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Preface It is possible to build a cabin with no foundations,but not a lasting building.Eng. Isidor Goldreich (1906{1995)Cryptography is concerned with the construction of schemes that withstandany abuse: Such schemes are constructed so to maintain a desired functional-ity, even under malicious attempts aimed at making them deviate from theirprescribed functionality.The design of cryptography schemes is a very di�cult task. One cannot relyon intuitions regarding the typical state of the environment in which the systemoperates. For sure, the adversary attacking the system will try to manipulatethe environment into untypical states. Nor can one be content with counter-measures designed to withstand speci�c attacks, since the adversary (which actsafter the design of the system is completed) will try to attack the schemes inways that are typically di�erent from the ones the designer had envisioned. Thevalidity of the above assertions seems self-evident, still some people hope that inpractice ignoring these tautologies will not result in actual damage. Experienceshows that these hopes rarely come true; cryptographic schemes based on make-believe are broken, typically sooner than later.In view of the above, we believe that it makes little sense to make assumptionsregarding the speci�c strategy that the adversary may use. The only assump-tions that can be justi�ed refer to the computational abilities of the adversary.Furthermore, it is our opinion that the design of cryptographic systems has tobe based on �rm foundations; whereas ad-hoc approaches and heuristics are avery dangerous way to go. A heuristic may make sense when the designer hasa very good idea about the environment in which a scheme is to operate, yeta cryptographic scheme has to operate in a maliciously selected environmentwhich typically transcends the designer's view.This book is aimed at presenting �rm foundations for cryptography. Thefoundations of cryptography are the paradigms, approaches and techniques usedto conceptualize, de�ne and provide solutions to natural \security concerns".We will present some of these paradigms, approaches and techniques as wellas some of the fundamental results obtained using them. Our emphasis is onIII

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



IVthe clari�cation of fundamental concepts and on demonstrating the feasibility ofsolving several central cryptographic problems.Solving a cryptographic problem (or addressing a security concern) is a two-stage process consisting of a de�nitional stage and a constructive stage. First, inthe de�nitional stage, the functionality underlying the natural concern is to beidenti�ed, and an adequate cryptographic problem has to be de�ned. Trying tolist all undesired situations is infeasible and prone to error. Instead, one shouldde�ne the functionality in terms of operation in an imaginary ideal model, andrequire a candidate solution to emulate this operation in the real, clearly de�ned,model (which speci�es the adversary's abilities). Once the de�nitional stage iscompleted, one proceeds to construct a system that satis�es the de�nition. Sucha construction may use some simpler tools, and its security is proven relying onthe features of these tools. In practice, of course, such a scheme may need tosatisfy also some speci�c e�ciency requirements.This book focuses on several archetypical cryptographic problems (e.g., en-cryption and signature schemes) and on several central tools (e.g., computa-tional di�culty, pseudorandomness, and zero-knowledge proofs). For each ofthese problems (resp., tools), we start by presenting the natural concern un-derlying it (resp., its intuitive objective), then de�ne the problem (resp., tool),and �nally demonstrate that the problem may be solved (resp., the tool can beconstructed). In the latter step, our focus is on demonstrating the feasibilityof solving the problem, not on providing a practical solution. As a secondaryconcern, we typically discuss the level of practicality (or impracticality) of thegiven (or known) solution.Computational Di�cultyThe speci�c constructs mentioned above (as well as most constructs in this area)can exist only if some sort of computational hardness exists. Speci�cally, all theseproblems and tools require (either explicitly or implicitly) the ability to generateinstances of hard problems. Such ability is captured in the de�nition of one-wayfunctions (see further discussion in Section 2.1). Thus, one-way functions is thevery minimum needed for doing most sorts of cryptography. As we shall see,they actually su�ce for doing much of cryptography (and the rest can be done byaugmentations and extensions of the assumption that one-way functions exist).Our current state of understanding of e�cient computation does not allowus to prove that one-way functions exist. In particular, the existence of one-way functions implies that NP is not contained in BPP � P (not even \onthe average"), which would resolve the most famous open problem of computerscience. Thus, we have no choice (at this stage of history) but to assume thatone-way functions exist. As justi�cation to this assumption we may only o�erthe combined believes of hundreds (or thousands) of researchers. Furthermore,these believes concern a simply stated assumption, and their validity followsfrom several widely believed conjectures which are central to some �elds (e.g.,the conjecture that factoring integers is hard is central to computational numbertheory).
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VAs we need assumptions anyhow, why not just assume what we want (i.e., theexistence of a solution to some natural cryptographic problem)? Well, �rst weneed to know what we want: as stated above, we must �rst clarify what exactlywe want; that is, go through the typically complex de�nitional stage. But oncethis stage is completed, can we just assume that the de�nition derived can bemet? Not really: once a de�nition is derived how can we know that it can at allbe met? The way to demonstrate that a de�nition is viable (and so the intuitivesecurity concern can be satis�ed at all) is to construct a solution based on a betterunderstood assumption (i.e., one that is more common and widely believed). Forexample, looking at the de�nition of zero-knowledge proofs, it is not a-priori clearthat such proofs exist at all (in a non-trivial sense). The non-triviality of thenotion was �rst demonstrated by presenting a zero-knowledge proof system forstatements, regarding Quadratic Residuosity, which are believed to be hard toverify (without extra information). Furthermore, in contrary to prior beliefs, itwas later shown in that the existence of one-way functions implies that any NP-statement can be proven in zero-knowledge. Thus, facts which were not knownat all to hold (and even believed to be false), where shown to hold by reductionto widely believed assumptions (without which most of modern cryptographycollapses anyhow). To summarize, not all assumptions are equal, and so reducinga complex, new and doubtful assumption to a widely-believed simple (or evenmerely simpler) assumption is of great value. Furthermore, reducing the solutionof a new task to the assumed security of a well-known primitive typically meansproviding a construction that, using the known primitive, solves the new task.This means that we do not only know (or assume) that the new task is solvablebut rather have a solution based on a primitive that, being well-known, typicallyhas several candidate implementations.Structure and PrerequisitesOur aim is to present the basic concepts, techniques and results in cryptography.As stated above, our emphasis is on the clari�cation of fundamental conceptsand the relationship among them. This is done in a way independent of theparticularities of some popular number theoretic examples. These particularexamples played a central role in the development of the �eld and still o�er themost practical implementations of all cryptographic primitives, but this doesnot mean that the presentation has to be linked to them. On the contrary,we believe that concepts are best clari�ed when presented at an abstract level,decoupled from speci�c implementations. Thus, the most relevant backgroundfor this book is provided by basic knowledge of algorithms (including random-ized ones), computability and elementary probability theory. Background on(computational) number theory, which is required for speci�c implementationsof certain constructs, is not really required here (yet, a short appendix presentingthe most relevant facts is included in this volume so to support the few examplesof implementations presented here).
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VI Volume 1: Introduction and Basic ToolsChapter 1: IntroductionChapter 2: Computational Di�culty (One-Way Functions)Chapter 3: Pseudorandom GeneratorsChapter 4: Zero-Knowledge ProofsVolume 2: Basic ApplicationsChapter 5: Encryption SchemesChapter 6: Signature SchemesChapter 7: General Cryptographic ProtocolsVolume 3: Beyond the Basics� � �Figure 0.1: Organization of this bookOrganization of the book. The book is organized in three parts (see Fig-ure 0.1): Basic Tools, Basic Applications, and Beyond the Basics. The �rst vol-ume contains an introductory chapter as well as the �rst part (Basic Tools). Thispart contains chapters on computational di�culty (one-way functions), pseudo-randomness and zero-knowledge proofs. These basic tools will be used for theBasic Applications of the second part, which consist of Encryption, Signatures,and General Cryptographic Protocols.The partition of the book into three parts is a logical one. Furthermore, ito�ers the advantage of publishing the �rst part without waiting for the comple-tion of the other parts. Similarly, we hope to complete the second part within acouple years, and publish it without waiting for the third part.The current manuscript. The current manuscript consists of fragments of achapter on encryption schemes. These fragments provide a draft of the �rst threesections of this chapter, covering the basic setting, de�nitions and constructions.Also included is a plan of the fourth section (i.e., beyond eavesdropping security),fragments for the Miscellaneous section of this chapter, the above extracts fromthe preface of Volume 1, and a table of contents that includes Volume 1.
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Chapter 5Encryption SchemesUpto the 1970's, Cryptography was understood as the art of building encryptionschemes. Since then, other tasks have been recorgnized as at least as central toCryptography. Yet, the construction of encryption schemes remains, and is likelyto remain, a central enterprise of Cryptography.In this chapter we review the well-known notions of private-key and public-key encryption schemes. More importantly, we de�ne what is meant by sayingthat such schemes are secure. It turns out that using randomness throughout theencryption process (i.e., not only during key-generation) is essential to security.We present some basic constructions of secure encryption schemes. Finally, wediscuss \dynamic" notions of security culminating in robustness against chosenciphertext attacks and non-malleability.Author's Note: Currently the write-up contains only a rough draft forthe �rst 3 sections of this chapter.5.1 The Basic SettingLoosely speaking, encryption schemes are supposed to enable private communi-cation between parties that communicate over an insecure channel. Thus, thebasic setting consists of a sender, a receiver, and an insecure channel that maybe tapped by an adversary. The goal is to allow the sender to transfer infor-mation to the receiver, over the insecure channel, without letting the adversary�gure out this information. Thus, we distinguish between the actual (secret)information that the receiver wishes to transmit and the messages sent over theinsecure communication channel. The former is called the plaintext, whereasthe latter is called the ciphertext. Clearly, the ciphertext must di�er from theplaintext or else the adversary can easily obtain the plaintext by tapping thechannel. Thus, the sender must transform the plaintext into a ciphertext sothat the receiver can retreive the plaintext from the ciphertext, but the adver-sary cannot do so. Clearly, something must distinguish the receiver (who is ableto retreive the plaintext from the corresponding ciphertext) from the adversary323
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324 CHAPTER 5. ENCRYPTION SCHEMES(who cannot do so). Speci�cally, the receiver know something that the adversarydoes not know. This thing is called a key.An encryption scheme consists of a method of transforming plaintexts to ci-phertexts and vice versa, using adequate keys. These keys are essential to theability to e�ect these transformations. We stress that the encryption scheme it-self (i.e., the encryption/decryption algorithms) may be known to the adversary,and its security relies on the hypothesis that the adversary does not know thekeys. Formally, we need to consider a third algorithm; namely, a probabilisticalgorithm used to generate keys. This algorithm must be probabilistic (or else,by invoking it the adversary obtains the very same key used by the receiver).5.1.1 OverviewIn accordance with the above, an encryption scheme consists of three algorithms.These algorithms are public (i.e., known to all parties). The obvious algorithmsare the encryption algorithm, which transforms plaintexts to ciphertexts, andthe decryption algorithm, which transforms ciphertexts to plaintexts. By thediscussion above, it is clear that the decription algorithm must employ a keythat is known to the receiver but is not known to the adversary. This key isgenerated using a third algorithm, called the key generator. Furthermore, it isnot hard to see that the encryption process must also depend on the key (orelse messages sent to one party can be read by a di�erent party who is alsoa potential receiver). Thus, the key-generation algorithm is used to produce apair of (related) keys, one for encryption and one for decryption. The encryptionalgorithm, given an encryption key and a plaintext, produces a plaintext whichwhen fed to the decryption algorithm, with the corresponding decryption key,returns the original plaintext. We stress that knowledge of the decryption keyis essential for the latter transformation.A fundamental distiction between encryption schemes refers to the relationbetween the two keys (mentioned above). The simpler (and older) notion as-sumes that the encryption key equals the decryption key. Such schemes arecalled private-key (or symmetric). To use a private-key scheme, the legitimateparties must �rst agree on the secret key. This can be done by having oneparty generate the key at random and send it to the other party using a channelthat is assumed to be secure. A crucial point is that the key is generated inde-pendently of the plaintext, and so it can be generated and exchanged prior tothe plaintext even being determined. Thus, private-key encryption is a way ofextending a private channel over time: If the parties can use a private channeltoday (e.g., they are currently in the same physical location) but not tommorow,then they can use the private channel today to exchange a secret key that theymay use tomorrow for secret communication. A simple example of a private-keyencryption scheme is the one-time pad. The secret key is merely a uniformlychosen sequence of n bits, and an n-bit long ciphertext is produced by XORingthe plaintext, bit-by-bit, with the key. The plaintext is recovered from the ci-phertext in the same way. Clearly, the one-time pad provides absolute security.However, its usage of the key is ine�cient; or, put in other words, it requires
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5.1. THE BASIC SETTING 325keys of length comparable to the total length of data communicated. In the restof this chapter we will only discuss encryption schemes where n-bit long keysallow to communicated data of length greater than n (but still polynomial in n).A new type of encryption schemes has emerged in the 1970's. In theseschemes, called public-key (or asymmetric), the decryption key di�ers from theencryption key. Furthermore, it is infeasible to �nd the decryption key, given theencryption key. These schemes enable secure communication without ever usinga secure channel. Instead, each party applies the key-generation algorithm toproduce a pair of keys. The party, called P , keeps the decryption key, denoteddP , secret and publishes the encryption key, denoted eP . Now, any party cansend P private messages by encrypting them using the encryption key eP . PartyP can decrypt these messages by using the decryption key dP , but nobody elsecan do so.5.1.2 A Formulation of Encryption SchemesWe start by de�ning the basic mechanism of encryption schemes. This de�nitionsays nothing about the security of the scheme (which is the subject of the nextsection).De�nition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G;E;D),of probabilistic polynomial-time algorithms satisfying the following two condi-tions1. On input 1n, algorithm G (called the key generator) outputs a pair of bitstrings.2. For every pair (e; d) in the range of G(1n), and for every � 2 f0; 1g�,algorithms E (encryption) and D (decryption) satisfyPr[D(d;E(e; �))=�] = 1where the probability is over the internal coin tosses of algorithms E andD.The integer n serves as the security parameter of the scheme. Each (e; d) inthe range of G(1n) consitutes a pair of corresponding encryption/decryptionkeys. The string E(e; �) is the encryption of the plaintext � 2 f0; 1g� using theencryption key e, whereas D(d; �) is the decryption of the ciphertext � usingthe decryption key d.Observe that De�nition 5.1.1 does not distinguish private-key encryption schemesfrom public-key ones. The di�erence between the two types is introduced in thesecurity de�nitions: In a public-key scheme the \breaking algorithm" gets theencryption key (i.e., e) as an additional input (and thus e 6= d follows); whilein private-key schemes e is not given to the \breaking algorithm" (and thus onemay assume, without loss of generality, that e = d).
