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Preface

It is possible to build a cabin with no foundations,
but not a lasting building.

Eng. Isidor Goldreich (1906-1995)

Cryptography is concerned with the construction of schemes that withstand
any abuse: Such schemes are constructed so to maintain a desired functional-
ity, even under malicious attempts aimed at making them deviate from their
prescribed functionality.

The design of cryptography schemes is a very difficult task. One cannot rely
on intuitions regarding the typical state of the environment in which the system
operates. For sure, the adversary attacking the system will try to manipulate
the environment into untypical states. Nor can one be content with counter-
measures designed to withstand specific attacks, since the adversary (which acts
after the design of the system is completed) will try to attack the schemes in
ways that are typically different from the ones the designer had envisioned. The
validity of the above assertions seems self-evident, still some people hope that in
practice ignoring these tautologies will not result in actual damage. Experience
shows that these hopes rarely come true; cryptographic schemes based on make-
believe are broken, typically sooner than later.

In view of the above, we believe that it makes little sense to make assumptions
regarding the specific strategy that the adversary may use. The only assump-
tions that can be justified refer to the computational abilities of the adversary.
Furthermore, it is our opinion that the design of cryptographic systems has to
be based on firm foundations; whereas ad-hoc approaches and heuristics are a
very dangerous way to go. A heuristic may make sense when the designer has
a very good idea about the environment in which a scheme is to operate, yet
a cryptographic scheme has to operate in a maliciously selected environment
which typically transcends the designer’s view.

This book is aimed at presenting firm foundations for cryptography. The
foundations of cryptography are the paradigms, approaches and techniques used
to conceptualize, define and provide solutions to natural “security concerns”.
We will present some of these paradigms, approaches and techniques as well
as some of the fundamental results obtained using them. Owur emphasis is on
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the clarification of fundamental concepts and on demonstrating the feasibility of
solving several central cryptographic problems.

Solving a cryptographic problem (or addressing a security concern) is a two-
stage process consisting of a definitional stage and a constructive stage. First, in
the definitional stage, the functionality underlying the natural concern is to be
identified, and an adequate cryptographic problem has to be defined. Trying to
list all undesired situations is infeasible and prone to error. Instead, one should
define the functionality in terms of operation in an imaginary ideal model, and
require a candidate solution to emulate this operation in the real, clearly defined,
model (which specifies the adversary’s abilities). Once the definitional stage is
completed, one proceeds to construct a system that satisfies the definition. Such
a construction may use some simpler tools, and its security is proven relying on
the features of these tools. In practice, of course, such a scheme may need to
satisfy also some specific efficiency requirements.

This book focuses on several archetypical cryptographic problems (e.g., en-
cryption and signature schemes) and on several central tools (e.g., computa-
tional difficulty, pseudorandomness, and zero-knowledge proofs). For each of
these problems (resp., tools), we start by presenting the natural concern un-
derlying it (resp., its intuitive objective), then define the problem (resp., tool),
and finally demonstrate that the problem may be solved (resp., the tool can be
constructed). In the latter step, our focus is on demonstrating the feasibility
of solving the problem, not on providing a practical solution. As a secondary
concern, we typically discuss the level of practicality (or impracticality) of the
given (or known) solution.

Computational Difficulty

The specific constructs mentioned above (as well as most constructs in this area)
can exist only if some sort of computational hardness exists. Specifically, all these
problems and tools require (either explicitly or implicitly) the ability to generate
instances of hard problems. Such ability is captured in the definition of one-way
functions (see further discussion in Section 2.1). Thus, one-way functions is the
very minimum needed for doing most sorts of cryptography. As we shall see,
they actually suffice for doing much of cryptography (and the rest can be done by
augmentations and extensions of the assumption that one-way functions exist).

Our current state of understanding of efficient computation does not allow
us to prove that one-way functions exist. In particular, the existence of one-
way functions implies that AP is not contained in BPP 2 P (not even “on
the average”), which would resolve the most famous open problem of computer
science. Thus, we have no choice (at this stage of history) but to assume that
one-way functions exist. As justification to this assumption we may ounly offer
the combined believes of hundreds (or thousands) of researchers. Furthermore,
these believes concern a simply stated assumption, and their validity follows
from several widely believed conjectures which are central to some fields (e.g.,
the conjecture that factoring integers is hard is central to computational number
theory).
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As we need assumptions anyhow, why not just assume what we want (i.e., the
existence of a solution to some natural cryptographic problem)? Well, first we
need to know what we want: as stated above, we must first clarify what exactly
we want; that is, go through the typically complex definitional stage. But once
this stage is completed, can we just assume that the definition derived can be
met? Not really: once a definition is derived how can we know that it can at all
be met? The way to demonstrate that a definition is viable (and so the intuitive
security concern can be satisfied at all) is to construct a solution based on a better
understood assumption (i.e., one that is more common and widely believed). For
example, looking at the definition of zero-knowledge proofs, it is not a-priori clear
that such proofs exist at all (in a non-trivial sense). The non-triviality of the
notion was first demonstrated by presenting a zero-knowledge proof system for
statements, regarding Quadratic Residuosity, which are believed to be hard to
verify (without extra information). Furthermore, in contrary to prior beliefs, it
was later shown in that the existence of one-way functions implies that any NP-
statement can be proven in zero-knowledge. Thus, facts which were not known
at all to hold (and even believed to be false), where shown to hold by reduction
to widely believed assumptions (without which most of modern cryptography
collapses anyhow). To summarize, not all assumptions are equal, and so reducing
a complex, new and doubtful assumption to a widely-believed simple (or even
merely simpler) assumption is of great value. Furthermore, reducing the solution
of a new task to the assumed security of a well-known primitive typically means
providing a construction that, using the known primitive, solves the new task.
This means that we do not only know (or assume) that the new task is solvable
but rather have a solution based on a primitive that, being well-known, typically
has several candidate implementations.

Structure and Prerequisites

Our aim is to present the basic concepts, techniques and results in cryptography.
As stated above, our emphasis is on the clarification of fundamental concepts
and the relationship among them. This is done in a way independent of the
particularities of some popular number theoretic examples. These particular
examples played a central role in the development of the field and still offer the
most practical implementations of all cryptographic primitives, but this does
not mean that the presentation has to be linked to them. On the contrary,
we believe that concepts are best clarified when presented at an abstract level,
decoupled from specific implementations. Thus, the most relevant background
for this book is provided by basic knowledge of algorithms (including random-
ized ones), computability and elementary probability theory. Background on
(computational) number theory, which is required for specific implementations
of certain constructs, is not really required here (yet, a short appendix presenting
the most relevant facts is included in this volume so to support the few examples
of implementations presented here).
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Figure 0.1: Organization of this book

Organization of the book. The book is organized in three parts (see Fig-
ure 0.1): Basic Tools, Basic Applications, and Beyond the Basics. The first vol-
ume contains an introductory chapter as well as the first part (Basic Tools). This
part contains chapters on computational difficulty (one-way functions), pseudo-
randomness and zero-knowledge proofs. These basic tools will be used for the
Basic Applications of the second part, which consist of Encryption, Signatures,
and General Cryptographic Protocols.

The partition of the book into three parts is a logical one. Furthermore, it
offers the advantage of publishing the first part without waiting for the comple-
tion of the other parts. Similarly, we hope to complete the second part within a
couple years, and publish it without waiting for the third part.

The current manuscript. The current manuscript consists of fragments of a
chapter on encryption schemes. These fragments provide a draft of the first three
sections of this chapter, covering the basic setting, definitions and constructions.
Also included is a plan of the fourth section (i.e., beyond eavesdropping security),
fragments for the Miscellaneous section of this chapter, the above extracts from
the preface of Volume 1, and a table of contents that includes Volume 1.
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Chapter 5

Encryption Schemes

Upto the 1970’s, Cryptography was understood as the art of building encryption
schemes. Since then, other tasks have been recorgnized as at least as central to
Cryptography. Yet, the construction of encryption schemes remains, and is likely
to remain, a central enterprise of Cryptography.

In this chapter we review the well-known notions of private-key and public-
key encryption schemes. More importantly, we define what is meant by saying
that such schemes are secure. It turns out that using randomness throughout the
encryption process (i.e., not only during key-generation) is essential to security.
We present some basic constructions of secure encryption schemes. Finally, we
discuss “dynamic” notions of security culminating in robustness against chosen
ciphertext attacks and non-malleability.

Author's Note: Currently the write-up contains only a rough draft for
the first 3 sections of this chapter.

5.1 The Basic Setting

Loosely speaking, encryption schemes are supposed to enable private communi-
cation between parties that communicate over an insecure channel. Thus, the
basic setting consists of a sender, a receiver, and an insecure channel that may
be tapped by an adversary. The goal is to allow the sender to transfer infor-
mation to the receiver, over the insecure channel, without letting the adversary
figure out this information. Thus, we distinguish between the actual (secret)
information that the receiver wishes to transmit and the messages sent over the
insecure communication channel. The former is called the plaintext, whereas
the latter is called the ciphertext. Clearly, the ciphertext must differ from the
plaintext or else the adversary can easily obtain the plaintext by tapping the
channel. Thus, the sender must transform the plaintext into a ciphertext so
that the receiver can retreive the plaintext from the ciphertext, but the adver-
sary cannot do so. Clearly, something must distinguish the receiver (who is able
to retreive the plaintext from the corresponding ciphertext) from the adversary

323
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(who cannot do so). Specifically, the receiver know something that the adversary
does not know. This thing is called a key.

An encryption scheme consists of a method of transforming plaintexts to ci-
phertexts and vice versa, using adequate keys. These keys are essential to the
ability to effect these transformations. We stress that the encryption scheme it-
self (i.e., the encryption/decryption algorithms) may be known to the adversary,
and its security relies on the hypothesis that the adversary does not know the
keys. Formally, we need to consider a third algorithm; namely, a probabilistic
algorithm used to generate keys. This algorithm must be probabilistic (or else,
by invoking it the adversary obtains the very same key used by the receiver).

5.1.1 Overview

In accordance with the above, an encryption scheme consists of three algorithms.
These algorithms are public (i.e., known to all parties). The obvious algorithms
are the encryption algorithm, which transforms plaintexts to ciphertexts, and
the decryption algorithm, which transforms ciphertexts to plaintexts. By the
discussion above, it is clear that the decription algorithm must employ a key
that is known to the receiver but is not known to the adversary. This key is
generated using a third algorithm, called the key generator. Furthermore, it is
not hard to see that the encryption process must also depend on the key (or
else messages sent to one party can be read by a different party who is also
a potential receiver). Thus, the key-generation algorithm is used to produce a
pair of (related) keys, one for encryption and one for decryption. The encryption
algorithm, given an encryption key and a plaintext, produces a plaintext which
when fed to the decryption algorithm, with the corresponding decryption key,
returns the original plaintext. We stress that knowledge of the decryption key
is essential for the latter transformation.

A fundamental distiction between encryption schemes refers to the relation
between the two keys (mentioned above). The simpler (and older) notion as-
sumes that the encryption key equals the decryption key. Such schemes are
called private-key (or symmetric). To use a private-key scheme, the legitimate
parties must first agree on the secret key. This can be done by having one
party generate the key at random and send it to the other party using a channel
that is assumed to be secure. A crucial point is that the key is generated inde-
pendently of the plaintext, and so it can be generated and exchanged prior to
the plaintext even being determined. Thus, private-key encryption is a way of
extending a private channel over time: If the parties can use a private channel
today (e.g., they are currently in the same physical location) but not tommorow,
then they can use the private channel today to exchange a secret key that they
may use tomorrow for secret communication. A simple example of a private-key
encryption scheme is the one-time pad. The secret key is merely a uniformly
chosen sequence of n bits, and an n-bit long ciphertext is produced by XORing
the plaintext, bit-by-bit, with the key. The plaintext is recovered from the ci-
phertext in the same way. Clearly, the one-time pad provides absolute security.
However, its usage of the key is inefficient; or, put in other words, it requires
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keys of length comparable to the total length of data communicated. In the rest
of this chapter we will only discuss encryption schemes where n-bit long keys
allow to communicated data of length greater than n (but still polynomial in n).

A new type of encryption schemes has emerged in the 1970’s. In these
schemes, called public-key (or asymmetric), the decryption key differs from the
encryption key. Furthermore, it is infeasible to find the decryption key, given the
encryption key. These schemes enable secure communication without ever using
a secure channel. Instead, each party applies the key-generation algorithm to
produce a pair of keys. The party, called P, keeps the decryption key, denoted
dp, secret and publishes the encryption key, denoted ep. Now, any party can
send P private messages by encrypting them using the encryption key ep. Party
P can decrypt these messages by using the decryption key dp, but nobody else
can do so.

5.1.2 A Formulation of Encryption Schemes

We start by defining the basic mechanism of encryption schemes. This definition
says nothing about the security of the scheme (which is the subject of the next
section).

Definition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G, E, D),
of probabilistic polynomial-time algorithms satisfying the following two condi-
tions

1. On input 1™, algorithm G (called the key generator) outputs a pair of bit
strings.

2. For every pair (e,d) in the range of G(1™), and for every a € {0,1}*,
algorithms E (encryption) and D (decryption) satisfy

PriD(d,E(e,a))=a] =1

where the probability is over the internal coin tosses of algorithms E and
D.

The integer n serves as the security parameter of the scheme. FEach (e,d) in
the range of G(1™) consitutes a pair of corresponding encryption/decryption
keys. The string E(e,«) is the encryption of the plaintext « € {0, 1}* using the
encryption key e, whereas D(d, 3) is the decryption of the ciphertext 8 using
the decryption key d.

