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Preface

The current manuscript is a preliminary draft of the chapter on
encryption schemes (Chapter 5) of the second volume of the work
Foundations of Cryptography. This manuscript subsumes previous
versions posted in Dec. 1999 and June 2001, respectively.

The bigger picture. The current manuscript is part of a working draft of
Part 2 of the three-part work Foundations of Cryptography (see Figure 0.1). The
three parts of this work are Basic Tools, Basic Applications, and Beyond the Ba-
sics. The first part (containing Chapters 1-4) has been published by Cambridge
University Press (in June 2001). The second part, counsists of Chapters 5-7 (re-
garding Encryptioni Schemes, Signatures Schemes, and General Cryptographic
Protocols, respectively). We hope to publish the second part with Cambridge
University Press within a couple of years.

Part 1: Introduction and Basic Tools
Chapter 1: Introduction
Chapter 2: Computational Difficulty (One-Way Functions)
Chapter 3: Pseudorandom Generators
Chapter 4: Zero-Knowledge Proofs
Part 2: Basic Applications
Chapter 5: Encryption Schemes
Chapter 6: Signature Schemes
Chapter 7: General Cryptographic Protocols
Part 3: Beyond the Basics

Figure 0.1: Organization of this work
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The partition of the work into three parts is a logical one. Furthermore, it
offers the advantage of publishing the first part without waiting for the comple-
tion of the other parts. Similarly, we hope to complete the second part within a
couple of years, and publish it without waiting for the third part.

Prerequisites. The most relevant background for this text is provided by
basic knowledge of algorithms (including randomized ones), computability and
elementary probability theory. Background on (computational) number theory,
which is required for specific implementations of certain constructs, is not really
required here.

Using this text. The text is intended as part of a work that is aimed to serve
both as a textbook and a reference text. That is, it is aimed at serving both the
beginner and the expert. In order to achieve this aim, the presentation of the
basic material is very detailed so to allow a typical CS-undergraduate to follow
it. An advanced student (and certainly an expert) will find the pace (in these
parts) way too slow. However, an attempt was made to allow the latter reader
to easily skip details obvious to him/her. In particular, proofs are typically
presented in a modular way. We start with a high-level sketch of the main ideas,
and only later pass to the technical details. Passage from high-level descriptions
to lower level details is typically marked by phrases such as details follow.

In a few places, we provide straightforward but tedious details in in-
dented paragraphs as this one. In some other (even fewer) places such
paragraphs provide technical proofs of claims that are of marginal rele-
vance to the topic of the book.

More advanced material is typically presented at a faster pace and with less
details. Thus, we hope that the attempt to satisfy a wide range of readers will
not harm any of them.

Teaching. The material presented in the full (three-volume) work is, on one
hand, way beyond what one may want to cover in a course, and on the other
hand falls very short of what one may want to know about Cryptography in
general. To assist these conflicting needs we make a distinction between basic
and advanced material, and provide suggestions for further reading (in the last
section of each chapter). In particular, sections, subsections, and subsubsections
marked by an asterisk (*) are intended for advanced reading.
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Chapter 5

Encryption Schemes

Up-to the 1970’s, Cryptography was understood as the art of building encryption
schemes; that is, the art of constructing schemes allowing secret data exchange
over insecure channels. Since the 1970’s, other tasks (e.g., signature schemes)
have been recognized as falling within the domain of Cryptography (and even as
being at least as central to Cryptography). Yet, the construction of encryption
schemes remains, and is likely to remain, a central enterprise of Cryptography.

In this chapter we review the well-known notions of private-key and public-
key encryption schemes. More importantly, we define what is meant by saying
that such schemes are secure. It turns out that using randomness throughout
the encryption process (i.e., not only at the key-generation phase) is essential to
security. We present some basic constructions of secure (private-key and public-
key) encryption schemes. Finally, we discuss “dynamic” notions of security
culminating in robustness against chosen ciphertext attacks.

Teaching Tip: We assume that the reader is familiar with the material in
previous chapters (and specifically with Sections 2.2, 2.4, 2.5, 3.2-3.4, and 3.6).
This familiarity is important not only because we use some of the notions and
results presented in these sections, but rather because we use similar proof tech-
niques (and do it while assuming that this is not the reader’s first encounter
with these techniques).

5.1 The Basic Setting

Loosely speaking, encryption schemes are supposed to enable private communi-
cation between parties that communicate over an insecure channel. Thus, the
basic setting consists of a sender, a receiver, and an insecure channel that may
be tapped by an adversary. The goal is to allow the sender to transfer infor-
mation to the receiver, over the insecure channel, without letting the adversary
figure out this information. Thus, we distinguish between the actual (secret)
information that the receiver wishes to transmit and the messages sent over the

359
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insecure communication channel. The former is called the plaintext, whereas
the latter is called the ciphertext. Clearly, the ciphertext must differ from the
plaintext or else the adversary can easily obtain the plaintext by tapping the
channel. Thus, the sender must transform the plaintext into a ciphertext so
that the receiver can retrieve the plaintext from the ciphertext, but the adver-
sary cannot do so. Clearly, something must distinguish the receiver (who is able
to retrieve the plaintext from the corresponding ciphertext) from the adversary
(who cannot do so). Specifically, the receiver know something that the adversary
does not know. This thing is called a key.

An encryption scheme consists of a method of transforming plaintexts to ci-
phertexts and vice versa, using adequate keys. These keys are essential to the
ability to effect these transformations. We stress that the encryption scheme it-
self (i.e., the encryption/decryption algorithms) may be known to the adversary,
and its security relies on the hypothesis that the adversary does not know the
keys.! Formally, we need to consider a third algorithm; namely, a probabilistic
algorithm used to generate keys. This algorithm must be probabilistic (or else,
by invoking it the adversary obtains the very same key used by the receiver).

In accordance with the above, an encryption scheme consists of three algo-
rithms. These algorithms are public (i.e., known to all parties). The obvious
algorithms are the encryption algorithm, which transforms plaintexts to cipher-
texts, and the decryption algorithm, which transforms ciphertexts to plaintexts.
By the discussion above, it is clear that the description algorithm must employ
a key that is known to the receiver but is not known to the adversary. This
key is generated using a third algorithm, called the key-generator. Furthermore,
it is not hard to see that the encryption process must also depend on the key
(or else messages sent to one party can be read by a different party who is also
a potential receiver). Thus, the key-generation algorithm is used to produce a
pair of (related) keys, one for encryption and one for decryption. The encryption
algorithm, given an encryption-key and a plaintext, produces a plaintext that
when fed to the decryption algorithm, with the corresponding decryption-key,
returns the original plaintext. We stress that knowledge of the decryption-key
is essential for the latter transformation.

5.1.1 Private-Key versus Public-Key Schemes

A fundamental distinction between encryption schemes refers to the rela-
tion between the two keys (mentioned above). The simpler (and older) notion
assumes that the encryption-key equals the decryption-key. Such schemes are
called private-key (or symmetric). To use a private-key scheme, the legitimate
parties must first agree on the secret key. This can be done by having one party
generate the key at random and send it to the other party using a (secondary)
channel that (unlike the main channel) is assumed to be secure (i.e., it can not

1 In fact, in many cases, the legitimate interest may be served best by publicizing the
scheme itself. In our opinion, this is the best way to obtain an (unbiased) expert evaluation
of the security of the scheme.
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plaintext plaintext
ciphertext
X E 7777777777777777777777777777777 D X
K K

Sender’s protected region Recelver's protected region

ADVERSARY

The key K is known to both receiver and sender, but is un-
known to the adversary. For example, the receiver may generate
K at random and pass it to the sender via a perfectly-private
secondary channel (not shown here).

Figure 5.1: Private-key encryption schemes — an illustration.

be tapped by the adversary). A crucial point is that the key is generated inde-
pendently of the plaintext, and so it can be generated and exchanged prior to
the plaintext even being determined. Thus, private-key encryption is a way of
extending a private channel over time: If the parties can use a private channel
today (e.g., they are currently in the same physical location) but not tomorrow,
then they can use the private channel today to exchange a secret key that they
may use tomorrow for secret communication. A simple example of a private-key
encryption scheme is the one-time pad. The secret key is merely a uniformly
chosen sequence of n bits, and an n-bit long ciphertext is produced by XORing
the plaintext, bit-by-bit, with the key. The plaintext is recovered from the ci-
phertext in the same way. Clearly, the one-time pad provides absolute security.
However, its usage of the key is inefficient; or, put in other words, it requires keys
of length comparable to the total length of data communicated. In the rest of
this chapter we will only discuss encryption schemes where n-bit long keys allow
to securely communicated data of length greater than n (but still polynomial in

A new type of encryption schemes has emerged in the 1970’s. In these
schemes, called public-key (or asymmetric), the decryption-key differs from the
encryption-key. Furthermore, it is infeasible to find the decryption-key, given
the encryption-key. These schemes enable secure communication without ever
using a secure channel. Instead, each party applies the key-generation algorithm
to produce a pair of keys. The party, called P, keeps the decryption-key, denoted
dp, secret and publishes the encryption-key, denoted ep. Now, any party can
send P private messages by encrypting them using the encryption-key ep. Party
P can decrypt these messages by using the decryption-key dp, but nobody else
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plaintext plaintext
ciphertext
X E 7777777777777777777777777777777 D X

e
e— 1€ d
Sender’s protected region Recelver's protected region

ADVERSARY

The key-pair (e,d) is generated by the receiver, who posts the
encryption-key e on a public media, while keeping the decryption-
key d secret.

Figure 5.2: Public-key encryption schemes — an illustration.

can do so.

5.1.2 The Syntax of Encryption Schemes

We start by defining the basic mechanism of encryption schemes. This definition
says nothing about the security of the scheme (which is the subject of the next
section).

Definition 5.1.1 (encryption scheme): An encryption scheme is a triple, (G, E, D),
of probabilistic polynomial-time algorithms satisfying the following two condi-
tions

1. On input 1™, algorithm G (called the key-generator) outputs a pair of bit
strings.

2. For every pair (e,d) in the range of G(1™), and for every a € {0,1}*,
algorithms E (encryption) and D (decryption) satisfy

Pr(D(d,E(e,a))=a] =1

where the probability is taken over the internal coin tosses of algorithms E
and D.

The integer n serves as the security parameter of the scheme. FEach (e,d) in
the range of G(1™) constitutes a pair of corresponding encryption/decryption
keys. The string E(e, ) is the encryption of the plaintext « € {0,1}* using the
encryption-key e, whereas D(d,[3) is the decryption of the ciphertext 8 using
the decryption-key d.



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.2. DEFINITIONS OF SECURITY 363

We stress that Definition 5.1.1 says nothing about security, and so trivial (in-

secure) algorithms may satisty it (e.g., E(e,a) = « and D(d,) < 3). Fur-

thermore, Definition 5.1.1 does not distinguish private-key encryption schemes
from public-key ones. The difference between the two types is introduced in the
security definitions: In a public-key scheme the “breaking algorithm” gets the
encryption-key (i.e., €) as an additional input (and thus e # d follows); while
in private-key schemes e is not given to the “breaking algorithm” (and thus one
may assume, without loss of generality, that e = d).

We stress that the above definition requires the scheme to operate for every
plaintext, and specifically for plaintext of length exceeding the length of the
encryption-key. (This rules out the information theoretic secure “one-time pad”
scheme mentioned above.)

Notation: In the rest of this text, we write E.(«) instead of E(e, «) and D4(3)
instead of D(d, ). Sometimes, when there is little risk of confusion, we drop
these subscripts. Also, we let G1(1™) (resp., G2(1™)) denote the first (resp.,
second) element in the pair G(1™). That is, G(1™) = (G1(1"), G2(1™)). Without
loss of generality, we may assume that |G1(1™)| and |G2(1™)| are polynomially
related to n, and that each of these integers can be efficiently computed from
the other. (In fact, we may even assume that |G1(1™)|] = |G2(1™)] = n; see
Exercise 5.)

Comments: Definition 5.1.1 may be relaxed in several ways without signif-
icantly harming its usefulness. For example, we may relax Condition (2) and
allow a negligible decryption error (e.g., Pr[D4(E.(a)) # a] < 27™). Alterna-
tively, one may postulate that Condition (2) holds for all but a negligible measure
of the key-pairs generated by G(1™). At least one of these relaxations is essential
for each of the popular suggestions of encryption schemes.

Another relaxation consists of restricting the domain of possible plaintexts
(and ciphertexts). For example, one may restrict Condition (2) to a’s of length
¢(n), where £ : N— N is some fixed function. Given a scheme of the latter type
(with plaintext length ¢), we may construct a scheme as in Definition 5.1.1 by
breaking plaintexts into blocks of length ¢(n) and applying the restricted scheme
separately to each block. For more details see Sections 5.2.4 and 5.3.2.

5.2 Definitions of Security

In this section we present two fundamental definitions of security and prove their
equivalence. The first definition, called semantic security, is the most natural
one. Semantic security is a computational complexity analogue of Shannon’s
definition of perfect privacy (which requires that the ciphertext yields no in-
formation regarding the plaintext). Loosely speaking, an encryption scheme is
semantically secure if it is infeasible to learn anything about the plaintext from
the ciphertext (i.e., impossibility is replaced by infeasibility). The second def-
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inition has a more technical flavor. It interprets security as the infeasibility of
distinguishing between encryptions of a given pair of messages. This definition
is useful in demonstrating the security of a proposed encryption scheme, and for
the analysis of cryptographic protocols that utilize an encryption scheme.

We stress that the definitions presented below go way beyond saying that it
is infeasible to recover the plaintext from the ciphertext. The latter statement
is indeed a minimal requirement from a secure encryption scheme, but we claim
that it is way too weak a requirement: An encryption scheme is typically used in
applications where obtaining specific partial information on the plaintext endan-
gers the security of the application. When designing an application-independent
encryption scheme, we do not know which partial information endangers the
application and which does not. Furthermore, even if one wants to design an
encryption scheme tailored to one’s own specific applications, it is rare (to say
the least) that one has a precise characterization of all possible partial informa-
tion that endanger these applications. Thus, we require that it is infeasible to
obtain any information about the plaintext from the ciphertext. Furthermore,
in most applications the plaintext may not be uniformly distributed and some
a-priori information regarding it may be available to the adversary. We require
that the secrecy of all partial information is preserved also in such a case. That
is, even in presence of a-priori information on the plaintext, it is infeasible to
obtain any (new) information about the plaintext from the ciphertext (beyond
what is feasible to obtain from the a-priori information on the plaintext). The
definition of semantic security postulates all of this.

Security of multiple plaintexts. In continuation to the above discussion,
the definitions are presented first in terms of the security of a single encrypted
plaintext. However, in many cases, it is desirable to encrypt many plaintexts
using the same encryption-key, and security needs to be preserved in these cases
too. Adequate definitions and discussions are deferred to Section 5.2.4.

A technical comment: non-uniform complexity formulation. To sim-
plify the exposition, we adopt a non-uniform formulation. Namely, in the secu-
rity definitions we expand the domain of efficient adversaries/algorithms to in-
clude (explicitly or implicitly) non-uniform polynomial-size circuits, rather than
only probabilistic polynomial-time machines. Likewise, we make no computation
restriction regarding the probability distribution from which messages are taken,
nor regarding the a-priori information available on these messages. We note that
employing such a non-uniform complexity formulation (rather than a uniform
one) may only strengthen the definitions; yet, it does weaken the implications
proven between the definitions, since these (simpler) proofs make free usage of
non-uniformity. A uniform-complexity treatment is provided in Section 5.2.5.
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5.2.1 Semantic Security

Loosely speaking, semantic security means that whatever can be efficiently com-
puted from the ciphertext, can be efficiently computed also without the cipher-
text. Thus, an adversary gains nothing by intercepting ciphertexts sent between
communicating parties who use a semantically secure encryption scheme, since
it could have obtained the same without intercepting these ciphertexts. Indeed,
this formulation follows the simulation paradigm: “lack of gain” is captured by
asserting that whatever is learned from the ciphertext can be learned within
related complexity also without the ciphertext.

5.2.1.1 The actual definitions

To be somewhat more accurate, semantic security means that whatever can be
efficiently computed from the ciphertext, can be efficiently computed when given
only the length of the plaintext. Note that this formulation does not rule out the
possibility that the length of the plaintext can be inferred from the ciphertext.
Indeed, some information about the length of the plaintext must be revealed by
the ciphertext (see Exercise 3). We stress that other than information about
the length of the plaintext, the ciphertext is required to yield nothing about the
plaintext.

In the actual definitions, we consider only information regarding the plain-
text (rather than regarding something else like the ciphertext) that can be ob-
tained from the ciphertext. Furthermore, we restrict our attention to functions
(rather than to randomized processes) applied to the plaintext. We do so be-
cause of the intuitive appeal of this special case, and are comfortable doing so
because this special case implies the general one (cf. Exercise 12). We augment
this formulation by requiring that the above remains valid even in presence of
auxiliary partial information about the plaintext. Namely, whatever can be effi-
ciently computed from the ciphertext and additional partial information about
the plaintext, can be efficiently computed given only the length of the plaintext
and the same partial information. In the definition that follows, the informa-
tion regarding the plaintext that the adversary tries to obtain is captured by
the function f, whereas the a-priori partial information about the plaintext is
captured by the function h. The above is required to hold for any distribution
of plaintexts, captured by the probability ensemble { X}, cn-

Security holds only for plaintexts of length polynomial in the security pa-
rameter. This is captured below by the restriction |X,| = poly(n). Note that
we cannot hope to provide computational security for plaintexts of unbounded
length in the security parameter (see Exercise 2). Likewise, we restrict the func-
tions f and h to be polynomially-bounded; that is, | f(z)|, |h(z)| = poly(|z]).

The difference between private-key and public-key encryption schemes is
manifested in the definition of security. In the latter case, the adversary (which
is trying to obtain information on the plaintext) is given the encryption-key,
whereas in the former case it is not. Thus, the difference between these schemes
amounts to a difference in the adversary model (considered in the definition
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of security). We start by presenting the definition for private-key encryption
schemes.

Definition 5.2.1 (semantic security — private-key): An encryption scheme,
(G,E, D), is semantically secure (in the private-key model) if for every proba-
bilistic polynomial-time algorithm A there exists a probabilistic polynomial-time
algorithm A’ so that for every ensemble {X,},en, with |X,| = poly(n), every
pair of polynomially-bounded functions f,h : {0,1}* — {0,1}*, every polynomial
p(+) and all sufficiently large n

Pr [A(1", Bg, (1) (Xn), 150, h(X)) = (X,)
1
(n

< PrlAn Pl RO =7 (6| + s
p
(The probability in the above terms is taken over X,, as well as over the internal
coin tosses of algorithms either G, E and A or A'.)

The input 1™ is given to both algorithms for technical reasons.? The function h
provides both algorithms with partial information regarding the plaintext X,.
Furthermore, h also makes the definition implicitly non-uniform; see further
discussion below. In addition, both algorithms get the length of X,. These
algorithms then try to guess the value f(X,,); namely, they try to infer informa-
tion about the plaintext X,,. Loosely speaking, in semantically secure encryption
scheme the ciphertext does not help in this inference task. That is, the success
probability of any efficient algorithm (i.e., algorithm A) that is given the cipher-
text, can be matched, up-to a negligible fraction, by the success probability of
an efficient algorithm (i.e., algorithm A’) that is not given the ciphertext at all.
Definition 5.2.1 refers to private-key encryption schemes. To derive a def-
inition of security for public-key encryption schemes, the encryption-key (i.e.,
G1(1™)) should be given to the adversary as an additional input. That is,

Definition 5.2.2 (semantic security — public-key): An encryption scheme, (G, E, D),
is semantically secure (in the public-key model) if for every probabilistic polynomial-
time algorithm A, there exists a probabilistic polynomial-time algorithm A’ such

that for every {X,}nen, f,h, p(-) and n as in Definition 5.2.1

Pr [4(17, G1 (1), Eg, 1) (X0), 1501, B(X,)) = (X)

1
< Pr[a(m A R(X)) = F(Xa)| + =
p(n)
We comment that it is pointless to give the random encryption-key (i.e., G1(1™))
to algorithm A’ (since the task and main inputs of A’ are unrelated to the
encryption-key, and anyhow A’ could generate a random encryption-key by it-
self).

2 The role of the auxiliary input 17 is to allow smooth transition to fully non-uniform
formulations as discussed below and as in Definition 5.2.3.
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Terminology: For sake of simplicity, we refer to an encryption scheme that is
semantically secure in the private-key (resp., public-key) model as to a semantically-
secure private-key (resp., public-key) encryption scheme.

The reader may note that a semantically-secure public-key encryption scheme
cannot employ a deterministic encryption algorithm; that is, E.(z) must be a
random variable rather than a fixed string. This is more evident with respect to
the equivalent Definition 5.2.4 (below). See further discussion following Defini-
tion 5.2.4.

5.2.1.2 Further discussion of some definitional choices

We discuss several secondary issues regarding Definitions 5.2.1 and 5.2.2. The in-
terested reader is also referred to Exercises 16, 15 and 17 that present additional
variants of the definition of semantic security.

Implicit non-uniformity of the definitions. The fact that A is not required
to be computable, makes the above definitions non-uniform. This is the case be-
cause both algorithms are given h(X,,) as auxiliary input, and this may account
for arbitrary (polynomially-bounded) advise. For example, letting h(z) = a4,
means that both algorithms are supplied with (non-uniform) advice (as in one of
the possible formulations of non-uniform polynomial-time; see Section 1.3.3). In
general, the function h can code both information regarding its input and non-
uniform advice depending on its input length (i.e., h(z) = (h'(7),a),|)). Thus,
the above definitions are equivalent to allowing A and A’ be related families of
non-uniform circuits, where by ‘related’ we mean that the circuits in the family
A" = {A]},en can be efficiently computed from the corresponding circuits in
the family A = {A,},cn. For further discussion, see Exercise 8.

Lack of computational restrictions regarding the function f. We do
not require that the function f is even computable. This seems strange at
first glance, because (unlike the situation w.r.t A which codes a-priori infor-
mation given to the algorithms) the algorithms are asked to guess the value
of f (on a plaintext implicit in the ciphertext given only to A). However, as
we shall see in the sequel (see also Exercise 12), the meaning of semantic se-
curity is essentially that the distribution ensembles (E(X,), 1% h(X,)) and
(BE(11%1), 11X+1 'h(X,,)) are computationally indistinguishable (and so whatever
A can compute can also be computed by A’).

Other modifications of no impact. Actually, inclusion of a-priori informa-
tion regarding the plaintext (captured by the function h) does not affect the
definition of semantic security: Definition 5.2.1 remains intact if we restrict h
to only depend on the length of the plaintext (and so only provide plaintext-
oblivious non-uniform advice). (This can be shown in various ways; e.g., see
Exercise 13.1.) Also, the function f can be restricted to be a Boolean function
having polynomial-size circuits, and the random variable X,, may be restricted
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to be very “dull” (e.g., have only two strings in its support): See proof of Theo-
rem 5.2.5. On the other hand, Definition 5.2.1 implies stronger forms discussed
in Exercises 12, 17 and 18.

5.2.2 Indistinguishability of Encryptions

The following technical interpretation of security states that it is infeasible to
distinguish the encryptions of two plaintexts (of the same length). That is, such
ciphertexts are computationally indistinguishable as defined in Definition 3.2.7.
Again, we start with the private-key variant.

Definition 5.2.3 (indistinguishability of encryptions — private-key): An en-
cryption scheme, (G, E, D), has indistinguishable encryptions (in the private-key
model) if for every polynomial-size circuit family {C,}, every polynomial p, all
sufficiently large n and every x,y € {0,1}P°V( (ie., |z| = |y|),

1
IPr [C(Eg, (1) (2))=1] = Pr[Cu(Eg,an)(y)=1] | < p(n)
The probability in the above terms is taken over the internal coin tosses of algo-
rithms G and E.

Note that the potential plaintexts to be distinguished can be incorporated into
the circuit C),,. Thus, the circuit models both the adversary’s strategy and its
a-priori information: See Exercise 10.

Again, the security definition for public-key encryption schemes can be de-
rived by adding the encryption-key (i.e., G1(1™)) as an additional input to the
algorithm. That is,

Definition 5.2.4 (indistinguishability of encryptions — public-key): An encryp-
tion scheme, (G, E, D), has indistinguishable encryptions (in the public-key model)
if for every polynomial-size circuit family {C,}, and every p(-), n, x and y as
in Definition 5.2.3

n n 1
|Pr [Cn(Gl(l ),E(;l(ln.)(fﬂ))Z].] — Pr [Cn(Gl(]. ),EGl(ln)(y))Zl] | < m
Terminology: For sake of simplicity, we refer to an encryption scheme that has
indistinguishable encryptions in the private-key (resp., public-key) model as to
a ciphertext-indistinguishable private-key (resp., public-key) encryption scheme.

Failure of deterministic encryption algorithms: A ciphertext-indistinguishable
public-key encryption scheme cannot employ a deterministic encryption algo-
rithm (i.e., E.(z) cannot be a fixed string). For a public-key encryption scheme
with a deterministic encryption algorithm E, given an encryption-key e and a
pair of candidate plaintexts (z,y), one can easily distinguish E,.(z) from E.(y)
(by merely applying E. to  and comparing the result to the given cipher-
text). In contrast, in case the encryption algorithm itself is randomized, the
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same plaintext can be encrypted in exponentially many different ways, under
the same encryption-key. Furthermore, the probability that applying E. twice
to the same message (while using independent randomization in E.) results in
the same ciphertext may be exponentially vanishing. (Indeed, as shown be-
low, public-key encryption scheme having indistinguishable encryptions can be
constructed based on any trapdoor permutations, and these schemes employ
randomized encryption algorithms.)

5.2.3 Equivalence of the Security Definitions

The following theorem is stated and proven for private-key encryption schemes.
A similar result holds for public-key encryption schemes (see Exercise 11).

Theorem 5.2.5 (equivalence of definitions — private-key): A private-key en-
cryption scheme is semantically secure if and only if it has indistinguishable
encryptions.

Let (G, E, D) be an encryption scheme. We formulate a proposition for each of
the two directions of the above theorem. Each proposition is in fact stronger
than the corresponding direction stated in Theorem 5.2.5. The more useful
direction is stated first: it asserts that the technical interpretation of security, in
terms of ciphertext-indistinguishability, implies the natural notion of semantic
security. Thus, the following proposition yields a methodology for designing
semantically secure encryption schemes: design and prove your scheme to be
ciphertext-indistinguishable, and conclude (by applying the proposition) that
it is semantically secure. The opposite direction (of Theorem 5.2.5) establish
the “completeness” of the latter methodology, and more generally assert that
requiring an encryption scheme to be ciphertext-indistinguishable does not rule
out schemes that are semantically secure.

Proposition 5.2.6 (useful direction — “indistinguishability” implies “security” ):
Suppose that (G, E, D) is a ciphertext-indistinguishable private-key encryption
scheme. Then (G,E,D) is semantically-secure. Furthermore, the simulating
algorithm A’ (which is used to establish semantic-security) captures the com-
putation of a probabilistic polynomial-time oracle machine that is given oracle
access to original adversary algorithm A.

Proposition 5.2.7 (opposite direction — “security” implies “indistinguishabil-
ity”): Suppose that (G, E, D) is a semantically secure private-key encryption
scheme. Then (G, E,D) has indistinguishable encryptions. Furthermore, the
conclusion holds even if the definition of semantic security is restricted to the
special case satisfying the following four conditions:

1. the random variable X, is uniformly distributed over a set containing two
strings;

2. the value of h depends only on the length of its input (i.e., h(xz) = h'(|z]));



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

370 CHAPTER 5. ENCRYPTION SCHEMES

3. the function f is Boolean and is computable by a polynomial-size circuit;
4. the algorithm A is deterministic.

In addition, no computational restrictions are placed on algorithm A’ and it can
be replaced by any function, which may depend on {X,},en, b, f and A.

Observe that the above four itemized conditions limit the scope of the four
universal quantifiers in Definition 5.2.1, whereas the last sentence removes a
restriction on the existential quantifier (i.e., removes the complexity bound on
A") and allows the latter to depend on all universal quantifiers. Each of these
modifications makes the resulting definition potentially weaker. Still, combining
Propositions 5.2.7 and 5.2.6 it follows that a weak version of Definition 5.2.1
implies (an even stronger version than) the one stated in Definition 5.2.1.

5.2.3.1 Proof of Proposition 5.2.6.

Suppose that (G, E, D) has indistinguishable encryptions. We will show that
(G, E, D) is semantically secure by constructing, for every probabilistic polynomial-
time algorithm A, a probabilistic polynomial-time algorithm A’ such that the
following holds: for every {X,},en, f and h, algorithm A’ guesses f(X,,) from
(17, 11Xl 'h(X,))) essentially as good as A guesses f(X,,) from (1%, B(X,), 11X h(X,)).
Specifically, A’ merely invokes A on input (E(11%#I), 11Xl h(X,)), and returns
whatever A does. That is, A’ invokes A with a dummy encryption rather than
with an encryption of X,, (which A expects to get, but A’ does not have). In-
tuitively, the indistinguishability of encryptions implies that A behaves as well
when invoked by A’ (and given a dummy encryption) as when given the encryp-
tion of X,,, and this establishes the desired claim. Below, we merely implement
the above plan, where the main issue in the implementation is to who that the
specific formulation of indistinguishability of encryptions suffices to establish the
above eluded “similar behavior” clause (which refers in success in guessing the
value of f(X,))-

Let A be an algorithm that tries to infer partial information (i.e., the value
f(X,)) from the encryption of the message X,, (when also given 17, 11X and a-
priori information h(X,)). Intuitively, on input E(a) and (1!°!, h(a)), algorithm
A tries to guess f(a). We construct a new algorithm, A’, that performs as well
without getting the input E(a). The new algorithm consists of invoking A on
input EGl(ln)(lk"‘) and (17, 1%, h(a)), and outputting whatever A does. That
is, on input (1", 1%, h()), algorithm A’ proceeds as follows:

1. A’ invokes the key-generator G (on input 1™), and obtains an encryption-

key e — G1(1™).

2. A’ invokes the encryption algorithm with key e and (“dummy”) plaintext

11¢l obtaining a ciphertext 3 « FE,(1/%1).

3. A" invokes A on input (3,1!%! h(«)), and outputs whatever A does.

Observe that A’ is described in terms of an oracle machine that makes a single
oracle call to (any given) A, in addition to invoking the fixed algorithms G
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and E. Furthermore, the construction of A’ does not depend on the functions
h and f or on the distribution of messages to be encrypted (represented by
the probability ensembles {X,,}, cn). Thus, A’ is probabilistic polynomial-time
whenever A is probabilistic polynomial-time (and regardless of the complexity
of h, f and {X,},en)

Indistinguishability of encryptions will be used to prove that A’ performs
essentially as well as A. Specifically, the proof will use a reducibility argument.

Claim 5.2.6.1: Let A’ be as above. Then, for every {X,},cn, f, h and p as in
Definition 5.2.1, and all sufficiently large n’s

Pr [A(1", Bg, (1) (Xa), 1 (X)) = £(Xa)

< Pr [A’(l”, 1‘X"-‘,h(Xn)):f(Xn)] + ﬁ

Proof: To simplify the notations, let us incorporate (17,1/%l) into h(a). Using
the definition of A’, we can rewritten the claim as asserting

Pr[A(Eg, (1n)(Xn), h(X0)) = f(Xn)]

< Pr[AEe, @ (171), () = F(X)] + —

p(n)
Intuitively, this follows by the indistinguishability of encryptions, by fixing a
violating value of X,, and incorporating the corresponding values of h(X,,) and
f(X,) in a description of a circuit (which will distinguish an encryption of this
value of X,, from an encryption of 11%=l). Details follow.

Assume, towards the contradiction that for some polynomial p and infinitely

many n’s the above inequality is violated. Then, for each such n, we have
E[A(X,)] > 1/p(n), where

Pr [A(Eg, 10)(2), h(@) = f(0)] — Pr [A(Eg, 0 (1), h(2) = f(a)

We use an averaging argument to single out a string z,, in the support of X,
such that A(z,) > A(X,): That is, let z,, € {0,1}P°¥(") be a string for which
the value of A(:) is maximum, and so A(z,) > 1/p(n). Using this z,, we
introduce a circuit Cy, which incorporates the fixed values f(z,) and h(z,),
and distinguishes the encryption of z,, from the encryption of 1/*»I. The circuit
C,, operates as follows. On input 8 = E(«), the circuit C,, invokes A(S, h(x,,))
and outputs 1 if and only if A outputs the value f(z,). Otherwise, C,, outputs
0.

The above circuit is indeed of polynomial-size because it merely incorporates
strings of polynomial length (i.e., f(x,) and h(z,)) and emulates a polynomial-
time computation (i.e., of A). (Note that the circuit family {C,} is indeed
non-uniform since its definition is based on a non-uniform selection of z,,’s as
well as on a hard-wiring of (possibly uncomputable) corresponding strings h(z,,)
and f(z,).) Clearly,

Pr[Cu(Eg,1n)())=1] = Pr [A(Eg, 1) (@), h(wn)) = f(za)]  (5.1)

NG
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Combining Eq. (5.1) with the definition of A(z,), we get

)

> —

)

This contradicts our hypothesis that E has indistinguishable encryptions, and
the claim follows. O

‘Pr [Co( By (1) (20)) =1] — Pr [Cn(E(;l(l,,.)(l'z"'))=1]‘ = Alzn
1
p(n

We have just shown that A’ performs essentially as well as A, and so Proposition
5.2.6 follows.

Comments: The fact that we deal with a non-uniform model of computation
allows the above proof to proceed regardless of the complexity of f and h. All
that our definition of C,, requires is the hardwiring of the values of f and h on a
single string, and this can be done regardless of the complexity of f and h (pro-
vided that they are both polynomially-bounded; i.e., | f(z)[, |h(z)| = poly(|z|)).

When proving the public-key analogue of Proposition 5.2.6, algorithm A’ is
defined exactly as above, but its analysis is slightly different: the distinguish-
ing circuit, considered in the analysis of the performance of A’, obtains the
encryption-key as part of its input, and passes it to algorithm A (upon invoking
it).

5.2.3.2 Proof of Proposition 5.2.7

Intuitively, indistinguishability of encryption (i.e., of the encryptions of z,, and
yn) Is a special case of semantic security in which f indicates one of the plaintexts
and h does not distinguish them (i.e., f(z) = 1 iff z = z,, and h(z,) = h(yn))-
The only issue to be addressed by the actual proof is that semantic security
refers to uniform (probabilistic polynomial-time) adversaries, whereas indistin-
guishability of encryption refers to non-uniform polynomial-size circuits. This
gap is bridged by using the function h to provide the algorithms in the semantic-
security formulation with adequate non-uniform advice (which may be used by
the circuit in the indistinguishability of encryption formulation).

The actual proof is by a (direct) reducibility argument. We show that if
(G,E, D) has distinguishable encryptions then it is not semantically secure
(not even in the restricted sense mentioned in the furthermore-clause of the
proposition). Towards this end, we assume that there exists a polynomial p,
a polynomial-size circuit family {C,}, such that for infinitely many n’s there
exists @, y, € {0,1}P°V(") 50 that

|Pr [Cn(EG,(17)(#n))=1] = Pr [Ca(Eg, (1n)(yn))=1]| > % (5.2)

Using this sequence of C,,’s, z,,’s and y,,’s, we define {X,, },cn, f and h (referred
to in Definition 5.2.1) as follows:
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e The probability ensembles {X,}, c is defined such that X, is uniformly
distributed over {z,, ¥y, }.

e The function f:{0,1}*—{0,1} is defined such that f(z,) =1 and f(y,) =
0, for every n. Note that f(X,) = 1 with probability 1/2 and is 0 otherwise.

e The function h is defined such that h(X,) equals the description of the
circuit C,,. Note that h(X,) = C,, with probability 1, and thus reveals no
information on the value of X,,. (In the sequel, we write h(X,,) = h'(n) =
Cyp.)

(Note that X,,, f and h satisfy the restrictions stated in the furthermore-clause
of the proposition.)

We will present a (deterministic) polynomial-time algorithm A that, given
C,n = h(X,), guesses the value of f(X,,) from the encryption of X,,, and does
so significantly better that with probability % This violates (even the restricted
form of) semantic security, since no algorithm (regardless of its complexity) can
guess f(X,) better than with probability 1/2 when only given 11%! (because
given the constant values 1%+ and h(X,), the value of f(X,) is uniformly
distributed over {0,1}). Details follow.