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326 CHAPTER 5. ENCRYPTION SCHEMESWe stress that the above de�nition requires the scheme to operate for everyplaintext, and speci�cally for plaintext of length exceeding the length of the en-cryption key. (This rules out the information theoretic secure scheme mentionedabove.)Notation: In the rest of this book, we write Ee(�) instead of E(e; �) andDd(�) instead of D(d; �). Whenever there is little risk of confusion, we dropthese subscripts. Also, we let G1(1n) (resp., G2(1n)) denote the �rst (resp.,second) element in the pair G(1n). That is, G(1n) = (G1(1n); G2(1n)).Comments: The above de�nition may be relaxed in several ways withoutsigni�cantly harming its usefulness. For example, we may relax Condition (2)and allow a negligible decryption error (e.g., Pr[Dd(Ee(�)) 6= �] < 2�n). Al-ternatively, one may postulate that Condition (2) holds for all but a negligiblemeasure of the key-pairs generated by G(1n). At least one of these relaxationsis essential for all popular suggestions of encryption schemes.Another relaxation consists of restricting the domain of possible plaintexts(and ciphertexts). For example, one may restrict Condition (2) to �'s of length`(n), where ` : N!N is some �xed function. Given a scheme of the latter type(with plaintext length `), we may construct a scheme as in De�nition 5.1.1 bybreaking plaintexts into blocks of length `(n) and applying the restricted schemeseparetly to each block. For more details see Section 5.2.4.5.2 De�nitions of SecurityIn this section we present two fundamental de�nitions of security and provetheir equivalence. The �rst de�nition, called semantic security, is the mostnatural one. Semantic security is a computational complexity analogue of Shan-non's de�nition of perfect privacy. Loosely speaking, an encryption scheme issemantically secure if the encryption of a message does not yield any informa-tion on the message to an adversary that is computationally restricted (e.g., topolynomial-time). The second de�nition has a more technical 
avour. It in-terprets security as the infeasibility of distinguishing between encryptions of agiven pair of messages. This de�nition is useful in demonstrating the securityof a proposed encryption scheme, and for arguments concerning properties ofcryptographic protocols that utilize an encryption scheme.We stress that the de�nitions presented below go way beyond saying that itis infeasible to recover the plaintext from the ciphertext. The latter statementis indeed a minimal requirement from a secure encryption scheme, but we claimthat it is way too weak a requirement: An encryption scheme is typically used inapplications where obtaining speci�c partial information on the plaintext endan-gers the security of the application. When designing an application-independentencryption scheme, we do not know which partial information endangers theapplication and which does not. Furthermore, even if one wants to design anencryption scheme tailored to one's own speci�c applications, it is rare (to say
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5.2. DEFINITIONS OF SECURITY 327the least) that one has a precise characterization of all possible partial informa-tion that endanger these applications. Thus, we require that it is infeasible toobtain any information about the plaintext from the ciphertext. Furthermore,in most applications the plaintext may not be uniformly distributed and somea-priori information regarding it is available to the adversary. We require thatthe secrecy of all partial information is preserved also in such a case. That is,even in presence of a-priori information on the plaintext, it is infeasible to obtainany (new) information about the plaintext from the ciphertext (beyond what isfeasible to obtain from the a-priori information on the plaintext). The de�nitionof semantic security postulates all of this.To simplify the exposition, we adopt a non-uniform formulation. Namely, inthe security de�nitions we expand the domain of e�cient adversaries/algorithmsto include polynomial-size circuits (rather than only probabilistic polynomial-time machines). Likewise, we make no computation restriction regarding theprobability distribution from which messages are taken, nor regarding the a-priori information available on these messages. We note that employing such anon-uniform formulation (rather than a uniform one) may only strengthen thede�nitions; yet, it does weaken the implications proven between the de�nitions,since these (simpler) proofs make free usage of non-uniformity.5.2.1 Semantic SecurityLoosely speaking, semantic security means that whatever can be e�ciently com-puted from the ciphertext, can be e�ciently computed also without the cipher-text. Thus, an adversary gains nothing by intercepting ciphertexts sent betweencommunicating parties who use a semantically secure encryption scheme, sinceit could have obtained the same without intercepting these ciphertexts. Indeed,this formulation follows the simulation paradigm: \lack of gain" is captured byasserting that whatever is learnt from the ciphertext can be learnt within relatedcomplextity also without the ciphertext.To be somewhat more accurate, semantic security means that whatever canbe e�ciently computed from the ciphertext, can be e�ciently computed givenonly the length of the plaintext. Note that this formulation does not role out thepossibility that the length of the plaintext can be inferred from the ciphertext.Indeed, some information about the length of the plaintext must be revealed bythe ciphertext (see Exercise 3). We stress that other than information aboutthe length of the plaintext, the ciphertext is required to yield nothing about theplaintext.We augment this formulation by requiring that the above remains valid evenin presence of auxiliary partial information about the plaintext. Namely, what-ever can be e�ciently computed from the ciphertext and additional partial in-formation about the plaintext, can be e�ciently computed given only the lengthof the plaintext and the same partial information. In the actual de�nition, theinformation regarding the plaintext that the adversary tries to obtain is capturedby the function f , whereas the a-priori partial information about the plaintextis captured by the function h. The above is required to hold for any distribution
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328 CHAPTER 5. ENCRYPTION SCHEMESof plaintexts, captured by the probability ensemble fXngn2N.Secrurity holds only for plaintexts of length polynomial in the security pa-rameter. This is captured below by the restriction jXnj = poly(n). Note thatwe cannot hope to provide computational security for plaintexts of unboundedlength in the security parameter (see Exercise 2). Likewise, we restrict the func-tions f and h to be polynomially-bounded; that is, jf(x)j; jh(x)j = poly(jxj).The di�erence between private-key and public-key encryption schemes ismanisfested in the de�nition of security. In the latter the adversary, tryingto obtain information on the plaintext, is given the encryption key whereas inthe former it is not. Thus, the di�erence between these schemes amounts to adi�erence in the adversary model (considered in the de�nition of security). Westart by presenting the de�nition for private-key encryption schemes.De�nition 5.2.1 (semantic security { private-key): An encryption scheme,(G;E;D), is semantically secure (in the private-key model) if for every polynomial-size circuit family fCngn2N, there exists a polynomial-size circuit family fC 0Ng sothat for every ensemble fXngn2N, with jXnj = poly(n), every pair of polynomially-bounded functions f; h : f0; 1g� ! f0; 1g�, every polynomial p(�) and all su�-ciently large n Pr hCn(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i (5.1)< Pr hC 0n(1jXnj; h(Xn))=f(Xn)i+ 1p(n) (5.2)(The probability in the above terms is taken over Xn as well as over the internalcoin tosses of algorithms G and E.)Furthermore, we require that the latter circuit family is e�ciently constructablefrom the former one. That is, we require the existence of a probabilistic polynomial-time transformation, T , that for every n, given the description of Cn returns adescription of C 0n as above (i.e., C 0n = T (Cn) for every n). In case C 0n is arandom variable, the probability in Eq. (5.2) is also taken over its distribution.The function h provides both algorithms with partial information on the plain-text Xn. In addition both algorithms get the length of Xn. These algorithmsthen try to guess the value f(Xn); namely, they try to infer information aboutthe plaintext Xn. Loosely speaking, in semantically secure encryption schemethe ciphertext does not help in this inference task. That is, the success proba-bility of any e�cient algorithm (i.e., the circuit family fCng) that is given theciphertext, can be matched, upto a negligible fraction, by the success probabil-ity of an e�cient algorithm (i.e., the circuit family fC 0ng) that is not given theciphertext at all. The extra requirement that Cn can be e�ciently transformedinto C 0n makes the de�nition stronger, and is done out of philosophical reasons {see discussion below.De�nition 5.2.1 refers to private-key encryption schemes. To derive a def-inition of security for public-key encryption schemes, the encryption-key (i.e.,G1(1n)) should be given to the adversaries as an additional input. That is,
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5.2. DEFINITIONS OF SECURITY 329De�nition 5.2.2 (semantic security { public-key): An encryption scheme, (G;E;D),is semantically secure (in the public-key model) if there exists a polynomial-timetransformation, T , so that for every polynomial-size circuit family fCng, andfor every fXngn2N, f; h, p(�) and n as in De�nition 5.2.1Pr hCn(G1(1n); EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hC 0n(G1(1n); 1jXnj; h(Xn))=f(Xn)i+ 1p(n)where C 0n def= T (Cn).We comment that the encryption-key can be omitted from the input to C 0n, sinceC 0n may generate it by itself.Terminology: For sake of simplicity, we refer to an encryption scheme that issemantically secure in the private-key (resp., public-key) model as to a semantically-secure private-key (resp., public-key) encryption scheme.The reader may note that a semantically-secure public-key encryption schemecannot employ a deterministic encryption algorithm; that is, Ee(x) must be arandom variable rather than a �xed string. This is more evident with respect tothe equivalent De�nition 5.2.4 (below). See further discussion following De�ni-tion 5.2.4.Discussion of some de�nitional choicesWe discuss some subtle issues regarding De�nitions 5.2.1 and 5.2.2. The �rstcomment is important, the others can be skipped with little loss. The interestedreader is also referred to Exercises 11 and 12 that discuss additional variants ofthe de�nition of semantic security.E�ecient transformation of adversaries. Our de�nitions require that ad-versaries capturing what can be inferred from the ciphertext be e�ectively trans-formed into \equivalent" adversaries that operate without being given the cipher-text. This is stronger than only requiring that corresponding \equivalent" ad-versaries exist. The strenthening seems especially appropriate since we are usinga non-uniform model of adversary strategies. Merely saying that polynomial-sizecircuits that operate without being given the ciphertext do exist is not reassuringenough, since they may be hard to �nd whereas circuits that operate while beinggiven the ciphertext may be easy to �nd. The extra requirement guarantess thatthis cannot be the case: if circuits that operates on the ciphertext are easy to�nd then so are the \equivalent" circuits that operate without the ciphertext.Deterministic versus randomized adversaries. Our de�nitions refer im-plicitly to deterministic adversaries (modelled by non-uniform families of circuitswhich are typically assumed to be deterministic). This is in accordance with the
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330 CHAPTER 5. ENCRYPTION SCHEMESgeneral thesis by which the harm of non-uniform adversaries may be maximizedby deterministic ones (i.e., by �xing the \worst" coin-sequence). However, weneed to verify that a transformation of adversaries (as discussed above) referringto deterministic adversaries can be extended to randomized ones. This is indeedthe case; see Exercise 6.We comment that the above non-uniform formulation is equivalent to a uni-form formulation in which the adversaries are given identical auxiliary input:See Exercise 5.Lack of restrictions on the functions f and g. We do not require thatthese functions are even computable. This seems strange at �rst glance. How-ever, as we shall see in the sequel (see also Exercise 9), the meaning of semanticsecurity is essentially that the distribution ensembles (E(Xn); 1jXnj; h(Xn)) and(E(1jXnj); 1jXnj; h(Xn)) are computationally indistinguishable (and so whateverCn can compute can be computed by C 0n).Other modi�cations of no impact. Actually, inclusion of a-priori infor-mation (captured by the function h) does not a�ect the de�nition of semanticsecurity: De�nition 5.2.1 remains intact if we omit h from the formulation (orconsider a constant function). (This can be shown in various ways; e.g., seeExercise 10.) Also, the function f can be restricted to be a Boolean functionhaving polynomial-size circuits, and the random variable Xn may be restrictedto be very \dull" (e.g., have only two strings in its support): See proof of The-orem 5.2.5.5.2.2 Indistinguishability of EncryptionsThe following technical interpratation of security states that it is infeasible todistinguish the encryptions of two plaintexts (of the same length). That is, suchciphertexts are computationally indistinguishable as de�ned in De�nition 3.2.2.Again, we start with the private-key variant.De�nition 5.2.3 (indistinguishability of encryptions { private-key): An en-cryption scheme, (G;E;D), has indistinguishable encryptions (in the private-keymodel) if for every polynomial-size circuit family fCng, every polynomial p, allsu�ciently large n and every x; y 2 f0; 1gpoly(n) (i.e., jxj = jyj),jPr �Cn(EG1(1n)(x))=1�� Pr �Cn(EG1(1n)(y))=1� j < 1p(n)The probability in the above terms is taken over the internal coin tosses of algo-rithms G and E.Note that the potential plaintexts to be distinguished can be incorporated intothe circuit Cn. Thus, the circuit models both the adversary's strategy and itsa-priori information: See Exercise 7.