Observe that Definition 5.1.1 does not distinguish private-key encryption schemes
from public-key ones. The difference between the two types is introduced in the
security definitions: In a public-key scheme the “breaking algorithm” gets the
encryption key (i.e., €) as an additional input (and thus e # d follows); while
in private-key schemes e is not given to the “breaking algorithm” (and thus one
may assume, without loss of generality, that e = d).
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We stress that the above definition requires the scheme to operate for every
plaintext, and specifically for plaintext of length exceeding the length of the en-
cryption key. (This rules out the information theoretic secure scheme mentioned
above.)

Notation: In the rest of this book, we write E.(«) instead of E(e,«) and
Dy(B) instead of D(d,3). Whenever there is little risk of confusion, we drop
these subscripts. Also, we let G1(1") (resp., G2(1™)) denote the first (resp.,
second) element in the pair G(1™). That is, G(1™) = (G1(1"), G2(1™)).

Comments: The above definition may be relaxed in several ways without
significantly harming its usefulness. For example, we may relax Condition (2)
and allow a negligible decryption error (e.g., Pr[D4(E.(@)) # o] < 27™). Al-
ternatively, one may postulate that Condition (2) holds for all but a negligible
measure of the key-pairs generated by G(1™). At least one of these relaxations
is essential for all popular suggestions of encryption schemes.

Another relaxation consists of restricting the domain of possible plaintexts
(and ciphertexts). For example, one may restrict Condition (2) to a’s of length
¢(n), where £ : N— N is some fixed function. Given a scheme of the latter type
(with plaintext length ¢), we may construct a scheme as in Definition 5.1.1 by
breaking plaintexts into blocks of length ¢(n) and applying the restricted scheme
separetly to each block. For more details see Section 5.2.4.

5.2 Definitions of Security

In this section we present two fundamental definitions of security and prove
their equivalence. The first definition, called semantic security, is the most
natural one. Semantic security is a computational complexity analogue of Shan-
non’s definition of perfect privacy. Loosely speaking, an encryption scheme is
semantically secure if the encryption of a message does not yield any informa-
tion on the message to an adversary that is computationally restricted (e.g., to
polynomial-time). The second definition has a more technical flavour. It in-
terprets security as the infeasibility of distinguishing between encryptions of a
given pair of messages. This definition is useful in demonstrating the security
of a proposed encryption scheme, and for arguments concerning properties of
cryptographic protocols that utilize an encryption scheme.

We stress that the definitions presented below go way beyond saying that it
is infeasible to recover the plaintext from the ciphertext. The latter statement
is indeed a minimal requirement from a secure encryption scheme, but we claim
that it is way too weak a requirement: An encryption scheme is typically used in
applications where obtaining specific partial information on the plaintext endan-
gers the security of the application. When designing an application-independent
encryption scheme, we do not know which partial information endangers the
application and which does not. Furthermore, even if one wants to design an
encryption scheme tailored to one’s own specific applications, it is rare (to say
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the least) that one has a precise characterization of all possible partial informa-
tion that endanger these applications. Thus, we require that it is infeasible to
obtain any information about the plaintext from the ciphertext. Furthermore,
in most applications the plaintext may not be uniformly distributed and some
a-priori information regarding it is available to the adversary. We require that
the secrecy of all partial information is preserved also in such a case. That is,
even in presence of a-priori information on the plaintext, it is infeasible to obtain
any (new) information about the plaintext from the ciphertext (beyond what is
feasible to obtain from the a-priori information on the plaintext). The definition
of semantic security postulates all of this.

To simplify the exposition, we adopt a non-uniform formulation. Namely, in
the security definitions we expand the domain of efficient adversaries/algorithms
to include polynomial-size circuits (rather than only probabilistic polynomial-
time machines). Likewise, we make no computation restriction regarding the
probability distribution from which messages are taken, nor regarding the a-
priori information available on these messages. We note that employing such a
non-uniform formulation (rather than a uniform one) may only strengthen the
definitions; yet, it does weaken the implications proven between the definitions,
since these (simpler) proofs make free usage of non-uniformity.

5.2.1 Semantic Security

Loosely speaking, semantic security means that whatever can be efficiently com-
puted from the ciphertext, can be efficiently computed also without the cipher-
text. Thus, an adversary gains nothing by intercepting ciphertexts sent between
communicating parties who use a semantically secure encryption scheme, since
it could have obtained the same without intercepting these ciphertexts. Indeed,
this formulation follows the simulation paradigm: “lack of gain” is captured by
asserting that whatever is learnt from the ciphertext can be learnt within related
complextity also without the ciphertext.

To be somewhat more accurate, semantic security means that whatever can
be efficiently computed from the ciphertext, can be efficiently computed given
only the length of the plaintext. Note that this formulation does not role out the
possibility that the length of the plaintext can be inferred from the ciphertext.
Indeed, some information about the length of the plaintext must be revealed by
the ciphertext (see Exercise 3). We stress that other than information about
the length of the plaintext, the ciphertext is required to yield nothing about the
plaintext.

We augment this formulation by requiring that the above remains valid even
in presence of auxiliary partial information about the plaintext. Namely, what-
ever can be efficiently computed from the ciphertext and additional partial in-
formation about the plaintext, can be efficiently computed given only the length
of the plaintext and the same partial information. In the actual definition, the
information regarding the plaintext that the adversary tries to obtain is captured
by the function f, whereas the a-priori partial information about the plaintext
is captured by the function h. The above is required to hold for any distribution
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of plaintexts, captured by the probability ensemble {X,}, cN.

Secrurity holds only for plaintexts of length polynomial in the security pa-
rameter. This is captured below by the restriction |X,| = poly(n). Note that
we cannot hope to provide computational security for plaintexts of unbounded
length in the security parameter (see Exercise 2). Likewise, we restrict the func-
tions f and h to be polynomially-bounded; that is, | f(x)|, |h(x)| = poly(|z|).

The difference between private-key and public-key encryption schemes is
manisfested in the definition of security. In the latter the adversary, trying
to obtain information on the plaintext, is given the encryption key whereas in
the former it is not. Thus, the difference between these schemes amounts to a
difference in the adversary model (considered in the definition of security). We
start by presenting the definition for private-key encryption schemes.

Definition 5.2.1 (semantic security — private-key): An encryption scheme,
(G, E, D), is semantically secure (in the private-key model) if for every polynomial-
size circuit family {Cn},en, there exists a polynomial-size circuit family {C'y} so
that for every ensemble { Xy}, eN, with | X,| = poly(n), every pair of polynomially-
bounded functions f,h : {0,1}* — {0,1}*, every polynomial p(-) and all suffi-
ciently large n

] (5.1)

1

Pr [Ca(Ba, (1) (Xn), 10 (X)) = F(X
< Pr [C;(NXM,h(Xn)):f(Xn)} b (5.2)

n
p(n)
(The probability in the above terms is taken over X,, as well as over the internal
coin tosses of algorithms G and E.)

Furthermore, we require that the latter circuit family is efficiently constructable
from the former one. That is, we require the existence of a probabilistic polynomial-

time transformation, T, that for every n, given the description of C, returns a

description of C!, as above (i.e., Cl, = T(C,) for every n). In case CJ is a
random variable, the probability in Eq. (5.2) is also taken over its distribution.

The function A provides both algorithms with partial information on the plain-
text X,. In addition both algorithms get the length of X,,. These algorithms
then try to guess the value f(X,,); namely, they try to infer information about
the plaintext X,,. Loosely speaking, in semantically secure encryption scheme
the ciphertext does not help in this inference task. That is, the success proba-
bility of any efficient algorithm (i.e., the circuit family {C,}) that is given the
ciphertext, can be matched, upto a negligible fraction, by the success probabil-
ity of an efficient algorithm (i.e., the circuit family {C/}) that is not given the
ciphertext at all. The extra requirement that C,, can be efficiently transformed
into C!, makes the definition stronger, and is done out of philosophical reasons —
see discussion below.

Definition 5.2.1 refers to private-key encryption schemes. To derive a def-
inition of security for public-key encryption schemes, the encryption-key (i.e.,
G1(1™)) should be given to the adversaries as an additional input. That is,
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Definition 5.2.2 (semantic security — public-key): An encryption scheme, (G, E, D),
is semantically secure (in the public-key model) if there exists a polynomial-time
transformation, T, so that for every polynomial-size circuit family {C,}, and

for every {X,}nen, b, p(*) and n as in Definition 5.2.1

PrCalGr™), B,y (Xa), 170 (X)) = (X,
< Pr[Cn(Gi(m) 1% R(X) = F(X0)] + .

)
b

(n)
where C!, = T(C,).

We comment that the encryption-key can be omitted from the input to C/,, since
C! may generate it by itself.

Terminology: For sake of simplicity, we refer to an encryption scheme that is
semantically secure in the private-key (resp., public-key) model as to a semantically-
secure private-key (resp., public-key) encryption scheme.

The reader may note that a semantically-secure public-key encryption scheme
cannot employ a deterministic encryption algorithm; that is, E.(z) must be a
random variable rather than a fixed string. This is more evident with respect to
the equivalent Definition 5.2.4 (below). See further discussion following Defini-
tion 5.2.4.

Discussion of some definitional choices

We discuss some subtle issues regarding Definitions 5.2.1 and 5.2.2. The first
comment is important, the others can be skipped with little loss. The interested
reader is also referred to Exercises 11 and 12 that discuss additional variants of
the definition of semantic security.

Effecient transformation of adversaries. Our definitions require that ad-
versaries capturing what can be inferred from the ciphertext be effectively trans-
formed into “equivalent” adversaries that operate without being given the cipher-
text. This is stronger than only requiring that corresponding “equivalent” ad-
versaries exist. The strenthening seems especially appropriate since we are using
a non-uniform model of adversary strategies. Merely saying that polynomial-size
circuits that operate without being given the ciphertext do exist is not reassuring
enough, since they may be hard to find whereas circuits that operate while being
given the ciphertext may be easy to find. The extra requirement guarantess that
this cannot be the case: if circuits that operates on the ciphertext are easy to
find then so are the “equivalent” circuits that operate without the ciphertext.

Deterministic versus randomized adversaries. Our definitions refer im-
plicitly to deterministic adversaries (modelled by non-uniform families of circuits
which are typically assumed to be deterministic). This is in accordance with the
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general thesis by which the harm of non-uniform adversaries may be maximized
by deterministic ones (i.e., by fixing the “worst” coin-sequence). However, we
need to verify that a transformation of adversaries (as discussed above) referring
to deterministic adversaries can be extended to randomized ones. This is indeed
the case; see Exercise 6.

We comment that the above non-uniform formulation is equivalent to a uni-
form formulation in which the adversaries are given identical auxiliary input:
See Exercise 5.

Lack of restrictions on the functions f and g. We do not require that
these functions are even computable. This seems strange at first glance. How-
ever, as we shall see in the sequel (see also Exercise 9), the meaning of semantic
security is essentially that the distribution ensembles (E(X,,), 1% h(X,,)) and
(B(11X=1) 11X1 'h(X,,)) are computationally indistinguishable (and so whatever
C,, can compute can be computed by C/,).

Other modifications of no impact. Actually, inclusion of a-priori infor-
mation (captured by the function h) does not affect the definition of semantic
security: Definition 5.2.1 remains intact if we omit h from the formulation (or
consider a constant function). (This can be shown in various ways; e.g., see
Exercise 10.) Also, the function f can be restricted to be a Boolean function
having polynomial-size circuits, and the random variable X,, may be restricted
to be very “dull” (e.g., have only two strings in its support): See proof of The-
orem 5.2.5.

5.2.2 Indistinguishability of Encryptions

The following technical interpratation of security states that it is infeasible to
distinguish the encryptions of two plaintexts (of the same length). That is, such
ciphertexts are computationally indistinguishable as defined in Definition 3.2.2.
Again, we start with the private-key variant.

Definition 5.2.3 (indistinguishability of encryptions — private-key): An en-
cryption scheme, (G, E, D), has indistinguishable encryptions (in the private-key
model) if for every polynomial-size circuit family {C,}, every polynomial p, all
sufficiently large n and every x,y € {0,1}P°W() (ie., |z| = |y|),

|Pr [Cn(E(;l(ln.)(Cﬂ))Zl] — Pr [C’n(E(;l(ln)(y))=l] | < m
The probability in the above terms is taken over the internal coin tosses of algo-
rithms G and E.

Note that the potential plaintexts to be distinguished can be incorporated into
the circuit C,,. Thus, the circuit models both the adversary’s strategy and its
a-priori information: See Exercise 7.
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Again, the security definition for public-key encryption schemes can be de-
rived by adding the encryption-key (i.e., G1(1™)) as an additional input to the
algorithm. That is,

Definition 5.2.4 (indistinguishability of encryptions — public-key): An encryp-
tion scheme, (G, E, D), has indistinguishable encryptions (in the public-key model)
if for every polynomial-size circuit family {C,}, and every p(-), n, x and y as
in Definition 5.2.3

IPr [Ca(G1 (1), By 1oy (2)) = 1] — Pr [Ca(G1 (1), By 1oy ()) =1] | < Fln)

Terminology: For sake of simplicity, we refer to an encryption scheme that has
indistinguishable encryptions in the private-key (resp., public-key) model as to
a ciphertext-indistinguishable private-key (resp., public-key) encryption scheme.

The reader may note that a semantically-secure public-key encryption scheme
cannot employ a deterministic encryption algorithm; that is, E.(z) must be a
random variable rather than a fixed string.

A ciphertext-indistinguishable public-key encryption scheme cannot employ
a deterministic encryption algorithm (i.e., E.(x) cannot be a fixed string). For
a public-key encryption scheme with a deterministic encryption algorithm E,
given an encryption-key e and a pair of candidate plaintexts (z,y), one can
easily distinguish E,(z) from E.(y) (by merely applying E. to  and comparing
the result to the given ciphertext). In contrast, in case the encryption algorithm
itself is randomized, the same plaintext can be encrypted in exponentially many
different ways, under the same encryption key. Furthermore, the probability that
applying E. twice to the same message (while using independent randomization
in E,) results in the same ciphertext may be exponentially vanishing. (Indeed, as
shown below, public-key encryption scheme having indistinguishable encryptions
can be constructed based on any trapdoor permutations, and these schemes
employ randomized encryption algorithms.)