Let us assume, without loss of generality, that for infinitely many n’s

Pr Co(Eayamy(@n))=1] > Pr[CalBoyan ) =1] + oo (53

Claim 5.2.7.1: There exists a (deterministic) polynomial-time algorithm A such
that for infinitely many n’s

1
2p(n)
Proof: Algorithm A uses C,, = h(X,) in a straightforward manner: On input
B = E(a) (where a is in the support of X,,) and (17, 1%/, h(a)), algorithm A

recovers C,, = h'(|X,|) = h(a), invokes C,, on input 3, and outputs 1 if C,
outputs 1 (otherwise, C,, outputs 0).3

Pr [A(l",EGl(ln)(Xn),1|X"‘,h(Xn)):f(Xn)] > %+

It is left to analyze the success probability of A. Letting m = |z,| = |yn|, we
have

Pr [A(L", B, (10)(X0), 171, B(X0)) = f(X)
= 5 P[4, B (), 150 (X)) = £(X0) | X =2

1
5P [A07, Bo, ) (Xa), 170, B(X0) = £(X0) | X =30

3 We comment that the ‘1’ output by Cj is an indication that o is more likely to be @,
whereas the output of A is a guess of f(«). This point may be better stressed by redefining f
def . . .
so that f(zn) = 2, and f(x) = yn if © # xn, and having A output z, if Cp outputs 1 and
output y, otherwise.
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1 ‘I"‘

= 5 Pr[AQ" Egyumy (), 174, G =1]

1

+ 5 Pr A 1" EG1 171)(yn) ‘yr1‘7cn)=0j|
1

= 5 (Pr [Cn(Eg,(1n)(#n))=1] + 1 = Pr [Cr(Eg, 17y (yn)) =1])

> 1,1
2 2p(n)

where the inequality is due to Eq. (5.3). O

In contrast, as observed above, no algorithm (regardless of its complexity)
can guess f(X,) with success probability above 1/2, when given only 1/%»| and
h(X.). That is, we have

Fact 5.2.7.2: For every n and every algorithm A’

IN
N =

Pr[A/(1, 1, B(X)) = ()] (5.4)
Proof: Just observe that the output of A’, on its constant input values 17, 11X
and h(X,), is stochastically independent of the random variable f(X,,), which
in turn is uniformly distributed in {0,1}. Eq. (5.4) follows (and equality holds
in case A" always outputs a value in {0,1}). O

Combining Claim 5.2.7.1 and Fact 5.2.7.2, we reach a contradiction to the
hypothesis that the scheme is semantically secure (even in the restricted sense
mentioned in the furthermore-clause of the proposition). Thus, the proposition
follows.

Comment: When proving the public-key analogue of Proposition 5.2.7, algo-
rithm A is defined as above except that it passes the encryption-key, given to it
as part of its input, to the circuit C,,. The rest of the proof remains intact.

5.2.4 Multiple Messages

The above definitions only refer to the security of an encryption scheme that
is used to encrypt a single plaintext (per a generated key). Since the plain-
text may be longer than the key, these definitions are already non-trivial, and
an encryption scheme satisfying them (even in the private-key model) implies
the existence of one-way functions (see Exercise 1). Still, in many cases, it is
desirable to encrypt many plaintexts using the same encryption-key. Loosely
speaking, an encryption scheme is secure in the multiple-message setting if anal-
ogous definitions (to the above) hold also when polynomially-many plaintexts
are encrypted using the same encryption-key.

We show that in the public-key model, security in the single-message set-
ting (discussed above) implies security in the multiple-message setting (defined
below). We stress that this is not necessarily true for the private-key model.
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5.2.4.1 Definitions

For a sequence of strings 7 = (z(1),...,z(")), we let E.(ZT) denote the sequence
of the ¢ results that are obtained by applying the randomized process E. to
the t strings (M), ..., 2™ respectively. That is, E.(T) = E.(z(), ..., E.(z®).
We stress that in each of these t invocations, the randomized process E. uti-
lizes independently chosen random coins. For sake of simplicity, we consider the
encryption of (polynomially) many plaintexts of the same (polynomial) length
(rather than the encryption of plaintexts of various lengths as discussed in Ex-
ercise 19). The number of plaintexts as well as their total length (in unary) are

given to all algorithms either implicitly or explicitly.*

Definition 5.2.8 (semantic security — multiple messages):

For private-key: An encryption scheme, (G, E, D), is semantically secure for
multiple messages in the private-key model if for every polynomial t(-)
and every probabilistic polynomial-time algorithm A, there exists a proba-
bilistic polynomial-time algorithm A' such that for every ensemble {X, =
(Xr(bl), ...,Xﬁt(")))}neN, with |X£f)| = poly(n), every pair of functions f, h :
{0,1}* — {0,1}*, every polynomial p(-) and all sufficiently large n

Pr [A(1", B, 1) (Xn), 15+ A(X0)) = £ ()]

< — — 1
Pr|A' (17, t(n), 1P h(X, ) =F(X)| + —
< Pr[AA o), 1P () = £ (X)] + s
For public-key: An encryption scheme, (G,E,D), is semantically secure for
multiple messages in the public-key model if for t(-), A, A’, {Xn}.eN,
fsh, p(¢) and n as above

Pr |:A(]-na Gl(ln)aFGﬂl"‘)(yn)a l‘ynla h(y’ﬂ)) = f(yn)

—

< Pra(an,a(m), 150 1)) = ()] + ﬁ

We stress that the elements of X,, are not necessarily independent; they may
depend on one another. Note that the above definition also cover the case where
the adversary obtains some of the plaintexts themselves. In this case it is still
infeasible for him/her to obtain information about the missing plaintexts (see
Exercise 21).

Definition 5.2.9 (indistinguishability of encryptions — multiple messages):

4 For example, A can infer the number of plaintexts from the number of ciphertexts, whereas
A’ is given this number explicitly. Given the number of the plaintexts as well as their total
length, both algorithms can infer the length of each plaintext.
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For private-key: An encryption scheme, (G,E, D), has indistinguishable en-
cryptions for multiple messages in the private-key model if for every poly-
nomial t(-), every polynomial-size circuit family {C,}, every polynomial p,
all sufficiently large n and every x1, ..., Tyn), Y1, - Yi(n) € 10, 1}1’OIY(”)

IPr [Cn(Bg,(1v)(2)) =1] = Pr [Co(Eg, 1 () =1] | < 7o)

where T = (21, ..., Ty(ny) and § = (Y1, -, Ye(n))-

For public-key: An encryption scheme, (G, E, D), has indistinguishable encryp-
tions for multiple messages in the public-key model if for t(-), {Crn}, p, n
and T1, .-, Ty(n), Y1, - Ye(n) 65 above

IPr [Cn(G1(1™), Eg,(1n)(2)) = 1] =Pr [Ch(G1(1"), B, (17)())

Il
Ml
A

The equivalence of Definitions 5.2.8 and 5.2.9 can be established analogously to
the proof of Theorem 5.2.5.

Theorem 5.2.10 (equivalence of definitions — multiple messages): A private-
key (resp., public-key) encryption scheme is semantically secure for multiple mes-
sages if and only if it has indistinguishable encryptions for multiple messages.

Thus, proving that single-message security implies multiple-message security for
one definition of security, yields the same for the other. We may thus concentrate
on the ciphertext-indistinguishability definitions.

5.2.4.2 The effect on the public-key model

We first consider public-key encryption schemes.

Theorem 5.2.11 (single-message security implies multiple-message security):
A public-key encryption scheme has indistinguishable encryptions for multiple
messages (i-e., satisfies Definition 5.2.9 in the public-key model) if and only if
it has indistinguishable encryptions for a single message (i.e., satisfies Defini-
tion 5.2.4).

Proof: Clearly, multiple-message security implies single-message security as a
special case. The other direction follows by adapting the proof of Theorem 3.2.6
to the current setting.

Suppose, towards the contradiction, that there exist a polynomial #(-), a
polynomial-size circuit family {C,,}, and a polynomial p, such that for infinitely
many n’s, there exists 1, ..., Ty(n), Y1, -+, Yg(n) € 10, 1}Po (™) 50 that

|Pr[Ca(G1(17), Eg,(17)(&)) =1] — Pr [Co(G1 (1), Eg,1my (7)) =1] | > ﬁ
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where T = (71, ..., Ty(n)) and § = (Y1, ..., Ys(n))- Let us consider such a generic n
and the corresponding sequences 1, ..., Ty(n) and yi, ..., Yy(n)- We use a hybrid
argument: define

) def (xl,...,fﬂi,yi+1;-"7yt("))
and H{) < (G1(1n)>EG1(1"‘)(ﬁ(i)))

Since HY = (G1(1"), Eg, 1n) (7)) and HY' ™) = (G1(1"), B¢y (10 (7)), it follows
that there exists an ¢ € {0, ...,¢(n) — 1} so that

(5.5)

n

‘Pr [cn(H“)):l] — Pr [Cn(H,S””)=1H > W) pn)

We show that Eq. (5.5) yields a polynomial-size circuit that distinguishes the
encryption of w;y; from the encryption of y;y1, and thus derive a contradic-
tion to security in the single-message setting. Specifically, we construct a cir-
cuit D,, that incorporates the circuit C,, as well as the index ¢ and the strings
T1y ey Tit1, Yitly o Ye(n)- O input an encryption-key e and (corresponding)
ciphertext [, the circuit D,, operates as follows:

e For every j < i, the circuit D, generates an encryption of x; using the
encryption-key e. Similarly, for every j > i + 2, the circuit D,, generates
an encryption of y; using the encryption-key e.

Let us denote the resulting ciphertexts by $1, ..., 8i, Bi+2, .-, Bi(n)- That is,
B — E.(x;) for j <iand 3; «— E.(y;) for j > i+ 2.

e Finally, D, invokes C,, on input the encryption-key e and the sequence of
ciphertexts (1, ..., Bi, B, Bit2, .-, By(n), and outputs whatever C,, does.

We stress that the construction of D,, relies in an essential way on the fact that
the encryption-key is given to it as input.

We now turn to the analysis of the circuit D,. Suppose that 8 is a (ran-
dom) encryption of x,+; with key e; that is, 8 = E.(x;+1). Then, D,(e,8) =
Cole, E.(Ri+DY)) = €, (HS™), where X = Y means that the random vari-
ables X and Y are identically distributed. Similarly, for 8 = E.(y;+1), we have
Dy (e, B) = Ch(e, E.(h))) = C,(HS”). Thus, by Eq. (5.5), we have

|Pr [Dn(G1(17), Egy1m) (yir1) =1]

—Pr [Do(G1(1"), Eg, (1) (wir1) =1] | > t(n) - p(n)

in contradiction to our hypothesis that (G, E, D) is a ciphertext-indistinguishable
public-key encryption scheme (in the single message sense). The theorem follows.
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Discussion: The fact that we are in the public-key model is essential to the
above proof. It allows the circuit D,, to form encryptions relative to the same
encryption-key used in the ciphertext given to it. In fact, as stated above (and
proven next), the analogous result does not hold in the private-key model.

5.2.4.3 The effect on the private-key model

In contrary to Theorem 5.2.11, in the private-key model, ciphertext-indistinguishability
for a single message does NOT necessarily imply ciphertext-indistinguishability
for multiple messages.

Proposition 5.2.12 Suppose that there exist pseudorandom generators (robust
against polynomial-size circuits). Then, there exists a private-key encryption
scheme that satisfies Definition 5.2.8 but does not satisfy Definition 5.2.9.

Proof: We start with the construction of the private-key encryption scheme.
The encryption/decryption key for security parameter n is a uniformly dis-
tributed n-bit long string, denoted s. To encrypt a ciphertext, x, the encryption
algorithm uses the key s as a seed for a pseudorandom generator, denoted g,
that stretches seeds of length n into sequences of length |z|. The ciphertext is
obtained by a bit-by-bit exclusive-or of x and g(s). Decryption is done in an
analogous manner.

We first show that this encryption scheme satisfies Definition 5.2.3. Intu-
itively, this follow from the hypothesis that ¢ is a pseudorandom generator and
the fact that 2 ® U}, is uniformly distributed over {0, 1}1#l. Specifically, suppose
towards the contradiction that for some polynomial-size circuit family {C,}, a
polynomial p, and infinitely many n’s

Pr[Cr(z ® g(Un))=1] = PriCn(y ® g(Un))=1]| > Ol

where U, is uniformly distributed over {0,1}"™ and |z| = |y| = m = poly(n). On
the other hand,

PriCh(z ® Up,)=1] = Pr[Cr(y & Up)=1]

Thus, without loss of generality

|Pr[Cr(z @ g(U,))=1] — Pr[Ch(z ® U,,) =1]| >

2-p(n)

Incorporating z into the circuit C,, we obtain a circuit that distinguishes U,
from ¢g(U,), in contradiction to our hypothesis (regarding the pseudorandomness
of g).

Next, we observe that the above encryption scheme does not satisfy Defini-
tion 5.2.9. Specifically, given the ciphertexts of two plaintexts, one may easily
retrieve the exclusive-or of the corresponding plaintexts. That is,

Ey(21) ® Es(22) = (21 @ 9(s)) ® (22 ® g(s)) = 21 S 22
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This clearly violates Definition 5.2.8 (e.g., consider f(z1,z2) = 1 © x2) as well
as Definition 5.2.9 (e.g., consider any T = (z1,z2) and § = (y1,y2) such that
x1 Dxo # y1 Dy2). Viewed in a different way, note that any plaintext-ciphertext
pair yields a corresponding prefix of the pseudorandom sequence, and knowledge
of this prefix violates the security of additional plaintexts. That is, given the
encryption of a known plaintext x; along with the encryption of an unknown
plaintext x5, we can retrieve zo. On input the ciphertexts 1, 82, knowing that
the first plaintext is xy, first retrieves the pseudorandom sequence (i.e., it is just

e B1® 1), and next retrieves the second plaintext (i.e., by computing B2 ®r).

Discussion: The single-message security of the above scheme was proven by
considering an ideal version of the scheme in which the pseudorandom sequence
is replaced by a truly random sequence. The latter scheme is secure in an in-
formation theoretic sense, and the security of the actual scheme followed by the
indistinguishability of the two sequences. As we show in Section 5.3.1 (below),
the above construction can be modified to yield a private-key “stream-cipher”
that is secure for multiple message encryptions. All that is needed is to make
sure that (as opposed to the construction above) the same portion of the pseu-
dorandom sequence is never used twice.

An alternative proof of Proposition 5.2.12: Given an arbitrary private-
key encryption scheme (G, E, D), consider the following private-key encryption
scheme (G',E',D'):

e G'(1™) = ((k,r), (k,r), where (k,k) — G(1™) and r is uniformly selected
in {0, 1}/,

o I/, T)(a:) = (Ek(z),k @ r) with probability 1/2 and Efk ") (z) = (Ek(x),r)

otherwise;
e and Df, 1(y,2) = Di(y).

If (G, E, D) is secure than so is (G', E', D") (with respect to a single message);
however, (G',E’,D') is not secure with respect to two messages. For further
discussion see Exercise 20.

5.2.5 * A uniform-complexity treatment

As stated at the beginning of this section, the non-uniform formulation was
adopted here for sake of simplicity. In this subsection we sketch a uniform-
complexity definitional treatment of security. We stress that by uniform or non-
uniform complexity treatment of cryptographic primitives we merely refer to the
modeling of the adversary. The honest (legitimate) parties are always modeled
by uniform complexity classes (most commonly probabilistic polynomial-time).
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The notion of efficiently constructible ensembles, defined in Section 3.2.3,
is central to the uniform-complexity treatment. Recall that an ensemble, X =
{Xn}nen, is said to be polynomial-time constructible if there exists a probabilistic
polynomial time algorithm S so that for every n, the random variables S(1™)
and X,, are identically distributed.

5.2.5.1 The definitions

We present only the definitions of security for multiple messages; the single-
message variant can be easily obtained by setting the polynomial ¢ (below) to be
identically 1. Likewise, we present the public-key version, and the private-key
analogous can be obtained by omitting G;(1™) from the inputs to the various
algorithms.

The uniformity of the following definitions is reflected in the complexity of
the inputs given to the algorithms. Specifically, the plaintexts are taken from
polynomial-time constructible ensembles and so are the auxiliary inputs given to
the algorithms. For example, in the following definition we require the ensemble
{X,} to be polynomial-time constructible and the function A to be polynomial-
time computable.

Definition 5.2.13 (semantic security — uniform-complexity version): An en-
cryption scheme, (G, E, D), is uniformly semantically secure in the public-key
model if for every polynomial t, and every probabilistic polynomial-time algo-
rithm A there exists a probabilistic polynomial-time algorithm A’ such that for ev-
ery polynomial-time constructible ensemble {X,, = (Xg), ...,Xﬁt(")))}nEN, with
|X,(f)| = poly(n), every polynomial-time computabdle h : {0,1}* — {0,1}*, every
f:{0,1}* — {0,1}*, every positive polynomial p and all sufficiently large n’s

Pr 401", G1(1"), a1y (Kn), 150 (X)) = ()|
! n _" ~ _ ~ 1
< Pelaar o), 17 M) = FX0)] + o

where E.(T,) e Ee(xsbl)), - Ee(xg(n))) (for T = (xsbl), - xsf(n)))) is as in Def-
wnation 5.2.8.

Again, we stress that X, is a sequence of random variables, which may depend
on one another. Also, the encryption-key G (1™) was omitted from the input of
A’ (since the latter may generate it by itself). We stress that even here (i.e., in
the uniform complexity setting) no computational limitation are placed on the
function f.

Definition 5.2.14 (indistinguishability of encryptions — uniform-complexity ver-
sion): An encryption scheme, (G, E, D), has uniformly indistinguishable encryp-

tions in the public-key model if for every polynomial t, every probabilistic polynomial-

time algorithm D', every polynomial-time constructible ensemble T def {T, =
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XY Zotners with Xy = (X5, XN YV, = @, v and | X80) =
V| = poly(n),

|Pr [D,(ZTH Gl(ln)7EG1(1n)(yn))=1]

— Pr [D,(Zn,G]_(ln),EGl(ln)(Yn))Z].]| < m

for every positive polynomial p and all sufficiently large n’s.

The random variable Z,, captures a-priori information about the plaintexts for
which encryptions should be distinguished. A special case of interest is when
Z, = X, Y. Uniformity is captured in the requirement that D’ is a probabilistic
polynomial-time algorithm (rather than a family of polynomial-size circuits) and
that the ensemble {T',, = Yn?nZn}nEN be polynomial-time constructible.

5.2.5.2 Equivalence of the multiple-message definitions

We prove the equivalence of the uniform-complexity definitions (presented above)
for (multiple-message) security.

Theorem 5.2.15 (equivalence of definitions — uniform treatment): A public-
key encryption scheme satisfies Definition 5.2.13 if and only if it satisfies Def-
inition 5.2.14. Furthermore, this holds even if Definition 5.2.14 is restricted to

the special case where Z, = X,Y », and even if Definition 5.2.13 is restricted to
the special case where f is polynomial-time computable.

An analogous result holds for the private-key model. The important direction of
the theorem holds also for the single-message version (this is quite obvious from
the proof below). In the other direction, we seem to use the multiple-message
version (of semantic security) in an essential way.

Proof Sketch: Again, we start with the more important direction; that is,
assuming that (G, E,D) has (uniformly) indistinguishable encryptions in the
special case where Z, = X,Y,, we show that it is (uniformly) semantically
secure. Our construction of algorithm A’ is analogous to the construction used
in the non-uniform treatment. Specifically, on input (1/%»I, h(@,)), algorithm
A" generates a random encryption of a dummy sequence of message (i.e., 1),
feeds it to A, and outputs whatever A does.® That is,

A,(llanlah(an)) = A(Gl(ln)aFCh(l"‘)(lla" ‘)7 lla"“ah(an)) (56)

As in the non-uniform case, the analysis of algorithm A’ reduces to the following
claim.

5 The above description is slightly inaccurate. Algorithm A’ is also provided with the
auxiliary inputs 1" and t(n). Using t(n), the algorithm breaks 1/%=| into a sequence of t(n)
equal-length (unary) strings, using 1™ it generates a random encryption-key, and using this
key it generates the corresponding sequence of encryptions.
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Claim 5.2.15.1: For every polynomial-time constructible ensemble {Yn}neN,
with X,, = (Xle), ...,Xﬁf("))) and |X£f)| = poly(n), every polynomial-time com-
putable h, every positive polynomial p and all sufficiently large n’s

PrA(G1(1"), B, (1) (Xn), i(Xn)) = f(Xn)]

< Pr[AGI"M), By (17, (X)) = £(X0)] +

p(n)

Proof sketch: Analogously to the non-uniform case, assuming towards the con-
tradiction that the claim does not hold, yields an algorithm that distinguishes
encryptions of X, from encryptions of ¥,, = 11%»| when getting auxiliary in-
formation Z, = Xn,Yn = XnllXl. Thus, we derive contradiction to Defini-
tion 5.2.14 (even under the special case postulated in the theorem).

We note that the auxiliary information that is given to the distinguishing
algorithm replaces the hard-wiring of auxiliary information that was used in
the non-uniform case (and is not possible in the uniform complexity model).
Specifically, rather than using a hard-wired value of h (at some non-uniformly
fixed sequence), the distinguishing algorithm will use the auxiliary information
Z, = X115l in order to compute h(X,), which it will pass to A. Indeed, we
rely on the hypothesis that h is efficiently computable.

The actual proof is quite simple in case the function f is also polynomial-
time computable (which is not the case in general). In this special case, on input
(e,2,E.(@)), where z = (7,1%!) and @ € {7, 1I7'}, the distinguishing algorithm
computes v = h(T) and v = f(T), invokes A, and outputs 1 if and only if
Ale, E (@), 117 u) = v.

(We comment that in case o = 1'% we actually mean that @ is a
sequence of t(n) strings of the form 1°™ where t and £ are as in T =

(w(l), ...,w(t("))) e ({o, 1}2(n))t(n)_)

The proof becomes more involved in case f is not polynomial-time computable.®

Again, the solution is in realizing that indistinguishability of encryption postu-
lates a similar output profile in both cases, and in particular no value can occur
non-negligibly more in one case than in the other. To clarify the point, we de-
fine A,(Z,) to be the difference between Pr[A(G1(1"), Eg, (1n)(Tn), h(Tn)) = v]
and Pr[A(G1(1”),FG1(1”)(1|E“|),h(fn)) =v]. We know that E[Af(yn)(yn)] >
1/p(n), but given T, we cannot evaluate Ay, )(Tn), since we do not have

e

f(Tn). Instead, we let A(T,) = max,{A,(Z,)}, and observe that E[A(X,)] >
E[Af(yn)(Xn)] > 1/p(n). Furthermore, given T, we can approximate A(ZT,)
in polynomial-time, and can find (in polynomial-time) a value v such that
Ay (Tn) > A(Tn) — (1/2p(n)), with probability at least 1 — 27",

On approximating A(zr) etc.: By invoking algorithm A on O(np(nf) sam-
ples of the distributions (G1(1™), Eg, (1n)(Fx), h(Fs)) and G1(1"), Eg, any (17N, h(Z,)),

6 Unlike in the non-uniform treatment, here we cannot hardwire values (such as the values
of h and f on good sequences) into the algorithm D’ (which is required to be uniform).
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we obtain (implicitly) an approximation of all A,(Z,)’s up-to an additive
deviation of 1/4p(n) (with error probability at most 27™). The approxima-

tion to Ay(Ty), denoted A, (Zr) is merely the difference between the frac-
tion of samples (from both distributions) on which algorithm A returned
1. (Indeed, most A,(Zn)’s are approximated by 0, but some A,(T,)’s
may approximated by non-zero values.) We just output v for which the

approximated value &v (Tn) is largest. Thus, if for some vo it holds that
Ay (Tn) = A(Tn), then with probability at least 1 —27" we output v such
that

Ay(Tn) — (1/4p(n))

Ruu ) = (1/1p(m)

Ay, (Tn) — (1/4p(n)) — (1/4p(n))

Thus, Ay (ZTr) > A(Tn) — (1/2p(n)).

Ay(Tn)

vV IV IV

Thus, on input (e, z, E.(@)), where z = (Z, 1/?!), the new algorithm, denoted D',
operates in two stages.

1. In the first stage, D' ignores the ciphertext E.(@). Using z, algorithm D’
recovers T, and computes v = h(T). Using T and wu, algorithm D’ estimates
A(T), and finds a v as above.

2. In the second stage (using u and v found in the first stage), algorithm D'
invokes A, and outputs 1 if and only if A(e, E.(@), 1/*l,u) = v.

Let V(T) be the value found in the first stage of algorithm A (i.e., obliviously of
the ciphertext E.(@)). The reader can easily verify that

Pr [D(G1(1"), Zn, Besyan) (X)) =1] = Pr [D(GL(1"), Zu, By (17+)) =1 |
=E [AV(Y”)(YH)]
> (1_2n)-E[A(7n>_ ! ]—2"

2 1
3p(n) = 3p(n)

> E[AX,)] -

Thus, we have derived a probabilistic polynomial-time algorithm (i.e., D') that
distinguishes encryptions of X,, from encryptions of Y, = 11%»| when getting
auxiliary information Z, = X, 11%»/. By hypothesis {X,} is polynomial-time
constructible, and it follows that so is {X,Y,,Z,} Thus, we derive contradiction
to Definition 5.2.14 (even under the special case postulated in the theorem), and
the claim follows. O

Having established the important direction, we now turn to the opposite
one. That is, we assume that (G, E, D) is (uniformly) semantically secure and
prove that it has (uniformly) indistinguishable encryptions. Again, the proof is
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by contradiction. Suppose, without loss of generality, that there exists a proba-

bilistic polynomial-time algorithm D’, a polynomial-time constructible ensemble

T {Th = XY Zp}nen (as in Definition 5.2.14), a positive polynomial p and

infinitely many n’s so that
Pr [DI(Zna Gl(ln)a EG1(1")(YH)) = 1]

> PriD'(Zn, Gr(1"), Boyam (Vn) =1] | + -

Let t(n) and £(n) be such that X, (resp., Y,) consists of ¢(n) strings, each
of length ¢(n). Suppose, without loss of generality, that |Z,| = m(n) - {(n),
and parse Z, into Z, = (2, ..., Z{™™)) e ({0,1}4))ym(") such that Z, =

Z ... z{m™) We define an auxiliary polynomial-time constructible ensemble

Q= {Q,}nen s0 that

— [ 0'™WZ,X,Y, with probability
»T | 1¥WZ,Y,X, with probability

(M NI

That is, Q,, is a sequence of 1 + m(n) + 2t(n) strings, each of length £(n), that
contains Z, X, Y, in addition to a bit (provided in the £(n)-bit long prefix)
indicating whether the order of X,, and Y, is switched or not. We define the
function f so that to equal this “switch” indicator bit, and the function h to
provide all information in @,, except this switch bit. That is, we define f and h

as follows:

e The function f:{0,1}*—{0,1} is defined so that f returns the first bit of
its input; that is, f(c®™abc) = o, for (a,b,c) € ({0, 1} m))min)+2Un)

e The function h : {0,1}* — {0,1} is defined so that h provides the in-
formation in the suffix without yielding information on the prefix; that
is, h(c'™abc) = abe if ¢ = 0 and h(c*™abc) = ach otherwise. Thus,
h(Q,) = Z,X,Y,; that is, it returns 7', to its original order (undoing the
possible switch employed in Q,,).

We stress that both h and f are polynomial-time computable.

We will show that the distinguishing algorithm D’ (which distinguishes F(X,,)
from E(Y,), when also given Z,, = Z,,) can be transformed into a polynomial-
size algorithm A that guesses the value of f(Q,), from the encryption of @,

(and the value of h(Q®,,)), and does so significantly better than with proba-
bility % This violates semantic security, since no algorithm (regardless of its

running-time)_can guess f(Q,,) better than with probability 1/2 when only given
h(Q,) and 119! (since given h(Q,) and 119=/, the value of f(Q
distributed over {0,1}).

On input (e, E.(@), 1%, h(@)), where @ = "™ abc € ({0, 1}1()1+m(n)+24n)
equals either (04™),Z,Z,7) or (14™),Z,7,%), algorithm A proceeds in two stages:

) is uniformly

n n
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1. In the first stage, algorithm A ignores the ciphertext E.(@). It first extracts
T,y and z = ovz out of h(a@) = ZT Y, and approximates A(z,T,7), which
is defined to equal

Pr [D’(z,Gl(ln)aFGl(m)(f)):l] —Pr [D’(Z;Gl(ln);Eal(m)@)):l]

(5.7)

Specifically, using O(n - p(n)?) samples, algorithm A obtains an approx-

imation, denoted A(z,Z,7), such that |A(z,Z,7) — A(z,Z,7)| < 1/3p(n)

with probability at least 1 —27".

Algorithm A sets £ = 1 if E(z,f,ﬂ) > 1/3p(n), sets £ = —1if &(z,f, 7) <

—1/3p(n), and sets £ = 0 otherwise (i.e., |A(z,Z,7)| < 1/3p(n)).

In case € = 0, algorithm A halts with an arbitrary reasonable guess (say a

randomly selected bit). (We stress that all this is done obliviously of the

ciphertext E. (@), which is only used next.)

2. In the second stage, algorithm A extracts the last block of ciphertexts (i.e.,
E.(c)) out of E (@) = E.(c"™abc), and invokes D' on input (z, e, E.(c)),
where z is as extracted in the first stage. Using the value of £ as determined
in the first stage, algorithm A decides as follows:

e In case £ = 1, algorithm A outputs 1 if and only if the output of D’
is 1.

e In case £ = —1, algorithm A outputs 0 if and only if the output of D’
is 1.

Claim 5.2.15.2: Let p, @Q,,, h, f and A be as above.

1

PrIAG ("), By 1)@ W@ = £@)] > 5+ s

Proof sketch: We focus on the case in which the approximation of A(z,Z,7)
computed by (the first stage of) A is within 1/3p(n) of the correct value. Thus,
in case £ # 0, the sign of £ concurs with the sign of A(z,Z,7). It follows that,
for every possible (z,Z,y) such that £ = 1 (it holds that A(z,Z,7) > 0 and) the
following holds

9]
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Similarly, for every possible (z,Z,¥) such that £ = —1 (it holds that A(z,Z,7) <
0 and) the following holds

Pr[A(G1(1"), Ec, (1) (@), M@, )) F@u)1(Zn, Xn, X0)=(2,7,7)]
) (04

T
= 3 Pr[4(Gi("), Boy 7,9), 0", 2,7, 7)) =0)
booP [ >,EG1<1H><1“">,z,m,h(l“”%z,y,f)):l]
+ % - Pr [D,(Z,Gl(ln)7EG1(1n)(f))=0]
= 5 -(1-AG7)

Thus, in both cases where £ # 0, algorithm A succeeds with probability

1+&-A(2,7,9)  1+]A(2,7,7)]

2 2

and in case £ = 0 it succeeds with probability 1/2. Recall that if A(z,Z,7) >
then ¢ = 1. Using the contradiction hypothesis that asserts that E[A(Z,,, X,,,Y )] >

we lower bound Pr[A(Z,, X, X,) > W] by W' Thus, the overall suc-

313(”)
1
p(n)’

cess probability of algorithm A is at least
1 1+(2/3p(n))+<1_ 1 ) 1 1
3p(n) 2 3p(n)

27 2" B
and the claim follows. O

This completes the proof of the opposite direction. [l

Discussion: The proof of the first (i.e., important) direction holds also in the
single-message setting. In general, for any function ¢, in order to prove that
semantic security holds with respect to t-long sequences of ciphertexts, we just
use the hypothesis that ¢-long message-sequences have indistinguishable encryp-
tions. In contrast, the proof of the second (i.e., opposite) direction makes an
essential use of the multiple-message setting. In particular, in order to prove
that ¢-long message-sequences have indistinguishable encryptions, we use the
hypothesis that semantic security holds with respect to (1 + m + 2¢)-long se-
quences of ciphertexts, where m depends on the length of the auxiliary input in
the claim of ciphertext-indistinguishability. Thus, even if we only want to es-
tablish ciphertext-indistinguishability in the single-message setting, we do so by
using semantic security in the multiple-message setting. Furthermore, we use the
fact that given a sequence of ciphertexts, we can extract a certain subsequence
of ciphertexts.
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5.2.5.3 Single-message versus multiple-message definitions

As in the non-uniform case, for the public-key model, single-message security
implies multiple-message security. Again, this implication does NOT hold in the
private-key model. The proofs of both statements are analogous to the proofs
provided in the non-uniform case. Specifically:

1. For the public-key model, single-message uniform-indistinguishability of
encryptions imply multiple-message uniform-indistinguishability of encryp-
tions, which in turn implies multiple-message uniform-semantic security.

In the proof of this result, we use the fact that all hybrids are polynomial-
time constructible, and that we may select a random pair of neighboring
hybrids (cf. the proof of Theorem 3.2.6). We also use the fact that an
ensemble of triplets, {T, = X ,Y 02/ }nen, With X, = (X,(f), ...,X,(zt("))),
Y, = (erl), ...,Yrgt(”))), as in Definition 5.2.14, induces an ensemble of
triplets, {T,, = XY, Z,},cn, for the case t = 1. Specifically, we shall use
X, = Xr(bi), Y, = Yrgi), and Z, = (X,,Y,,Z",i), where i is uniformly
distributed in {1,...,t(n)}.

2. For the private-key model, single-message uniform-indistinguishability of
encryptions does NOT imply multiple-message uniform-indistinguishability
of encryptions. The proof is exactly as in the non-uniform case.

5.2.5.4 The gain of a uniform treatment

Suppose that one is content with the uniform-complexity level of security, which
is what we advocate below. Then the gain in using the uniform-complexity
treatment is that a uniform-complexity level of security can be obtained using
only uniform complexity assumptions (rather than non-uniform complexity as-
sumptions). Specifically, the results presented in the next section are based on
non-uniform assumptions such as the existence of functions that cannot be in-
verted by polynomial-size circuits (rather than by probabilistic polynomial-time
algorithms). These non-uniform assumption are used in order to satisfy the
non-uniform definitions presented in the main text (above). Using any of these
constructions, while making the analogous uniform assumptions, yields encryp-
tion schemes with the analogous uniform-complexity security. (We stress that
this is no coincidence, but is rather an artifact of these results being proven by
a uniform reducibility argument.)

However, something is lost when relying on these (seemingly weaker) uniform
complexity assumptions. Namely, the security we obtain is only against the
(seemingly weaker) uniform adversaries. We believe that this loss in security
is immaterial. Our belief is based on the thesis that uniform complexity is the
right model of “real world” cryptography. We believe that it is reasonable to
counsider only objects (i.e., inputs) generated by uniform and efficient procedures
and the effect that these objects have on uniformly and efficient observers (i.e.,
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adversaries). In particular, schemes secure against probabilistic polynomial-time
adversaries can be used in any setting consisting of probabilistic polynomial-time
machines with inputs generated by probabilistic polynomial-time procedures.
We believe that the cryptographic setting is such a case.

5.3 Constructions of Secure Encryption Schemes

In this subsection we present constructions of secure private-key and public-
key encryption schemes. Here and throughout this section security means se-
mantic security in the multiple-message setting. Recall that this is equivalent
to ciphertext-indistinguishability (in the multiple-message setting). Also recall
that for public-key schemes it suffices to prove ciphertext-indistinguishability in
the single-message setting. The main results of this section are

e Using any (non-uniformly robust) pseudorandom function, one can con-
struct secure private-key encryption schemes. Recall, that the former can
be constructed using any (non-uniformly strong) one-way function.

e Using any (non-uniform strong) trapdoor one-way permutation, one can
construct secure public-key encryption schemes.

In addition, we review some popular suggestions for private-key and public-key
encryption schemes.

