su
h impa
ts are likely to follow. However, rarely will this impa
t be linearly relatedto the s
ienti�
 progress in the dis
ipline.Individual s
ienti�
 dis
iplines do not exist in a va
uum. The healthy evolution of a s
ienti�
dis
ipline is sensitive to s
ienti�
ally relevant inputs from other dis
iplines as well as te
hnologi
aldevelopments. We wish to stress that the in
uen
e of these inputs is determined by the dis
iplinesinternal logi
 and inherent goals and that su
h in
uen
es are vastly di�erent from non-inherentsuggestions (e.g., that in order to in
rease funding and/or employment opportunities the dis
iplineshould pursue alternative dire
tions).2 On the Fundamental Nature of TOC and its Su

ess so farThe Nature of EÆ
ient Computation and its natural as well as surprising derivatives, is the forma-tive question of the Theory of Computing (TOC). We
onsider this question to be one of the mostfundamental s
ienti�
 questions ever asked. Unfortunately, the fundamental status of this questionis usually disregarded due to its immediate te
hnologi
al impa
t.We feel that both the fundamental nature of the questions of the Theory of Computing and thesu

ess of our
ommunity in engaging these questions (up to this very day) are evident. To be onthe safe side, here is some eviden
e.An ex
ellent demonstration of the the fundamental nature of TOC is provided by the impa
t ofNP-
ompleteness on other s
ien
es. Papadimitriou lists about 20 diverse s
ienti�
 dis
iplines thatwere unsu

essfully struggling with some of their internal questions and
ame to re
ognize theirintrinsi

omplexity when realizing that these questions are, in some form, NP-
omplete. A

ordingto his bibliographi
 sear
h, NP-
ompleteness is mentioned as a keyword in about 6,000 s
ienti�
arti
les per year. How many s
ienti�
 notions have had su
h impa
t?More generally, TOC has established a dire
t relationship between stru
tural and
omputational
omplexity. EÆ
ient algorithms are dis
overed almost only if tangible mathemati
al stru
ture ex-ists. This
onne
tion has already bene�ted mathemati
al progress in many areas su
h as NumberTheory, Algebra, Group Theory and Combinatori
s, where on one hand a need for eÆ
ient al-gorithms existed, and on the other hand the sear
h for them has generated stru
tural results ofindependent interest. 2

A
tually, we tend to forget the revolution in problem-solving introdu
ed by the TOC treatmentof algorithms. This revolution
onsists of the expli
it introdu
tion of the
on
ept of an algorithmand the measures for its eÆ
ien
y, the emphasis on data representation and organization, thegeneral te
hniques for
reating algorithms for
lasses of problems, and the notion of redu
tionsbetween problems. Needless to mention the impa
t of all these on
omputer pra
ti
e, but we wishto stress the impa
t on any kind of problem solving.The TOC has drasti
ally
hanged the per
eption of knowledge and information. Spe
i�
ally,the TOC stresses that di�erent representations of the same information may not be e�e
tivelyequivalent; that is, it may be infeasible to move from one representation to the other (although atransformation does exist). In this new world, publi
ly available information may be unintelegible.All of Modern Cryptography is based on this Ar
himedes' point, and its s
ienti�
 and te
hnologi
alimpa
t are well known. Here we wish to suggest that this revolution applies not only to
omputersystems but to any aspe
t of human intera
tion in whi
h priva
y and fault-toleran
e are important
on
erns.The TOC has introdu
ed totally novel ways of understanding and using randomness. Theprobabilisti
 algorithms developed within the TOC use randomness in many varied sophisti
atedways. The appli
ability of randomized pro
edures for solving tasks from di�erent domains su
h asnumber theory, optimization and distributed
omputing is amazing. Moreover, the growing studyof derandomization has lead to derivation of better deterministi
 algorithms from probabilisti
 ones.Combining randomness and intera
tion lead TOC to
reate and su

essfully investigate fas
i-nating
on
epts su
h as intera
tive proofs, zero-knowledge proofs and Probabilisti
ally Che
kableProofs (PCP). Ea
h of these
on
epts introdu
es a deep and fruitful revolution in the understandingof the notion of a proof, one of the most fundamental notions of
ivilization. Furthermore, theserevolutions bore fruits that rea
hed far beyond the realm of proof systems. For example, work onPCP lead to the �rst breakthrough in the understanding of the hardness of approximation. Thisis but one in
redible demonstration of the how probabilisti
 thinking leads (very indire
tly andnon-trivially) to fundamental understanding of totally non-random phenomena.In addition,
ombining randomness and
omplexity, TOC has generated meaningful notionsof pseudorandomness. Computational hardness yields pseudorandom generators: using \one-way"fun
tions, randomness
an be \stret
hed" in an almost unlimited way as far as eÆ
ient observationsare
on
erned. This yields the stunning (to most s
ientists)
on
lusion that if their Monte-Carloalgorithm (estimating perhaps a numeri
al integral or simulating a physi
al pro
ess) behaved dif-ferently on sequen
es produ
ed by su
h generator, than on genuine random sequen
es, then theyhave dis
overed an eÆ
ient fa
toring algorithm! Totally di�erent pseudorandom generators thatTOC dis
overed
an fool any spa
e limited algorithm. Sin
e all standard statisti
al tests have su
himplementations, this is great news to Statisti
ians, Physi
ists, and most So
ial S
ientists whouse su
h tests on everyday basis. Namely, the results of all their experiments are guaranteed tohold even if they repla
e all their random
hoi
es by pseudorandom
hoi
es produ
ed by from tinyrandom seed.TOC has gained
onsiderable understanding of organizing work on huge systems of many
om-ponents. The study of parallel algorithms resulted in amazing ways to get around \inherentlysequential" tasks. Subdividing work to smaller
hunks in eÆ
ient and balan
ed ways is takingpla
e not only in
omputer systems but in many organizations, and the insights gained by TOC areavail to them too. A di�erent kind of parallel
omputing arises in settings where the information isdistributed among the
omponents of the system. TOC studies of su
h distributed environmentsresulting in models and methods of
onsisten
y, re
overy, knowledge, syn
hrony and de
ision mak-ing, are relevant not only to (distributed)
omputer systems but also to e
onomi
s and other so
ial3