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5.2. DEFINITIONS OF SECURITY 331Again, the security de�nition for public-key encryption schemes can be de-rived by adding the encryption-key (i.e., G1(1n)) as an additional input to thealgorithm. That is,De�nition 5.2.4 (indistinguishability of encryptions { public-key): An encryp-tion scheme, (G;E;D), has indistinguishable encryptions (in the public-key model)if for every polynomial-size circuit family fCng, and every p(�), n, x and y asin De�nition 5.2.3jPr �Cn(G1(1n); EG1(1n)(x))=1�� Pr �Cn(G1(1n); EG1(1n)(y))=1� j < 1p(n)Terminology: For sake of simplicity, we refer to an encryption scheme that hasindistinguishable encryptions in the private-key (resp., public-key) model as toa ciphertext-indistinguishable private-key (resp., public-key) encryption scheme.The reader may note that a semantically-secure public-key encryption schemecannot employ a deterministic encryption algorithm; that is, Ee(x) must be arandom variable rather than a �xed string.A ciphertext-indistinguishable public-key encryption scheme cannot employa deterministic encryption algorithm (i.e., Ee(x) cannot be a �xed string). Fora public-key encryption scheme with a deterministic encryption algorithm E,given an encryption-key e and a pair of candidate plaintexts (x; y), one caneasily distinguish Ee(x) from Ee(y) (by merely applying Ee to x and comparingthe result to the given ciphertext). In contrast, in case the encryption algorithmitself is randomized, the same plaintext can be encrypted in exponentially manydi�erent ways, under the same encryption key. Furthermore, the probability thatapplying Ee twice to the same message (while using independent randomizationin Ee) results in the same ciphertext may be exponentially vanishing. (Indeed, asshown below, public-key encryption scheme having indistinguishable encryptionscan be constructed based on any trapdoor permutations, and these schemesemploy randomized encryption algorithms.)5.2.3 Equivalence of the Security De�nitionsThe following theorem is stated and proven for private-key encryption schemes.Similar results hold for public-key encryption schemes (see Exercise 8).Theorem 5.2.5 (equivalence of de�nitions { private-key): A private-key en-cryption scheme is semantically secure if and only if it has indistinguishableencryptions.Let (G;E;D) be an encryption scheme. We formulate a proposition for each ofthe two directions of the above theorem. Both propositions are in fact strongerthan the corresponding direction stated in Theorem 5.2.5. The more useful di-rection is stated �rst: it asserts that the technical interpration of security, interms of ciphertext-indistinguishability, implies the natural notion of sematicsecurity. Thus, the following proposition yields a methodology for designing
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332 CHAPTER 5. ENCRYPTION SCHEMESsematically secure encryption schemes: design and prove your scheme to beciphertext-indistinguishable, and conclude (by the following) that it is semati-cally secure. The opposite direction (of Theorem 5.2.5) establish the \complete-ness" of the latter methodology, and more generally assert that requiring anencryption scheme to be ciphertext-indistinguishable does not rule out schemesthat are sematically secure.Proposition 5.2.6 (useful direction { \indistinguishability" implies \security"):Suppose that (G;E;D) is a ciphertext-indistinguishable private-key encryptionscheme. Then (G;E;D) is semantically-secure. Furthermore, the circuit C 0nproduced by the transformation T captures the computation of a probabilisticpolynomial-time oracle machine that is given oracle access to Cn.Proposition 5.2.7 (opposite direction { \security" implies \indistinguishabil-ity"): Suppose that (G;E;D) is a semantically secure private-key encryptionscheme. Then (G;E;D) has indistinguishable encryptions. Furthermore, theconclusion holds even if the de�nition of semantic security is restricted to thespecial case where h is a constant function, Xn is uniformly distributed over aset containing two strings, the function f is Boolean, and the transformation Tis not even required to be computable.Proof of Proposition 5.2.6: Suppose that (G;E;D) has indistinguishableencryptions. We show that (G;E;D) is semantically secure by constructingfor every polynomial-size circuit family fCng, a polynomial-size circuit familyfC 0ng so that for every fXngn2N, f and h, the circuit C 0n guesses f(Xn) from(1jXnj; h(Xn)) essentially as good as Cn guesses f(Xn) from (E(Xn); 1jXnj; h(Xn)).Let Cn be a circuit that tries to infer partial information (i.e., the valuef(Xn)) from the encryption of the message Xn (when also given 1jXnj and a-priori information h(Xn)). Namely, on input E(�) and (1j�j; h(�)), the circuitCn tries to guess f(�). We construct a new circuit, C 0n, that performs as wellwithout getting the input E(�). The new circuit consists of invoking Cn on inputEG1(1n)(1j�j) and (1j�j; h(�)), and outputs whatever Cn does. That is, C 0n in-vokes the key-generator G (on input 1n), obtains an encryption-key e = G1(1n),invokes the encryption algorithm with key e and (\dummy") plaintext 1j�j, ob-taining a ciphertext that it feeds to Cn together with the inputs (1j�j; h(�)).Observe that C 0n can be e�ciently computed from Cn (i.e., by augmenting Cnwith the uniform circuit for computing algorithms G and E).Indistinguishability of encryptions will be used to prove that C 0n performsessentially as well as Cn. Note that the construction of C 0n does not dependon the functions h and f or on the distribution of messages to be encrypted.Furthermore, C 0n consists of a probabilistic polynomial-time machine that usesCn as a black-box.Claim 5.2.6.1: Let fC 0ng be as above. Then, for any polynomial p, and allsu�ciently large n'sPr hCn(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i
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5.2. DEFINITIONS OF SECURITY 333< Pr hC 0n(1jXnj; h(Xn))=f(Xn)i+ 1p(n)Proof: To simplify the notations, let us incorporate 1j�j into h(�). Using thede�nition of C 0n, we can rewritten the claim as assertingPr �Cn(EG1(1n)(Xn); h(Xn))=f(Xn)�< Pr hCn(EG1(1n)(1jXnj); h(Xn))=f(Xn)i+ 1p(n)Assume, to the contradiction that for some polynomial p and in�nitely manyn's the above inequality is violated. Then, for each such n, we have E[�(Xn)] >1=p(n), where�(x) def= ���Pr �Cn(EG1(1n)(x); h(x))=f(x)� � Pr hCn(EG1(1n)(1jxj); h(x))=f(x)i���We now use an averaging argument: Let xn 2 f0; 1gpoly(n) be a string for which�(x) is maximum, and so �(xn) > 1=p(n). Using this xn, we introduce a newcircuit Dn, which incorporates f(xn) and h(xn), and operates as follows. Oninput � = E(�), the circuit Dn invokes Cn(�; h(xn)) and outputs 1 if and onlyif Cn outputs the value f(xn). (Otherwise, Dn outputs 0.) Clearly,Pr �Dn(EG1(1n)(�))=1� = Pr �Cn(EG1(1n)(�); h(xn))=f(xn)� (5.3)Combining Eq. (5.3) with the de�nition of �(xn), we get���Pr �Dn(EG1(1n)(xn))=1�� Pr hDn(EG1(1n)(1jxnj))=1i��� = �(xn)> 1p(n)in contradiction to our hypothesis that E has indistinguisahble encryptions.Thus, the claim follows. 2Proposition 5.2.6 follows.Discussion: The fact that we deal with a non-uniform model of computation,allows the above proof to proceed regardless of the complexity of f and h. Allthat our proof requires is the values of f and h on a single string, and suchvalues can be incorporated in the description of the circuit Dn.Proof of Proposition 5.2.7: We now show that if (G;E;D) has distinguish-able encryptions then it is not semantically secure (not even in the restrictedsense mentioned in the furthermore-clause of the proposition). Towards thisend, we assume that there exists a polynomial p, a polynomial-size circuit fam-ily fDng, such that for in�nitely many n's there exists xn; yn 2 f0; 1gpoly(n) sothat ��Pr �Dn(EG1(1n)(xn))=1�� Pr �Dn(EG1(1n)(yn))=1��� > 1p(n) (5.4)
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334 CHAPTER 5. ENCRYPTION SCHEMESWe de�ne a random variable Xn which is uniformly distributed over fxn; yng,and f :f0; 1g�!f0; 1g so that f(xn) = 1 and f(yn) = 0. Note that f(Xn) = 1with probability 1=2 and is 0 otherwise. (The function h is de�ned as a constantfunction.)We will show that Dn can be transformed into a polynomial-size circuitCn that guesses the value of f(Xn), from the encryption of Xn, and does sosigni�cantly better that with probability 12 . This violates (even the restrictedform of) semantic security, since no circuit (regardless of its size) can guessf(Xn) better than with probability 1=2 when only given 1jXnj (since given theconstant value 1jXnj, the value of f(Xn) is uniformly distributed over f0; 1g).Let us assume, without loss of generality, that for in�nitely many n'sPr �Dn(EG1(1n)(xn))=1� > Pr �Dn(EG1(1n)(yn))=1� + 1p(n) (5.5)Claim 5.2.7.1: There exists a polynomial-size circuit family fCng so that forin�nitely many n'sPr �Cn(EG1(1n)(Xn))=f(Xn)� > 12 + 12p(n)Proof: The circuit Cn uses Dn in a straightforward manner: On input � =E(�), the new circuit Cn feeds Dn with input � and outputs 1 if Dn outputs 1(otherwise, Cn outputs 0).1It is left to analyze the success probability of Cn:Pr �Cn(EG1(1n)(Xn))=f(Xn)�= 12 � Pr �Cn(EG1(1n)(Xn))=f(Xn) jXn=xn�+ 12 � Pr �Cn(EG1(1n)(Xn))=f(Xn) jXn=yn�= 12 � �Pr �Cn(EG1(1n)(xn))=1�+ Pr �Cn(EG1(1n)(yn))=0��= 12 � �Pr �Cn(EG1(1n)(xn))=1�+ 1� Pr �Cn(EG1(1n)(yn))=1��> 12 + 12p(n)where the inequality is due to Eq. (5.5). 2In contrast, as observed above, no circuit (regardless of its size) can guessf(Xn) with success probability above 1=2, when given only 1jXnj and h(Xn)1 We comment that the `1' output by Dn is an indication that � is more likely to be xn,whereas the output of Cn is a guess of f(�). This point may be better stressed by rede�ningf so that f(xn) def= xn and f(x) = yn if x 6= xn, and having Cn output xn if Cn outputs 1and output yn otherwise.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



5.2. DEFINITIONS OF SECURITY 335(which are both �xed strings that can be incorporated in the circuit). Thus, wehaveFact 5.2.7.2: For every n and every circuit C 0nPr hC 0n(1jXnj; h(Xn))=f(Xn)i � 12Combining Claim 5.2.7.1 and Fact 5.2.7.2, we reach a contradiction to the hy-pothesis that the scheme is semantically secure (even in the restricted sensementioned in the furthermore-clause of the proposition). Thus, the propositionfollows.Comment: When proving the public-key analogue of Proposition 5.2.7, thecircuit Cn just passes the encryption-key, given as part of its input, to the circuitDn. The rest of the proof remains intact.5.2.4 Multiple MessagesThe above de�nitions only refer to the security of a scheme that is used to encrypta single plaintext (per key generated). Since the plaintext may be longer thanthe key, these de�nitions are already non-trivial, and a scheme satisfying them(even in the private-key model) implies the existence of one-way functions (seeExercise 1). Still, in reality, we want to use encryption schemes to encrypt manymessages with the same key. We show that in the public-key model, securityin the single-message setting (discussed above) implies security in the multiple-message setting (de�ned below). This is not necessarily true for the private-keymodel.5.2.4.1 De�nitionsFor x = (x(1); :::; x(t)), we let Ee(x) denote the concatanation of the results of ap-plying the randomized processEe to x(1); :::; x(t). That is, Ee(x) = Ee(x(1)); :::; Ee(x(t)).We stress that in each of the t invocations Ee utilizes independently chosen ran-dom coins.De�nition 5.2.8 (semantic security { mulitple messages):For private-key: An encryption scheme, (G;E;D), is semantically secure formultiple messages in the private-key model if there exists a polynomial-timetransformation, T , so that for every polynomial t(�) and every polynomial-size circuit family fCng, for every ensemble fXn = (X(1)n ; :::; X(t(n))n )gn2N,with jX(i)n j = poly(n), every pair of functions f; h : f0; 1g� ! f0; 1g�, everypolynomial p(�) and all su�ciently large nPr hCn(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hC 0n(1jXnj; h(Xn))=f(Xn)i+ 1p(n)
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336 CHAPTER 5. ENCRYPTION SCHEMESwhere C 0n def= T (Cn).For public-key: An encryption scheme, (G;E;D), is semantically secure formultiple messages in the public-key model if for t(�), fCng, fC 0ng, fXngn2N,f; h, p(�) and n as abovePr hCn(G1(1n); EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hC 0n(G1(1n); 1jXnj; h(Xn))=f(Xn)i+ 1p(n)We stress that the elements of Xn are not necessarily independent; they maydepend on one another. Note that the above de�nition also cover the case wherethe adversary obtains some of the plaintexts themselves. In this case it is stillinfeasible for him/her to obtain infromation about the missing plaintexts (seeExercise 14).De�nition 5.2.9 (indistinguishability of encryptions { mulitple messages):For private-key: An encryption scheme, (G;E;D), has indistinguishable en-cryptions for multiple messages in the private-key model if for every poly-nomial t(�), every polynomial-size circuit family fCng, every polynomial p,all su�ciently large n and every x1; :::; xt(n); y1; :::; yt(n) 2 f0; 1gpoly(n)jPr �Cn(EG1(1n)(�x))=1�� Pr �Cn(EG1(1n)(�y))=1� j < 1p(n)where �x = (x1; :::; xt(n)) and �y = (y1; :::; yt(n)).For public-key: An encryption scheme, (G;E;D), has indistinguishable encryp-tions for multiple messages in the public-key model if for t(�), fCng, p, nand x1; :::; xt(n); y1; :::; yt(n) as abovejPr �Cn(G1(1n); EG1(1n)(�x))=1��Pr �Cn(G1(1n); EG1(1n)(�y))=1� j < 1p(n)The equivalence of De�nitions 5.2.8 and 5.2.9 can be established analogously tothe proof of Theorem 5.2.5.Theorem 5.2.10 (equivalence of de�nitions { multiple messages): A private-key (resp., public-key) encryption scheme is semantically secure for multiple mes-sages if and only if it has indistinguishable encryptions for multiple messages.Thus, proving that single-message security implies multiple-message security forone de�nition of security, yields the same for the other. We may thus concentrateon the ciphertext-indistinguishability de�nitions.
