Introduction to Complexity Theory*
Corrections and Additions

Oded Goldreich
August 13, 2000

Following is a list of major corrections and additions to the lecture notes. Currently the list contains a single item.

1 PP versus \#P

The class PP as defined in Lecture 7 (cf., Def. 7.6), is computationally equivalent to the class \#P as defined in Lecture 10 (cf., Def. 10.4) in the sense that each class is Cook-reducible to the other. Recall that the class PP was referred to in Lecture 7 as a probabilistic complexity class that allows “useless” algorithms (i.e., the difference in their behavior, on YES and NO-instances, may be negligible). What we forgot to mention is that PP is strongly related (as stated above) to the counting (complexity) class \#P.

Theorem 1 (computational equivalence of PP and \#P)

1. PP is Cook-reducible to \#P.
2. \#P is Cook-reducible to PP.

Proof: Let \(L \in PP \) and suppose that \(M \) is a probabilistic polynomial-time machine witnessing this fact as in Definition 7.6. For a suitable NP-relation, denoted \(R \), and a suitable polynomial \(p \), it follows that \(\Pr[M(x) = 1] = 2^{-\mu([x])} \cdot f_R(x) \), where \(f_R(x) \overset{\text{def}}{=} \#\{y \in \{0, 1\}^{\mu([x])} : (x, y) \in R\} \) (as in Definition 10.3). Thus, \(x \in L \) if and only if \(f_R(x) > \frac{1}{2} \cdot 2^{\mu([x])} \). It follows that \(L \) is decidable by a polynomial-time machine with oracle access to \(f_R \); that is, \(L \) is Cook-reducible to \#P.

On the other hand, for some NP-relation \(R \), consider the function \(f_R \) in \#P. It suffices to show that the language \(\#_R = \{(x, k) : k \leq f_R(x)\} \) (as in Definition 10.6) is Cook-reducible to PP. Letting \(p \) be an adequate polynomial so that \((x, y) \in R \) implies \(|y| = p(|x|) \), we define a relation \(R' \) as follows:

\[
R' \overset{\text{def}}{=} \left\{ (x, k, (1, y)) : (x, y) \in R \right\} \cup \left\{ (x, k, (0, m)) : m \in \{1, \ldots, 2^{p(|x|)} - k\} \right\}
\]

Consider a machine \(M' \) that on input \((x, k) \), uniformly selects \(z \in \{0, 1\}^{\mu([x]) + 1} \), and accepts if and only if \(((x, k), z) \in R' \). Note that if \((x, k) \in \#_R \) then \(\Pr[M'(x, k) = 1] \geq \frac{k + (2^{\mu([x])} - k)}{2^{\mu([x]) + 1}} = \frac{1}{2} \), whereas if \((x, k) \not\in \#_R \) then \(\Pr[M'(x, k) = 1] < \frac{k + (2^{\mu([x])} - k)}{2^{\mu([x]) + 1}} = \frac{1}{2} \). By a minor modification (as in the proof of Fact 7A.1), it follows that \(\#_R \) is in \(PP \).

* Lecture Notes for a course given in 1998 at the Weizmann Institute of Science, Israel.
Toda’s Theorem: In Lecture 7, we showed that \(NP \) is contained in \(PP \). It turns out that the entire Polynomial-Time Hierarchy (as defined in Lecture 9) is Cook-reducible to \(PP \) (or, equivalently, to \(\#P \)). The latter statement was proved by Toda [1].

Bibliographic Notes