s
ien
es.The organization and availability of information was always a major part of
ivilization, and inparti
ular s
ien
e and te
hnology depend on it. The models and solutions developed by TOC forsu
h problems not only resulted in
omputer systems that would do it for people, but in the veryway people and institutions have to think about information. The amazing new abilities to handlehuge masses of data in
rease, rather than de
rease, the human de
isions on what they want to bestored, what a

ess patterns they want to allow and disallow, what should be retrieved qui
kly andwhat
an take longer, et
. The theoreti
al understanding enables to formalize their demands, andenable programmers (who should understand the algorithms and data stru
tures as well) either tosatisfy these demands or to explain why they are impossible to a
hieve.Likewise, some of TOC's insights to performan
e analysis, the minimizing and balan
ing ofseveral resour
es, are of universal appli
ability. One example is the notion (and te
hniques) of
ompetitive analysis, whose appli
ations range from operating systems to information
ompres-sion (Lempel-Ziv) to emergen
y servi
es to sto
k-market investments. More generally, asymptoti
analysis has taught us that stru
ture is often revealed at the limit. The adversarial point of viewdeveloped for worst
ase analysis (both of inputs to algorithms and behavior of distributed systems)has taught us a similar lesson: stru
ture is often revealed under the worse
ir
umstan
es and maybe obs
ured by unjusti�ed assumptions on \typi
al behavior". Su
h stru
ture often leads to better(in every respe
t) theoreti
al and pra
ti
al solutions.Finally, let us mention that that many inter-dis
iplinary s
ienti�
 a
tivities involve and fur-ther seek the parti
ipation of TOC members. These in
lude the di�erent \neuro
omputational"groups (en
ompassing brain models, learning, and neural networks, involving physi
ists, biologists,psy
hologists) and \rational behavior" groups (en
ompassing e
onomy, e
ology, evolution,
ompe-tition, and de
ision making, involving e
onomists, statisti
ians, psy
hologists and mathemati
ians).They want TOC to be there sin
e they have re
ognized the universal value of the problems TOCdeals with and the understanding TOC has obtained so far, and in parti
ular their relevan
e tothese areas.Clearly, la
k of spa
e, time and knowledge prevents us from going on. Still, the massive listabove illustrates the fundamental nature of our endevours from the s
ienti�
 point of view. Butthey are fundamental also from two other important viewpoints. One is the philosophi
al viewpoint,whi
h has dealt with many of the notions and questions above for
enturies, and whi
h re
eives afresh, radi
ally di�erent perspe
tive (namely the
omputational one) from TOC. As an example
onsider the question of P vs. NP vs. CoNP. Some tend to think of it is a mere te
hni
al questionand miss its deep philosophi
al signi�
an
e: Understanding the relation between the diÆ
ulty ofsolving a problem to the diÆ
ulty of verifying the
orre
tness of the solution, to the diÆ
ulty ofproving that no solution exists. Additional examples are the TOC per
eptions of the notion of aproof, its view of randomness, and its emphasis on the importan
e of spe
i�
 representations. These
ond viewpoint is the potential
ontribution of TOC to the general edu
ation and enri
hment ofhumanity. Many notions, problems and even some of the solutions TOC has produ
ed are availablefor understanding (in nontrivial levels) by laymen. We have su

essfully tried to explain some ofthem to elementary s
hool kids (and indeed we foresee some of them taught and used as tea
hingparadigms in grade and high s
hool). Few s
ien
es (whi
h existed for many
enturies)
an
ompeteon these grounds with what TOC a
hieved in a few de
ades.To summarize, this se
tion illustrated the fundamental importan
e of TOC as well as its su

ess.As for the latter point, let us stress that the a
hievements sket
hed above are more or less equallyspread over the last 30 years, and many are very re
ent. Indeed, the rate of progress done by TOCin these years is astonishing and there is no inherent reason for this progress to stop.4

3 On the Impa
t of TOC on Te
hnologyWhile we reje
ted te
hnologi
al impa
t as a measure of importan
e and progress of a s
ienti�
dis
ipline, the enormous impa
t of TOC resear
h on te
hnology should not be made a se
ret. Weare far from experts regarding this impa
t, still there are a few points that even we
an tell. We hopeand believe that a mu
h better treatment will be given in the future by more quali�ed
olleagues.The most important impa
t of TOC on Computer S
ien
e and Te
hnology stems from thefundamental goals of TOC. In its endevour to understand the nature of
omputation, TOC
reatedgeneral abilities to
on
eptualize, model, unify, solve and analyze
omputational mediums andproblems. The e�e
ts of this understanding are present in essentially every working system andalgorithm on earth. Without them the
omputer revolution, whi
h has
hanged life on this planet ina fundamental way and will
ontinue to e�e
t it at in
reasing speed, would simply not be possible!Indeed, they are the very reason that theory
ourses are mandatory for all undergraduates in
omputer s
ien
e departments. They are the reason that most applied
omputer s
ien
e
oursesare not a mere
olle
tion of ad-ho
 tri
ks and are thus suitable to be taught in universities. Theyare the reason that the originators of te
hnologi
al breakthroughs, as well as all engineers andprogrammers,
an a
tually think, talk, present and evaluate their ideas. Some
riti
s may say thatthese understandings were a
hieved long ago, and there is no need for further \re�nements". Thisis
ontradi
ted by many te
hnologi
al advan
es whi
h have resulted (and will
ontinue to result)from re
ent developments of su
h understandings regarding, for example, parallel, distributed,intera
tive, se
ure and fault-tolerant
omputation. Many su
h developments were a
hieved byspe
ial interest groups within TOC, who took on to study in depth su
h models and algorithms.Their spe
ialized
onferen
es, whi
h are a relatively re
ent phenomena, often enjoy the a
tiveparti
ipation of more applied s
ientists, who have both easy a