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5.2. DEFINITIONS OF SECURITY 3375.2.4.2 In the public-key modelWe �rst consider public-key encryption schemes.Theorem 5.2.11 (single-message security implies multiple-message security):A public-key encryption scheme has indistinguishable encryptions for multiplemessages (i.e., satis�es De�nition 5.2.9 in the public-key model) if and only ifit has indistinguishable encryptions for a single message (i.e., satis�es De�ni-tion 5.2.4).Proof: Clearly, multiple-message security implies single-message security as aspecial case. The other direction follows by adapting the proof of Theorem 3.2.6to the current setting.Suppose, towards the contradiction, that there exist a polynomial t(�), apolynomial-size circuit family fCng, and a polynomial p, such that for in�nitelymany n's, there exists x1; :::; xt(n); y1; :::; yt(n) 2 f0; 1gpoly(n) so that��Pr �Cn(G1(1n); EG1(1n)(�x))=1�� Pr �Cn(G1(1n); EG1(1n)(�y))=1��� > 1p(n)where �x = (x1; :::; xt(n)) and �y = (y1; :::; yt(n)). Let us consider such a generic nand the corresponding sequences x1; :::; xt(n) and y1; :::; yt(n). We use a hybridargument: de�ne �h(i) def= (x1; :::; xi; yi+1; :::; yt(n))and H(i)n def= (G1(1n); EG1(1n)(�h(i)))Since H(0)n = (G1(1n); EG1(1n)(�y)) and H(t(n))n = (G1(1n); EG1(1n)(�x)), it followsthat there exists an i 2 f0; :::; t(n)� 1g so that���Pr hCn(H(i)n )=1i� Pr hCn(H(i+1)n )=1i��� > 1t(n) � p(n) (5.6)We now construct a circuit Dn that, on input e and �, operates as follows.2For every j � i, the circuit Dn generates an encryption of xj using the en-cryption key e. Similarly, for every j > i + 1, the circuit Dn generates anencryption of yj using the encryption key e. Let us denote the resulting ci-phertexts by �1; :::; �i; �i+2; :::; �t(n). Finally, Dn invokes Cn on input e and�1; :::; �i; �; �i+2; :::; �t(n), and outputs whatever Cn does.Now, suppose that � is a (random) encryption of xi+1 with key e; that is, � =Ee(xi+1). Then, Dn(e; �) � Cn(e; �h(i+1)) = Cn(H(i+1)n ), where X � Y meansthat the random variables X and Y are identically distributed. Similarly, for� = Ee(yi+1), we have Dn(e; �) � Cn(e; �h(i)) = Cn(H(i)n ). Thus, by Eq. (5.6),2 The construction relies on Dn's knowledge of the encryption-key and hence the public-keymodel is essential for it.
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338 CHAPTER 5. ENCRYPTION SCHEMESwe have ��Pr �Dn(G1(1n); EG1(1n)(yi+1)=1��Pr �Dn(G1(1n); EG1(1n)(xi+1)=1��� > 1t(n) � p(n)in contradiction to our hypothesis that (G;E;D) is a ciphertext-indistinguishablepublic-key encryption scheme (in the single message sense). The theorem follows.Discussion: The fact that we are in the public-key model is essential to theabove proof. It allows the circuit Dn to form encryptions relative to the sameencryption-key used in the ciphertext given to it. In fact, as stated above, theanalogous result does not hold in the private-key model.5.2.4.3 In the private-key modelIn contrary to Theorem 5.2.11, in the private-key model, ciphertext-indistinguishabilityfor a single message does not necessarily imply ciphertext-indistinguishabilityfor multiple messages.Proposition 5.2.12 Suppose that there exist pseudorandom generators (robustagainst polynomial-size circuits). Then, there exists a private-key encryptionscheme that satis�es De�nition 5.2.3 but does not satisfy De�nition 5.2.9.Proof: We start with the construction of the private-key encryption scheme.The encryption/decryption key for security parameter n is a uniformly dis-tributed n-bit long string, denoted s. To encrypt a ciphertext, x, the encryptionalgorithm uses the key s as a seed for a pseudorandom generator, denoted g,that stretches seeds of length n into sequences of length jxj. The ciphertext isobtained by a bit-by-bit exclusive-or of x and g(s). Decryption is done in ananalogous manner.We �rst show that this encryption scheme satis�es De�nition 5.2.3. Intu-itively, this follow from the hypothesis that g is a pseudorandom generator andthe fact that x�Ujxj is uniformly distributed over f0; 1gjxj. Speci�cally, supposetowards the contradiction that for some polynomial-size circuit family fCng, apolynomial p, and in�nitely many n'sjPr[Cn(x� g(Un))=1]� Pr[Cn(y � g(Un))=1]j > 1p(n)where Un is uniformly distributed over f0; 1gn and jxj = jyj = m = poly(n). Onthe other hand, Pr[Cn(x� Um)=1] = Pr[Cn(y � Um]Thus, without loss of generalityjPr[Cn(x� g(Un))=1]� Pr[Cn(x � Um)=1]j > 12 � p(n)
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5.2. DEFINITIONS OF SECURITY 339Incorporating x into the circuit Cn we obtain a circuit that distinguishes Umfrom g(Un), in contradiction to our hypothesis (regarding the pseudorandomnessof g).Next, we observe that the above encryption scheme does not satisfy De�ni-tion 5.2.9. Speci�cally, given the ciphertexts of two plaintexts, one may easilyretreive the exclusive-or of the corresponding plaintexts. That is,Es(x1)�Es(x2) = (x1 � g(s))� (x2 � g(s)) = x1 � x2This clearly violates De�nition 5.2.8 (e.g., consider f(x1; x2) = x1 � x2) as wellas De�nition 5.2.9 (e.g., consider any �x = (x1; x2) and �y = (y1; y2) such thatx1�x2 6= y1�y2). Viewed in a di�erent way, note that any plaintext-ciphertextpair yields a corresponding pre�x of the pseudorandom sequence, and knowledgeof this pre�x violates the security of additional plaintexts. That is, given theencryption of a known plaintext x1 along with the encryption of an unknownplaintext x2, we can retreive x2. On input the ciphertexts �1; �2, knowing thatthe �rst plaintext is x1, �rst retreives the pseudorandom sequence (i.e., it is justr def= �1�x1), and next retreives the second plaintext (i.e., by computing �2�r).Discussion: The single-message security of the above scheme was proven byconsidering an ideal version of the scheme in which the pseudorandom sequenceis replaced by a truely random sequence. The latter scheme is secure in aninformation theoretic sense, and the security of the actual scheme followed bythe indistinguishability of the two sequences. As we show below, the aboveconstruction can be modi�ed to yield a private-key \stream-cipher" that is securefor multiple message encryptions. All that is needed is to make sure that thesame part of the pseudorandom sequence is never used twice.5.2.5 * A uniform-complexity treatmentAs stated at the beginning of this section, the non-uniform formulation wasadopted here for sake of simplicity. In this subsection we sketch a uniform-complexity de�nitional treatment of security. We stress that by uniform or non-uniform complexity treatment of cryptographic primitives we merely refer to themodelling of the adversary. The honest (legitimate) parties are always modelledby uniform complexity classes (most commonly probabilistic polynomial-time).The notion of e�ciently constructible ensembles, de�ned in Section 3.2.3, iscenteral to the uniform-complexity treatment. Recall that an ensemble, X =fXngn2N, is said to be polynomial-time constructible if there exists a probabilisticpolynomial time algorithm S so that for every n, the random variables S(1n)and Xn are identically distributed.
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340 CHAPTER 5. ENCRYPTION SCHEMES5.2.5.1 The de�nitionsWe present only the de�nitions of security for multiple messages; the single-message variant can be easily obtained by setting the polynomial t (below) to beidentically 1. Likewise, we present the public-key version, and the private-keyanalogous can be obtained by omitting G1(1n) from the inputs to the variousalgorithms.De�nition 5.2.13 (semantic security { uniform-complexity version): An en-cryption scheme, (G;E;D), is uniformly semantically secure in the public-keymodel if for every probabilistic polynomial-time algorithm A there exists a prob-abilistic polynomial-time algorithm A0 so that for every polynomial t, everypolynomial-time constructible ensemble fXn = (X(1)n ; :::; X(t(n))n )gn2N, with jX(i)n j =poly(n), every polynomial-time computable h : f0; 1g� ! f0; 1g�, every f :f0; 1g� ! f0; 1g�, every positive polynomial p and all su�ciently large n'sPr hA(G1(1n); EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hA0(1jXnj; h(Xn))=f(Xn)i+ 1p(n)where Ee(xn) def= Ee(x(1)n ); :::; Ee(x(t(n))n ) is as in De�nition 5.2.8.Again, we stress that Xn is a sequence of random variables, which may dependon one another. Also, the encryption-key G1(1n) was omitted from the input ofA0 (since the latter may generate it by itself). We stress that even here (i.e., inthe uniform complexity setting) no computational limitation are placed on thefunction f .De�nition 5.2.14 (indistinguishability of encryptions { uniform-complexity ver-sion): An encryption scheme, (G;E;D), has uniformly indistinguishable encryp-tions in the public-key model if for every polynomial t, every probabilistic polynomial-time algorithm D0, every polynomial-time constructible ensemble T def= fTn =XnY nZngn2N, with Xn = (X(1)n ; :::; X(t(n))n ), Y n = (Y (1)n ; :::; Y (t(n))n ), and jX(i)n j =jY (i)n j = poly(n),jPr �D0(Zn; G1(1n); EG1(1n)(Xn))=1�� Pr �D0(Zn; G1(1n); EG1(1n)(Y n))=1� j < 1p(n)for every positive polynomial p and all su�ciently large n's.The random variable Zn captures a-priori information about the plaintexts forwhich encryptions should be distinguished. A special case of interest is whenZn = XnY n.
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5.2. DEFINITIONS OF SECURITY 3415.2.5.2 Equivalence of the multiple-message de�nitionsWe prove the equivalence of the uniform-complexity de�nitions (presented above)for multiple-message security.Theorem 5.2.15 (equivalence of de�nitions { uniform treatment): A public-key encryption scheme satis�es De�nition 5.2.13 if and only if it satis�es Def-inition 5.2.14. Furthermore, this holds also if De�nition 5.2.14 is restricted tothe special case where Zn = XnY n, and De�nition 5.2.13 is restricted to thespecial case where f is polynomial-time computable.An analogous result holds for the private-key model. The important direction ofthe theorem holds also for the single-message version (this is quite obvious fromthe proof below). In the other direction, we seem to use the multiple-messageversion conventions (of semantic security) in order to account for auxiliary in-formation (required in ciphertext-indistinguishability).Proof Sketch: Again, we start with the more important direction; that is,assuming that (G;E;D) has (uniformly) indistinguishable encryptions in thespecial case where Zn = XnY n, we show that it is (uniformly) semanticallysecure. Our construction of algorithm A0 is analogous to the construction usedin the non-uniform treatment. Speci�cally, on input (1j�nj; h(�n)), algorithmA0 generates a random encryption of a dummy sequence of message (i.e., 1j�nj),feeds it to A, and outputs whatever A does. That is,A0(1j�nj; h(�n)) = A(G(1n); EG(1n)(1j�nj); 1j�nj; h(�n)) (5.7)As in the non-uniform case, the analysis of algorithm A0 reduces to the followingclaim.Claim 5.2.15.1: For every polynomial-time constructible ensemble fXngn2N,with Xn = (X(1)n ; :::; X(t(n))n ) and jX(i)n j = poly(n), every polynomial-time com-putable h, every positive polynomial p and all su�ciently large n'sPr �A(G1(1n); EG1(1n)(Xn); h(Xn))=f(Xn)�< Pr hA(G1(1n); EG1(1n)(1jXnj); h(Xn))=f(Xn)i+ 1p(n)Proof sketch: Again, assuming towards the contradiction that the claim doesnot hold, yields an algorithm that distinguishes encryptions of Xn from encryp-tions of 1jXnj. This algorithm will use auxiliary information h(Xn), which ise�ciently computable from Zn = Xn1jXnj. Thus, we derive contradiction toDe�nition 5.2.14 (even under the special case postulated in the theorem).The actual proof is quite simple in case the function f is also polynomial-time computable (which is not the case in general). In this special case, oninput (e; z; Ee(�)), where z = (x; 1jxj), the new algorithm computes u = h(x)and v = f(x), invokes A, and outputs 1 if and only if A(e; Ee(�); 1jxj; u) = v.
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342 CHAPTER 5. ENCRYPTION SCHEMESThe proof becomes more involved in case f is not polynomial-time computable.3Again, the solution is in realizing that indistinguishability of encryption postu-lates a similar output pro�le in both cases, and in particular no value can occurnon-negligiblly more in one case than in the other. To clarify the point, we de-�ne �v(xn) to be the di�erence between Pr[A(G1(1n); EG1(1n)(xn); h(xn))= v]and Pr[A(G1(1n); EG1(1n)(1jxnj); h(xn)) = v]. We know that E[�f(Xn)(Xn)] >1=p(n), but given xn we cannot evaluate �f(xn)(xn), since we do not have f(xn).Instead, we let �(xn) def= maxvf�v(xn)g. Again, E[�(Xn)] > 1=p(n), yet givenxn we can approximate �(xn) in polynomial-time. Furthermore, we may �nd avalue v so that �v(xn) > �(xn)� (1=2p(n)), with probability at least 1� 2�n.Thus, on input (e; z; Ee(�)), where z = (x; 1jxj), the new algorithm, denoted D0,�rst computes u = h(x), estimates �(x), and �nds a v as above. (This is doneobliviously of the ciphertext Ee(�), which is only used next.) Next, algorithmD0 invokes A, and outputs 1 if and only if A(e; Ee(�); 1jxj; u) = v.Let V (x) be the value found in the �rst stage of algorithm A (i.e., obliviouslyof the ciphertext Ee(�)). The reader can easily verify that���Pr �D0(G1(1n); Zn; EG1(1n)(Xn))=1�� Pr hD0(G1(1n); Zn; EG1(1n)(1Xn))=1i���= E h�V (Xn)(Xn)i� �1� 2�n� � E ��(Xn)� 12p(n)�� 2�n � 1> E ��(Xn)�� 23p(n)and the claim follows. 2Having established the important direction, we now turn to the oppositeone. That is, we assume that (G;E;D) is (uniformly) semantically secure andprove that it has (uniformly) indistinguishable encryptions. Again, the proof isby contradiction. Suppose, without loss of generality, that there exists a proba-bilistic polynomial-time algorithm D0, a polynomial-time constructible ensembleT def= fTn = XnY nZngn2N (as in De�nition 5.2.14), a positive polynomial p andin�nitely many n's so thatPr �D0(Zn; G1(1n); EG1(1n)(Xn))=1�> Pr �D0(Zn; G1(1n); EG1(1n)(Y n))=1� j + 1p(n)Assume, without loss of generality, that m def= jZnj = jXnj. We de�ne anauxiliary polynomial-time constructible ensemble Q def= fQngn2N so thatQn = � 0mZnXnY n with probability 121mZnY nXn with probability 123 Unlike in the non-uniform treatment, here we cannot hardwire values (such as the valuesof h and f on good sequences) into the algorithm D0 (which is required to be uniform).