5.2.3 Equivalence of the Security Definitions

The following theorem is stated and proven for private-key encryption schemes.
Similar results hold for public-key encryption schemes (see Exercise 8).

Theorem 5.2.5 (equivalence of definitions — private-key): A private-key en-
cryption scheme is semantically secure if and only if it has indistinguishable
encryptions.

Let (G, E, D) be an encryption scheme. We formulate a proposition for each of
the two directions of the above theorem. Both propositions are in fact stronger
than the corresponding direction stated in Theorem 5.2.5. The more useful di-
rection is stated first: it asserts that the technical interpration of security, in
terms of ciphertext-indistinguishability, implies the natural notion of sematic
security. Thus, the following proposition yields a methodology for designing
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sematically secure encryption schemes: design and prove your scheme to be
ciphertext-indistinguishable, and conclude (by the following) that it is semati-
cally secure. The opposite direction (of Theorem 5.2.5) establish the “complete-
ness” of the latter methodology, and more generally assert that requiring an
encryption scheme to be ciphertext-indistinguishable does not rule out schemes
that are sematically secure.

Proposition 5.2.6 (useful direction — “indistinguishability” implies “security” ):
Suppose that (G, E, D) is a ciphertexst-indistinguishable private-key encryption
scheme. Then (G, E,D) is semantically-secure. Furthermore, the circuit C,
produced by the transformation T captures the computation of a probabilistic
polynomial-time oracle machine that is given oracle access to C,,.

Proposition 5.2.7 (opposite direction — “security” implies “indistinguishabil-
ity”): Suppose that (G, E,D) is a semantically secure private-key encryption
scheme. Then (G, E,D) has indistinguishable encryptions. Furthermore, the
conclusion holds even if the definition of semantic security is restricted to the
special case where h is a constant function, X, is uniformly distributed over a
set containing two strings, the function f is Boolean, and the transformation T
18 mot even required to be computable.

Proof of Proposition 5.2.6: Suppose that (G, E, D) has indistinguishable
encryptions. We show that (G, E,D) is semantically secure by constructing
for every polynomial-size circuit family {Cy,}, a polynomial-size circuit family
{C}} so that for every {X,},en, f and h, the circuit C}, guesses f(X,,) from
(11X1 h(X,,)) essentially as good as C,, guesses f(X,,) from (E(X,), 11X h(X,)).

Let C,, be a circuit that tries to infer partial information (i.e., the value
f(X,)) from the encryption of the message X,, (when also given 11X and a-
priori information h(X,)). Namely, on input E(a) and (11%/, h(a)), the circuit
C,, tries to guess f(a). We construct a new circuit, C/,, that performs as well
without getting the input E(«). The new circuit consists of invoking C;, on input
Eg,1»)(121) and (112, h()), and outputs whatever C,, does. That is, C}, in-
vokes the key-generator G (on input 1"), obtains an encryption-key e = G1(1"),
invokes the encryption algorithm with key e and (“dummy”) plaintext 1ol ob-
taining a ciphertext that it feeds to C,, together with the inputs (1%l h(a)).
Observe that C!, can be efficiently computed from C,, (i.e., by augmenting C,
with the uniform circuit for computing algorithms G and E).

Indistinguishability of encryptions will be used to prove that C! performs
essentially as well as C,. Note that the construction of C! does not depend
on the functions h and f or on the distribution of messages to be encrypted.
Furthermore, C}, consists of a probabilistic polynomial-time machine that uses
C,, as a black-box.

Claim 5.2.6.1: Let {C!} be as above. Then, for any polynomial p, and all
sufficiently large n’s

Pr [Ca(Bgy 1) (Xn), 150, h(X0)) = ()
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< PrlCLl (X)) = F(X0)] + ﬁ

Proof: To simplify the notations, let us incorporate 11° into h(a). Using the
definition of C},, we can rewritten the claim as asserting

Pr [C”(EG1(1")(XTL)7 h(Xn)) Zf(Xn)]
1

| X | = —

< PrCalBa ) (M), (X)) = £ (X)) + 5

Assume, to the contradiction that for some polynomial p and infinitely many

n’s the above inequality is violated. Then, for each such n, we have E[A(X},)] >
1/p(n), where

Aa) 2 |Pr [Cu(Ea, (1) (@), h(w) = f(@)] = Pr [CulBay 1 (1), h(a) = f()] |

We now use an averaging argument: Let x,, € {0,1}P°¥(") be a string for which
A(z) is maximum, and so A(x,) > 1/p(n). Using this z,, we introduce a new
circuit D,,, which incorporates f(z,) and h(z,), and operates as follows. On
input § = E(a), the circuit D,, invokes C,, (3, h(z,)) and outputs 1 if and only
if C,, outputs the value f(z,). (Otherwise, D,, outputs 0.) Clearly,

Pr [Dn(Eg, () () =1] = Pr [Co(Eg, (1) (), h(wn)) = f(wn)] (5-3)
Combining Eq. (5.3) with the definition of A(z,), we get
‘Pf [Dn(Eg,(17)(wn))=1] = Pr [Dn(Ec:l(ln)(l"’”"“))=1] ‘ = A(zn)
1
)

in contradiction to our hypothesis that E has indistinguisahble encryptions.
Thus, the claim follows. O

Proposition 5.2.6 follows. W

Discussion: The fact that we deal with a non-uniform model of computation,
allows the above proof to proceed regardless of the complexity of f and h. All
that our proof requires is the values of f and h on a single string, and such
values can be incorporated in the description of the circuit D,,.

Proof of Proposition 5.2.7: We now show that if (G, E, D) has distinguish-
able encryptions then it is not semantically secure (not even in the restricted
sense mentioned in the furthermore-clause of the proposition). Towards this
end, we assume that there exists a polynomial p, a polynomial-size circuit fam-
ily {D,,}, such that for infinitely many n’s there exists x,,y, € {0,1}P°¥(") 5o
that

|Pr [Dn(Eg,(1n)(xn))=1] = Pr [Dn(Eg, 1) (yn))=1]| > ﬁ (5.4)
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We define a random variable X, which is uniformly distributed over {z,, y.,},
and f:{0,1}*—{0,1} so that f(z,) =1 and f(y,) = 0. Note that f(X,) =1
with probability 1/2 and is 0 otherwise. (The function h is defined as a constant
function.)

We will show that D, can be transformed into a polynomial-size circuit
C,, that guesses the value of f(X,), from the encryption of X,,, and does so
significantly better that with probability % This violates (even the restricted
form of) semantic security, since no circuit (regardless of its size) can guess
f(X,,) better than with probability 1/2 when only given 11%»| (since given the
constant value 11%»| the value of f(X,,) is uniformly distributed over {0,1}).

Let us assume, without loss of generality, that for infinitely many n’s

Pr[Du(Eg,am(zn)=1] > Pr[Dn(Eg,n)(yn))=1] + ﬁ (5.5)

Claim 5.2.7.1: There exists a polynomial-size circuit family {C,} so that for
infinitely many n’s

Pr [Co (B 4y (X)) =F(X)] > 5+ s

Proof: The circuit C,, uses D,, in a straightforward manner: On input 8 =
E(a), the new circuit C,, feeds D,, with input 8 and outputs 1 if D,, outputs 1
(otherwise, C,, outputs 0).!

It is left to analyze the success probability of C,:

Pr [C(Eg, (1n)(Xn)) = f(Xn)]
_ % P [C(Eg, (1) (X)) = F(Xn) | X =]
+ 5 - Pr[Cu(Bg, 1) (X)) = F(Xa) | Xn=yn]
_ % - (Pr [Cu(Bgy (1ny (@) =1] + Pr [C(Eg, 10y (y4)) =0])
_ % (P [C(By 1y (@a)) =1] + 1 = Pr [Co(Ea, 10y () =1])
> % * 2ptn)

where the inequality is due to Eq. (5.5). O

In contrast, as observed above, no circuit (regardless of its size) can guess
f(X,,) with success probability above 1/2, when given only 1/X»| and h(X,,)

1 We comment that the ‘1’ output by D, is an indication that o is more likely to be @y,
whereas the output of C,, is a guess of f(a). This point may be better stressed by redefining
def . . .
f so that f(xzn) = £, and f(z) = yn if * # @pn, and having C, output z, if C, outputs 1
and output y, otherwise.
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(which are both fixed strings that can be incorporated in the circuit). Thus, we
have

Fact 5.2.7.2: For every n and every circuit C,

1
Pr[Cr (U h(X)) = £(Xa)] < 5
Combining Claim 5.2.7.1 and Fact 5.2.7.2, we reach a contradiction to the hy-
pothesis that the scheme is semantically secure (even in the restricted sense
mentioned in the furthermore-clause of the proposition). Thus, the proposition

follows. |

Comment: When proving the public-key analogue of Proposition 5.2.7, the
circuit C,, just passes the encryption-key, given as part of its input, to the circuit
D,,. The rest of the proof remains intact.

5.2.4 Multiple Messages

The above definitions only refer to the security of a scheme that is used to encrypt
a single plaintext (per key generated). Since the plaintext may be longer than
the key, these definitions are already non-trivial, and a scheme satisfying them
(even in the private-key model) implies the existence of one-way functions (see
Exercise 1). Still, in reality, we want to use encryption schemes to encrypt many
messages with the same key. We show that in the public-key model, security
in the single-message setting (discussed above) implies security in the multiple-
message setting (defined below). This is not necessarily true for the private-key
model.

5.2.4.1 Definitions

ForZ = (z(M,...,2®), welet E,(Z) denote the concatanation of the results of ap-

plying the randomized process E, to (1), ..., z(!). Thatis, E.(Z) = E.(z"), ..., E.(z").
We stress that in each of the ¢ invocations E, utilizes independently chosen ran-

dom coins.

Definition 5.2.8 (semantic security — mulitple messages):

For private-key: An encryption scheme, (G, E, D), is semantically secure for
multiple messages in the private-key model if there exists a polynomial-time
transformation, T, so that for every polynomial t(-) and every polynomial-
size circuit family {C,,}, for every ensemble {X,, = (X,(zl), ey X,(f(n)))}neN,
with |X£f)| = poly(n), every pair of functions f,h : {0,1}* — {0,1}*, every
polynomial p(+) and all sufficiently large n

Pr [Ca(Ba ) (Xn), 17 0(X0)) = £ ()]

< Pr [0;(1'771\,h(7n)):f(7n)] o)
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where C!, et T(C,).

For public-key: An encryption scheme, (G,E,D), is semantically secure for
multiple messages in the public-key model if for t(-), {Crn}, {C}}, {Xn}ren
fsh, p(¢) and n as above

Pr [Cu(G1(1"), By 1) (K, 15 A()) = £(X0)|

< Pr(Cn(Gum), 1% h(F) = £(Fn)] + %

We stress that the elements of X,, are not necessarily independent; they may
depend on one another. Note that the above definition also cover the case where
the adversary obtains some of the plaintexts themselves. In this case it is still
infeasible for him/her to obtain infromation about the missing plaintexts (see
Exercise 14).

Definition 5.2.9 (indistinguishability of encryptions — mulitple messages):

For private-key: An encryption scheme, (G,E, D), has indistinguishable en-
cryptions for multiple messages in the private-key model if for every poly-
nomial t(-), every polynomial-size circuit family {C,}, every polynomial p,
all sufficiently large n and every x1, ..., Tyn), Y1, - Ys(n) € 10, 1}p°1y“‘)

IPr [Cn(Bg,(10)(2)) =1] = Pr [Co(Eg, 1 () =1] | < 7ol

where T = (21, ..., Ty(ny) and § = (Y1, -, Ye(n))-

For public-key: An encryption scheme, (G, E, D), has indistinguishable encryp-
tions for multiple messages in the public-key model if for t(-), {Crn}, p, n
and T1, ..., Ti(n), Y1, - Ye(n) 05 above

IPr [Cn(G1(17), Eg, (1) (7)) =1] =Pr [C1(G1(1"), Eg, 1) (7)) =1] | < ()

The equivalence of Definitions 5.2.8 and 5.2.9 can be established analogously to
the proof of Theorem 5.2.5.

Theorem 5.2.10 (equivalence of definitions — multiple messages): A private-
key (resp., public-key) encryption scheme is semantically secure for multiple mes-
sages if and only if it has indistinguishable encryptions for multiple messages.

Thus, proving that single-message security implies multiple-message security for
one definition of security, yields the same for the other. We may thus concentrate
on the ciphertext-indistinguishability definitions.
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5.2.4.2 In the public-key model

We first consider public-key encryption schemes.

Theorem 5.2.11 (single-message security implies multiple-message security):
A public-key encryption scheme has indistinguishable encryptions for multiple
messages (i.e., satisfies Definition 5.2.9 in the public-key model) if and only if
it has indistinguishable encryptions for a single message (i.e., satisfies Defini-
tion 5.2.4).

Proof: Clearly, multiple-message security implies single-message security as a
special case. The other direction follows by adapting the proof of Theorem 3.2.6
to the current setting.

