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Preface

The current manuscript consists of fragments of a chapter on encryption schemes,
which is suppose to be Chapter 5 of the three-volume work Foundations of Cryp-
tography. These fragments provide a draft of the first three sections of this chap-
ter, covering the basic setting, definitions and constructions. Also included is a
plan of the fourth section (i.e., beyond eavesdropping security), and fragments for
the Miscellaneous section of this chapter. This manuscript subsumes a previous
version posted in Dec. 1999.

The bigger picture. The current manuscript consists of fragments of a chap-
ter on encryption schemes, which is suppose to constitute Chapter 5 of the
three-part work Foundations of Cryptography (see Figure 0.1). The three parts
of this work are Basic Tools, Basic Applications, and Beyond the Basics. The
first part (containing Chapters 1-4) has been published by Cambridge University
Press (in June 2001). The second part, consists of Chapters 5-7 (regarding En-
cryptioni Schemes, Signatures Schemes, and General Cryptographic Protocols,
respectively). We hope to publish the second part with Cambridge University
Press within a few years.

Part 1: Introduction and Basic Tools
Chapter 1: Introduction
Chapter 2: Computational Difficulty (One-Way Functions)
Chapter 3: Pseudorandom Generators
Chapter 4: Zero-Knowledge Proofs
Part 2: Basic Applications
Chapter 5: Encryption Schemes
Chapter 6: Signature Schemes
Chapter 7: General Cryptographic Protocols
Part 3: Beyond the Basics

Figure 0.1: Organization of this work
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The partition of the work into three parts is a logical one. Furthermore, it
offers the advantage of publishing the first part without waiting for the comple-
tion of the other parts. Similarly, we hope to complete the second part within a
couple of years, and publish it without waiting for the third part.

Prerequisites. The most relevant background for this text is provided by
basic knowledge of algorithms (including randomized ones), computability and
elementary probability theory. Background on (computational) number theory,
which is required for specific implementations of certain constructs, is not really
required here.

Using this text. The text is intended as part of a work that is aimed to serve
both as a textbook and a reference text. That is, it is aimed at serving both the
beginner and the expert. In order to achieve this aim, the presentation of the
basic material is very detailed so to allow a typical CS-undergraduate to follow
it. An advanced student (and certainly an expert) will find the pace (in these
parts) way too slow. However, an attempt was made to allow the latter reader
to easily skip details obvious to him/her. In particular, proofs are typically
presented in a modular way. We start with a high-level sketch of the main ideas,
and only later pass to the technical details. Passage from high-level descriptions
to lower level details is typically marked by phrases such as details follow.

In a few places, we provide straightforward but tedious details in in-
dented paragraphs as this one. In some other (even fewer) places such
paragraphs provide technical proofs of claims that are of marginal rele-
vance to the topic of the book.

More advanced material is typically presented at a faster pace and with less
details. Thus, we hope that the attempt to satisfy a wide range of readers will
not harm any of them.

Teaching. The material presented in the full (three-volume) work is, on one
hand, way beyond what one may want to cover in a course, and on the other
hand falls very short of what one may want to know about Cryptography in
general. To assist these conflicting needs we make a distinction between basic
and advanced material, and provide suggestions for further reading (in the last
section of each chapter). In particular, sections, subsections, and subsubsections
marked by an asterisk (*) are intended for advanced reading.
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Chapter 5

Encryption Schemes

Upto the 1970’s, Cryptography was understood as the art of building encryption
schemes; that is, the art of constructing schemes allowing secret data exchange
over insecure channels. Since the 1970’s, other tasks (e.g., signature schemes)
have been recognized as falling within the domain of Cryptography (and even as
being at least as central to Cryptography). Yet, the construction of encryption
schemes remains, and is likely to remain, a central enterprise of Cryptography.

In this chapter we review the well-known notions of private-key and public-
key encryption schemes. More importantly, we define what is meant by saying
that such schemes are secure. It turns out that using randomness throughout
the encryption process (i.e., not only at the key-generation phase) is essential to
security. We present some basic constructions of secure (private-key and public-
key) encryption schemes. Finally, we discuss “dynamic” notions of security
culminating in robustness against chosen ciphertext attacks.

Author's Note: Currently the write-up contains only a rough draft for
the first 3 sections of this chapter. Furthermore, this write-up was
NOT carefully proofread, and may contain various (hopefully minor)
€errors.

Teaching Tip: We assume that the reader is familiar with the material in
previous chapters (and specifically with Sections 2.2, 2.4, 2.5, 3.2-3.4, and 3.6).
This familiarity is important not only because we use some of the notions and
results presented in these sections, but rather because we use similar proof tech-
niques (and do it while assuming that this is not the reader’s first encounter
with these techniques).

5.1 The Basic Setting

Loosely speaking, encryption schemes are supposed to enable private communi-
cation between parties that communicate over an insecure channel. Thus, the

365
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basic setting consists of a sender, a receiver, and an insecure channel that may
be tapped by an adversary. The goal is to allow the sender to transfer infor-
mation to the receiver, over the insecure channel, without letting the adversary
figure out this information. Thus, we distinguish between the actual (secret)
information that the receiver wishes to transmit and the messages sent over the
insecure communication channel. The former is called the plaintext, whereas
the latter is called the ciphertext. Clearly, the ciphertext must differ from the
plaintext or else the adversary can easily obtain the plaintext by tapping the
channel. Thus, the sender must transform the plaintext into a ciphertext so
that the receiver can retrieve the plaintext from the ciphertext, but the adver-
sary cannot do so. Clearly, something must distinguish the receiver (who is able
to retrieve the plaintext from the corresponding ciphertext) from the adversary
(who cannot do so). Specifically, the receiver know something that the adversary
does not know. This thing is called a key.

An encryption scheme consists of a method of transforming plaintexts to ci-
phertexts and vice versa, using adequate keys. These keys are essential to the
ability to effect these transformations. We stress that the encryption scheme it-
self (i.e., the encryption/decryption algorithms) may be known to the adversary,
and its security relies on the hypothesis that the adversary does not know the
keys.! Formally, we need to consider a third algorithm; namely, a probabilistic
algorithm used to generate keys. This algorithm must be probabilistic (or else,
by invoking it the adversary obtains the very same key used by the receiver).

In accordance with the above, an encryption scheme consists of three algo-
rithms. These algorithms are public (i.e., known to all parties). The obvious
algorithms are the encryption algorithm, which transforms plaintexts to cipher-
texts, and the decryption algorithm, which transforms ciphertexts to plaintexts.
By the discussion above, it is clear that the description algorithm must employ
a key that is known to the receiver but is not known to the adversary. This
key is generated using a third algorithm, called the key generator. Furthermore,
it is not hard to see that the encryption process must also depend on the key
(or else messages sent to one party can be read by a different party who is also
a potential receiver). Thus, the key-generation algorithm is used to produce a
pair of (related) keys, one for encryption and one for decryption. The encryption
algorithm, given an encryption key and a plaintext, produces a plaintext that
when fed to the decryption algorithm, with the corresponding decryption key,
returns the original plaintext. We stress that knowledge of the decryption key
is essential for the latter transformation.

5.1.1 Private-Key versus Public-Key Schemes

A fundamental distinction between encryption schemes refers to the relation be-
tween the two keys (mentioned above). The simpler (and older) notion assumes
that the encryption key equals the decryption key. Such schemes are called

1 In fact, in many cases, the legitimate interest may be served best by publicizing the
scheme itself. In our opinion, this is the best way to obtain an (unbiased) expert evaluation
of the security of the scheme.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.1. THE BASIC SETTING 367

private-key (or symmetric). To use a private-key scheme, the legitimate parties
must first agree on the secret key. This can be done by having one party generate
the key at random and send it to the other party using a channel that is assumed
to be secure. A crucial point is that the key is generated independently of the
plaintext, and so it can be generated and exchanged prior to the plaintext even
being determined. Thus, private-key encryption is a way of extending a private
channel over time: If the parties can use a private channel today (e.g., they are
currently in the same physical location) but not tomorrow, then they can use
the private channel today to exchange a secret key that they may use tomorrow
for secret communication. A simple example of a private-key encryption scheme
is the one-time pad. The secret key is merely a uniformly chosen sequence of
n bits, and an n-bit long ciphertext is produced by XORing the plaintext, bit-
by-bit, with the key. The plaintext is recovered from the ciphertext in the same
way. Clearly, the one-time pad provides absolute security. However, its usage
of the key is inefficient; or, put in other words, it requires keys of length com-
parable to the total length of data communicated. In the rest of this chapter
we will only discuss encryption schemes where n-bit long keys allow to securely
communicated data of length greater than n (but still polynomial in n).

A new type of encryption schemes has emerged in the 1970’s. In these
schemes, called public-key (or asymmetric), the decryption key differs from the
encryption key. Furthermore, it is infeasible to find the decryption key, given the
encryption key. These schemes enable secure communication without ever using
a secure channel. Instead, each party applies the key-generation algorithm to
produce a pair of keys. The party, called P, keeps the decryption key, denoted
dp, secret and publishes the encryption key, denoted ep. Now, any party can
send P private messages by encrypting them using the encryption key ep. Party
P can decrypt these messages by using the decryption key dp, but nobody else
can do so.

5.1.2 The Syntax of Encryption Schemes

We start by defining the basic mechanism of encryption schemes. This definition
says nothing about the security of the scheme (which is the subject of the next
section).

Definition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G, E, D),
of probabilistic polynomial-time algorithms satisfying the following two condi-
tions

1. On input 1™, algorithm G (called the key generator) outputs a pair of bit
strings.

2. For every pair (e,d) in the range of G(1™), and for every a € {0,1}*,
algorithms E (encryption) and D (decryption) satisfy

PriD(d,E(e,a))=a] =1
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where the probability is taken over the internal coin tosses of algorithms E
and D.

The integer n serves as the security parameter of the scheme. Each (e,d) in
the range of G(1™) constitutes o pair of corresponding encryption/decryption
keys. The string E(e, ) is the encryption of the plaintext « € {0,1}* using the
encryption key e, whereas D(d,3) is the decryption of the ciphertext 8 using
the decryption key d.

We stress that Definition 5.1.1 says nothing about security, and so trivial (in-

secure) algorithms may satisty it (e.g., E(e,a) = « and D(d, ) < 3). Fur-

thermore, Definition 5.1.1 does not distinguish private-key encryption schemes
from public-key ones. The difference between the two types is introduced in the
security definitions: In a public-key scheme the “breaking algorithm” gets the
encryption key (i.e., ) as an additional input (and thus e # d follows); while
in private-key schemes e is not given to the “breaking algorithm” (and thus one
may assume, without loss of generality, that e = d).

We stress that the above definition requires the scheme to operate for every
plaintext, and specifically for plaintext of length exceeding the length of the
encryption key. (This rules out the information theoretic secure “one-time pad”
scheme mentioned above.)

Notation: In the rest of this text, we write E.(«) instead of E(e, «) and D4(3)
instead of D(d, ). Sometimes, when there is little risk of confusion, we drop
these subscripts. Also, we let G1(1™) (resp., G2(1™)) denote the first (resp.,
second) element in the pair G(1™). That is, G(1™) = (G1(1™), G2(1™)). Without
loss of generality, we may assume that |G;(1™)| and |G2(1™)| are polynomially
related to n, and that each of these integers can be efficiently computed from
the other. (In fact, we may even assume that |G1(1™)] = |G2(1™)] = n; see
Exercise 5.)

Comments: Definition 5.1.1 may be relaxed in several ways without signif-
icantly harming its usefulness. For example, we may relax Condition (2) and
allow a negligible decryption error (e.g., Pr[D4(E.(a)) # a] < 27™). Alterna-
tively, one may postulate that Condition (2) holds for all but a negligible measure
of the key-pairs generated by G(1™). At least one of these relaxations is essential
for each of the popular suggestions of encryption schemes.

Another relaxation consists of restricting the domain of possible plaintexts
(and ciphertexts). For example, one may restrict Condition (2) to a’s of length
¢(n), where £ : N— N is some fixed function. Given a scheme of the latter type
(with plaintext length ¢), we may construct a scheme as in Definition 5.1.1 by
breaking plaintexts into blocks of length ¢(n) and applying the restricted scheme
separately to each block. For more details see Sections 5.2.4 and 5.3.2.
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5.2 Definitions of Security

In this section we present two fundamental definitions of security and prove their
equivalence. The first definition, called semantic security, is the most natural
one. Semantic security is a computational complexity analogue of Shannon’s
definition of perfect privacy (which requires that the ciphertext yields no in-
formation regarding the plaintext). Loosely speaking, an encryption scheme is
semantically secure if it is infeasible to learn anything about the plaintext from
the ciphertext (i.e., impossibility is replaced by infeasibility). The second def-
inition has a more technical flavor. It interprets security as the infeasibility of
distinguishing between encryptions of a given pair of messages. This definition
is useful in demonstrating the security of a proposed encryption scheme, and for
the analysis of cryptographic protocols that utilize an encryption scheme.

We stress that the definitions presented below go way beyond saying that it
is infeasible to recover the plaintext from the ciphertext. The latter statement
is indeed a minimal requirement from a secure encryption scheme, but we claim
that it is way too weak a requirement: An encryption scheme is typically used in
applications where obtaining specific partial information on the plaintext endan-
gers the security of the application. When designing an application-independent
encryption scheme, we do not know which partial information endangers the
application and which does not. Furthermore, even if one wants to design an
encryption scheme tailored to one’s own specific applications, it is rare (to say
the least) that one has a precise characterization of all possible partial informa-
tion that endanger these applications. Thus, we require that it is infeasible to
obtain any information about the plaintext from the ciphertext. Furthermore,
in most applications the plaintext may not be uniformly distributed and some
a-priori information regarding it is available to the adversary. We require that
the secrecy of all partial information is preserved also in such a case. That is,
even in presence of a-priori information on the plaintext, it is infeasible to obtain
any (new) information about the plaintext from the ciphertext (beyond what is
feasible to obtain from the a-priori information on the plaintext). The definition
of semantic security postulates all of this.

To simplify the exposition, we adopt a non-uniform formulation. Namely, in
the security definitions we expand the domain of efficient adversaries/algorithms
to include polynomial-size circuits (rather than only probabilistic polynomial-
time machines). Likewise, we make no computation restriction regarding the
probability distribution from which messages are taken, nor regarding the a-
priori information available on these messages. We note that employing such a
non-uniform formulation (rather than a uniform one) may only strengthen the
definitions; yet, it does weaken the implications proven between the definitions,
since these (simpler) proofs make free usage of non-uniformity.

5.2.1 Semantic Security

Loosely speaking, semantic security means that whatever can be efficiently com-
puted from the ciphertext, can be efficiently computed also without the cipher-
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text. Thus, an adversary gains nothing by intercepting ciphertexts sent between
communicating parties who use a semantically secure encryption scheme, since
it could have obtained the same without intercepting these ciphertexts. Indeed,
this formulation follows the simulation paradigm: “lack of gain” is captured by
asserting that whatever is learned from the ciphertext can be learned within
related complexity also without the ciphertext.

5.2.1.1 The actual definitions

To be somewhat more accurate, semantic security means that whatever can be
efficiently computed from the ciphertext, can be efficiently computed when given
only the length of the plaintext. Note that this formulation does not rule out the
possibility that the length of the plaintext can be inferred from the ciphertext.
Indeed, some information about the length of the plaintext must be revealed by
the ciphertext (see Exercise 3). We stress that other than information about
the length of the plaintext, the ciphertext is required to yield nothing about the
plaintext.

In the actual definitions, we consider only information regarding the plaintext
(rather than anything) which can be obtained from the ciphertext. Furthermore,
we restrict our attention to functions applied to the plaintext. We do so because
of the intuitive appeal of this special case, and are comfortable doing so be-
cause this special case implies the general one (cf. Exercise 11). We augment
this formulation by requiring that the above remains valid even in presence of
auxiliary partial information about the plaintext. Namely, whatever can be effi-
ciently computed from the ciphertext and additional partial information about
the plaintext, can be efficiently computed given only the length of the plain-
text and the same partial information. In the actual definition, the information
regarding the plaintext that the adversary tries to obtain is captured by the
function f, whereas the a-priori partial information about the plaintext is cap-
tured by the function h. The above is required to hold for any distribution of
plaintexts, captured by the probability ensemble {X,,},enN-

Security holds only for plaintexts of length polynomial in the security pa-
rameter. This is captured below by the restriction |X,| = poly(n). Note that
we cannot hope to provide computational security for plaintexts of unbounded
length in the security parameter (see Exercise 2). Likewise, we restrict the func-
tions f and h to be polynomially-bounded; that is, | f(x)|, |h(x)| = poly(|z|).

The difference between private-key and public-key encryption schemes is
manifested in the definition of security. In the latter, the adversary (which
is trying to obtain information on the plaintext) is given the encryption key,
whereas in the former it is not. Thus, the difference between these schemes
amounts to a difference in the adversary model (considered in the definition
of security). We start by presenting the definition for private-key encryption
schemes.