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5.2. DEFINITIONS OF SECURITY 343That is, Qn contains ZnXnY n in addition to a bit (provided in the m-bit longpre�x) indicating whether the order of Xn and Y n is switched or not. We de�nethe function f so that to equal this \switch" indicator bit, and the function hto provide all information in Qn except this switch bit. Speci�cally, de�ne f :f0; 1g�!f0; 1g so that f returns the �rst bit of its input; that it f(�mabc) = �,for a; b; c 2 f0; 1gm. De�ne h :f0; 1g�!f0; 1g so that h provides the informationin the su�x without yielding information on the pre�x; that is h(�mabc) = abcif � = 0 and h(�mabc) = acb otherwise. Thus, h(Qn) = ZnXnY n. We stressthat both h and f are polynomial-time computable.We will show that D0 can be transformed into a polynomial-size algorithmA that guesses the value of f(Qn), from the encryption of Qn (and h(Qn)),and does so signi�cantly better that with probability 12 . This violates semanticsecurity, since no algorithm (regardless of its running-time) can guess f(Qn)better than with probability 1=2 when only given h(Qn) and 1jQnj (since givenh(Qn) and 1jQnj, the value of f(Qn) is uniformly distributed over f0; 1g).On input (e; Ee(�); 1j�j; zx y), where � = �mabc equals either 0mzx y or1mzy x, algorithm A �rst extracts x; y and z out of h(�) = zx y, and approxi-mates�(z; x; y) def= Pr �D0(z;G1(1n); EG1(1n)(x))=1��Pr �D0(z;G1(1n); EG1(1n)(y))=1�Let e�(z; x; y) denote this approximation, and assume the parameters are suchthat je�(z; x; y)��(z; x; y)j < 1=3p(n) with probability at least 1� 2�n. Algo-rithm A sets � = 1 if e�(z; x; y) > 1=3p(n), sets � = �1 if e�(z; x; y) < �1=3p(n),and sets � = 0 otherwise (i.e., the estimate is in between). In case � = 0, al-gorithm A halts with an arbitrary reasonable guess (say a randomly selectedbit). (This is done obliviously of the ciphertext Ee(�), which is only used next.)Next, algorithm A extracts the last block of ciphertexts (i.e., Ee(c)) out ofEe(�) = Ee(�mabc), and invokes D0 on input (z; e; Ee(c)). In case � = 1, algo-rithm A outputs 1 if and only if the output of D0 is 1. In case � = �1, algorithmA outputs 0 if and only if the output of D0 is 1.Claim 5.2.15.2: Let p, Qn, h, f and A be as above.Pr �A(G1(1n); EG1(1n)(Qn); h(Qn))=f(Qn)� > 12 + 110 � p(n)2Proof sketch: We focus on the case in which the approximation of �(Zn; Xn; Xn)provided by A is within 1=3p(n) of the correct value. Thus, in case � 6= 0, thesign of � concurs with the sign of �(Zn; Xn; Xn). It follows that, for everypossible (z; x; y), so that � = 1 it holds that �(z; y; x) > 0 andPr �A(G1(1n); EG1(1n)(Qn); h(Qn))=f(Qn) j (Zn; Xn; Xn)=(z; x; y)�= 12 � Pr �A(G1(1n); EG1(1n)(0m; z; x; y); h(0m; z; x; y))=0�+ 12 � Pr �A(G1(1n); EG1(1n)(1m; z; y; x); h(1m; z; y; x))=1�
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344 CHAPTER 5. ENCRYPTION SCHEMES= 12 � Pr �D0(z;G1(1n); EG1(1n)(y))=0�+ 12 � Pr �D0(z;G1(1n); EG1(1n)(x))=1�= 12 � (1 + �(z; y; x))Similarly, for every possible (z; x; y), so that � = �1 it holds that �(z; y; x) < 0and Pr �A(G1(1n); EG1(1n)(Qn); h(Qn))=f(Qn) j (Zn; Xn; Xn)=(z; x; y)�= 12 � Pr �D0(z;G1(1n); EG1(1n)(y))=1�+ 12 � Pr �D0(z;G1(1n); EG1(1n)(x))=0�= 12 � (1��(z; y; x))Thus, in both cases where � 6= 0, algorithm A succeeds with probability (1 +j�(z; y; x)j)=2, and in case � = 0 it succeeds with probability 1=2. Also, if�(Zn; Xn; Xn) > 23p(n) then � = 1. Recalling that E[�(Zn; Xn; Xn)] > 1p(n) ,we lower bound Pr[�(Zn; Xn; Xn) > 23p(n) ] by 13p(n) . Thus, the overall successprobability of algorithm A is at least13p(n) � 1 + (2=3p(n))2 + (1� 13p(n)) � 12and the claim follows. 2This completes the proof of the opposite direction.5.2.5.3 Single-message versus multiple-message de�nitionsAs in the non-uniform case, for the public-key model, single-message securityimplies multiple-message security. Again, this implication does not hold in theprivate-key model. The proofs of both statements are analogous to the proofsprovided in the non-uniform case. Speci�cally:1. For the public-key model, single-message uniform-indistinguishability ofencryptions imply multiple-message uniform-indistinguishability of encryp-tions, which in turn implies multiple-message uniform-semantic security.In the proof of this result, we use the fact that all hybrids are polynomial-time constructible, and that we may select a random pair of neighboringhybrids (cf. the proof of Theorem 3.2.6). We also use the fact that anensemble of triplets, fTn = XnY nZ 0ngn2N, with Xn = (X(1)n ; :::; X(t(n))n ),Y n = (Y (1)n ; :::; Y (t(n))n ), as in De�nition 5.2.14, induces an ensemble oftriplets, fTn = XnYnZngn2N, for the case t � 1. Speci�cally, we shalluse Xn = X(i)n , Yn = Y (i)n , and Zn = (XnY nZ 0n; i), where i is uniformlydistributed in f1; :::; t(n)g.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 3452. For the private-key model, single-message uniform-indistinguishability ofencryptions does not imply multiple-message uniform-indistinguishabilityof encryptions. The proof is exactly as in the non-unform case.5.2.5.4 The gain of a uniform treatmentSuppose that one is content with the uniform-complexity level of security, whichis what we advocate below. Then the gain in using the uniform-complexitytreatment is that a uniform-complexity level of security can be obtained usingonly uniform complexity assumptions (rather than non-uniform complexity as-sumptions). Speci�cally, the results presented in the next section are based onnon-uniform assumptions such as the existence of functions that cannot be in-verted by polynomial-size circuits (rather than by probabilistic polynomial-timealgorithms). These non-uniform assumption are used in order to satisfy thenon-uniform de�nitions presented in the main text (above). Using any of theseconstructions, while making the analogous uniform assumptions, yields encryp-tion schemes with the analogous uniform-complexity security. (We stress thatthis is no coincidence, but is rather an artifact of these results being proven bya uniform reducibility argument.)However, something is lost when relying on these (seemingly weaker) uniformcomplexity assumptions. Namely, the security we obtain is only against the(seemingly weaker) uniform adversaries. We believe that this loss in securityis immaterial. Our belief is based on the thesis that uniform complexity is theright model of \real world" cryptography. We believe that it is reasonable toconsider only objects (i.e., inputs) generated by uniform and e�cient proceduresand the e�ect that these objects have on uniformly and e�cient observers (i.e.,adversaries). In particular, schemes secure against probabilistic polynomial-timeadversaries can be used in any setting consisting of probabilistic polynomial-timemachines with inputs generated by probabilistic polynomial-time procedures.We believe that the cryptographic setting is such a case.5.3 Constructions of Secure Encryption SchemesIn this subsection we present constructions of secure private-key and public-key encryption schemes. Here and throughout this section security means se-mantic security in the multiple-message setting. Recall that this is equivalentto ciphertext-indistinguishability (in the multiple-message setting). Also recallthat for public-key schemes it su�ces to prove ciphertext-indistinguishability inthe single-message setting. The main results of this section are� Using any (non-uniformly robust) pseudorandom function, one can con-struct secure private-key encryption schemes. Recall, that the former canbe constructed using any (non-uniformly strong) one-way function.� Using any (non-uniform strong) trapdoor one-way permutation, one canconstruct secure public-key encryption schemes.
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346 CHAPTER 5. ENCRYPTION SCHEMESIn addition, we review some popular suggestions for private-key and public-keyencryption schemes.Probabilistic Encryption: Before starting, we recall that a secure public-keyencryption scheme must employ a probabilistic (i.e., randomized) encryption al-gorithm. Otherwise, given the encryption-key as (additional) input, it is easyto distinguish the encryption of the all-zero message from the encryption of theall-ones message. The same holds for private-key encryption schemes when con-sidering the multi-message setting.4 For example, using a deterministic (private-key) encryption algorithm allows the adversary to distinguish two encryptionsof the same message from the encryptions of a pair of di�erent messages. Thus,the common practice of using pseudorandom permutations as \block-ciphers"(see de�nition below) is not secure (again, one can distinguish two encryptionsof the same message from encryptions of two di�erent messages). This explainsthe linkage between the above robust security de�nitions and randomized (a.k.aprobabilistic) encryption schemes. Indeed, all our encryption schemes will em-ploy randomized encryption algorithms.55.3.1 * Stream{CiphersIt is common practice to use \pseudorandom generators" as a basis for private-key stream ciphers. We stress that this is a very dangerous practice when the\pseudorandom generator" is easy to predict (such as the linear congruentialgenerator or some modi�cations of it which output a constant fraction of thebits of each resulting number). However, this common practice becomes soundprovided one uses pseudorandom generators (as de�ned in Section 3.3). Thus,we obtain a private-key stream cipher, that allows to encrypt a stream of plain-text bits. Note that such a stream cipher does not conform with our formulationof an encryption scheme, since for encrypting several messages one is requiredto maintain a counter. In other words, we obtain a encryption scheme with avariable state that is modi�ed after the encryption of each message. To obtaina stateless encryption scheme, as in our de�nitions above, we may use a pseu-dorandom function (see below). But before doing so, let us formalize the abovediscussion.Author's Note: DO IT (i.e., formalize the above discussion)!!!4 We note that the above does not hold with respect to private-key schemes in the single-message setting. (Hint: the private-key can be augmented to include a seed for a pseudorandomgenerator, the output of which can be used to eliminate randomness from the encryptionalgorithm. Question: why does the argument fail in the multi-message private-key setting?Same for the public-key setting).5 The (private-key) stream-ciphers discussed below are an execption, but{ as we point out{they do not adherse to our formulation of encryption schemes.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 3475.3.2 Preliminaries: Block{CiphersMany encryption schemes are more conveniently presented by �rst presenting arestricted type of encryption scheme that we call a block-cipher.6 In contrastto encryption schemes (as de�ned in De�nition 5.1.1), block-ciphers (de�nedbelow) are only required to operate on plaintext of a speci�c length (which is afunction of the security parameter). As we shall see, given a secure block-cipherwe can easily construct a (general) secure encryption scheme.De�nition 5.3.1 (block-cipher): A block-cipher is a triple, (G;E;D), of prob-abilistic polynomial-time algorithms satisfying the following two conditions1. On input 1n, algorithm G outputs a pair of bit strings.2. There exists a polynomially-bounded function ` : N! N , called the blocklength, so that for every pair (e; d) in the range of G(1n), and for each� 2 f0; 1g`(n), algorithms E and D satisfyPr[Dd(Ee(�))=�] = 1All conventions are as in De�nition 5.1.1.Typically, we use either `(n) = �(n) or `(n) = 1. Analogously to De�ni-tion 5.1.1, the above de�nition does not distinguish private-key encryption schemesfrom public-key ones. The di�erence between the two types is captured in thesecurity de�nitions, which remain as they were above with the modi�cation thatwe only consider plaintexts of length `(n). For example, the analogue of De�ni-tion 5.2.1 readsDe�nition 5.3.2 (semantic security { private-key block-ciphers): A block-cipher,(G;E;D), with block length ` is semantically secure (in the private-key model) ifthere exists a polynomail-time transformation, T , so that for every polynomial-size circuit family fCng, for every ensemble fXngn2N, with jXnj = `(n), andf; h, p(�) and n as in De�nition 5.2.1Pr hCn(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hC 0n(1jXnj; h(Xn))=f(Xn)i+ 1p(n)where C 0n def= T (Cn) is the circuit produced by T on input Cn.There are several obvious ways of transforming a block-cipher into a generalencryption scheme. The basic idea is to break the plaintexts (for the resultingscheme) into blocks and encode each block separately by using the block-cipher.6 Doing so we abuse standard terminology by which a block-cipher must, in addition tooperating on plaintext of speci�c length, produce ciphertexts equal in length to the length ofthe corresponding plaintexts.