Suppose, towards the contradiction, that there exist a polynomial (), a
polynomial-size circuit family {C,,}, and a polynomial p, such that for infinitely
many n’s, there exists 1, ..., Ty(n), Y1, -+, Yg(n) € 10, 1}Po (™) 50 that

[PrlCatcit >7FGI<1"-><E>>=1]—Pr[Cn(Gml")EGlm)@))=1]|>$

where T = (x1, ..., Ty(n)) and § = (Y1, ..., Ys(n))- Let us consider such a generic n
and the corresponding sequences 1, ..., Ty(n) and yi, ..., Yy(n)- We use a hybrid
argument: define

B def (ml,...,mi,yi+1,---:yt(n))
and Hr(j) déf (Gl(1n)7EG1(1"‘)(h(i)))

Since HY) = (G1(1"), B, 1n)(9)) and =™ = (G,(1m), E¢,(1n)(2)), it follows
that there exists an ¢ € {0, ...,¢(n) — 1} so that

‘Pr [Cn(Hr(Li))zl} _Pr [Cn(H,(j“)):l” >

O O

We now construct a circuit D,, that, on input e and 3, operates as follows.?
For every j < i, the circuit D, generates an encryption of z; using the en-
cryption key e. Similarly, for every 5 > ¢ + 1, the circuit D, generates an
encryption of y; using the encryption key e. Let us denote the resulting ci-
phertexts by Bi,..., 8i, Bit+2, -, By(n)- Finally, D, invokes C, on input e and
By Bis B, Bit2y oy By(n), and outputs whatever C, does.

Now, suppose that 8 is a (random) encryption of z;;1 with key e; that is, § =
E.(z;41). Then, D,(e, ) = Cpn(e, hit1)) = C’n(HT(fH)), where X =Y means
that the random variables X and Y are identically distributed. Similarly, for
B = E.(yi11), we have Dy (e, ) = Cp(e, ) = C,(HS"). Thus, by Eq. (5.6),

2 The construction relies on Dy,’s knowledge of the encryption-key and hence the public-key
model is essential for it.
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we have
|Pr [Dn(G1(1"), Bg, (1m) (yir1) = 1]

1
—Pr [Dn(G1(1"), Egy (1n)(ig1) =1]| >

t(n) - p(n)

in contradiction to our hypothesis that (G, E, D) is a ciphertext-indistinguishable
public-key encryption scheme (in the single message sense). The theorem follows.

Discussion: The fact that we are in the public-key model is essential to the
above proof. It allows the circuit D,, to form encryptions relative to the same
encryption-key used in the ciphertext given to it. In fact, as stated above, the
analogous result does not hold in the private-key model.

5.2.4.3 In the private-key model

In contrary to Theorem 5.2.11, in the private-key model, ciphertext-indistinguishability
for a single message does NOT necessarily imply ciphertext-indistinguishability
for multiple messages.

Proposition 5.2.12 Suppose that there exist pseudorandom generators (robust
against polynomial-size circuits). Then, there exists a private-key encryption
scheme that satisfies Definition 5.2.8 but does not satisfy Definition 5.2.9.

Proof: We start with the construction of the private-key encryption scheme.
The encryption/decryption key for security parameter n is a uniformly dis-
tributed n-bit long string, denoted s. To encrypt a ciphertext, x, the encryption
algorithm uses the key s as a seed for a pseudorandom generator, denoted g,
that stretches seeds of length n into sequences of length |z|. The ciphertext is
obtained by a bit-by-bit exclusive-or of x and g(s). Decryption is done in an
analogous manner.

We first show that this encryption scheme satisfies Definition 5.2.3. Intu-
itively, this follow from the hypothesis that g is a pseudorandom generator and
the fact that 2 ® U}, is uniformly distributed over {0, 1}l=1. Specifically, suppose
towards the contradiction that for some polynomial-size circuit family {C,}, a
polynomial p, and infinitely many n’s

1
|Pr[Cn(z © g(Un))=1] = Pr[Cn(y ® g(Un)) =1]| > o)
where U, is uniformly distributed over {0,1}"™ and |z| = |y| = m = poly(n). On
the other hand,

Pr(Ch(z ® Uy,)=1] = Pr[Cy(y ® Up]
Thus, without loss of generality

1

PrCw(@ @ g(Un))=1] = Pr{Cule & Un) =1]| > 35
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Incorporating z into the circuit C,, we obtain a circuit that distinguishes U,,
from ¢g(U,,), in contradiction to our hypothesis (regarding the pseudorandomness
of g).

Next, we observe that the above encryption scheme does not satisfy Defini-
tion 5.2.9. Specifically, given the ciphertexts of two plaintexts, one may easily
retreive the exclusive-or of the corresponding plaintexts. That is,

Es(z1) © Es(72) = (21 ©9(s)) © (12 © g(s)) = 71 & 72

This clearly violates Definition 5.2.8 (e.g., consider f(x1,x2) = x1 © x2) as well
as Definition 5.2.9 (e.g., consider any T = (x1,22) and § = (y1,y=2) such that
T1 DTy # Y1 Dy2). Viewed in a different way, note that any plaintext-ciphertext
pair yields a corresponding prefix of the pseudorandom sequence, and knowledge
of this prefix violates the security of additional plaintexts. That is, given the
encryption of a known plaintext x; along with the encryption of an unknown
plaintext xo, we can retreive xz. On input the ciphertexts 31, 82, knowing that

the first plaintext is xy, first retreives the pseudorandom sequence (i.e., it is just

r B1®x1), and next retreives the second plaintext (i.e., by computing B2 ®r).

Discussion: The single-message security of the above scheme was proven by
considering an ideal version of the scheme in which the pseudorandom sequence
is replaced by a truely random sequence. The latter scheme is secure in an
information theoretic sense, and the security of the actual scheme followed by
the indistinguishability of the two sequences. As we show below, the above
construction can be modified to yield a private-key “stream-cipher” that is secure
for multiple message encryptions. All that is needed is to make sure that the
same part of the pseudorandom sequence is never used twice.

5.2.5 * A uniform-complexity treatment

As stated at the beginning of this section, the non-uniform formulation was
adopted here for sake of simplicity. In this subsection we sketch a uniform-
complexity definitional treatment of security. We stress that by uniform or non-
uniform complexity treatment of cryptographic primitives we merely refer to the
modelling of the adversary. The honest (legitimate) parties are always modelled
by uniform complexity classes (most commonly probabilistic polynomial-time).

The notion of efficiently constructible ensembles, defined in Section 3.2.3, is
centeral to the uniform-complexity treatment. Recall that an ensemble, X =
{X,}neN, is said to be polynomial-time constructible if there exists a probabilistic
polynomial time algorithm S so that for every n, the random variables S(1™)
and X,, are identically distributed.
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5.2.5.1 The definitions

We present only the definitions of security for multiple messages; the single-
message variant can be easily obtained by setting the polynomial ¢ (below) to be
identically 1. Likewise, we present the public-key version, and the private-key
analogous can be obtained by omitting G;(1™) from the inputs to the various
algorithms.

Definition 5.2.13 (semantic security — uniform-complexity version): An en-
cryption scheme, (G, E, D), is uniformly semantically secure in the public-key
model if for every probabilistic polynomial-time algorithm A there exists a prob-
abilistic polynomial-time algorithm A’ so that for every polynomial t, every
polynomial-time constructible ensemble {X,, = (Xél), ey Xﬁt(n)))}nEN, with |X£f)| =
poly(n), every polynomial-time computadble h : {0,1}* — {0,1}*, every f :
{0,1}* — {0,1}*, every positive polynomial p and all sufficiently large n’s

Pr[A(G1(17), Bay 1y (K), 15 A(T ) = £(K0)]

< P4 = A(T)] + =

where E.(T,,) = Ee(azg)), e, Ee (xszt(n))) is as in Definition 5.2.8.

Again, we stress that X, is a sequence of random variables, which may depend
on one another. Also, the encryption-key G (1™) was omitted from the input of
A’ (since the latter may generate it by itself). We stress that even here (i.e., in
the uniform complexity setting) no computational limitation are placed on the
function f.

Definition 5.2.14 (indistinguishability of encryptions — uniform-complexity ver-
sion): An encryption scheme, (G, E, D), has uniformly indistinguishable encryp-
tions in the public-key model if for every polynomial t, every probabilistic polynomial-

time algorithm D', every polynomial-time constructible ensemble T def {T, =
XY Zotpens with Xy = (X5, XN YV, = @, v and | X80) =
V7] = poly(n),

|Pr [D'(Zn, G1(1"), By (1) (X n)) =1]

— Pr[D"(Zn,Gi(1"), Eg,1n)(Yn))=1] | < o)

for every positive polynomial p and all sufficiently large n’s.
The random variable Z,, captures a-priori information about the plaintexts for

which encryptions should be distinguished. A special case of interest is when
Zp=X,Y,.
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5.2.5.2 Equivalence of the multiple-message definitions

We prove the equivalence of the uniform-complexity definitions (presented above)
for multiple-message security.

Theorem 5.2.15 (equivalence of definitions — uniform treatment): A public-
key encryption scheme satisfies Definition 5.2.13 if and only if it satisfies Def-
inition 5.2.14. Furthermore, this holds also if Definition 5.2.14 is restricted to
the special case where Z, = XnpY n, and Definition 5.2.13 is restricted to the
special case where f is polynomial-time computable.

An analogous result holds for the private-key model. The important direction of
the theorem holds also for the single-message version (this is quite obvious from
the proof below). In the other direction, we seem to use the multiple-message
version conventions (of semantic security) in order to account for auxiliary in-
formation (required in ciphertext-indistinguishability).

Proof Sketch: Again, we start with the more important direction; that is,
assuming that (G, E,D) has (uniformly) indistinguishable encryptions in the
special case where Z, = X,Y,, we show that it is (uniformly) semantically
secure. Our construction of algorithm A’ is analogous to the construction used
in the non-uniform treatment. Specifically, on input (1/%»I, h(@,)), algorithm
A’ generates a random encryption of a dummy sequence of message (i.e., 1),
feeds it to A, and outputs whatever A does. That is,

AW h(@,)) = AGU"), Bean 1™ N1 L @) (5.7)

As in the non-uniform case, the analysis of algorithm A’ reduces to the following
claim.

Claim 5.2.15.1: For every polynomial-time constructible ensemble {X,},cn,
with X,, = (Xle), ...,Xﬁf("))) and |X£f)| = poly(n), every polynomial-time com-
putable h, every positive polynomial p and all sufficiently large n’s

Pr[A(G1(1"), By 1) (), h(Kn)) = £(X )]
< PrlAGUIM). Foyan (15, 1T = ()] + o

Proof sketch: Again, assuming towards the contradiction that the claim does
not hold, yields an algorithm that distinguishes encryptions of X,, from encryp-
tions of 11X~ This algorithm will use auxiliary information h(X,), which is
efficiently computable from Z, = X,11%X»|. Thus, we derive contradiction to
Definition 5.2.14 (even under the special case postulated in the theorem).

The actual proof is quite simple in case the function f is also polynomial-
time computable (which is not the case in general). In this special case, on
input (e, z, E.(@)), where z = (%, 1/7l), the new algorithm computes © = h(T)
and v = f(7), invokes A, and outputs 1 if and only if A(e, E.(a), 1%, u) = v.
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The proof becomes more involved in case f is not polynomial-time computable.?

Again, the solution is in realizing that indistinguishability of encryption postu-
lates a similar output profile in both cases, and in particular no value can occur
non-negligiblly more in one case than in the other. To clarify the point, we de-
fine A,(Z,) to be the difference between Pr{A(G1(1"), Eg,(1n)(Tn), h(Tr)) = 0]
and PrlA(G1(1"), Eg, (1») (1), h(Zy)) =v]. We know that E[Af(yn)(yn)] >
1/p(n), but given T,, we cannot evaluate Az, (), since we do not have f(T,).

ef ~

Instead, we let A(T,) e max,{A,(T,)}. Again, E[A(X,)] > 1/p(n), yet given
T, we can approximate A(Z,) in polynomial-time. Furthermore, we may find a
value v so that Ay (Z,) > A(T,) — (1/2p(n)), with probability at least 1 —27".
Thus, on input (e, z, E.(@)), where z = (Z, 17!), the new algorithm, denoted D',
first computes v = h(T), estimates A(T), and finds a v as above. (This is done
obliviously of the ciphertext E,.(@), which is only used next.) Next, algorithm
D' invokes A, and outputs 1 if and only if A(e, E.(@), 1*l,u) = v.

Let V(Z) be the value found in the first stage of algorithm A (i.e., obliviously
of the ciphertext E.(@)). The reader can easily verify that

‘Pr [D’(Gl(ln), Zn,F(;l(l")(yn))zl] —Pr [D’(Gl(]-n);Zn;FGH(l")(lX"‘)):]']‘

E [AV(E) (Yn)]

> (1-2"")-E [A(Yn) - 2ptn)] —-27".1
> E[AF)] - 3;”)

and the claim follows. O

Having established the important direction, we now turn to the opposite
one. That is, we assume that (G, E, D) is (uniformly) semantically secure and
prove that it has (uniformly) indistinguishable encryptions. Again, the proof is
by contradiction. Suppose, without loss of generality, that there exists a proba-

bilistic polynomial-time algorithm D’, a polynomial-time constructible ensemble

T {T,=X,Y,Z,},en (as in Definition 5.2.14), a positive polynomial p and

infinitely many n’s so that
Pr [DI(ZTH Gl(ln)aﬁGﬂl")(Y")) = 1]

> Pr[D'(Z,,Gi(1"), Eg,a(Yn)=1]| + 7o)

Assume, without loss of generality, that m |Z,| = |X,|- We define an

auxiliary polynomial-time constructible ensemble Q = {@Q,. }nen so that

0. = 0"Z,X,Y, with probability
| 1mZ,Y,X, with probability

(M NI

3 Unlike in the non-uniform treatment, here we cannot hardwire values (such as the values
of h and f on good sequences) into the algorithm D’ (which is required to be uniform).
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That is, Q,, contains Z,X,Y,, in addition to a bit (provided in the m-bit long
prefix) indicating whether the order of X,, and Y, is switched or not. We define
the function f so that to equal this “switch” indicator bit, and the function h
to provide all information in @, except this switch bit. Specifically, define f :
{0,1}*—{0,1} so that f returns the first bit of its input; that it f(c™abc) = o,
for a,b,c € {0,1}™. Define h:{0,1}*— {0, 1} so that h provides the information
in the suffix without yielding information on the prefix; that is h(c™abc) = abe
if 0 = 0 and h(c™abc) = ach otherwise. Thus, h(Q,) = Z,X,Y,. We stress
that both h and f are polynomial-time computable.