Probabilistic Encryption: Before starting, we recall that a secure public-key
encryption scheme must employ a probabilistic (i.e., randomized) encryption al-
gorithm. Otherwise, given the encryption-key as (additional) input, it is easy
to distinguish the encryption of the all-zero message from the encryption of the
all-ones message. The same holds for private-key encryption schemes when con-
sidering the multi-message setting.” For example, using a deterministic (private-
key) encryption algorithm allows the adversary to distinguish two encryptions
of the same message from the encryptions of a pair of different messages. Thus,
the common practice of using pseudorandom permutations as “block-ciphers”
(see definition below) is NOT secure (again, one can distinguish two encryptions
of the same message from encryptions of two different messages). This explains
the linkage between the above robust security definitions and randomized (a.k.a
probabilistic) encryption schemes. Indeed, all our encryption schemes will em-
ploy randomized encryption algorithms.®

7 We note that the above does not hold with respect to private-key schemes in the single-
message setting (or for the augmented model of state-based ciphers discussed in Section 5.3.1).
In such a case, the private-key can be augmented to include a seed for a pseudorandom
generator, the output of which can be used to eliminate randomness from the encryption
algorithm. (Question: why does the argument fail in the public-key setting and in the multi-
message private-key setting?)

8 The (private-key) stream-ciphers discussed in Section 5.3.1 are an exception, but— as
we point out— they do not adhere to our (basic) formulation of encryption schemes (as in
Definition 5.1.1).
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5.3.1 * Stream—Ciphers

It is common practice to use “pseudorandom generators” as a basis for private-
key stream ciphers (see definition below). Specifically, the pseudorandom gener-
ator is used to produce a stream of bits that are XORed with the corresponding
plaintext bits to yield corresponding ciphertext bits. That is, the generated
pseudorandom sequence (which is determined by the a-priori shared key) is used
as a “one-time pad” instead of a truly random sequence, with the advantage that
the generated sequence may be much longer than the key (whereas this is not
possible for a truly random sequence). This common practice is indeed sound
provided one actually uses pseudorandom generators (as defined in Section 3.3),
rather than using programs that are called “pseudorandom generators” but ac-
tually produce sequences that are easy to predict (such as the linear congruential
generator or some modifications of it that output a constant fraction of the bits
of each resulting number).

As we shall see, using any pseudorandom generator one may obtain a secure
private-key stream cipher that allows to encrypt a stream of plaintext bits. We
note that such a stream cipher does not conform with our formulation of an
encryption scheme (i.e., as in Definition 5.1.1), because in order to encrypt
several messages one is required to maintain a counter (so to prevent reusing
parts of the pseudorandom “one-time pad”). In other words, we obtain a secure
encryption scheme with a variable state that is modified after the encryption of
each message. We stress that constructions of secure and stateless encryption
schemes (i.e., conforming with Definition 5.1.1) are known and are presented in
Sections 5.3.3 and 5.3.4. The traditional interest in stream ciphers is due to
efficiency considerations. We discuss this issue at the end of Section 5.3.3. But
before doing so, let us formalize the above discussion.

5.3.1.1 Definitions

We start by extending the simple mechanism of encryption schemes (as presented
in Definition 5.1.1). The key-generation algorithm remains unchanged, but both
the encryption and decryption algorithm take an additional input and emit an
additional output, corresponding to their state before and after the operation.
The length of the state is not allowed to grow by too much during each applica-
tion of the encryption algorithm (see Item 3 in Definition 5.3.1 below), or else
the efficiency of the entire “repeated encryption” process can not be guaranteed.
For sake of simplicity, we incorporate the key in the state of the corresponding
algorithm. Thus, the initial state of each of the algorithms is set to equal its
corresponding key. Furthermore, one may think of the intermediate states as of
updated values of the corresponding key. For clarity, the reader may consider
of the special case in which the state contains the initial key, the number of
times the scheme was invoked (or the total number of bits in such invocations),
and auxiliary information that allows to speed-up the computation of the next
ciphertext (or plaintext).

For simplicity, we assume below that the decryption algorithm (i.e., D) is
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deterministic (otherwise formulating the reconstruction condition would be more
complex). Intuitively, the main part of the reconstruction condition (i.e., Item 2
in Definition 5.3.1) is that the (proper) iterative encryption-decryption process
recovers the original plaintexts. The additional requirement in Item 2 is that
the state of the decryption algorithm is updated correctly as long as it is fed
with strings of length equal to the length of the valid ciphertexts. This extra
requirement implies that given the initial decryption-key and the current cipher-
text as well as the lengths of all previous ciphertexts (which may be actually
incorporated in the current ciphertext), one may recover the current plaintext.
This fact is interesting for two reasons:

A theoretical Teason: It implies that, without loss of generality (alas with possi-
ble loss in efficiency), the decryption algorithm may be stateless. Further-
more, without loss of generality (alas with possible loss in efficiency), the
state of the encryption algorithm may consist of the initial encryption-key
and the lengths of the plaintexts encrypted so far.

A practical reason: It allows to recover from the loss of some of the ciphertexts.
That is, assuming that all ciphertexts have the same (known) length (which
is typically the case in the relevant applications), if the receiver knows (or
is given) the total number of ciphertexts sent so far then it can recover the
current plaintext from the current ciphertext, even if some of the previous
ciphertexts were lost.

We comment that in traditional stream ciphers, the plaintexts (and ciphertexts)
are individual bits or blocks of a fixed number of bits (i.e., [a(!)| = |8())| = ¢ for
all i’s).

Definition 5.3.1 (state-based cipher — the mechanism): A state-based encryp-
tion scheme is a triple, (G,E, D), of probabilistic polynomial-time algorithms
satisfying the following three conditions

1. On input 1™, algorithm G outputs a pair of bit strings.

2. For every pair (e9,d®) in the range of G(1), and every sequence of
plaintexts o) ’%s, the following holds: if (e, 5®)) — E(eV, o) and
(dD,4D) — D@V, D), fori = 1,2,..., then v = oD for ev-
ery 1. Furthermore, for every i and every 3 € {0,1}'/8("”, it holds that
DY, 3) = (dD, ).

3. There exists a polynomial p such that for every pair (€9, d)) in the range
of G(1™), and every sequence of a s and eV’s as above, it holds that
le@| < e D] + || - p(n). Similarly for the d®)’s.

That is, as in Definition 5.1.1, the encryption-decryption process operates prop-
erly (i.e., the decrypted message equals the plaintext), provided that the cor-
responding algorithms get the corresponding keys (or states). Note that in
Definition 5.3.1 the keys are modified by the encryption-decryption process, and
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so correct decryption requires holding the correctly-updated decryption-key. We
stress that the furthermore clause in Item 2 guarantees that the decryption-key
is correctly updated as long as the decryption process is fed with strings of
the correct lengths (but not necessarily with the correct ciphertexts). As discuss
above, this extra condition has interesting theoretical and practical consequences
to be further emphasized in Construction 5.3.3 (below). We comment that in
Construction 5.3.3, it holds that [e()| < [e(®)| +log, 35—, |a(?|, which is much
stronger than the requirement in Item 3.

We stress that Definition 5.3.1 refers to the encryption of multiple messages
(and is meaningless when considering the encryption of a single message). How-
ever, Definition 5.3.1 by itself does not explain why one should encrypt the ith
message using the updated encryption-key e~V rather than reusing the ini-
tial encryption-key e(%) in all encryptions (where decryption is done by reusing
the initial decryption-key d(®)). Indeed, the reason for updating these keys is
provided by the following security definition that refers to the encryption of mul-
tiple messages, and holds only in case the encryption-keys in use are properly
updated (in the multiple-message encryption process). Below we present only
the semantic security definition for private-key schemes.

Definition 5.3.2 (semantic security — state-based cipher): For a state-based
encryption scheme, (G,E,D), and any T = (2, ...,2"), we let E (T) =
(yV), ...,y be the result of the following t-step (possibly random) process, where
e L e Fori = 1,..t, we let (e, yD) — E(e* V), 2"), where each of
the t invocations E wutilizes independently chosen random coins. The scheme
(G, E, D) is semantically secure in the state-based private-key model if for ev-
ery polynomial t(-) and every probabilistic polynomial-time algorithm A there
exists a probabilistic polynomial-time algorithm A’ such that for every ensemble
X, = (Xr(bl),...,XT(f(n)))}neN, with |Xr(f)| = poly(n), every pair of functions
fyh:{0,1}* — {0,1}*, every polynomial p(-) and all sufficiently large n

Pr [A(1", By 1) (K), 1L A(X)) = £(X0)

"(1n Tl (X)) = F(X ] L
< P i), VLA = ()] + o
Note that Definition 5.3.2 (ounly) differs from Definition 5.2.8 in the preamble
defining the random variable F. (%), which mandates that the encryption-key
el~1) is used in the ith encryption. Furthermore, Definition 5.3.2 guaran-
tees nothing regarding an encryption process in which the plaintext sequence
#M . 2® is encrypted by E(e,z™M), E(e,z?), ..., E(e,z®) (i.e., the initial
encryption-key e itself is used in all encryptions, as in Definition 5.2.8).

5.3.1.2 A sound version of a common practice

Using any (on-line) pseudorandom generator, one can easily construct a secure
state-based private-key encryption scheme. Recall that on-line pseudorandom
generators are a special case of variable-output pseudorandom generators (see
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Section 3.3.3), in which a hidden state is maintained and updated so to allow
generation of the next output bit in time polynomial in the length of the initial
seed, regardless of the number of bits generated so far. Specifically, the next
(hidden) state and output bit are produced by applying a (polynomial-time
computable) function g: {0,1}" —{0,1}"! to the current state (i.e., s'c « g(s),
where s is the current state, s’ is the next state and o is the next output bit).
The suggested state-based private-key encryption scheme will be initialized with
a key equal to the seed of such a generator, and will maintain and update a state
allowing it to quickly produce the next output bit of the generator. The stream
of plaintext bits will be encrypted by XORing these bits with the corresponding
output bits of the generator.

Construction 5.3.3 (how to construct stream ciphers (i.e., state-based private-
key encryption schemes)): Let g be a polynomial-time computable function such
that |g(s)| = |s| + 1 for all s € {0,1}*.

key-generation and initial state: On input 1™, uniformly select s € {0,1}", and
output the key-pair (s,s). The initial state of each algorithm is set to
(5,0,5).

( We maintain the initial key s and a step-counter in order to allow recovery
from loss of ciphertects.)

encrypting the next plaintext bit z with state (s,t,s'): Let s"o = g(s'), where
|s"| =1s'| and o € {0,1}. Output the ciphertext bit x ® o, and set the new
state to (s,t+1,s").

decrypting the ciphertext bit y with state (s,¢,s'): Let s"o = g(s'), where |s"| =
|s'| and o € {0,1}. Output the plaintext bit y ® o, and set the new state

to (s,t+1,s").

When notified that some ciphertext bits may have been lost and that the
current ciphertext bit has index t', the decryption procedure first recovers
the correct current state, denoted sy . This is done by computing s;o; =

. def
g(si_1), fori=1,..,t', where sp = s.

Note that both the encryption and decryption algorithms are deterministic, and
that the state after encryption of ¢ bits has length 2n + log, t < 3n (for t < 2™).
Recall that g (as in Construction 5.3.3) is called a next step function of an
on-line pseudorandom generator if for every polynomial p the ensemble {G?}, cn
is pseudorandom (with respect to polynomial-size circuits), where GE is defined
by the following random process:
Uniformly select so € {0,1}";
For i =1 to p(n), let s;0; < g(si—1), where o; € {0,1} (and s; € {0,1}");
Output o109 - - Op(n)-
Also recall that if g is (itself) a pseudorandom generator then it constitutes a
next step function of an on-line pseudorandom generator (see Exercise 21 of
Chapter 3). Thus:
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Proposition 5.3.4 If g is a pseudorandom generator (with respect to polynomial-
size circuits) then Construction 5.3.8 constitutes a secure state-based private-key
encryption scheme.

Proof Idea: Consider an ideal version of Construction 5.3.3 in which a truly
random sequence is used instead of the output produced by the on-line pseudo-
random generator defined by g. The ideal version coincides with the traditional
one-time pad, and thus is perfectly secure. The security of the actual Construc-
tion 5.3.3 follows by the pseudorandomness of the on-line generator. [l

5.3.2 Preliminaries: Block—Ciphers

Many encryption schemes are more conveniently presented by first presenting a
restricted type of encryption scheme that we call a block-cipher.® In contrast
to encryption schemes (as defined in Definition 5.1.1), block-ciphers (defined
below) are only required to operate on plaintext of a specific length (which is a
function of the security parameter). As we shall see, given a secure block-cipher
we can easily construct a (general) secure encryption scheme.

5.3.2.1 Definitions

We start by considering the syntax (i.e., Definition 5.1.1).

Definition 5.3.5 (block-cipher): A block-cipher is a triple, (G, E, D), of prob-
abilistic polynomial-time algorithms satisfying the following two conditions

1. On input 1™, algorithm G outputs a pair of bit strings.

2. There exists a polynomially-bounded function ¢ : N— N, called the block
length, so that for every pair (e,d) in the range of G(1™), and for each
a € {0,1}*™ | algorithms E and D satisfy

PriD4(E.(a))=a] =1

Typically, we use either £(n) = O(n) or £(n) = 1. Analogously to Defini-
tion 5.1.1, the above definition does not distinguish private-key encryption schemes
from public-key ones. The difference between the two types is captured in the
security definitions, which are essentially as before with the modification that
we only consider plaintexts of length ¢(n). For example, the analogue of Defini-
tion 5.2.1 reads

Definition 5.3.6 (semantic security — private-key block-ciphers): A block-cipher,
(G, E, D), with block length £ is semantically secure (in the private-key model)

9 In using the term block-cipher, we abuse standard terminology by which a block-cipher
must, in addition to operating on plaintext of specific length, produce ciphertexts equal in
length to the length of the corresponding plaintexts. We comment that the latter cannot be
semantically secure; see Exercise 22.
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if for every probabilistic polynomial-time algorithm A there exists a probabilis-
tic polynomial-time algorithm A' such that for every ensemble {X,}, N, with
| Xn| =£(n), and f,h, p(-) and n as in Definition 5.2.1

Pr[A(1", B, (1) (X0), 17X, h(X)) = F(X)|

< Pr[A( 1 R(X) = £(X0)] + =

5.3.2.2 Transforming block-ciphers into general encryption schemes

There are obvious ways of transforming a block-cipher into a general encryption
scheme. The basic idea is to break the plaintexts (for the resulting scheme)
into blocks and encode each block separately by using the block-cipher. Thus,
the security of the block-cipher (in the multiple-message settings) implies the
security of the resulting encryption scheme. The only technicality we need to
deal with is how to encrypt plaintexts of length that is not an integer multiple
of the block-length (i.e., £(n)). This is easily resolved by padding the last block
(while indicating the end of the actual plaintext).°

Construction 5.3.7 (from block-ciphers to general encryption schemes): Let
(G,E, D) be a block-cipher with block length function £. We construct an en-
cryption scheme, (G', E',D") as follows. The key-generation algorithm, G', is
identical to G. To encrypt a message o (with encryption-key e generated under
security parameter n), we break it into consecutive blocks of length £(n), while
possibly augmenting the last block. Let o, ..., be the resulting blocks. Then

El(a) ¥ (|al, Ee(ar), o, Be(ay))

To decrypt the ciphertezt (m, [y, ..., ;) (with decryption-key d), we let a; =
Dy(B;) fori=1,...,t, and let the plaintext be the m-bit long prefiz of the con-
catenated string aq - - ay.

The above construction yields ciphertexts which reveal the exact length of the
plaintext. Recall that this is not prohibited by the definitions of security, and
that we cannot hope to entirely hide the length. However, we can easily construct
encryption schemes that hide some information about the length of the plaintext;
see examples in Exercise 4. Also, note that the above construction applies even
to the special case where £ is identically 1.

Proposition 5.3.8 Let (G, E, D) and (G',E', D") be as in Construction 5.5.7.
Suppose that the former a secure private-key'! (resp., public-key) block-cipher.
Then the latter is a secure private-key (resp., public-key) encryption scheme.

10 We choose to use a very simple indication of the end of the actual plaintext (i.e., include
its length in the ciphertext). In fact, it suffices to include the length of the plaintext modulo
£(n). Another natural alternative is to use a padding of the form 10(¢(m)=lel=1)mod£(n) \while
observing that no padding is ever required in case £(n) = 1.

11 Recall that throughout this section security means security in the multiple-message
setting.
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Proof Sketch: The proof is by a reducibility argument. Assuming towards the
contradiction that the encryption scheme (G', E', D') is not secure, we conclude
that neither is (G, E, D), contradicting our hypothesis. Specifically, we rely on
the fact that in both schemes security means security in the multiple-message set-
ting. Note that in case the security of (G', E’, D) is violated via t(n) messages of
length L(n) = poly(n), the security of (G, E, D) is violated via t(n)-[L(n)/£(n)]
messages of length ¢(n). Also, the argument may utilize any of the two notions
of security (i.e., semantic security or ciphertext-indistinguishability). [l

5.3.3 Private-key encryption schemes

Secure private-key encryption schemes can be easily constructed using any effi-
ciently computable pseudorandom function ensemble (see Section 3.6). Specifi-
cally, we present a block cipher with block length ¢(n) = n. The key-generation
algorithm consists of selecting a seed, denoted s, for such a function, denoted
fs. To encrypt a message = € {0,1}" (using key s), the encryption algorithm
uniformly selects a string r € {0,1}"™ and produces the ciphertext (r,z & fs(r)).
To decrypt the ciphertext (r,y) (using key s), the decryption algorithm just
computes y @ fs(r). Formally, we have

Construction 5.3.9 (a private-key block-cipher based on pseudorandom func-
tions): Let F = {F,} be an efficiently computabdle function ensemble and let I
and V be the algorithms associated with it. That is, I(1™) selects a function with
distribution F,, and V(s,x) returns fs(z), where fs is the function associated
with the string s. We define a private-key block cipher, (G, E,D), with block
length £(n) = n as follows

key-generation: G(1") = (k, k), where k «— I(1™).

encrypting plaintext € {0,1}™ (using the key k): Ei(z) = (r,V(k,r)®x), where
r is uniformly chosen in {0,1}".

decrypting ciphertext (r,y) (using the key k): Dp(r,y) =V (k,r) ®y.
Clearly, for every k (in the range of I(1™)) and = € {0,1}",
Dk(Ek(x)) = Dk(Unafk(Un) D £L") = fk(Un) D (fk(Un) ©® CC) =z

Below we assume that F' is pseudorandom with respect to polynomial-size cir-
cuits, meaning that no polynomial-size circuit having “oracle gates” can distin-
guish the case the answers are provided by a random function from the case in
which the answers are provided by a function in F. Alternatively, one may con-
sider probabilistic polynomial-time oracle machines that obtain a non-uniform
polynomially-long auxiliary input. That is,

for every probabilistic polynomial-time oracle machine M for every
pair of positive polynomial p and q, for all sufficiently large n’s and
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all z € {0,1}P()

M ()= 1] — Pr [MFr0m) (2) = b
[Pr M7 (2)=1] = Pr M7 (2)=1]] < 75

where f is a uniformly selected function mapping {0,1}"™ to {0,1}™.

Recall, that such (non-uniformly strong) pseudorandom functions can be con-
structed using any non-uniformly strong one-way function.

Proposition 5.3.10 Let F' and (G, E, D) be as in Construction 5.3.9, and sup-
pose that F' is pseudorandom with respect to polynomial-size circuits. Then
(G,E, D) is secure.

The proof of Proposition 5.3.10 is given below. Combining Propositions 5.3.8
and 5.3.10 (with the above), we obtain

Theorem 5.3.11 If there exist (non-uniformly strong) one-way functions then
there exist secure private-key encryption schemes.

The converse holds too; see Exercise 1.

Proof of Proposition 5.3.10: The proof consists of two steps (suggested as
a general methodology in Section 3.6):

1. Prove that an idealized version of the scheme, in which one uses a uniformly
selected function f:{0,1}™—{0,1}", rather than the pseudorandom func-
tion fs, is secure (in the sense of ciphertext-indistinguishability).

2. Conclude that the real scheme (as presented above) is secure (since other-
wise one could distinguish a pseudorandom function from a truly random
one).

Specifically, in the ideal version the messages z(!),...,z(!) are encrypted by
(r, frMy @ 2W), .., (1O f(rD) @ £®), where the 7U)’s are independently
and uniformly selected, and f is a random function. Thus, with probability
greater than 1 —¢2-27", the r/)’s are all distinct and so the values f(r()) @)
are independently and uniformly distributed, regardless of the z(7)’s. It follows
that the ideal version is ciphertext-indistinguishable. Now, if the actual scheme
is not ciphertext-indistinguishable, then for some sequence of 7(9)’s a polynomial-
size circuit can distinguish the f(r(?)) @ 2(9)’s from the f,(r(?")) & 2(9)’s, where
f is random and f; is pseudorandom. But this contradicts the hypothesis that
polynomial-size circuits cannot distinguish between the two cases. W

Discussion: Note that we could have gotten rid of the randomization if we
had allowed the encryption algorithm to be history dependent (as discussed in
Section 5.3.1 above). Specifically, in such a case, we could have used a counter in
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the role of r. Furthermore, if the encryption scheme is used for FIFO communica-
tion between the parties and both can maintain the counter value then there is
no need for the sender to send the counter value. However, in the later case Con-
struction 5.3.3 is preferable (because the adequate pseudorandom generator may
be more efficient than a pseudorandom function as used in Construction 5.3.9).
We note that in case the encryption scheme is not used for FIFO communication
and one may need to decrypt messages with arbitrary varying counter values, it
is typically better to use Construction 5.3.9. Furthermore, in many cases it may
be preferable to select a value (i.e., 7) at random rather than rely on a counter
that must stored in a reliable manner between applications (of the encryption
algorithm).

The ciphertexts produced by Construction 5.3.9 are longer than the corre-
sponding plaintexts. This is unavoidable in case of secure (history-independent)
encryption schemes (see Exercise 22). In particular, the common practice of
using pseudorandom permutations as block-ciphers'? is NOT secure (e.g., one
can distinguish two encryptions of the same message from encryptions of two
different messages).

Recall that by combining Constructions 5.3.7 and 5.3.9 (and referring to
Propositions 5.3.8 and 5.3.10), we obtain a (full-fledged) private-key encryption
scheme. A more efficient scheme is obtained by a direct combination of the ideas
underlying both constructions:

Construction 5.3.12 (a private-key encryption scheme based on pseudoran-
dom functions): Let F = {F,} (and I and V') be as in Construction 5.3.9; that
is, ' = {F,} is an efficiently computable function ensemble and I and V be the
selection and evaluation algorithms associated with it. We define a private-key
encryption scheme, (G, E, D), as follows:

key-generation: G(1™) = (i,4), where i — I(1™).

encrypting plaintext a € {0,1}* (using the key ¢): Break o into consecutive blocks
of length n, while possibly augmenting the last block. Let aq, ..., be the
resulting blocks. Associate {0,1}™ with the set of integer residues modulo
2", select uniformly v € {0,1}", and compute r; =+ j mod 2", for j =
1,...,t. Finally, form the ciphertext (r,|al,V(i,r1) ® ai, ..., V(i,1¢) ® ay).
That is,

Ei(z) = (r,|a],V(i,(r +1 mod 2")) ® oy, ..., V(i, (r + t mod 2")) & )
decrypting ciphertext (r,m,y1,...,y:) (using the key i): For j = 1,....t, com-

pute a; = V(i,(r + j mod 2™)) @ y;, and output the m-bit long prefiz
of ay -+ -ay. That is, D;(r,m,y1,...,yt) is the m-bit long prefiz of

(V(i,(r +1mod 2™) ®y1) - (V(i,(r +t mod 2")) & ;)
Clearly, Construction 5.3.12 constitutes a private-key encryption scheme (pro-

vided that F' is pseudorandom with respect to polynomial-size circuits). See
Exercise 23.

12 That is, letting F;(z) = p;(z), where p; is the permutation associated with the string i.
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5.3.4 Public-key encryption schemes

As mentioned above, randomization during the encryption process can be avoided
in private-key encryption schemes that employ a varying state (not allowed in
our basic Definition 5.1.1). In case of public-key encryption schemes, random-
ization during the encryption process is essential (even if the encryption scheme
employs a varying state). Thus, the randomized encryption paradigm plays an
even more pivotal role in the construction of public-key encryption scheme. To
demonstrate this paradigm we start with a very simple (and quite wasteful) con-
struction. But before doing so, we recall the notion of trapdoor permutations.

Trapdoor permutations: All our constructions employ a collection of trap-
door permutations, as in Definition 2.4.5. Recall that such a collection, {pas}a,
comes with four probabilistic polynomial-time algorithms, denoted here by I, .S, F'
and B (for indez, sample, forward and backward), such that the following (syn-
tactic) conditions hold

1. On input 1", algorithm I selects a random n-bit long index « of a permu-
tation p,, along with a corresponding trapdoor 7;

2. On input «, algorithm S samples the domain of p,, returning a random
element in it;

3. For z in the domain of p,, given « and z, algorithm F' returns p,(z) (i.e.,
F(a,z) = pa(z));

4. For y in the range of p, if («, 1) is a possible output of I(1™) then, given
7 and y, algorithm B returns p;*(y) (i.e., B(1,vy) = p5'(y)).

The hardness condition refers to the difficulty of inverting p, on a random
element of its range, when given only the range-element and «. That is, let
I, (1™) denote the first element in the output of I(1™) (i.e., the index), then for
every polynomial-size circuit family {C,,}, every polynomial p and all sufficiently

large n’s
PriCa (L (1), pr, 1y (S (M) = S(L(1M)] < ﬁ

Namely, C,, fails to invert p, on p,(z), where o and = are selected by I and
S as above. Recall the above collection can be easily modified to have a hard-
core predicate (cf. Theorem 2.5.2). For simplicity, we continue to refer to the
collection as {p,}, and let b denote the corresponding hard-core predicate.

5.3.4.1 Simple schemes

We are now ready to present a very simple (alas quite wasteful) construction of
a secure public-key encryption scheme. It is a block-cipher with £ = 1.

Counstruction 5.3.13 (a simple public-key block-cipher scheme): Let {p,},
I,S,F,B and b be as above.
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key-generation: The key-generation algorithm consists of selecting at random a
permutation p, together with a trapdoor T for it: The permutation (or
rather its description) serves as the public-key, whereas the trapdoor serves
as the private-key. That is, G(1™) = I(1™), which means that the index-
trapdoor pair generated by I is associated with the key-pair of G.

encryption: To encrypt a bit o, using the encryption-key «, the encryption al-
gorithm randomly selects an element, r, in the domain of p, and produces
the ciphertext (po(r),c ®b(r)). That is, E.(0) = (F(a,r),0 ®b(r)), where
r— S(a).

decryption: To decrypt the ciphertext (y,s), using the decryption-key T, the de-
cryption algorithm just computes ¢ © b(p,1(y)), where the inverse is com-
puted using the trapdoor T of po. That is, D, (y,s) = ¢ ® b(B(7,y)).

Clearly, for every possible («, 7) output of G and for every ¢ € {0,1}, it holds
that

D:(Ea(0)) = D:(F(a,S()),0 @b(S(a)))

The security of the above public-key encryption scheme follows from the (non-
uniform) one-way feature of the collection {p,} (or rather from the hypothesis
that b is a corresponding hard-core predicate).

Proposition 5.3.14 Suppose that b is a (non-uniformly strong) hard-core of
the collection {po}. Then Construction 5.3.13 constitute a secure public-key
block-cipher (with block-length ¢ = 1).

Proof: Recall that by the equivalence theorems (i.e., Theorems 5.2.5 and 5.2.11),
it suffices to show single-message ciphertext-indistinguishability. Furthermore,
by Proposition 5.2.7 and the fact that here there are only two plaintexts (i.e., 0
and 1), it suffices to show that one cannot predict which of the two plaintexts
(selected at random) is being encrypted (significantly better than with success
probability 1/2). We conclude by noting that a good guess for the plaintext o,
given the encryption-key a and the ciphertext E, (o) = (fo(r), o @ b(r)), where
r — S(«), yields a good guess for b(r) given («, fo(r)). That is, the latter guess
is correct with probability equal to the probability that former guess is correct.
Thus, violation of the security of the encryption scheme yields a contradiction
to the the hypothesis that b is a hard-core of {p,}. Details follow.

Recall that by saying that b is a hard-core of {p,} we mean that for every
polynomial-size circuit family {C},}, every polynomial p and all sufficiently large
n’s

N | =

PrC(L(17), pryam) (S(L (1)) = b(S(L(1™))] < 5 + —— (5.8)

1
p(n)
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By Proposition 5.2.7, it suffices to show that for randomly chosen a (i.e., a «
I;(1™)) and uniformly distributed ¢ € {0,1}, no polynomial-size circuit given
the encryption-key « and the ciphertext E,(c), can predict o non-negligibly
better than with success probability 1/2. The actual proof uses a reducibility
argument: Suppose towards the contradiction that there exists a polynomial-size
circuit family {C! }, a polynomial p" and infinitely many n’s such that

Pr(CL(L(1"), B, 1v)(0)) = 0] >

(5.9)

where ¢ is uniformly distributed in {0,1}. Recall that E,(c) = (pa(r),c®b(r)),
where 7« S(a) is a random sample in p,’s domain, and consider the following
probabilistic circuit C//: On input « and y (in the range of p,), the circuit
C!! uniformly selects ¢ € {0,1}, invokes C}, on input («,(y,s)), and outputs
Cl(a,(y,s)) ®¢. In the following analysis of the behavior of C/!, we let o «
I (1™), r < S(a), and consider uniformly distributed ¢,o € {0,1}:

Pr[Ch (., pa(r)) =b(r)] = Pr[Cp(a, (pa(r),<)) & = b(r)]
= Pr[Cy(a, (pa(r),5)) = ¢ @ b(r)]
= Pr[C,(a, (pa(r),0 ©b(r)) = (0 & b(r)) & b(r)]
= Pr[C! (o, Ey(0)) = d]
L
2 p(n)

where the inequality is due to Eq. (5.9). Removing the randomization from C!
(i.e., by fixing the best possible choice), we derive a contradiction to Eq. (5.8).
The proposition follows.

Using Propositions 5.3.8 and 5.3.14, and recalling that Theorem 2.5.2 applies also
to collections of one-way functions and to the non-uniform setting, we obtain

Theorem 5.3.15 If there exist collections of (non-uniformly hard) trapdoor per-
mutations then there exist secure public-key encryption schemes.

A generalization: As admitted above, Construction 5.3.13 is quite wasteful.
Specifically, it is wasteful in bandwidth; that is, the relation between the length of
the plaintext and the length of the ciphertext. In Construction 5.3.13 the relation
between these lengths equals the security parameter (i.e., the length of descrip-
tion of individual elements in the domain of the permutation). However, the
idea underlying Construction 5.3.13 can yield efficient public-key schemes, pro-
vided we use trapdoor permutations having hard-core functions with large range
(see Section 2.5.3). To demonstrate the point, we use the following assumption
relating to the RSA collection of trapdoor permutations (cf. Subsections 2.4.3
and 2.4.4).
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Large hard-core conjecture for RSA: The first n/2 least significant bits of
the argument constitute a (non-uniformly strong) hard-core function of the RSA
function when applied with n-bit long moduli.

We stress that the conjecture is NOT know to follow from the assumption that
the RSA collection is (non-uniformly) hard to invert. What can be proved under
the latter assumption is only that the first O(logn) least significant bits of the
argument constitute a (non-uniformly strong) hard-core function of RSA (with
n-bit long moduli). Still, if the above conjecture holds then one obtains a secure
public-key encryption scheme with efficiency comparable to that of “plain RSA”
(see discussion below). Furthermore, this scheme coincides with the common
practice of randomly padding messages (using padding equal in length to the
message) before encrypting them (by applying the RSA function). That is, we
consider the following scheme:

Construction 5.3.16 (Randomized RSA — a public-key block-cipher scheme):
This scheme employs the RSA collection of trapdoor permutations (cf. Subsec-
tions 2.4.3 and 2.4.4). The following description is, however, self-contained.

key-generation: The key-generation algorithm consists of selecting at random
two n-bit primes, P and (), setting N = P - (), selecting at random a
pair (e,d) so thate-d =1 (mod (P —1)-(Q — 1)), and outputting the
tuple ((N,e),(N,d)), where (N, e) is the encryption-key and (N,d) is the
decryption-key. That is, (N, e),(N,d)) «— G(1™), where N, e and d are
as specified above,

(Note that N is 2n-bit long.)

encryption: To encrypt an n-bit string o (using the encryption-key (N,e)), the
encryption algorithm randomly selects an element, r € {0,...,N — 1}, and
produces the ciphertezt (r¢ mod N, o @ LSB(r)), where LSB(r) denotes the
n least significant bits of r. That is, E(y ¢)(0) = (r® mod N,o & LSB(r)).

decryption: To decrypt the ciphertezt (y,s) € {0,...,N — 1} x {0,1}™ (using
the decryption-key (N,d)), the decryption algorithm just computes ¢ @
LsB(y? mod N), where LSB(-) is as above. That is, Dy a)(y,s) = s &
L$B(y¢ mod N).

The bandwidth of the above scheme is much better than in Construction 5.3.13:
a plaintext of length n is encrypted via a ciphertext of length 3n. Furthermore,
Randomized RSA is almost as efficient as “plain RSA” (or the RSA function
itself).

To see that Randomized RSA satisfies the syntactic requirements of an en-
cryption scheme, consider any possible output of G(1™), denoted ((N,e), (N, d)),
and any o € {0,1}™. Then, for r uniformly selected in {0,..., N — 1}, it holds
that

Dn.ay(E(n,ey)(0)) = D(y,g)((r® mod N),o @ LSB(r))
= (0 ®LsB(r)) ®LsB((r° mod N)? mod N)
o ®LsB(r) ® LsB(r*“ mod N) = ¢
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where the last equality is due to 7* =7 (mod N). The security of Random-
ized RSA (as a public-key encryption scheme) follows from the large hard-core
conjecture for RSA, analogously to the proof of Proposition 5.3.14.

Proposition 5.3.17 Suppose that the large hard-core conjecture for RSA does
hold. Then Construction 5.3.16 constitute a secure public-key block-cipher (with
block-length ¢(n) = n).

Proof Sketch: Recall that by the equivalence theorems (i.e., Theorems 5.2.5
and 5.2.11), it suffices to show single-message ciphertext-indistinguishability.
Considering any two strings « and y, we need to show that ((NV,e),r¢ mod N, z®
LsB(r)) and ((V,e),r® mod N,y @ LsB(r)) are indistinguishable, where N, e and
r are selected at random as in the construction. It suffices to show that, for every
z, the distributions ((IV,e),r® mod N,z & LsB(r)) and ((N,e),r¢ mod N,z & s)
are indistinguishable, where s € {0,1}" is uniformly distributed, independently
of anything else. The latter claim follows from the hypothesis that the n least
significant bits are a hard-core function for RSA with moduli of length 2n. W

Discussion: We wish to stress that encrypting messages by merely applying
the RSA function to them (without randomization), yields an insecure encryption
scheme. Unfortunately, this procedure (referred to about as ‘plain RSA’), is
quite common in practice. The fact that plain RSA is definitely insecure is a
special case of the fact that any public-key encryption scheme that employs a
deterministic encryption algorithm is insecure. We warn that the fact that in
such deterministic encryption schemes one can distinguish encryptions of two
specific messages (e.g., the all-zero message and the all-one message) is not
“merely of theoretical concern” — it may seriously endanger some applications!
In contrast, Randomized RSA (as defined in Construction 5.3.16) may be secure,
provided a quite reasonable conjecture (i.e., the large hard-core conjecture for
RSA) holds. Thus, the common practice of applying the RSA function to a
randomly-padded version of the plaintext is way superior to using the RSA
function directly (i.e., without randomization): the randomized version is likely
to be secure, whereas the non-randomized (or plain) version is definitely insecure.

We note that Construction 5.3.16 (or alternatively Construction 5.3.13) gen-
eralizes to any collection of trapdoor permutations having a corresponding large
hard-core function. Suppose that {p,} is such a collection, and h (or rather
{ha}) is a corresponding hard-core function (resp., a corresponding collection of
hard-core functions) such that any element in the domain of p, is mapped to
an {(|a|)-bit long string. Then we can encrypt an £(]«|)-bit long plaintext, z,
by (pa(r), h(r) @ ) (resp., (pa(r), ha(r) ®z)), where r «— S(a) (as in Construc-
tion 5.3.13). This yields a secure public-key encryption scheme with bandwidth
that relates to the relation between ¢(|a|) and the length of a description of
individual elements in the domain of p,.
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5.3.4.2 An alternative scheme

An alternative construction of a public-key encryption scheme is presented be-
low. Rather than encrypting each plaintext bit (or block of bits) by an inde-
pendently selected element in the domain of the trapdoor permutation (as done
in Construction 5.3.13), we select only one such element (for the entire plain-
text), and generate from it additional bits, one per each bit of the plaintext.
These additional bits are determine by successive applications of the trapdoor
permutation, and only the last result is included in the ciphertext. In a sense,
the construction of the encryption scheme (below) augments the construction
of a pseudorandom generator based on one-way permutations (i.e., Construc-
tion 3.4.4).