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348 CHAPTER 5. ENCRYPTION SCHEMESThus, the security of the block-cipher (in the multiple-message settings) impliesthe security of the resulting encryption scheme. The only technicality we needto deal with is how to encrypt plaintexts of length that is not an integer multipleof the block-length (i.e., `(n)). This is easily resolved by padding the last block.Construction 5.3.3 (from block-ciphers to general encryption schemes): Let(G;E;D) be a block-cipher with block length function `. We construct an en-cryption scheme, (G0; E0; D0) as follows. The key-generation algorithm, G0, isidentical to G. To encrypt a message � (with encryption key e generated undersecurity parameter n), we break it into consequetive blocks of length `(n), whilepossibly augmenting the last block. Let �1; :::; �t be the resulting blocks. ThenE0e(�) def= (1j�j; Ee(�1); :::; Ee(�t))To decrypt the ciphertext (1m; �1; :::; �t) (with decryption key d), we let �i =Dd(�i) for i = 1; :::; t, and let the plaintext be the m-bit long pre�x of the con-catanated string �1 � � ��t.The above construction yields ciphertexts which reveal the exact length of theplaintext. Recall that this is not prohibited by the de�nitions of security, andthat we cannot hope to entirely hide the length. However, we can easily constructencryption schemes that hide some information about the length of the plaintext;see examples in Exercise 13. Also, note that the above construction applies evento the special case where ` is identically 1.Theorem 5.3.4 Let (G;E;D) and (G0; E0; D0) be as in Contruction 5.3.3. Sup-pose that the former a secure private-key (resp., public-key) block-cipher. Thenthe latter is a secure private-key (resp., public-key) encryption scheme.Proof: Assuming towards the contradiction that the encryption scheme (G0; E0; D0)is not secure, we obtain conclude that neither is (G;E;D), contradicting our hy-pothesis. Note that in case the security of (G0; E0; D0) is violated via t(n) mes-sages of length L(n), the security of (G;E;D) is violated by t(n) � dL(n)=`(n)e.Also, the argument may utilize any of the two notions of security (i.e., semanticsecurity or ciphertext-indistinguishability).5.3.3 Private-key encryption schemesSecure private-key encryption schemes can be easily constructed using any e�-ciently computable pseudorandom function ensemble (see Section 3.6). Speci�-cally, we present a block cipher with block length `(n) = n. The key generationalgorithm consists of selecting a seed, denoted s, for such a function, denotedfs. To encrypt a message x 2 f0; 1gn (using key s), the encryption algorithmuniformly selects a string r 2 f0; 1gn and produces the ciphertext (r; x� fs(r)).To decrypt the ciphertext (r; y) (using key s), the decryption algorithm justcomputes y � fs(r). Formally, we have
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 349Construction 5.3.5 (a private-key block-cipher based on pseudorandom func-tions): Let F = fFng be an e�ciently computable function ensemble and let Iand V be the algorithms associated with it. That is, I(1n) selects a function withdistribution Fn and V (i; x) returns fi(x), where fi is the function associated withthe string i. We de�ne a private-key block cipher, (G;E;D), with block length`(n) = n as followskey-generation: G(1n) = (i; i), where i I(1n).encrypting plaintext x 2 f0; 1gn: Ei(x) = (r; V (i; r) � x), where r is uniformlychosen in f0; 1gn.decrypting ciphertext (r; y): Di(r; y) = V (i; r)� yBelow we assume that F is pseudorandom with respect to polynomail-size cir-cuits, meaning that no polynomial-size circuit having \oracle gates" can distin-guish the case the answers are provided by a random function from the case inwhich the answers are provided by a function in F . Alternatively, one may con-sider probabilistic polynomial-time orcale machines that obtain a non-uniformpoly(n)-long auxiliary input. That is,for every probabilistic polynomial-time oracle machine M for everypair of positive polynomial p and q, for all su�ciently large n's andall z 2 f0; 1gp(n),��Pr �Mf (z)=1�� Pr �MfI(1n)(z)=1��� < 1q(n)where f is a uniformly selected function mapping f0; 1gn to f0; 1gn.Recall, that such (non-uniformly strong) pseudorandom functions can be con-structed using any non-uniformly strong one-way function.Theorem 5.3.6 Let F and (G;E;D) be as in Contruction 5.3.5, and supposethat F is pseudorandom with respect to polynomail-size circuits. Then (G;E;D)is secure.Proof: The proof consists of two steps (suggested as a general methodology inSection 3.6):1. Prove that an idealized version of the scheme, in which one uses a uniformlyselected function f :f0; 1gn!f0; 1gn, rather than the pseudorandom func-tion fs, is secure (in the sense of ciphertext-indistinguishability).2. Conclude that the real scheme (as presented above) is secure (since other-wise one could distinguish a pseudorandom function from a truly randomone).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



350 CHAPTER 5. ENCRYPTION SCHEMESSpeci�cally, in the ideal version the messages x1; :::; xt are encrypted by (r1; f(r1)�x1); :::; (r1; f(rt)� xt), where the ri's are independently and uniformly selected,and f is a random function. Thus, with probability greater than 1 � t2 � 2�n,the ri's are all distinct and so the f(ri)� xi's are independently and uniformlydistributed, regardless of the xi's. Now, if the actual scheme is not ciphertext-indistinguishable then for some sequence of distinct ri's a polynomial-size circuitcan distinguish the f(ri) � xi's from the fs(ri) � xi's, where f is random andfs is pseudorandom. But this contradicts the hypothesis that polynomial-sizecircuits cannot distinguish between the two.Comments. Note that we could have gotten rid of the randomization if wehad allowed the encryption algorithm to be history dependent (as discussedabove). Speci�cally, in such a case, we could have used a counter in the roleof r. Furthermore, if the encryption scheme is used for fifo communicationbetween the parties and both can maintain the counter value then there is noneed for the sender to send the counter value.On the other hand, recall that the common practice of using pseudoran-dom permutations as block-ciphers7 is not secure (e.g., one can distinguish twoencryptions of the same message from encryptions of two di�erent messages).5.3.4 Public-key encryption schemesAs mentioned above, randomization during the encryption process can be avoidedin private-key encryption schemes that employ a varying state (not allowed in ourbasic De�nition 5.1.1). In case of public-key encryption schemes, randomizationduring the encryption process is essential (even if the encryption scheme employsa varying state). Thus, in a sense, the randomized encryption paradigm playsan even more pivotal role in the construction of public-key encryption scheme.To demonstrate this paradigm we start with a very simple (and quite wasteful)construction.All our constructions employ a collection of trapdoor permutations, as inDe�nition 2.4.5. Recall that such a collection, fp�g�, comes with four proba-bilistic polynomial-time algorithms, denoted here by I; S; F and B (for index,sample, forward and backward), so that1. I(1n) selects a random n-bit long index � of a permutation p�, along witha corresponding trapdoor � ;2. S(�) randomly samples the domain of p�, returning a random element init;3. For x in the domain of p�, given � and x, algorithm F returns p�(x) (i.e.,F (�; x) = p�(x));4. For y in the range of p� if (�; �) is a possible output of I(1n) then, given� and y, algorithm B returns p�1� (y) (i.e., B(�; y) = p�1� (y));7 That is, letting Ei(x) = pi(x), where pi is the perumtation associated with the string i.
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 351Let I1(1n) denote the �rst element in the output of I(1n) (i.e., the index). It isguaranteed that for every polynomial-size circuit family fCng, every polynomialp and all su�ciently large n'sPr[Cn(I1(1n); pI1(1n)(S(I1(1n))) = S(I1(1n))] < 1p(n)That is, Cn fails to invert p� on p�(x), wheren � and x are selected by I andS as above. Recall the above collection can be easily modi�ed to have a hard-core predicate (cf. Theorem 2.5.2). For simplicity, we continue to refer to thecollection as fp�g, and let b denote the corresponding hard-core predicate.5.3.4.1 Simple schemesWe are now ready to present a very simple (alas quite wasteful) construction ofa secure public-key encryption scheme. It is a block-cipher with ` � 1.Construction 5.3.7 (a simple public-key block-cipher scheme): Let fp�g, I; S; F;Band b be as above.key-generation: The key generation algorithm consists of selecting at randoma permutation p� together with a trapdoor � for it: The permutation (orrather its description) serves as the public-key, whereas the trapdoor servesas the private-key. That is, G(1n) = I(1n), which means that the index-trapdoor pair generated by I is associated with the key-pair of G.encryption: To encrypt a bit � (using the encryption-key �), the encryptionalgorithm randomly selects an element, r, in the domain of p� and producesthe ciphertext (p�(r); ��b(r)). That is, E�(�) = (F (�; r); ��b(r)), wherer  S(�).decryption: To decrypt the ciphertext (y; &) (using the decryption-key �), the de-cryption algorithm just computes & � b(p�1� (y)), where the inverse is com-puted using the trapdoor � of p�. That is, D� (y; &) = b(B(�; y))� &.Clearly, for every possible (�; �) output of G, it holds thatD� (E�(�)) = b(B(�; F (�; S(�)))) � (� � b(S(�)))= b(S(�))� (� � b(S(�))) = �The security of the above public-key encryption scheme follows from the (non-uniform) one-way feature of the collection fp�g. We comment that the proofof Theorem 2.5.2 implies that the corresponding hard-core predicate is non-uniformly strong; that is, for randomly chosen � and r, no polynomial-sizecircuit can predict b(r) given p�(r) and �, non-negligiblly better than withsuccess probability 1=2.
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352 CHAPTER 5. ENCRYPTION SCHEMESProposition 5.3.8 Suppose that b is a (non-uniformly strong) hard-core of thecollection fp�g. Then Construction 5.3.7 constitute a secure public-key block-cipher (with block-length ` � 1).Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),it su�ces to show single-message ciphertext-indistinguishability. Furthermore,by Proposition 5.2.7 and the fact that here there are only two plaintexts, itsu�ces to show that one cannot predict which of the two plaintexts is be-ing encrypted signi�cantly better than by a random guess. We conclude bynoting that a guess �0 for the plaintext �, given the ciphertext (�;E�(�)) =(�; (f�(r); � � b(r)), yields a guess �0 � � � b(r) for b(r) given (�; f�(r)). Thelatter guess is correct with probability equal the probability that �0 = �, and sothe proposition follows.As admitted above, Construction 5.3.7 is quite wasteful. Speci�cally, it is waste-ful in bandwidth; that is, the relation between the length of the plaintext and thelength of the ciphertext. In Construction 5.3.7 the relation between these lengthsequals the security parameter (i.e., n). However, the idea underlying Construc-tion 5.3.7 can yield e�cient public-key schemes provided we use trapdoor per-mutations having hard-core functions with large range (see Section 2.5.3). Todemonstrate the point, we use the following assumption relating to the RSAcollection of trapdoor permutations (cf. Subsections 2.4.3 and 2.4.4).Large hard-core conjecture for RSA: The �rst n=2 least signi�cant bitsof the argument constitute a (non-uniformly strong) hard-core function of RSAwith n-bit long moduli.We stress that the conjecture is not know to follow from the assumption thatthe RSA collection is (non-uniformly) hard to invert. What can be proved underthe latter assumption is only that the �rst O(log n) least signi�cant bits of theargument constitute a (non-uniformly strong) hard-core function of RSA (withn-bit long moduli). Still, the above conjecture implies that the common practiceof randomly padding messages (using padding equal in length to the message)before encrypting them using RSA, results in a secure public-key encryptionscheme. That is, we consider the followingConstruction 5.3.9 (Randomized RSA { a public-key block-cipher scheme):This scheme employs the RSA collection of trapdoor permutations (cf. Subsec-tions 2.4.3 and 2.4.4). The following description is however self-contained.key-generation: The key generation algorithm consists of selecting at random twon-bit primes, P and Q, setting N = P �Q, and selecting at random a pair(e; d) so that e �d � 1 (mod (P �1) � (Q�1)). That is, ((N; e); (N; d))  G(1n), where N , e and d are as speci�ed above.(Note that N is 2n-bit long.)
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 353encryption: To encrypt an n-bit string � (using the encryption-key (N; e)), theencryption algorithm randomly selects an element, r 2 f1; :::; N � 1g, andproduces the ciphertext (re mod N; � � lsb(r)), where lsb(r) denotes then least signi�cant bits of r. That is, EN;e(�) = (re mod N; � � lsb(r)).decryption: To decrypt the ciphertext (y; &) (using the decryption-key (N; d)),the decryption algorithm just computes & � lsb(yd mod N), where lsb(�)is as above. That is, DN;d(y; &) = & � lsb(yd mod N).The bandwidth of the above scheme is much better than in Construction 5.3.7:a plaintext of length n is encrypted via a ciphertext of length 2n. Clearly, forevery possible ((N; e); (N; d)) output of G, it holds thatD(N;d)(E(N;e)(�)) = lsb(r) � (� � lsb((re mod N)d mod N))= � � lsb(r) � lsb(red mod N) = �The security of the above public-key encryption scheme follows from the largehard-core conjecture for RSA, analogously to the proof of Proposition 5.3.8.Proposition 5.3.10 Suppose that the large hard-core conjecture for RSA doeshold. Then Construction 5.3.9 constitute a secure public-key block-cipher (withblock-length `(n) = n).Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),it su�ces to show single-message ciphertext-indistinguishability. Consideringany two strings x and y, we need to show that (re mod N; x � lsb(r)) and(re mod N; y � lsb(r)) are indistinguishable, where N; e and r are selected atrandom as in the construction. It su�ces to show that, for every x, the distribu-tions (re mod N; x� lsb(r)) and (re mod N; x� s) are indistinguishable, wheres 2 f0; 1gn is uniformly distributed, independently of anything else. The latterclaim follows from the hypothesis that the n least signi�cant bits are a hard-corefunction for RSA with moduli of length 2n.Discussion: We wish to stress that encrypting messages by merely applyingthe RSA function to them (without randomization), yields an insecure encryptionscheme. This is a special case of the fact that no public-key encryption schemethat employs a deterministic encryption algorithm may be secure. We warnthat the fact that in such deterministic encryption schemes one can distinguishencryptions of two speci�c messages (e.g., the all-zero message and the all-onemessage) is not \merely of theoretical concern" { it may seriously endanger someapplications!5.3.4.2 An alternative schemeAn alternative construction of a public-key encryption scheme is presented be-low. Rather than encrypting each plaintext bit by an independently selected ele-ment in the domain of the trapdoor permutation (as done in Construction 5.3.7),
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354 CHAPTER 5. ENCRYPTION SCHEMESwe select only one such element per a plaintext string, and provide an additionalbit per each bit of the plaintext. These bits are determine by successive ap-plications of the trapdoor permutation, and only the last result is included inthe ciphertext. In a sense, the construction of the encryption scheme (below)augments the construction of a pseudorandom generator based on one-way per-mutations (i.e., Construction 3.4.4).Construction 5.3.11 (a public-key encryption scheme): Let fp�g, I; S; F;Band b be as in Construction 5.3.7. We use the notation pi+1� (x) = p�(pi�(x))and p�(i+1)� (x) = p�1� (p�i� (x)).key-generation: The key-generation algorithm consists of selecting at random apermutation p� together with a trapdoor, exactly as in Construction 5.3.7.That is, G(1n) = I(1n), which means that the index-trapdoor pair generatedby I is associated with the key-pair of G.encryption: To encrypt a string � (using the encryption-key �), the encryptionalgorithm randomly selects an element, r, in the domain of p� and producesthe ciphertext (pj�j� (r);�G�(r)), whereG�(r) def= b(r) � b(p�(r)) � � � b(pj�j�1� (r)) (5.8)That is, E�(�) = (pj�j� (S(�)); � �G�(S(�))).decryption: To decrypt the ciphertext (y; &) (using the decryption-key �), thedecryption algorithm just computes & �G�(p�j&j� (y)), where the inverse iscomputed using the trapdoor � of p�. That is, D� (y; &) = &�G�(p�j&j� (y)).We stress that the above encryption scheme is a full-
edged one (rather than ablock-cipher). Its bandwidth tends to 1 with the length of the plaintext; that is,a plaintext of length ` = poly(n) is encrypted via a ciphertext of length n + `.Clearly, for every possible (�; �) output of G, it holds that D� (E�(�)) = �.The security of the above public-key encryption scheme follows from the (non-uniform) one-way feature of the collection fp�g, but here we restrict the samplingalgorithm S to produce almost uniform distribution over the domain.Proposition 5.3.12 Suppose that b is a (non-uniformly strong) hard-core ofthe trapdoor collection fp�g. Furthermore, suppose that this trapdoor collectionutilizes a domain samplying algorithm S so that the statistical di�erence betweenS(�) and the uniform distribution over the domain of p� is negligible in terms ofj�j. Then Construction 5.3.11 constitute a secure public-key encryption scheme.Proof: Again, we prove single-message ciphertext-indistinguishability. As in theproof of Proposition 5.3.10, it su�ces to show that, for every �, the distributions(pj�j� (S(�)); � � G�(S(�))) and (pj�j� (S(�)); � � s) are indistinguishable, where
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5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 355s 2 f0; 1gj�j is uniformly distributed, independently of anything else. The latterclaim holds by a minor extention to Proposition 3.4.6: the latter refers to thecase S(�) is uniform over the domain of p�, but can be extended to the case inwhich there is a negligible statistical di�erence between the distributions. Theproposition follows.An instantiation: Assuming that factoring Blum Integers (i.e., products oftwo primes each congruent to 3 (mod 4)) is hard, one may use the modularsquaring function in role of the trapdoor permutation above (see Section 2.4.3).This yields a secure public-key encryption scheme (presented below) with ef-�ciency comparable to that of RSA. Recall that RSA itself is not secure (asit employs a deterministic encryption algorithm), whereas Randomized RSA(de�ned above) is not known to be secure under standard assumption such asintractability of factoring (or of inverting the RSA function).8Construction 5.3.13 (The Blum-Goldwasser Public-Key Encryption Scheme):For simplicity, we present a block-cipher with arbitrary block-length `(n) =poly(n).key-generation: The key generation algorithm consists of selecting at randomtwo n-bit primes, P and Q, each congruent to 3 mod 4, and outputing thepair (N; (P;Q)), where N = P �Q.Actually, for sake of e�ciency, the key-generator also computes dP =((P + 1)=4)`(n) mod P � 1, dQ = ((Q + 1)=4)`(n) mod Q� 1, cP = Q �(Q�1 mod P ), and cQ = P � (P�1 mod Q). It outputs the pair (N;T ),where N serves as the encryption-key and T = (P;Q;N; cP ; dP ; cQ; dQ)serves as decryption-key.encryption: To encrypt the message � 2 f0; 1g`(n), using encryption-key N :1. Uniformly select s0 2 f1; :::; Ng.2. For i = 1; ::; `(n) + 1, compute si  s2i�1 mod N and bi = lsb(si),where lsb(s) is the least signi�cant bit of s.The ciphertext is (s`(n)+1; &), where & = � � b1b2 � � � b`(n).decryption: To decrypt of the ciphertext (r; &) using decryption-key T = (P;Q;N; cP ; dP ; cQ; dQ),one �rst retreives s1 and then computes the bi's as above. Instead of ex-tracting modular square roots successively `(n) times, we extract the 2`(n)-th root, which can be done as e�ciently as extracting a single square root:1. Let s0  rdP mod P , and s00  rdQ mod Q.2. Let s1  cP � s0 + cQ � s00 mod N .8Recall that Randomized RSA is secure assuming that the n=2 least signi�cant bits con-stitute a hard-core function for n-bit RSA moduli. We only know that the O(log n) leastsigni�cant bits constitute a hard-core function for n-bit moduli.