We will show that D’ can be transformed into a polynomial-size algorithm
A that guesses the value of f(Q,,), from the encryption of @, (and h(Q,)),
and does so significantly better that with probability % This violates semantic

security, since no algorithm (regardless of its running-time) can guess f(Q,,)
better than with probability 1/2 when only given h(Q,,) and 11| (since given
h(@,) and 1191, the value of £(Q,,) is uniformly distributed over {0, 1}).

On input (e, E.(@),11%l, 2Z7), where @ = o¢™abc equals either 0™2Z7 or
1mzy T, algorithm A first extracts Z,7 and z out of h(a) = 2Ty, and approxi-
mates

A(2,7,9) & Pr[D'(2,G1(1"), Eg, (1n) (@) =1] =Pr [D'(2,G1(1"), B, (1)(3)) =1]

Let &(z,f, 7) denote this approximation, and assume the parameters are such
that |A(z,Z,7) — A(z,Z,7)| < 1/3p(n) with probability at least 1 — 2~™. Algo-
rithm A sets £ =1 if ﬁ(z,f, y) > 1/3p(n), sets & = —1if &(z,f,ﬂ) < —1/3p(n),
and sets £ = 0 otherwise (i.e., the estimate is in between). In case £ = 0, al-
gorithm A halts with an arbitrary reasonable guess (say a randomly selected
bit). (This is done obliviously of the ciphertext E. (@), which is only used next.)
Next, algorithm A extracts the last block of ciphertexts (i.e., E.(c)) out of
E.(@) = E.(c™abc), and invokes D’ on input (z,e, E.(c)). In case £ = 1, algo-
rithm A outputs 1 if and only if the output of D’ is 1. In case £ = —1, algorithm
A outputs 0 if and only if the output of D’ is 1.

Claim 5.2.15.2: Let p, Q,,, h, f and A be as above.

— — — _ 1 1
Pr|A(G,(1™),E n h = -t —
r[ ( 1( )a Gi(1 )(Qn)a (Qn)) f(Qn)] > 2 + 10'])(”)2
Proof sketch: We focus on the case in which the approximation of A(Z,,, X,,, X,,)
provided by A is within 1/3p(n) of the correct value. Thus, in case £ # 0, the
sign of ¢ concurs with the sign of A(Z,,,X,,X,). It follows that, for every
possible (z,T,7), so that £ = 1 it holds that A(z,7,Z) > 0 and

Pr[A(G1(1"), E, (1) (@), M@,,)) = F(@,) | (Zn, X, X0) = (2,7, 7)]

N =

L1
2



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

344 CHAPTER 5. ENCRYPTION SCHEMES

= 1. Pr [D'(z,Gl(ln),EGl(ln)@)):O]

+ = -Pr[D'(z,G1(1"), Eg,(1n)(T)) =1]

V]
N | =

= 5 0+AG77)

Similarly, for every possible (z,T,7), so that £ = —1 it holds that A(z,7,T) < 0
and

Pr[A(G1(1"), Eg, (1) (@), M@,,)) = F(@,) | (Zn, X, Xn) = (2,7, 7)]

= 5 Pr (5,610, B, 00 (@) =1]
+% Pr [D’(Z,Gl(]. )7EG1(1")(§))_0]
= 3 1-2ETD)

Thus, in both cases where £ # 0, algorithm A succeeds with probability (1 +
|A(z,7,7)|)/2, and in case §& = 0 it succeeds with probability 1/2. Also, if
AZp, X, Xp) > % then ¢ = 1. Recalling that E[A(Z,, X, X,)] > ﬁ,
we lower bound Pr[A(Z,, X, X,) > %] by ﬁn). Thus, the overall success
probability of algorithm A is at least

1 1+4(2/3p(n)) 1
3p(n) )

and the claim follows. O

1
2
This completes the proof of the opposite direction. [l

5.2.5.3 Single-message versus multiple-message definitions

As in the non-uniform case, for the public-key model, single-message security
implies multiple-message security. Again, this implication does NOT hold in the
private-key model. The proofs of both statements are analogous to the proofs
provided in the non-uniform case. Specifically:

1. For the public-key model, single-message uniform-indistinguishability of
encryptions imply multiple-message uniform-indistinguishability of encryp-
tions, which in turn implies multiple-message uniform-semantic security.
In the proof of this result, we use the fact that all hybrids are polynomial-

time constructible, and that we may select a random pair of neighboring
hybrids (cf. the proof of Theorem 3.2.6). We also use the fact that an

ensemble of triplets, {T, = X,,Y ,Z! },cn, with X,, = (x(M, ., x )y,
Y. = (Y, ., V™)) as in Definition 5.2.14, induces an ensemble of
triplets, {T,, = X,,Y..Z,},en, for the case t = 1. Specifically, we shall
use X, = X\, v, = VY, and Z, = (X,.Y.Z",4), where i is uniformly
distributed in {1,...,t(n)}.
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2. For the private-key model, single-message uniform-indistinguishability of
encryptions does NOT imply multiple-message uniform-indistinguishability
of encryptions. The proof is exactly as in the non-unform case.

5.2.5.4 The gain of a uniform treatment

Suppose that one is content with the uniform-complexity level of security, which
is what we advocate below. Then the gain in using the uniform-complexity
treatment is that a uniform-complexity level of security can be obtained using
only uniform complexity assumptions (rather than non-uniform complexity as-
sumptions). Specifically, the results presented in the next section are based on
non-uniform assumptions such as the existence of functions that cannot be in-
verted by polynomial-size circuits (rather than by probabilistic polynomial-time
algorithms). These non-uniform assumption are used in order to satisfy the
non-uniform definitions presented in the main text (above). Using any of these
constructions, while making the analogous uniform assumptions, yields encryp-
tion schemes with the analogous uniform-complexity security. (We stress that
this is no coincidence, but is rather an artifact of these results being proven by
a uniform reducibility argument.)

However, something is lost when relying on these (seemingly weaker) uniform
complexity assumptions. Namely, the security we obtain is only against the
(seemingly weaker) uniform adversaries. We believe that this loss in security
is immaterial. Our belief is based on the thesis that uniform complexity is the
right model of “real world” cryptography. We believe that it is reasonable to
counsider only objects (i.e., inputs) generated by uniform and efficient procedures
and the effect that these objects have on uniformly and efficient observers (i.e.,
adversaries). In particular, schemes secure against probabilistic polynomial-time
adversaries can be used in any setting consisting of probabilistic polynomial-time
machines with inputs generated by probabilistic polynomial-time procedures.
We believe that the cryptographic setting is such a case.

5.3 Constructions of Secure Encryption Schemes

In this subsection we present constructions of secure private-key and public-
key encryption schemes. Here and throughout this section security means se-
mantic security in the multiple-message setting. Recall that this is equivalent
to ciphertext-indistinguishability (in the multiple-message setting). Also recall
that for public-key schemes it suffices to prove ciphertext-indistinguishability in
the single-message setting. The main results of this section are

e Using any (non-uniformly robust) pseudorandom function, one can con-
struct secure private-key encryption schemes. Recall, that the former can
be constructed using any (non-uniformly strong) one-way function.

e Using any (non-uniform strong) trapdoor one-way permutation, one can
construct secure public-key encryption schemes.
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In addition, we review some popular suggestions for private-key and public-key
encryption schemes.

Probabilistic Encryption: Before starting, we recall that a secure public-key
encryption scheme must employ a probabilistic (i.e., randomized) encryption al-
gorithm. Otherwise, given the encryption-key as (additional) input, it is easy
to distinguish the encryption of the all-zero message from the encryption of the
all-ones message. The same holds for private-key encryption schemes when con-
sidering the multi-message setting.* For example, using a deterministic (private-
key) encryption algorithm allows the adversary to distinguish two encryptions
of the same message from the encryptions of a pair of different messages. Thus,
the common practice of using pseudorandom permutations as “block-ciphers”
(see definition below) is NOT secure (again, one can distinguish two encryptions
of the same message from encryptions of two different messages). This explains
the linkage between the above robust security definitions and randomized (a.k.a
probabilistic) encryption schemes. Indeed, all our encryption schemes will em-
ploy randomized encryption algorithms.®

5.3.1 * Stream—Ciphers

It is common practice to use “pseudorandom generators” as a basis for private-
key stream ciphers. We stress that this is a very dangerous practice when the
“pseudorandom generator” is easy to predict (such as the linear congruential
generator or some modifications of it which output a constant fraction of the
bits of each resulting number). However, this common practice becomes sound
provided one uses pseudorandom generators (as defined in Section 3.3). Thus,
we obtain a private-key stream cipher, that allows to encrypt a stream of plain-
text bits. Note that such a stream cipher does not conform with our formulation
of an encryption scheme, since for encrypting several messages one is required
to maintain a counter. In other words, we obtain a encryption scheme with a
variable state that is modified after the encryption of each message. To obtain
a stateless encryption scheme, as in our definitions above, we may use a pseu-
dorandom function (see below). But before doing so, let us formalize the above
discussion.

Author's Note: DO IT (i.e., formalize the above discussion)!!!

4 We note that the above does not hold with respect to private-key schemes in the single-
message setting. (Hint: the private-key can be augmented to include a seed for a pseudorandom
generator, the output of which can be used to eliminate randomness from the encryption
algorithm. Question: why does the argument fail in the multi-message private-key setting?
Same for the public-key setting).

5 The (private-key) stream-ciphers discussed below are an execption, but— as we point out—
they do not adherse to our formulation of encryption schemes.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 347

5.3.2 Preliminaries: Block—Ciphers

Many encryption schemes are more conveniently presented by first presenting a
restricted type of encryption scheme that we call a block-cipher.® In contrast
to encryption schemes (as defined in Definition 5.1.1), block-ciphers (defined
below) are only required to operate on plaintext of a specific length (which is a
function of the security parameter). As we shall see, given a secure block-cipher
we can easily construct a (general) secure encryption scheme.

Definition 5.3.1 (block-cipher): A block-cipher is a triple, (G, E, D), of prob-
abilistic polynomial-time algorithms satisfying the following two conditions

1. On input 1™, algorithm G outputs a pair of bit strings.

2. There exists a polynomially-bounded function £ : N— N, called the block
length, so that for every pair (e,d) in the range of G(1™), and for each
a € {0,1}4)  algorithms E and D satisfy

PriD4(Ec(a))=a] =1

All conventions are as in Definition 5.1.1.

Typically, we use either {(n) = ©(n) or £(n) = 1. Analogously to Defini-
tion 5.1.1, the above definition does not distinguish private-key encryption schemes
from public-key ones. The difference between the two types is captured in the
security definitions, which remain as they were above with the modification that
we only consider plaintexts of length ¢(n). For example, the analogue of Defini-
tion 5.2.1 reads

Definition 5.3.2 (semantic security — private-key block-ciphers): A block-cipher,
(G, E, D), with block length ¢ is semantically secure (in the private-key model) if
there exists a polynomail-time transformation, T, so that for every polynomial-

size circuit family {Cy}, for every ensemble {X,},en, with | X,| = £(n), and

fsh, p(-) and n as in Definition 5.2.1

Pr [ Cu(Eay 1) (Xn), 150 (X)) = £(X0)|

< Pr I:C:’L(llxn‘ah(Xn))zf(Xn):I + m

where C/, Lef T(C,) is the circuit produced by T' on input C,,.

There are several obvious ways of transforming a block-cipher into a general
encryption scheme. The basic idea is to break the plaintexts (for the resulting
scheme) into blocks and encode each block separately by using the block-cipher.

6 Doing so we abuse standard terminology by which a block-cipher must, in addition to
operating on plaintext of specific length, produce ciphertexts equal in length to the length of
the corresponding plaintexts.
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Thus, the security of the block-cipher (in the multiple-message settings) implies
the security of the resulting encryption scheme. The only technicality we need
to deal with is how to encrypt plaintexts of length that is not an integer multiple
of the block-length (i.e., £(n)). This is easily resolved by padding the last block.

Construction 5.3.3 (from block-ciphers to general encryption schemes): Let
(G,E, D) be a block-cipher with block length function £. We construct an en-
cryption scheme, (G',E',D") as follows. The key-generation algorithm, G', is
identical to G. To encrypt a message o (with encryption key e generated under
security parameter n), we break it into consequetive blocks of length £(n), while
possibly augmenting the last block. Let o, ...,y be the resulting blocks. Then

El(a) ¥ (1] E.(a1), s Be(en))

To decrypt the ciphertext (1™, (1, ..., 3:) (with decryption key d), we let a; =
Dy(B;) fori=1,...,t, and let the plaintext be the m-bit long prefiz of the con-
catanated string aq - - - Q.

The above construction yields ciphertexts which reveal the exact length of the
plaintext. Recall that this is not prohibited by the definitions of security, and
that we cannot hope to entirely hide the length. However, we can easily construct
encryption schemes that hide some information about the length of the plaintext;
see examples in Exercise 13. Also, note that the above construction applies even
to the special case where /£ is identically 1.

Theorem 5.3.4 Let (G, E, D) and (G',E', D') be as in Contruction 5.3.3. Sup-
pose that the former a secure private-key (resp., public-key) block-cipher. Then
the latter is a secure private-key (resp., public-key) encryption scheme.