ess to this knowledge as well as aforum to in
uen
e its dire
tion.It is
ru
ial to re
ognize and
ommuni
ate the fa
t that most of this understanding resulted notfrom attempts of solve a
on
rete problem under parti
ular te
hnologi
al
onstraints. Rather, it
ame from generalizing the problems and abstra
ting away unne
essary te
hnologi
al details to thepoint that enables �nding stru
tures and
onne
tions to other knowledge. Only then
ould applieds
ientists and engineers, who had both the theoreti
al understanding as well as the mastership ofthe spe
i�
s of the te
hnologi
al task, fuse them together to a su

essful pra
ti
al obje
t. The valueof this approa
h has many examples, and we dis
uss only one.By far the largest impa
t
omputers had on humanity is the Internet. Here are a few key theoret-i
al developements, mostly done mu
h before the internet was even
on
eieved, that were absolutelyessential to its deployment and su

ess (but by no means under
ut the enormous
ontribution ofthe pra
ti
al side of CS and the Industry to the Internet revolution).� Cryptography is the key to people trusting the internet, for their priva
y, and their abilityto
ondu
t a variety of transa
tions se
urely. In brief, Cryptography guarantees the hugee
onomi
 potential of e-
ommer
e on the Internet.� Distributed Computation is the key for the various proto
ols and algorithms making surepa
kets are routed qui
kly and reliably. In brief, it delivers the e�
ien
y of
ommuni
ationon the Internet.� Algorithms and Data Stru
ture drive the fantasti
 speed of information pro
essing and re-trieval. In brief, they deliver sear
h, whi
h is the main a
tivity on the Internet.In general, one should advo
ate the value of abstra
tions whi
h address some fundamentalaspe
ts of an important problem (even if they seem not to address all aspe
ts), and warn against5

the shortsightedness
aptured by dismissing su
h abstra
tions as irrelevant. The study of su
han abstra
tion is more likely to yield fundamental insights than the study of the \real problem"(assuming su
h a
reature exists { a
tually there is never one real problem but rather many di�erentrelated real problems and what these have in
ommon may well be the dismissed abstra
tion).Only later will people, with a
on
rete appli
ation and te
hnology in mind, be able to �ne-tunethe theoreti
al understanding to their needs. (This in itself may require signi�
ant resear
h andimplementation, that was and is taking pla
e by
omputer s
ientists and engineers, and whi
hresulted in so many su

essful te
hnologi
al developments.)It is equally important to re
ognize and
ommuni
ate that it was the freedom and time givento TOC resear
hers to pursue these general dire
tions, in real attempt to understand novel
om-putational media, that resulted in su
h progress { quite often in surprising and unexpe
ted ways.One
an illustrate the point above by numerous examples. We prefer to give two very re
entexamples whose te
hnologi
al and pra
ti
al e�e
ts are imminent and yet to
ome. So far their\pra
ti
ality" is demonstrated by a major leap in the algorithmi
 understanding of major problems.This leap is rooted in developments of
omplexity theory whi
h, at �rst and for a long time, seemedtotally irrelevant to the latter or any other algorithmi
 task. Su
h leaps are frequent in our �eld,and are due to the freedom of pursuing s
ienti�
 intuition, as well as to the strong
ommuni
ationand information ex
hange between the various subareas of our �eld.� The Eu
lidean TSP Algorithm. A few years ago Sanjeev Arora announ
ed a polynomialtime approximation s
heme for the Traveling Salesman Problem (and a host of other
ombi-natorial optimization problems) in the plane. The problem itself was a major obje
t of studyin our �eld for de
ades. The failed attempts to �nd su
h approximation s
heme resulted infundamental
ontributions to NP-
ompleteness, probabilisti
 analysis, approximation algo-rithms and mathemati
al programming. It also resulted in enormous e�orts to understandthe relative power of various heuristi
s.The te
hniques present in the algorithm of Arora were available de
ades ago! Why was itonly found now? While this is a sour
e of spe
ulations, Arora himself tells how he
ameabout it. The algorithm arose from his attempts to generalize the inapproximability resultsof metri
 TSP to Eu
lidean TSP, attempts whi
h revealed to him the extra stru
tures of theEu
lidean
ase. These attempts were based on the surprising
onne
tion of PCP proofs tohardness of approximation. In turn, these \mysterious" proofs arised from abstra
t results likeMIP=NEXP (relating \
learly impra
ti
al"
omplexity
lasses). Moreover, the MIP modelof multi-prover intera
tive proofs was suggested by Sha� Goldwasser as a generalization ofintera
tive proofs (themselves the out
ome of amazing developments). Needless to say thatGoldwasser did not think of approximation algorithms when she suggested the new model.� EÆ
ient Error Corre
tion. Again, a few years ago Dan Spielman dis
overed a linear-rate
ode whi
h has asymptoti
ally optimal (i.e., linear time) en
oding and de
oding algorithms.This
entral problem of
ommuni
ation, that originated with Shannon half a
entury ago,has attra
ted the best minds in Information Theory, Mathemati
s, Ele
tri
al Engineeringand Computer S
ien
e, and has resulted in beautiful and important theory. Still, this majorproblem, resolved by Spielman, was beyond rea
h.The
onstru
tion of Spielman
losely mimi
s the
onstru
tion of a super
on
entrator. Thisobje
t was not available to most s
ientists working on this problem, and Spielman learnedabout it from Complexity Theory. The super
on
entrator was invented in TOC, by Valiant, inhis attempts at one of the quinti
ential impra
ti
al problems { proving
ir
uit lower bounds.6