Definition 5.2.1 (semantic security — private-key): An encryption scheme,
(G,E, D), is semantically secure (in the private-key model) if for every proba-
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bilistic polynomial-time algorithm A there exists a probabilistic polynomial-time
algorithm A’ so that for every ensemble {X,},cN, with |X,| = poly(n), every
pair of polynomially-bounded functions f,h: {0,1}* — {0,1}*, every polynomial
() and all sufficiently large n

Pr [ A(Eg, ) (X0), 171, (X)) = F(X)] (5.1)
] ., _ 1
< Pr [A (11X ‘,h(Xn))_f(Xn)] o) (5.2)

(The probability in the above terms is taken over X,, as well as over the internal
coin tosses of algorithms G, E and either A or A'.)

The function h provides both algorithms with partial information regarding the
plaintext X,,. Furthermore, h also makes the definition implicitly non-uniform,;
see further discussion below. In addition, both algorithms get the length of X;,.
These algorithms then try to guess the value f(X,); namely, they try to infer
information about the plaintext X,,. Loosely speaking, in semantically secure
encryption scheme the ciphertext does not help in this inference task. That
is, the success probability of any efficient algorithm (i.e., algorithm A) that is
given the ciphertext, can be matched, upto a negligible fraction, by the success
probability of an efficient algorithm (i.e., algorithm A’) that is not given the
ciphertext at all.

Definition 5.2.1 refers to private-key encryption schemes. To derive a def-
inition of security for public-key encryption schemes, the encryption-key (i.e.,
G1(1™)) should be given to the adversaries as an additional input. That is,

Definition 5.2.2 (semantic security — public-key): An encryption scheme, (G, E, D),
is semantically secure (in the public-key model) if for every probabilistic polynomial-
time algorithm A, there exists a probabilistic polynomial-time algorithm A’ such

that for every {Xn},ens fo b, p(-) and n as in Definition 5.2.1

Pr[A(G1(17), By any(Xa), 10 A(X0) = F(X0)]

1
< Pr[A(G M), 15 R(X)) = F(X0)| + ——
(@), 1% h(X) = 1] + s
We comment that the encryption-key can be omitted from the input to A’, since
A’ may generate it by itself.

Terminology: For sake of simplicity, we refer to an encryption scheme that is
semantically secure in the private-key (resp., public-key) model as to a semantically-
secure private-key (resp., public-key) encryption scheme.

The reader may note that a semantically-secure public-key encryption scheme
cannot employ a deterministic encryption algorithm; that is, E.(z) must be a
random variable rather than a fixed string. This is more evident with respect to
the equivalent Definition 5.2.4 (below). See further discussion following Defini-
tion 5.2.4.
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5.2.1.2 Further discussion of some definitional choices

We discuss several secondary issues regarding Definitions 5.2.1 and 5.2.2. The
interested reader is also referred to Exercises 14 and 15 that present additional
variants of the definition of semantic security.

Implicit non-uniformity of the definitions. The fact that A is not required
to be computable, makes the above definitions non-uniform. This is the case be-
cause both algorithms are given h(X,,) as auxiliary input, and this may account
for arbitrary (polynomially-bounded) advise. For example, letting h(z) = a4,
means that both algorithms are supplied with (non-uniform) advice (as in one of
the possible formulations of non-uniform polynomial-time; see Section 1.3.3). In
general, the function h can code both information regarding its input and non-
uniform advice depending on its input length (i.e., h(x) = (h'(z),a|)). Thus,
the above definitions are equivalent to allowing A and A’ be related families of
non-uniform circuits, where by ‘related’ we mean that the circuits in the family
A" = {A]}, cn can be efficiently computed from the corresponding circuits in
the family A = {A,},cn. For further discussion, see Exercise 7.

Lack of computational restrictions regarding the function f. We do
not require that the function f is even computable. This seems strange at
first glance, because (unlike the situation w.r.t h which codes a-priori infor-
mation given to the algorithms) the algorithms are asked to guess the value
of f (on a plaintext implicit in the ciphertext given only to A). However, as
we shall see in the sequel (see also Exercise 11), the meaning of semantic se-
curity is essentially that the distribution ensembles (E(X,), 1% h(X,)) and
(B(11%=1), 11X1 'h(X,,)) are computationally indistinguishable (and so whatever
A can compute can be computed by A').

Other modifications of no impact. Actually, inclusion of a-priori informa-
tion regarding the plaintext (captured by the function h) does not affect the
definition of semantic security: Definition 5.2.1 remains intact if we restrict i
to only depend on the length of the plaintext (and so only provide non-uniform
advice). (This can be shown in various ways; e.g., see Exercise 12.) Also, the
function f can be restricted to be a Boolean function having polynomial-size cir-
cuits, and the random variable X,, may be restricted to be very “dull” (e.g., have
only two strings in its support): See proof of Theorem 5.2.5. On the other hand,
Definition 5.2.1 implies stronger forms discussed in Exercises 11, 15 and 16.

5.2.2 Indistinguishability of Encryptions

The following technical interpretation of security states that it is infeasible to
distinguish the encryptions of two plaintexts (of the same length). That is, such
ciphertexts are computationally indistinguishable as defined in Definition 3.2.7.
Again, we start with the private-key variant.
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Definition 5.2.3 (indistinguishability of encryptions — private-key): An en-
cryption scheme, (G, E, D), has indistinguishable encryptions (in the private-key
model) if for every polynomial-size circuit family {C,}, every polynomial p, all
sufficiently large n and every x,y € {0,1}P°W() (ie., |z| = |y|),

1
IPr [Cn(Eg, (1)())=1] = Pr [Ca(Eg, 1) (1)) =1] | < p(n)
The probability in the above terms is taken over the internal coin tosses of algo-
rithms G and E.

Note that the potential plaintexts to be distinguished can be incorporated into
the circuit C),,. Thus, the circuit models both the adversary’s strategy and its
a-priori information: See Exercise 9.

Again, the security definition for public-key encryption schemes can be de-
rived by adding the encryption-key (i.e., G1(1™)) as an additional input to the
algorithm. That is,

Definition 5.2.4 (indistinguishability of encryptions — public-key): An encryp-
tion scheme, (G, E, D), has indistinguishable encryptions (in the public-key model)
if for every polynomial-size circuit family {C,}, and every p(-), n, x and y as
in Definition 5.2.3

1
p(n)
Terminology: For sake of simplicity, we refer to an encryption scheme that has

indistinguishable encryptions in the private-key (resp., public-key) model as to
a ciphertext-indistinguishable private-key (resp., public-key) encryption scheme.

|Pr [Ca(G1(17"), Egy (1) (2)) =1] = Pr [Co(G1(1"), B, 1m)(y)) =1] | <

Failure of deterministic encryption algorithms: A ciphertext-indistinguishable
public-key encryption scheme cannot employ a deterministic encryption algo-
rithm (i.e., E.(z) cannot be a fixed string). For a public-key encryption scheme
with a deterministic encryption algorithm E, given an encryption-key e and a
pair of candidate plaintexts (z,y), one can easily distinguish E,.(z) from E.(y)
(by merely applying E. to  and comparing the result to the given cipher-
text). In contrast, in case the encryption algorithm itself is randomized, the
same plaintext can be encrypted in exponentially many different ways, under
the same encryption key. Furthermore, the probability that applying E. twice
to the same message (while using independent randomization in E,) results in
the same ciphertext may be exponentially vanishing. (Indeed, as shown be-
low, public-key encryption scheme having indistinguishable encryptions can be
constructed based on any trapdoor permutations, and these schemes employ
randomized encryption algorithms.)

5.2.3 Equivalence of the Security Definitions

The following theorem is stated and proven for private-key encryption schemes.
A similar result holds for public-key encryption schemes (see Exercise 10).
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Theorem 5.2.5 (equivalence of definitions — private-key): A private-key en-
cryption scheme is semantically secure if and only if it has indistinguishable
encryptions.

Let (G, E, D) be an encryption scheme. We formulate a proposition for each of
the two directions of the above theorem. Each proposition is in fact stronger
than the corresponding direction stated in Theorem 5.2.5. The more useful
direction is stated first: it asserts that the technical interpretation of security, in
terms of ciphertext-indistinguishability, implies the natural notion of semantic
security. Thus, the following proposition yields a methodology for designing
semantically secure encryption schemes: design and prove your scheme to be
ciphertext-indistinguishable, and conclude (by applying the proposition) that
it is semantically secure. The opposite direction (of Theorem 5.2.5) establish
the “completeness” of the latter methodology, and more generally assert that
requiring an encryption scheme to be ciphertext-indistinguishable does not rule
out schemes that are semantically secure.

Proposition 5.2.6 (useful direction — “indistinguishability” implies “security” ):
Suppose that (G, E, D) is a ciphertexst-indistinguishable private-key encryption
scheme. Then (G,E,D) is semantically-secure. Furthermore, the simulating
algorithm A' (which is used to establish semantic-security) captures the com-
putation of a probabilistic polynomial-time oracle machine that is given oracle
access to original adversary algorithm A.

Proposition 5.2.7 (opposite direction — “security” implies “indistinguishabil-
ity”): Suppose that (G, E, D) is a semantically secure private-key encryption
scheme. Then (G, E,D) has indistinguishable encryptions. Furthermore, the
conclusion holds even if the definition of semantic security is restricted to the
special case satisfying the following four conditions:

1. the random variable X, is uniformly distributed over a set containing two
strings;

2. the value of h depends only on the length of its input (i.e., h(xz) = h'(|z]));
3. the function f is Boolean and is computable by a polynomial-size circuit;
4. the algorithm A is deterministic.

In addition, no computational restrictions are placed on algorithm A’ and it can
be replaced by any function, which may depend on {X,},cN, b, f and A.

Observe that the above four itemized conditions limit the scope of the four
universal quantifiers in Definition 5.2.1, whereas the last sentence removes a
restriction on the existential quantifier (i.e., removes the complexity bound on
A") and allows the latter to depend on all universal quantifiers. Each of these
modifications makes the resulting definition potentially weaker. Still, combining
Propositions 5.2.7 and 5.2.6 it follows that a weak version of Definition 5.2.1
implies (an even stronger version than) the one stated in Definition 5.2.1.
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5.2.3.1 Proof of Proposition 5.2.6.

Suppose that (G, E, D) has indistinguishable encryptions. We show that (G, E, D)
is semantically secure by constructing, for every probabilistic polynomial-time
algorithm A, a probabilistic polynomial-time algorithm A’ such that the fol-
lowing holds: for every {Xn},en, f and h, algorithm A’ guesses f(X,) from
(11Xl h(X,)) essentially as good as A guesses f(X,,) from (E(X,), 11X+, h(X,,)).
Algorithm A’ merely invokes A on input (E(11%»1),11%=l r(X,)), and returns
whatever A does. Intuitively, the indistinguishability of encryptions implies that
A behaves as well when invoked by A’ (and given a dummy encryption) as when
given the encryption of X,,. Details follow.

Let A be an algorithm that tries to infer partial information (i.e., the value
f(X,)) from the encryption of the message X,, (when also given 1% and a-
priori information h(X,)). Namely, on input E(«) and (1/°l, h(«)), algorithm
A tries to guess f(a). We construct a new algorithm, A’, that performs as well
without getting the input E(a). The new algorithm consists of invoking A on
input EGl(ln)(l‘a') and (1%l h()), and outputting whatever A does. That is,
on input (1%l h(a)), algorithm A’ proceeds as follows:

1. A’ invokes the key-generator G (on input 1™), and obtains an encryption-

key e «— G1(1™).

2. A’ invokes the encryption algorithm with key e and (“dummy”) plaintext

1@l obtaining a ciphertext 3 « FE,(1l°1).
3. A" invokes A on input (3,1!%! h()), and outputs whatever A does.

Observe that A’ is described in terms of an oracle machine that makes a single
oracle call to (any given) A, in addition to invoking the fixed algorithms G
and E. Furthermore, the construction of A’ does not depend on the functions
h and f or on the distribution of messages to be encrypted (represented by
the probability ensembles {X,,}, cn). Thus, A’ is probabilistic polynomial-time
whenever A is probabilistic polynomial-time (and regardless of the complexity
of h, f and {X,},en)

Indistinguishability of encryptions will be used to prove that A’ performs
essentially as well as A. Specifically, the proof will use a reducibility argument.

Claim 5.2.6.1: Let A’ be as above. Then, for every {X,},cn, f, h and p as in
Definition 5.2.1, and all sufficiently large n’s

Pr [A(E, 1) (Xn), 150, h(X)) = ()]

< Pr [A’(l'X"‘,h(Xn)):f(Xn)] o)

Proof: To simplify the notations, let us incorporate 11° into h(a). Using the
definition of A’ we can rewritten the claim as asserting

Pr [A(EG1(1”")(Xn)a h(Xn))zf(Xn)]
< Pr[AEe, 0y (17, h(X)) = (X)) +
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Intuitively, this follows by the indistinguishability of encryptions, by fixing a
violating value of X,, and incorporating the corresponding values of h(X,,) and
f(X,,) in a description of a circuit (which will distinguish an encryption of this
value of X,, from an encryption of 1|X"|). Details follow.

Assume, towards the contradiction that for some polynomial p and infinitely
many n’s the above inequality is violated. Then, for each such n, we have
E[A(X,)] > 1/p(n), where

Az) &

Pr [A(Eg, 1n)(@), () = f(@)] = Pr [A(Ea,1m) (1), b)) = f(2)] |

We use an averaging argument to single out a string z,, in the support of X,
such that A(z,) > A(X,): That is, let z,, € {0,1}P°¥(") be a string for which
the value of A(:) is maximum, and so A(z,) > 1/p(n). Using this z,, we
introduce a circuit C,,, which incorporates the fixed values f(x,) and h(z,),
and distinguishes the encryption of z,, from the encryption of 1/*»I. The circuit
C,, operates as follows. On input 8 = E(«a), the circuit C,, invokes A(S, h(x,))
and outputs 1 if and only if A outputs the value f(z,). Otherwise, C,, outputs
0.

The above circuit is indeed of polynomial-size because it merely incorporates
strings of polynomial length (i.e., f(x,) and h(z,)) and emulates a polynomial-
time computation (i.e., of A). (Note that the circuit family {C,} is indeed
non-uniform since its definition is based on a non-uniform selection of z,’s as
well as on a hard-wiring of (possibly uncomputable) corresponding strings h(z,,)
and f(z,).) Clearly,

Pr[Cn(Eg, (1n)(a)) =1] = Pr [A(Eg, (1n) (@), h(wn)) = f(n)] (5.3)

Combining Eq. (5.3) with the definition of A(z,,), we get

‘Pr [Co(Bay(10y(20)) =1] — Pr [Cn(E(;l(l,,.)(l"”"'))=1]‘ = Alzn)
1

>
p(n)
This contradicts our hypothesis that E has indistinguishable encryptions, and
the claim follows. O

We have just shown that A’ performs essentially as well as A, and so Proposition
5.2.6 follows.

Comments: The fact that we deal with a non-uniform model of computation
allows the above proof to proceed regardless of the complexity of f and h. All
that our definition of C), requires is the hardwiring of the values of f and h on
a single string, and this can be done regardless of the complexity of f and h
(provided that they are both polynomially-bounded).

When proving the public-key analogue of Proposition 5.2.6, algorithm A’ is
defined so that it generates an encryption of 11! relative to the encryption-key
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given to it as input (rather than relative to an encryption-key that it generates
by itself, as done above). In addition, the distinguishing circuit considered in
the analysis of the performance of A’, obtains the encryption-key as part of its
input and passes it to algorithm A (upon invoking it).

5.2.3.2 Proof of Proposition 5.2.7

Here the entire proof is by a reducibility argument. We show that if (G, E, D)
has distinguishable encryptions then it is not semantically secure (not even in
the restricted sense mentioned in the furthermore-clause of the proposition).
Towards this end, we assume that there exists a polynomial p, a polynomial-
size circuit family {C),}, such that for infinitely many n’s there exists z,,y, €
{0, 1}PoW(") 50 that

1
p(n)
Using this sequence of C,’s, z,,’s and y,,’s, we define {X,, },cn, f and h (referred
to in Definition 5.2.1) as follows:

|Pr [Cn(Eg,(1n)(xn))=1] = Pr [Crn(Eg,1m)(yn))=1]| > (5.4)

e The probability ensembles { X}, cn is defined such that X, is uniformly
distributed over {@,,,yn }

e The function f:{0,1}*—{0,1} is defined such that f(z,) =1 and f(y,) =
0, for every n. Note that f(X,) = 1 with probability 1/2 and is 0 otherwise.

e The function h is defined such that h(X,) equals the description of the
circuit C,,. Note that h(X,,) = C,, with probability 1, and thus reveals no
information on the value of X,,. (In the sequel, we write h(X,) = h'(n) =

Cy.)

(Note that X,,, f and h satisfy the restrictions stated in the furthermore-clause
of the proposition.)

We will present a (deterministic) polynomial-time algorithm A that, given
Cpn = h(X,), guesses the value of f(X,,) from the encryption of X,,, and does
so significantly better that with probability % This violates (even the restricted
form of) semantic security, since no algorithm (regardless of its complexity) can
guess f(X,) better than with probability 1/2 when only given 11%X»| (because
given the constant values 1%#| and h(X,), the value of f(X,) is uniformly
distributed over {0, 1}). Details follow.