Construction 5.3.18 (a public-key encryption scheme): Let {p.}, I,S,F, B
and b be as in Construction 5.5.13. We use the notation p' ™t (z) = pao(p’,(z))

i1 1

(@) = (0 (@))-

key-generation: The key-generation algorithm consists of selecting at random a
permutation p, together with o trapdoor, exactly as in Construction 5.5.13.

That is, G(1™) = I(1™), which means that the indez-trapdoor pair generated
by I is associated with the key-pair of G.

and pa

encryption: To encrypt a string o, using the encryption-key «, the encryption
algorithm randomly selects an element, r, in the domain of p., and produces
the ciphertext (p‘o'f‘(r), o G(Q‘UD(T)), where

GO () E b(r) - b(pa(r)) -+ bEE (1) (5.10)
That is, Eo(0) = (plf!(S(a)), 0 ® GI7P (5(w))).

decryption: To decrypt the ciphertext (y,s), using the decryption-key T, the de-

cryption algorithm just computes ¢ ® chl)(pglcl(y)), where the inverse is

computed using the trapdoor T of po. That is, D (y,s) = gEBG((llgl)(p;‘g‘ (v)).

We stress that the above encryption scheme is a full-fledged one (rather than a
block-cipher). Its bandwidth tends to 1 with the length of the plaintext; that
is, a plaintext of length ¢ = poly(n) is encrypted via a ciphertext of length
m + £, where m denotes the length of the description of individual elements in
the domain of p,. Clearly, for every possible («, 7) output of G (and r — S(«)),
it holds that

D (Ba(0)) = D-(\(r),0 @G " (r)

10aGU D ()], e
= (0o G\"N(r) e U (ps O Ml plel ()
oP G&‘"D(r) & Gg”l)(r) =0

The security of the above public-key encryption scheme follows from the (non-
uniform) one-way feature of the collection {pq }, but here we restrict the sampling
algorithm S to produce almost uniform distribution over the domain (so that
this distribution is preserved under successive applications of p, ).
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Proposition 5.3.19 Suppose that b is a (non-uniformly strong) hard-core of
the trapdoor collection {p,}. Furthermore, suppose that this trapdoor collection
utilizes a domain sampling algorithm S so that the statistical difference between
S(«) and the uniform distribution over the domain of p. is negligible in terms of
|ee|. Then Construction 5.3.18 constitute a secure public-key encryption scheme.

Proof: Again, we prove single-message ciphertext-indistinguishability. Asin the
proof of Proposition 5.3.17, it suffices to show that, for every o, the distributions
(a, PN (S(@)), 0 GUV(S(a))) and (a,pl!(S(@)), o & s) are indistinguishable,
where s € {0, 1}“" is uniformly distributed, independently of anything else. The
latter claim holds by a minor extension to Proposition 3.4.6: the latter refers to
the case S(«) is uniform over the domain of p,, but can be extended to the case
in which there is a negligible statistical difference between the distributions.

Details: We need to prove that for every polynomial ¢ and every se-
quence of pairs (0,,07) € {0,1}*™) x {0,1}*() the distributions D/, def
(@, pi (S(@)), ot @G L™ (S(a))) and DI = (e, pi™ (S(@), oh @G L™ (S(a)))

are indistinguishable, where o < I1(1™). We prove the above in two steps:

1. We first prove that for every sequence of 0,,’s, the distributions D,, dof
def

(o pa™ (S(2)), 0m & G (S(@))) and B = (o, pa™ (S(a), 00 ©
Uygny) are indistinguishable, where Uy (,) denotes a random variable
uniformly distributed over {0,1}*(™ and a « I;(1").

Suppose first that S(«) is uniform over the domain of po. Then
the indistinguishability of {D.}, .y and {R.}, N follows directly
from Proposition 3.4.6 (as adapted to circuits): the adapted form
refers to the indistinguishability of (o, pi™ (S()), GL ™ (5(a))) and
(a0, pi) (S(@)),Ug(ny), and yields the desired claim by noting that o,
can be incorporated in the prospective distinguisher. The extension
(to the case that S(«) has negligible statistical difference to the uni-
form distribution over the domain of p.) is straightforward.

2. Applying the previous item to D) and R, def (a,pﬁ(")(S(a)),a; &)
Us(ny), we conclude that {D},} .n and {R,}, N are indistinguish-
able. Similarly, {D}, . and {R,}, cN, where Ry, = (a,pﬁ(")(S(a)), ond
Ue(n)), are indistinguishable. Furthermore, {R;}, .y and {Ry}, N
are identically distributed. Thus, {D},}, . and {D}}, .y are indis-
tinguishable.

The proposition follows. Il

An instantiation: Assuming that factoring Blum Integers (i.e., products of
two primes each congruent to 3 (mod 4)) is hard, one may use the modu-
lar squaring function (which induces a permutation over the quadratic residues
modulo the product of these integers) in role of the trapdoor permutation used
in Construction 5.3.18. This yields a secure public-key encryption scheme with
efficiency comparable to that of plain RSA (see further discussion below).
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Construction 5.3.20 (The Blum-Goldwasser Public-Key Encryption Scheme):
Consult Appendiz A for the relevant number theoretic background, and note that
for P =3 (mod 4) the number (P + 1)/4 is an integer. For simplicity, we
present a block-cipher with arbitrary block-length €(n) = poly(n); a full-fledged
encryption scheme can be derived by an easy modification (see Exercise 24).

key-generation: The key-generation algorithm consists of selecting at random
two n-bit primes, P and Q, each congruent to 8 mod 4, and outputting the
pair (N, (P,Q)), where N =P - Q.

Actually, for sake of efficiency, the key-generator also computes
dp =
dg =

(P +1)/4)™ mod P — 1
(@ +1)/4)™ mod Q —1
cp = Q- (Q 'modP)
cQ P- (P! mod Q)

in {0, .., P —2})
in {0,...,Q — 2})
in {0,...,N —Q})
in {0,..,N — P})

It outputs the pair (N, T'), where N serves as the encryption-key and T =
(P,Q,N,cp,dp,cq,dg) serves as decryption-key.

encryption: To encrypt the message o € {0, 1}“"), using the encryption-key N :

1. Uniformly select s € {1,...,N}.
(Note that if GCD(sp, N) = 1 then s2 mod N is a uniformly dis-
tributed quadratic residue modulo N.)

2. Fori =1,..,4(n) + 1, compute s; — s> ; mod N and b; = lsb(s;),
where 1sb(s) is the least significant bit of s.

The ciphertest is (S¢(n)+1,5), where ¢ = @ biba - - - by(p).

decryption: To decrypt of the ciphertext (r,s) using the decryption-key T =
(P,Q,N,cp,dp,cq,dg), one first retrieves s1 and then computes the b;’s
as above. Instead of extracting modular square roots successively £(n)
times, we extract the 2™ -th root, which can be done as efficiently as
ertracting a single square root:

1. Let s' «— r% mod P, and s" «— r? mod Q.
2. Let s1 +—cp-s' +cg-s" mod N.
3. Fori=1,.,0(n), compute b; =1sb(s;) and s;+1 < s? mod N.

The plaintext is ¢ & bibz - - - by(p)-

Again, one can easily verify that the above construction constitutes an encryp-
tion scheme: the main fact to verify is that the value of s; as reconstructed
in the decryption stage equals the value used in the encryption stage. This
follows by combining the Chinese Reminder Theorem with the fact that for ev-
ery quadratic residue s mod N it holds that s = (322 mod N)*  (mod P) and

s = (s2' mod N)% (mod Q).
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Details: Recall that for a prime P =3 (mod 4), and every integer ¢, we
have i¢¥T1/2) =4 (mod P). Thus, for every integer j, we have

)((P+1)/4)5

. P _ .ot
2¢ d 2
(7 mod N) = (j° mod N (mod P)

= P/ (h6q P)
= j (mod P)

Similarly, j = (jze mod N)?@  (mod Q). Observing that cp and c¢ are as
in the Chinese Reminder Theorem (i.e., 1 = cp - (¢ mod P)+cq - (i mod Q)

(mod N), for every integer i), we conclude that si as recovered in Step 2
of the decryption process equals s; as first computed in Step 2 of the
encryption process.

Encryption amounts to £(n) + 1 modular multiplications, whereas decryption
amounts to £(n)+2 such multiplications and 2 modular exponentiations (relative
to half-sized moduli). Counting modular exponentiations with respect to n-
bit moduli as O(n) (i.e., at least n and at most 2n) modular multiplications
(with respect to n-bit moduli), we conclude that the entire encryption-decryption
process requires work comparable to 2¢(n) + 4n modular multiplications. For
comparison to (Randomized) RSA, note that encrypting/decrypting ¢(n)-bit
messages (in Randomized RSA) amounts to [¢(n)/n] modular exponentiations,
and so the total work is comparable to 2 - (¢(n)/n) - 1.5n = 3¢(n) (for general
exponent e, or half that much in case e = 3).

The security of the Blum-Goldwasser scheme (i.e., Construction 5.3.20) fol-
lows immediately from Proposition 5.3.19 and the fact that the least significant
bit (i.e., Isb) is a hard-core for the modular squaring function. Recalling that
inverting the latter is computationally equivalent to factoring, we get:

Corollary 5.3.21 Suppose that factoring is infeasible in the sense that for every
polynomial-size circuit {Cy,}, every positive polynomial p and all sufficiently large
n’s

1
where P, and Q, are uniformly distributed n-bit long primes. Then Construc-
tion 5.3.20 constitutes a secure public-key encryption scheme.

Thus, the conjectured infeasibility of factoring (which is a necessary condition
for security of RSA), yields a secure public-key encryption scheme with efficiency
comparable to that of (plain or Randomized) RSA. In contrast, recall that plain
RSA itself is not secure (as it employs a deterministic encryption algorithm),
whereas Randomized RSA (i.e., Construction 5.3.16) is not known to be se-
cure under standard assumption such as intractability of factoring (or even of
inverting the RSA function).

13 Recall that Randomized RSA is secure provided that the n/2 least significant bits consti-
tute a hard-core function for n-bit RSA moduli. This is a reasonable conjecture, but it seems
stronger than the conjecture that RSA is hard to invert: assuming that RSA is hard to invert,
we only know that the O(logn) least significant bits constitute a hard-core function for n-bit
moduli.
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5.4 * Beyond eavesdropping security

Our treatment so far has referred only to a “passive” attack in which the ad-
versary merely eavesdrops on the line over which ciphertexts are being sent.
Stronger types of attacks, culminating in the so-called Chosen Ciphertext At-
tack, may be possible in various applications. Specifically, in some settings it is
feasible for the adversary to make the sender encrypt a message of the adver-
sary’s choice, and in some settings the adversary may even make the receiver
decrypt a ciphertext of the adversary’s choice. This gives rise to chosen plaintext
attacks and to chosen ciphertext attacks, respectively, which are not covered by
the security definitions considered in previous sections. Thus, our main goal
in this section is to provide a treatment to such types of “active” attacks. In
addition, we also discuss the related notion of non-malleable encryption schemes
(see Section 5.4.5).

5.4.1 Overview

We start with an overview of the type of attacks and results considered in the
current (rather long) section.

5.4.1.1 Types of attacks

The following mini-taxonomy of attacks is certainly not exhaustive.

Passive attacks. We first re-consider passive attacks as referred to in the def-
initions given in previous sections. In case of public-key schemes we distinguish
two sub-cases:

1. A key-oblivious, passive attack, as captured in the abovementioned defini-
tions. By ‘key-obliviousness’ we refer to the postulation that the choice of
plaintext does not depend on the public-key.

2. A key-dependent, passive attack, in which the choice of plaintext may de-
pend on the public-key.

(In Definition 5.2.2 the choice of plaintext means the random variable X,
whereas in Definition 5.2.4 it means the pair (z,,y,). In both these definitions,
the choice of the plaintext is key-oblivious.)

Chosen Plaintext Attacks. Here the attacker may obtain the encryption
of any plaintext of its choice (under the key being attacked). Indeed, such an
attack does not add power in case of public-key schemes.

Chosen Ciphertext Attacks. Here the attacker may obtain the decryption
of any ciphertext of its choice (under the key being attacked). That is, the
attacker is given oracle access to the decryption function corresponding to the
decryption-key in use. We distinguish two types of such attacks.
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1. In an a-priori chosen ciphertext attack, the attacker is given this oracle
access prior to being presented the ciphertext that it should attack (i.e.,
the ciphertext for which it has to learn partial information). That is, the
attack consists of two stages: in the first stage the attacker is given the
above oracle access, and in the second stage the oracle is removed and the
attacker is given a ‘test ciphertext’ (i.e., a target to be learned).

2. In an a-posteriori chosen ciphertext attack, after being given the target
ciphertext, the oracle is not removed but the adversary’s access to it is
restricted in that it is not allowed to make a query equal to the target
ciphertext.

In both cases, the adversary may make queries that do not correspond to a
legitimate ciphertext, and the answer will be accordingly (i.e., a special ‘failure’
symbol). Furthermore, in both cases the adversary may effect the selection of
the target ciphertext (by specifying a distribution from which the corresponding
plaintext is to be drawn).

Formal definitions of all types of attacks listed above are given in the following
corresponding subsections (i.e., in Sections 5.4.2, 5.4.3 and 5.4.4, respectively).
In addition, in Section 5.4.5, we consider the related notion of malleability; that
is, attacks aimed at generating ciphertexts related to the secret plaintext rather
than gaining information about it.

5.4.1.2 Constructions

As in the basic case, actively-secure private-key encryption schemes can be con-
structed based on the existence of one-way functions, whereas actively-secure
public-key encryption schemes are based on the existence of trapdoor permu-
tations. In both cases, withstanding a-posteriori chosen ciphertext attacks is
harder than withstanding a-priori chosen ciphertext attacks. We will present
the following results.

For private-key schemes: We will show that the private-key encryption
scheme based on pseudorandom functions (i.e., Construction 5.3.9), is secure
also under a-priori chosen ciphertext attacks, but is not secure under an a-
posteriori chosen ciphertext attack. We will also show how to transform any
passively-secure private-key encryption scheme into a scheme secure under (a-
posteriori) chosen ciphertext attacks, by using a message authentication scheme
on top of the basic encryption. Thus, the latter construction relies on message
authentication schemes as defined in Section 6.1. We mention that message
authentication schemes can be constructed using pseudorandom functions; see
Section 6.3.

For public-key schemes: Assuming the existence of trapdoor permutations,
we will present constructions of public-key encryption schemes that are secure
against (a-priori and a-posteriori) chosen ciphertext attacks. The constructions
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utilize various forms of non-interactive zero-knowledge proofs (see Section 4.10),
which can be constructed under the former assumption. We warn that these
constructions are rather complex. We will start with the construction of a public-
key encryption scheme that is secure against a-priori chosen ciphertext attacks,
and then turn to the more complex scheme that is secure also under a-posteriori
chosen ciphertext attacks.

As a corollary to the relation between these strong notions of security and
non-malleable encryption scheme, we will conclude that the abovementioned
schemes are non-malleable.

5.4.1.3 Methodological comments

As hinted above, we do not cover all possible intermediate types of attacks, but
rather focus on some natural ones. For example, we only consider key-dependent
attacks on public-key encryption schemes (but not on private-key schemes).

The attacks are presented in increasing order of strength; hence, security
under such attacks yields increasingly stronger notions. This fact may be best
verified when considering the indistinguishability variants of these security defi-
nitions.

A uniform-complexity treatment seems more appealing in the current section
(i.e., more than in the previous sections). However, for sake of consistency with
the basic definitions (i.e., the previous sections of this chapter), we use non-
uniform formulations of the various definitions. To obtain the corresponding
uniform-complexity formulations, one should merely restrict the (polynomial-
size) circuit families to be constructible by a uniform polynomial-time machine.
We stress that all the results extend to the uniform-complexity setting (because
all our reductions are either uniform or can be adapted to be uniform using the
techniques of Section 5.2.5).

As mentioned above, non-interactive zero-knowledge proofs play a central
role in the construction of public-key encryption schemes that are secure under
chosen ciphertext attacks. At that point, we will assume that the reader is fairly
comfortable with the notion of zero-knowledge proofs. Furthermore, although
we recall the relevant definition of non-interactive zero-knowledge, which will
serve as our starting point towards stronger notions, we recommend to study first
the more basic definitions (and results) regarding non-interactive zero-knowledge
proofs (as presented in Section 4.10). In our constructions of encryption schemes
that are secure under a-posteriori chosen ciphertext attacks, we shall use some
results from Chapter 6. In case of private-key encryption schemes (cf. Sec-
tion 5.4.4.3), we will use a message authentication scheme, but do so in a self-
contained way. In case of public-key encryption schemes (cf. Section 5.4.4.4),
we will use signature schemes having an extra property in order to construct a
certain non-interactive zero-knowledge proof, which we use for the construction
of the encryption scheme. At that point we shall refer to a specific result proved
in Chapter 6.
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5.4.2 Key-dependent passive attacks

The following discussion as well as the entire subsection refers only to public-
key encryption schemes. For sake of simplicity, we present the single-message
definitions of security; and note that, as in the basic case (for public-key en-
cryption schemes), the single-message definitions of security are equivalent to
the multiple-message ones.

In Definitions 5.2.2 and 5.2.4 the plaintext distribution (or pair) is fixed
obliviously of the encryption-key. This suffices for the natural case in which
the (high level) application (using the encryption scheme) is oblivious of the
encryption-key.'* However, in some settings, the adversary may have partial
control on the application. Furthermore, in the public-key case, the adversary
knows the encryption-key in use, and so (if it may partially control the appli-
cation then) it may be able to cause the application to invoke the encryption
scheme on plaintexts that are related to the encryption-key in use. Thus, for
such settings, we need stronger definitions of security that postulate that partial
information about the plaintext remains secret even if the plaintext does depend
on the encryption-key in use. Note that here we merely consider the dependence
of the “target” plaintext (i.e., the one for which the adversary wishes to obtain
partial information) on the encryption-key, and ignore the fact that the above
motivation also suggests that the adversary can obtain the encryptions of ad-
ditional plaintexts chosen by it (as discussed in Section 5.4.3). However, it is
easy to see that (in the public-key setting discussed here) these additional en-
cryptions are of no use because the adversary can generate them by itself (see
Section 5.4.3).

5.4.2.1 Definitions

Recall that we seek a definition that guarantees that partial information about
the plaintext remains secret even if the plaintext does depend on the encryption-
key in use. That is, we seek a strengthening of semantic security (as defined in
Definition 5.2.2) in which one allows the plaintext distribution ensemble (de-
noted {X,}, cn in Definition 5.2.2) to depend on the encryption-key in use (i.e.,
for encryption-key e we consider the distribution X, over {0, 1}P°1>'(|€\)), Fur-
thermore, we also allow the partial information functions (denoted f and h in
Definition 5.2.2) to depend on the encryption-key in use (i.e., for encryption-key
e, we consider the functions f. and h.). In the actual definition it is important
to restrict the scope of the functions h.’s and the distributions X.’s so that
their dependency on e is polynomial-time computable (see Exercise 25). This
yields the definition presented in Exercise 26, which is equivalent to the following
formulation.

14 Indeed, it is natural (and even methodologically imperative) that a high-level application
that uses encryption as a tool, is oblivious of the keys used by that tool. However, this refers
only to proposer operation of the application, and deviation may be caused (in some settings)
by an improper behavior (i.e., an adversary).
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Definition 5.4.1 (semantic security under key-dependent passive attacks): The
sequence {(fe,he, Xe)}eefo,1}+ s admissible for the current definition if

1. The functions fe : {0,1}* — {0,1}* are polynomially-bounded; that is,
there exists a polynomial € such that |f.(z)| < €(|x] + |e|).

2. There ezists a non-uniform family of polynomial-size (h-evaluation) cir-
cuits {H,},cn such that for every e in the range of G1(1™) and every
x € {0,1}PUeD it holds that H,(e,z) = he(z).

3. There exists a non-uniform family of (probabilistic) polynomial-size (sam-
pling) circuits {Sn}nen such that for every e in the range of G1(1") and
for some m = poly(|e|), the random variables Sy, (e,Up,) and X, are iden-
tically distributed. We stress that for every e, the length of X, is fized.

An encryption scheme, (G, E, D), is semantically secure under key-dependent pas-
sive attacks if for every probabilistic polynomial-time algorithm A, there exists
a probabilistic polynomial-time algorithm A' such that for every admissible se-
quence {(fe, he, Xe)tecqo,13+, every positive polynomial p(-) and all sufficiently
large n:

Pr [A(e,Ee(Xe), 1‘XU|; he(Xe))zfe(Xe)]

< Pr [A'(e, 1|Xe|,hg(Xe)):fe(Xe):| +—

where (e,d) «— G(1™), and the probability is taken over the internal coin tosses
of algorithms G, E, A and A’, as well as over X,.

We stress that the performance of A’ is measured against the same distribution
of triplets (fe, he, Xc) (ie., e «<— G1(1™)) as the one considered for algorithm A.
Unlike in other versions of the definition of semantic security, here it is important
to let A’ have the encryption-key e because the task (i.e., the evaluation of
fe(Xe)) as well as its main input (i.e., the value h.(X.)) are related to e. (Indeed,
if e were not given to A’ then no encryption scheme (G, E, D) could have satisfied
the revised Definition 5.4.1: Considering h.(z) = z®e (for |z| = |e]) and f.(z) =
x, note that it is easy for A to compute z from e and h.(z) (which are explicit
in (e, E.(z), 1%l h(z))), whereas no A’ can compute z from (17, 11%! h.(z)).)

Using Exercise 13.2, one may verify that Definition 5.2.2 is a special case
of Definition 5.4.1. An analogous modification (or generalization) of Defini-
tion 5.2.4 yields the following:

Definition 5.4.2 (indistinguishability of encryptions under key-dependent pas-
sive attacks): The sequence {(Tc,Ve)}eefo,1}+ %5 admissible for the current defi-
nition if there exists a non-uniform family of polynomial-size circuits {Py},cN
that maps each encryption-key e € {0,1}* to the corresponding pair of (equal
length) strings (xe,ye). That is, for every e in the range of G1(1™), it holds
that P,(e) = (Te,ye). An encryption scheme, (G, E, D), has indistinguishable
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encryptions under key-dependent passive attacks if for every non-uniform family
of polynomial-size circuits {Cy}, every admissible sequence {(Ze,¥Ye)}ecfo,1}*5
every positive polynomial p(+) and all sufficiently large n:
1

Pr(Cr(e, Ec(xe))=1] — Pr[Cr(e, Ee(ye))=1]| < —

Pr{Cn(e, Ee(ze)) =1] [(())]Ip(n)
where (e,d) «— G(1™), and the probability is taken over the internal coin tosses
of algorithms G and E.

As in the basic case, the two definitions are equivalent.

Theorem 5.4.3 (equivalence of definitions for key-dependent passive attacks):
The public-key encryption scheme (G, E, D) is semantically secure under key-
dependent passive attacks if and only if it has indistinguishable encryptions under
key-dependent passive attacks.

Proof Sketch: In order to show that indistinguishable encryptions implies
semantic security, we follow the proof of Proposition 5.2.6. Specifically, A’ is
constructed and analyzed almost as before, with the exception that A’ gets
and uses the encryption-key e (rather than generating a random encryption-key
by itself).!> That is, we let A'(e,11%l,ho(x)) = A(e, E.(11%!),11¢l he(x)), and
show that for every (deterministic) polynomial-size circuit families {C, },,cry and
{Hy},en (and all sufficiently large n):

Pr [Ale, B.(Ca(e)), 17O, Hy (e, Cal€)) = £.(Cule))| (5.11)
1
poly(n)

< Pr[Ae, B (119N, 19O H (e, Cole)) = fo(Cule))] +

where e «— G1(1™). Once proven, Eq. (5.11) implies that (G, E, D) satisfies
Definition 5.4.1.

On how Eq. (5.11) implies Definition 5.4.1: The issue is that Eq. (5.11) refers

to deterministic circuits (i.e. C’s), whereas Definition 5.4.1 refers to prob-

abilistic circuits (i.e. S,.’s). This small gap can be bridged by fixing a se-

quence of coins for the probabilistic (sampling) circuits. Specifically, start-

ing with any admissible (for Definition 5.4.1) sequence {(f, he, Xc)}eego,13+5

where H, (e,z) = he(z) and X. = Sn(e,Upoly(n)), We consider some se-

quence of coins r, (for S,,) that maximizes the gap between Pr[A(e, E.(x.), 1< H,(e,z.))=
fe(we)] and Pr[A’(e, 1< H,(e,x.)) = f.(z.)], where e is random and

ze = Sn(e,n). Recalling that A'(e,1™,v) = A(e, E.(1™),1™,v) and

incorporating the sequence of 7,’s in A, we obtain a contradiction to

Eq. (5.11) (i.e., by letting Cr(e) = Sn(e,mn) = ).

Assuming (to the contrary of the above claim) that Eq. (5.11) does not hold,
we obtain a sequence of admissible pairs {(wc,ye)}eefo,1}+ for Definition 5.4.2

15 Here we use the convention by which A’ gets e along with he(z) (and 1!®!). This is
important because A’ must feed a matching pair (e, he(z)) to A.
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such that their encryptions can be distinguished (in contradiction to our hy-

pothesis). Specifically, we set x. def Cn(e) and ye 4l 1leel ) and let Cl (e, a) Lo

Ale,a, 11*<l H, (e,x,)), where 2z, = C,(e). Thus, we obtain a (poly(n)-size)
circuit CJ, such that

1

PCL (e, Eelwe) = folae)] = PrC, (e Bulye)) = Felae)ll >~

where e is distributed according to G;(1™). Using an idea as in the proof of The-
orem 5.2.15, we derive a (poly(n)-size) circuit C]/ that distinguishes (e, E.(z.))
from (e, E.(ye)), where e < G1(1™), in contradiction to our hypothesis.

Details: Recall that the idea was to proceed in two stages. First, using
only e (which also yields @, yc), we find an arbitrary value v such that
|Pr[Ch (e, Ee(ze)) =v] — Pr[C, (e, Ee(ye)) =v]| is large. In the second stage,
we use this value v in order to distinguish the case in which we are given
an encryption of z. from the case in which we are given an encryption
of ye. (We comment if (e,z) — f.(z) were computable by a poly(n)-size
circuit then converting C}, into a distinguisher C,, would have been much
easier; we further comment that as a corollary to the current proof, one
can conclude that the restricted form is equivalent to the general one.)

This concludes the proof that indistinguishable encryptions (as per Definition 5.4.2)
implies semantic security (as per Definition 5.4.1), and we now turn to the op-
posite direction.

Suppose that (G, E, D) does not have indistinguishable encryptions, and con-
sider an admissible sequence {(wc, ye)}ee{o,1}+ that witnesses this failure. Follow-
ing the proof of Proposition 5.2.7, we define a probability ensemble { X, }cco,1}+
and function ensembles {h.}ecfo,1}+ and {fe}eefo,1}+, in an analogous manner:

e The distribution X, is uniformly distributed over {z.,y.}.
e The function f, satisfies f.(z.) =1 and f.(y.) = 0.

e The function h. is defined such that h.(X.) equals the description of
the circuit C,, that distinguishes (e, E.(z.)) from (e, E¢(y.)), where e «—
G1(1™) (and (x.,y.) = Pn(e)).

Using the admissibility of the sequence {(z, y.)}. (for Definition 5.4.2) it follows
that {(fe, he, Xe)}e is admissible for Definition 5.4.1. Using the same algorithm
A as in the proof of Proposition 5.2.7 (i.e., A(e,3,Cpn) = Cy(e, ), where
is a ciphertext and C,, = h.(X.)), and using the same analysis, we derive a
contradiction to the hypothesis that (G, E, D) satisfies Definition 5.4.1.

Details: Without loss of generality, suppose that

Pr[Ch(e, Ee(ze))=1] > Pr{Cun(e, Ec(y.)) =1] + ﬁ

for e — G1(1™). Then,
1 1

Pr [A(eyEE(Xe)y he(Xe))Zfe(XE)] = 5 + 2p(n)
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On the other hand, for every algorithm A’
1

Pr[A(e, 1%, he (X)) = fe(Xo)] < 5

because (e, 11%<! h.(X.)) contains no information about the value of f.(X.)
(which is uniformly distributed in {0,1}). This violates Definition 5.4.1,
and so our initial contradiction hypothesis (i.e., that one can distinguish
encryptions under (G, F, D)) must be false.

The theorem follows. [

Multiple-message security: Definitions 5.4.1 and 5.4.2 can be easily gener-
alized to handle the encryption of many messages (as in Section 5.2.4), yielding
again two equivalent definitions. Since we are in the public-key setting, one
can show (analogously to Theorem 5.2.11) that the single-message definitions
of security are equivalent to the multiple-message ones (i.e., by showing that
Definition 5.4.2 implies its multiple-message generalization). One important ob-
servation is that admissibility for the multiple-message definition enables one to
carry out a hybrid argument (as in the proof of Theorem 5.2.11). For details see
Exercise 27. The bottom-line is that we can freely use any of the four definitions,
and security for that definition implies security for any of the other definitions.

5.4.2.2 Constructions

All the results presented in Section 5.3.4 extend to security under key-dependent
passive attacks. That is, for each of the constructions presented in Section 5.3.4,
the same assumption used to prove security under key-oblivious passive at-
tacks actually suffices for proving security under key-dependent passive attacks.
Before demonstrating this fact, we comment that (in general) security under
key-oblivious passive attacks does not necessarily imply security under key-
dependent passive attacks; see Exercise 28.

Initial observations: We start by observing that Construction 5.3.7 (from
block-ciphers to general encryption schemes) maintains its security in our con-
text. That is:

Proposition 5.4.4 (extension of Proposition 5.3.8): Let (G, E, D) and (G',E', D)
be as in Construction 5.3.7; i.e., (G',E', D) be the full-fledged encryption con-
structed based on the block-cipher (G, E, D). Then if (G, E, D) is secure under
key-dependent passive attacks, then so is (G', E', D).

Proof Idea: As in the proof of Proposition 5.3.8, we merely observe that
multiple-message security of (G', E’', D') is equivalent to multiple-message se-
curity of (G, E, D). W

We next observe that Construction 5.3.13 (a block-cipher with block length
¢ = 1) maintains its security also under a key-dependent passive attack. This is
a special case of the following observation:
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Proposition 5.4.5 Let (G, E, D) be a block-cipher with logarithmically bounded
block-length (i.e., £(n) = O(logn)). If (G,E,D) is secure under key-oblivious
passive attacks then it is also secure under key-dependent passive attacks.

Proof Sketch: Here we use the definition of ciphertext-indistinguishability in
the single-message setting. The key observation is that the set of possible mes-
sages is relatively small, and so selecting a message in a key-dependent manner
does not give much advantage over selecting a message at random (i.e., oblivi-
ously of the key).

Consider an arbitrary admissible set of pairs, {(@¢, ¥e) }ecfo,1}+, Where |x.| =
lye| = O(log le|), and a circuit family {C,} that tries to distinguish (e, E.(z.))
from (e, E.(y.)). We shall show that {C,,} necessarily fails.

Let {Py,},en be the circuit family producing the abovementioned admissible
set (i.e., P,(e) = (z¢,y.)). Fixing some n € N and an arbitrary (z,y) € {0,1}*x
{0, 1}*, we consider a circuit C%-¥ (depending on the circuits C,, and P, and the
pair (z,y)) that, on input (e, a), operates as follows:

1. Using the hard-wired circuit P, and the input (key) e, the circuit C*¥
checks whether (z.,y.) equals the hard-wired pair (z,y) (i.e., CZ¥ checks
whether P,(e) = (z,y)). In case the check fails, C*¥ outputs an arbitrary
value (e.g., 1) obliviously of the ciphertext «.

2. Otherwise (i.e., P,(e) = (z,¥)), the circuit C¥¥ invokes C,, on its own
input and answers accordingly (i.e., outputs C, (e, )).

Since (G, E, D) is secure under key-oblivious passive attacks it follows that (for
every (z,y) € {0,1}™ x {0,1}™, where m < poly(n)) the circuit C¥¥ cannot
distinguish the case @ = E.(z) from the case a« = E.(y). Thus, for some
negligible function p: N — [0,1] and every pair (z,y) € {0,1}™ x {0,1}™, the
following holds

p(n) > [Pr]Co¥((e, Ee(w)) = 1] = Pre[C((e, Ee(y)) = 1]|

=1
- e[ G B | B ]

where e «— G;(1™). Since the above holds for any pair (z,y) € {0,1}™ x {0,1}™,
and since |z.| = |y.| = €(n) it follows that
|Pre[Cn((e, Ee(xe)) = 1] = Pre[Cn((e, Ee(ye)) = 1]]
< Z Pr, [ Cn((e, Ee(z.))=1 :| —Pr, [ Cn((e:EE(ge)):)l H

N (Te,Ye) = (2,
|z|=ly|=¢(n) (7e,9e)=(2,9)

< 222(71,) ,U/(n)

and the proposition follows. I
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A feasibility result: Combining Theorem 5.3.15 with Propositions 5.4.4 and 5.4.5,
we obtain a feasibility result:

Theorem 5.4.6 If there exist collections of (non-uniformly hard) trapdoor per-
mutations then there exist public-key encryption schemes that are secure under
key-dependent passive attacks.

More efficient schemes: In order to obtain more efficient schemes, we di-
rectly analyze the efficient constructions presented in Section 5.3.4. For example,
extending the proof of Proposition 5.3.19, we obtain:

Proposition 5.4.7 Suppose that b is a (non-uniformly strong) hard-core of the
trapdoor collection {py}. Furthermore, suppose that this trapdoor collection uti-
lizes a domain sampling algorithm S so that the statistical difference between
S(a) and the uniform distribution over the domain of p. is negligible in terms
of |a|. Then Construction 5.3.18 constitute a public-key encryption scheme that
1s secure under key-dependent passive attacks.

Proof Sketch: Again, we prove single-message ciphertext-indistinguishability.
We rely heavily on the admissibility condition. In analogy to the proof of Propo-
sition 5.3.19, it suffices to show that, for every polynomial-size circuit family
{C.,.}, the distributions (a, p* (S(a)), C’n(a)@G(of)(S(a))) and (o, pt (S()), Cn(a)®
s) are indistinguishable, for a randomly generated « and ¢ = |C,(«)|, where

s € {0,1}* is uniformly distributed (independently of anything else).® Incor-
porating {C,} in the potential distinguisher, it suffices to show that the dis-
tributions (a,pg(S(a)),Gg)(S(a))) and (a,pf,(S(a)),s) are indistinguishable.
The latter claim follows as in the proof of Proposition 5.3.19 (i.e., by a minor
extension to Proposition 3.4.6). The proposition follows. [l

5.4.3 Chosen plaintext attack

So far, we have discussed only passive attacks (in two variants: key-oblivious
versus key-dependent, discussed in Section 5.2 and 5.4.2, respectively). Turning
to active attacks, we start with mild active attacks in which the adversary may
obtain (from some legitimate user) ciphertexts corresponding to plaintexts of
its choice. Such attacks will be called chosen plaintext attack, and are possible
(as well as are all that is possible) in some applications. For example, in some
settings the adversary may (directly or indirectly) control the encrypting module
(but not the decrypting module).

Intuitively, a chosen plaintext attack poses additional threat in case of private-
key encryption schemes (see Exercise 29), but not in the case of public-key en-
cryption schemes. In fact, we will show that, in the case of public-key encryption
schemes, a chosen plaintext attack can be emulated by a passive key-dependent
attack.