Failing to do that, Valiant turned to an even more impra
ti
al problem { to show that this par-ti
ular attempts will ne
essarily fail! Here he was su

essful. He (no
onstru
tively) exhibitedthe existen
e of expanders, and used them as building blo
ks of linear size super
on
entrators.A deep and beautiful mathemati
al theory developed, motivated by the expli
it and eÆ
ient
onstru
tion of expanders, whi
h e�e
ted diverse areas of TOC. More to the point of thissubse
tion, indire
tly and through mu
h further work, derivatives of the study of expandersbe
ame extremely relevant to te
hnologi
al development
on
erning
ommuni
ation networksand proto
ols for a variety of parallel and distributed ar
hite
tures.The amazing s
ienti�

onsequen
es and the surprising pra
ti
al impli
ations whi
h sprouted (andwill
ontinue to grow) from the totally abstra
t and impra
ti
al proposals of Goldwasser and Valiantin the examples above, well illustrate the ri
hness and unity of our �eld. Su
h
onne
tions seem tobe more
ommon in TCS than in other �elds.4 On the Impa
t of TOC on Other S
ien
esIn the short time of its existen
e, TOC has had an unpre
edented e�e
t on other s
ien
es. Thishas taken at least three forms.� Algorithms. Many s
ien
es use heavy
omputation for their resear
h, mainly for simulationand analysis. The advan
es in fundamental algorithms in TOC, on data stru
tures and gen-eral te
hniques are essential for them to understand, so as to optimize their
omputationalresour
es. The impa
t of these on the rate of progress in these s
ien
es
annot be under-estimated. Moreover, sometimes su
h dis
iplines generate a parti
ular type of problems forwhi
h the general algorithmi
 knowledge does not suÆ
e. In some
ases where these problemsraised suÆ
ient s
ienti�
 interest (perhaps lu
kily timed with internal developments), TOCwas qui
k to pi
k up and study its natural
omputational stru
ture. Two su
h superb exam-ples are the great advan
es TOC has made in understanding and analyzing random walks,so often at the base of simulations in Physi
s, and its
ontributions to number theoreti
 andalgebrai
 algorithms. Finally, the su

ess of the Human Genome Proje
t, was partially basedon algorithmi
 progress on problems related to sequen
ing and other
omputational biologyindu
ed problems of massive information pro
essing. Mu
h more essential will algorithms befor the real
hallenge of understanding the stru
ture and fun
tion of genes and proteins.� Natural Computational Models. Nature
omputes! While this was observed long before
omputer s
ien
e existed, TOC supplied the me
hanisms to model, dis
uss and explain thesephenomena. A re
ent
hallenge dire
ted by TOC towards Physi
s is whether a QuantumComputer
an be built? But even without the demonstration of the ex
essive power of theQuantum Computer model (e.g., Shor's polynomial-time Quantum algorithm for fa
toring),we spe
ulate that
omplexity may be the right way of thinking about de
oheren
e of a quan-tum me
hani
al system. The brain is another
omputational devi
e whose understandingseems to be extremely far, but to whi
h our unique
ontributions in neural networks and
omputational learning are providing important stimulation. Valiant's book \Cir
uits of theMind" is the �rst serious attempt in any of the s
ien
es studying the brain to relate the whatwe know of the \hardware" in our brain, to the
omputational
omplexity of the \fun
tions"it manages to perform. Understanding the
omplexity of
ognitive tasks, and our ability toperform them is a great
hallenge to TOC.7

� Universality of TOC notions. As pointed out in Se
tion 2, the unique
omputationalpoint of view of TOC and its
on
eptual derivatives, has resulted in surprising impa
t onintrinsi
 studies of other dis
iplines. NP
ompleteness, dis
overed over 20 years ago, has hada sweeping e�e
t. But our view on other notions su
h as randomness, pseudorandomness,intera
tion and approximation is only beginning to take e�e
t.It should be reiterated that the dis
overies above has made a fundamental impa
t on these s
ien
es,and have lead them to reassess their points of view on some basi
 intrinsi
 questions and pursuenovel resear
h dire
tions. We wish to stress that, having sound tradition and self esteem, theses
ien
es were not (and
ould not have been) for
ed to pursue these novel dire
tions by TOCor anyone else. Their
hoi
e was based on their s
ienti�
 understanding of their intrinsi
 goals.Similarly, the interest of TOC in these problems arose from the understanding of TOC resear
hersthat these problems are relevan
e to the goal of understanding
omputation. The amazing su