Proof: Assuming towards the contradiction that the encryption scheme (G', E', D")
is not secure, we obtain conclude that neither is (G, E, D), contradicting our hy-
pothesis. Note that in case the security of (G', E', D") is violated via t(n) mes-
sages of length L(n), the security of (G, E, D) is violated by t(n) - [L(n)/€(n)].
Also, the argument may utilize any of the two notions of security (i.e., semantic
security or ciphertext-indistinguishability). [l

5.3.3 Private-key encryption schemes

Secure private-key encryption schemes can be easily constructed using any effi-
ciently computable pseudorandom function ensemble (see Section 3.6). Specifi-
cally, we present a block cipher with block length ¢(n) = n. The key generation
algorithm consists of selecting a seed, denoted s, for such a function, denoted
fs- To encrypt a message x € {0,1}" (using key s), the encryption algorithm
uniformly selects a string r € {0,1}"™ and produces the ciphertext (r,z & fs(r)).
To decrypt the ciphertext (r,y) (using key s), the decryption algorithm just
computes y @ f(r). Formally, we have
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Construction 5.3.5 (a private-key block-cipher based on pseudorandom func-
tions): Let F = {F,} be an efficiently computable function ensemble and let I
and V be the algorithms associated with it. That is, I(1™) selects a function with
distribution F,, and V (i,x) returns f;(x), where f; is the function associated with
the string i. We define a private-key block cipher, (G, E, D), with block length
£(n) =n as follows

key-generation: G(1™) = (i,4), where i «— I(1™).

encrypting plaintext = € {0,1}™: E;(z) = (r,V(i,r) ® x), where r is uniformly
chosen in {0, 1}".

decrypting ciphertext (r,y): D;(r,y) =V (i,r) ®y

Below we assume that F' is pseudorandom with respect to polynomail-size cir-
cuits, meaning that no polynomial-size circuit having “oracle gates” can distin-
guish the case the answers are provided by a random function from the case in
which the answers are provided by a function in F. Alternatively, one may con-
sider probabilistic polynomial-time orcale machines that obtain a non-uniform
poly(n)-long auxiliary input. That is,

for every probabilistic polynomial-time oracle machine M for every
pair of positive polynomial p and q, for all sufficiently large n’s and
all z € {0,1}#("),

r fty=1] = Pr frany ()= L
|Pr [M7(z)=1] — Pr [MTra™(2) 1]|<q(n)

where f is a uniformly selected function mapping {0,1}" to {0, 1}".

Recall, that such (non-uniformly strong) pseudorandom functions can be con-
structed using any non-uniformly strong one-way function.

Theorem 5.3.6 Let F and (G, E, D) be as in Contruction 5.3.5, and suppose
that F is pseudorandom with respect to polynomail-size circuits. Then (G, E, D)
1S Secure.

Proof: The proof counsists of two steps (suggested as a general methodology in
Section 3.6):

1. Prove that an idealized version of the scheme, in which one uses a uniformly
selected function f:{0,1}™—{0,1}", rather than the pseudorandom func-
tion fs, is secure (in the sense of ciphertext-indistinguishability).

2. Conclude that the real scheme (as presented above) is secure (since other-
wise one could distinguish a pseudorandom function from a truly random
one).
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Specifically, in the ideal version the messages 1, ..., ¢; are encrypted by (rq, f(r1)®
Z1),..., (1, f(r1) ® 1), where the r;’s are independently and uniformly selected,
and f is a random function. Thus, with probability greater than 1 — ¢2 - 27",
the 7;’s are all distinct and so the f(r;) ® x;’s are independently and uniformly
distributed, regardless of the x;’s. Now, if the actual scheme is not ciphertext-
indistinguishable then for some sequence of distinct 7;’s a polynomial-size circuit
can distinguish the f(r;) @ x;’s from the fs(r;) ® z;’s, where f is random and
fs is pseudorandom. But this contradicts the hypothesis that polynomial-size
circuits cannot distinguish between the two. [

Comments. Note that we could have gotten rid of the randomization if we
had allowed the encryption algorithm to be history dependent (as discussed
above). Specifically, in such a case, we could have used a counter in the role
of r. Furthermore, if the encryption scheme is used for FIFO communication
between the parties and both can maintain the counter value then there is no
need for the sender to send the counter value.

On the other hand, recall that the common practice of using pseudoran-
dom permutations as block-ciphers” is NOT secure (e.g., one can distinguish two
encryptions of the same message from encryptions of two different messages).

5.3.4 Public-key encryption schemes

As mentioned above, randomization during the encryption process can be avoided
in private-key encryption schemes that employ a varying state (not allowed in our
basic Definition 5.1.1). In case of public-key encryption schemes, randomization
during the encryption process is essential (even if the encryption scheme employs
a varying state). Thus, in a sense, the randomized encryption paradigm plays
an even more pivotal role in the construction of public-key encryption scheme.
To demonstrate this paradigm we start with a very simple (and quite wasteful)
construction.

All our constructions employ a collection of trapdoor permutations, as in
Definition 2.4.5. Recall that such a collection, {ps}a, comes with four proba-
bilistic polynomial-time algorithms, denoted here by I, S, F and B (for indez,
sample, forward and backward), so that

1. I(1™) selects a random n-bit long index « of a permutation p,, along with
a corresponding trapdoor T;

2. S(«) randomly samples the domain of p,, returning a random element in
it;
3. For z in the domain of p,, given a and z, algorithm F' returns p,(z) (i.e.,

F(aaw) = pa(w));

4. For y in the range of p, if («, 1) is a possible output of I(1™) then, given
7 and y, algorithm B returns p;*(y) (i.e., B(1,y) = p5*(y));

7 That is, letting F;(x) = p;(z), where p; is the perumtation associated with the string i.
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Let I;(1™) denote the first element in the output of I(1™) (i.e., the index). It is
guaranteed that for every polynomial-size circuit family {C,}, every polynomial
p and all sufficiently large n’s

PrC(L (L"), pry iy (S(L(17) = S(LAM)] < ﬁ

That is, C, fails to invert p, on p,(z), wheren a and x are selected by I and
S as above. Recall the above collection can be easily modified to have a hard-
core predicate (cf. Theorem 2.5.2). For simplicity, we continue to refer to the
collection as {p,}, and let b denote the corresponding hard-core predicate.

5.3.4.1 Simple schemes

We are now ready to present a very simple (alas quite wasteful) construction of
a secure public-key encryption scheme. It is a block-cipher with £ = 1.

Construction 5.3.7 (asimple public-key block-cipher scheme): Let {p,}, I, S, F, B
and b be as above.

key-generation: The key generation algorithm consists of selecting at random
a permutation p, together with a trapdoor T for it: The permutation (or
rather its description) serves as the public-key, whereas the trapdoor serves
as the private-key. That is, G(1™) = I(1™), which means that the index-
trapdoor pair generated by I is associated with the key-pair of G.

encryption: To encrypt a bit o (using the encryption-key «), the encryption
algorithm randomly selects an element, r, in the domain of p, and produces
the ciphertext (po(r),c ®b(r)). That is, E.(0) = (F(a,r),0 ®b(r)), where
r— S(a).

decryption: To decrypt the ciphertest (y,s) (using the decryption-key 7), the de-
cryption algorithm just computes s & b(py*(y)), where the inverse is com-
puted using the trapdoor T of po. That is, D, (y,s) = b(B(1,y)) ®s.

Clearly, for every possible (@, 7) output of G, it holds that

DA(E.(0) = b(B(r,Fla,5(a))) @ (0 ®b(S(a)))
= WS(@) @ (c®b(S() = o

The security of the above public-key encryption scheme follows from the (non-
uniform) one-way feature of the collection {p,}. We comment that the proof
of Theorem 2.5.2 implies that the corresponding hard-core predicate is non-
uniformly strong; that is, for randomly chosen a and r, no polynomial-size
circuit can predict b(r) given po(r) and «, non-negligiblly better than with
success probability 1/2.
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Proposition 5.3.8 Suppose that b is a (non-uniformly strong) hard-core of the
collection {pn}. Then Construction 5.3.7 constitute a secure public-key block-
cipher (with block-length £ = 1).

Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),
it suffices to show single-message ciphertext-indistinguishability. Furthermore,
by Proposition 5.2.7 and the fact that here there are only two plaintexts, it
suffices to show that one cannot predict which of the two plaintexts is be-
ing encrypted significantly better than by a random guess. We conclude by
noting that a guess o’ for the plaintext o, given the ciphertext («, E,(0)) =
(a, (fa(r),0 @ b(1)), yields a guess o' & o & b(r) for b(r) given (e, fu(r)). The
latter guess is correct with probability equal the probability that ¢’ = o, and so
the proposition follows.

As admitted above, Construction 5.3.7 is quite wasteful. Specifically, it is waste-
ful in bandwidth; that is, the relation between the length of the plaintext and the
length of the ciphertext. In Construction 5.3.7 the relation between these lengths
equals the security parameter (i.e., n). However, the idea underlying Construc-
tion 5.3.7 can yield efficient public-key schemes provided we use trapdoor per-
mutations having hard-core functions with large range (see Section 2.5.3). To
demonstrate the point, we use the following assumption relating to the RSA
collection of trapdoor permutations (cf. Subsections 2.4.3 and 2.4.4).

Large hard-core conjecture for RSA: The first n/2 least significant bits
of the argument constitute a (non-uniformly strong) hard-core function of RSA
with n-bit long moduli.

We stress that the conjecture is NOT know to follow from the assumption that
the RSA collection is (non-uniformly) hard to invert. What can be proved under
the latter assumption is only that the first O(logn) least significant bits of the
argument constitute a (non-uniformly strong) hard-core function of RSA (with
n-bit long moduli). Still, the above conjecture implies that the common practice
of randomly padding messages (using padding equal in length to the message)
before encrypting them using RSA, results in a secure public-key encryption
scheme. That is, we consider the following

Construction 5.3.9 (Randomized RSA — a public-key block-cipher scheme):
This scheme employs the RSA collection of trapdoor permutations (cf. Subsec-
tions 2.4.8 and 2.4.4). The following description is however self-contained.

key-generation: The key generation algorithm consists of selecting at random two
n-bit primes, P and Q, setting N = P - Q, and selecting at random a pair
(e,d) so thate-d=1 (mod (P—1)-(Q—1)). That is, (N,e),(N,d)) «
G(1™), where N, e and d are as specified above.

(Note that N is 2n-bit long.)



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 353

encryption: To encrypt an n-bit string o (using the encryption-key (N,e)), the
encryption algorithm randomly selects an element, r € {1,...., N — 1}, and
produces the ciphertezt (r¢ mod N, o @ LSB(r)), where LSB(r) denotes the
n least significant bits of r. That is, En .(0) = (r° mod N,o & LSB(r)).

decryption: To decrypt the ciphertext (y,s) (using the decryption-key (N,d)),
the decryption algorithm just computes ¢ ® LSB(y? mod N), where LSB(-)
is as above. That is, Dy a(y,<) = ¢ ® LsB(y? mod N).

The bandwidth of the above scheme is much better than in Construction 5.3.7:
a plaintext of length n is encrypted via a ciphertext of length 2n. Clearly, for
every possible ((N,e), (N, d)) output of G, it holds that

Dn.a)(E(n,ey(0)) = LSB(r) ® (0 @ LsB((r° mod N)¥ mod N))
= o®LsB(r) ®LsB(r‘““ mod N) = ¢

The security of the above public-key encryption scheme follows from the large
hard-core conjecture for RSA, analogously to the proof of Proposition 5.3.8.

Proposition 5.3.10 Suppose that the large hard-core conjecture for RSA does
hold. Then Construction 5.3.9 constitute a secure public-key block-cipher (with
block-length €(n) = n).

Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),
it suffices to show single-message ciphertext-indistinguishability. Counsidering
any two strings « and y, we need to show that (r® mod N,z & LSB(r)) and
(r® mod N,y @ LsB(r)) are indistinguishable, where N,e and r are selected at
random as in the construction. It suffices to show that, for every z, the distribu-
tions (r¢ mod N,z ® LsB(r)) and (7 mod N,z @ s) are indistinguishable, where
s € {0,1}" is uniformly distributed, independently of anything else. The latter
claim follows from the hypothesis that the n least significant bits are a hard-core
function for RSA with moduli of length 2n. W

Discussion: We wish to stress that encrypting messages by merely applying
the RSA function to them (without randomization), yields an insecure encryption
scheme. This is a special case of the fact that no public-key encryption scheme
that employs a deterministic encryption algorithm may be secure. We warn
that the fact that in such deterministic encryption schemes one can distinguish
encryptions of two specific messages (e.g., the all-zero message and the all-one
message) is not “merely of theoretical concern” — it may seriously endanger some
applications!

5.3.4.2 An alternative scheme

An alternative construction of a public-key encryption scheme is presented be-
low. Rather than encrypting each plaintext bit by an independently selected ele-
ment in the domain of the trapdoor permutation (as done in Construction 5.3.7),
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we select only one such element per a plaintext string, and provide an additional
bit per each bit of the plaintext. These bits are determine by successive ap-
plications of the trapdoor permutation, and only the last result is included in
the ciphertext. In a sense, the construction of the encryption scheme (below)
augments the construction of a pseudorandom generator based on one-way per-
mutations (i.e., Construction 3.4.4).

Construction 5.3.11 (a public-key encryption scheme): Let {p.}, I,S,F,B
and b be as in Construction 5.3.7. We use the notation p.t(z) = pa(p,(z))

and pz "t (2) = pit(p3(2)).

key-generation: The key-generation algorithm consists of selecting at random a
permutation p, together with a trapdoor, exactly as in Construction 5.3.7.
That is, G(1™) = I(1™), which means that the index-trapdoor pair generated
by I is associated with the key-pair of G.

encryption: To encrypt a string o (using the encryption-key «), the encryption
algorithm randomly selects an element, r, in the domain of p, and produces

the ciphertext (p‘;‘(r), ®Gq(r)), where

Ga(r) E0(r) - b(pa(r)) - b(PII =1 (r)) (5.8)
That is, Eq(o) = (pi1(S()), 0 & Gu(S())).

decryption: To decrypt the ciphertext (y,s) (using the decryption-key 1), the
decryption algorithm just computes ¢ & Ga(p;‘c‘(y)), where the inverse is
computed using the trapdoor T of po. That is, D, (y,s) = ¢® Ga(pglcl(y)).