Let us assume, without loss of generality, that for infinitely many n’s

Pr [Co (B, (@) =1] > Pr [Cu(Ba, 1m (9))=1] + ﬁ (5.5)

Claim 5.2.7.1: There exists a (deterministic) polynomial-time algorithm A such
that for infinitely many n’s

_|_

N =
N

Pr [A(EG, ) (Xn), 19 (X)) = f(X)] > 5+ 5
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Proof: Algorithm A uses C,, = h(X,) in a straightforward manner: On input
B = E(a) (where « is in the support of X,) and (1/%l,h(a)), algorithm A
recovers C,, = h'(n) = h(«), invokes C,, on input 8, and outputs 1 if C,, outputs
1 (otherwise, C,, outputs 0).2

It is left to analyze the success probability of A. Letting m = |z,| = |yn|, we
have

Pr [A(E, 1) (Xn), 150 (X)) = (X))

= 5 Pr Al 1) (Xa) 1L (X)) = F(X0) | X =
5 P [ACEG ) (X0, 1P (X)) = F() | Xu =]
[A(Eg, (1n)(x0),1™,Cn)) =1] 4+ Pr [A(Eg, (1n)(yn), 1™, C)) =0])

’ (Pr [CR(EG1(1"-)(ITL)):1] +1—Pr [Cn(EG1(1"-)(yn)):1])
1
2p(n)

where the inequality is due to Eq. (5.5). O

_|_

I
N =N =N~ 4+ N
—~
=
-

In contrast, as observed above, no algorithm (regardless of its complexity)
can guess f(X,) with success probability above 1/2, when given only 1/%»| and
h(X,). That is, we have

Fact 5.2.7.2: For every n and every algorithm A’

Pr [4/(1M, h(Xa) = F(Xa)] <

N | =

(5.6)

Proof: Just observe that the output of A’, on its constant input values 11%»|
and h(X,), is stochastically independent of the random variable f(X,,), which
in turn is uniformly distributed in {0,1}. Eq. (5.6) follows (and equality holds
in case A" always outputs a value in {0,1}). O

Combining Claim 5.2.7.1 and Fact 5.2.7.2, we reach a contradiction to the
hypothesis that the scheme is semantically secure (even in the restricted sense
mentioned in the furthermore-clause of the proposition). Thus, the proposition
follows.

Comment: When proving the public-key analogue of Proposition 5.2.7, algo-
rithm A is defined as above except that it passes the encryption-key, given to it
as part of its input, to the circuit C,. The rest of the proof remains intact.

2 We comment that the ‘1’ output by Cj is an indication that o is more likely to be @,
whereas the output of A is a guess of f(«). This point may be better stressed by redefining f
def . . .
so that f(zn) = 2, and f(x) = yn if © # xn, and having A output z, if Cp outputs 1 and
output y, otherwise.
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5.2.4 Multiple Messages

The above definitions only refer to the security of an encryption scheme that
is used to encrypt a single plaintext (per a generated key). Since the plain-
text may be longer than the key, these definitions are already non-trivial, and
an encryption scheme satisfying them (even in the private-key model) implies
the existence of one-way functions (see Exercise 1). Still, in many cases, it is
desirable to encrypt many plaintexts using the same encryption key. Loosely
speaking, an encryption scheme is secure in the multiple-message setting if anal-
ogous definitions (to the above) hold also when polynomially-many plaintexts
are encrypted using the same encryption key.

We show that in the public-key model, security in the single-message set-
ting (discussed above) implies security in the multiple-message setting (defined
below). We stress that this is not necessarily true for the private-key model.

5.2.4.1 Definitions

For a sequence of strings 7 = (21, ...,z("), we let E.(ZT) denote the sequence

of the t results that are obtained by applying the randomized process E, to the
t strings 1), ..., 2(!)| respectively. That is, E.(T) = E.(zV)), ..., E.(z¥)). We
stress that in each of these ¢t invocations, the randomized process E. utilizes
independently chosen random coins. For sake of simplicity, we consider the en-
cryption of (polynomially) many strings of the same (polynomial) length (rather
than the encryption of strings of various lengths as discussed in Exercise 17).

Definition 5.2.8 (semantic security — multiple messages):

For private-key: An encryption scheme, (G, E, D), is semantically secure for
multiple messages in the private-key model if for every polynomial t(-)
and every probabilistic polynomial-time algorithm A, there exists a proba-
bilistic polynomial-time algorithm A' such that for every ensemble {X, =
(X,(f), ...,X,(zt(")))}neN, with |X,(f)| = poly(n), every pair of functions f,h :
{0,1}* — {0,1}*, every polynomial p(-) and all sufficiently large n

Pr[A(E, 1) (Xa), 15 1K) = £(K)]

< P4 T = AT)] + =

For public-key: An encryption scheme, (G, E,D), is semantically secure for

multiple messages in the public-key model if for t(-), A, A’, {X,},en,
fsh, p(¢) and n as above

Pr[A(G1(1"), By 1) (Kn), 15, (X)) = £ (X)|

< Pr[A(G (M), 1R K(X)) = £(K) +$
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We stress that the elements of X,, are not necessarily independent; they may
depend on one another. Note that the above definition also cover the case where
the adversary obtains some of the plaintexts themselves. In this case it is still
infeasible for him/her to obtain information about the missing plaintexts (see
Exercise 18).

Definition 5.2.9 (indistinguishability of encryptions — multiple messages):

For private-key: An encryption scheme, (G,E, D), has indistinguishable en-
cryptions for multiple messages in the private-key model if for every poly-
nomial t(-), every polynomial-size circuit family {C,}, every polynomial p,
all sufficiently large n and every x1, ..., Tyn), Y1, - Yi(n) € 10, 1}1’OIY(”)

|Pr [Cn(EG'l(l")(i)):]-] — Pr [CTL(EGl(l")(g)):l] | < m

where T = (1, ..., Ty(n)) and § = (Y1, -+, Yi(n))-

For public-key: An encryption scheme, (G, E, D), has indistinguishable encryp-
tions for multiple messages in the public-key model if for t(-), {Crn}, p, n
and T1, .., Ty(n), Y1, - Ye(n) 45 above

Pr [Cu(G1(17), Eq,17)(Z)) =1] =Pr [C0(G1(1"), Eg, 1) (7)) =1] | < o)

The equivalence of Definitions 5.2.8 and 5.2.9 can be established analogously to
the proof of Theorem 5.2.5.

Theorem 5.2.10 (equivalence of definitions — multiple messages): A private-
key (resp., public-key) encryption scheme is semantically secure for multiple mes-
sages if and only if it has indistinguishable encryptions for multiple messages.

Thus, proving that single-message security implies multiple-message security for
one definition of security, yields the same for the other. We may thus concentrate
on the ciphertext-indistinguishability definitions.

5.2.4.2 The effect on the public-key model

We first consider public-key encryption schemes.

Theorem 5.2.11 (single-message security implies multiple-message security):
A public-key encryption scheme has indistinguishable encryptions for multiple
messages (i.e., satisfies Definition 5.2.9 in the public-key model) if and only if
it has indistinguishable encryptions for a single message (i.e., satisfies Defini-
tion 5.2.4).
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Proof: Clearly, multiple-message security implies single-message security as a
special case. The other direction follows by adapting the proof of Theorem 3.2.6
to the current setting.

Suppose, towards the contradiction, that there exist a polynomial (), a
polynomial-size circuit family {C,,}, and a polynomial p, such that for infinitely
many n’s, there exists 1, ..., Ty(n), Y1, -+, Yg(n) € 10, 1}Po (™) 50 that

|Pr [Cn(Gl (1"), EGl(l"‘)('i)) = ].] — Pr [Cn(Gl (1"), EGl(l"‘)(g)) = ].] | > ﬁ
where T = (x1, ..., Ty(n)) and § = (y1, ..., Ys(n))- Let us consider such a generic n
and the corresponding sequences &1, ..., Ty(n) and yi, ..., Yy (n)- We use a hybrid
argument: define

B(i) def (zl,...,xi,yi+1,---ayt(n))
and H{V Lo (G1(1")7EG1(1”')(B(i)))

Since HY) = (G1(1"), B, (1)(7)) and HY™) = (G1(1™), Eg, 1) (2)), it follows
that there exists an i € {0, ...,t(n) — 1} so that
>
t(n) - p(n)
We show that Eq. (5.7) yields a polynomial-size circuit that distinguishes the
encryption of w;;; from the encryption of y;y1, and thus derive a contradic-
tion to security in the single-message setting. Specifically, we construct a cir-
cuit D,, that incorporates the circuit C,, as well as the index ¢ and the strings
T1y ey Tit1, Yitly o Ye(n)- O input an encryption-key e and (corresponding)
ciphertext [, the circuit D,, operates as follows:

‘Pr [CH(H;Z?):Q —Pr [C’n(H,(j“)):l} (5.7)

e For every j < i, the circuit D, generates an encryption of x; using the
encryption key e. Similarly, for every j > i 4+ 2, the circuit D,, generates
an encryption of y; using the encryption key e.

Let us denote the resulting ciphertexts by 31, ..., 8i, Bi+2, .-, Bi(n). That is,
B; — E.(x;) for j <iand 3; «— E.(y;) for j > i+ 2.

e Finally, D,, invokes C,, on input the encryption key e and the sequence of
ciphertexts (1, ..., Bi, 3, Bit+2, -, Bi(n), and outputs whatever C,, does.

We stress that the construction of D,, relies in an essential way on the fact that
the encryption-key is given to it as input.

We now turn to the analysis of the circuit D,. Suppose that § is a (ran-
dom) encryption of z,4; with key e; that is, 8 = Ec.(x;4+1). Then, Dy,(e, ) =
Cole, B.(RUHD)) = C,(HSHY), where X = Y means that the random vari-
ables X and Y are identically distributed. Similarly, for 8 = E.(y;+1), we have
D(e, 8) = Cule, B(RM)) = C,(H). Thus, by Eq. (5.7), we have

|Pr [Dn(G1(1"), Eg, (1m) (yi41) =1]

—Pr [D(G1(1"), Eg, (1) (wis1) =1] | > t(n) - p(n)
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in contradiction to our hypothesis that (G, E, D) is a ciphertext-indistinguishable
public-key encryption scheme (in the single message sense). The theorem follows.

Discussion: The fact that we are in the public-key model is essential to the
above proof. It allows the circuit D,, to form encryptions relative to the same
encryption-key used in the ciphertext given to it. In fact, as stated above (and
proven next), the analogous result does not hold in the private-key model.

5.2.4.3 The effect on the private-key model

In contrary to Theorem 5.2.11, in the private-key model, ciphertext-indistinguishability
for a single message does NOT necessarily imply ciphertext-indistinguishability
for multiple messages.

Proposition 5.2.12 Suppose that there exist pseudorandom generators (robust
against polynomial-size circuits). Then, there ezists a private-key encryption
scheme that satisfies Definition 5.2.8 but does not satisfy Definition 5.2.9.

Proof: We start with the construction of the private-key encryption scheme.
The encryption/decryption key for security parameter n is a uniformly dis-
tributed n-bit long string, denoted s. To encrypt a ciphertext, x, the encryption
algorithm uses the key s as a seed for a pseudorandom generator, denoted g,
that stretches seeds of length n into sequences of length |z|. The ciphertext is
obtained by a bit-by-bit exclusive-or of x and g(s). Decryption is done in an
analogous manner.

We first show that this encryption scheme satisfies Definition 5.2.3. Intu-
itively, this follow from the hypothesis that ¢ is a pseudorandom generator and
the fact that 2 ® U}, is uniformly distributed over {0, 1}l=1. Specifically, suppose
towards the contradiction that for some polynomial-size circuit family {C,}, a
polynomial p, and infinitely many n’s

Pr[Ch(z @ g(Un))=1] = Pr[Cu(y ® g(Un)) =1]| > o)

where U, is uniformly distributed over {0,1}" and |z| = |y| = m = poly(n). On
the other hand,
PriCh(z ® Up,)=1] = Pr[Cr(y & Up)=1]
Thus, without loss of generality
1
2-p(n)

Incorporating z into the circuit C,, we obtain a circuit that distinguishes U,,
from ¢(U,,), in contradiction to our hypothesis (regarding the pseudorandomness

of g).

|Pr[Cr(z @ g(U,))=1] — Pr[Cyh(z ® Uy,)=1]| >
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Next, we observe that the above encryption scheme does not satisfy Defini-
tion 5.2.9. Specifically, given the ciphertexts of two plaintexts, one may easily
retrieve the exclusive-or of the corresponding plaintexts. That is,

Ey(21) ® Es(22) = (21 @ 9(s)) ® (22 © g(s)) = 21 S 22

This clearly violates Definition 5.2.8 (e.g., consider f(x1,22) = x1 © x2) as well
as Definition 5.2.9 (e.g., consider any T = (z1,z2) and § = (y1,y2) such that
1 DTy # Y1 Dy2). Viewed in a different way, note that any plaintext-ciphertext
pair yields a corresponding prefix of the pseudorandom sequence, and knowledge
of this prefix violates the security of additional plaintexts. That is, given the
encryption of a known plaintext x; along with the encryption of an unknown
plaintext zs, we can retrieve zo. On input the ciphertexts 1, 82, knowing that
the first plaintext is x;, first retrieves the pseudorandom sequence (i.e., it is just

r B1®x1), and next retrieves the second plaintext (i.e., by computing B2 ®r).

Discussion: The single-message security of the above scheme was proven by
considering an ideal version of the scheme in which the pseudorandom sequence
is replaced by a truly random sequence. The latter scheme is secure in an in-
formation theoretic sense, and the security of the actual scheme followed by the
indistinguishability of the two sequences. As we show in Section 5.3.1 (below),
the above construction can be modified to yield a private-key “stream-cipher”
that is secure for multiple message encryptions. All that is needed is to make
sure that (as opposed to the construction above) the same portion of the pseu-
dorandom sequence is never used twice.

5.2.5 * A uniform-complexity treatment

As stated at the beginning of this section, the non-uniform formulation was
adopted here for sake of simplicity. In this subsection we sketch a uniform-
complexity definitional treatment of security. We stress that by uniform or non-
uniform complexity treatment of cryptographic primitives we merely refer to the
modeling of the adversary. The honest (legitimate) parties are always modeled
by uniform complexity classes (most commonly probabilistic polynomial-time).

The notion of efficiently constructible ensembles, defined in Section 3.2.3,
is central to the uniform-complexity treatment. Recall that an ensemble, X =
{Xn}nen, is said to be polynomial-time constructible if there exists a probabilistic
polynomial time algorithm S so that for every n, the random variables S(1™)
and X,, are identically distributed.

5.2.5.1 The definitions

We present only the definitions of security for multiple messages; the single-
message variant can be easily obtained by setting the polynomial ¢ (below) to be
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identically 1. Likewise, we present the public-key version, and the private-key
analogous can be obtained by omitting G;(1™) from the inputs to the various
algorithms.

The uniformity of the following definitions is reflected in the complexity of
the inputs given to the algorithms. Specifically, the plaintexts are taken from
polynomial-time constructible ensembles and so are the auxiliary inputs given to
the algorithms. For example, in the following definition we require the ensemble
{X,.} to be polynomial-time constructible and the function h to be polynomial-
time computable.

Definition 5.2.13 (semantic security — uniform-complexity version): An en-
cryption scheme, (G, E, D), is uniformly semantically secure in the public-key
model if for every polynomial t, and every probabilistic polynomial-time algo-
rithm A there exists a probabilistic polynomial-time algorithm A’ such that for ev-
ery polynomial-time constructible ensemble {X,, = (Xﬁl) L X )}neN’ with
|X,(f)| = poly(n), every polynomial-time computable h : {0,1}* — {0,1}*, every
f:{0,1}* — {0,1}*, every positive polynomial p and all sufficiently large n’s

(X)) =F(X)]

>

Pr [A(Gl(ln),EGl(ln)(yn), 1|Y"_\7
Xl (X - 1
Pr| A’ I\Xn.l X)) = (X,
< PrA AT = F(F)] + o
where E.(T,) def Ee(xgll)), B (x t(n))) (for T = (xgll), ...,ng(”)))) is as in Def-
maition 5.2.8.

Again, we stress that X, is a sequence of random variables, which may depend
on one another. Also, the encryption-key G (1™) was omitted from the input of
A’ (since the latter may generate it by itself). We stress that even here (i.e., in
the uniform complexity setting) no computational limitation are placed on the
function f.

Definition 5.2.14 (indistinguishability of encryptions — uniform-complexity ver-
sion): An encryption scheme, (G, E, D), has uniformly indistinguishable encryp-
tions in the public-key model if for every polynomial t, every probabilistic polynomial-

time algorithm D', every polynomial-time constructible ensemble T def {T, =
X, Y Znbnen, with X, = (XU xS0 7, = (v v D) and | x| =
V4] = poly(n),

IPr [D'(Zn, G1(1"), gy 10y (X)) =1]
— Pr[D"(Zn,Gi(1"), Eg,1n)(Yn)=1] | < —

for every positive polynomial p and all sufficiently large n’s.

The random variable Z,, captures a-priori information about the plaintexts for
which encryptions should be distinguished. A special case of interest is when
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Zn = X, Y ,. Uniformity is captured in the requirement that D’ is a probabilistic
polynomial-time algorithm _(ra_ther than a family of polynomial-size circuits) and
that the ensemble {7, = X,,Y ,Z,},cn be polynomial-time constructible.

5.2.5.2 Equivalence of the multiple-message definitions

We prove the equivalence of the uniform-complexity definitions (presented above)
for (multiple-message) security.