essof this impa
t and the high and growing regard to TOC in these s
ien
es, again, stems from theintelle
tual freedom in whi
h these intera
tions arose. Again, even a small fra
tion of these e�e
tsjusti�ed the investment so far in TOC.5 Four Con
rete Topi
s of Investigation in TOCAs stated in Se
tion 2, the Theory of Computing aims at understanding general properties of
om-puting, be it natural, man-made, or imaginary. Most importantly, it aims to understand the natureof eÆ
ient
omputation. Following are teasers for four
on
rete topi
s, whi
h are dis
ussed at greaterlength in the rest of this se
tion.1. One key question is whi
h fun
tions
an be eÆ
iently
omputed? For example, it is (relatively)easy to multiply integers, but it seems hard to take the produ
t and fa
tor it into its prime
omponents. In general, it seems that there are one-way
omputations, or put di�erently one-way fun
tions: Su
h fun
tions are easy to evaluate but hard to invert. Do one-way fun
tionsexist? We don't know, though we believe they do exist, and
an relate this belief to otherimportant questions.2. A related question is that of the
omparable diÆ
ulty of solving problems versus verifying thevalidity of solutions. We believe that some problems are mu
h harder to solve than to verifythe validity of a solution for them. However, we don't know this to be a fa
t either. Still,we know of many problems that are hard to solve, provided that the above belief is indeedvalid. For ea
h of these problems, an eÆ
ient solving method would imply an eÆ
ient solvingmethod for ea
h problem for whi
h verifying validity of solution is easy.3. The Theory of Computing provides a new viewpoint on old phenomena and
on
epts. Forexample, a
omputational approa
h to randomness leads to the
on
lusion that randomness
an be expanded almost arbitrarily. Likewise, a
omputational approa
h to proofs leads tothe
on
lusion that obtaining a proof to a statement may not tea
h you anything beyond thevalidity of the statement.4. The Theory of Computing is also
on
erned with �nding the most eÆ
ient methods forsolving spe
i�
 problems. To demonstrate this line of resear
h we mention the existen
e of amethod for multiplying numbers that is mu
h more eÆ
ient than the simple method learnedin elementary s
hool. 8

In this se
tion we provide some details for these four topi
s. We stress that these four topi
s aremerely a small sample of the variety of topi
s that TOC deals with. The following exposition isaimed at laymen, and we hope that it
an be understood by su
h.Before embarking, we point out that the
hoi
e of representation of obje
ts plays a key rolein the theory of
omputing. If you
are to talk of multiplying numbers, you should spe
ify inwhat form these numbers are represented. The natural
hoi
e, whi
h the Theory of Computing(essentially) adopts, is that a (natural) number is represented as a sequen
e of de
imal digits.(A
tually, the
ommon
onvention is to represent numbers as sequen
es of binary digits, but thedi�eren
e between the two
onventions is immaterial.)5.1 One-way fun
tions (do they exist?)We
onsider fun
tions that map natural numbers to natural numbers. To simply the dis
ussion,we
onsider only fun
tions that are one-to-one (i.e., never map two di�erent numbers to the samenumber) and preserve the magnitude of numbers (i.e., the number of digits in the representationis preserved when applying the fun
tion).A fun
tion is
alled one-way if it is (relatively) easy to evaluate but hard to invert. For example,
onsider the fun
tion that maps pairs of prime numbers to their produ
t. The elementary methodfor multiplying numbers demonstrates that it is relatively easy to evaluate this fun
tion. (By theway, more eÆ
ient methods for multipli
ation are known; see Se
tion 5.4.) However, we do notknow of an eÆ
ient method for inverting the above fun
tion; that is, for going from the produ
tba
k to the prime fa
tors. In fa
t, the problem of fa
toring numbers is believed to be hard.To get some feeling for the plausibility of the belief that fa
toring numbers is fundamentallymore diÆ
ult than multiplying them, think of the task of multiplying two 4-digit numbers (forexample, 5381 and 6673). Certainly, you
an do this using a pen and paper within a
ouple ofminutes. But how about �nding the prime fa
tors of a 8-digit number (for example, 51855637)?Any one-way fun
tion
an be inverted by trying all possible inverses, but su
h an exhaustivesear
h is not eÆ
ient: To invert the fun
tion on a 100-digit number, an exhaustive sear
h will take10100 operations (whi
h will take more time than the age of the universe even using the fastestpossible
omputer ever to be built). For some fun
tions, there are more eÆ
ient ways of invertingthe fun
tion (for example,
onsider the fun
tion that maps an integer to its su

essor { that is, Nis mapped to N + 1). The question is whether every fun
tion that is easy to evaluate is also easyto invert. Our belief is that the answer is negative; that is, there are fun
tions (
alled one-way)that are easy to evaluate but hard to invert. In
ase our belief is wrong this would mean that anypro
ess
an be reversed within an e�ort that is proportional to the e�ort invested in
arrying itthrough. Analogies from many dis
iplines suggest that this
annot be true in general. That is,while some pro
esses may be easy to reverse, there are pro
esses that are hard to reverse.Trying to prove that one-way fun
tions do exist is indeed within the agenda of the Theory ofComputing and so is exploring the
onsequen
es of assuming that one-way fun
tions exist. Forexample, it turns out that \Cryptography" is possible if and only if one-way fun
tions exist (seemore below).5.2 Solving problems versus verifying solutionsWhen we say a \problem" we mean a general type of a problem for whi
h they are many instan
es.For example,
onsider the problem of �nding a number that (stri
tly) divides a given number. Inthis
ase the instan
es are numbers and ea
h instan
e may have several solutions (for example, 385is an instan
e and 5, 7 and 11 are all solutions (i.e., non-trivial divisors)). There may be instan
es9