We stress that the above encryption scheme is a full-fledged one (rather than a
block-cipher). Its bandwidth tends to 1 with the length of the plaintext; that is,
a plaintext of length ¢ = poly(n) is encrypted via a ciphertext of length n + ¢.
Clearly, for every possible (a,7) output of G, it holds that D, (E.(0)) = o.
The security of the above public-key encryption scheme follows from the (non-
uniform) one-way feature of the collection {pq }, but here we restrict the sampling
algorithm S to produce almost uniform distribution over the domain.

Proposition 5.3.12 Suppose that b is a (non-uniformly strong) hard-core of
the trapdoor collection {p}. Furthermore, suppose that this trapdoor collection
utilizes a domain samplying algorithm S so that the statistical difference between
S(«) and the uniform distribution over the domain of p. is negligible in terms of
|ae|. Then Construction 5.3.11 constitute a secure public-key encryption scheme.

Proof: Again, we prove single-message ciphertext-indistinguishability. Asin the
proof of Proposition 5.3.10, it suffices to show that, for every o, the distributions
(p!fl(S(a)), o ® Go(S(e))) and (p‘of‘(S(oz)),cr @ s) are indistinguishable, where
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s € {0, 1}“" is uniformly distributed, independently of anything else. The latter
claim holds by a minor extention to Proposition 3.4.6: the latter refers to the
case S(«) is uniform over the domain of p,, but can be extended to the case in
which there is a negligible statistical difference between the distributions. The
proposition follows.

An instantiation: Assuming that factoring Blum Integers (i.e., products of
two primes each congruent to 3 (mod 4)) is hard, one may use the modular
squaring function in role of the trapdoor permutation above (see Section 2.4.3).
This yields a secure public-key encryption scheme (presented below) with ef-
ficiency comparable to that of RSA. Recall that RSA itself is not secure (as
it employs a deterministic encryption algorithm), whereas Randomized RSA
(defined above) is not known to be secure under standard assumption such as
intractability of factoring (or of inverting the RSA function).®

Construction 5.3.13 (The Blum-Goldwasser Public-Key Encryption Scheme):
For simplicity, we present a block-cipher with arbitrary block-length £(n) =

poly(n).
key-generation: The key generation algorithm consists of selecting at random

two n-bit primes, P and @, each congruent to 8 mod 4, and outputing the
pair (N, (P,Q)), where N =P - Q.

Actually, for sake of efficiency, the key-generator also computes dp =
(P+1)/4)" ) mod P -1, dg = (Q +1)/4) ™ mod Q —1, cp = Q -
(@' mod P), and cg = P-(P ' mod Q). It outputs the pair (N,T),
where N serves as the encryption-key and T = (P,Q,N,cp,dp,cq,dq)
serves as decryption-key.

encryption: To encrypt the message o € {0, 1}“"), using encryption-key N :

1. Uniformly select s € {1,...,N}.
2. Fori =1,..,4(n) + 1, compute s; «— s>, mod N and b; = lIsb(s;),
where 1sb(s) is the least significant bit of s.
The ciphertest is (¢(n)+1,5), where ¢ = @ biba - - - by(p).

decryption: To decrypt of the ciphertext (r,<) using decryption-key T = (P,Q, N, cp,dp,cq,dq),
one first retreives s; and then computes the b;’s as above. Instead of ex-
tracting modular square Toots successively €(n) times, we ectract the 2tn)
th root, which can be done as efficiently as extracting a single square root:

1. Let s' «— r% mod P, and s" — r? mod Q.

2. Let sy «—cp-s' +cg-s" mod N.

8Recall that Randomized RSA is secure assuming that the n/2 least significant bits con-
stitute a hard-core function for n-bit RSA moduli. We only know that the O(logn) least
significant bits constitute a hard-core function for n-bit moduli.
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3. Fori=1,.,0(n), compute b; = 1sb(s;) and s;+1 < s? mod N.

The plaintext is ¢ & bybz - - - by(p)-

Again, one can easily verify that the above construction constitutes an encryp-
tion scheme: the main fact to verify is that the value of s; as reconstructed in
the decryption stage equals the value used in the encryption stage. This fol-
lows by combining the Chinese Reminder Theorem with the fact that for every
quadratic residue s mod N it holds that s = (s28 mod N)4” (mod P) (and
similarly, s = (52‘Z mod N)% (mod Q)). Encryption amounts to £(n) modular
multiplications, whereas decryption amounts to 2 + ¢(n) such multiplications
and 2 modular exponentiations (relative to half-sized moduli). For comparison
to Randomized RSA, consider the setting £(n) = n. The security of the above
scheme follows immediately from Proposition 5.3.12 and the fact that Isb is a
hard-core for the modular squaring function (and that inverting the latter is
computationally equivalent to factoring). Thus we get:

Corollary 5.3.14 Suppose that factoring is infeasible in the sense that for every
polynomial-size circuit {C,}, every positive polynomial p and all succiently large
n’s )

PriCh(P, - Qn) = P,] < o)
where P, and Q, are uniformly distributed n-bit long primes. Then Construc-
tion 5.3.13 consititutes a secure public-key encryption scheme.

5.4 * Beyond eavesdropping security

Author's Note: The following text includes an introduction that is
reproduced with little change from Appendix B.1.3, and a plan.

The above definitions refer only to a “passive” attack in which the adversary
merely eavesdrops on the line over which ciphertexts are being sent. Stronger
types of attacks, culminating in the so-called Chosen Ciphertext Attack, may be
possible in various applications. Specifically, in some settings it is feasible for the
adversary to make the sender encrypt a message of the adversary’s choice, and
in some settings the adversary may even make the receiver decrypt a ciphertext
of the adversary’s choice. This gives rise to chosen message attacks and to cho-
sen ciphertext attacks, respectively, which are not covered by the above security
definitions. Thus, our main goal in this section is to provide a treatment to such
types of attacks. Furthermore, the above definitions refer to an adversary that
tries to extract explicit information about the plaintext. A less explicit attempt,
captured by the so-called notion of malleability, is to generate an encryption of
a related plaintext (possibly without learning anything about the original plain-
text). Thus, we have a “matrix” of adversaries, with one dimention (parameter)
being the type of attack and the second being its purpose.
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Types of attacks. The following mini-taxonomy of attacks is certainly not
exhaustive.

1. Passive attacks as captured in the definitions above. In case of public-key
schemes we distinguish two sub-cases:

(a) A key-oblivious, passive attack, as captured in the definitions above.
By ‘key-obliviousness’ we refer to the fact that the choice of plaintext
does not depend on the public-key.

(b) A key-dependent, passive attack, in which the choice of plaintext may
depend on the public-key.

(In Definition 5.2.8 the choice of plaintext means the random variable X ,,,
whereas in Definition 5.2.9 it means the pair of sequences (Z,,7,,).)

2. Chosen Plaintext Attacks. Here the attacker may obtain the encryption of
any plaintext of its choice (under the key being attacked). Such an attack
does not add power in case of public-key schemes.

3. Chosen Ciphertext Attacks. Here the attacker may obtain the decryption
of any ciphertext of its choice (under the key being attacked). That is, the
attacker is given oracle access to the decryption function corresponding to
the decryption-key in use. We distinguish two types of such attacks.

(a) In an a-priori chosen ciphertext attack, the attacker is given this
oracle access prior to being presented the ciphertext that it should
attack (i.e., the ciphertext for which it has to learn partial information
or form a related ciphertext). That is, the attack consists of two
stages: in the first stage the attacker is given the above oracle access,
and in the second stage the oracle is removed and the attacker is given
a ‘test ciphertext’ (i.e., a target to be learned or modified in violation
of non-malleablity).

(b) In an a-posteriori chosen ciphertext attack, the attacker is given the
target ciphertext first, but its access to the oracle is restricted in that
it is not allowed to make a query equal to the target ciphertext.

In both cases, the adversary may make queries that do not correspond to
a legitimate ciphertext, and the answer will be accordingly (i.e., a special
‘failure’ symbol).

Formal definitions of all types of attacks listed above (as well as the purposes
listed below) will follow.

Purpose of attacks. Again, the following is not claimed to be exhaustive.

1. Standard security: the infeasibility of obtaining information regarding the
plaintext. As defined above, such information must be a function (or a
randomized process) applied to the bare plaintext, and may not depend
on the encryption (or decryption) key.
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2. In contrast, the notion of non-malleability refers to generating a string de-
pending on both the plaintext and the current encryption-key. Specifically,
one requires that it should be infeasible for an adversary, given a cipher-
text, to produce a valid ciphertext for a related plaintext. For example,
given a ciphertext of a plaintext of the form 1z, it should be infeasible to
produce a ciphertext to the plaintext Ox.

We shall show below that, with the exception of passive attacks on private-key
schemes, non-malleability always implies security against attempts to obtain in-
formation on the plaintext. We shall also show that security and non-malleability
are equivalent under a-posteriori chosen ciphertext attack.

Some known constructions. Before presenting the actual definitions, let us
provide an overview on the known results. As in the basic case, the (strongly
secure) private-key encryption schemes can be constructed based on the exis-
tence of one-way functions, whereas the (strongly secure) public-key encryption
schemes are based on the existence of trapdoor permutations.

Private-key schemes: The private-key encryption scheme based on pseudo-
random functions (i.e., Construction 5.3.5), is secure also against a-priori
chosen ciphertext attacks.”

It is easy to turn any passively secure private-key encryption scheme into
a scheme secure under (a-posteriori) chosen ciphertext attacks, by using a
message authentication scheme!® on top of the basic encryption.

Public-key schemes: Public-key encryption schemes secure against a-priori
chosen ciphertext attacks can be constructed, assuming the existence of
trapdoor permutations and utilizing non-interactive zero-knowledge proofs.
(Recall that the latter proof systems can be constructed under the former
assumption.)

Public-key encryption schemes secure against a-posteriori chosen cipher-
text attacks can also be constructed under the same assumption, but this
construction is even more complex.

5.4.1 Key-dependent passive attacks

Author's Note: Applicable only to public-key schemes.

Author's Note: Plan: define, and show that above constructions sat-
isfy the definition.

9 Note that this scheme is not secure under an a-posteriori chosen ciphertext attack: on
input a ciphertext (r,z @ fs(r)), we obtain fs(r) by making the query (r,y’), where y' #
z P fs(r). (This query is answered with @’ so that y' = &' @ fs(r).)

10 See definition in Section B.2.
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5.4.2 Chosen plaintext attack

Author's Note: No affect in case of public-key schemes.

Author's Note: Plan: define, and show that above constructions sat-
isfy the definition.

5.4.3 Chosen ciphertext attack

Author's Note: For private-key, refer also to a combined plaintext+ciphertext
attack.

Author's Note: Plan:

1. Define the two types.

2. Prove that the PRF-based private-key scheme remains secure
under a-priori CMA.

3. Discuss the NIZK construction for a-priori CMA.

Postpone construction of a-posteriori CMA to next subsection.

5.4.4 Non-malleable encryption schemes

Author's Note: Plan:

1. discuss and define,
2. prove that

(a) with the exception of passive attacks on private-key schemes,
non-malleability always implies security against attempts to
obtain information on the plaintext;

(b) security and non-malleability are equivalent under a-posteriori
chosen ciphertext attack.

3. Present and analyze the construction for private-key secure un-
der a-posteriori CMA.

4. Sketch the solution for public-key (following DDN+Amit).

5.5 Miscellaneous

Author's Note: The entire section is fragmented and tentative.

See copyright notice.
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5.5.1 Historical Notes

The notion of private-key encryption scheme seems almost as ancient as the al-
phabet itself. Furthermore, it seems that the development of encryption methods
went along with the development of communication media. As the amounts of
communication grow, more efficient and sophisticated encryption methods were
required. Computational complexity considerations were explicitly introduced
into the arena by Shannon [188]: In his work, Shannon considered the classi-
cal setting where no computational considerations are present. He showed that
in this information theoretic setting, secure communication of information was
possible only as long as its entropy is lower than the entropy of the key. He thus
concluded that if one wishes to have an encryption scheme which is capable of
handling messages with total entropy exceeding the length of the key then one
must settle for a computational relaxion of the secrecy condition. That is, rather
than requiring that the ciphertext yields no information on the plaintext, one
has to require that such information cannot be efficiently computed from the
ciphertext. The latter requirement indeed coincides with the above definition of
semantic security.

The notion of public-key encryption scheme was introduced by Diffie and
Hellman [61]. First concrete candidates were suggested by Rivest, Shamir and
Adleman [179] and by Merkle and Hellman [153]. However, satisfactory defi-
nitions of security were presented only a few years afterwards, by Goldwasser
and Micali [118]. The two definitions presented in Section 5.2 originate in [118§],
where it was shown that ciphertext-indistinguishability implies semantic secu-
rity. The converse direction is due to [154].

Regarding the seminal paper of Goldwasser and Micali [118], a few additional
comments are due. Arguably, this paper is the basis of the entire rigorous
approach to cryptography (presented in the current book): It introduced general
notions such as computational indistinguishability, definitioanl approaches such
as the simulation paradigm, and techniques such as the hybrid argument. The
paper’s title (“Probabilistic Encryption”) is due to the author’s realization that
public-key encryption schemes in which the encryption algorithm is deterministic
cannot be secure in the sense defined in their paper. Indeed, this led the authors
to (explicitly) introduce and justify the paradigm of “randomizing the plaintext”
as part of the encryption process. Technically speaking, the paper only presents
security definitions for public-key encryption schemes, and furthermore some
of these definitions are syntactically different from the ones we have presented
above (yet, all these definitions are equivalent). Finaly, the term “ciphertext-
indistinguishability” used here replaces the (generic) term “polynomial-security”
used in [118]. Some of our modifications have already appeared in [92], which is
also the main source of our uniform-complexity treatment.