Theorem 5.2.15 (equivalence of definitions — uniform treatment): A public-
key encryption scheme satisfies Definition 5.2.13 if and only if it satisfies Def-
inition 5.2.14. Furthermore, this holds even if Definition 5.2.14 is restricted to
the special case where Z, = X,Y n, and even if Definition 5.2.13 is restricted to
the special case where f is polynomial-time computable.

An analogous result holds for the private-key model. The important direction of
the theorem holds also for the single-message version (this is quite obvious from
the proof below). In the other direction, we seem to use the multiple-message
version (of semantic security) in an essential way.

Proof Sketch: Again, we start with the more important direction; that is,
assuming that (G, E,D) has (uniformly) indistinguishable encryptions in the
special case where Z, = X,Y,, we show that it is (uniformly) semantically
secure. Our construction of algorithm A’ is analogous to the construction used
in the non-uniform treatment. Specifically, on input (1/%:I, h(a@,)), algorithm
A’ generates a random encryption of a dummy sequence of message (i.e., 1),

feeds it to A, and outputs whatever A does. That is,
A’(1\5n|, h(an)) = A(G(ln)aﬁG’(l")(l‘anl)a ]-‘anl: h(an)) (58)

As in the non-uniform case, the analysis of algorithm A’ reduces to the following
claim.

Claim 5.2.15.1: For every polynomial-time constructible ensemble {Yn}neN,
with X,, = (X,(zl), ...,X,(zt("))) and |X,(f)| = poly(n), every polynomial-time com-
putable h, every positive polynomial p and all sufficiently large n’s

Pr[A(G1(1"), Egy(1n)(Xn), h(X ) = f(X0)]

< Pr[AGI"), By (1), H(X )= £(X0)] +

p(n)
Proof sketch: Analogously to the non-uniform case, assuming towards the con-
tradiction that the claim does not hold, yields an algorithm that distinguishes
encryptions of X, from encryptions of ¥,, = 11X»| when getting auxiliary in-
formation Z, = XY, = Xn1%»l. Thus, we derive contradiction to Defini-
tion 5.2.14 (even under the special case postulated in the theorem).

We note that the auxiliary information that is given to the distinguishing
algorithm replaces the hard-wiring of auxiliary information that was used in
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the non-uniform case (and is not possible in the uniform complexity model).
Specifically, rather than using a hard-wired value of h (at some non-uniformly
fixed sequence), the distinguishing algorithm will use the auxiliary information

Z, = X,11%l in order to compute h(X,), which it will pass to A. Indeed, we
rely on the hypothesis that h is efficiently computable.

The actual proof is quite simple in case the function f is also polynomial-
time computable (which is not the case in general). In this special case, on input
(e,2,E.(@)), where z = (7,1%!) and @ € {7, 1/7'}, the distinguishing algorithm
computes v = h(T) and v = f(T), invokes A, and outputs 1 if and only if
Ale, E.(@), 117 u) = v.

(We comment that in case o = 11®1 we actually mean that @ is a
sequence of t(n) strings of the form 14" where t and ¢ are as in T =

(M, .., a0D) € ({0, 1}V )
The proof becomes more involved in case f is not polynomial-time computable.?
Again, the solution is in realizing that indistinguishability of encryption postu-
lates a similar output profile in both cases, and in particular no value can occur
non-negligibly more in one case than in the other. To clarify the point, we de-
fine A,(Z,) to be the difference between PrlA(G1(1"), Eq,(1n)(Tn), h(Tr)) =]
and PrlA(G1(1"), Eg, (1) (1)), (Z,)) = v]. We know that E[A ;% (Xn)] >
1/p(n), but given T, we cannot evaluate Agz,)(Tn), since we do not have

e

f(Tn). Instead, we let A(T,) = max,{A,(Z,)}, and observe that E[A(X,)] >
E[A;x,)(Xn)] > 1/p(n). Furthermore, given T, we can approximate A(%n)
in polynomial-time, and can find (in polynomial-time) a value v such that

Ay (Tn) > A(Tn) — (1/2p(n)), with probability at least 1 — 27",

On approximating A(%,,) etc.: By invoking algorithm A on O(n-p(n)?) sam-
ples of the distributions (G1(1"), Eg, (1n)(Zx), h(Tn)) and G1(1"), Eg, (1n) (171, h(zn)),
we obtain (implicitly) an approximation of all A,(Z,)’s upto an additive
deviation of 1/4p(n) (with error probability at most 27"). The approxima-
tion to A,(T,), denoted KU (Z,) is merely the difference between the frac-
tion of samples (from both distributions) on which algorithm A returned
1. (Indeed, most A,(Zy)’s are approximated by 0, but some A,(z,)’s
may approximated by non-zero values.) We just output v for which the
approximated value A, (T,) is largest. Thus, if for some vg it holds that
Ay (Tn) = A(Trn), then with probability at least 1 —27™ we output v such
that

Au(@a) = (1/4p(n))
Ay (@a) = (1/4p(1))
Ay (@a) = (1/4p(m)) = (1/4p(1))

Thus, A, (%.) > A@.) — (1/2p(n)).

Ay(Tn)

vV IV IV

3 Unlike in the non-uniform treatment, here we cannot hardwire values (such as the values
of h and f on good sequences) into the algorithm D’ (which is required to be uniform).
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Thus, on input (e, z, E.(@)), where z = (Z, 1/?!), the new algorithm, denoted D',
operates in two stages.
1. In the first stage, D' ignores the ciphertext E.(@). Using z, algorithm D’

recovers T, and computes u = h(Z). Using T and u, algorithm D’ estimates
A(T), and finds a v as above.

2. In the second stage (using u and v found in the first stage), algorithm D'
invokes A, and outputs 1 if and only if A(e, E.(@),1/*/,u) = v.

Let V(T) be the value found in the first stage of algorithm A (i.e., obliviously of
the ciphertext E.(@)). The reader can easily verify that

Pr [D/(G1(1"), Za, B,y (X)) =1] = Pr [D(G1(1"), Zn, B, 1) (1)) =1]|

=E [AV(E) (Yn)]

> (1-2"")-E [A(Yn) - 2ptn)] -2
> BT - 50 > 50

Thus, we have derived a probabilistic polynomial-time algorithm (i.e., D") that
distinguishes encryptions of X,, from encryptions of Y, = 11%»! when getting
auxiliary information Z, = X, 11%»/. By hypothesis {X,} is polynomial-time
constructible, and it follows that so is {X,Y,,Z,} Thus, we derive contradiction
to Definition 5.2.14 (even under the special case postulated in the theorem), and
the claim follows. O

Having established the important direction, we now turn to the opposite
one. That is, we assume that (G, E, D) is (uniformly) semantically secure and
prove that it has (uniformly) indistinguishable encryptions. Again, the proof is
by contradiction. Suppose, without loss of generality, that there exists a proba-

bilistic polynomial-time algorithm D’, a polynomial-time constructible ensemble
T {T.. = X,.Y .Z, }nen (as in Definition 5.2.14), a positive polynomial p and

infinitely many n’s so that

Pr [D’(ZnaGl(ln)7EG1(l")(yn))=1]
1
p(n)
Let t(n) and £(n) be such that X, (resp., Y,) consists of ¢(n) strings, each
of length £(n). Suppose, without loss of generality, that |Z,| = m(n) - £(n),
and parse Z, into Z,, = (2", ..., Z{™™) e ({0,1}4))ym(") such that Z, =

Z ...z We define an auxiliary polynomial-time constructible ensemble

Q€ {Q,},en so that

— [ 0'™WZ,X,Y, with probability
n 1‘MZ,.Y, X, with probability

> Pr [D’(Zn,Gl(ln),EGI(ln)(Yn)):].] | +

(MM
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That is, @),, is a sequence of 1 + m(n) + 2t(n) strings, each of length £(n), that
contains Z,X,Y, in addition to a bit (provided in the ¢(n)-bit long prefix)
indicating whether the order of X,, and Y, is switched or not. We define the
function f so that to equal this “switch” indicator bit, and the function h to
provide all information in @, except this switch bit. That is, we define f and h

as follows:

e The function f:{0,1}*—{0,1} is defined so that f returns the first bit of
its input; that is, f(c*™abc) = o, for (a,b,c) € ({0, 1} )ymin)+2Un)

e The function h : {0,1}* — {0,1} is defined so that h provides the in-
formation in the suffix without yielding information on the prefix; that
is, h(c'™abc) = abc if o = 0 and h(c*™abc) = acb otherwise. Thus,
h(Q,) = Z,X,Y ,; that is, it returns 7',, to its original order (undoing the
possible switch employed in Q,,).

We stress that both h and f are polynomial-time computable. o
We will show that the distinguishing algorithm D' (which distinguishes E(X )
from E(Y ), when also given Z, = Z,) can be transformed into a polynomial-

size algorithm A that guesses the value of f(Q,,), from the encryption of @,
(and the value of h(Q®,,)), and does so significantly better than with proba-
bility % This violates semantic security, since no algorithm (regardless of its

running-time) can guess f(@,,) better than with probability 1/2 when only given

h(Q,) and 1191 (since given h(Q,) and 1/9x/, the value of f(@Q,) is uniformly
distributed over {0, 1}).

On input (e, E.(@), 1% h(@)), where @ = o™ abc € ({0, 1}1(?))t+m(n)+2tn)
equals either (04™) %, Z,7) or (14™),%,7%, ), algorithm A proceeds in two stages:

1. In the first stage, algorithm A ignores the ciphertext E.(@). It first extracts
T,y and z = ovz out of h(a) = ZTy, and approximates A(z,T,7), which
is defined to equal

Pr[D'(z,G1(1"), Eg,(1n)(T))=1] — Pr [D'(z, Gl(ln),EGI(ln.)(y))zls]g
Specifically, using ~O(n -p(n)?) samples, algorithm A obtains an ap}ErOX?
imation, denoted A(z,Z,7), such that |A(z,Z,7) — A(z,Z,7)| < 1/3p(n)
with probability at least 1 — 27",

Algorithm A sets £ = 1 if E(z,f,ﬂ) >1/3p(n), sets { = —1if &(z,f, 7) <
—1/3p(n), and sets £ = 0 otherwise (i.e., |A(z,Z,7)| < 1/3p(n)).
In case € = 0, algorithm A halts with an arbitrary reasonable guess (say a

randomly selected bit). (We stress that all this is done obliviously of the
ciphertext E. (@), which is only used next.)

2. In the second stage, algorithm A extracts the last block of ciphertexts (i.e.,
E.(c)) out of E (@) = E.(c"™abc), and invokes D' on input (z,e, E,(c)),
where z is as extracted in the first stage. Using the value of £ as determined
in the first stage, algorithm A decides as follows:
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e In case £ = 1, algorithm A outputs 1 if and only if the output of D’
is 1.

e In case £ = —1, algorithm A outputs 0 if and only if the output of D’
is 1.

Claim 5.2.15.2: Let p, Q,,, h, f and A be as above.

Pr [A(Gl(ln)aﬁGl(ln)(an)’ h(@n)):f(an)] > % * m

Proof sketch: We focus on the case in which the approximation of A(z,Z,7)
computed by (the first stage of) A is within 1/3p(n) of the correct value. Thus,
in case £ # 0, the sign of £ concurs with the sign of A(z,Z,¥). It follows that,
for every possible (z,Z,7) such that £ = 1 (it holds that A(z,Z,7) > 0 and) the
following holds

Pr [A(G1 (1), B, (1) @) @) = @) (s Ko ) =27, 7)]
5P [(Gl( "), By (00, 2,7,9), A0, 2,7,7)) =0

1 il n — = n — =
+ 5 |: )7EG1(171')(12( )7Z7yaw)7h(]-l( )727‘717%)):]—]

- Pr [D’(Z, G1(1™), EGl(ln)(f)) = ].]

+
N | =

= S 1+ A7)

Similarly, for every possible (z,T,7) such that £ = —1 (it holds that A(z,T,7) <
0 and) the following holds

PrA(G1(1"), Eg, (1) (@) M@Q,)) = (@) | (Zn, X, Xn) = (2,7, 7)]
= 5 Pr[AGI ™), By (00, 2,7.5), b0, 2,7,7)) =0

1 il n — = n — =
+ 5 |: )7EG1(171')(12( )7Z7yaw)7h(]-l( )727‘717%)):]—]

1
+ 5 - Pr [D’(Z,Gl(ln),EGl(I")(f)):O]

= 5 (1= A7)

Thus, in both cases where £ # 0, algorithm A succeeds with probability

1+&-Alz,7,9)  1+]A(2,7,7)]
> —




Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

390 CHAPTER 5. ENCRYPTION SCHEMES

and in case { = 0 it succeeds with probability 1/2. Recall that if A(z,7,7) >

ﬁn) then ¢ = 1. Using the contradiction hypothesis that asserts that E[A(Z,, X,,Y )] >
ﬁ, we lower bound Pr[A(Z,, X, X,) > ﬁ] by %. Thus, the overall suc-

cess probability of algorithm A is at least

1 1+(2/3p(n) b yr_roo1
30(n) 2 *(1 3p<n>> 2 Ga(n)?

2

and the claim follows. O

This completes the proof of the opposite direction. [l

Discussion: The proof of the first (i.e., important) direction holds also in the
single-message setting. In general, for any function ¢, in order to prove that
semantic security holds with respect to t-long sequences of ciphertexts, we just
use the hypothesis that ¢-long message-sequences have indistinguishable encryp-
tions. In contrast, the proof of the second (i.e., opposite) direction makes an
essential use of the multiple-message setting. In particular, in order to prove
that ¢-long message-sequences have indistinguishable encryptions, we use the
hypothesis that semantic security holds with respect to (1 + m + 2t)-long se-
quences of ciphertexts, where m depends on the length of the auxiliary input in
the claim of ciphertext-indistinguishability. Thus, even if we only want to es-
tablish ciphertext-indistinguishability in the single-message setting, we do so by
using semantic security in the multiple-message setting. Furthermore, we use the
fact that given a sequence of ciphertexts, we can extract a certain subsequence
of ciphertexts.

5.2.5.3 Single-message versus multiple-message definitions

As in the non-uniform case, for the public-key model, single-message security
implies multiple-message security. Again, this implication does NOT hold in the
private-key model. The proofs of both statements are analogous to the proofs
provided in the non-uniform case. Specifically:

1. For the public-key model, single-message uniform-indistinguishability of
encryptions imply multiple-message uniform-indistinguishability of encryp-
tions, which in turn implies multiple-message uniform-semantic security.

In the proof of this result, we use the fact that all hybrids are polynomial-

time constructible, and that we may select a random pair of neighboring
hybrids (cf. the proof of Theorem 3.2.6). We also use the fact that an

ensemble of triplets, {T, = X,,Y ,Z! },en, with X,, = (x(M, ., x )y,
Y. = (Y, ., V™)) as in Definition 5.2.14, induces an ensemble of
triplets, {T,, = XY, Z,}, N, for the case t = 1. Specifically, we shall use
X, =X v, =YY, and Z, = (X, Y, Z.,i), where i is uniformly
distributed in {1,...,t(n)}.
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2. For the private-key model, single-message uniform-indistinguishability of
encryptions does NOT imply multiple-message uniform-indistinguishability
of encryptions. The proof is exactly as in the non-uniform case.

5.2.5.4 The gain of a uniform treatment

Suppose that one is content with the uniform-complexity level of security, which
is what we advocate below. Then the gain in using the uniform-complexity
treatment is that a uniform-complexity level of security can be obtained using
only uniform complexity assumptions (rather than non-uniform complexity as-
sumptions). Specifically, the results presented in the next section are based on
non-uniform assumptions such as the existence of functions that cannot be in-
verted by polynomial-size circuits (rather than by probabilistic polynomial-time
algorithms). These non-uniform assumption are used in order to satisfy the
non-uniform definitions presented in the main text (above). Using any of these
constructions, while making the analogous uniform assumptions, yields encryp-
tion schemes with the analogous uniform-complexity security. (We stress that
this is no coincidence, but is rather an artifact of these results being proven by
a uniform reducibility argument.)

However, something is lost when relying on these (seemingly weaker) uniform
complexity assumptions. Namely, the security we obtain is only against the
(seemingly weaker) uniform adversaries. We believe that this loss in security
is immaterial. Our belief is based on the thesis that uniform complexity is the
right model of “real world” cryptography. We believe that it is reasonable to
counsider only objects (i.e., inputs) generated by uniform and efficient procedures
and the effect that these objects have on uniformly and efficient observers (i.e.,
adversaries). In particular, schemes secure against probabilistic polynomial-time
adversaries can be used in any setting consisting of probabilistic polynomial-time
machines with inputs generated by probabilistic polynomial-time procedures.
We believe that the cryptographic setting is such a case.

5.3 Constructions of Secure Encryption Schemes

In this subsection we present constructions of secure private-key and public-
key encryption schemes. Here and throughout this section security means se-
mantic security in the multiple-message setting. Recall that this is equivalent
to ciphertext-indistinguishability (in the multiple-message setting). Also recall
that for public-key schemes it suffices to prove ciphertext-indistinguishability in
the single-message setting. The main results of this section are

e Using any (non-uniformly robust) pseudorandom function, one can con-
struct secure private-key encryption schemes. Recall, that the former can
be constructed using any (non-uniformly strong) one-way function.

e Using any (non-uniform strong) trapdoor one-way permutation, one can
construct secure public-key encryption schemes.
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In addition, we review some popular suggestions for private-key and public-key
encryption schemes.