16 Recall that here a serves as an encryption-key and Cjp () is a key-dependent plaintext.
Typically, Cr, () would be the first or second element in the plaintext pair (o, ya) = Pn(c).
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5.4.3.1 Definitions

We start by rigorously formulating the framework of chosen plaintext attacks.
Intuitively, such attacks proceeds in four stages corresponding to the generation
of a key (by a legitimate party), the adversary’s requests (answered by the legit-
imate party) to encrypt plaintexts under this key, the generation of a challenge
ciphertext (under this key and according to a templet specified by the adver-
sary), and additional requests to encrypt plaintexts (under the same key). That
is, a chosen plaintext attack proceeds as follows:

1. Key generation: A key-pair (e,d) «— G(1™) is generated (by a legitimate
party). In the public-key setting the adversary is given (1™, ¢), whereas in
the private-key setting the adversary is only given 1™.

2. Encryption requests: Based on the information obtained so far, the adver-
sary may request (the legitimate party) to encrypt plaintexts of its (i.e.,
the adversary’s) choice. A request to encrypt the plaintext x is answered
with a value taken from the distribution E.(x), where e is as determined
in Step 1. After making several such requests, the adversary moves to the
next stage.

3. Challenge generation: Based on the information obtained so far, the ad-
versary specifies a challenge templet and is given an actual challenge.

When defining semantic security the challenge templet is a triplet of cir-
cuits (Sm, him, fm), where Sy, specifies a distribution of m-bit long plain-
texts (and Apm, fm @ {0,1}™ — {0,1}*), and the actual challenge is a pair
(Ee(x), hm(x)) where x is distributed according to Sy, (Upory(n))- When
defining indistinguishability of encryptions the challenge templet is merely
a pair of equal-length strings, and the actual challenge is an encryption of
one of these two strings.

4. Additional encryption requests: Based on the information obtained so far,
the adversary may request to encrypt additional plaintexts of its choice.
These requests are handled as in Step 2. After making several such re-
quests, the adversary produces an output and halts.

In the actual definition, the adversary’s strategy will be decoupled into two parts
corresponding to its actions before and after the generation of the actual chal-
lenge. Each part will be represented by a (probabilistic polynomial-time) oracle
machine, where the oracle is an “encryption oracle” (with respect to the key gen-
erated in Step 1). The first part, denoted A;, captures the adversary’s behavior
during Step 2. It is given a security parameter (and possibly an encryption-key),
and its output is a pair (7,0), where 7 is the templet generated in the beginning
of Step 3 and o is a state information passed to the second part of the adversary.
The second part of the adversary, denoted Ao, captures the adversary’s behavior
during Step 4. It is given the state o (of the first part) as well as the actual
challenge (generated Step 3), and produces the actual output of the adversary.
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In accordance to using non-uniform formulations, we let each of the two oracle
machines have a (non-uniform) auxiliary input. In fact, it suffices to provide only
the first machine with such a (non-uniform) auxiliary input, because it can pass
auxiliary input to the second machine in the state information o. (Similarly,
in the case of public-key schemes, it suffices to provide only the first machine
with the encryption-key.) We comment that we provide these machines with
probabilistic oracles; that is, in response to a plaintext query x, the oracle E,
returns a random ciphertext F.(z) (i.e., the result of a probabilistic process
applied to e and x). Thus, in the case of public-key schemes, the four-step
attack process can be written as follows:

(e,d) — G(1)

(r,0) « Af"(e,2)

¢ = an actual challenge generated according to the templet 7

output «— A¥(o,c)

where z denotes (non-uniform) auxiliary input given to the adversary. In case
of private-key schemes, the adversary (i.e., A;) is given 1™ instead of e.

Semantic security: Instantiating the above framework to derive a definition
of semantic security amounts to specifying the challenge generation (as hinted
above) and to postulating that the success probability in such an attack should
be met by a corresponding benign process. Specifically, the challenge generation
consists of the adversary specifying a triplet of circuits, denoted (Sp,, hm, fm),
and being presented with an encryption of ¥ < Sy, (Upoly(n)) along with the
partial information h,,(z). The adversary’s goal is to guess f,,(z), and seman-
tic security amount to saying that the adversary’s success probability can be
matched by a corresponding algorithm that is only given h,,(z) and 11l = 1™,
Like the adversary, the corresponding algorithm is decoupled into two parts, the
first is in charge of outputting a challenge templet, and the second is in charge
of solving the challenge, where state information is passed from the first part to
the second part. It is important to require that the challenge templet produced
by the corresponding algorithm is distributed exactly as the challenge templet
produced by the adversary. (See further discussion below.)

Definition 5.4.8 (semantic security under chosen plaintext attacks):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said
to be semantically secure under chosen plaintext attacks if for every pair of
probabilistic polynomial-time oracle machines, A; and Ay, there exists a
pair of probabilistic polynomial-time algorithms, A} and A}, such that the
following two conditions hold:
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1. For every positive polynomial p(-), and all sufficiently large n and
2 € {0, 1}poly(n)

v = fm(z) where
(e,d) — G(1™)
Pr ((Sos hms fm),0) — AlE“(e,z)
¢ — (Ee(z), hm(x)), where © — Spn(Upoly(n))
v — A2E“(a, ¢)

v = fm(z) where
((Sms Poms frn), 0) = AT (17, 2) 1
T — Sm(Upoly(n)) p(n)
v — Ab(o, 111 b,y (2))

Recall that (S, hm, fm) is a triplet of circuits produced as in Step 3 of
the foregoing description, and that x is a sample from the distribution
induced by Sy, .

2. For everyn and z, the first element (i.e., the (Sm, Am, fm) part) in the

random variables A} (1™, z) and Afcl(ln’(Gl(ln),z) are identically
distributed.

For private-key schemes: The definition is identical except that algorithm A,
gets the security parameter 1™ instead of the encryption-key e.

Note that as in almost all other definitions of semantic security (with the excep-
tion of Definition 5.4.1), algorithm A does not get a (random) encryption-key
as input (but may rather generate one by itself).!” Since the challenge templet
is not fixed (or determined by e) but rather chosen by A and A’ themselves, it is
very important to require that in both cases the challenge templet is distributed
identically (or approximately so): there is no point in relating the success prob-
ability of A and A’, unless these probabilities refer to same distribution of prob-
lems (i.e., challenge templets). (The issue arises also in Definition 5.4.1 where it
was resolved by forcing A’ to refer to the challenge templet determined by the
public-key e.)'®

Definition 5.4.8 implies Definition 5.4.1, but this may not be evident from the
definitions themselves (most importantly, because here f,, is computationally
bounded whereas in Definition 5.4.1 the function is computationally unbounded).
Still the validity of the claim follows from the equivalence of the two definitions
to the corresponding notions of indistinguishability of encryptions (and the fact
that the implication is evident for the latter formulations).

17 In fact, A} is likely to start by generating e « G1(1™), because it has to generate a
challenge templet that is distributed as the one produced by Ai on input e «— G1(1™).

18 Indeed, an alternative solution could have been the one adopted here and in the sequel;
that is, allow A’ to select the challenge templet by itself provided that the selection yields a
distribution similar to the one faced by A, as induced by the public-key e.
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Indistinguishability of encryptions: Deriving the corresponding definition
of indistinguishability of encryptions (from the above framework) is considerably
simpler. Here the challenge generation consists of the adversary specifying two
equal-length strings and the adversary is presented with the encryption of one
of them. The adversary’s goal is to distinguish the two possible cases.

Definition 5.4.9 (indistinguishability of encryptions under chosen plaintext at-
tacks):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said
to have indistinguishable encryptions under chosen plaintext attacks if for
every pair of probabilistic polynomial-time oracle machines, A1 and As,
for every positive polynomial p(-), and all sufficiently large n and z €
{0, 1}p01y(n) .

1
1) _ (2) -
p'ﬂ z p'ﬂ z <
Pn, 2 p(n)
where
v=1 where
(e,d) « G(1")
T ((21,22),0) — AP (e, 2)

where |2(1)] = |2()].

For private-key schemes: The definition is identical except that A, gets the
security parameter 1™ instead of the encryption-key e.

Clearly, Definition 5.4.9 implies Definition 5.4.2 as a special case. Further-
more, for public-key schemes, the two definitions are equivalent (see Proposi-
tion 5.4.10), whereas for private-key schemes Definition 5.4.9 is strictly stronger
(see Exercise 29).

Proposition 5.4.10 Let (G, E, D) be a public-key encryption scheme that has
indistinguishable encryptions under key-dependent passive attacks. Then, (G, E, D)
has indistinguishable encryptions under chosen plaintext attack.

Proof Sketch: They key observation is that, in the public-key model, a chosen
plaintext attack can be emulated by a passive key-dependent attack. Specifi-
cally, the (passive) attacker can emulate access to an encryption oracle by itself
(by using the encryption-key given to it). Thus, we obtain an attacker as in
Definition 5.4.9, with the important exception that it never makes oracle calls
(but rather emulates E, by itself). Put in other words, we have an attacker as in
Definition 5.4.2, with the minor exception that it is a probabilistic polynomial-
time machine with auxiliary input (rather than being a polynomial-size circuit)
and that it distinguishes a pair of plaintext distributions rather than a pair of
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(fixed) plaintexts. However, fixing the best possible coins for this attacker (and
incorporating them as well as z in an adequate circuit), we obtain an attacker
exactly as in Definition 5.4.2 such that its distinguishing gap is at least as large
as the one of the (initial) chosen plaintext attacker. [l

Equivalence of semantic security and ciphertext-indistinguishability.
As in previous cases, we show that the two formulations of (chosen plaintext
attack) security (i.e., semantic security and indistinguishable encryptions) are
in fact equivalent.

Theorem 5.4.11 (equivalence of definitions for chosen plaintext attacks): A
public-key (resp., private-key) encryption scheme (G, E,D) is semantically se-
cure under chosen plaintext attacks if and only if it has indistinguishable encryp-
tions under chosen plaintext attacks.

Proof Sketch: In order to show that indistinguishable encryptions implies
semantic security, we follow again the ideas underlying the proof of Proposi-
tion 5.2.6. Specifically, for both the private-key and public-key cases, A] and
Al are constructed as follows:

1. A(1™, 2) e (1,0"), where (7,0") is generated as follows:

First, A generates an instance of the encryption scheme; that is, A} lets
(e,d) «— G(1™). Next, A} invokes A;, while emulating the oracle E,, and

sets (7,0) « A¥<(1", 2). Finally, A} sets o' ef (e,0).

We warn that the generation of the key-pair by A} should not be confused
with the generation of the key-pair in the probabilistic evaluation of the
combined algorithm A = (A4;, A2). In particular, the generated encryption-
key e, allows A} to emulate the encryption oracle E, (also in the private-
key case). Furthermore, A] outputs the encryption-key e as part of the
state passed by it to A), whereas A; does not necessarily do so (and, in
fact, cannot do so in case of private-key model). This will allow A} too to
emulate the encryption oracle F..

2. 4y((e,0),1™,7) =
m = |z|.

Al (o, (E.(1™),7)), where typically ¥ = hy,(z) and

Since A] merely emulates the generation of a key-pair and the actions of A;
with respect to such a pair, the equal distribution condition (i.e., Item 2 in Def-
inition 5.4.8) holds. Using the (corresponding) indistinguishability of encryp-
tion hypothesis, we show that (even in the presence of an encryption oracle E.)
the distributions (o, (E,(z), h(z))) and (o, (E.(11%), h(z))) are indistinguishable,
where (e, d) «— G(1"), ((S, h, f),0) — AP(y, 2) (withy = e or y = 1" depending

on the model), and = — S(Upoly(n))-

Details: Suppose that given ((S, h, f), o) generated by A¥¢(y, z) and oracle
access to K., where e — G1(1") (and y is as above), one can distinguish
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(0, (B (), h(2))) and (0, (E.(1"), h(2))), where & — S(Upeiy(n))- Then
we obtain a distinguisher as in Definition 5.4.9 as follows. The first part
of the distinguisher invokes A; (while answering its oracle queries by for-
warding these queries to its own E. oracle), and obtains ((S,h, f),0) —
A7 (y,2). It sets oM — S(Upoly(n)) and 2@ = 1" and outputs
(=D, @), (o, h(z™M))). That is, (¢, z?) is the challenge templet, and
it is answered with E. (w(i)), where 7 is either 1 or 2. The second part of the
new distinguisher, gets as input a challenge ciphertext o «— F. (:c(i)) and
the state generated by the first part (o, L(z")), and invokes the distin-
guisher of the contradiction hypothesis with input (o, (a, k(z™®))), while
answering its oracle queries by forwarding these queries to its own K. ora-
cle. Thus, the new distinguisher violates the condition in Definition 5.4.9,
in contradiction to the hypothesis that (G, E, D) has indistinguishable en-
cryptions.

It follows that indistinguishable encryptions (as per Definition 5.4.9) implies
semantic security (as per Definition 5.4.8). (Here, this implication is easier to
prove than in previous cases, because the function f is computable via a circuit
that is generated as part of the challenge templet (and, w.l.o.g., is part of ¢.)

We now turn to the opposite direction. Suppose that (G, E, D) does not
have indistinguishable encryptions, and consider the pairs (z(!),2(?)) produced
as a challenge templet by the distinguishing adversary. Following the ideas of
the proof of Proposition 5.2.7, we let the semantic-security adversary generate
a corresponding challenge templet (S, h, f) such that

e The circuit S samples uniformly in {z(*) 2(?)}.
e The function f satisfies f(z()) =1 and f(z(?) = 0.
e The function h is defined arbitrarily subject to h(z(1)) = h(z(?).

We stress that when the semantic-security adversary invokes the distinguish-
ing adversary, the former uses its own oracle to answer the queries made by
the latter. The reader may easily verify that the semantic-security adversary
has a noticeable advantage in guessing f(S(Upoly(n))) (by using the distinguish-
ing gap between E,(z(V)) and E.(z(?)), whereas no algorithm that only gets
h(S(Upoly(n))) can have any advantage in such a guess. We derive a contradic-
tion to the hypothesis that (G, E, D) satisfies Definition 5.4.8, and the theorem
follows.

Multiple-message security: Definitions 5.4.8 and 5.4.9 can be easily gen-
eralized to handle challenges in which multiple plaintexts are encrypted. As
in previous cases, the corresponding (multiple-plaintext) definitions are equiva-
lent. Furthermore, the multiple-plaintext definitions are equivalent to the single-
plaintext definition, both for public-key and private-key schemes. We stress the
equivalence for private-key schemes (which does not hold for the basic defini-
tions presented in Section 5.1; see Proposition 5.2.12). To see the equivalence
it is best to consider the notion of indistinguishable encryptions. In this case,
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the argument used in the proof of Theorem 5.2.11 can be applied here by using
an encryption oracle (rather than by generating encryptions using knowledge of
the encryption-key, which is only possible in the public-key setting).

5.4.3.2 Constructions

In view of Proposition 5.4.10 (and Theorem 5.4.11), we focus on private-key
encryption schemes (because a public-key encryption scheme is secure under
chosen plaintext attacks if and only if it is secure under passive key-dependent
attacks). All the results presented in Section 5.3.3 extend to security under cho-
sen plaintext attacks. Specifically, we prove that Constructions 5.3.9 and 5.3.12
remain secure also under a chosen plaintext attack.

Proposition 5.4.12 Let F and (G, E, D) be as in Construction 5.3.9, and sup-
pose that F' is pseudorandom with respect to polynomial-size circuits. Then the
private-key encryption scheme (G, E,D) is secure under chosen plaintest at-
tacks. The same holds with respect to Construction 5.3.12.

Proof Sketch: We focus on Construction 5.3.9, and follow the technique under-
lying the proof of Proposition 5.3.10. That is, we consider an idealized version of
the scheme, in which one uses a uniformly selected function f:{0,1}"—{0,1}",
rather than the pseudorandom function fs. Essentially, all that the adversary
obtains by encryption queries in the ideal version is pairs (r, f(r)), where the
r’s are uniformly and independently distributed in {0,1}™. As to the challenge
itself, the plaintext is “masked” by the value of f at another uniformly and
independently distributed element in {0,1}™. Thus, unless the latter element
happens to equal one of the 7’s used by the encryption oracle (which happens
with negligible probability), the challenge plaintext is perfectly masked. Thus,
the ideal version is secure under a chosen plaintext attack, and the same holds
for the real scheme (since otherwise one derives a contradiction to the hypothesis
that F' is pseudorandom). [l

Summary: Private-key and public-key encryption schemes that are secure un-
der chosen plaintext attacks exist if and only if corresponding schemes that are
secure under passive (key-dependent) attacks exist.

5.4.4 Chosen ciphertext attack

We now turn to stronger forms of active attacks in which the adversary may
obtain (from some legitimate user) plaintexts corresponding to ciphertexts of its
choice. We consider two types of such attacks, called chosen ciphertext attacks:
In the milder type, called a-priori chosen ciphertext attacks, such decryption re-
quests can be made only before the challenge ciphertext (for which the adversary
should gain knowledge) is presented. In the stronger type, called a-posteriori
chosen ciphertext attacks, such decryption requests can be made also after the
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challenge ciphertext is presented, as long as one does not request to decrypt this
very (challenge) ciphertext.

Both types of attacks address security threats in realistic applications: In
some settings the adversary may experiment with the decryption module, before
the actual ciphertext in which it is interested is sent. Such a setting corresponds
to an a-priori chosen ciphertext attack. In other settings, one may invoke the
decryption module on inputs of one’s choice at any time but all these invocations
are recorded, and real damage is caused only by knowledge gained with respect
to a ciphertext for which a decryption request was not recorded. In such a
setting protection against a-posteriori chosen ciphertext attacks is adequate.
Furthermore, in both cases, decryption requests can be made also with respect
to strings that are not valid ciphertexts, in which case the decryption module
returns a special error symbol.

Typically, in settings in which a mild or strong form of a chosen ciphertext
attack is possible, a chosen plaintert attack is possible too. Thus, we actually
consider combined attacks in which the adversary may ask for encryption and
decryption of strings of its choice. Indeed (analogously to Proposition 5.4.10), in
case of public-key schemes (but not in case of private-key schemes) the combined
attack is equivalent to a “pure” chosen ciphertexrt attack.

Organization: We start by providing security definitions for the two types
of attacks discussed above. In Section 5.4.4.2, we further extend the defini-
tional treatment of security (and derive a seemingly stronger notion that is
in fact equivalent to the notions in Section 5.4.4.1). In Section 5.4.4.3 (resp.,
Section 5.4.4.4) we discuss the construction of private-key (resp., public-key)
encryption schemes that are secure under chosen ciphertext attacks.

5.4.4.1 Definitions for two types of attacks

Following Section 5.4.3.1 and bearing in mind that we wish to define two types
of (i.e., a-priori and a-posteriori chosen ciphertext) attacks, we first formulate
the framework of chosen ciphertext attacks. As in the case of chosen plaintext
attacks, we consider attacks that proceeds in four stages corresponding to the
generation of a pair of keys (by a legitimate party), the adversary’s requests
(answered by the legitimate party) to encrypt and/or decrypt strings under the
corresponding key, the generation of a challenge ciphertext (under this key and
according to a templet specified by the adversary), and additional requests to
encrypt and/or decrypt strings. That is, a chosen ciphertext attack proceeds as
follows:

1. Key generation: A key-pair (e,d) «— G(1") is generated (by a legitimate
party). In the public-key setting the adversary is given (1™, e), whereas in
the private-key setting the adversary is only given 1™.

2. Encryption and decryption requests: Based on the information obtained
so far, the adversary may request (the legitimate party) to encrypt and/or
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decrypt strings of its (i.e., the adversary’s) choice. A request to encrypt
the plaintext z is answered with a value taken from the distribution E.(z),
where e is as determined in Step 1. A request to decrypt a valid (w.r.t. E,)
ciphertext y is answered with the value Dg4(y), where d is as determined
in Step 1. A request to decrypt a string y that is not a valid ciphertext
(w.r.t. E.) is answered with a special error symbol. After making several
such requests, the adversary moves to the next stage.

3. Challenge generation: Based on the information obtained so far, the ad-
versary specifies a challenge templet and is given an actual challenge. This
is done as in the corresponding step in the framework of chosen plaintext
attacks.

4. Additional encryption and decryption requests: Based on the information
obtained so far, the adversary may request to encrypt additional plain-
texts of its choice. In addition, in case of an a-posteriori chosen ciphertext
attack (but not in the case of a-priori chosen ciphertext attack), the ad-
versary may make additional decryption requests with the only (natural)
restriction that it is not allowed to ask to decrypt the challenge ciphertext.
All requests are handled as in Step 2. After making several such requests,
the adversary produces an output and halts.

In the actual definition, as in the case of chosen plaintext attacks, the adversary’s
strategy will be decoupled into two parts corresponding to its actions before and
after the generation of the actual challenge. Each part will be represented by a
(probabilistic polynomial-time) two-oracle machine, where the first oracle is an
“encryption oracle” and the second is a “decryption oracle” (both with respect
to the corresponding key generated in Step 1). As in the case of chosen plaintext
attacks, the two parts are denoted A; and A,, and A; passes a state information
(denoted o) to As. Again, in accordance to using non-uniform formulations,
we provide A; with a (non-uniform) auxiliary input. Thus, in the case of (a-
posteriori chosen ciphertext attacks on) public-key schemes, the four-step attack
process can be written as follows:

(e,d) — G(1")
(r,0) = A7P(e,z)
¢ = an actual challenge generated according to the templet

output «— AYPi(qg¢)

where A, is not allowed to make a query regarding the ciphertext in ¢, and
z denotes the (non-uniform) auxiliary input given to the adversary. In case of
private-key schemes, the adversary (i.e., A;) is given 1™ instead of e. In case of a-
priori chosen ciphertext attacks, A, is not allowed to query Dy (or, equivalently,
A, is only given oracle access to the oracle E.).
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Semantic security: As in the case of chosen plaintext attacks, a definition of
semantic security is derived by an adequate specification of the challenge gener-
ation and the meaning of success. As before, the challenge generation consists
of the adversary specifying a triplet of circuits, denoted (S, h, f), and being pre-
sented with an encryption of 2 < S(Upoly(n)) along with the partial information
h(z). The adversary’s goal is to guess f(z), and semantic security amount to say-
ing that the adversary’s success probability can be matched by a corresponding
algorithm that is only given h(z) and 11*I. Again, the corresponding algorithm is
decoupled into two parts, the first is in charge of outputting a challenge templet,
and the second is in charge of solving the challenge, where state information is
passed from the first part to the second part. Furthermore, again, it is important
to require that the challenge templet produced by the corresponding algorithm
is distributed exactly as the challenge templet produced by the adversary.

Definition 5.4.13 (semantic security under chosen ciphertext attacks):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said
to be semantically secure under a-priori chosen ciphertext attacks if for every
pair of probabilistic polynomial-time oracle machines, A1 and As, there
exists a pair of probabilistic polynomial-time algorithms, A] and AL, such
that the following two conditions hold:

1. For every positive polynomial p(-), and all sufficiently large n and
z € {0, 1}1)01y(n) -

v = f(z) where
(e,d) — G(1")
Pr ((S,h, f),0) — AF=Pi(e, 2)
¢+ (Ee(w),h(z)), where x + S(Upoly(n))
v — ALY (0, ¢)
v = f(x) where
((S,h, f),0) « A\ (1", 2) 1
T — SUpoty(n)) p(n)
v — Ab(o,11°1 h(z))

2. For every n and z, the first element (i.e., the (S, h, f) part) in the

random variables A} (1™, z) and Afcl(ln)’DGz(ln)(Gl(ln), z) are iden-
tically distributed.

Semantic security under a-posteriori chosen ciphertext attacks is defined anal-
ogously, except that As is given oracle access to both E. and Dy with the
restriction that when given the challenge ¢ = (', "), machine As is not
allowed to make the query ¢' to the oracle Dy.

For private-key schemes: The definition is identical except that algorithm Ay
gets the security parameter 1™ instead of the encryption-key e.
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Clearly, the a-posteriori version of Definition 5.4.13 implies its a-priori version,
which in turn implies Definition 5.4.8. It is easy to see that these implications
are strict (see Exercises 31 and 30, respectively).

Indistinguishability of encryptions: As in the case of chosen plaintext at-
tacks, deriving the corresponding definition of indistinguishability of encryptions
(from the above framework) is considerably simpler: the challenge generation
consists of the adversary specifying two equal-length strings and the adversary
is presented with the encryption of one of them.

Definition 5.4.14 (indistinguishability of encryptions under chosen ciphertext
attacks):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said
to have indistinguishable encryptions under a-priori chosen ciphertext attacks
if for every pair of probabilistic polynomial-time oracle machines, A1 and
As, for ez)e)ry positive polynomial p(-), and all sufficiently large n and z €
{0, 1}1)01y n).

where

v =1 where
(e,d) — G(1™)
P = Pr (zV,22)),0) — APP1(e, 2)
¢ — E (zV)
v — A¥<(0,¢)

where |2(1)] = |2(?)].

Indistinguishability of encryptions under a-posteriori chosen ciphertext attacks
is defined analogously, except that Ay is given oracle access to both E. and
Dy with the restriction that when given the challenge ¢, machine As is not
allowed to make the query c to the oracle Dy.

For private-key schemes: The definition is identical except that A, gets the
security parameter 1™ instead of the encryption-key e.

Clearly, the a-posteriori version of Definition 5.4.14 implies its a-priori version,
which in turn implies Definition 5.4.9 as a special case. Again, it is easy to see
that these implications are strict (see Exercises 31 and 30, respectively).

Terminology: We use CCA as a shorthand for chosen ciphertext attack.

Equivalence of semantic security and ciphertext-indistinguishability.
Again, we show that the two formulations of security (i.e., semantic security and
indistinguishable encryptions) are in fact equivalent.
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Theorem 5.4.15 (equivalence of definitions for CCA): A public-key (resp., private-
key) encryption scheme (G, E,D) is semantically secure under a-priori CCA if
and only if it has indistinguishable encryptions under a-priori CCA. An analo-
gous claim holds for a-posteriori CCA.

Proof Sketch: We adapt the proof of Theorem 5.4.11 to the current setting.
The adaptation is straightforward, and we focus on the case of a-posteriori CCA
security (while commenting on the case of a-priori CCA security).

In order to show that indistinguishable encryptions implies semantic security,
given and adversary (A;, As) we construct the following matching algorithm
Al AL

1. Aj(1™, 2) e (1,0"), where (7,0") is generated as follows:

First, A] generates an instance of the encryption scheme; that is, A} lets

(e,d) « G(1™). Next, A} invokes A;, while emulating the oracles E. and

Dy, and sets (1,0) — APP1(1" 2). Finally, A} sets o’ et ((e,d),0). (In

case of a-priori CCA security, we may set o’ def (e,0), as in the proof of

Theorem 5.4.11.)

We comment that the generated key-pair (e, d), allows A} to emulate the
encryption and decryption oracles E, and Dy.

2. 4(((e,d),0),1™,7) = 457" (0, (E.(1™),7)), where typically v = h(z)
and m = |z|. (In case of a-priori CCA security, we may set A} ((e,0),1™,7) def

Al (0,(E.(1™),7)), as in the proof of Theorem 5.4.11.)

Again, since A] merely emulates the generation of a key-pair and the actions
of A; with respect to such a pair, the equal distribution condition (i.e., Item 2
in Definition 5.4.13) holds. Using the (corresponding) indistinguishability of en-
cryption hypothesis, we show that (even in the presence of the encryption oracle
E. and a restricted decryption oracle D) the distributions (o, (E.(x), h(x))) and
(o, (E.(1121), h(x))) are indistinguishable, where (e, d) « G(1"), ((S,h, f),0) «
AFe(y,2) (with y = e or y = 1" depending on the model), and z — S(Upoly(n))-
The main thing to notice is that the oracle queries made by a possible dis-
tinguisher of the above distributions can be handled by a distinguisher of en-
cryptions (as in Definition 5.4.14), by passing these queries to its own oracles.
It follows that indistinguishable encryptions (as per Definition 5.4.14) implies
semantic security (as per Definition 5.4.13).

We now turn to the opposite direction. Here the construction of a challenge
templet (as per Definition 5.4.13) is exactly as the corresponding construction in
the proof of Theorem 5.4.11. Again, the thing to notice is that the oracle queries
made by a possible distinguisher of encryptions (as in Definition 5.4.14) can be
handled by the semantic-security adversary, by passing these queries to its own
oracles. We derive a contradiction to the hypothesis that (G, E,D) satisfies
Definition 5.4.13, and the theorem follows. [l
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Multiple-message security: Definitions 5.4.13 and 5.4.14 can be easily gen-
eralized to handle challenges in which multiple plaintexts are encrypted. We
stress that in case of a-posteriori CCA the adversary is not allowed to make
a decryption query that equals any of the challenge ciphertexts. As in pre-
vious cases, the corresponding (multiple-plaintext) definitions are equivalent.
Furthermore, as in case of chosen plaintext attacks, the multiple-plaintext defi-
nitions are equivalent to the single-plaintext definition (both for public-key and
private-key schemes). We stress that the above notion of multiple-message CCA
security refers to a single challenge-generation step in which a sequence of mes-
sages (rather than a single message) can be specified. A more general notion of
multiple-message CCA security allows multiple challenge-generation steps that
may be interleaved with the query steps. This notion generalizes the notion of
chosen ciphertext attacks, and is discussed in the next subsection. Actually,
we will focus on this generalization when applied to a-posteriori chosen cipher-
text attacks, although a similar generalization can be applied to a-priori chosen
ciphertext attacks (and in fact also to chosen plaintext attacks).

5.4.4.2 A third equivalent definition of a-posteriori CCA-security

In continuation to the last paragraph, we consider general attacks during which
several challenge templets may be produced (at arbitrary times and possibly
interleaved with encryption and decryption queries).!® Each of these challenge
templets will be answered similarly to the way such templets were answered
above (i.e., by selecting a plaintext from the specified distribution and provid-
ing its encryption together with the specified partial information). Unlike in
Section 5.4.4.1, we will even allow attacks that make decryption queries regard-
ing ciphertexts obtained as (part of the) answer to previous challenge templets.
After such an attack, the adversary will try to obtain information about the
unrevealed plaintexts, and security holds if its success probability can be met by
a corresponding benign adversary that does not see the ciphertexts. Indeed, the
above discussion requires clarification and careful formulation, provided next.
We start with a description of the actual attacks. It will be convenient to
change the formalism and consider the generation of challenge templets as chal-
lenge queries that are answered by a special oracle called the tester, and denoted
Te,r, where e is an encryption-key and r is a random string of adequate length.
On query a challenge templet of the form (S, h), where S is a sampling circuit
and h is a function (evaluation circuit), the (randomized) oracle 7., returns
the pair (E.(z),h(z)), where x = S(r). (Indeed, we may assume without loss
of generality that all queries (S, h) satisfy that S is a sampling circuit mapping
|r|-bit long strings into string of the length that fits A’s input.) We stress that
r is not known to the adversary, and that this formalism supports the genera-
tion of dependent challenges as well as independent ones.2® A multiple-challenge

19 Note that in this section we generalize the notion of an a-posteriori chosen ciphertext
attack. When generalizing the notion of an a-priori chosen ciphertext attack, we disallow
decryption queries after the first challenge templet is produced.

20 Independently distributed plaintexts can be obtained by sampling circuits that refer to
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CCA is allowed queries to Tt , as well as unrestricted queries to both E, and the
corresponding Dy, including decryption queries referring to previously obtained
challenge ciphertexts. It terminates by outputting a function f and a value v,
hoping that f(a!,...,2') = v, where ' = S*(r) and (S%, h') is the 4 challenge
query made by the adversary. Note that the description of f may encode vari-
ous information gathered by the adversary during its attack (e.g., it may even
encode its entire computation transcript).

We now turn to describe the benign adversary (which does not see the ci-
phertexts). Such an adversary is given oracle access to a corresponding oracle,
T, that behave as follows. On query a challenge templet of the form (S, k), the
oracle returns h(z), where © = S(r). (Again, r is not known to the adversary.)
Like the real adversary, the benign adversary also terminates by outputting a
function f and a value v, hoping that f(z?,...,2') = v, where 2* = S%(r) and
(S*, h?) is the 4 challenge query made by the adversary.

Security amounts to asserting the the effect of any efficient multiple-challenge
CCA can be simulated by a efficient benign adversary that does not see the ci-
phertexts. As in Definition 5.4.13, the simulation has to satisfy two conditions:
First, the probability that f(z!,...,2') = v in the CCA must be met by the
probability that a corresponding event holds in the benign model (where the
adversary does not see ciphertexts). Second, the challenge queries as well as the
function f should be distributed similarly in the two models. Actually, each de-
cryption query (of the real attacker) that refer to a ciphertext ¢ that is contained
in the answer given to a challenge query (S, h) is considered (or counted) as a
(fictitious) challenge query (S, id), where id is the identity function. Note that
this convention is justified by the fact that the challenge query (.5, id) is equiv-
alent to the decryption query ¢ (followed by the encryption query & = Dg4(c)).
Put in other words, if the real adversary made a decryption query that refers to
a ciphertext ¢ contained in the answer given to the challenge (S,h) (and thus
obtained Dg4(c) = Dy(E.(S(r))) = S(r)), then it is only fair that we allow the
benign adversary (which sees no ciphertexts) to make the challenge query (5, id)
and so obtain id(S(r)) = S(r).

In order to obtain the actual definition, we need to define the trace of the
execution of the above two types of adversaries. For a multiple-challenge CCA
adversary, denoted A, the trace is defined as the sequence of challenge queries
made during the attack, augmented by (fictitious) challenge queries such that
the (fictitious challenge) query (S,id) is included if and only if the adversary
made a decryption query ¢ such that (c,-) is the answer given to a previous
challenge query of the form (S,-). For the benign adversary, denoted B, the
trace is defined as the sequence of challenge queries made during the attack.

Definition 5.4.16 (multiple-challenge CCA security):

For public-key schemes: A public-key encryption scheme, (G, E, D), is said

disjoint parts of the random string 7. On the other hand, making a pair of queries of the form
(S,-) and (C 0 S,+), where C is a deterministic circuit, will yield a pair of plaintexts of the

form x def S(r) and C(z).
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to be secure under multiple-challenge chosen ciphertext attacks if for every
probabilistic polynomial-time oracle machine A there exists a probabilistic

polynomial-time oracle machine B such that the following two conditions
hold:

1. For every positive polynomial p(-), and all sufficiently large n and
2 € {0, 1}pol(n)

v=f(z',...,2") where
(e,d) « G(1™) and r + Upoly(n)

) (f,’U) — AEde,Tc‘,,.(@Z)
zt— Si(r), fori=1,..,t.
v = f(xl, ...,xt) where
r—U ) .
< Pr poly(n i L
(0) B (1m, 2) p(n)

2t Sir), fori=1,..,t.

where S* is the first part of the i*" challenge query made by A (resp.,
B) to T., (resp., to T}).

2. The following two probability ensembles, indered by n € N and z €
{0, 13PN gre computationally indistinguishable:

(a) The trace ofAEG1(1n)7DGQ(1")7TG1(1")‘Ul,oly(")(Gl(ln),z)’ augmented
by its output.

(b) The trace of B Vvors ) (1™, z) augmented by its output.

For private-key schemes: The definition is identical except that machine A
gets the security parameter 1™ instead of the encryption-key e.

To get more comfortable with Definition 5.4.16, consider the special case in
which the real CCA adversary does not make decryption queries to ciphertexts
obtained as part of answers to challenge queries. (In the proof of Theorem 5.4.17,
such adversaries will be called canonical and will be showed to be as powerful as
the general ones.) The trace of such adversaries equals the sequence of challenge
queries made during the attack, which simplifies Condition 2. Furthermore,
consider the special case in which such an adversary makes a single challenge
query, and further restrict it to make only a query of the form (S,0), where 0
is the all-zero function (i.e., which yields no information). Still, even this very
restricted case (of Definition 5.4.16) easily implies security under a-posteriori
CCA (cf. Exercise 32). More importantly, the following holds:

Theorem 5.4.17 (a-posteriori-CCA implies Definition 5.4.16): Let (G, E, D)
be a public-key (resp., private-key) encryption scheme that is secure under a-
posteriori CCA. Then (G, E, D) is secure under multiple-challenge chosen ci-
phertext attacks.
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Proof Sketch: As a bridge between the multiple-challenge CCA and the corre-
sponding benign adversary that does not see the ciphertext, we consider canon-
ical adversaries that can perfectly simulate any multiple-challenge CCA without
making decryption queries to ciphertexts obtained as part of answers to chal-
lenge queries. Instead, these canonical adversaries make corresponding queries
of the form (5, id), where id is the identity function and (S, -) is the challenge-
query that was answered with the said ciphertext. Specifically, suppose that
a multiple-challenge CCA has made the challenge query (S, h), which was an-
swered by (¢,v) where ¢ = E.(x), v = h(xz) and z = S(r), and at a later stage
makes the decryption query ¢, which is to be answered by D4(¢) = x. Then,
the corresponding canonical adversary makes the challenge query (S,h) as the
original adversary, receiving the same pair (¢, v), but later instead of making the
decryption query ¢ the canonical adversary makes the challenge query (S, id),
which is answered by id(S(r)) = & = Dg4(c). Note that the trace of the cor-
responding canonical adversary is identical to the trace of the original CCA
adversary (and the same holds with respect to their outputs).