that have no solution (for example the number 17 has no non-trivial divisors). It is easy to verifythe validity of solutions to instan
es of the problem we are dis
ussing here: Given two numbers Nand M it is easy to test if M divides N . However, it seems hard to solve this problem for giveninstan
es: Re
all that we believe that it is hard to fa
tor numbers into their prime
omponents.Thus, if we
ould always (easily) �nd a divisor of a given number, then we
ould fa
tor. (This
laim is not immediate: you may need to apply the divisor-�nding method several times, but nottoo many times...)In general, a problem
onsists of a set of instan
es, ea
h having a (possibly empty) set ofsolutions. With respe
t to su
h a problem we
onsider two
omputational tasks:Finding solutions: given an instan
e of the problem, �nd a valid solution or indi
ate that nosu
h solution exists (if this is indeed the
ase).Verifying solutions: given an instan
e of the problem along with a
andidate solution, determinewhether the
andidate is indeed a legitimate solution to the given instan
e.The big question of the Theory of Computing is what is the relation between the diÆ
ulty (or
omplexity) of the above two tasks. Spe
i�
ally, whether for ea
h problem for whi
h the veri�
ationtask is easy also the �nding task is easy. This question is known as the \P vsNP" question: Looselyspeaking, P stands for the
lass of problems for whi
h �nding solutions is easy, NP stands for the
lass of problems for whi
h veri�
ation is easy, and the question is whether P
ontains everythingin NP .Another Example. Suppose you are given a set of Quadrati
 equations and are asked to �nd0-1 values for the variables su
h that all equations are satis�ed. For example,
onsider the systemx1x2 � x3 = 0x1x3 � x1x4 + x3x4 = 1x1x4 � x2x3 + x1x3 = 0You may easily verify that the setting x1 = x2 = x3 = 1 and x4 = 0 satis�es all requirements, but itwould have taken you more e�ort to �nd su
h a setting by yourself. In general, the veri�
ation taskis easy (you just substitute variables by their values and do a little arithmeti
s), whereas the solvingtask (i.e., �nding a 0-1 setting satisfying all equations) seems hard. Note that there is an obvious(but ineÆ
ient!) way of solving the problem: just trying all possible solutions. But this is notfeasible if you have a system with many (say 100) variables. The question is whether there existsan eÆ
ient way of solving the above problem. We believe that no su
h eÆ
ient method exists.Furthermore, we
an show that an eÆ
ient method of �nding solutions to Quadrati
 equationsas above would yield an eÆ
ient method for solving any problem in NP (that is, it would yieldthat P = NP). Indeed, the latter statement is interesting and surprising: the fate of the \P vsNP" question depends on whether it is easy to solve Quadrati
 equations. Thus, we say thatsolving Quadrati
 equations is NP-
omplete (see below). In parti
ular, it follows that the abilityto eÆ
iently solve Quadrati
 equations implies the ability to eÆ
iently fa
tor integers (althoughthere seem to be no apparent relation between the two problems).On the belief that P does not
ontain all NP. Re
all that we do not know whether for ea
hproblem for whi
h the veri�
ation task is easy also the solving task is easy. That is, we do not knowwhether NP = P or not. We do, however, believe that there are problems for whi
h veri�
ation is10

easy and yet solving is hard (that is NP 6= P). This belief is based not only on the intuition thatsolving is generally harder than verifying validity of solutions, but also by a variety of problems (inNP) for whi
h many people failed to �nd eÆ
ient solution-�nding pro
edures.NP-
ompleteness. There are many problems (the foreging example is merely one of them)for whi
h we know that an eÆ
ient way of �nding solutions for the problem would yield su
heÆ
ient solutions for any problem in NP . Thus, ea
h of the former problems,
alled NP-
omplete,en
ompasses the fate of all NP . If an NP-
omplete problem
an be solved eÆ
iently, then anyproblem in NP
an be solved eÆ
iently (that NP = P). However, our belief that NP 6= P impliesthat no NP-
omplete problem has an eÆ
ient solution-�nding pro
edure. Thus, NP-
ompletenessof a problem is taken as strong eviden
e that it
annot be solved eÆ
iently.Indeed NP-
ompleteness is extensively used as an indi
ation of the
omplexity of problems.On
e you are fa
ed with a parti
ular problem that you need to solve and on
e you have failed todevise eÆ
ient solution-�nding pro
edure, you may want to know if your failure is due to yourown la
k of ideas or to the intrinsi
 diÆ
ulty of the problem at hand. Proving that the problemis NP-
omplete does provide an indi
ation that your failure is due to something more fundamentalthan your la
k of ideas. This is indeed
omforting, but what should you do if you still need asolution? In su
h a
ase, having realized that the problem at hand is NP-
omplete, you should seekrelaxations of it, whi
h are good enough for the appli
ation at hand, and try to obtain an eÆ
ientpro
edure for solving su
h a relaxed problem. The relaxation
an take the form of restri
ting theset of possible instan
es or broadening the set of admissible solutions. For example, if you only needto �nd 0-1 solutions to a set of linear equations, then you should not worry that �nding solutionsto Quadrati
 equations is NP-
omplete: An eÆ
ient method for the spe
ial
ase of linear equationsdoes exist! In this
ase the relaxed problem restri
ts the set of instan
es of the original problem. Adi�erent example refers to the
ase that you may be happy with a 0-1 setting that satis�es at leasthalf of the given Quadrati
 equations, and rely on the fa
t that an eÆ
ient method for �nding su
hsettings exists. In this
ase the relaxed problem broadens the set of admissible solutions. Thus,NP-
ompleteness told you to look for a good enough relaxation of the problem, and it
an be usedas a justi�
ation for not solving the original problem. This justi�
ation is espe
ially of value ifsolving the original problem would have been better.5.3 Computational view of phenomena and
on
eptsIn this subse
tion we des
ribe two
ases in whi
h a
omputational perspe
tive on
lassi
al notionssu
h as randomness and proofs leads to fas
inating insights and extremely useful
onsequen
es.Pseudorandomness. Adopting a
omputational view of randomness, we
all a distribution pseu-dorandom if it is infeasible to distinguish between examples drawn from this distribution and exam-ples drawn from a truly random distribution. We note that two distributions may be very di�erentand yet it may be infeasible to tell them apart. In su
h a
ase, we
onsider the di�eren
e betweenthem as \non-important" (sin
e nobody
an note it within his lifetime, as noting the di�eren
erequires an infeasible
omputation). Thus, our
omputational view of randomness is behavioristi
(it asks how does randomness look to us) rather than being ontologi
al (asking what is the essen
eof randomness).Our distin
tion between the true (statisti
al) di�eren
e and the di�eren
e that is feasible toobserve relies on the notion of feasible (or eÆ
ient)
omputation. Indeed, the meaningfulness andappli
ability of the foregoing approa
h to (pseudo)randomness depends on the notion of eÆ
ient11