Probabilistic Encryption: Before starting, we recall that a secure public-key
encryption scheme must employ a probabilistic (i.e., randomized) encryption al-
gorithm. Otherwise, given the encryption-key as (additional) input, it is easy
to distinguish the encryption of the all-zero message from the encryption of the
all-ones message. The same holds for private-key encryption schemes when con-
sidering the multi-message setting.* For example, using a deterministic (private-
key) encryption algorithm allows the adversary to distinguish two encryptions
of the same message from the encryptions of a pair of different messages. Thus,
the common practice of using pseudorandom permutations as “block-ciphers”
(see definition below) is NOT secure (again, one can distinguish two encryptions
of the same message from encryptions of two different messages). This explains
the linkage between the above robust security definitions and randomized (a.k.a
probabilistic) encryption schemes. Indeed, all our encryption schemes will em-
ploy randomized encryption algorithms.®

5.3.1 * Stream—Ciphers

It is common practice to use “pseudorandom generators” as a basis for private-
key stream ciphers. We stress that this is a very dangerous practice when the
“pseudorandom generator” is easy to predict (such as the linear congruential
generator or some modifications of it that output a constant fraction of the
bits of each resulting number). However, this common practice becomes sound
provided one uses pseudorandom generators (as defined in Section 3.3). Thus, we
obtain a private-key stream cipher, that allows to encrypt a stream of plaintext
bits. Note that such a stream cipher does not conform with our formulation of
an encryption scheme (i.e., as in Definition 5.1.1), since for encrypting several
messages one is required to maintain a counter. In other words, we obtain a
encryption scheme with a variable state that is modified after the encryption of
each message.

We comment that constructions of secure and stateless encryption schemes
(i.e., conforming with Definition 5.1.1) are known (and presented in Sections 5.3.3
and 5.3.4). The traditional interest in stream ciphers is due to efficiency consid-
erations. We discuss this issue at the end of Section 5.3.3. But before doing so,
let us formalize the above discussion.

4 We note that the above does not hold with respect to private-key schemes in the single-
message setting. (Hint: the private-key can be augmented to include a seed for a pseudorandom
generator, the output of which can be used to eliminate randomness from the encryption
algorithm. Question: why does the argument fail in the public-key setting and in the multi-
message private-key setting?)

5 The (private-key) stream-ciphers discussed in Section 5.3.1 are an exception, but— as
we point out— they do not adhere to our (basic) formulation of encryption schemes (as in
Definition 5.1.1).
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Definitions: The following formalization extends Definition 5.1.1. The key-
generation algorithm remains unchanged, but both the encryption and decryp-
tion algorithm take an additional input and emit an additional output, corre-
sponding to their state before and after the operation. The length of the state
is not allowed to grow by too much during each application of the encryption
algorithm (see Item 3 below), or else efficiency of the entire “repeated encryp-
tion” process can not be guaranteed. The initial state (of both algorithms) is
the empty string. For clarity, the reader may consider of the special case in
which the state counts the number of times the scheme was invoked (or the total
number of plaintext bits in such invocations).

Definition 5.3.1 (state-based cipher — the mechanism): A state-based encryp-
tion scheme is a triple, (G, E, D), of probabilistic polynomial-time algorithms
satisfying the following two conditions

1. On input 1™, algorithm G outputs a pair of bit strings.

2. For every pair (e,d) in the range of G(1™), every string s (representing
a possible state), every a € {0,1}*, and every pair (s',3) in the range of
E(e, s, ) it holds that D(d, s, ) = «.

(That is, given ciphertext and the decryption-key along with the state of
the encryption process before encrypting the current plaintext, the decryp-
tion algorithm retrieves the plaintext.)®

3. There ezists a polynomial p so that for every pair (e,d) in the range of
G(1™), every string s (representing a possible state), every o € {0,1}*, and
every pair (s', B) in the range of E(e, s, a) it holds that |s'| < |s|+ || -p(n).

That is, as in Definition 5.1.1, the encryption-decryption process operates prop-
erly (i.e., the decrypted message equals the plaintext), provided that the corre-
sponding algorithm get the corresponding keys along with the same start state.
However, since the above holds also for the empty string s, it is not clear in
what sense the above yields something novel. Indeed, the novelty is in the se-
curity definition that refers to the encryption of multiple messages, and holds
only in case the state is properly maintained throughout the multiple-message
encryption process. Below we present only the semantic security definition for
private-key schemes.

Definition 5.3.2 (semantic security — state-based cipher): For a state-based
encryption scheme, (G,E,D), and any T = (zM, .., z®), we let E.(T) =
(SO, cMW), . (SE1 W) be the result of the following t-step random pro-
cess, where SO is the empty string. For i = 1,...,t, we let (S, C®))
Ee(S’(ifl), az(ifl)), where each of the t invocations E. utilizes independently cho-
sen random coins. The scheme (G, E, D) is semantically secure in the state-based

6 A stronger requirement, which is achieved by the construction below, is that D(d, s, 3) =
(s', ). That is, that the decryption algorithm can figure out the updated state of the encryp-
tion process. This extra property is useful in applications where decryption is performed in
the same order as encryption (e.g., in FIFO communication).
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private-key model if for every polynomial t(-) and every probabilistic polynomial-
time algorithm A there exists a probabilistic polynomial-time algorithm A' such
that for every ensemble {X, = (Xél),...,Xﬁf(n)))}neN, with |X£f)| = poly(n),
every pair of functions f,h : {0,1}* — {0,1}*, every polynomial p(-) and all
sufficiently large n

W)= (X))

11Xl (T = (X ] L
< Pr [ () = F(X)] + )
Note that Definition 5.3.2 differs from Definition 5.2.8 (only) in the pream-
ble defining the random variable E.(Z). Furthermore, Definition 5.3.2 guaran-
tees nothing regarding an encryption process in which the plaintext sequence
(), ..., 21) is encrypted by E. (S, (D), E (S, 2?), ..., E.(S©,21) (ie.,
the state is reset to S(©) after each encryption). Finally, note that the secu-
rity is preserved also when the adversary knows all intermediate values of the
encryption state. (This is required in applications, since we need to pass these
intermediate states to the receiver in order to allow proper decryption.)

Pr I:A(EGl(l"')(yn): ].lX"

A sound version of a common practice: Loosely speaking, using any pseu-
dorandom generator, one can easily construct a secure state-based private-key
encryption scheme. The state will hold the total number of bits encrypted so
far, and the it bit to be encrypted is encrypted by XORing it with the i*? bit of
the pseudorandom generator. A minor technicality arises, since pseudorandom
generators were defined to have an a-priori fixed number of output bits (as a
function of the seed length), whereas here we need an a-priori unbounded (poly-
nomial) number of bits. This technicality is resolved by using variable-output
pseudorandom generators as defined and studied in Section 3.3.3.

Construction 5.3.3 (how to construct state-based private-key encryption schemes):
Let G:{0,1}*x1N —{0,1}* so that |G(r,1*)| = t, for every r€{0,1}* and teN.

key-generation and initial state: Uniformly select v € {0,1}", and output the
key-pair (r,r). The initial state is viewed as t = 0.

encrypting plaintext  with key r and state ¢: Let £ = |z| and p be the £-bit suf-
fir of G(r,1*%). Then the ciphertext is x ® p, and the new state is set to
t+ 4.

decrypting ciphertext y with key r and state t: Let ¢ = |y| and p be the (-bit
suffiz of G(r, 1'T%). Then the ciphertest is y ® p.”

The reader may easily verify the following:

7 The decryption algorithm can infer the state of the encryption algorithm (i.e., t+2£). For
motivation, see Footnote 6.
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Proposition 5.3.4 Suppose that G is a variable-output pseudorandom genera-
tor with respect to polynomial-size circuits. Then Construction 5.3.3 constitutes
a secure state-based private-key encryption scheme.

5.3.2 Preliminaries: Block—Ciphers

Many encryption schemes are more conveniently presented by first presenting a
restricted type of encryption scheme that we call a block-cipher.® In contrast
to encryption schemes (as defined in Definition 5.1.1), block-ciphers (defined
below) are only required to operate on plaintext of a specific length (which is a
function of the security parameter). As we shall see, given a secure block-cipher
we can easily construct a (general) secure encryption scheme.

Definition 5.3.5 (block-cipher): A block-cipher is a triple, (G, E, D), of prob-
abilistic polynomial-time algorithms satisfying the following two conditions

1. On input 1™, algorithm G outputs a pair of bit strings.

2. There exists a polynomially-bounded function ¢ : N— N, called the block
length, so that for every pair (e,d) in the range of G(1™), and for each
a € {0,1}*™ | algorithms E and D satisfy

PriD4(Ec.(a))=a] =1

Typically, we use either £(n) = O(n) or £(n) = 1. Analogously to Defini-
tion 5.1.1, the above definition does not distinguish private-key encryption schemes
from public-key ones. The difference between the two types is captured in the
security definitions, which are essentially as before with the modification that
we only consider plaintexts of length ¢(n). For example, the analogue of Defini-
tion 5.2.1 reads

Definition 5.3.6 (semantic security — private-key block-ciphers): A block-cipher,
(G, E, D), with block length £ is semantically secure (in the private-key model)

if for every probabilistic polynomial-time algorithm A there exists a probabilis-

tic polynomial-time algorithm A' such that for every ensemble {X,},cn, with

| Xn| = £€(n), and f,h, p(-) and n as in Definition 5.2.1

Pr [A(E, 1) (Xn), 150, h(X)) = (X))

< Pr [A'(ﬂxn\,h(xn)):f(xn)] o)

8 In using the term block-cipher, we abuse standard terminology by which a block-cipher
must, in addition to operating on plaintext of specific length, produce ciphertexts equal in
length to the length of the corresponding plaintexts. We comment that the latter cannot be
semantically secure; see Exercise 19.
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Transforming block-ciphers into a general encryption schemes: There
are obvious ways of transforming a block-cipher into a general encryption scheme.
The basic idea is to break the plaintexts (for the resulting scheme) into blocks
and encode each block separately by using the block-cipher. Thus, the security
of the block-cipher (in the multiple-message settings) implies the security of the
resulting encryption scheme. The only technicality we need to deal with is how
to encrypt plaintexts of length that is not an integer multiple of the block-length
(i-e., £(n)). This is easily resolved by padding the last block (while indicating
the end of the actual plaintext).®

Construction 5.3.7 (from block-ciphers to general encryption schemes): Let
(G,E, D) be a block-cipher with block length function £. We construct an en-
cryption scheme, (G', E',D") as follows. The key-generation algorithm, G', is
identical to G. To encrypt a message o (with encryption key e generated under
security parameter n), we break it into consecutive blocks of length £(n), while
possibly augmenting the last block. Let o, ..., be the resulting blocks. Then

E'(2) ¥ (ja|, Ec(ar), ..., Eo(ay))

To decrypt the ciphertext (m, B, ..., Bt) (with decryption key d), we let a; =
Dy(B;) fori=1,...,t, and let the plaintext be the m-bit long prefiz of the con-
catenated string aq - - ay.

The above construction yields ciphertexts which reveal the exact length of the
plaintext. Recall that this is not prohibited by the definitions of security, and
that we cannot hope to entirely hide the length. However, we can easily construct
encryption schemes that hide some information about the length of the plaintext;
see examples in Exercise 4. Also, note that the above construction applies even
to the special case where /£ is identically 1.

Proposition 5.3.8 Let (G, E,D) and (G',E', D") be as in Construction 5.5.7.
Suppose that the former a secure private-key'® (resp., public-key) block-cipher.
Then the latter is a secure private-key (resp., public-key) encryption scheme.

Proof Sketch: The proof is by a reducibility argument. Assuming towards the
contradiction that the encryption scheme (G', E', D') is not secure, we conclude
that neither is (G, E, D), contradicting our hypothesis. Note that in case the
security of (G', E', D') is violated via t(n) messages of length L(n) = poly(n),
the security of (G, E, D) is violated via t(n) - [L(n)/f(n)] messages of length
{(n). Also, the argument may utilize any of the two notions of security (i.e.,
semantic security or ciphertext-indistinguishability). [

9 We choose to use a very simple indication of the end of the actual plaintext (i.e., include
its length in the ciphertext). In fact, it suffices to include the length of the plaintext modulo
£(n). Another natural alternative is to use a padding of the form 10(¢(®)~lel=1)mod£(n) while
observing that no padding is ever required in case £(n) = 1.

10 Recall that throughout this section security means security in the multiple-message
setting.
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5.3.3 Private-key encryption schemes

Secure private-key encryption schemes can be easily constructed using any effi-
ciently computable pseudorandom function ensemble (see Section 3.6). Specifi-
cally, we present a block cipher with block length ¢(n) = n. The key generation
algorithm consists of selecting a seed, denoted s, for such a function, denoted
fs. To encrypt a message = € {0,1}" (using key s), the encryption algorithm
uniformly selects a string r € {0,1}"™ and produces the ciphertext (r,z & fs(r)).
To decrypt the ciphertext (r,y) (using key s), the decryption algorithm just
computes y @ f(r). Formally, we have

Construction 5.3.9 (a private-key block-cipher based on pseudorandom func-
tions): Let F = {F,} be an efficiently computable function ensemble and let I
and V' be the algorithms associated with it. That is, I(1™) selects a function with
distribution F,, and V (i,x) returns f;(x), where f; is the function associated with
the string i. We define a private-key block cipher, (G, E, D), with block length
(n) =n as follows

key-generation: G(1™) = (i,4), where i «— I(1™).

encrypting plaintext = € {0,1}™: E;(z) = (r,V(i,r) ® x), where r is uniformly
chosen in {0,1}".

decrypting ciphertext (r,y): D;(r,y) =V (i,r) ®y

Below we assume that F' is pseudorandom with respect to polynomial-size cir-
cuits, meaning that no polynomial-size circuit having “oracle gates” can distin-
guish the case the answers are provided by a random function from the case in
which the answers are provided by a function in F. Alternatively, one may con-
sider probabilistic polynomial-time oracle machines that obtain a non-uniform
polynomially-long auxiliary input. That is,

for every probabilistic polynomial-time oracle machine M for every
pair of positive polynomial p and q, for all sufficiently large n’s and
all z € {0,1}P(),

1
Pr[M/(z)=1] — Pr [MT:am (2)=1]| < —
[Pr[M7(z)=1] = Pr[MTiem(m)=1]| < o
where f is a uniformly selected function mapping {0,1}™ to {0,1}™.

Recall, that such (non-uniformly strong) pseudorandom functions can be con-
structed using any non-uniformly strong one-way function.

Proposition 5.3.10 Let F and (G, E, D) be as in Construction 5.3.9, and sup-
pose that F is pseudorandom with respect to polynomial-size circuits. Then
(G,E, D) is secure.

Combining Propositions 5.3.8 and 5.3.10 (with the above), we obtain
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Theorem 5.3.11 If there exist (non-uniformly strong) one-way functions then
there exist secure private-key encryption schemes.

The converse holds too; see Exercise 1.

Proof of Proposition 5.3.10: The proof consists of two steps (suggested as
a general methodology in Section 3.6):

1. Prove that an idealized version of the scheme, in which one uses a uniformly
selected function f:{0,1}™— {0,1}", rather than the pseudorandom func-
tion fs, is secure (in the sense of ciphertext-indistinguishability).

2. Conclude that the real scheme (as presented above) is secure (since other-
wise one could distinguish a pseudorandom function from a truly random
one).

Specifically, in the ideal version the messages z(!),...,z(!) are encrypted by
(D, frDN @), . (r® ] f(r®)@a®), where the 7()’s are independently and
uniformly selected, and f is a random function. Thus, with probability greater
than 1 — t2 -2, the 7(!)’s are all distinct and so the values f(r(?) @ z(¥) are
independently and uniformly distributed, regardless of the z(9)’s. It follows that
the ideal version is ciphertext-indistinguishable. Now, if the actual scheme is
not ciphertext-indistinguishable, then for some sequence of (9)’s a polynomial-
size circuit can distinguish the f(r(?) @ z(’s from the f,(r(V) ® z(9’s, where
f is random and f; is pseudorandom. But this contradicts the hypothesis that
polynomial-size circuits cannot distinguish between the two. [

Discussion: Note that we could have gotten rid of the randomization if we
had allowed the encryption algorithm to be history dependent (as discussed in
Section 5.3.1 above). Specifically, in such a case, we could have used a counter in
the role of r. Furthermore, if the encryption scheme is used for FIFO communica-
tion between the parties and both can maintain the counter value then there is
no need for the sender to send the counter value. However, in the later case Con-
struction 5.3.3 is preferable (because the adequate pseudorandom generator may
be more efficient than a pseudorandom function as used in Construction 5.3.9).
We note that in case the encryption scheme is not used for FIFO communication
and one may need to decrypt messages with arbitrary varying counter values, it
is typically better to use Construction 5.3.9. Furthermore, in many cases it may
be preferable to select a value (i.e., 7) at random rather than rely on a counter
that must stored in a reliable manner between applications (of the encryption
algorithm).

The ciphertexts produced by Construction 5.3.9 are longer than the corre-
sponding plaintexts. This is unavoidable in case of secure (history-independent)
encryption schemes (see Exercise 19). In particular, the common practice of
using pseudorandom permutations as block-ciphers'! is NOT secure (e.g., one

I That is, letting F;(z) = p;(z), where p; is the permutation associated with the string i.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.3. CONSTRUCTIONS OF SECURE ENCRYPTION SCHEMES 399

can distinguish two encryptions of the same message from encryptions of two
different messages).