Thus, given an a-posteriori-CCA secure encryption scheme, it suffices to
establish Definition 5.4.16 when the quantification is restricted to canonical ad-
versaries A. Indeed, as in previous cases, we construct a benign adversary B
in the natural manner: On input (17, z), machine B generates (e,d) «— G(1"),
and invokes A on input (y, z), where y = e if we are in the public-key case and
y = 1™ otherwise. Next, B emulates all oracles expected by A, while using its
own oracle 7;.. Specifically, the oracles E, and Dy are perfectly emulated by us-
ing the corresponding keys (known to B), and the oracle T , is (non-perfectly)
emulated using the oracle T, (i.e., the query (S, h) is forwarded to 7)., and the
answer h(S(r)) is augmented with E.(1™), where m is the number of output
bits in S). Note that the latter emulation (i.e., the answer (E, (11%("1), h(S(r))))
is non-perfect since the answer of T, ,, would have been (E.(S(r)), h(S(r))), yet
(as we shall show) A cannot tell the difference.

In order to show that B satisfies both conditions of Definition 5.4.16 (w.r.t
the above A), we will show that the following two ensembles are computationally
indistinguishable:

1. The global view in real attack of A on (G, E, D). That is, we consider the
output of the following experiment:

(a) (e,d) « G(1") and 7 « Upoly(n)-

(b) (f,v) « APeDPaTer(y 2) where y = e if we are in the public-key
case and y = 1" otherwise. Furthermore, we let ((S*,h!), ..., (S, ht))
denote the trace of the execution AFePaTer(y 2).

(c) The output is ((St,hl),..., (S, hY)), (f,v),r.

2. The global view in an attack emulated by B. That is, we consider the
output of an experiment as above, except that A¥<PaTer(y 2) is replaced
by AE“7DC"Té~"'(y,z), where on query (S,h) the oracle T} . replies with
(E. (1151 h(S(r))) rather than with (E.(S(r)), h(S(r))).
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Note that computational indistinguishability of the above ensembles immediately
implies Condition 2 of Definition 5.4.16, whereas Condition 1 also follows because
using 7 we can determine whether or not f(S(r), ..., St(r)) = v holds (for (f,v)
and S, ..., S%). Also note that the above ensembles may be computationally
indistinguishable only in case A is canonical (which we have assumed to be the
case).?!

The computational indistinguishability of the above ensembles is proven us-
ing a hybrid argument, which in turn relies on the hypothesis that (G, E, D)
has indistinguishable encryptions under a-posteriori-CCAs. Specifically, we in-
troduce t + 1 mental experiments that are hybrids of the above two ensembles
(which we wish to relate). Each of these mental experiments is given oracle
access to E. and Dg4, where (e,d) «— G(1™) is selected from the outside. The
ith hybrid experiment uses these two oracles (in addition to y which equals e
in the public-key case and 1™ otherwise), in order to emulate an execution of
APePall, (y 7Y where r is selected by the experiment itself and IT! . is a hybrid
of T, , and Tém- Specifically, H;T is a history-dependent process that answers
like T¢ , on the first ¢ queries and like Te”r on the rest. Thus, for ¢ =0, ...,t, we
define the ith hybrid experiment as a process that given y (which equals e or 1™)
and oracle access to E. and Dy, where (e,d) «<— G(1™), behaves as follows:

1. The process selects 7 < Upoly(n)-

2. The process emulates an execution of AEC’Dd’H?T(y,z), where y = e if
we are in the public-key case and y = 1™ otherwise, by using the ora-
cles E. and Dg. Specifically, the answers of H;T are emulated using the
knowledge of r and oracle access to E.: the jth query to H?T, denoted
(87,h7), is answered by (E.(S7(r)),h?(S7(r))) if j < i and is answered by
(B (1190 h7(S7(r))) otherwise. (The process answers A’s queries to F,

and Dy by forwarding them to its own corresponding oracles.)

3. As before, (f,v) denotes the output of AZPIer(y, 2) and (ST, hY), ..., (S, ht))
denotes its trace. The process outputs ((St,ht),..., (S, ht)), (f,v),r.

We stress that since A is canonical, none of the Dy-queries equals a ciphertext
obtained as part of the answer of a H;T-query.

Clearly, the distribution of the O-hybrid is identical to the distribution of
the global view in an attack emulated by B, whereas the distribution of the
t-hybrid is identical to the distribution of the global view in a real attack by A.

21 Non-canonical adversaries can easily distinguish the two types of views by distinguishing
the oracle Tt , from oracle Te’,r. For example, suppose we make a challenge query with a
sampling-circuit S that generates some distribution over {0,1}™ \ {1"}, next make a decryp-
tion query on the ciphertext obtained in the challenge query, and output the answer. Then,
in case we query the oracle Tt ,, we output Dy(E.(S(r))) # 1™; whereas in case we query
the oracle T/ ,., we output Dgq(FEe(1™)) = 1™. Recall that, at this point, we are guaranteed
that A is canonical (and indeed it might have been derived for perfectly-emulating some non-
canonical A'). An alternative way of handling non-canonical adversaries is to let B handled
the disallowed (decryption) queries by making the corresponding challenge query, and return-
ing its answer rather than the decryption value. (Note that B that emulates TT’,E can detect
which queries are disallowed.)
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On the other hand, distinguishing the i-hybrid from the (i + 1)-hybrid yields a
successful a-posteriori-CCA (in the sense of distinguishing encryptions). That
is, assuming that one can distinguish the i-hybrid from the (i + 1)-hybrid, we
construct a a-posteriori-CCA adversary (as per Definition 5.4.14) as follows. For
(e,d) — G(1™), given y = e if we are in the public-key case and y = 1™ otherwise,
the attacker (having oracle access to E. and Dy) behaves as follows

1. The attacker selects r « Upoly(n)-

2. The attacker emulates an execution of AE”7DC"H?T(y, z), where j € {i,i+1}
(is unknown to the attacker), as follows. The queries to E. and Dy are
answered by using the corresponding oracles available to the attacker, and
the issue is answering the queries to I .. The first ¢ queries to II7

are answered as in both II? . and II**! (i.e., query (S,h) is answered by

(E.(S(r)),h(S(r)))), and the last t — (i + 1) queries are also answered

as in both II! . and II'%! (ie., by (E.(1°)) A(S(r))), this time). The

i + 1 query, denoted (S*t! A*tl), is answered by producing the chal-

lenge templet (S7T1(r), 115" (1) which is answered by the challenge ci-

phertext ¢ (where ¢ € {E.(S"1(r)), E. (115" N}), and replying with

(¢, T (SH(r))).

Note that if ¢ = E.(S*"'(r)) then we emulate II’}!, whereas if ¢ =

Ee(1|si+1(r)|) then we emulate H;T.

3. Again, (f,v) denotes the output of A¥ Pl (y 2) and ((S*, k1), ..., (S, At))
denotes its trace. The attacker feeds ((S!,hl),..., (St ht)),(f,v),r to the
hybrid distinguisher (which we have assumed to exist towards the contra-
diction), and outputs whatever the latter does.

The above is an a-posteriori-CCA as in Definition 5.4.14: it produces a single
challenge (i.e., the pair of plaintexts (S***(r), I‘SLH(T)')), and distinguishes the
case it is given the ciphertext ¢ = E.(S'T!(r)) from the case it is given the
ciphertext ¢ = Ee(1|sl+l(r)|), without querying Dy on the challenge ciphertext
c. The last assertion follows by the hypothesis that A is canonical, and so none
of the Dg4-queries that A makes equals the ciphertext ¢ obtained as (part of) the
answer to the ¢ 4 1st Hgyr—query. Thus, distinguishing the ¢+ 1st and ¢th hybrids
implies distinguishing encryptions under an a-posteriori-CCA, which contradicts
our hypothesis regarding (G, E, D). The theorem follows.

Further generalization. Recall that we have allowed arbitrary challenge
queries of the form (S, h) that were answered by (E.(S(r)), L(S(r))). Instead,
we may allow queries of the form (S, h) that are answered by (E.(S(r)), h(r));
that is, h is applied to r itself rather than to S(r). Actually, given the indepen-
dence of h from S, one could have replaced the challenge queries by two types
of queries: partial-information (on r) queries that correspond to the h’s (and are
answered by h(r)), and encrypted partial-information queries that correspond to
the S’s (and are answered by E.(S(r))). As shown in Exercise 33, all these forms
are in fact equivalent.
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5.4.4.3 Constructing CCA-secure private-key schemes

In this section we show simple constructions of CCA-secure private-key encryp-
tion schemes. We start with a-priori CCA, and next turn to a-posteriori CCA.

Security under a-priori CCA. All the results presented in Section 5.3.3
extend to security under a-priori chosen ciphertext attacks. Specifically, we
prove that Constructions 5.3.9 and 5.3.12 remain secure also under an a-priori
CCA.

Proposition 5.4.18 Let F' and (G, E, D) be as in Construction 5.3.9, and sup-
pose that F' is pseudorandom with respect to polynomial-size circuits. Then the
private-key encryption scheme (G, E, D) is secure under a-priori chosen cipher-
text attacks. The same holds with respect to Construction 5.3.12.

Proof Sketch: As in the proof of 5.4.12, we focus on Construction 5.3.9, and
consider an idealized version of the scheme, in which one uses a uniformly se-
lected function f:{0,1}™—{0,1}" (rather than the pseudorandom function f;).
Again, all that the adversary obtains by encryption queries in the ideal version
is pairs (r, f(r)), where the r’s are uniformly and independently distributed in
{0, 1}™. Similarly, decryption queries provide the adversary with pairs (r, f(r)),
but here the r’s are selected by the adversary. Still in an a-priori CCA, all
decryption queries are made before the challenge is presented, and so these r’s
are selected (by the adversary) independent of the challenge. Turning to the
challenge itself, we observe that the plaintext is “masked” by the value of f
at another uniformly and independently distributed element in {0, 1}", denoted
ro. We stress that r¢o is independent of all 7’s selected in decryption queries
(because these occur before 7¢ is selected), as well as being independent of all r’s
selected by the encryption oracle (regardless of whether these queries are made
prior or subsequently to the challenge). Now, unless r¢ happens to equal one
of the r’s that appear in the pairs (r, f(r)) obtained by the adversary (which
happens with negligible probability), the challenge plaintext is perfectly masked.
Thus, the ideal version is secure under an a-priori CCA, and the same holds for
the real scheme. [l

Security under a-posteriori CCA. Unfortunately, Constructions 5.3.9 and 5.3.12
are not secure under an a-posteriori chosen ciphertext attacks: Given a challenge
ciphertext (r,z @ fs(r)), the adversary may obtain fs(r) by making the query
(r,y'), for any y' # = @ fs(r). This query is allowed and is answered with z'
such that y' = 2’ @ fs(r). Thus, the adversary may recover the challenge plain-

text = from the challenge ciphertext (r,y), where y ELUPYEN fs(r), by computing
y @ (y' @ z'). Thus, we should look for new private-key encryption schemes if
we want to obtain one that is secure under a-posteriori CCA. Actually, we show
how to transform any private-key encryption scheme that is secure under chosen
plaintext attack (CPA) into one that is secure under a-posteriori CCA.
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The idea underlying our transformation (of CPA-secure schemes into CCA-
secure ones) is to eliminate the adversary’s gain from chosen ciphertext attacks
by making it infeasible to produce a legitimate ciphertext (other than the ones
given explicitly to the adversary). Thus, an a-posteriori CCA adversary can be
emulated by a chosen plaintext attack (CPA) adversary, while almost preserving
the success probability.

The question is indeed how to make it infeasible for the (a-posteriori CCA)
adversary to produce a legitimate ciphertext (other than the ones explicitly given
to it). One answer is to use “Message Authentication Codes” (with unique valid
tags) as defined in Section 6.1. That is, we augment each ciphertext with a
corresponding authentication tag (which is “hard to forge”), and consider an
augmented ciphertext to be valid only if it consists of a valid (string,tag)-pair.
For sake of self-containment (and concreteness), we will use below a specific
implementation of such MACs via pseudorandom functions. Incorporating this
MAC in Construction 5.3.9, we obtain the following

Construction 5.4.19 (a private-key block-cipher secure against a-posteriori-
CCA): As in Construction 5.3.9, let F = {F,} be an efficiently computable
function ensemble and let I be the function-selection algorithm associated with
it; i.e., I(1™) selects a function fs with distribution F,,. We define a private-key
block cipher, (G, E, D), with block length £(n) =n as follows

key-generation: G(1") = ((k, k'), (k, k")), where both k «— I(1™) and k' — I(1™).

encrypting plaintext z € {0,1}" (using the key (k, k')):

By (x) = ((r, fi(r) @ @), fir (1, fi(r) & @),
where T is uniformly chosen in {0, 1}".

decrypting ciphertext (r,y) (using the key (k,k")): Di i ((r,y),t) = fe(r) Dy if
fw(r,y) =t and Dy ((r,y),t) = L otherwise.

Proposition 5.4.20 Let F and (G,E,D) be as in Construction 5.4.19, and
suppose that F' is pseudorandom with respect to polynomial-size circuits. Then
the private-key encryption scheme (G, E, D) is secure under a-posteriori chosen
ciphertext attacks.

Proof Sketch: Following the motivation preceding the construction, we emulate
any a-posteriori-CCA adversary by a CPA adversary. Specifically, we need to
show how to answer description queries made by the CCA adversary. Let us
denote such a generic query by ((r,y),t), and consider the following three cases:

1. If ((r,y),t) equals the answer given to some (previous) encryption query
x, then we answer the current query with .

Clearly, the answer we give is always correct.

2. If ((r,y),t) equals the challenge ciphertext then this query is not allowed.
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3. Otherwise, we answer that ((r,y),t) is not a valid ciphertext.

We need to show that our answer is indeed correct. Recall that in this case
((r,y),t) did not appear before as an answer to an encryption query. Since
for every (r,y) there is a unique t such that ((r,y),t) is a valid ciphertext,
the case hypothesis implies that one of the following sub-cases must occur:

Case 1: Some ((r,y),t"), with ¢’ # ¢, has appeared before as an answer to
an encryption query. In this case ((r,y),t) is definitely not a valid
ciphertext (because ((r,y),t') is the unique valid ciphertext of the

form ((Tvy)a ))

Case 2: No triple of the form ((r,y), -) has appear before as such an answer
(to an encryption query). In this sub-case, the ciphertext is valid if
and ounly if ¢ = fi (r,y). That is, in order to produce such a valid
ciphertext the adversary must guessed the value of fir at (r,y), when
only seeing the value of fi+ at other arguments. By the pseudoran-
domness of the function fy/, the adversary may succeed in such a
guess only with negligible probability, and hence our answer is wrong
only with negligible probability.

Finally, note that the CPA-security of Construction 5.3.9 (see Proposition 5.4.12)
implies that so is Construction 5.4.19. The proposition follows. [l

An alternative proof of Proposition 5.4.20: Building on the proof of
Proposition 5.4.18, we (need to) consider here also description queries made
after the challenge ciphertext, denoted ((r¢,yc),tc), is presented. Let us de-
note such a generic query by ((r,y),t). We consider three cases:

1. If r # r¢ then this query can be treated as in the proof of Proposition 5.4.18
(i.e., it is not more dangerous than a query made during an a-priori-CCA
attack).

2. ifr =r¢ and (y,t) # (yo,tc) then except with negligible probability this
query is not a valid ciphertext, because it is infeasible to guess the value
of fir(r,y) (which is the only value of ¢ such that ((r,y),t) is valid).

3. If r =r¢ and (y,t) = (yo,tc) then this query is not allowed.

The proposition follows. Il

The same construction and analysis can be applied to Construction 5.3.12.
Combining this with Corollary 3.6.7, we get

Theorem 5.4.21 If there exist (non-uniformly hard) one-way functions then
there exist private-key encryption schemes that are secure under a-posteriori
chosen ciphertext attacks.
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5.4.4.4 Constructing CCA-secure public-key schemes

Using strong forms of Non-Interactive Zero-Knowledge (NIZK) proofs, we show
how to transform any public-key encryption scheme that is secure in the passive
(key-dependent) sense into one that is secure under a-posteriori CCA. As in case
of private-key schemes, the idea underlying the transformation is to eliminate
the adversary’s gain from chosen ciphertext attacks.

Recall that in case of private-key schemes the adversary’s gain from a CCA
was eliminated by making it infeasible (for the adversary) to produce legitimate
ciphertexts (other than those explicitly given to it). However, in the context
of public-key schemes, the adversary can easily generate legitimate ciphertexts
(by applying the keyed encryption algorithm to any plaintext of its choice).
Thus, in the current context the adversary’s gain from a CCA is eliminated
by making it infeasible (for the adversary) to produce legitimate ciphertexts
without “knowing” the corresponding plaintext. This, in turn, will be achieved
by augmenting the plaintext with a non-interactive zero-knowledge “proof of
knowledge” of the corresponding plaintext.

Since the notion of a proof-of-knowledge is quite complex in general (cf. Sec-
tion 4.7), and more so in the non-interactive (zero-knowledge) context (let alone
that we will need strengthenings of it), we will not make explicit use of this
notion (of a non-interactive (zero-knowledge) proof-of-knowledge). Instead, we
will use non-interactive (zero-knowledge) proofs of membership (NIZK) as de-
fined in Section 4.10. In fact, our starting point is the definition of adaptive
NIZK system (i.e., Definition 4.10.15). We focus on proof systems in which
the prover is implemented by a probabilistic polynomial-time algorithm that is
given a suitable auxiliary-input. For sake of clarity let us reproduce the resulting
definition.

Definition 5.4.22 (adaptive NIZK): An adaptive non-interactive zero-knowledge
proof system (adaptive NIZK) for a language L € NP, with an NP-relation Ry,
consists of a pair of probabilistic polynomial-time algorithms, denoted (P, V),
that satisfy the following:

e Syntax: Both machines are given the same uniformly selected reference
string r € {0,1}™ along with an actual input x € {0,1}* such that |z| =
poly(m) and an auziliary input. Specifically, on input r, x and w (suppos-
edly, (x,w) € Ry), the prover P outputs an alleged proof # — P(x,w,r);
whereas on input r, x and 7, the verifier V decides according to V(z,r,7) €

{0,1}.

e Completeness: For every (x,w) € Rp with |x| = poly(m), the probability
that V' does not accept the input x (based on the proof P(z,w,Uy,) and the
reference string Uy,) is negligible; that is, Pr[V(x, Uy, P(z,w,Uy,)) # 1] is
negligible. (Typically, the error probability here is zero, in which case we
say that the proof has perfect completeness.)

e Adaptive Soundness: For every =:{0,1}™ — ({0,1}P°¥("™) \ L) and every
I1:{0,1}™ — {0, 1}P°W(™) the probability that V accepts the input Z(U,,)
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(based on the proof IL(U,,) and the reference string Uy,) is negligible; that
is, PriV(E(Up,), U, II(Uyy,)) = 1] is negligible.

e Adaptive Zero-Knowledge: There exist two probabilistic polynomial-time al-
gorithms, S1 and Sa, such that for every pair of functions Z:{0,1}™ —
({0,1}P°(m) N L) and W : {0,1}™ — {0,1}P°¥(™) sych that = is imple-
mentable by polynomial-size circuits and (2(r), W(r)) € Ry (Vre{0,1}™),
the ensembles {(Unm, Z(Um), P(E(Um), W (Un), Um)) }nen and {S=(1™)}en
are computationally indistinguishable (by non-uniform families of polynomial-
size circuits), where S=(1™) denotes the output of the following randomized
process:

1. (rys) « S1(1™);
2. ¢« Z(r);
3. m— Sy(z,s);

4. Output (r,z, ).

Indeed, S is a two-stage simulator that first produces (obliviously of the
actual input) an alleged reference string r (along with auziliary information
s), and then given an actual input (which may depend on r) simulates the
actual proof.

Note that it is important that in the zero-knowledge condition the function =
is required to be implementable by polynomial-size circuits (as otherwise the
reference string produced by S; would have had to be statistically close to U,,;
see Exercise 34). In the rest of this subsection, whenever we refer to an adap-
tive NIZK, we mean the definition above. Actually, we may relax the adaptive
soundness condition so that it only applies to functions = and II that are im-
plementable by polynomial-size circuits. That is, computational-soundness will
actually suffice for the rest of this subsection.

Note that (analogously to Proposition 5.4.10), in case of public-key schemes
the combined chosen plaintext and ciphertext attack (as in Definitions 5.4.13
and 5.4.14) is equivalent to a “pure” chosen ciphertext attack. Thus, in this
subsection we consider only attacks of the latter type. Another technical point
is that in our construction we can use any public-key encryption scheme that is
secure in the passive (key-dependent) sense, provided that for all but a negligible
measure of the key-pairs that it generates there is no decryption error.

The general framework. Using an adaptive NIZK, (P,V) (for N'P) with
simulator S = (S1, S2), and an arbitrary public-key encryption scheme, (G, E, D),
we present the following public-key encryption scheme:

Construction 5.4.23 (CCA-security construction framework): Let E(z, s) de-
note the ciphertext produced by E when given the encryption-key e, the plaintext
x and coins s; that is, E.(x) «— E.(z,s), where s is selected uniformly among



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRY PTOGRAPHY .

440 CHAPTER 5. ENCRYPTION SCHEMES

the set of poly(|e|)-long bit strings. We use an adaptive NIZK (P,V) for the
language L defined by the following NP-relation

R {((er, e2,y1,92), (m, 51,52)) : g = B, (2, 51) & 9o = B, (z,52)}  (5.12)

That is, (e1,e2,y1,y2) € Lg if both y;’s are ciphertexts produced using the
encryption-keys e1 and es, respectively, of the same plaintext.

key-generation: G'(1™) « ((e1, e2,7), (d1,d2,7)), where (e1,dr) — G(1™), (ea,ds) «—
G(1™), and r is uniformly distributed in {0,1}™.

encrypting plaintext « € {0,1}* (using the key € = (e, e2,7)): EL(z) « (y1,Y2,7),
where s1, s2 are uniformly selected poly(n)-long bit strings, y1 = E., (z, s1),
Y2 = Ee, (2, 52) and m — P((e1, €2,y1,92), (¢, 81, 52),7).

decrypting ciphertext (y;,ys,7) (using the key d = (dy,ds,7)): IfV((e1,ea,y1,Y2),7,T) =
1 then return Dga,(y1) else return an error symbol indicating that the ci-
phertext is not valid.

Indeed, our choice to decrypt according to y; (in case 7 is a valid proof) is
immaterial, and we might as well decrypt according to y, or decrypt according
to both and return a result only if both results are identical. We stress that, here
as well as in the following analysis, we rely on the hypothesis that decryption
is error-free, which implies that for « # ' the supports of E.(z) and E.(x')
are disjoint. (Thus, Dy, (y1) = Da,(y2), for any (e1,e2,y1,y2) € Lg, where the
(ei,d;)’s are in the range of G.)

Clearly, Construction 5.4.23 constitute a public-key encryption scheme; that
is, DZ(Ez(z)) = =, provided that the NIZK proof generated during the en-
cryption stage was accepted during the decryption stage. Indeed, if the NIZK
system enjoys perfect completeness (which is typically the case), then the de-
cryption error is zero. By the zero-knowledge property, the passive security of
the original encryption scheme (G, E, D) is preserved by Construction 5.4.23.
Intuitively, creating a valid ciphertext seems to imply “knowledge” of the cor-
responding plaintext, but this appealing claim should be examined with more
care (and in fact is not always valid). Furthermore, as stated above, our actual
proof will not relate to the notion of “knowledge”. Instead, the actual proof will
proceed by showing how a chosen-ciphertext attack on Construction 5.4.23 can
be transformed into a (key-dependent) passive attack on (G, E, D). In fact, we
will augment the notion of (adaptive) NIZK in order to present such a transfor-
mation. Furthermore, we will do so in two steps. The first augmentation will be
used to deal with a-priori CCA, and further augmentation will be used to deal
with a-posteriori CCA.

Step I: a-priori CCA

Let us start by considering an a-priori CCA. Given such an adversary A, we con-
struct a passive adversary B that attacks (G, E, D) by emulating the attack of

See copyright notice.
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A on Construction 5.4.23. One important observation is that the latter encryp-
tion scheme uses two keys of the original scheme. Thus, given an encryption-key
of the original scheme, B generates another encryption-key (while storing the
corresponding decryption-key), and invokes A giving it the pair of encryption-
keys (along with a reference string to be generated as discussed below). When
A makes a decryption query, B may answer the query by using the stored
decryption-key (generated by B before). This works provided that the query
ciphertext contains a pair of ciphertexts of the same plaintext according to the
two keys, which is the reason we augmented this pair by a proof of consistency.
Thus, actually, B should examine this proof and act analogously to the decryp-
tion process of Construction 5.4.23.

The next problem arises when A asks to be given a challenge. Algorithm B
outputs the request as its own challenge templet, but the challenge given to B
is a single ciphertext of the original scheme and so B needs to augment it into
something that looks like a ciphertext of Construction 5.4.23. Here is where we
rely on the zero-knowledge property of the proof of consistency (for producing
the required proof that relates to a plaintext we do not know), but in order for
so the reference string needs to be generated by S; (rather than be uniformly
distributed). But this leads to the following problem: when referring (above) to
the soundness of the proofs of consistency we assumed that the reference string
is uniformly distributed (since soundness was stated for that case), and it is
not clear whether soundness holds when the reference string is generated by the
simulator (who must use a different?? distribution). This question is addressed
by the notion of (weak) simulation-soundness.

Defining and constructing adaptive NIZKs with weak simulation-soundness.
The above discussion leads to the following definition.

Definition 5.4.24 (weak simulation-soundness): Let (P,V') be an adaptive NIZK
for a language L, and (S1,S2) be a corresponding two-stage simulator. We say
that weak simulation-soundness holds if for every polynomial-size implementable
= and 11,

PriE(r)¢ L and V(E(r),r,II(r))=1, where (r,s) < S1(1™)] < p(n)
where 1:N—[0,1] is a negligible function.

Note that the computational limitation on II is essential to the viability of the
definition (see Exercise 35). It is tempting to conjecture that every adaptive
NIZK (or rather its simulator) satisfies weak simulation-soundness; however,
this is not true (for further discussion see Exercise 36). Nevertheless, adaptive
NIZK (for N'P) with a simulator satisfying weak simulation-soundness can be
constructed given any adaptive NIZK (for N'P).

22 Prove that the distribution produced by S; must be far-away from uniform. See related
Exercises 34 and 35.
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Construction 5.4.25 (from adaptive NIZK to weak simulation-soundness): Let
(P, V) be an adaptive NIZK for some language L, and let (S1,S2) be the cor-
responding two-stage simulator. We construct the following adaptive NIZK that
works with reference string ((rY,71), ..., (r%,71)), where r? € {0,1}".

n»'n

Prover P': on common input x and auziliary-input w (s.t., (x,w) € Rr), (and
reference string ((7‘1,7‘%) o (%, 1L)), uniformly select bl,.. b, € {0,1},

n’'n
compute w; «— P(z,w, T Hfori=1,..,n, and outputw = (bl, ey Oy Ty ey ).
Verifier V': on common input x (and reference string ((r9,r1), ..., (r2,rl))), given
an alleged proof T = (b1, ..., by, 71, .., ™), accept if and only if V (x, f ) =
1 forallie{1,...,n}.

Simulator’s first stage S1: on input 1", select uniformly cy,...,c, € {0, 1}, gen-
erate (r;*,s;) «— S1(1™), select uniformly 7"1 ke € {0,137, and

output (T,3), where T def ((r, 1), ..., (10, 72)) ands def (Cly ey Criy 815 eeey S )

n)'n

Simulator’s second stage Sh: on input (3,z), where 5 = (C1,..c;CnyS1y .y Sn),
compute ; «— Sa(x,s;) fori =1,...,n, and output (€1, ...,Cny T1, ey Tn).

It is easy to see that Construction 5.4.25 preserves the adaptive NIZK features
of (P,V,S51,852). Furthermore, as shown below, Construction 5.4.25 is weak
simulation-sound.

Proposition 5.4.26 Construction 5.4.25 is an adaptive NIZK for L and weak
simulation-soundness holds with respect to the prescribed simulator.

Proof Sketch: Completeness and soundness follow by the corresponding prop-
erties of (P,V). To see that the simulation is indistinguishable from the real
execution of (P',V'), note that the two probability ensembles differ in two
aspects: first, the simulation uses r;"’s generated by S;(1™), whereas in the
real execution the 7;'’s are unlformly distributed; and second, the simulation
uses s1mulated proofs produced by Sa(z, s;) rather than real proofs produced by
P(z,w,r). Still, indistinguishability the output of the original simulator from
the real executlon of (P, V), can be used to prove the the current ensembles are
indistinguishable too. Specifically, we consider a hybrid distribution in which all
s are generated by S1(1™) but the individual proofs (i.e., m;’s) are produced
by P(x,w,r"). Using the fact that indistinguishability (by small circuits) is pre-
served under repeated sampling, we show that the hybrid is indistinguishable
from each of the two ensembles (i.e., real execution of (P’, V') and the simulation
by (S, 54)).

To establish the weak simulation-soundness property, we consider an arbi-
trary cheating prover C' = (Z,1I) that is implementable by a family of small
circuits. We say that C(F) = (E(7),II(T)) succeeds if it holds that =(7) ¢ L and
V'(=(F),7,II(7)) = 1. We are interested in the probability that C(F) succeeds
when (r,s) — 57(1™). Recall that 5 = (c1, ..., Cn, $1, ---, Sn ), Where the ¢;’s are
selected uniformly in {0, 1}, whereas II(T) has the form (b1, ..., by, 71, ..., ™, ). Let
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us denote the latter b;’s by B(F); that is, II(7) = (B(7),II'(7)). We distinguish
two cases according to whether or not B(T) =¢ = (C1y ey Cn):

Pr[C(r) = (E(7), (B(T),1I'(T))) succeeds, when (7,5) « 51(1")]
= [ (F) succeeds and B(F) =€, when (7, (¢,3')) « S](1™)]
Pr[C(F) succeeds and B(T) # €, when (7, (¢,3')) « S;(1™)]

The first term must be negligible because otherwise B can distinguish a sequence
of 2n uniformly generated r%’s from a sequence of r2’s as generated by S} (since
in the first case Pr[B(T) = ¢] = 27" by information theoretic considerations).
The second term must be negligible because in case the i*® bit of B(T) is different
from ¢; (i.e., b; # ¢;), the i*® alleged proof (i.e., ;) is with respect to a uniformly

distributed reference string (i.e., % = 7}~ Cl, which is selected uniformly in

{0,1}™), and thus can be valid only w1th negligible probability (or else the
(adaptive) soundness of (P, V) is violated).

Using adaptive NIZKs with weak simulation-soundness. Following the
foregoing motivating discussion, we show that if the adaptive NIZK used in Con-
struction 5.4.23 has the weak simulation-soundness property then the encryption
scheme in the construction is secure under a-priori CCA.

Theorem 5.4.27 Suppose that the adaptive NIZK (P,V) used in Construc-
tion 5.4.23 has the weak simulation-soundness property and that the public-key
encryption scheme (G, E, D) is passively secure in the key-dependent sense. Fur-
ther suppose that the probability that G(1™) produces a pair (e,d) such that
Pr[Dg(E.(z)) = 2] < 1 for some x € {0,1}P°Y(™) js negligible. Then Con-
struction 5.4.23 constitutes a public-key encryption scheme that is secure under
a-priori CCA.

Combining the above with Theorem 4.10.16 and Proposition 5.4.26, it follow
that public-key encryption schemes that are secure under a-priori CCA exist,
provided that trapdoor permutations exist.

Proof Sketch: Assuming towards the contradiction that the scheme (G', E’, D")
is not secure under a-priori CCA, we show that the scheme (G, E, D) is not secure
under a (key-dependent) passive attack. Specifically, we refer to the definitions
of security in the sense of indistinguishable encryptions (as in Definitions 5.4.14
and 5.4.2, respectively). To streamline the proof, we reformulate Definition 5.4.2,
incorporating both circuits (i.e., the one selecting message pairs and the one
trying to distinguish their encryptions) into one circuit and allow this circuit
to be probabilistic. (Certainly, this model of a key-dependent passive attack is
equivalent to the one in Definition 5.4.2.)

Let (A, A}) be an a-priori CCA adversary attacking the scheme (G', E', D")
(as per Definition 5.4.14), and (S, S2) be the two-stage simulator for (P,V).
We construct a (key-dependent) passive adversary A (attacking (G, E, D)) that,
given an encryption-key e (in the range of G1(1™)), behaves as follows:
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1. Initialization: A generates (e1,d;) «— G(1"), (r,s) <« Si(n), and sets
e=(e,e,r).

2. Emulation of A’fz(é): A invokes A on input €, and answers its (decryp-
tion) queries as follows. When asked to decrypt the alleged ciphertext
(q1,92,q3), adversary A checks if g3 is a valid proof of consistence of ¢;
and go (with respect to the reference string r). If the proof is valid, then
A answers with Dy, (¢1) else A returns the error symbol.

(Note that the emulation is perfect, although A only knows part of the
corresponding decryption-key d.)

3. Using Al for the final decision: Let ((z(1),2(?)), o) denote the challenge
templet output by A}. Then, given a ciphertext y = E.(z), where z €
{z(M) 2}, adversary A form a corresponding ciphertext (y1,y, ), by let-
ting y; « Eel(0|z(1)|) and m «— Sao(s, (e1,e,y1,y)). Finally, A invokes A}
on input (o, (y1,y, 7)), and outputs whatever the latter does. Recall that,
here (in case of a-priori CCA), A} is an ordinary machine (rather than an
oracle machine).

(Note that this emulation is not perfect, since (typically) A invokes A} with
an illegal ciphertext, still we shall see that A/, cannot tell the difference.)

In order to analyze the performance of A, we introduce the following hybrid
process as a mental experiment. The hybrid process behaves as A, with the only
exception that (in Step 3) y; « F.,(z) (rather than y; « FE,,(01°l)). Thus,
unlike A, the hybrid process invokes A} with a legal ciphertext. (The question
of how the hybrid process “knows” or gets this y; is out of place; we merely
define a mental experiment.) Let pfj) = pfj)(n) (resp., p(é) = p(é) (n)) denote
the probability that A (resp., the hybrid process) outputs 1 when z = z(7).

Claim 5.4.27.1: For both j’s the absolute difference between pg)(n) and pg) (n)
is a negligible function in n.

Proof: Define an auxiliary hybrid process that behaves as the hybrid process
except that when emulating D, the auxiliary process answers according to Dy,
(rather than according to Dg,). (Again, this is a mental experiment.) Let
p;ﬁq denote the probability that this auxiliary process outputs 1 when z =
29, Similarly, define another mental experiment that behaves as A except that

when emulating D, the auxiliary process answers according to Dy, (rather than

according to Dy, ), and let pi& denote the probability that this process outputs

1 when 2 = 20). Let m &' |z]. We establish the following facts:

Fact 1. For both j’s the absolute difference between pg) and p(l_})H is negligible.
The reason is that by weak simulation-soundness, it is infeasible to produce
triples (g1, g2, ¢3) such that Dy, (¢1) # Da,(g2) and yet g3 is a valid proof
(w.r.t r) that ¢; and g2 encrypt the same plaintext. Here we rely on the
hypothesis that except with negligible probability over the key-generation,
the decryption is error-less (i.e., always yields the original plaintext).
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Fact 2. Similarly, for both j’s the absolute difference between pg) and p&& is

negligible.
Fact 3. Finally, for both j’s the absolute difference between p(l_})H and piﬂ is
negligible.