omputation. More importantly, this notion suggests the possibility of dis
ussing pseudorandomgenerators. These are eÆ
ient (deterministi
) pro
edures that on
e fed with a short random seed,output a mu
h longer sequen
e that is pseudorandom. Thus, pseudorandom generators \stret
hrandomness": taking a short random seed, they produ
e a mu
h longer sequen
e that
annot betold apart from a truly long random sequen
e. To be spe
i�
, if you want to produ
e a 1,000,000long sequen
e of random looking digits, it may suÆ
e for you to randomly sele
t 1000 digits andstret
h them using an eÆ
ient (deterministi
) program into a sequen
e of 1,000,000 digits. Notethat the generated sequen
e is not truly random, yet it looks so to any (
omputationally-bounded)observer. Sin
e in real-life we are all
omputationally-bounded, this type of pseudorandomnesssuÆ
es for all our purposes.Pseudorandom generators
an be
onstru
ted provided that one-way fun
tions exist. A
tually,this suÆ
ient
ondition is also a ne
essary one. Thus, a tight
onne
tion is made between
omputa-tional diÆ
ulty (of inverting some fun
tions) and random behavior. Spe
i�
ally, if
omputationaldiÆ
ulty does exist in a meaningful sense, then randomness
an be expanded very drasti
ally andso there
ould be no meaningful measure for the \amount" of randomness. In parti
ular, littlerandomness may give rise to huge random phenomena and
onstru
ts. For example, given 1000randomly sele
ted digits it is possible to eÆ
iently implement a random fun
tion that assigns arandom-looking 1000 digit number to every 1000 digit argument. By this we mean that queryingthis fun
tion for its value at, say 1,000,000 pla
es of your
hoi
e, you will not be able to distinguishthe fun
tion from a truly random one.An appli
ation to Cryptography: Pseudorandom generators yield a solution to the problemof se
urely
ommuni
ating over an inse
ure (that is, possibly wire-tapped)
hannel. Essentially,this is the
ase sin
e any pseudorandom generator yields a (private-key) en
ryption s
heme. Su
h as
heme
onsists of two pro
edures, one for en
oding and one for de
oding. Both pro
edures utilize ase
ret key that is assumed to be sele
ted and shared by the
ommuni
ating parties. Before sendinga message, the sender en
rypts it using the shared key, obtaining a so-
alled
iphertext. Only the
iphertext is sent over the inse
ure
hannel, but a wire-tapper who does not know the key sharedby the legitimate parties
annot make any sense of it. On
e the
iphertext rea
hes the legitimatere
eiver, he/she
an read the original message by de
rypting the
iphertext using the shared key.Now let us see how to use a pseudorandom generator to establish su
h an en
ryption s
heme. Thekey shared by the legitimate parties will serve as a seed to the pseudorandom generator (and thus itis important that the key be sele
ted at random). Messages to be sent are represented as sequen
esof digits. To send a spe
i�
 digit se
retly, the sender uses the next (unused so far) digit of thepseudorandom sequen
e (generated by the pseudorandom generator using the key as seed). Saythat the message digit is x and the pseudorandom digit is y, then the
orresponding digit of the
iphertext will be the least signi�
ant digit of x+ y (for example, if x = 4 and y = 7 we send 1 andif x = 6 and y = 2 we send 8). De
ryption is done analogously. Say we have re
eived the digit zand
urrently use the pseudorandom digit y, then we
ompute z � y and add 10 to it in
ase it isnegative: for example, if z = 1 and y = 7 we retrieve x = (1 � 7) + 10 = 4 and if z = 8 and y = 2we retrieve x = (8� 2) = 6.Zero-Knowledge. Do proofs tea
h us anything beyond the validity of the assertion? Our dailylife (and espe
ially our s
hool years) tell us that the answer is positive. Typi
ally, when
onvin
ingus of the validity of some fa
t, the prover (that is, the person
onvin
ing us) tell us things we didnot know. Adopting a
omputational view of proofs, we may introdu
e a meaningful and appealingsetting in whi
h there exist proofs that yield nothing beyond the validity of the
laim they aresupposed to vou
h for. Su
h proofs are
alled zero-knowledge sin
e they tell us nothing we did not12