5.3.4 Public-key encryption schemes

As mentioned above, randomization during the encryption process can be avoided
in private-key encryption schemes that employ a varying state (not allowed in
our basic Definition 5.1.1). In case of public-key encryption schemes, random-
ization during the encryption process is essential (even if the encryption scheme
employs a varying state). Thus, the randomized encryption paradigm plays an
even more pivotal role in the construction of public-key encryption scheme. To
demonstrate this paradigm we start with a very simple (and quite wasteful) con-
struction. But before doing so, we recall the notion of trapdoor permutations.

Trapdoor permutations: All our constructions employ a collection of trap-
door permutations, as in Definition 2.4.5. Recall that such a collection, {pas}a,
comes with four probabilistic polynomial-time algorithms, denoted here by I, S, F'
and B (for indez, sample, forward and backward), such that the following (syn-
tactic) conditions hold

1. On input 17, algorithm I selects a random n-bit long index « of a permu-
tation p,, along with a corresponding trapdoor ;

2. On input «, algorithm S samples the domain of p,, returning a random
element in it;

3. For z in the domain of p,, given « and z, algorithm F' returns p,(z) (i.e.,
F(a,z) = pa(z));

4. For y in the range of p, if («, 7) is a possible output of I(1™) then, given
7 and y, algorithm B returns p;*(y) (i.e., B(1,vy) = p;'(y)).

The hardness condition refers to the difficulty of inverting p, on a random
element of its range, when given only the range-element and «. That is, let
I;(1™) denote the first element in the output of I(1™) (i.e., the index), then for
every polynomial-size circuit family {C},}, every polynomial p and all sufficiently
large n’s

PriCn(L(17), pryam) (S (17))) = S(L(1"))] < o)

Namely, C,, fails to invert p, on p,(z), where a and z are selected by I and
S as above. Recall the above collection can be easily modified to have a hard-
core predicate (cf. Theorem 2.5.2). For simplicity, we continue to refer to the
collection as {ps}, and let b denote the corresponding hard-core predicate.
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5.3.4.1 Simple schemes

We are now ready to present a very simple (alas quite wasteful) construction of
a secure public-key encryption scheme. It is a block-cipher with £ = 1.

Construction 5.3.12 (a simple public-key block-cipher scheme): Let {p,},
I,S,F,B and b be as above.

key-generation: The key generation algorithm consists of selecting at random
a permutation p, together with a trapdoor T for it: The permutation (or
rather its description) serves as the public-key, whereas the trapdoor serves
as the private-key. That is, G(1™) = I(1™), which means that the indez-
trapdoor pair generated by I is associated with the key-pair of G.

encryption: To encrypt a bit o (using the encryption-key «), the encryption
algorithm randomly selects an element, r, in the domain of p. and produces
the ciphertext (po(r),c ®b(r)). That is, E.(0) = (F(a,r),0 ®b(r)), where
r— S(a).

decryption: To decrypt the ciphertext (y,s) (using the decryption-key 7), the de-
cryption algorithm just computes s & b(py'(y)), where the inverse is com-
puted using the trapdoor T of po. That is, D, (y,s) = b(B(1,y)) ®s.

Clearly, for every possible («, 7) output of G and for every ¢ € {0,1}, it holds
that

Dr(Ea(0)) = b(B(7, F(a, 5()))) ® (0 © b(S(a)))
= b(pa ' (Pa(S( ))))69(0696(5(&)))
= b(S(a)) @0 ®b(S(a)) =

The security of the above public-key encryption scheme follows from the (non-
uniform) one-way feature of the collection {p,} (or rather from the hypothesis
that b is a corresponding hard-core predicate).

Proposition 5.3.13 Suppose that b is a (non-uniformly strong) hard-core of
the collection {ps}. Then Construction 5.3.12 constitute a secure public-key
block-cipher (with block-length ¢ = 1).

Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),
it suffices to show single-message ciphertext-indistinguishability. Furthermore,
by Proposition 5.2.7 and the fact that here there are only two plaintexts (i.e., 0
and 1), it suffices to show that one cannot predict which of the two plaintexts
(selected at random) is being encrypted (significantly better than with success
probability 1/2). We conclude by noting that a guess ¢’ for the plaintext o,
given the encryption-key a and the ciphertext E, (o) = (fo(r), o @ b(r)), where
r — S(a), yields a guess o' @ (e @ b(r)) for b(r) given (a, fo(r)). The latter guess
is correct with probability equal to the probability that ¢’ = o, and contradicts
the hypothesis that b is a hard-core of {p, }. Details follow.
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Recall that by saying that b is a hard-core of {p,} we mean that for every
polynomial-size circuit family {C},}, every polynomial p and all sufficiently large
n’s

PHCL(I (") 1 any (S ) = HSIMWN)] < 5+ oo (510)
By Proposition 5.2.7, it suffices to show that for randomly chosen « (i.e., a «
I,(1™)) and uniformly distributed o € {0, 1}, no polynomial-size circuit given the
encryption-key a and the ciphertext E, (o), can predict o non-negligibly better
than with success probability 1/2. Suppose towards the contradiction that there
exists a polynomial-size circuit family {C],}, a polynomial p’ and infinitely many
n’s such that

1 1
Pr[C;L(Il(l"),Eh(ln)(a)) = 0'] > 5 + W (5].].)
where ¢ is uniformly distributed in {0,1}. Recall that E, (o) = (pa(r),c®b(r)),
where 1 «— S(«) is a random sample in p,’s domain, and consider the following
probabilistic circuit C!': On input « and y (in the range of p,), the circuit
C})! uniformly selects ¢ € {0, 1}, invokes C}, on input («, (y,s)), and outputs
C!(a,(y,5)) ®¢. In the following analysis of the behavior of C}!, we let o «

n

L (1), r < S(«), and consider uniformly distributed ¢,o € {0,1}:

PrCr (a,pa(r)) =b(r)] = Pr[Cp(a (pa(r),s)) @ ¢ =b(r)]
= Pr[C)(a, (pa(r),s)) = ¢ @ b(r)]
= Pr[Cy(a, (pa(r),0 ©b(r)) = (0 @ b(r)) © b(r)]
Pr[C} (e, Ea(0)) = o]
SR
2 pn)

where the inequality is due to Eq. (5.11). Removing the randomization from C;!
(i.e., by fixing the best possible choice), we derive a contradiction to Eq. (5.10).
The proposition follows. Il

Using Propositions 5.3.8 and 5.3.13, and recalling that Theorem 2.5.2 applies also
to collections of one-way functions and to the non-uniform setting, we obtain

Theorem 5.3.14 If there exist collections of (non-uniformly hard) trapdoor per-
mutations then there exist secure public-key encryption schemes.

A generalization: As admitted above, Construction 5.3.12 is quite wasteful.
Specifically, it is wasteful in bandwidth; that is, the relation between the length of
the plaintext and the length of the ciphertext. In Construction 5.3.12 the relation
between these lengths equals the security parameter (i.e., the length of descrip-
tion of individual elements in the domain of the permutation). However, the
idea underlying Construction 5.3.12 can yield efficient public-key schemes, pro-
vided we use trapdoor permutations having hard-core functions with large range
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(see Section 2.5.3). To demonstrate the point, we use the following assumption
relating to the RSA collection of trapdoor permutations (cf. Subsections 2.4.3
and 2.4.4).

Large hard-core conjecture for RSA: The first n/2 least significant bits of
the argument constitute a (non-uniformly strong) hard-core function of the RSA
function when applied with n-bit long moduli.

We stress that the conjecture is NOT know to follow from the assumption that
the RSA collection is (non-uniformly) hard to invert. What can be proved
under the latter assumption is only that the first O(logn) least significant bits
of the argument constitute a (non-uniformly strong) hard-core function of RSA
(with n-bit long moduli). Still, if the above conjecture holds then one obtains
a secure public-key encryption scheme with efficiency comparable to that of
“plain RSA” (see discussion below). Furthermore, this scheme coincides with
the common practice of randomly padding messages (using padding equal in
length to the message) before encrypting them applying the RSA function. That
is, we counsider the following scheme:

Construction 5.3.15 (Randomized RSA — a public-key block-cipher scheme):
This scheme employs the RSA collection of trapdoor permutations (cf. Subsec-
tions 2.4.8 and 2.4.4). The following description is, however, self-contained.

key-generation: The key generation algorithm consists of selecting at random
two n-bit primes, P and (), setting N = P - (), selecting at random a
pair (e,d) so thate-d =1 (mod (P —1)-(Q — 1)), and outputting the
tuple ((N,e),(N,d)), where (N,e) is the encryption-key and (N,d) is the
decryption-key. That is, (N, e),(N,d)) «— G(1™), where N, e and d are
as specified above.

(Note that N is 2n-bit long.)

encryption: To encrypt an n-bit string o (using the encryption-key (N,e)), the
encryption algorithm randomly selects an element, r € {1,...,N — 1}, and
produces the ciphertert (r¢ mod N, o @ LSB(r)), where LSB(r) denotes the
n least significant bits of r. That is, E(y ¢)(0) = (r mod N,o © LSB(r)).

decryption: To decrypt the ciphertect (y,s) € {0,...,N — 1} x {0,1}"™ (using
the decryption-key (N,d)), the decryption algorithm just computes @
LsB(y? mod N), where LSB(-) is as above. That is, Dy a)(y,s) = s &
LsB(y¢ mod N).

The bandwidth of the above scheme is much better than in Construction 5.3.12:
a plaintext of length n is encrypted via a ciphertext of length 2n. On the
other hand, Randomized RSA is almost as efficient as “plain RSA” (or the RSA
function itself).
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To see that Randomized RSA satisfies the syntactic requirements of an en-
cryption scheme, consider any possible output of G(1"), denoted, ((N,e), (N, d)),
and any o € {0,1}". Then, it holds that

Dn.a)(E(n,e)(0)) = D,a)((r® mod N),o & LSB(r))
= (0 ®LsB(r)) ®LsB((r° mod N)? mod N)
o ®LSB(r) ® LsB(r* mod N) = o

where the last equality is due to r*? =7 (mod N). The security of Random-
ized RSA (as a public-key encryption scheme) follows from the large hard-core
conjecture for RSA, analogously to the proof of Proposition 5.3.13.

Proposition 5.3.16 Suppose that the large hard-core conjecture for RSA does
hold. Then Construction 5.3.15 constitute a secure public-key block-cipher (with
block-length £(n) = n).

Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),
it suffices to show single-message ciphertext-indistinguishability. Counsidering
any two strings « and y, we need to show that (r® mod N,z & LSB(r)) and
(r® mod N,y @ LsB(r)) are indistinguishable, where N,e and r are selected at
random as in the construction. It suffices to show that, for every z, the distribu-
tions (r¢ mod N,z ® LsB(r)) and (7 mod N,z @ s) are indistinguishable, where
s € {0,1}" is uniformly distributed, independently of anything else. The latter
claim follows from the hypothesis that the n least significant bits are a hard-core
function for RSA with moduli of length 2n. W

Discussion: We wish to stress that encrypting messages by merely applying
the RSA function to them (without randomization), yields an insecure encryption
scheme. Unfortunately, this procedure (referred to about as ‘plain RSA’), is
quite common in practice. The fact that plain RSA is definitely insecure is a
special case of the fact that any public-key encryption scheme that employs a
deterministic encryption algorithm is insecure. We warn that the fact that in
such deterministic encryption schemes one can distinguish encryptions of two
specific messages (e.g., the all-zero message and the all-one message) is not
“merely of theoretical concern” — it may seriously endanger some applications!
In contrast, Randomized RSA (as defined in Construction 5.3.15) may be secure,
provided a quite reasonable conjecture (i.e., the large hard-core conjecture for
RSA) holds. Thus, the common practice of applying the RSA function to a
randomly-padded version of the plaintext is way superior to using the RSA
function directly (i.e., without randomization): the randomized version is likely
to be secure, whereas the non-randomized (or plain) version is definitely insecure.

Recall that Construction 5.3.15 (or alternatively Construction 5.3.12) gener-
alizes to any collection of trapdoor permutations having a corresponding large
hard-core function. Suppose that {p.} is such a collection, and h (or rather
{ha}) is a corresponding hard-core function (resp., a corresponding collection of
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hard-core functions) such that any element in the domain of p, is mapped to
an {(|a|)-bit long string. Then we can encrypt an £(]«|)-bit long plaintext, z,
by (pa(r), h(r) ® x) (resp., (pa(r), ho(r) ® z)), where r «— S(«) (as in Construc-
tion 5.3.12). This yields a secure public-key encryption scheme with bandwidth
that relates to the relation between ¢(|a|) and the length of a description of
individual elements in the domain of p,.

5.3.4.2 An alternative scheme

An alternative construction of a public-key encryption scheme is presented be-
low. Rather than encrypting each plaintext bit (or block of bits) by an indepen-
dently selected element in the domain of the trapdoor permutation (as done in
Construction 5.3.12), we select only one such element (for the entire plaintext),
and generate an additional bit per each bit of the plaintext. These additional
bits are determine by successive applications of the trapdoor permutation, and
only the last result is included in the ciphertext. In a sense, the construction
of the encryption scheme (below) augments the construction of a pseudorandom
generator based on one-way permutations (i.e., Construction 3.4.4).

Construction 5.3.17 (a public-key encryption scheme): Let {p.}, I,S,F,B
and b be as in Construction 5.5.12. We use the notation p' ™t (z) = pa(p’,(z))

and pz "t (2) = p3t(pai(2)).

key-generation: The key-generation algorithm consists of selecting at random a
permutation p, together with o trapdoor, exactly as in Construction 5.5.12.
That is, G(1™) = I(1™), which means that the index-trapdoor pair generated
by I is associated with the key-pair of G.

encryption: To encrypt a string o (using the encryption-key «), the encryption
algorithm randomly selects an element, r, in the domain of p, and produces

the ciphertext (p‘;‘(r), o ® Gu(r)), where

Ga(r) = b(r) - b(pa(r) ---b(pl (1) (5.12)
That is, Ea(0) = (pK(S(a)), 0 & Ga(S(a))).

decryption: To decrypt the ciphertext (y,s) (using the decryption-key 1), the
decryption algorithm just computes ¢ ® Ga(p;‘c‘(y)), where the inverse is
computed using the trapdoor T of po. That is, D, (y,s) = ¢® Ga(pglcl(y)).

We stress that the above encryption scheme is a full-fledged one (rather than a
block-cipher). Its bandwidth tends to 1 with the length of the plaintext; that
is, a plaintext of length ¢ = poly(n) is encrypted via a ciphertext of length
m + £, where m denotes the length of the description of individual elements
in the domain of p,. Clearly, for every possible («,7) output of G, it holds
that D,(E4(0)) = 0. The security of the above public-key encryption scheme
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follows from the (non-uniform) one-way feature of the collection {p,}, but here
we restrict the sampling algorithm S to produce almost uniform distribution over
the domain (so that this distribution is preserved under successive applications

Ofpa)'

Proposition 5.3.18 Suppose that b is a (non-uniformly strong) hard-core of
the trapdoor collection {p,}. Furthermore, suppose that this trapdoor collection
utilizes a domain sampling algorithm S so that the statistical difference between
S(«) and the uniform distribution over the domain of p. is negligible in terms of
|ae|. Then Construction 5.3.17 constitute a secure public-key encryption scheme.

Proof: Again, we prove single-message ciphertext-indistinguishability. Asin the
proof of Proposition 5.3.16, it suffices to show that, for every o, the distributions
(plaol(S(a)), o ® Gu(S(a))) and (p‘;‘(S’(a)),a @ s) are indistinguishable, where
s € {0, 1}“" is uniformly distributed, independently of anything else. The latter
claim holds by a minor extension to Proposition 3.4.6: the latter refers to the
case S(«) is uniform over the domain of p,, but can be extended to the case in
which there is a negligible statistical difference between the distributions. The
proposition follows.

An instantiation: Assuming that factoring Blum Integers (i.e., products of
two primes each congruent to 3 (mod 4)) is hard, one may use the modular
squaring function in role of the trapdoor permutation above (see Section 2.4.3).
This yields a secure public-key encryption scheme (presented below) with effi-
ciency comparable to that of plain RSA. Recall that plain RSA itself is not secure
(as it employs a deterministic encryption algorithm), whereas Randomized RSA
(i.e., Construction 5.3.15) is not known to be secure under standard assumption
such as intractability of factoring (or of inverting the RSA function).!?

Construction 5.3.19 (The Blum-Goldwasser Public-Key Encryption Scheme):

For simplicity, we present a block-cipher with arbitrary block-length £(n) =

poly(n).

key-generation: The key generation algorithm consists of selecting at random
two n-bit primes, P and QQ, each congruent to 3 mod 4, and outputting the
pair (N, (P,Q)), where N =P - Q.