The reason is that the experiments AA and HH differ only in the input
(o, (y1,y, 7)) that they feed to A}: whereas AA forms y; «— E., (0™) (and
7w — Sa(s,(e1,e,y1,v))), the process HH forms y; «— FE., (x) (and 7 «
Sa(s, (e1,€e,91,y))). However, A} cannot distinguish the two cases because
this would have violated the security of E, .

That is, to establish Fact 3, we construct a passive attack, denoted B,
that behaves similarly to A except that it switches its reference to the
two basic keys (i.e., the first two components of the encryption-key €)
and acts very differently in Step 3 (e.g., produces a different challenge
templet). Specifically, given an attacked encryption-key e, adversary B
generates (e, ds) «— G(1"), sets € = (e, ez, -), and emulates A’fz(é) using
the decryption-key dy to answer queries. For a fixed j, when obtaining
(from A!) the challenge templet ((z(!),2(?)), ), adversary B produces the
challenge templet ((0™,z(9)),¢), and invokes A} on input (o, (y,y2, 7)),
where y = E.(z) (z € {0™,2)}) is the challenge ciphertext given to B,
and B computes yo +— E,, (7)) and 7 « Sy(s, (e, es,,¥2)). (Finally, B
outputs the output obtained from A}.) Note that when given the challenge
ciphertext E,(z(7)), the adversary B behaves as experiment H H, whereas
when given E,(0™) it behaves as experiment AA. Thus, if pg}{ and p%
differ in a non-negligible manner, then B violates the passive security of
the encryption scheme (G, E, D).

Combining the above three facts, the current claim follows. O

Let us denote by p(cjc)a(n) the probability that the CCA adversary (A}, A}) out-
puts 1 when given a ciphertext corresponding to the j*® plaintext in its challenge
templet (see Definitions 5.4.14). Recall that by the hypothesis |py (n)—p&la (n)|
is not negligible.

Claim 5.4.27.2: For both j’s the absolute difference between p(cjc)a(n) and pg) (n)
is a negligible function in n.

Proof: The only difference between the output in a real attack of (A}, A}) and
the output of the hybrid process is that in the hybrid process a “simulated refer-
ence string” and a “simulated proof” are used instead of a uniformly distributed
reference string and a real NIZK proof. However, this difference is indistinguish-
able. O

Combining Claims 5.4.27.1 and 5.4.27.2, we conclude that A violates the pas-
sive security of (G, E, D). This contradicts the hypothesis, and so the theorem
follows.
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Step II: a-posteriori CCA

In order to use Construction 5.4.23 in the context of a-posteriori CCA security,
we need to further strengthen the NIZK proof in use. The reason is that, in an
a-posteriori CCA, the adversary may try to generate false proofs (as part of the
ciphertext queries in the second stage) after being given a (single) proof (as part
of the challenge ciphertext). Specifically, when trying to extend the proof of
Theorem 5.4.27, we need to argue that, given a simulated proof (to either a false
or a true statement), it is infeasible to generate a false proof to a false statement
(as long as one does not just copy the given simulated proof, in case it is to
a false statement). The notion of weak simulation-soundness does not suffice
to bound the probability of success in such attempts, because it only refer to
what one can do when only given the simulated reference string. The following
definition addresses the situation in which one is given a single simulated proof
(along with the simulated reference string). (We comment that a more general
notion that refers to situations in which one is given a many simulated proofs is
not necessary for the current application.)

Definition 5.4.28 (1-proof simulation-soundness): Let (P,V') be an adaptive
NIZK for a language L, and (S1, S2) be a corresponding two-stage simulator. We
say that 1-proof simulation-soundness holds if for every triplet of polynomial-size
circuit families (Z*,Z2,112), the probability of the following event is negligible:

The event: for (z!, !, 22, 72%) generated as described below the following three

conditions hold: x*> ¢ L, (z%,7?) # (z*,7'), and V(2?,r,7?) = 1.

The generation process: First (r,s) « Sy(1™), then z' « Z(r), next 7' «
Sa(s, 1), and finally (22, 72) — (22(r,7t), 12 (r, w1)).

Note that weak simulation-soundness is obtained as a special case (by letting
=(r) = Z2(r, A) and I(r) = II2(r, \)).

Theorem 5.4.29 Suppose that the adaptive NIZK (P,V) used in Construc-
tion 5.4.23 has the 1-proof simulation-soundness property and that the encryp-
tion scheme (G, E, D) is as in Theorem 5.4.27. Then Construction 5.4.23 con-
stitutes a public-key encryption scheme that is secure under a-posteriori CCA.

Proof Sketch: The proof follows the structure of the proof of Theorem 5.4.27.
Specifically, given an a-posteriori CCA (A}, AS) (attacking (G', E', D")), we first
construct a passive adversary A (attacking (G, E, D)). The construction is as in
the proof of Theorem 5.4.27 with the exception that in Step 3 we need to emulate
the decryption oracle (for AY). This emulation is performed exactly as the one
performed in Step 2 (for A}). Next, we analyze this passive adversary as in the
proof of Theorem 5.4.27, while referring (in the current analysis unlike in the
previous one) to an A) that may make decryption queries. The analysis of the
handling of these queries relies on the 1-proof simulation-soundness property.
In particular, when proving a claim analogous to Claim 5.4.27.1, we have to
establish two facts (corresponding to Facts 1 and 2) that refer to the difference
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in the process’s output when decrypting according to Dy, and Dy, , respectively.
Both facts follow from the fact (established below) that, except with negligible
probability, neither A} nor A), can produce a query (g1, ¢2,¢3) such that g5 is a
valid proof that g1 and g are consistent and yet Dy, (q1) # Da,(g2). (We stress
that in the current context we refer also to A%, which may try to produce such
a query based on the challenge ciphertext given to it.)

Fact 5.4.29.1: The probability that A} produces a query (q1, g2, g3) such that g3 is
a valid proof (w.r.t reference string r) that (supposedly) there exists z, s1, s5 such
that ¢; = E.,(x,s;) (for i = 1,2), and yet Dy, (q1) # Da,(g2) is negligible. The
same holds for A as long as the query is different from the challenge ciphertext
given to it. This holds regardless of whether the challenge ciphertext (given to
Al) is produced as in A (i.e., y1 = E,, (0™)) or as in the hybrid process H (i.e.,
v = B, (1)),

Proof: Recall that one of our hypotheses is that the encryption (G, E,D) is
error-free (except for a negligible measure of the key-pairs). Thus, the cur-
rent fact refers to a situation that either A} or A} produces a valid proof
for a false statement. The first part (i.e., referring to Aj) follows from the
weak simulation-soundness of the NIZK, which in turn follows from its 1-proof
simulation-soundness property. We focus on the second part, which refers to A.

Let (y1,y2,m) denote the challenge ciphertext given to A} (i.e., yo = y is
the challenge ciphertext given to A(e) (or to H(e)), which augments it with ¥
and m «— Sy(s,(e1,e2,¥1,y2))). Recall that (r,s) « S1(1™) and that e; =
e. Suppose that A} produces a query (qi,¢2,q3) as in the claim; that is,
(¢1,92,93) # (y1,y2,7), the encryptions q; and ¢, are not consistent (w.r.t e; and
e2 respectively), and yet V((e1,e2,q1,¢2),7,93) = 1. Specifically, it holds that

22 (e1,€2,q1,92) & Lr, where Ly is as in Construction 5.4.23 (see Eq. (5.12)),

and yet V(z2,7,q3) =1 (i.e., w2 4t 45 is a valid proof of the false statement re-
garding z?). Since (y1,ys, ) is produced by letting 7 < Sz(s, (e1, e2,y1,¥2)), it

follows that 7! % 7 is a simulated proof (w.r.t the reference string r) for the al-

leged membership of z* def (e1,€2,y1,¥y2) in Lr, where (r,s) < S1(1™). Further-
more, given such a proof (along with the reference string r), A/, produces a query
(q1,q2,q3) that yields a pair (22, 72) such that 22 = (e1,e2,q1,q2) € Lr and yet
V(x?,r,7%) = 1 (where 72 = ¢3). Thus, using A} and A} (along with (G, E, D)),
we obtain circuits =!, =%, I1? that violate the hypothesis that (S;, S2) is 1-proof
simulation-sound (i.e., Z*(r) = (e1,e2,91,¥2), ™ = m «— Sa(s, (e1,€2,91,¥2)),
Ez(r’ﬂ_l) = (61’627q1’q2) and H2(,,.7ﬂ_1) = g3, where (y17y2;7r) and (q17q27q3)
are derived from the input and output to A5). O

Fact 5.4.29.1 implies (adequate extension of) the first two facts in the proof of
a claim analogous to Claim 5.4.27.1. The third fact in that proof as well as
the proof of Claim 5.4.27.2 do not refer to the soundness of the NIZK-proofs,
and are established here exactly as in the proof of Theorem 5.4.27. The current
theorem follows. [}
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Constructing adaptive NIZK with 1-proof simulation-soundness prop-
erty. Using a standard NIZK proof, a weak form of a signature scheme, and a
specific commitment scheme, we construct the desired NIZK. Since all ingredi-
ents can be implemented using trapdoor permutations, we obtain:

Theorem 5.4.30 If there exist collections of (non-uniformly hard) trapdoor
permutations then every language in NP has an adaptive NIZK with 1-proof
simulation-soundness property.

Proof Sketch: Let L € N'P. We construct a suitable NIZK for L using the
following three ingredients:

1. An adaptive Non-Interactive Witness-Indistinguishable (NIWI) proof, de-
noted (P™!, VW) for a suitable language in N"P. We stress that we mean
a proof system that operates with a reference string of length n and can be
applied to prove (adaptively chosen) statements of length poly(n), where
the adaptivity refers both to the soundness and witness-indistinguishability
requirements.

By Theorem 4.10.16, the existence of trapdoor permutations implies that
every language in NP has an adaptive NIZK that operates with a reference
string of length n and can be applied to prove statements of length poly(n).
Indeed, in analogy to discussions in Section 4.6, any NIZK is a NIWI.

2. A super-secure one-time signature scheme, denoted (GOt, 598 VOt Specif-
ically, one-time security (see Section 6.4.1) means that we consider only
attacks in which the adversary may obtain a signature to a single document
of its choice (rather than signatures to polynomially-many documents of
its choice). On the other hand, super-security (see Section 6.5.2) means
that the adversary should fail to produce a valid document-signature that
is different from the query-answer pair that appeared in the attack. (We
stress that, unlike in ordinary security, the adversary may succeed even in
case it produces a different signature to the same document for which it has
obtained a signature during the attack.) By Theorem 6.5.2, super-secure
one-time signature scheme can be constructed based on any one-way func-
tion. (If we were willing to assume the existence of collision-free hashing
functions then we could have used the easier-to-establish Theorem 6.5.1
instead.)

3. A perfectly-binding commitment scheme, denoted C, as defined in Sec-
tion 4.4.1. Furthermore, we require that the commitment strings are
pseudorandom; that is, the ensembles {C'(2)}ze10,13+ and {U|c(z)|}eefo,1}+
are computationally indistinguishable. Additionally, we require that the
support of C(U,) is a negligible portion of {0,1}/¢(U»)I, (The latter
requirement may be omitted if we are willing to settle for (ordinary)
computational-soundness rather than (ordinary) information-theoretic sound-
ness.)
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Using any collection of one-way permutations (e.g., the one in the hypoth-
esis), we may obtain the desired commitment scheme. Specifically, Con-
struction 4.4.2 satisfies the pseudorandomness property required above.
To obtain the additional (“negligible portion”) requirement, we merely let
C(z) equal a pair of two independent commitments to z (and it follows
that the support of C(U,) is at most a 2" - (27 ™)? = 27" fraction of
{0,1}/€(Un1) 23 We denote by C(x,r) the commitment produced to value
x while using coins r; that is, C(x) = C(x,r), where r is uniformly chosen
in {0,1}0=0) for some polynomial £.

Given the above ingredients, we construct an adaptive NIZK for L (with witness
relation R) as follows. The NIZK proof uses a reference string of the form
— def def

T = (r1,7r2), where n = |r3] and m = |r;| = poly(n).

Prover P: On common input z and auxiliary-input w (and reference string 7 =
(r1,72)), where supposedly (z,w) € R, the prover behaves as follows

1. Generates a key-pair for the one-time signature scheme; that is, (s,v) «

2. Compute a pre-proof p « PWi((x,rl,v),w,rg), where (VWi,VWi) is
a proof system (using ro as reference string) for the following NP-
language L':

L {(z,y,v) : (x € L)V (Fw' y = C(v,w"))} (5.13)

The corresponding NP-relation is
R {((z,y,0),0) : (z,0) € )V (y = Clv,w"))}  (5.14)

Note that P indeed feeds PV with an adequate NP-witness (i.e.,
((x,r1,v),w) € R’ since (z,w) € R). The first part of the reference

string of P is part of the statement fed to PWi, whereas the second
part of P’s reference string serves as a reference string for PWV!. The
behavior of V' (w.r.t VW) will be analogous.

3. The prover computes a signature o to (xz, p) relative to the signing-key
s (generated in Step 1). That is, P computes o «— SO, (z, p).

The prover outputs the triplet (v, p, o).

Verifier V: On common input z and an alleged proof (v,p,o) (and reference
string T = (r1,72)), the verifier accepts if and only if the following two
conditions hold

23 This presupposes that in the original commitment scheme the support of C(z) is at
most a 271! fraction of {0, 1}‘0(“’)', which does hold for Construction 4.4.2. Alternatively,
using any collection of one-way functions, we may also obtain the desired commitment scheme.
Specifically, Construction 4.4.4 will do, except that it uses two messages. However, since the
first message (i.e., sent by the receiver) is a random string, we may incorporate it in the
reference string (of the scheme presented below).
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1. o is a valid signature with respect to the verification-key v to the pair
(z,p). That is, VOU,((z,p),0) = 1.

2. pis a valid proof with respect to the reference string 2 to the state-
ment (z,7r1,v) € L'. That is, VV((z,r1,v),72,p) = 1.

Simulator’s first stage S;: On input 1™ (from which S; determines n and m),
the first stage produces a reference string and auxiliary information as
follows.

1. As the real prover, S;(1™1") starts by generating a key-pair for the
one-time signature scheme; that is, (s,v) « GO¥(1™).

2. Unlike in the real setting, S; (1™*") selects s; uniformly in {0, 1}£(I*D,
and set 7 = C(v,s1). (Note that in the real setting, 1 is uniformly
distributed independently of v, and thus r; is unlikely to be in the
support of C'(v).)

3. As in the real setting, S;(1™"") selects 7 uniformly in {0,1}™.
S1(1™*7) outputs the pair (F,3), where 7 = (r1,72) and 5 = (v, 8, 81,72).

Simulator's second stage S2: On input a statement z and auxiliary input 5 =
(v,s,81,r2) (as generated by S1), S2 proceeds as follows:

1. Using (the NP-witness) s;, computes a pre-proof p «— PWi((x, C(v,s1),v),81,T2).
Note that indeed, ((z,C(v, s1),v),s1) € R'.

2. Using (the signing-key) s, computes a signature o to (z,p) relative to
s, where p is as computed in the first step. That is, o « SOts(a:,p).

S2(3, z) outputs (v,p,0).

As we will see below, the above (two-stage) simulator produces output that is
indistinguishable from the output of the real execution. Intuitively, the first
stage of the simulator enables cheating to entities (such as the second stage of
the simulator) that can produce signatures with respect to the verification-key
committed to in the string r; (which is part of the reference string generated by
S1). This allows the simulation (which gets the signing-key) to cheat, but does
not allow cheating by an adversary that sees only the verification-key and one
valid signature (which are both part of the single proof given to the adversary in
the definition of 1-proof simulation-soundness). Thus, one-time signatures yield
1-proof simulation-soundness, and indeed using general signature schemes (as
well as some technical modifications) yield “many-proofs simulation-soundness”
(which is none of our concern here). We now turn to the actual proof of the
above properties.

Claim 5.4.30.1: (P, V) satisfies completeness and adaptive soundness.
Proof: Completeness follows by combining the syntactic properties of the one-

time signature scheme, the completeness property of the proof system (PWi, VWi)
and the definition of R'. Adaptive computational-soundness follows from the fact
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that, given only the (uniformly distributed) reference string 7 = (ry,72), it is
infeasible to find v such that r; is in the support of C'(v). Using the additional
property by which C’(GOtz(l”)) covers a negligible portion of {0,1}™, it follows
that for a uniformly selected r; € {0,1}™ there exist no v such that r; is in
the support of C(v). Thus, using also the (adaptive) soundness of (PWV!, V'W1),
except with negligible probability, when presented with a valid proof (v, p, o) for
x, it must be the case that (z,71,v) € L', and so x € L. O

Claim 5.4.30.2 (adaptive zero-knowledge): For every efficient way of selecting
inputs =, the output produced by the two-stage simulator (S, S2) is indistin-
guishable from the one produced by P. That is, the ensembles {S=(1™*")} and
REY E A (Ui, ZUngn)s PEWUiniin), W (Unin), Uin))} are computation-
ally indistinguishable, where S= is defined as in Definition 5.4.22.

Proof: Consider a hybrid distribution H=(1™*"), in which everything except
the pre-proof is produced as by S=(1™*"), and the pre-proof is computed as
by the real prover. That is, (F,3) « Si(1™*") (where T = (ry,r2) and 3 =
(v,s,51,79)) is produced as by S=, but then for (z,w) = (£(F), W (7)), the pre-
proof is computed using the witness w (i.e., p « P“'((z,71,v),w,ry) rather
than p «— PV((z,71,v),s1,72)). The final proof = = (v,p, o) is obtained (as in
both cases) by letting o « S’Ots(a:,p). We now relate the hybrid ensemble to
both ensembles in the claim.

1. By the (adaptive) witness indistinguishability of PV!, the ensembles H=
and S= are computationally indistinguishable. (Recall that these ensem-
bles differ only in the way the pre-proof is produced; specifically, they differ
only in the NP-witness used by PV! to prove the very same claim.)

2. By the pseudorandomness of the commitments produced for any fixed
value, H= and R=" are computationally indistinguishable. (Recall that
these ensembles differ only in the way the first part of the reference string
(i.e., r1) is produced.)

The claim follows. O

Claim 5.4.30.3 (1-proof simulation-soundness): For every triplet of polynomial-
size circuit families (=!,Z2,11?), consider the following process: First (7,35) «
Sp(1™*7), then z! « Z1(7), next 7' « S3(5,2'), and finally (z%,72) «
(Z2(7,w1),II?(F,m)). Then, the probability that the following three condi-
tions hold simultaneously is negligible: (1) z? ¢ L, (2) (22,7%) # (a',7!),
and (3) V(22,7,7%) = 1.

Proof: Recall that T = (r1,72) and 3 = (v, s, s1,72), where (s,v) « GO(1™)
and r; = C(v,s1) for a uniformly chosen s; € {0, l}m”‘) (and 7o is selected
uniformly in {0,1}"). Also recall that 7' = (v!,p',0o!), where v! = v, p' «

PWi((x,C(v,sl),v),sl,rg) and o' — SOt (21, p'). Let us denote (v, p?,02) o

m2. Using the definition of V', we need to upper bound

(@* ¢ L) A ((a?,7%) # (2, 7))

TLOA (VO (a2, p%),0%) = 1) A (VI((@2, 11, 02), 70, p7) = 1)

(5.15)
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We consider two cases (in which the event in Eq. (5.15) may hold):

v? = v!: In this case, either (z%,p?) # (z!,p') or 02 # o! must hold (because
otherwise (12,72) = (2%, (v%,p%,0%)) = (a, (u1,p),01) = (',7") fol-
lows). But this means that (=2,1I?), given a single valid signature o' (to
the document (z!,p')) with respect to a randomly generated verification-
key v = v! = v?, is able to produce a valid document-signature pair
((z2,p?),0?) (with respect to the same verification-key) such that ((z2, p?), 0?) #
((zt,p'),o!), in contradiction to the super-security of the one-time signa-
ture scheme.

Details: It suffices to upper bound
(5.16)

As explained above, the first two conditions in Eq. (5.16) imply that
((mQ:pz)zaQ) 7é ((CL’l,pl),O'l). Using (S1,Sz) and (517 5271—[2), we de-
rive an attacker, A, that violates the super-security of the (one-time)
signature scheme. The attacker just emulates the process described in
the claim’s hypothesis, except that it obtains v as input (rather than
generating the pair (s,v) by invoking GOt) and uses oracle access to
SOts in order to produce the signature o!. Note that A uses its ora-
cle only once and that the probability that A produces a document-
signature pair different from the (single) query-answer pair is lower

bounded by Eq. (5.16).

v? # vl: Since r; = C(vl,s1), it follows (by the perfect binding property of C)
that r; # C(v?,w') for every w'. Thus, if (x2,7,v%) € L' then 2% € L, and
so assuming x? & L it follows that (z2,71,v%) € L'. Now, by the adaptive
soundness of (PW!, VW) and the fact that r, was selected uniformly in
{0,1}™, it follows that except with negligible probability p? is not a valid
proof (w.r.t the reference string r») of the false statement “(x?,r;,v?) €
LI”'

Details: It suffices to upper bound

(v? #v') A (e* ¢ L)

P : , \ ,
LA Y@, 00, p?) = 1)

(5.17)

As explained above, the first two conditions in Eq. (5.17) imply (22, r1,v?) ¢
L'. The key observation is that r» (generated by S1) is uniformly dis-
tributed in {0,1}", and thus the adaptive soundness of the NIWI
system applies. We conclude that Eq. (5.17) is upper bounded by the
soundness error of the NIWI system, and the claim follows also in this

case.

Combining both cases, the claim follows. O

The current theorem follows. [
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Conclusion: Combining Theorems 5.4.6, 5.4.30 and 5.4.29, we get:

Theorem 5.4.31 If there exist collections of (non-uniformly hard) trapdoor per-
mutations then there exist public-key encryption schemes that are secure under
a-posteriori chosen ciphertext attacks.

5.4.5 Non-malleable encryption schemes

So far, our treatment has referred to an adversary that, when given a ciphertext,
tries to gain explicit information about the plaintext. A less explicit gain, cap-
tured by the so-called notion of malleability, is the ability to generate an encryp-
tion of a related plaintext (possibly without learning anything about the origi-
nal plaintext). Loosely speaking, an encryption scheme is called non-malleable
if given a ciphertext it is infeasible (for an adversary) to produce a (different)
valid ciphertext for a related plaintext. For example, given a ciphertext of a
plaintext of the form 1x, for an unknown x, it should be infeasible to produce a
ciphertext to the plaintext Ox.

Non-malleability may relate to any of the types of attacks considered above
(e.g., passive attacks, chosen ciphertext attacks, etc). Thus, we have a “matrix”
of adversaries, with one dimension (parameter) being the type of attack and the
second being its purpose. So far, we have discussed the first dimension (i.e., the
type of the attack), when focusing on a particular purpose (i.e., of violating the
secrecy of the plaintext). We now turn to the second dimension (i.e., the purpose
of the attack), and consider also the purpose of malleability. That is, we make
a distinction between the following two notions (or purposes of attack):

1. Standard security: the infeasibility of obtaining information regarding the
plaintext. As defined above, such information is captured by a function
(or a randomized process) applied to the bare plaintext, and it may not
depend on the encryption-key (or decryption-key).

2. In contrast, the notion of non-malleability refers to generating a string
depending on both the plaintext and the current encryption-key. Specif-
ically, one requires that it should be infeasible for an adversary, given a
ciphertext, to produce a valid ciphertext (under the same encryption-key)
for a related plaintext.

We shall show below that, with the exception of passive attacks on private-key
schemes, non-malleability always implies security against attempts to obtain in-
formation on the plaintext. We shall also show that security and non-malleability
are equivalent under a-posteriori chosen ciphertext attack. Thus, the results
of the previous sections imply that non-malleable (under a-posteriori chosen
ciphertext attack) encryption schemes can be constructed based on the same
assumptions used to construct passively-secure encryption schemes.
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5.4.5.1 Definitions

For sake of brevity, we present just a couple of definitions. Specifically, focusing
on the public-key model, we consider only (key-oblivious) passive attacks and
chosen ciphertext attacks. The definitions refer to an adversary that given a
ciphertext tries to generate a different ciphertext to a plaintext related to the
original one. That is, given E.(z), the adversary tries to output E.(y) such that
(z,y) € R with respect to some (efficiently recognizable)?* relation R. Loosely
speaking, the adversary’s success probability in such an attempt is compared to
the success probability of generating such E.(y) when not given E.(z). As in
case of semantic security, we strengthen the definition by consider all possible
partial information functions h.

Definition 5.4.32 (passive non-malleability) A public-key encryption scheme
(G,E,D) is said to be non-malleable under passive attacks if for every proba-
bilistic polynomial-time algorithm A there exists a probabilistic polynomial-time
algorithm A’ such that for every ensemble {X,,},en, with | X,| = poly(n), every
polynomially-bounded h:{0,1}* —{0,1}*, every polynomially-bounded relation R
that is recognizable by a (non-uniform) family of polynomial-size circuits, every
polynomial p(-) and all sufficiently large n

(x,y) € R where
(e,d) — G(1™) and © «— X,,

Pr ¢« E.(z) and ¢’ « A(e,c, 117l h(z))
y «— Dy(c') if ¢ # ¢ and y « 0% otherwise
[ (z,y) € R where '| ]
< Pr (e,d) — G(1™) and © « X,, 4+ —
I_ ¢ — A'(e, 1% h(z)) and y «— Dgy(c") J p(n)

We stress that the definition effectively prevents the adversary A from just out-
putting the ciphertext given to it (because in this case the output is treated as if
it were E,(1/*1)). This provision is important because otherwise no encryption
scheme could have satisfied the definition (see Exercise 37). Note that, since
A’ is given the encryption-key, it (i.e., A’) can certainly produce ciphertexts,
but its information regarding X, is restricted to h(X,) (and 11X»1). Thus, if
given h(X,) and 1/%X»| it is hard to generate y such that (X,,y) € R then it
will be hard for A’ to produce an encryption of such y. We comment that an
equivalent definition may be obtained by requiring A’ to output the plaintext
(i.e., y) rather than its encryption under a randomly generated encryption-key.

Definition 5.4.32 cannot be satisfied by encryption schemes in which one can
modify bits in the ciphertext without changing the corresponding plaintext (i.e.,
consider the identity relation). We stress that such encryption schemes may
be semantically secure under passive attacks (e.g., given a semantically secure
encryption scheme (G, E, D), cousider E!(z) = E.(z)o, for randomly chosen

24 The computational restriction on R is essential here; see Exercise 15 that refers to a
related definition of semantic security.
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o € {0,1}). However, such encryption schemes may not be (semantically) secure
under a-posteriori-CCA.

Turning to the definition of non-malleability under chosen ciphertext attacks,
we adopt the definitional framework of Section 5.4.4.1. Specifically, analogously
to Definition 5.4.13, the challenge templet produced by A; (and A!) is a triplet
of circuits representing a distribution S (represented by a sampling circuit), a
function h (represented by an evaluation circuit), and a relation R (represented
by an membership recognition circuit). The goal of Ay (and A}) will be to
produce a ciphertext of a plaintext that is R-related to the challenge plaintext

S(Upoly(n) ) .

Definition 5.4.33 (non-malleability under chosen ciphertext attacks): A public-
key encryption scheme is said to be non-malleable under a-priori chosen ciphertext
attacks if for every pair of probabilistic polynomial-time oracle machines, Ay and
Ay, there exists a pair of probabilistic polynomial-time algorithms, A} and A,
such that the following two conditions hold:

1. For every positive polynomial p(-), and all sufficiently large n and z €
{0, 1}1)01y(n) -

(x,y) € R where
(e,d) « G(1")
((S,h, R),0) — AFPa(e, 2)

o (¢, v) — (E.(x), h(z)) , where & — S(Upory(m)
¢ — AP (0,¢,v)
y — Dg(c') if ¢ # ¢ and y — 0/°! otherwise.
(x,y) € R where
((S,h, R),0) — A (1", 2)
< Pr 4+ —
2 — S(Upoly(n p(n)

)
y — Ay(o, 11, b(z))

2. For every m and z, the first element (i.e., the (S, h, R) part) in the ran-
dom variables A} (1™, z) and Afcl(ln)’DGZ(ln "(G1(1™), 2) are identically dis-
tributed.

Non-malleability under a-posteriori chosen ciphertext attacks is defined analogously,
except that Ao is given oracle access to both E. and Dy with the restriction that
when given the challenge (c,v), machine As is not allowed to make the query c
to the oracle Dy.

5.4.5.2 Relation to semantic security

With the exception of passive attacks on private-key schemes, for any type of
attack, non-malleability under this type of attack implies semantic security under
the same type. For example, we show the following;:
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Proposition 5.4.34 Let (G, E,D) be a public-key encryption scheme that is
non-malleable under passive attacks (resp., under a-posteriori chosen ciphertext
attacks). Then, (G, E, D) is semantically secure under passive attacks (resp.,
under a-posteriori chosen ciphertext attacks).

Proof Sketch: For clarity, the reader may consider the case of passive attacks,
but the same argument holds also for each of the other types of attacks considered
above.

Suppose (towards the contradiction) that (G, E, D) is not semantically secure
(under the relevant type of attacks). Using the equivalence to indistinguishability
of encryptions, it follows that under such attacks one can distinguish encryption
to x, from encryption to y,. Consider the relation R = {(z,z) : z € {0,1}*}),
where Z is the complement of z, and the uniform distribution Z, on {z,,y,}.
We construct an algorithm than given a ciphertext (as well as an encryption-key
e) runs the above distinguisher, and produces E.(Z,) in case the distinguisher
“votes” for z, (and produces E.(7,) otherwise). Indeed, given E.(Z,), our
algorithm outputs E.(Z,) (and so hit R) with probability that is non-negligibly
higher than 1/2. This performance cannot be met by any algorithm that is not
given E.(Z,). Thus, we derive a contradiction to the hypothesis that (G, E, D)
is non-malleable. [

We stress that the above argument only relies on the fact that, in the public-key
model, we can produce the encryption of any string, since we are explicitly given
the encryption-key. In fact, it suffices to have access to an encryption oracle,
and thus the argument extends also to active attacks in the private-key model
(in which the attacker is allowed encryption queries).

On the other hand, under most types of attacks considered above, non-
malleability is strictly stronger than semantic security. Still, in the special
case of a-posteriori chosen ciphertext attacks, the two notions are equivalent.
Specifically, we prove that, in case of a-posteriori-CCA, semantic security im-
plies non-malleability.

Proposition 5.4.35 Let (G, E, D) be a public-key encryption scheme that is se-
mantically secure under a-posteriori chosen ciphertext attacks. Then, (G, E, D)
is non-malleabable under a-posteriori chosen ciphertext attacks. The same holds
for private-key encryption schemes.

Proof Sketch: Suppose towards the contradiction that (G, E, D) is not non-
malleabable under a-posteriori chosen ciphertext attacks, and let A = (A4;, A2)
be an adversary demonstrating this. We construct a (semantic security) adver-
sary B = (B, Bs) that invokes A, and at the very end uses its own decryption
oracle to decrypt the ciphertext output by A, and outputs the response. Intu-
itively, B violates semantic security (with respect to relations, as can be defined
analogously to Exercise 15). Details follow.

Given an encryption-key e, algorithm B; invokes A, (e), while answering A;’s
queries by querying its own oracles, and obtains the challenge templet (S, h, R)
(and state o), which it outputs. Algorithm Bs, is given a ciphertext ¢ along



Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

5.5. MISCELLANEOUS 457

with some auxiliary information, and invokes A, on the very same input, while
answering A,’s queries by querying its own oracles. When A, halts with output
¢’ # ¢, algorithm B, forwards ¢’ to its decryption oracle, and outputs the answer.
Thus, the plaintext output by B hits the relation R with the same probability
that the plaintext corresponding to (the decryption of) A’s output hits R. We
have to show that this hitting probability cannot be met by an algorithm that
does not get the ciphertext; but this follows from the hypothesis regarding A (and
the fact that in both cases the corresponding algorithm (i.e., A’ or B") outputs a
plaintext (rather than a ciphertext)). Finally, we have to establish, analogously
to Exercise 15, that semantic security with respect to relations holds (in our
current context of chosen ciphertext attacks) if and only if semantic security
(with respect to functions) holds. The latter claim follows as in Exercise 15
by relying on the fact that in the current context the relevant relations have
polynomial-size circuits. (A similar argument holds for private-key schemes.)

Conclusion: Combining Theorem 5.4.31 and Proposition 5.4.35 we get:

Theorem 5.4.36 If there exist collections of (non-uniformly hard) trapdoor per-
mutations then there exist public-key encryption schemes that are non-malleable
under a-posteriori chosen ciphertext attacks.

Analogously, using Theorem 5.4.21, we get:

Theorem 5.4.37 If there exist (non-uniformly hard) one-way functions then
there exist private-key encryption schemes that are non-malleable under a-posteriori
chosen ciphertext attacks.

5.5 Miscellaneous

5.5.1 On Using Encryption Schemes

Once defined and constructed, encryption schemes may be (and are actually)
used as building blocks towards various goals that are different from the original
motivation. Still, the original motivation (i.e., secret communication of infor-
mation) is of great importance, and in this subsection we discuss several issues
regarding the use of encryption schemes towards achieving it.

Using private-key schemes — the key exchange problem. Asg discussed
in Section 5.1.1, using a private-key encryption scheme requires the communi-
cating parties to share a secret key. This key can be generated by one party
and secretly communicated to the other party by an alternative (expensive) se-
cure channel. Often, a preferable solution consists of employing a key-ezchange
(or rather key-generation) protocol, which is executed over the standard (inse-
cure) communication channel. An important distinction refers to the question
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of whether the insecure communication channel between the legitimate parties
is tapped by a passive adversary or may even be subject to active attacks in
which an adversary may modify the messages sent over the channel (and even
delete and insert such messages). Protocols secure against passive (resp., ac-
tive) adversaries are often referred to by the term authenticated key-exchange
(resp., unauthenticated key-exchange), because in the passive case one refers to
the messages received over the channel as being authentic (rather than possibly
modified by the adversary).

A simple (generic) authenticated key-exchange protocol consists of using a
public-key encryption scheme in order to secretly communicate a key (for the
private-key encryption scheme, which is used in the actual communication).?®
Specifically, one party generates a random instance of a public-key encryption
scheme, sends the encryption-key to the other party, which generates a random
key (for the private-key encryption scheme), and sends an encryption (using
the received encryption-key) of the newly generated key to the first party. A fa-
mous alternative is the so-called Diffie-Hellman Key-Ezchange [78]: for a (large)
prime P and primitive element g, which are universal or generated on-the-fly
(by one party that openly communicates them to the other), the first (resp.,
second) party uniformly selects z € Zp (resp., y € Zp) and sends g* mod P
(resp., g¥ mod P) to the other party, and both parties determined ¢*¥ mod P as
their common key, relying on the fact that ¢*¥ = (¢® mod P)¥ = (¢¥ mod P)*

(mod P). (The security of this protocol relies on the assumption that given
a prime P, a primitive element g, and the triplet (P, g, (¢g* mod P),(¢g¥ mod
P), (g mod P)), it is infeasible to decide whether z = zy (mod P — 1), for
x,y,2 € Zp.) The construction of unauthenticated key-exchange protocols is
far more complex, and the interested reader is referred to [30, 31, 18].

Using state-dependent private-key schemes. In many communication
settings it is reasonable to assume that the encryption device may maintain (and
modify) a state (e.g., a counter). In such a case, the stream ciphers discussed
in Section 5.3.1 become relevant. Furthermore, using a stream cipher is particu-
larly appealing in applications where decryption is performed in the same order
as encryption (e.g., in FIFO communication). In such applications, the stream
cipher of Construction 5.3.3 is preferable to the (pseudorandom function based)
encryption scheme of Construction 5.3.9 for a couple of reasons. First, applying
an on-line pseudorandom generator is likely to be more efficient than applying
a pseudorandom function. Second, for a ¢-bit long counter (or random value),
Construction 5.3.3 allows to securely encrypt 2° messages (or bits), whereas
Construction 5.3.9 definitely becomes insecure when v/2¢ messages (or bits) are
encrypted. For small values of ¢ (e.g., £ = 64), this difference is crucial.