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356 CHAPTER 5. ENCRYPTION SCHEMES3. For i = 1; ::; `(n), compute bi = lsb(si) and si+1  s2i mod N .The plaintext is & � b1b2 � � � b`(n).Again, one can easily verify that the above construction constitutes an encryp-tion scheme: the main fact to verify is that the value of s1 as reconstructed inthe decryption stage equals the value used in the encryption stage. This fol-lows by combining the Chinese Reminder Theorem with the fact that for everyquadratic residue s mod N it holds that s � (s2` mod N)dP (mod P ) (andsimilarly, s � (s2` mod N)dQ (mod Q)). Encryption amounts to `(n) modularmultiplications, whereas decryption amounts to 2 + `(n) such multiplicationsand 2 modular exponentiations (relative to half-sized moduli). For comparisonto Randomized RSA, consider the setting `(n) = n. The security of the abovescheme follows immediately from Proposition 5.3.12 and the fact that lsb is ahard-core for the modular squaring function (and that inverting the latter iscomputationally equivalent to factoring). Thus we get:Corollary 5.3.14 Suppose that factoring is infeasible in the sense that for everypolynomial-size circuit fCng, every positive polynomial p and all succiently largen's Pr[Cn(Pn �Qn) = Pn] < 1p(n)where Pn and Qn are uniformly distributed n-bit long primes. Then Construc-tion 5.3.13 consititutes a secure public-key encryption scheme.5.4 * Beyond eavesdropping securityAuthor's Note: The following text includes an introduction that isreproduced with little change from Appendix B.1.3, and a plan.The above de�nitions refer only to a \passive" attack in which the adversarymerely eavesdrops on the line over which ciphertexts are being sent. Strongertypes of attacks, culminating in the so-called Chosen Ciphertext Attack, may bepossible in various applications. Speci�cally, in some settings it is feasible for theadversary to make the sender encrypt a message of the adversary's choice, andin some settings the adversary may even make the receiver decrypt a ciphertextof the adversary's choice. This gives rise to chosen message attacks and to cho-sen ciphertext attacks, respectively, which are not covered by the above securityde�nitions. Thus, our main goal in this section is to provide a treatment to suchtypes of attacks. Furthermore, the above de�nitions refer to an adversary thattries to extract explicit information about the plaintext. A less explicit attempt,captured by the so-called notion of malleability, is to generate an encryption ofa related plaintext (possibly without learning anything about the original plain-text). Thus, we have a \matrix" of adversaries, with one dimention (parameter)being the type of attack and the second being its purpose.
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5.4. * BEYOND EAVESDROPPING SECURITY 357Types of attacks. The following mini-taxonomy of attacks is certainly notexhaustive.1. Passive attacks as captured in the de�nitions above. In case of public-keyschemes we distinguish two sub-cases:(a) A key-oblivious, passive attack, as captured in the de�nitions above.By `key-obliviousness' we refer to the fact that the choice of plaintextdoes not depend on the public-key.(b) A key-dependent, passive attack, in which the choice of plaintext maydepend on the public-key.(In De�nition 5.2.8 the choice of plaintext means the random variable Xn,whereas in De�nition 5.2.9 it means the pair of sequences (xn; yn).)2. Chosen Plaintext Attacks. Here the attacker may obtain the encryption ofany plaintext of its choice (under the key being attacked). Such an attackdoes not add power in case of public-key schemes.3. Chosen Ciphertext Attacks. Here the attacker may obtain the decryptionof any ciphertext of its choice (under the key being attacked). That is, theattacker is given oracle access to the decryption function corresponding tothe decryption-key in use. We distinguish two types of such attacks.(a) In an a-priori chosen ciphertext attack, the attacker is given thisoracle access prior to being presented the ciphertext that it shouldattack (i.e., the ciphertext for which it has to learn partial informationor form a related ciphertext). That is, the attack consists of twostages: in the �rst stage the attacker is given the above oracle access,and in the second stage the oracle is removed and the attacker is givena `test ciphertext' (i.e., a target to be learned or modi�ed in violationof non-malleablity).(b) In an a-posteriori chosen ciphertext attack, the attacker is given thetarget ciphertext �rst, but its access to the oracle is restricted in thatit is not allowed to make a query equal to the target ciphertext.In both cases, the adversary may make queries that do not correspond toa legitimate ciphertext, and the answer will be accordingly (i.e., a special`failure' symbol).Formal de�nitions of all types of attacks listed above (as well as the purposeslisted below) will follow.Purpose of attacks. Again, the following is not claimed to be exhaustive.1. Standard security: the infeasibility of obtaining information regarding theplaintext. As de�ned above, such information must be a function (or arandomized process) applied to the bare plaintext, and may not dependon the encryption (or decryption) key.
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358 CHAPTER 5. ENCRYPTION SCHEMES2. In contrast, the notion of non-malleability refers to generating a string de-pending on both the plaintext and the current encryption-key. Speci�cally,one requires that it should be infeasible for an adversary, given a cipher-text, to produce a valid ciphertext for a related plaintext. For example,given a ciphertext of a plaintext of the form 1x, it should be infeasible toproduce a ciphertext to the plaintext 0x.We shall show below that, with the exception of passive attacks on private-keyschemes, non-malleability always implies security against attempts to obtain in-formation on the plaintext. We shall also show that security and non-malleabilityare equivalent under a-posteriori chosen ciphertext attack.Some known constructions. Before presenting the actual de�nitions, let usprovide an overview on the known results. As in the basic case, the (stronglysecure) private-key encryption schemes can be constructed based on the exis-tence of one-way functions, whereas the (strongly secure) public-key encryptionschemes are based on the existence of trapdoor permutations.Private-key schemes: The private-key encryption scheme based on pseudo-random functions (i.e., Construction 5.3.5), is secure also against a-priorichosen ciphertext attacks.9It is easy to turn any passively secure private-key encryption scheme intoa scheme secure under (a-posteriori) chosen ciphertext attacks, by using amessage authentication scheme10 on top of the basic encryption.Public-key schemes: Public-key encryption schemes secure against a-priorichosen ciphertext attacks can be constructed, assuming the existence oftrapdoor permutations and utilizing non-interactive zero-knowledge proofs.(Recall that the latter proof systems can be constructed under the formerassumption.)Public-key encryption schemes secure against a-posteriori chosen cipher-text attacks can also be constructed under the same assumption, but thisconstruction is even more complex.5.4.1 Key-dependent passive attacksAuthor's Note: Applicable only to public-key schemes.Author's Note: Plan: de�ne, and show that above constructions sat-isfy the de�nition.9 Note that this scheme is not secure under an a-posteriori chosen ciphertext attack: oninput a ciphertext (r; x � fs(r)), we obtain fs(r) by making the query (r; y0), where y0 6=x� fs(r). (This query is answered with x0 so that y0 = x0 � fs(r).)10 See de�nition in Section B.2.
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5.5. MISCELLANEOUS 3595.4.2 Chosen plaintext attackAuthor's Note: No a�ect in case of public-key schemes.Author's Note: Plan: de�ne, and show that above constructions sat-isfy the de�nition.5.4.3 Chosen ciphertext attackAuthor's Note: For private-key, refer also to a combined plaintext+ciphertextattack.Author's Note: Plan:1. De�ne the two types.2. Prove that the PRF-based private-key scheme remains secureunder a-priori CMA.3. Discuss the NIZK construction for a-priori CMA.Postpone construction of a-posteriori CMA to next subsection.5.4.4 Non-malleable encryption schemesAuthor's Note: Plan:1. discuss and de�ne,2. prove that(a) with the exception of passive attacks on private-key schemes,non-malleability always implies security against attempts toobtain information on the plaintext;(b) security and non-malleability are equivalent under a-posteriorichosen ciphertext attack.3. Present and analyze the construction for private-key secure un-der a-posteriori CMA.4. Sketch the solution for public-key (following DDN+Amit).5.5 MiscellaneousAuthor's Note: The entire section is fragmented and tentative.
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360 CHAPTER 5. ENCRYPTION SCHEMES5.5.1 Historical NotesThe notion of private-key encryption scheme seems almost as ancient as the al-phabet itself. Furthermore, it seems that the development of encryption methodswent along with the development of communication media. As the amounts ofcommunication grow, more e�cient and sophisticated encryption methods wererequired. Computational complexity considerations were explicitly introducedinto the arena by Shannon [188]: In his work, Shannon considered the classi-cal setting where no computational considerations are present. He showed thatin this information theoretic setting, secure communication of information waspossible only as long as its entropy is lower than the entropy of the key. He thusconcluded that if one wishes to have an encryption scheme which is capable ofhandling messages with total entropy exceeding the length of the key then onemust settle for a computational relaxion of the secrecy condition. That is, ratherthan requiring that the ciphertext yields no information on the plaintext, onehas to require that such information cannot be e�ciently computed from theciphertext. The latter requirement indeed coincides with the above de�nition ofsemantic security.The notion of public-key encryption scheme was introduced by Di�e andHellman [61]. First concrete candidates were suggested by Rivest, Shamir andAdleman [179] and by Merkle and Hellman [153]. However, satisfactory de�-nitions of security were presented only a few years afterwards, by Goldwasserand Micali [118]. The two de�nitions presented in Section 5.2 originate in [118],where it was shown that ciphertext-indistinguishability implies semantic secu-rity. The converse direction is due to [154].Regarding the seminal paper of Goldwasser and Micali [118], a few additionalcomments are due. Arguably, this paper is the basis of the entire rigorousapproach to cryptography (presented in the current book): It introduced generalnotions such as computational indistinguishability, de�nitioanl approaches suchas the simulation paradigm, and techniques such as the hybrid argument. Thepaper's title (\Probabilistic Encryption") is due to the author's realization thatpublic-key encryption schemes in which the encryption algorithm is deterministiccannot be secure in the sense de�ned in their paper. Indeed, this led the authorsto (explicitly) introduce and justify the paradigm of \randomizing the plaintext"as part of the encryption process. Technically speaking, the paper only presentssecurity de�nitions for public-key encryption schemes, and furthermore someof these de�nitions are syntactically di�erent from the ones we have presentedabove (yet, all these de�nitions are equivalent). Finaly, the term \ciphertext-indistinguishability" used here replaces the (generic) term \polynomial-security"used in [118]. Some of our modi�cations have already appeared in [92], which isalso the main source of our uniform-complexity treatment.The �rst construction of a secure public-key encryption scheme based on asimple complexity assumption was given by Goldwasser and Micali [118]. Specif-ically, they constructed a public-key encryption scheme assuming that decidingQuadratic Residiousity modulo composite numbers is intractable. The conditionwas weaken by Yao [197] who prove that any trapdoor permutation will do. The
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5.5. MISCELLANEOUS 361e�cient public-key encryption scheme of Construction 5.3.13 is due to Blum andGoldwasser [33]. The security is based on the fact that the least signi�cant bit ofthe modular squaring function is a hard-core predicate, provided that factoringis intractable, a result mostly due to [5].For decades, it has been common practice to use \pseudorandom generators"in the design of stream ciphers. As pointed out by Blum and Micali [34], thispractice is sound provided that one uses pseudorandom generators (as de�nedin Chapter 3). The construction of private-key encryption schemes based onpseudorandom functions is due to [99].Author's Note: The rest of this subsection is yet to be written. Thefollowing paragraphs are merely place-holders.*** Public-key encryption schemes secure against a-priori Chosen CiphertextAttacks can be constructed, assuming the existence of trapdoor permutationsand utilizing non-interactive zero-knowledge proofs [164] (which can be con-structed under this assumption [75]).*** The study of non-malleability of the encryption schemes, was initiatedin [62]. Non-malleable public-key encryption schemes are known to exist assum-ing the existence of trapdoor permutation [62]. Security and non-malleabilityare equivalent under a-posteriori chosen ciphertext attack (cf. [62, 15]).5.5.2 Suggestion for Further ReadingAuthor's Note: This subsection is yet to be written. The followingparagraphs are merely place-holders.*** For discussion of Non-Malleable Cryptography, which actually transcendsthe domain of encryption, see [62].*** For a detailed discussion of the relationship among the various notionsof secure public-key encryption, the reader is referred to [15].5.5.3 Open ProblemsAuthor's Note: Incorporate the following text...Both constructions of public-key encryption schemes secure against chosenciphertext attacks (mentioned above) are to be considered as plausibility results(which also o�er some useful construction paradigms). Presenting \reasonablly-e�cient" public-key encryption schemes that are secure against (a-posteriori)chosen ciphertext attacks, under widely believed assumptions, is an importantopen problem. (We comment that the \reasonablly-e�cient" scheme of [55]is based on a very strong assumption regarding the Di�e-Hellman Key Ex-change. Speci�cally, it is assumed that for a prime P and primitive elementg, given (P; g; (gx mod P ); (gy mod P ); (gz mod P )), it is infeasible to decidewhether z � xy (mod P � 1).)