The first construction of a secure public-key encryption scheme based on a
simple complexity assumption was given by Goldwasser and Micali [118]. Specif-
ically, they constructed a public-key encryption scheme assuming that deciding
Quadratic Residiousity modulo composite numbers is intractable. The condition
was weaken by Yao [197] who prove that any trapdoor permutation will do. The
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efficient public-key encryption scheme of Construction 5.3.13 is due to Blum and
Goldwasser [33]. The security is based on the fact that the least significant bit of
the modular squaring function is a hard-core predicate, provided that factoring
is intractable, a result mostly due to [5].

For decades, it has been common practice to use “pseudorandom generators”
in the design of stream ciphers. As pointed out by Blum and Micali [34], this
practice is sound provided that one uses pseudorandom generators (as defined
in Chapter 3). The construction of private-key encryption schemes based on
pseudorandom functions is due to [99].

Author's Note: The rest of this subsection is yet to be written. The
following paragraphs are merely place-holders.

**% Public-key encryption schemes secure against a-priori Chosen Ciphertext
Attacks can be constructed, assuming the existence of trapdoor permutations
and utilizing non-interactive zero-knowledge proofs [164] (which can be con-
structed under this assumption [75]).

*#* The study of non-malleability of the encryption schemes, was initiated
in [62]. Non-malleable public-key encryption schemes are known to exist assum-
ing the existence of trapdoor permutation [62]. Security and non-malleability
are equivalent under a-posteriori chosen ciphertext attack (cf. [62, 15]).

5.5.2 Suggestion for Further Reading

Author's Note: This subsection is yet to be written. The following
paragraphs are merely place-holders.

*** For discussion of Non-Malleable Cryptography, which actually transcends
the domain of encryption, see [62].

*** For a detailed discussion of the relationship among the various notions
of secure public-key encryption, the reader is referred to [15].

5.5.3 Open Problems

Author's Note: Incorporate the following text...

Both constructions of public-key encryption schemes secure against chosen
ciphertext attacks (mentioned above) are to be considered as plausibility results
(which also offer some useful construction paradigms). Presenting “reasonablly-
efficient” public-key encryption schemes that are secure against (a-posteriori)
chosen ciphertext attacks, under widely believed assumptions, is an important
open problem. (We comment that the “reasonablly-efficient” scheme of [55]
is based on a very strong assumption regarding the Diffie-Hellman Key Ez-
change. Specifically, it is assumed that for a prime P and primitive element
g, given (P, g, (g* mod P),(¢g¥ mod P),(¢g* mod P)), it is infeasible to decide
whether z =2y (mod P —1).)
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5.5.4 Exercises

Author's Note: The following are but a tentative collection of exercises
that occurred to me while writing the main text.

Exercise 1: Encryption schemes imply one-way function [125]: Show that the
existence of a secure private-key encryption scheme (i.e., as in Defini-
tion 5.2.1) implies the existence of one-way functions.

Guideline: Recall that, by Exercise 11 of Chapter 3, it suffices to prove
that the former implies the existence of a pair of polynomial-time con-
structible probability ensembles that are statistically far apart and still
are computationally indistinguishable. To prove the existence of such en-
sembles consider the encryption of n + 1-bit plaintexts relative to a ran-
dom n-bit long key, denoted K,. Specifically, let the first ensemble be
{(U"+17E(U”+1))}neN7 where E(x) = Fg, (z), and the second ensem-
ble be {(Uélll,E(Uggl))}neN, where UT(Lle)1 and ngl are independently
distributed. It is easy to show that these ensembles are computationally
indistinguishable and are both polynomial-time constructible. The more
interesting part is to show that these ensembles are statistically far apart.
To prove this fact, assume towards the contradiction that for all but a negli-
gible fraction of the 2"t possible @’s, the distribution of E(z) is statistically
close to a single distribution Y, and show that this does not allow correct
decryption (since there are only 2™ possible keys).

Exercise 2: Encryption schemes with unbounded-length plaintext: Suppose that
the definition of semantic security is modified so that no bound is placed
on the length of plaintexts. Prove that in such a case there exists no
sematically secure public-key encryption scheme. (Hint: A plaintext of length
exponential in the security parameter allows the adversary to find the decryption key

by exhuastive search.)

Exercise 3: Encryption schemes must leak information about the length of the
plaintext: Suppose that the definition of semantic security is modified so
that the algorithms are not given the length of the plaintext. Prove that
in such a case there exists no sematically secure encryption scheme.

Guideline: First show that for some polynomial p, |E(1")| < p(n),
whereas for some x € {0,1}P(") it holds that Pr[|E(z)| <p(n)] < 1/2.

Exercise 4: Deterministic encryption schemes: Prove that in order to be se-
matically secure a public-key encryption scheme must have a probabilistic
encryption algorithm. (Hint: Otherwise, one can distinguish the encryptions of

two candidate plaintexts by computing the unique ciphertext for each of them.)

Exercise 5: Prove that the following definition, in which we use probabilistic
polynomial-time algorithms with auxiliary inputs (rather than polynomial-
size non-uniform circuits), is equivalent to Definition 5.2.1.
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For every probabilistic polynomial-time algorithm A, there ex-
ists a probabilistic polynomial-time algorithm B, so that for
every ensemble {X,},cn, with |X,,| = poly(n), every pair of
polynomially-bounded functions f,h : {0,1}* — {0,1}*, every
polynomial p(-), all sufficiently large n and every z € {0, l}p(”),

Pr [A(z, By (Xa), 1501, (X)) = £(X)]

< Pr [B(z, I‘X"",h(Xn))zf(Xn)] + ﬁ

Same for public-key encryption.

Guideline: The alternative view of non-uniformity, discussed in Sec-
tion 1.3, is useful here. That is, we can view a circuit family as a sequence
of advices given to a universal machine. Thus, the original definition states
that advices for a machine that gets the ciphertext can be efficiently trans-
formed into advices for a machine that does not get the ciphertext. However,
we can incorporate the transformation program into the second universal
algorithm, and so the advices are identical for both machines (and can be
viewed as the auxiliary string z in the new formulation). Thus, the original
definition is implied by the new definition. To close the gap between the two
definitions, one only needs to observe that it suffices to consider one fixed
universal machine, A, in the new definition (as any adversarial strategy can

be coded in the auxiliary input to this universal machine).

Exercise 6: Prove that a sematically-secure (private-key) encryption scheme
satisfies the same requirements with respect to randomized circuits. That
is, there exists a polynomail-time transformation, 7', so that for every
polynomial-size randomized circuit family {C,, }, for every ensemble {X,,} ,en,
with |X,,| = poly(n), every pair of polynomially-bounded functions f,h :
{0,1}* — {0,1}*, every polynomial p(-) and all sufficiently large n

Pr [ Cu(Eay 1) (Xa), 150, (X)) = £(X0)|

< Pr[CLaPHOX) =] + o
def

where C!, = T(C,) is the circuit produced by T on input C,. Same for
public-key encryption.

Guideline: Given a randomized family {C,} as above, consider all possi-
ble families of deterministic circuits derived by fixing a sequence of coins for
each C,,. Note that you should provide one family of randomized circuits,
{C},}, to match the randomized family {C,}. The alternative formulation
of Exercise 5 is useful here (as one may incorporate and extract the coin-
sequence in the auxiliary input).

Exercise 7: Prove that Definition 5.2.3 remains unchanged when supplying the
circuit with auxiliary-input. That is, an encryption scheme satisfies Defi-
nition 5.2.3 if and ouly if
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for every polynomial-size circuit family {C,}, every polynomial
p, all sufficiently large n and every z,y € {0,1}P°Y(™ (ie., |z]| =
ly|) and z € {0, 1}pel¥(n),

IPr [Cn(2, Eg,(1n)(x))=1] — Pr [Cn(z2, Eg,(1n)(y))=1] | < Ol

(Hint: incorporate z in the circuit C’n.)

Exercise 8: Fquivalence of the security definitions in the public-key model:
Prove that a public-key encryption scheme is semantically secure if and
only if it has indistinguishable encryptions.

Exercise 9: The technical contents of semantic security: The following explains
the lack of computational requirements regarding the function f, in Defi-
nition 5.2.1. Prove that an encryption scheme, (G, E, D), is (semantically)
secure (in the private-key model) if and only if the following holds.

There exists a polynomail-time transformation, T, so that for
every polynomial-size circuit family {C,}, for every ensemble
{X,} e, with | X, = poly(n), and every polynomially-bounded
function A : {0,1}* — {0,1}*, the following two ensembles are
computationally indistinguishable.

1. {C"(EG1(1")(XTL)7 ]-lxn‘:h(Xn))}nEN'
2. {C! (1%l h(X,)) } e, where C! =T(C,,).

Formulate and prove an analogous claim for the public-key model.

Guideline: We care mainly about the (easy to establish) fact by which
the above implies semantic security. The other direction can be proven

analogously to the proof of Proposition 5.2.6.

Exercise 10: A wvariant on Ezercise 9: The current exercise shows that we
may drop the auxiliary information provided by the function h without
weakeening the definition. Prove that an encryption scheme, (G, E, D), is
(semantically) secure (in the private-key model) if and only if the following
holds.

There exists a polynomail-time transformation, 7', so that for
every polynomial-size circuit family {C,}, for every ensemble
{X.}nen, with |X,,| = poly(n), the following two ensembles are
computationally indistinguishable.

L ACw(Eg, 1m)(Xn), 1K)} e
2. {C! (11%=)}, e, where C!, = T(C,,).

Formulate and prove an analogous claim for the public-key model.
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Guideline: Again, we care mainly about the (easier to establish) fact by
which the above implies semantic security. The easiest proof of this direc-
tion is by applying Propositions 5.2.7 and 5.2.6. A more interesting proof is
obtained by combining Exercises 5 and 9: Starting from the above formula-
tion, and using the alternative presentation of Exercise 5, we establish the
formulation of Exercise 9 for the special case in which h is constant on X,,.
The general case follows, since otherwise — using an averaging argument —
we derive a contradiction in one of the residual probability spaces defined
by conditioning on h(X,) (i.e., (Xn|h(Xn) = v) for some v).

Exercise 11: Another equivalent definition of security: The following exercise
is interesting mainly for historical reasons. In the definition of semantic
security appearing in [118], the term max, ,{Pr[f(X,) = v|h(X,) = u]}
appears instead of the term Pr[C” (1'%~| h(X,)) = f(X,)]. That is, it is
required that

for every polynomial-size circuit family {C,},cnN, every ensem-
ble {X,.}cn, with |X,,| = poly(r), every pair of polynomially-
bounded functions f,h : {0,1}* — {0,1}*, every polynomial p(+)
and all sufficiently large n

Pe [Cu(Bg,m(X2), 190, (X)) = £(X0)]
L
p(n)

Prove that the above formulation is in fact equivalent to Definition 5.2.1.

< n&%}x{Pr [f(Xn)=v|h(X,)=u]} +

Guideline: First, note that the above definition implies Definition 5.2.1
(since maxy, o {Pr[f(Xn)=v|h(Xn)=ul} > Pr[C (h(Xn),1",|Xn]|) = f(Xn)],
for every circuit C!). Next note that in the special case, in which X, sat-
isfies Pr[f(X,) =0|h(Xn)=u] = Pr[f(X,)=1|h(Xn)=u] = %, for all u’s,
the above terms are equal (since C!, can easily achieve success probability
1/2 by simply always outputting 1). Finally, combining Propositions 5.2.7

and 5.2.6. infer that it suffices to consider only the latter special case.

Exercise 12: Yet another equivalent definition of security: The following syn-
tactic strengthening of semantic security is important in some applications.
Its essence is in considering information related to the plaintext, in the
form of a related random variable, rather than partial information about
the plaintext (in the form of a function of it). Prove that an encryption
scheme, (G, E, D), is (semantically) secure (in the private-key model) if
and only if the following holds.

There exists a polynomial-time transformation, 7', so that for ev-
ery polynomial-size circuit family {C,,}, for every {(X,., Z,) }nen,
where Z,, may dependent arbitrarily on X,,, and f, p(-) and n
as in Definition 5.2.1

Pr|Cn(Eg,(1n)(Xn), 1|X"|;Zn)=f(Xn)
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< Pr|c,*z,)=f(X.) +ﬁ

where C! €' T(C,,).
That is, the auxiliary input h(X,,) of Definition 5.2.1 is replaced by the
random variable Z,,. Formulate and prove an analogous claim for the
public-key model.

Guideline: Definition 5.2.1 is clearly a special case of the above. On
the other hand, the proof of Proposition 5.2.6 extends easily to the above
(seemingly stronger) formulation of semantic security.

Exercise 13: Hiding partial information about the length of the plaintext: Using
an arbitrary block cipher, construct an encryption scheme that

1. Hides the length of the plaintext upto a factor of 2.
2. Hides the length of the plaintext upto an additive term of n.

Prove that the resulting encryption scheme inherents the security of the
original block-cipher.
(Hint: Just use an adequate padding convention, making sure that it always yields

correct decoding.)

Exercise 14: Known plaintexst attacks: Loosely speaking, in a known palintext
attack on a private-key (resp., public-key) encryption scheme the adver-
sary is given some plaintext/ciphertext pairs in addition to some extra
ciphertexts (without corresponding plaintexts). Semantic security in this
setting means that whatever can be efficiently computed about the missing
plaintexts, can be also efficiently computed given only the length of these
plaintexts.

1. Provide formal definitions of security for private-key/public-key in
both the single-message and multiple-message settings.

2. Prove that any secure public-key encryption scheme is also secure in
the presence of known plaintext attack.

3. Prove that any private-key encryption scheme that is secure in the
multiple-message setting is also secure in the presence of known plain-
text attack.

Exercise 15: Length parameters: Assuming the existence of a secure public-
key (resp., private-key) encryption scheme, prove the existence of such
scheme in which the length of keys equal the security parameter. Show
that the length of ciphertexts may be a fixed polynomial in the length of
the plaintext.

Author's Note: First draft written mainly in 1997. Major revision
completed in Dec. 1999.