Actually, for sake of efficiency, the key-generator also computes

dp = (P+1)/49)" ™ mod P—1 (in{0,...,P —2})
do = (@+1)/4)™ modQ—-1 (in{0,..,Q —2})
cp = Q-(Q7' modP) (in {0,...,N —Q})
cg = P-(P7'modQ) (in {0,...,N — P})

12Recall that Randomized RSA is secure assuming that the n/2 least significant bits con-
stitute a hard-core function for n-bit RSA moduli. Even when assuming the intractability of
factoring, we only know that the O(logn) least significant bits constitute a hard-core function
for n-bit moduli.
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It outputs the pair (N,T'), where N serves as the encryption-key and T =
(P,Q,N,cp,dp,cq,dg) serves as decryption-key.

encryption: To encrypt the message o € {0, 1}“"), using the encryption-key N :

1. Uniformly select sp € {1,..., N}.
2. Fori =1,..,4(n) + 1, compute s; — s> ; mod N and b; = lsb(s,),
where 1sb(s) is the least significant bit of s.
The ciphertest is (S¢(n)+1,5), where ¢ = @ biba - - - by(p).

decryption: To decrypt of the ciphertext (r,s) using the decryption-key T =
(P,Q,N,cp,dp,cq,dq), one first retrieves s1 and then computes the b;’s
as above. Instead of extracting modular square roots successively £(n)
times, we exctract the 29" -th root, which can be done as efficiently as
ertracting a single square root:

1. Let s' — r% mod P, and s" — r? mod Q.

2. Let sy < cp-s'+cg-s" mod N.

3. Fori=1,..,0(n), compute b; = 1sb(s;) and s;+1 < s? mod N.

The plaintext is ¢ & bibz - - - by(p)-

Again, one can easily verify that the above construction constitutes an encryp-
tion scheme: the main fact to verify is that the value of s; as reconstructed in
the decryption stage equals the value used in the encryption stage. This fol-
lows by combining the Chinese Reminder Theorem with the fact that for every

quadratic residue s mod N it holds that s = (s28 mod N)4” (mod P) (and
similarly, s = (s2* mod N)% (mod Q)).

Details: Recall that for a prime P =3 (mod 4), and every integer ¢, we
have i¢Zt1/? =4 (mod P). Thus, for every integer j, we have

Y (P+1)/0)
(] mod N) (mod P)

= j((P+1)/2)[ (mod P)
Jj (mod P)

(j2l mod N)*P

Similarly, j = (j22 mod N)¥?  (mod Q). Observing that cp and cg are as
in the Chinese Reminder Theorem (i.e., i = c¢p - (¢ mod P)+cq - (7 mod Q)

(mod N), for every integer i), we conclude that s1 as recovered in Step 2
of the decryption equals s; as first computed in Step 2 of the encryption.

Encryption amounts to ¢(n) + 1 modular multiplications, whereas decryption
amounts to £(n)+2 such multiplications and 2 modular exponentiations (relative
to half-sized moduli). Counting modular exponentiations with respect to n-
bit moduli as O(n) (i.e., at least n and at most 2n) modular multiplications
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(with respect to n-bit moduli), we conclude that the entire encryption-decryption
process requires work comparable to 24(n) 4+ 2n modular multiplications. For
comparison to (Randomized) RSA, note that encrypting/decrypting ¢(n)-bit
messages amounts to [£(n)/n] modular exponentiations, and so the total work
is comparable to 2- (£(n)/n) - 1.5n = 3¢(n) (for general exponent e, or half that
much in case e = 3).

The security of the Blum-Goldwasser scheme (i.e., Construction 5.3.19) fol-
lows immediately from Proposition 5.3.18 and the fact that lsb is a hard-core
for the modular squaring function. Recalling that inverting the latter is compu-
tationally equivalent to factoring, we get:

Corollary 5.3.20 Suppose that factoring is infeasible in the sense that for every
polynomial-size circuit {Cy,}, every positive polynomial p and all sufficiently large
n’s )

PriCn(Pn-Qn) =P,] < )
where P, and Q, are uniformly distributed n-bit long primes. Then Construc-
tion 5.3.19 constitutes a secure public-key encryption scheme.

5.4 * Beyond eavesdropping security

Our treatment so far refers only to a “passive” attack in which the adversary
merely eavesdrops on the line over which ciphertexts are being sent. Stronger
types of attacks, culminating in the so-called Chosen Ciphertext Attack, may be
possible in various applications. Specifically, in some settings it is feasible for the
adversary to make the sender encrypt a message of the adversary’s choice, and in
some settings the adversary may even make the receiver decrypt a ciphertext of
the adversary’s choice. This gives rise to chosen message attacks and to chosen
ciphertert attacks, respectively, which are not covered by the above security
definitions. Thus, our main goal in this section is to provide a treatment to such
types of attacks. In addition, we also discuss the related notion of non-malleable
encryption schemes. We start with an overview of the type of attacks considered
in this section.

Types of attacks. The following mini-taxonomy of attacks is certainly not
exhaustive.

1. Passive attacks as captured in the definitions above. In case of public-key
schemes we distinguish two sub-cases:

(a) A key-oblivious, passive attack, as captured in the definitions above.
By ‘key-obliviousness’ we refer to the fact that the choice of plaintext
does not depend on the public-key.

(b) A key-dependent, passive attack, in which the choice of plaintext may
depend on the public-key.
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(In Definition 5.2.8 the choice of plaintext means the random variable X ,,
whereas in Definition 5.2.9 it means the pair of sequences (Z,,7,,). In both
these definitions, the choice of the plaintext is key-oblivious.)

2. Chosen Plaintext Attacks. Here the attacker may obtain the encryption of
any plaintext of its choice (under the key being attacked).

Indeed, such an attack does not add power in case of public-key schemes.

3. Chosen Ciphertext Attacks. Here the attacker may obtain the decryption
of any ciphertext of its choice (under the key being attacked). That is, the
attacker is given oracle access to the decryption function corresponding to
the decryption-key in use. We distinguish two types of such attacks.

(a) In an a-priori chosen ciphertext attack, the attacker is given this
oracle access prior to being presented the ciphertext that it should
attack (i.e., the ciphertext for which it has to learn partial informa-
tion). That is, the attack consists of two stages: in the first stage the
attacker is given the above oracle access, and in the second stage the
oracle is removed and the attacker is given a ‘test ciphertext’ (i.e., a
target to be learned).

(b) In an a-posteriori chosen ciphertext attack, after being given the
target ciphertext, the oracle is not removed but the adversary’s access
to it is restricted in that it is not allowed to make a query equal to
the target ciphertext.

In both cases, the adversary may make queries that do not correspond to
a legitimate ciphertext, and the answer will be accordingly (i.e., a special
‘failure’ symbol). Furthermore, in both cases the adversary may effect the
selection of the target ciphertext.

Formal definitions of all types of attacks listed above are given in the following
corresponding subsections. Before presenting the actual definitions, we provide
an overview of the known results.

Some known constructions. As in the basic case, the (strongly secure)
private-key encryption schemes can be constructed based on the existence of
one-way functions, whereas the (strongly secure) public-key encryption schemes
are based on the existence of trapdoor permutations. In both cases, withstand-
ing a-posteriori chosen ciphertext attacks is harder than withstanding a-priori
chosen ciphertext attacks. We will present the following schemes.

Private-key schemes: The private-key encryption scheme based on pseudo-
random functions (i.e., Construction 5.3.9), is secure also against a-priori
chosen ciphertext attacks.'®

13 Note that this scheme is not secure under an a-posteriori chosen ciphertext attack: on
input a ciphertext (r,z @ fs(r)), we obtain fs(r) by making the query (r,y’), where y' #
z @ fs(r). (This query is answered with z’ so that y' =z’ @ f,(r).)
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It is easy to turn any passively secure private-key encryption scheme into
a scheme secure under (a-posteriori) chosen ciphertext attacks, by using a
message authentication scheme!'* on top of the basic encryption.

Public-key schemes: Public-key encryption schemes secure against a-priori
chosen ciphertext attacks can be constructed, assuming the existence of
trapdoor permutations and utilizing non-interactive zero-knowledge proofs.
(Recall that the latter proof systems can be constructed under the former
assumption.)

Public-key encryption schemes secure against a-posteriori chosen cipher-
text attacks can also be constructed under the same assumption, but this
construction is even more complex.

5.4.1 Key-dependent passive attacks

Author's Note: Applicable only to public-key schemes.

Author's Note: Plan: define, and show that above constructions sat-
isfy the definition.

5.4.2 Chosen plaintext attack

Author's Note: No affect in case of public-key schemes.

Author's Note: Plan: define, and show that above constructions sat-
isfy the definition.

5.4.3 Chosen ciphertext attack

Author's Note: For private-key, refer also to a combined plaintext+ciphertext
attack.

Author's Note: Plan:

1. Define the two types (i.e., a-priori and a-posteriori CCA).

2. Prove that the PRF-based private-key scheme remains secure
under a-priori CCA,

3. Using MAC, transform any passively-secure private-key scheme
into an a scheme secure under a-posteriori CCA.

4. The NY-framework for constructing CCA-secure public-key schemes:
double-encryption + use of NIZK. [172]

(a) Apply the framework to obtain security under a-priori CCA.
[NY]

14 See definition in Section 6.1.

See copyright notice.
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(b) Apply the framework to obtain security under a-posteriori
CCA. [DDN, Amit] [62, ?]

Author's Note: Indeed, my plans were modified due to a recent result
of Amit Sahai (further simplified by Yehuda Lindell). This result
makes it feasible to present (in the context of the current book) a
public-key encryption scheme that is secure under a-posteriori CCA.

5.4.4 Non-malleable encryption schemes

Author's Note: Tentative introductory test follows.

So far, our treatment has referred to an adversary that tries to extract explicit
information about the plaintext. A less explicit attempt, captured by the so-
called notion of malleability, is to generate an encryption of a related plaintext
(possibly without learning anything about the original plaintext).

Thus, we have a “matrix” of adversaries, with one dimension (parameter)
being the type of attack and the second being its purpose. So far, we have
discussed the first dimension (i.e., the type of the attack). We now turn to the
second (i.e., the purpose of the attack). We make a distinction between the
following two notions (or purposes of attack):

1. Standard security: the infeasibility of obtaining information regarding the
plaintext. As defined above, such information must be a function (or a
randomized process) applied to the bare plaintext, and may not depend
on the encryption (or decryption) key.

2. In contrast, the notion of non-malleability refers to generating a string de-
pending on both the plaintext and the current encryption-key. Specifically,
one requires that it should be infeasible for an adversary, given a cipher-
text, to produce a valid ciphertext for a related plaintext. For example,
given a ciphertext of a plaintext of the form 1z, it should be infeasible to
produce a ciphertext to the plaintext Ox.

We shall show below that, with the exception of passive attacks on private-key
schemes, non-malleability always implies security against attempts to obtain in-
formation on the plaintext. We shall also show that security and non-malleability
are equivalent under a-posteriori chosen ciphertext attack.

Author's Note: Plan:

1. discuss and define the notion of non-malleable encryption,
2. prove the following (relations between definitions):

(a) With the exception of passive attacks on private-key schemes,
non-malleability always implies security against attempts to
obtain information on the plaintext.
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(b) Under a-posteriori chosen ciphertext attacks, security and
non-malleability are equivalent. (This is very intuitive and
the intuition can be presented already in the definitional
discussion above!)

Derive the existence of non-malleable encryption schemes as a
corollary to the above.

5.5 Miscellaneous

Author's Note: The entire section is fragmented and tentative.

5.5.1 Historical Notes

The notion of private-key encryption scheme seems almost as ancient as the al-
phabet itself. Furthermore, it seems that the development of encryption methods
went along with the development of communication media. As the amounts of
communication grow, more efficient and sophisticated encryption methods were
required. Computational complexity considerations were explicitly introduced
into the arena by Shannon [196]: In his work, Shannon considered the classi-
cal setting where no computational considerations are present. He showed that
in this information theoretic setting, secure communication of information was
possible only as long as its entropy is lower than the entropy of the key. He thus
concluded that if one wishes to have an encryption scheme which is capable of
handling messages with total entropy exceeding the length of the key then one
must settle for a computational relaxation of the secrecy condition. That is,
rather than requiring that the ciphertext yields no information on the plaintext,
one has to require that such information cannot be efficiently computed from the
ciphertext. The latter requirement indeed coincides with the above definition of
semantic security.

The notion of public-key encryption scheme was introduced by Diffie and
Hellman [61]. First concrete candidates were suggested by Rivest, Shamir and
Adleman [187] and by Merkle and Hellman [159]. However, satisfactory defi-
nitions of security were presented ounly a few years afterwards, by Goldwasser
and Micali [121]. The two definitions presented in Section 5.2 originate in [121],
where it was shown that ciphertext-indistinguishability implies semantic secu-
rity. The converse direction is due to [160].

Regarding the seminal paper of Goldwasser and Micali [121], a few additional
comments are due. Arguably, this paper is the basis of the entire rigorous
approach to cryptography (presented in the current book): It introduced general
notions such as computational indistinguishability, definitional approaches such
as the simulation paradigm, and techniques such as the hybrid argument. The
paper’s title (“Probabilistic Encryption”) is due to the authors’ realization that
public-key encryption schemes in which the encryption algorithm is deterministic
cannot be secure in the sense defined in their paper. Indeed, this led the authors
to (explicitly) introduce and justify the paradigm of “randomizing the plaintext”
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as part of the encryption process. Technically speaking, the paper only presents
security definitions for public-key encryption schemes, and furthermore some
of these definitions are syntactically different from the ones we have presented
above (yet, all these definitions are equivalent). Finally, the term “ciphertext-
indistinguishability” used here replaces the (generic) term “polynomial-security”
used in [121]. Some of our modifications have already appeared in [93], which is
also the main source of our uniform-complexity treatment.

The first construction of a secure public-key encryption scheme based on
a simple complexity assumption was given by Goldwasser and Micali [121].15
Specifically, they constructed a public-key encryption scheme assuming that de-
ciding Quadratic Residiousity modulo composite numbers is intractable. The
condition was weaken by Yao [205] who prove that any trapdoor permutation
will do. The efficient public-key encryption scheme of Construction 5.3.19 is
due to Blum and Goldwasser [33]. The security is based on the fact that the
least significant bit of the modular squaring function is a hard-core predicate,
provided that factoring is intractable, a result mostly due to [5].

For decades, it has been common practice to use “pseudorandom generators”
in the design of stream ciphers. As pointed out by Blum and Micali [34], this
practice is sound provided that one uses pseudorandom generators (as defined
in Chapter 3). The construction of private-key encryption schemes based on
pseudorandom functions is due to [101].

We comment that it is indeed peculiar that the rigorous study of (the security
of) private-key encryption schemes has legged behind the corresponding study
of public-key encryption schemes. This historical fact may be explained by the
very thing that makes it peculiar; that is, private-key encryption schemes are
less complex that public-key ones, and hence the problematics of their security
(when applied to popular candidates) is less obvious. In particular, the need
for a rigorous study of (the security of) public-key encryption schemes arose
from observations regarding their concrete applications (e.g., doubts raised by
Lipton concerning the security of the “mental poker” protocol of [195], which
used “plain RSA” as an encryption scheme). In contrast, the need for a rigorous
study of (the security of) private-key encryption schemes arose later and by
analogy to the public-key case.

Author's Note: The rest of this subsection is yet to be written. The
following notes are merely place-holders.

Author’'s Note: The NY-framework for constructing public-key en-
cryption schemes secure under Chosen Ciphertext Attacks: double-
encryption + NIZK (Naor and Yung [172]). Its (original) application
to the case of a-priori Chosen Ciphertext Attacks [172]. Its appli-
cation to the case of a-priori Chosen Ciphertext Attacks [?] (Sahai
following Dolev, Dwork and Noar [62]). Refer to NIZK works such
as [75, 189].

15 Recall that plain RSA is not secure, whereas Randomized RSA is based on the Large
Hard-Core Conjecture for RSA (which is less appealing that the standard conjecture referring
to the intractability of inverting RSA).
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Author's Note: The study of non-malleability of the encryption schemes,
was initiated by Dolev, Dwork and Noar [62]. Security and non-
malleability are equivalent under a-posteriori chosen ciphertext at-
tack (cf. [62, 15]).

5.5.2 Suggestion for Further Reading

Author’'s Note: This subsection is yet to be written. The following
notes are merely place-holders.

Author's Note: On the “gap” between private-key and public-key en-
cryption; the former is possible under OWF whereas Impagliazzo and
Rudich indicate the this is unlikely for the latter [131].

Author's Note: For discussion of Non-Malleable Cryptography, which
actually transcends the domain of encryption, see [62].

Author's Note: For a detailed discussion of the relationship among
the various notions of secure private-key and public-key encryption,
the reader is referred to [138] and [15], respectively.

5.5.3 Open Problems

Secure public-key encryption schemes exist if there exist collections of (non-
uniformly hard) trapdoor permutations (cf. Theorem 5.3.14). It is not known
whether the converse holds (although secure public-key encryption schemes eas-
ily imply one-way function). (The few-to-1 feature of the function collection is
important; see [17].)

Randomized RSA (i.e., Counstruction 5.3.15) is commonly believed to be a
secure public-key encryption scheme. It would be of great practical importance
to gain additional support for this belief. As shown in Proposition 5.3.16, the
security of Randomized RSA follows from the Large Hard-Core Conjecture for
RSA, but the latter is not known to follow from a more standard assumption
such as that RSA is hard to invert. This is indeed the third place in this book
where we suggest the establishment of the latter implication as an important
open problem.