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY.   See copyright notice.



362 CHAPTER 5. ENCRYPTION SCHEMES5.5.4 ExercisesAuthor's Note: The following are but a tentative collection of exercisesthat occurred to me while writing the main text.Exercise 1: Encryption schemes imply one-way function [125]: Show that theexistence of a secure private-key encryption scheme (i.e., as in De�ni-tion 5.2.1) implies the existence of one-way functions.Guideline: Recall that, by Exercise 11 of Chapter 3, it su�ces to provethat the former implies the existence of a pair of polynomial-time con-structible probability ensembles that are statistically far apart and stillare computationally indistinguishable. To prove the existence of such en-sembles consider the encryption of n + 1-bit plaintexts relative to a ran-dom n-bit long key, denoted Kn. Speci�cally, let the �rst ensemble bef(Un+1; E(Un+1))gn2N, where E(x) = EKn(x), and the second ensem-ble be f(U(1)n+1; E(U(2)n+1))gn2N , where U(1)n+1 and U(2)n+1 are independentlydistributed. It is easy to show that these ensembles are computationallyindistinguishable and are both polynomial-time constructible. The moreinteresting part is to show that these ensembles are statistically far apart.To prove this fact, assume towards the contradiction that for all but a negli-gible fraction of the 2n+1 possible x's, the distribution of E(x) is statisticallyclose to a single distribution Y , and show that this does not allow correctdecryption (since there are only 2n possible keys).Exercise 2: Encryption schemes with unbounded-length plaintext: Suppose thatthe de�nition of semantic security is modi�ed so that no bound is placedon the length of plaintexts. Prove that in such a case there exists nosematically secure public-key encryption scheme. (Hint: A plaintext of lengthexponential in the security parameter allows the adversary to �nd the decryption keyby exhuastive search.)Exercise 3: Encryption schemes must leak information about the length of theplaintext: Suppose that the de�nition of semantic security is modi�ed sothat the algorithms are not given the length of the plaintext. Prove thatin such a case there exists no sematically secure encryption scheme.Guideline: First show that for some polynomial p, jE(1n)j < p(n),whereas for some x 2 f0; 1gp(n) it holds that Pr[jE(x)j<p(n)] < 1=2.Exercise 4: Deterministic encryption schemes: Prove that in order to be se-matically secure a public-key encryption scheme must have a probabilisticencryption algorithm. (Hint: Otherwise, one can distinguish the encryptions oftwo candidate plaintexts by computing the unique ciphertext for each of them.)Exercise 5: Prove that the following de�nition, in which we use probabilisticpolynomial-time algorithms with auxiliary inputs (rather than polynomial-size non-uniform circuits), is equivalent to De�nition 5.2.1.
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5.5. MISCELLANEOUS 363For every probabilistic polynomial-time algorithm A, there ex-ists a probabilistic polynomial-time algorithm B, so that forevery ensemble fXngn2N, with jXnj = poly(n), every pair ofpolynomially-bounded functions f; h : f0; 1g� ! f0; 1g�, everypolynomial p(�), all su�ciently large n and every z 2 f0; 1gp(n),Pr hA(z; EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hB(z; 1jXnj; h(Xn))=f(Xn)i+ 1p(n)Same for public-key encryption.Guideline: The alternative view of non-uniformity, discussed in Sec-tion 1.3, is useful here. That is, we can view a circuit family as a sequenceof advices given to a universal machine. Thus, the original de�nition statesthat advices for a machine that gets the ciphertext can be e�ciently trans-formed into advices for a machine that does not get the ciphertext. However,we can incorporate the transformation program into the second universalalgorithm, and so the advices are identical for both machines (and can beviewed as the auxiliary string z in the new formulation). Thus, the originalde�nition is implied by the new de�nition. To close the gap between the twode�nitions, one only needs to observe that it su�ces to consider one �xeduniversal machine, A, in the new de�nition (as any adversarial strategy canbe coded in the auxiliary input to this universal machine).Exercise 6: Prove that a sematically-secure (private-key) encryption schemesatis�es the same requirements with respect to randomized circuits. Thatis, there exists a polynomail-time transformation, T , so that for everypolynomial-size randomized circuit family fCng, for every ensemble fXngn2N,with jXnj = poly(n), every pair of polynomially-bounded functions f; h :f0; 1g� ! f0; 1g�, every polynomial p(�) and all su�ciently large nPr hCn(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< Pr hC 0n(1jXnj; h(Xn))=f(Xn)i+ 1p(n)where C 0n def= T (Cn) is the circuit produced by T on input Cn. Same forpublic-key encryption.Guideline: Given a randomized family fCng as above, consider all possi-ble families of deterministic circuits derived by �xing a sequence of coins foreach Cn. Note that you should provide one family of randomized circuits,fC0ng, to match the randomized family fCng. The alternative formulationof Exercise 5 is useful here (as one may incorporate and extract the coin-sequence in the auxiliary input).Exercise 7: Prove that De�nition 5.2.3 remains unchanged when supplying thecircuit with auxiliary-input. That is, an encryption scheme satis�es De�-nition 5.2.3 if and only if
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364 CHAPTER 5. ENCRYPTION SCHEMESfor every polynomial-size circuit family fCng, every polynomialp, all su�ciently large n and every x; y 2 f0; 1gpoly(n) (i.e., jxj =jyj) and z 2 f0; 1gpoly(n),jPr �Cn(z; EG1(1n)(x))=1�� Pr �Cn(z; EG1(1n)(y))=1� j < 1p(n)(Hint: incorporate z in the circuit Cn.)Exercise 8: Equivalence of the security de�nitions in the public-key model:Prove that a public-key encryption scheme is semantically secure if andonly if it has indistinguishable encryptions.Exercise 9: The technical contents of semantic security: The following explainsthe lack of computational requirements regarding the function f , in De�-nition 5.2.1. Prove that an encryption scheme, (G;E;D), is (semantically)secure (in the private-key model) if and only if the following holds.There exists a polynomail-time transformation, T , so that forevery polynomial-size circuit family fCng, for every ensemblefXngn2N, with jXnj = poly(n), and every polynomially-boundedfunction h : f0; 1g� ! f0; 1g�, the following two ensembles arecomputationally indistinguishable.1. fCn(EG1(1n)(Xn); 1jXnj; h(Xn))gn2N.2. fC 0n(1jXnj; h(Xn))gn2N, where C 0n = T (Cn).Formulate and prove an analogous claim for the public-key model.Guideline: We care mainly about the (easy to establish) fact by whichthe above implies semantic security. The other direction can be provenanalogously to the proof of Proposition 5.2.6.Exercise 10: A variant on Exercise 9: The current exercise shows that wemay drop the auxiliary information provided by the function h withoutweakeening the de�nition. Prove that an encryption scheme, (G;E;D), is(semantically) secure (in the private-key model) if and only if the followingholds.There exists a polynomail-time transformation, T , so that forevery polynomial-size circuit family fCng, for every ensemblefXngn2N, with jXnj = poly(n), the following two ensembles arecomputationally indistinguishable.1. fCn(EG1(1n)(Xn); 1jXnj)gn2N.2. fC 0n(1jXnj)gn2N, where C 0n = T (Cn).Formulate and prove an analogous claim for the public-key model.
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5.5. MISCELLANEOUS 365Guideline: Again, we care mainly about the (easier to establish) fact bywhich the above implies semantic security. The easiest proof of this direc-tion is by applying Propositions 5.2.7 and 5.2.6. A more interesting proof isobtained by combining Exercises 5 and 9: Starting from the above formula-tion, and using the alternative presentation of Exercise 5, we establish theformulation of Exercise 9 for the special case in which h is constant on Xn.The general case follows, since otherwise { using an averaging argument {we derive a contradiction in one of the residual probability spaces de�nedby conditioning on h(Xn) (i.e., (Xnjh(Xn) = v) for some v).Exercise 11: Another equivalent de�nition of security: The following exerciseis interesting mainly for historical reasons. In the de�nition of semanticsecurity appearing in [118], the term maxu;vfPr[f(Xn) = vjh(Xn) = u]gappears instead of the term Pr[C 0n(1jXnj; h(Xn)) = f(Xn)]. That is, it isrequired thatfor every polynomial-size circuit family fCngn2N, every ensem-ble fXngn2N, with jXnj = poly(n), every pair of polynomially-bounded functions f; h : f0; 1g� ! f0; 1g�, every polynomial p(�)and all su�ciently large nPr hCn(EG1(1n)(Xn); 1jXnj; h(Xn))=f(Xn)i< maxu;v fPr [f(Xn)=vjh(Xn)=u]g+ 1p(n)Prove that the above formulation is in fact equivalent to De�nition 5.2.1.Guideline: First, note that the above de�nition implies De�nition 5.2.1(since maxu;vfPr[f(Xn)=vjh(Xn)=u]g � Pr[C0n(h(Xn); 1n; jXnj) = f(Xn)],for every circuit C0n). Next note that in the special case, in which Xn sat-is�es Pr[f(Xn) = 0jh(Xn)=u] = Pr[f(Xn) = 1jh(Xn) =u] = 12 , for all u's,the above terms are equal (since C0n can easily achieve success probability1=2 by simply always outputting 1). Finally, combining Propositions 5.2.7and 5.2.6. infer that it su�ces to consider only the latter special case.Exercise 12: Yet another equivalent de�nition of security: The following syn-tactic strengthening of semantic security is important in some applications.Its essence is in considering information related to the plaintext, in theform of a related random variable, rather than partial information aboutthe plaintext (in the form of a function of it). Prove that an encryptionscheme, (G;E;D), is (semantically) secure (in the private-key model) ifand only if the following holds.There exists a polynomial-time transformation, T , so that for ev-ery polynomial-size circuit family fCng, for every f(Xn; Zn)gn2N,where Zn may dependent arbitrarily on Xn, and f , p(�) and nas in De�nition 5.2.1Pr hCn(EG1(1n)(Xn); 1jXnj; Zn)=f(Xn)i
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366 CHAPTER 5. ENCRYPTION SCHEMES< Pr hC 0n(1jXnj; Zn)=f(Xn)i+ 1p(n)where C 0n def= T (Cn).That is, the auxiliary input h(Xn) of De�nition 5.2.1 is replaced by therandom variable Zn. Formulate and prove an analogous claim for thepublic-key model.Guideline: De�nition 5.2.1 is clearly a special case of the above. Onthe other hand, the proof of Proposition 5.2.6 extends easily to the above(seemingly stronger) formulation of semantic security.Exercise 13: Hiding partial information about the length of the plaintext: Usingan arbitrary block cipher, construct an encryption scheme that1. Hides the length of the plaintext upto a factor of 2.2. Hides the length of the plaintext upto an additive term of n.Prove that the resulting encryption scheme inherents the security of theoriginal block-cipher.(Hint: Just use an adequate padding convention, making sure that it always yieldscorrect decoding.)Exercise 14: Known plaintext attacks: Loosely speaking, in a known palintextattack on a private-key (resp., public-key) encryption scheme the adver-sary is given some plaintext/ciphertext pairs in addition to some extraciphertexts (without corresponding plaintexts). Semantic security in thissetting means that whatever can be e�ciently computed about the missingplaintexts, can be also e�ciently computed given only the length of theseplaintexts.1. Provide formal de�nitions of security for private-key/public-key inboth the single-message and multiple-message settings.2. Prove that any secure public-key encryption scheme is also secure inthe presence of known plaintext attack.3. Prove that any private-key encryption scheme that is secure in themultiple-message setting is also secure in the presence of known plain-text attack.Exercise 15: Length parameters: Assuming the existence of a secure public-key (resp., private-key) encryption scheme, prove the existence of suchscheme in which the length of keys equal the security parameter. Showthat the length of ciphertexts may be a �xed polynomial in the length ofthe plaintext.Author's Note: First draft written mainly in 1997. Major revisioncompleted in Dec. 1999.
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