know (or
ould not do) if we were to believe the validity of the assertion.But �rst we should ask what is a proof. The glory asso
iated with the
reativity required for�nding proofs, makes us forget that it is the less glori�ed pro
ess of veri�
ation that gives proofstheir value. What makes a proof its value is the existen
e of an eÆ
ient veri�
ation pro
edure thatreje
ts false proofs, while admitting valid proofs. Thus, any (veri�
ation) pro
ess that has thesefeatures gives rise to a \proof system" and, in parti
ular, one may want to
onsider intera
tiveand randomized veri�
ation pro
edures. Indeed, it turns out that one may be able to verify morefa
ts by employing an intera
tive and randomized veri�
ation pro
edure (rather than sti
king tothe traditional per
eption of proofs as written texts).For example, suppose that a wine expert wishes to
onvin
e a non-expert that two bottles ofwine are di�erent. Here is what they
an do. The (non-expert) veri�er will se
retly pour wine fromthe two bottles to (say) 10 di�erent glasses so that ea
h bottle serves 5 glasses. The veri�er willrandomly permute the glasses, but keep (se
ret) re
ord of whi
h bottle served whi
h glass. Theexpert will now be asked to tell whi
h 5 glasses (out of the 10) have wine that was poured thesame bottle. If the bottles are indeed di�erent (and if the expert is indeed an expert), then theexpert will have no trouble giving the right answer and so the
laim will be a

epted by the veri�er.However, if the two bottles are identi
al then there is no way of telling the 10 glasses apart and theprobability that an expert will guess
orre
tly is quite small (it is one over �105 �).The foregoing example illustrates something of the
avor of the
omputational point of viewof proofs. Furthermore, it even has some zero-knowledge
avor: the veri�er following the abovepro
edure does not really learn anything new beyond being
onvin
ed of the validity of the
laim;having poured the wine into the glasses, he learns nothing when the expert identi�es
orre
tlywhi
h bottle served whi
h glass. In general, it has been shown that whatever
an be proven via anintera
tive and randomized pro
ess (as above),
an also be proven in zero-knowledge.An appli
ation to Cryptography: Zero-knowledge proofs are not merely an intriguing notion,they are a very powerful tool in
ryptography. In a typi
al
ryptographi
 setting parties have se
retsand are supposed to take a
tions based on these se
rets. A typi
al problem is to make sure thatthe a
tions taken are indeed
orre
t. This
an be demonstrated by revealing the se
rets, butzero-knowledge proofs allow to prove this fa
t without revealing the se
rets (and without revealinganything about the se
rets).5.4 The sear
h for more eÆ
ient pro
eduresHow would you multiply two numbers? We guess that you would just apply the method taught atelementary s
hool. For example to multiply 45 by 67 you would �rst multiple 5 by 7, write the �rstdigit of the result and add the se
ond digit to the result of the multiple of 4 by 7. You'll write theresult in the �rst line, then a
t analogously with respe
t to multiply 45 by 6, and last you'll addthe two lines. This means that you would do 4 digit-by-digit multipli
ations, some shifts (\hidden"multipli
ations by 10, whi
h are indeed easy), and some additions, and the entire pro
ess
an bewritten down as an addition of the following two lines10 � (4� 7) + (5� 7)100 � (4� 6) + 10 � (5� 6)In general, to multiply two numbers x and y, represented by the digit-sequen
es xn � � � x2x1 andyn � � � y2y1, respe
tively, you will turn out using (impli
itly) the following equalityx� y = nXi=1 xi � 10i�1!� nXi=1 yi � 10i�1! = nXi=1 nXj=1(xi � yj) � 10i+j�213

whi
h means that you would do at least n2 basi
 operations (that is, digit-by-digit multipli
ation).There is however a faster way to multiply (large) numbers. Towards presenting an alternativemethod, let us
onsider, for example, the multipli
ation of 45 by 67. We have45� 67 = (10 � 4 + 5)� (10 � 6 + 7)= 100 � (4� 6) + 10 � (4� 7 + 5� 6) + (5� 7)= 100 �M1 + 10 � (M3 �M1 �M2) +M2where M1 = 4 � 6, M2 = 5 � 7, and M3 = (4 + 5) � (6 + 7). The last equality does not seem to\make sense"; yet, you
an easily verify that it is
orre
t. But what have we gain by this \strange"equality? One thing is that we only do 3 multipli
ations (but they may be slightly more
omplexsin
e we may need to multiply numbers smaller than 19 rather than numbers smaller than 10 (singledigits)). This seems little gain, but wait a moment before passing verdi
t. Suppose you want tomultiply two 4-digit numbers. You
an represent ea
h number by a sequen
e of two 2-digit numbersand apply the same tri
k. That is1234 � 5678 = (100 � 12 + 34) � (100 � 56 + 78)= 10000 � (12� 56) + 100 � (12 � 78 + 56� 34) + (34 � 78)= 10000 �M1 + 100 � (M3 �M1 �M2) +M2where M1 = 12 � 78, M2 = 34 � 78, and M3 = (12 + 34) � (56 + 78). We may now apply thesame tri
k to the 3 (two-digit) multipli
ations we need here, and obtain a pro
edure involving 9\basi
" multipli
ations. Generalizing this idea, we obtain a pro
edure that multiply two n-digitnumbers by doing 20n� basi
 operations (that is additions/multipli
ations of single digits), where� = log2 3 � 1:585. For n � 100 this is better than the \Elementary-S
hool" pro
edure (whi
htakes 3n2 basi
 operations). But a
tually, there are even faster pro
edures for multiplying twonumbers (whi
h do beat the \Elementary-S
hool" pro
edure for numbers of 20 digits or more).The above example of a sophisti
ated
omputational pro
edure was taken from the domain ofarithmeti
s, and indeed the study of eÆ
ient pro
edures for arithmeti
 (or rather number theoreti
)problems
onstitutes one area of the Theory of Computation. Yet, there are dozens of other su
hareas, ea
h fo
used on the study of problems arising in some other domain (e.g., graph theory,geometry, et
).

14