Both constructions of public-key encryption schemes secure against chosen
ciphertext attacks (presented in Section 5.4) are to be considered as plausibil-
ity results (which also offer some useful construction paradigms). Presenting
“reasonably-efficient” public-key encryption schemes that are secure against (a-
posteriori) chosen ciphertext attacks, under widely believed assumptions, is an
important open problem. (We comment that the “reasonably-efficient” scheme
of [55] is based on a very strong assumption regarding the Diffie-Hellman Key
Ezchange. Specifically, it is assumed that for a prime P and primitive element
g, given (P, g, (g* mod P),(g¥ mod P),(¢g* mod P)), it is infeasible to decide
whether z =2y (mod P —1).)
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5.5.4 Exercises

Author’s Note: The following are but a tentative collection of exercises
that occurred to me while writing the main text.

Exercise 1: Encryption schemes imply one-way function [129]: Show that the
existence of a secure private-key encryption scheme (i.e., as in Defini-
tion 5.2.1) implies the existence of one-way functions.

Guideline: Recall that, by Exercise 11 of Chapter 3, it suffices to prove
that the former implies the existence of a pair of polynomial-time con-
structible probability ensembles that are statistically far apart and still
are computationally indistinguishable. To prove the existence of such en-
sembles consider the encryption of n + 1-bit plaintexts relative to a ran-
dom n-bit long key, denoted K,. Specifically, let the first ensemble be
{(Un41, E(Un41))},, N> Where E(z) = Ek, (), and the second ensem-
ble be {(Ur(bl-ghE(Ur(le))}neN! where Ufll_,zl and UT(fgl are independently
distributed. It is easy to show that these ensembles are computationally
indistinguishable and are both polynomial-time constructible. The more
interesting part is to show that these ensembles are statistically far apart.
To prove this fact, assume towards the contradiction that for all but a negli-
gible fraction of the 2"+ possible z’s, the distribution of E(z) is statistically
close to a single distribution Y, and show that this does not allow correct

decryption (since there are only 2™ possible keys).

Exercise 2: Encryption schemes with unbounded-length plaintext: Suppose that
the definition of semantic security is modified so that no bound is placed
on the length of plaintexts. Prove that in such a case there exists no
semantically secure public-key encryption scheme. (Hint: A plaintext of length
exponential in the security parameter allows the adversary to find the decryption key

by exhaustive search.)

Exercise 3: Encryption schemes must leak information about the length of the
plaintext: Suppose that the definition of semantic security is modified so
that the algorithms are not given the length of the plaintext. Prove that
in such a case there exists no semantically secure encryption scheme.

Guideline: First show that for some polynomial p, |E(1™)| < p(n),
whereas for some z € {0,1}?(") it holds that Pr[|E(xz)| <p(n)] < 1/2.

Exercise 4: Hiding partial information about the length of the plaintert: Using
an arbitrary encryption scheme, construct an encryption scheme that hides
the exact length of the plaintext. In particular, construct an encryption
scheme that reveals only the following function A’ of the length of the
plaintext:

1. A'(m) = [m/n] - n, where n is the security parameter.
2. h'(m) = 2Ms2ml
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(Hint: Just use an adequate padding convention, making sure that it always allows

correct decoding.)

Exercise 5: Length parameters: Assuming the existence of a secure public-key
(resp., private-key) encryption scheme, prove the existence of such scheme
in which the length of keys equal the security parameter. Furthermore,
show that (without loss of generality) the length of ciphertexts may be a
fixed polynomial in the length of the plaintext.

Exercise 6: Deterministic encryption schemes: Prove that in order to be se-
mantically secure a public-key encryption scheme must have a probabilistic
encryption algorithm. (Hint: Otherwise, one can distinguish the encryptions of two

candidate plaintexts by computing the unique ciphertext for each of them.)

Exercise 7: Prove that the following definition, in which we use non-uniform
families of polynomial-size circuits (rather than probabilistic polynomial-
time algorithms) is equivalent to Definition 5.2.1.

There exists a probabilistic polynomial-time transformation T'
such that for every polynomial-size circuit family {C},¢cn, and
for every {X,},en, foh @ {0,1}* — {0,1}*, p(-) and n as in
Definition 5.2.1

Pr [Ca(Egy 1) (Xn), 150, h(X0)) = F(X,0)|
=

)
< Pr [C;(l‘xﬂ,h(Xn)):f(Xn)}+ (ln)

where C!, «— T(C,,) and the probability is also taken over the
internal coin tosses of T'.

Same for public-key encryption.

Guideline: The alternative view of non-uniformity, discussed in Sec-
tion 1.3, is useful here. That is, we can view a circuit family as a sequence of
advices given to a universal machine. Thus, the above definition states that
advices for a machine that gets the ciphertext can be efficiently transformed
into advices for a machine that does not get the ciphertext. However, we
can incorporate the (probabilistic) transformation program into the second
universal algorithm (which then become probabilistic). Consequently, the
advices are identical for both machines (and can be incorporated in the
auxiliary input h(X,) used in Definition 5.2.1). Viewed this way, the above
definition is equivalent to asserting that for some (universal) deterministic
polynomial-time algorithm U there exists a probabilistic polynomial-time
algorithm U’ and for every {Xn}, N, f,h: {0,1}* — {0,1}*, p(-) and n
as in Definition 5.2.1

Pr [U(Eg, (im)(Xa), 11X h(X0)) = £(X0))]

1
< Pr[U' @ (X)) = F(X)] + ——
p(n)
Still, a gap remains between the above definition and Definition 5.2.1:

the above condition refers only to one possible deterministic algorithm
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U, whereas Definition 5.2.1 refers to all probabilistic polynomial-time al-
gorithms. To close the gap, we first observe that (by Propositions 5.2.7
and 5.2.6) Definition 5.2.1 is equivalent to a form in which one only quan-
tifies over deterministic polynomial-time algorithms A. We conclude by
observing that one can code any algorithm A (and polynomial time-bound)
referred to by Definition 5.2.1 in the auxiliary input (i.e., h(X5)) given to
U.

Exercise 8: In continuation to Exercise 7, consider a definition in which the
transformation T (of the circuit family {C,},cn to the circuit family
{C! },en) is not required to (even) be computable.'® Clearly, the new
definition is not stronger than the one in Exercise 7. Show that the two
definitions are in fact equivalent.

Guideline: Use the furthermore-clause of Proposition 5.2.7 to show that
the new definition implies indistinguishability of encryptions, and conclude
by applying Proposition 5.2.6 and invoking Exercise 7.

Exercise 9: Prove that Definition 5.2.3 remains unchanged when supplying the
circuit with auxiliary-input. That is, an encryption scheme satisfies Defi-
nition 5.2.3 if and ouly if

for every polynomial-size circuit family {C,}, every polynomial
p, all sufficiently large n and every z,y € {0,1}P°Y(™ (ie., |z]| =
ly]) and 2 € {0, 1}Pob (™),

IPr [Cn(2, Eg,(1n)(x))=1] — Pr [Cn(z2, Eg,(1n)(y))=1] | < Ol

(Hint: incorporate z in the circuit Cy.)

Exercise 10: Equivalence of the security definitions in the public-key model:
Prove that a public-key encryption scheme is semantically secure if and
only if it has indistinguishable encryptions.

Exercise 11: The technical contents of semantic security: The following ex-
plains the lack of computational requirements regarding the function f,
in Definition 5.2.1. Prove that an encryption scheme, (G, E, D), is (se-
mantically) secure (in the private-key model) if and only if the following
holds:

There exists a probabilistic polynomial-time algorithm A’ so
that for every {X,},cny and b : {0,1}* — {0,1}* as in Def-
inition 5.2.1, the following two ensembles are computationally
indistinguishable.

1. {EGl(l’l')(Xn)a 1‘X7L|7 h(Xn)}nEN

16 Equivalently, one may require that for any polynomial-size circuit family {C"}neN there
exists a polynomial-size circuit family {C;l}neN satisfying the above inequality.
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2. {4/ (1] (X))} nen
Formulate and prove an analogous claim for the public-key model.

Guideline: We care mainly about the (easy to establish) fact by which
the above implies semantic security. The other direction can be proven
analogously to the proof of Proposition 5.2.6.

Exercise 12: Prove that Definition 5.2.1 remains unchanged if we may restrict
the function h to depend only on the length of its input (i.e., h(xz) = A/(|z]|)
for some h' : N — {0,1}*).

Guideline: It suffices to prove that this special case (i.e., obtained by the
restriction on h) is equivalent to the general one. This follows by combining
Propositions 5.2.7 and 5.2.6.

Exercise 13: A variant on Fzercises 11 and 12: Prove that an encryption
scheme, (G, E, D), is (semantically) secure (in the private-key model) if
and only if the following holds.

For every probabilistic polynomial-time algorithm A there ex-
ists a probabilistic polynomial-time algorithm A’ such that for
every ensemble {X,,},cn, with |X,,| = poly(n), and polynomi-
ally bounded A’ the following two ensembles are computationally
indistinguishable.

L {A(Bg, (1n)(Xn), 1L B (1 X0 1)) bnen-
2. {A' (%L R (1 X)) bnen-

(Indeed, since |X,| is constant, so is h'(]X,|). So an equivalent form is
obtained by replacing h'(|X,|) with a poly(n)-bit long string v,.)

Formulate and prove an analogous claim for the public-key model.

Guideline: Again, we care mainly about the fact that the above im-
plies semantic security. The easiest proof of this direction is by applying
Propositions 5.2.7 and 5.2.6. A more interesting proof is obtained by using
Exercise 11: Indeed, the current formulation is a special case of the formu-
lation in Exercise 11, and so we need to prove that it implies the general
case. The latter is proven by observing that otherwise — using an averag-
ing argument — we derive a contradiction in one of the residual probability
spaces defined by conditioning on h(Xy) (i.e., (Xn|h(Xn) = v) for some v).

Exercise 14: Another equivalent definition of security: The following exercise
is interesting mainly for historical reasons. In the definition of semantic
security appearing in [121], the term max, ,{Pr[f(Xy) = v|h(X,) = u]}
appears instead of the term Pr[A’(11%»| h(X,)) = f(X,)]. That is, it is
required that
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for every probabilistic polynomial-time algorithm A every en-
semble { X, },,cr, with | X,| = poly(n), every pair of polynomially-
bounded functions f,h : {0,1}* — {0,1}*, every polynomial p(+)
and all sufficiently large n

Pr | A(Eq, (1) (Xn), 1L (X)) = £(X)

1
< max {Pr [f(Xn) =vlh(X)=ul} + o5

Prove that the above formulation is in fact equivalent to Definition 5.2.1.

Guideline: First, note that the above definition implies Definition 5.2.1
(since maxy v {Pr[f(Xn)=v|h(Xn)=u]} > PrlA"(h(Xy), 1", | Xn|) = f(Xr)],
for every algorithm A’). Next note that in the special case, in which X, sat-
isfies Pr[f(X,) =0|h(Xn)=u] = Pr[f(X,)=1|h(Xn)=u] = %, for all u’s,
the above terms are equal (since A’ can easily achieve success probability
1/2 by simply always outputting 1). Finally, combining Propositions 5.2.7
and 5.2.6. infer that it suffices to consider only the latter special case.

Exercise 15: Yet another equivalent definition of security: The following syn-

tactic strengthening of semantic security is important in some applications.
Its essence is in considering information related to the plaintext, in the
form of a related random variable, rather than partial information about
the plaintext (in the form of a function of it). Prove that an encryption
scheme, (G, E, D), is (semantically) secure (in the private-key model) if
and only if the following holds.

For every probabilistic polynomial-time algorithm A there ex-
ists a probabilistic polynomial-time algorithm A’ such that for
every {(Xn, Zn)}nens With |(Xn, Zy)| = poly(n), where Z, may
dependent arbitrarily on X,, and f, p(-) and n as in Defini-
tion 5.2.1

Pr |:A(EG1(1"")(XTL)7 1‘X7L‘7 Zn) :f(X")]
L
p(n)
That is, the auxiliary input h(X,,) of Definition 5.2.1 is replaced by the

random variable Z,,. Formulate and prove an analogous claim for the
public-key model.

< Prla, z,)=f(Xa)] +

Guideline: Definition 5.2.1 is clearly a special case of the above. On
the other hand, the proof of Proposition 5.2.6 extends easily to the above
(seemingly stronger) formulation of semantic security.

Exercise 16: Eztended Semantic Security (suggested by Boaz Barak): Con-

sider an extended definition of semantic security in which, in addition
to the regular inputs, the algorithms have oracle access to a function

See copyright notice.
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H, :{0,1}* — {0,1}* (instead of being given the value h(z)). The func-
tion H,’s have to be restricted to have polynomial (in |z|) size circuit.
That is, an encryption scheme, (G, E, D), is extended-semantically secure
(in the private-key model) For every probabilistic polynomial-time algo-
rithm A there exists a probabilistic polynomial-time algorithm A’ such that
for every ensemble {X,},en, with |X,| = poly(n), every polynomially-
bounded function f : {0,1}* — {0,1}*, every family of polynomial-sized
circuits {H, }oefo,1}+, every polynomial p(-) and all sufficiently large n

Pr [A7% (Egy 1) (%), 1170 = £(X,0)]

1

Pr A (11Xl = (X)) | + ——

< Pt aleh= )] + o
The definition of public-key security is analogous.

1. Show that if (G, E,D) has indistinguishable encryptions then it is
extended-semantically secure.

2. Show that if no restriction are placed on the H,’s then no scheme can
be extended-semantically secure (in this unrestricted sense).

Guideline (for Part 1): The proof is almost identical to the proof
of Proposition 5.2.6: The algorithm A’ forms an encryption of 1/%=! and
invokes A on it. Indistinguishability of encryptions is used in order to es-
tablish that A'fXn (11Xu1) performs essentially as well as A7Xn (E(X,)).
Otherwise, we obtain a distinguisher of E(z,) from E(11%n]), for some in-
finite sequence of @y ’s. In particular, the oracle H., (being implementable
by a small circuit) can be incorporated into a distinguisher.

Guideline (for Part 2): In such a case, H, may be defined so that,
when queried about a ciphertext, it reveals the decryption-key in use. par-
tial information about the corresponding plaintext. This is obvious in case
of public-key schemes, but is also doable in some private-key schemes (e.g.,
suppose that the ciphertext always contains a commitment to the private-
key). Such an oracle allows A (which is given a ciphertext) to recover the
corresponding plaintext, but does not help A’ (which is given I‘X"-l) find
any information about the value of X,,.

Exercise 17: Multiple messages of varying lengths: In continuation to Sec-
tion 5.2.4, generalize the treatment to encryption of multiple messages
of varying lengths. Provide adequate definitions, and analogous results.

Guideline: For example, a generalization of the first item of Defini-
tion 5.2.8 postulates that for every pair of polynomials ¢(-) and £(-), and
every probabilistic polynomial-time algorithm A, there exists a probabilis-
tic polynomial-time algorithm A’ such that for every ensemble {Yu =
(X,(Il),...,X,(It(n)))}neN, with |X,(Ll)\ < {(n), every pair of functions f,h :
{0,1}* — {0,1}*, every polynomial p(-) and all sufficiently large n

Pr I:A(Ecl (1”‘)(YTL)7 (I‘X,,(Ll)|7 ) I‘X"(:("))|)7 h(Yn)):f(Y")}

< P [ar @ ) = ()] +
p(n)
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Exercise 18: Known plaintext attacks: Loosely speaking, in a known plaintext
attack on a private-key (resp., public-key) encryption scheme the adver-
sary is given some plaintext/ciphertext pairs in addition to some extra
ciphertexts (without corresponding plaintexts). Semantic security in this
setting means that whatever can be efficiently computed about the missing
plaintexts, can be also efficiently computed given only the length of these
plaintexts.

1. Provide formal definitions of security for private-key/public-key in
both the single-message and multiple-message settings.

2. Prove that any secure public-key encryption scheme is also secure in
the presence of known plaintext attack.

3. Prove that any private-key encryption scheme that is secure in the
multiple-message setting is also secure in the presence of known plain-
text attack.

Guideline (fOI‘ Part 3): Consider a function h in the multiple-message
setting that reveals some of the plaintexts.

Exercise 19: The standard term of block-cipher: A standard block-cipher is a
triple, (G, E, D), of probabilistic polynomial-time algorithms that satisfies
Definition 5.3.5 as well as |E.(a)| = ¢(n) for every pair (e,d) in the range
of G(1") and every a € {0, 1},

1. Prove that a standard block-cipher cannot be semantically secure (in
the multiple-message model). Furthermore, show that any seman-
tically secure encryption scheme must employ ciphertexts that are
longer than the corresponding plaintexts.

2. Present a state-based version of a standard block-cipher and note that
Construction 5.3.3 satisfies it.

Guideline (for Part 1): Consider the encryption of a pair of two iden-
tical messages versus the encryption of a pair of two different messages,
and use the fact that E. must be a permutation of {0, 1}2("). Extend the
argument to any encryption scheme in which plaintexts of length £(n) are
encrypted by ciphertexts of length £(n)+ O(logn), observing that otherwise

most plaintexts have only poly(n)-many ciphertexts under E..

Exercise 20: The Blum-Goldwasser public-key encryption scheme was presented
in Construction 5.3.19 as a block-cipher (with arbitrary block length). Pro-
vide an alternative presentation of this scheme as a full-fledged encryption
scheme (rather than a block-cipher), and prove its security (under the
factoring assumption).

Author's Note: First draft written mainly in 1997. Major revision
completed in Dec. 1999. Further significant revisions were conducted
in May—June 2001.
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