Using public-key schemes — public-key infrastructure. As in the case of
private-key schemes, an important distinction refers to the question of whether

25 One reason not to use the public-key encryption scheme itself for the actual (encrypted)
communication is that private-key encryption schemes tend to be much faster.
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the insecure communication channel between the legitimate parties is tapped
by a passive adversary or may even be subject to active attacks. In typical
applications of public-key encryption schemes, the parties communicate through
a communication network (and not via a point-to-point channel), in which case
active attacks are very realistic (e.g., it is easy to send mail over the internet
pretending to be somebody else). Thus, the standard use of public-key en-
cryption schemes in real-life communication requires a mechanism for providing
the sender with the receiver’s authentic encryption-key (rather than trusting an
“unauthenticated” incoming message to specify an encryption-key). In small
systems, one may assume that each user holds a local record of the encryption-
keys of all other users. However, this is not realistic in large-scale systems, and
so the sender must obtain the relevant encryption-key on-the-fly in a “reliable”
way (i.e., typically, certified by some trusted authority). In most theoretical
work, one assumes that the encryption-keys are posted and can be retrieved
from a public-file that is maintained by a trusted party (which makes sure that
each user can post only encryption-keys bearing its own identity). In abstract
terms, such trusted party may provide each user with a (signed) certificate stat-
ing the authenticity of the user’s encryption-key. In practice, maintaining such a
public-file (and handling such certificates) is a major problem, and mechanisms
that implement this abstraction are typically referred to by the generic term
“public-key infrastructure (PKI)”. For a discussion of the practical problems
regarding PKI deployment see, e.g., [180, Chap. 13].

5.5.2 On Information Theoretic Security

In contrast to the bulk of our treatment, which focuses on computationally-
bounded adversaries, in this section we consider computationally-unbounded
adversaries. We stress that also here the length (and number) of the plaintexts is
still bounded (as usual, by an unknown polynomial). The resulting notion of se-
curity is the one suggested by Shannon: a (private-key or public-key) encryption
scheme is called perfectly-secure (or information-theoretically secure) if the cipher-
text yields no information regarding the plaintext. That is, perfect-security is
derived from Definitions 5.2.1 and 5.2.2 by allowing computationally-unbounded
algorithms (in the roles of A and A').

It is easy to see that no public-key encryption scheme may be perfectly-secure:
a computationally-unbounded adversary that is given a encryption-key can find
a corresponding decryption-key, which allows it to decrypt any ciphertext.

In contrast, restricted types of private-key encryption schemes may be perfectly-
secure. Specifically, the traditional “one-time pad” yields such a (private-key)
scheme that can be used to securely communicate an a-priori bounded number of
bits. Furthermore, multiple-messages may be handled provided that their total
length is a-priori bounded and that we use a state (as in Construction 5.3.3).
We stress that this state-based private-key perfectly-secure encryption scheme
uses a key of length equal to the total length of plaintexts to be encrypted. In-
deed, the key must be at least that long (to allow perfect-security), and a state
is essential for allowing several plaintexts to be securely encrypted.
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Partial information models. Note that, in case of private-key encryption
scheme, the limitation of perfect-security hold only if the adversary has full
information of the communication over the channel (i.e., holds the full contents
of all ciphertexts sent). On the other hand, perfectly-secure private channels can
be implemented on top of channels to which the adversary has limited access.
We mention three types of channels of the latter type, which have received a lot
of attention.

e The bounded-storage model, where the adversary can freely tap the com-
munication channel but is restricted in the amount of data it can store
(cf., [56]).

e The noisy channel model (which generalizes the wiretap channel of [237])
where both the communication between the legitimate parties and the
tapping channel of the adversary are subjected to noise (cf., [179, 71] and
the references therein).

e Quantum Channels where an adversary is (supposedly) prevented from
obtaining full information by the (currently believed) laws of quantum
mechanics (cf., [51] and the references therein).

Following are the author’s subjective opinions regarding these models (as a pos-
sible basis for actual secure communication). The bounded-storage model is very
appealing, because it clearly states its reasonable assumptions regarding the the
abilities of the adversary. In contrast, making absolute assumptions about the
noise level at any point in time seems (overly) optimistic, and thus not adequate
in the context of cryptography. Basing cryptography on quantum mechanics
sounds as a very appealing idea, but attempts to implement this idea have often
stumbled over unjustified hidden assumptions (which are to be expected given
the confusing nature of quantum mechanics and the discrepancy between its
scientific culture and cryptography).

5.5.3 On Popular Schemes

The reader may note that we have avoided the presentation of several popular
encryption schemes. We regret to say that most of these schemes are proposed
without any reference to a satisfactory notion of security. That is, not only
that no reason is given to believe that these schemes are (semantically) secure
(which is often clearly not the case), but it seems that the proposal does not
even consider such a property to be desirable (not to say necessary). It is thus
not surprising that we have nothing to say about the contents of such proposals.
In contrast, we highlight a few things that we have said about other popular
schemes and common practices:

e The common practice of using “pseudorandom generators” as a basis for
private-key stream ciphers (i.e., Construction 5.3.3) is sound, provided that
one actually uses pseudorandom generators (rather than programs that are
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called “pseudorandom generators” but actually produce sequences that are
easy to predict).?5

e Whereas the plain RSA public-key encryption scheme (which employs a
deterministic encryption algorithm) is not secure, the randomized RSA
encryption scheme (i.e., Construction 5.3.16) is secure, provided that the
large hard-core conjecture holds (see Section 5.3.4.1). Some support for
the latter (clearly stated) conjecture may be derived from the fact that
a related function (i.e., much fewer least significant bits) constitutes a
hard-core of the RSA.

e Assuming the intractability of factoring, there exists a secure public-key
encryption scheme with efficiency comparable to that of plain RSA: we
refer to the Blum-Goldwasser public-key encryption scheme (i.e., Con-
struction 5.3.20).

Finally, we warn that encryption schemes proved to be secure in the random
oracle model are not necessarily secure (in the standard sense). For further dis-
cussion of the Random Oracle Methodology, we refer the reader to Section 6.6.3.

5.5.4 Historical Notes

The notion of private-key encryption scheme seems almost as ancient as the al-
phabet itself. Furthermore, it seems that the development of encryption methods
went along with the development of communication media. As the amounts of
communication grow, more efficient and sophisticated encryption methods were
required. Computational complexity considerations were explicitly introduced
into the arena by Shannon [226]: In his work, Shannon considered the classical
setting where no computational considerations are present. He showed that in
this information theoretic setting, secure communication of information is pos-
sible only as long as its entropy is lower than the entropy of the key. He thus
concluded that if one wishes to have an encryption scheme that is capable of
handling messages with total entropy exceeding the length of the key then one
must settle for a computational relaxation of the secrecy condition. That is,
rather than requiring that the ciphertext yields no information on the plaintext,
one has to require that such information cannot be efficiently computed from the
ciphertext. The latter requirement indeed coincides with the above definition of
semantic security.

The notion of public-key encryption scheme was introduced by Diffie and
Hellman [78]. First concrete candidates were suggested by Rivest, Shamir and
Adleman [216] and by Merkle and Hellman [185]. However, satisfactory defi-
nitions of security were presented ounly a few years afterwards, by Goldwasser

26 The linear congruential generator is easy to predict [49]. The same holds for some modifi-
cations of it that output a constant fraction of the bits of each resulting number [99]. We warn
that sequences having large linear-complexity (LFSR-complexity) are not necessarily hard to
predict.
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and Micali [141]. The two definitions presented in Section 5.2 originate in [141],
where it was shown that ciphertext-indistinguishability implies semantic secu-
rity. The converse direction is due to [186].

Regarding the seminal paper of Goldwasser and Micali [141], a few addi-
tional comments are due. Arguably, this paper is the basis of the entire rigorous
approach to cryptography (presented in the current book): It introduced gen-
eral notions such as computational indistinguishability, definitional approaches
such as the simulation paradigm, and techniques such as the hybrid argument.
The paper’s title (“Probabilistic Encryption”) is due to the authors’ realiza-
tion that public-key encryption schemes in which the encryption algorithm is
deterministic cannot be secure in the sense defined in their paper. Indeed, this
led the authors to (explicitly) introduce and justify the paradigm of “random-
izing the plaintext” as part of the encryption process. Technically speaking,
the paper only presents security definitions for public-key encryption schemes,
and furthermore some of these definitions are syntactically different from the
ones we have presented above (yet, all these definitions are equivalent). Finally,
the term “ciphertext-indistinguishability” used here replaces the (generic) term
“polynomial-security” used in [141]. Many of our modifications (to the defini-
tions in [141]) have already appeared in [110], which is also the main source of
our uniform-complexity treatment.

The first construction of a secure public-key encryption scheme based on
a simple complexity assumption was given by Goldwasser and Micali [141].27
Specifically, they constructed a public-key encryption scheme assuming that de-
ciding Quadratic Residiousity modulo composite numbers is intractable. The
condition was weaken by Yao [238] who prove that any trapdoor permutation
will do. The efficient public-key encryption scheme of Construction 5.3.20 is
due to Blum and Goldwasser [46]. The security is based on the fact that the
least significant bit of the modular squaring function is a hard-core predicate,
provided that factoring is intractable, a result mostly due to [5].

For decades, it has been common practice to use “pseudorandom generators”
in the design of stream ciphers. As pointed out by Blum and Micali [47], this
practice is sound provided that one uses pseudorandom generators (as defined
in Chapter 3). The construction of private-key encryption schemes based on
pseudorandom functions is due to [119].

We comment that it is indeed peculiar that the rigorous study of (the security
of) private-key encryption schemes has legged behind the corresponding study
of public-key encryption schemes. This historical fact may be explained by the
very thing that makes it peculiar; that is, private-key encryption schemes are
less complex than public-key ones, and hence the problematics of their security
(when applied to popular candidates) is less obvious. In particular, the need for
a rigorous study of (the security of) public-key encryption schemes arose from
observations regarding some of their concrete applications (e.g., doubts raised

27 Recall that plain RSA is not secure, whereas Randomized RSA is based on the Large
Hard-Core Conjecture for RSA (which is less appealing that the standard conjecture referring
to the intractability of inverting RSA).
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by Lipton concerning the security of the “mental poker” protocol of [225], which
used “plain RSA” as an encryption scheme). In contrast, the need for a rigorous
study of (the security of) private-key encryption schemes arose later and by
analogy to the public-key case.

Credits for the advanced section (i.e., Section 5.4)

Definitional issues. The definitional treatment of Goldwasser and Micali [141]
actually refer to key-dependent passive attacks (rather than to key-oblivious pas-
sive attacks). Chosen ciphertext attacks (of the a-priori and a-posteriori type)
were first considered in [199] (and [213], respectively). However, these papers fo-
cused on the formulation in terms of indistinguishability of encryptions, and for-
mulations in terms of semantic security have not appeared before. Section 5.4.4.2
is based on [128]. The study of the non-malleability of the encryption schemes
was initiated by Dolev, Dwork and Naor [79].

Constructions. The framework for constructing public-key encryption schemes
that withstand Chosen Ciphertext Attacks (i.e., Construction 5.4.23) is due to
Naor and Yung [199], who used it to construct public-key schemes that with-
stand a-priori CCA (under suitable assumptions). This framework was applied
to the setting of a-posteriori CCA by Sahai [218, 219], who followed and im-
proved ideas of Dolev, Dwork and Noar [79] (which were the first to construct
public-key schemes that withstand a-posteriori CCA and prove Theorem 5.4.31).
Our presentation of the proof of Theorem 5.4.31 follows subsequent simplifica-
tion due to Lindell [173]. The key role of non-interactive zero-knowledge proofs
in this context was suggested by Blum, Feldman and Micali [45]. The fact that
security and non-malleability are equivalent under a-posteriori chosen ciphertext
attack was proven in [79, 19].

5.5.5 Suggestion for Further Reading

For discussion of Non-Malleable Cryptography, which actually transcends the
domain of encryption, see [79]. Specifically, we wish to highlight the notion
of non-malleable commitment scheme, which is arguably the most appealing
instantiation of the “non-malleability paradigm”: it is infeasible for a party that
is given a non-malleable commitment to produce a commitment to a related
string. Note that ability to produce related commitments may endanger some
applications (cf. [127]) even if this ability is not decoupled with the ability to
properly decommit (to the produced commitment) once a decommitment to the
original commitment is obtained.

Recall that there is a gap between the assumptions currently required for
the construction of private-key and public-key encryption schemes: whereas the
former can be constructed based on any one-way functions, the latter seem to
require a trapdoor permutation (or, actually, a “trapdoor predicate” [141]). A
partial explanation to this gap was provided by Impagliazzo and Rudich, who
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showed that generic (black-box) constructions of public-key encryption schemes
cannot rely on one-way functions [151] (or even on one-way permutations [158]).

For a detailed discussion of the relationship among the various notions of
secure private-key and public-key encryption schemes, the reader is referred
to [160] and [19], respectively.

5.5.6 Open Problems

Secure public-key encryption schemes exist if there exist collections of (non-
uniformly hard) trapdoor permutations (cf. Theorem 5.3.15). It is not known
whether the converse holds (although secure public-key encryption schemes eas-
ily imply one-way function). (The few-to-1 feature of the function collection is
important; see [25].)

Randomized RSA (i.e., Construction 5.3.16) is commonly believed to be a
secure public-key encryption scheme. It would be of great practical importance
to gain additional support for this belief. As shown in Proposition 5.3.17, the
security of Randomized RSA follows from the Large Hard-Core Conjecture for
RSA, but the latter is not known to follow from a more standard assumption
such as that RSA is hard to invert. This is indeed the third place in this book
where we suggest the establishment of the latter implication as an important
open problem.

The constructions of public-key encryption schemes secure against chosen
ciphertext attacks (presented in Section 5.4) are to be considered as plausibil-
ity results (which also offer some useful construction paradigms). Presenting
“reasonably-efficient” public-key encryption schemes that are secure against (a-
posteriori) chosen ciphertext attacks, under widely believed assumptions, is an
important open problem. (We comment that the “reasonably-efficient” scheme
of [70] is based on a very strong assumption regarding the Diffie-Hellman Key
Ezchange. Specifically, it is assumed that for a prime P and primitive element
g, given (P, g, (g* mod P),(¢g¥ mod P),(g* mod P)), it is infeasible to decide
whether z =2y (mod P —1).)

5.5.7 Exercises

Exercise 1: Encryption schemes imply one-way function [149]: Show that the
existence of a secure private-key encryption scheme (i.e., as in Defini-
tion 5.2.1) implies the existence of one-way functions.

Guideline: Recall that, by Exercise 11 of Chapter 3, it suffices to prove
that the former implies the existence of a pair of polynomial-time con-
structible probability ensembles that are statistically far apart and still
are computationally indistinguishable. To prove the existence of such en-
sembles consider the encryption of n + 1-bit plaintexts relative to a ran-
dom n-bit long key, denoted K,. Specifically, let the first ensemble be
{(U"+17E(U”+1))}neN7 where E(x) = Fg, (z), and the second ensem-
ble be {(U751+)17E(U7(12~21))}neN7 where Ur(zngl and ngl are independently

distributed. It is easy to show that these ensembles are computationally
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indistinguishable and are both polynomial-time constructible. The more
interesting part is to show that these ensembles are statistically far apart.
To prove this fact, assume towards the contradiction that for all but a negli-
gible fraction of the 2"t possible @’s, the distribution of E(z) is statistically
close to a single distribution Y, and show that this does not allow correct

decryption (since there are only 2™ possible keys).

Exercise 2: Encryption schemes with unbounded-length plaintext: Suppose that
the definition of semantic security is modified so that no bound is placed
on the length of plaintexts. Prove that in such a case there exists no
semantically secure public-key encryption scheme. (Hint: A plaintext of length
exponential in the security parameter allows the adversary to find the decryption key

by exhaustive search.)

Exercise 3: Encryption schemes must leak information about the length of the
plaintext: Suppose that the definition of semantic security is modified so
that the algorithms are not given the length of the plaintext. Prove that
in such a case there exists no semantically secure encryption scheme.

Guideline: First show that for some polynomial p, |E(1™)| < p(n),
whereas for some z € {0, 1}P(") it holds that Pr[|E(z)| <p(n)] < 1/2.

Exercise 4: Hiding partial information about the length of the plaintext: Us-
ing an arbitrary secure encryption scheme, construct a correspondingly
secure encryption scheme that hides the exact length of the plaintext. In
particular, construct an encryption scheme that reveals only the following
function A’ of the length of the plaintext:

1. A'(m) = [m/n] - n, where n is the security parameter.
2. I'(m) = 2Me2ml

(Hint: Just use an adequate padding convention, making sure that it always allows

correct decoding.)

Exercise 5: Length parameters: Assuming the existence of a secure public-key
(resp., private-key) encryption scheme, prove the existence of such scheme
in which the length of keys equal the security parameter. Furthermore,
show that (without loss of generality) the length of ciphertexts may be a
fixed polynomial in the length of the plaintext.

Exercise 6: On the distribution of public-keys: Let (G, E, D) be a secure public-
key encryption scheme. Prove that for every polynomial p, and all suffi-
ciently large n, it holds that max.{Pr[G1(1")=€]} < 1/p(n).

Guideline: Show that for any encryption-key e in the range of Gl(l), one
can find a corresponding decryption-key in expected time 1/Pr[G1(1™)=¢].

Exercise 7: Deterministic encryption schemes: Prove that in order to be se-
mantically secure a public-key encryption scheme must have a probabilistic
encryption algorithm. (Hint: Otherwise, one can distinguish the encryptions of two

candidate plaintexts by computing the unique ciphertext for each of them.)
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Exercise 8: An alternative formulation of Definition 5.2.1: Prove that the fol-
lowing definition, in which we use non-uniform families of polynomial-size
circuits (rather than probabilistic polynomial-time algorithms) is equiva-
lent to Definition 5.2.1.

There exists a probabilistic polynomial-time transformation 7'
such that for every polynomial-size circuit family {C),},en, and
for every {Xyn},en, foh ¢ {0,1}* — {0,1}*, p(-) and n as in
Definition 5.2.1

Pr [ Cu(Bay 1) (Xa), 15 (X)) = F(X,)|
=

)
< Pr [c;(ﬂxnl,h(Xn))zf(Xn)] -
(n)
where C!, « T(C,,) and the probability is also taken over the
internal coin tosses of T'.

Same for public-key encryption.

Guideline: The alternative view of non-uniformity, discussed in Sec-
tion 1.3, is useful here. That is, we can view a circuit family as a sequence of
advices given to a universal machine. Thus, the above definition states that
advices for a machine that gets the ciphertext can be efficiently transformed
into advices for a machine that does not get the ciphertext. However, we
can incorporate the (probabilistic) transformation program into the second
universal algorithm (which then become probabilistic). Consequently, the
advices are identical for both machines (and can be incorporated in the
auxiliary input h(Xy) used in Definition 5.2.1). Viewed this way, the above
definition is equivalent to asserting that for some (universal) deterministic
polynomial-time algorithm U there exists a probabilistic polynomial-time
algorithm U’ and for every {Xn} ., fih:{0,1}* — {0,1}*, p(-) and n
as in Definition 5.2.1

Pr [U(Eg, am)(Xa), 1771 h(X0)) = F(X0)]

< Pr[U'(P (X)) =F(Xn)] + L

p(n)
Still, a gap remains between the above definition and Definition 5.2.1:
the above condition refers only to one possible deterministic algorithm
U, whereas Definition 5.2.1 refers to all probabilistic polynomial-time al-
gorithms. To close the gap, we first observe that (by Propositions 5.2.7
and 5.2.6) Definition 5.2.1 is equivalent to a form in which one only quan-
tifies over deterministic polynomial-time algorithms A. We conclude by
observing that one can code any algorithm A (and polynomial time-bound)

referred to by Definition 5.2.1 in the auxiliary input (i.e., h(X5)) given to
U.

Exercise 9: In continuation to Ezercise 8, consider a definition in which the
transformation T (of the circuit family {Cyr},cn to the circuit family
{C!},.en) is not required to (even) be computable.® Clearly, the new

28 Equivalently, one may require that for any polynomial-size circuit family {C"}neN there
exists a polynomial-size circuit family {C:l}neN satisfying the above inequality.
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definition is not stronger than the one in Exercise 8. Show that the two
definitions are in fact equivalent.

Guideline: Use the furthermore-clause of Proposition 5.2.7 to show that
the new definition implies indistinguishability of encryptions, and conclude

by applying Proposition 5.2.6 and invoking Exercise 8.

Exercise 10: An alternative formulation of Definition 5.2.3: Prove that Defi-
nition 5.2.3 remains unchanged when supplying the circuit with auxiliary-
input. That is, an encryption scheme satisfies the modified Definition 5.2.3
if and only if

for every polynomial-size circuit family {C,}, every polynomial
p, all sufficiently large n and every z,y € {0,1}P°¥(%) (ie., |z| =
ly|) and z € {0, 1}rel¥(n),

Pr [Cu(2, Eg,1n)(2))=1] = Pr [Cu(z, Eg,1my(y))=1] | < o)

(Hint: incorporate z in the circuit C’n.)

Exercise 11: Equivalence of the security definitions in the public-key model:
Prove that a public-key encryption scheme is semantically secure if and
only if it has indistinguishable encryptions.

Exercise 12: The technical contents of semantic security: The following ex-
plains the lack of computational requirements regarding the function f,
in Definition 5.2.1. Prove that an encryption scheme, (G, E, D), is (se-
mantically) secure (in the private-key model) if and only if the following
holds:

There exists a probabilistic polynomial-time algorithm A’ so
that for every {X,},cny and A : {0,1}* — {0,1}* as in Def-
inition 5.2.1, the following two ensembles are computationally
indistinguishable.

L {Eg,1m)(Xa), 171 (X)) e

2. {A,(l‘X"“ah(Xn))}nEN'

Formulate and prove an analogous claim for the public-key model.

Guideline: We care mainly about the fact that the above definition im-
plies semantic security. The other direction can be proven analogously to
the proof of Proposition 5.2.7.

Exercise 13: Equivalent formulations of semantic security:

1. Prove that Definition 5.2.1 remains unchanged if we restrict the func-
tion h to depend only on the length of its input (i.e., h(z) = h'(|z|)
for some b/ : N — {0,1}").
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2. Prove that Definition 5.2.1 remains unchanged if we may restrict the
function h and the probability ensemble {X,},cn so that they are
computable (resp., sampleable) by polynomial-size circuits.

Guideline (Part 1): Prove that this special case (i.e., obtained by the
restriction on h) is equivalent to the general one. This follows by combin-
ing Propositions 5.2.7 and 5.2.6. Alternatively, this follows by considering
all possible probability ensembles {X},} N obtained from {Xn} . by

conditioning that h(X,) = a, (for every possible sequence of a,’s).

Guideline (Part 2): The claim regarding h follows from Part 1. To es-
tablish the claim regarding X, , observe that (by Propositions 5.2.7 and 5.2.6)
we may consider the case in which X, ranges over two strings.

Exercise 14: A wvariant on Ezercises 12 and 13.1: Prove that an encryption
scheme, (G, E,D), is (semantically) secure (in the private-key model) if
and only if the following holds.

For every probabilistic polynomial-time algorithm A there ex-
ists a probabilistic polynomial-time algorithm A’ such that for
every ensemble {X,}, cn, with |X,| = poly(n), and polynomi-
ally bounded A’ the following two ensembles are computationally
indistinguishable.

1. {A(EG1(1")(X")71|X"‘7h,(|X"|))}n€N'
2. {4 (1L R (1 X)) b e

(Indeed, since |X,,| is constant, so is h'(|X,|). So an equivalent form is
obtained by replacing h'(|X,|) with a poly(n)-bit long string v,.)

Formulate and prove an analogous claim for the public-key model.

Guideline: Again, we care mainly about the fact that the above im-
plies semantic security. The easiest proof of this direction is by applying
Propositions 5.2.7 and 5.2.6. A more interesting proof is obtained by using
Exercise 12: Indeed, the current formulation is a special case of the formu-
lation in Exercise 12, and so we need to prove that it implies the general
case. The latter is proven by observing that otherwise — using an averag-
ing argument — we derive a contradiction in one of the residual probability
spaces defined by conditioning on h(X,) (i.e., (Xn|h(X,) = v) for some v).

Exercise 15: Semantic security with respect to relations: The formulation of
semantic security in Definition 5.2.1 refers to computing a function of the
plaintext. Here we present a (related) definition that refers to finding
strings that are in a certain relation to the plaintext. Note that unlike
in Definition 5.2.1, here we consider only efficiently recognizable relations.
Specifically, we require the following:

For every probabilistic polynomial-time algorithm A there exists
a probabilistic polynomial-time algorithm A’ such that for every
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ensemble {X,}, cn, with |X,| = poly(n), every polynomially-
bounded function h : {0,1}* — {0,1}*, every polynomially-
bounded relation R that is recognizable by a (non-uniform) fam-
ily of polynomial-size circuits, every polynomial p(-) and all suf-
ficiently large n

Pr [(XR,A(EGI(PL)(XTL), 1% h(X,0))) € R]

1
< Pr [ X, A' (1% h(x,)) € R] y—
(X, A0 1) € B] +
1. Prove that the above definition is in fact equivalent to the standard
definition of semantic security.

2. Show that if the computational restriction on the relation R is re-
moved then so encryption scheme can satisfy the resulting definition.

Formulate and prove analogous claims for the public-key model.

Guideline (for Part 1): Show that the new definition is equivalent to
indistinguishability of encryptions. Specifically, follow the proofs of Propo-
sitions 5.2.6 and 5.2.7, using the circuits guaranteed for R in the first proof,
and noting that the second proof holds intact.

Guideline (for Part 2): Consider the relation R = {(z, Ec(z)) : |z| =
2|e|}, and the distribution X,, = Uz,. (Note that if the encryption scheme
is semantically secure then this R is not recognizable by small circuits.)

Exercise 16: Another equivalent definition of security: The following exercise
is interesting mainly for historical reasons. In the definition of semantic
security appearing in [141], the term max, ,{Pr[f(X.,) = v|h(X,) = u]}
appears instead of the term Pr[A’(11X»| h(X,)) = f(X,)]. That is, it is
required that

for every probabilistic polynomial-time algorithm A every en-
semble {X,, },,cry, with | X,,| = poly(n), every pair of polynomially-
bounded functions f,h: {0,1}* — {0,1}*, every polynomial p(+)
and all sufficiently large n

Pr | A(Eg, (1m)(Xn), 1] h(X0)) = £(X)

< max {Pr [£(X,) = olh(X,) =u]} + ﬁ

Prove that the above formulation is in fact equivalent to Definition 5.2.1.

Guideline: First, note that the above definition implies Definition 5.2.1
(since maxy v {Pr[f(Xn)=v|h(Xn)=u]} > PrlA"(h(Xy), 1", |Xx|) = f(Xr)],
for every algorithm A’). Next note that in the special case, in which X, sat-
isfies Pr[f(X,) =0|h(Xn)=u] = Pr[f(X,)=1|h(Xn)=u] = %, for all u’s,
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the above terms are equal (since A’ can easily achieve success probability
1/2 by simply always outputting 1). Finally, combining Propositions 5.2.7

and 5.2.6. infer that it suffices to consider only the latter special case.

Exercise 17: Semantic security with a randomized h: The following syntactic
strengthening of semantic security is important in some applications. Its
essence is in considering information related to the plaintext, in the form
of a related random variable, rather than partial information about the
plaintext (in the form of a function of it). Prove that an encryption scheme,
(G,E, D), is (semantically) secure (in the private-key model) if and only
if the following holds.

For every probabilistic polynomial-time algorithm A there ex-
ists a probabilistic polynomial-time algorithm A’ such that for
every {(Xn, Zn)}nen, with |(X,, Z,)| = poly(n), where Z,, may
dependent arbitrarily on X,,, and f, p(-) and n as in Defini-
tion 5.2.1

Pr [A(EGl(l’l')(Xn)a 1‘X"“7 Zn) :f(X")]
1
p(n)
That is, the auxiliary input h(X,,) of Definition 5.2.1 is replaced by the

random variable Z,,. Formulate and prove an analogous claim for the
public-key model.

< Pr [A'(llxn\,zn)zf(Xn)} +

Guideline: Definition 5.2.1 is clearly a special case of the above. On
the other hand, the proof of Proposition 5.2.6 extends easily to the above
(seemingly stronger) formulation of semantic security.

Exercise 18: Semantic Security w.r.t Oracles (suggested by Boaz Barak): Con-
sider an extended definition of semantic security in which, in addition
to the regular inputs, the algorithms have oracle access to a function
H, :{0,1}* — {0,1}* (instead of being given the value h(x)). The H,’s
have to be restricted to have polynomial (in |z|) size circuit. That is,
an encryption scheme, (G, E, D), is extended-semantically secure (in the
private-key model) For every probabilistic polynomial-time algorithm A
there exists a probabilistic polynomial-time algorithm A’ such that for ev-
ery ensemble {X,,},en, with | X,| = poly(n), every polynomially-bounded
function f : {0,1}* — {0,1}*, every family of polynomial-sized circuits
{Hz:}eefo,1}+, every polynomial p(-) and all sufficiently large n

Pr A3 (B, 1) (X), 15 = £(X.,)]
Hx 1%y 1
< Pr [AH (1% \)_f(Xn)] 0

The definition of public-key security is analogous.
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1. Show that if (G, E,D) has indistinguishable encryptions then it is
extended-semantically secure.

2. Show that if no restriction are placed on the H,’s then no scheme can
be extended-semantically secure (in this unrestricted sense).

Guideline (for Part 1): The proof is almost identical to the proof
of Proposition 5.2.6: The algorithm A’ forms an encryption of 11%»! and
invokes A on it. Indistinguishability of encryptions is used in order to es-
tablish that A'TXn (11Xul) performs essentially as well as A7Xn (E(X,)).
Otherwise, we obtain a distinguisher of E(z,) from E(11%»1), for some in-
finite sequence of @y ’s. In particular, the oracle H., (being implementable

by a small circuit) can be incorporated into a distinguisher.

Guideline (for Part 2): In such a case, H, may be defined so that,
when queried about a ciphertext, it reveals the decryption-key in use. This is
obvious in case of public-key schemes, but is also doable in some private-key
schemes (e.g., suppose that the ciphertext always contains a commitment
to the private-key). Such an oracle allows A (which is given a ciphertext)
to recover the corresponding plaintext, but does not help A’ (which is given
11X |) to find any information about the value of X,.

Exercise 19: Multiple messages of varying lengths: In continuation to Sec-
tion 5.2.4, generalize the treatment to encryption of multiple messages
of varying lengths. Provide adequate definitions, and analogous results.

Guideline: For example, a generalization of the first item of Defini-
tion 5.2.8 postulates that for every pair of polynomials ¢(-) and £(-), and
every probabilistic polynomial-time algorithm A, there exists a probabilis-
tic polynomial-time algorithm A’ such that for every ensemble {Yu =

(X,(Il),...,X,(f(")))}neN, with |X,(Li)\ < £(n), every pair of functions f,h :
{0,1}* — {0,1}*, every polynomial p(-) and all sufficiently large n

Pr [A(Eam)(fnx ax, ...,1‘Xff("”'),h(Yn)):f@)]

< Pr {A’((l‘Xv(r-ln,...,1|X£Lt("'))‘),h(Yn)):f(Yn)] + b
p(n)
Exercise 20: Private-key encryption secure w.r.t exactly t messages: In con-
tinuation to Proposition 5.2.12, show that if secure private-key encryption
schemes exist then for every ¢ there are such scheme that are secure with
respect to the encryption of ¢ messages but not with respect to the encryp-
tion of ¢ + 1 messages.

Guideline: Given an arbitrary private-key encryption scheme (G, E, D),
consider the following private-key encryption scheme (G', E', D'):

e G'(1") = (k, k), where k = (ko, k1, ..., kt) such that (ko, ko) «— G(1™)
and k1, ..., k¢ are uniformly and independently selected in {0, 1}™ (w.l.0.g.,
n = |kol);

. EEku,kh---,kt)(z) = (B, (2),1, Z::O k;r?), where r is uniformly se-
lected in {0,1}™, and the arithmetics is of the field GF(2™);

e and D’(ku,kl,...,kt)(y’r’v) = Dy, (y)-
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Exercise 21: Known plaintext attacks: Loosely speaking, in a known plaintext
attack on a private-key (resp., public-key) encryption scheme the adver-
sary is given some plaintext/ciphertext pairs in addition to some extra
ciphertexts (without corresponding plaintexts). Semantic security in this
setting means that whatever can be efficiently computed about the missing
plaintexts, can be also efficiently computed given only the length of these
plaintexts.

1. Provide formal definitions of security for private-key/public-key in
both the single-message and multiple-message settings.

2. Prove that any secure public-key encryption scheme is also secure in
the presence of known plaintext attack.

3. Prove that any private-key encryption scheme that is secure in the
multiple-message setting is also secure in the presence of known plain-
text attack.

Guideline (fOI‘ Part 3): Consider a function h in the multiple-message
setting that reveals some of the plaintexts.

Exercise 22: On the standard notion of block-cipher: A standard block-cipher
is a triple, (G, E, D), of probabilistic polynomial-time algorithms that sat-
isfies Definition 5.3.5 as well as |E.(«)| = £(n) for every pair (e,d) in the
range of G(1") and every a € {0,1}4"),

1. Prove that a standard block-cipher cannot be semantically secure (in
the multiple-message model). Furthermore, show that any seman-
tically secure encryption scheme must employ ciphertexts that are
longer than the corresponding plaintexts.

2. Present a state-based version of the definition of a standard block-
cipher, and note that Construction 5.3.3 satisfies it.

Guideline (for Part 1): Consider the encryption of a pair of two iden-
tical messages versus the encryption of a pair of two different messages,
and use the fact that E. must be a permutation of {0, I}Z("). Extend the
argument to any encryption scheme in which plaintexts of length ¢(n) are
encrypted by ciphertexts of length £(n)+ O(log n), observing that otherwise

most plaintexts have only poly(n)-many ciphertexts under E..

Exercise 23: A secure private-key encryption scheme: Assuming that F is
pseudorandom with respect to polynomial-size circuits, prove that Con-
struction 5.3.12 constitutes a private-key encryption scheme.

Guideline: Adapt the proof of Proposition 5.3.10. This requires bound-
ing the probability that for ¢ uniformly selected 7()’s there exists ji,j2 €
{1,...,t} and k1, ks € {1,...,t} such that rU1) + ky = rU2) £ ky (mod 2%).
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Exercise 24: The Blum-Goldwasser public-key encryption scheme was presented
in Construction 5.3.20 as a block-cipher (with arbitrary block length). Pro-
vide an alternative presentation of this scheme as a full-fledged encryption
scheme (rather than a block-cipher), and prove its security (under the
factoring assumption).

Guideline: In the alternative presentation, the values of dp and dg can-
not be determined at key-generation time, but are rather computed by the
decryption process. (This means that decryption requires two additional

modular exponentiations.)

Exercise 25: Restricting the ensembles {he}eeqo,13+ and {Xc}eeqo,13+ in Defi-
nition 5.4.1:

1. Show that if one allows arbitrary function ensembles {h.}ccfo,1}+ in
Definition 5.4.1 then no encryption scheme can satisfy it.

2. Show that if one allows arbitrary function ensembles {Xc}.cf0,1}+ in
Definition 5.4.1 then no encryption scheme can satisfy it, even if one
uses only a single function A that is polynomial-time computable.

Guideline: For Part 1, consider the functions he(z) = d, where d is a
decryption-key corresponding to the encryption-key e. For Part 2, consider
the random variable X. = (d, U‘e‘), where d is as before, and the function

h(z',z'") = z'.

Exercise 26: An alternative formulation of Definition 5.4.1: Show that the
following formulation of the definition of admissible ensembles {h.}. and
{Xc}. is equivalent to the one in Definition 5.4.2:

e There is a non-uniform polynomial-time algorithm (i.e., a non-uniform
family of polynomial-size circuits) that maps a string e € {0,1}* into
a circuit that computes the corresponding function h.. That is, on
input e, the algorithm outputs a circuit C. such that C.(x) = h(x)
holds for all strings of length < poly(|e]).

e There is a non-uniform polynomial-time algorithm that maps a string
e € {0,1}* into a circuit that samples the corresponding distributions
X.. That is, on input e, the algorithm outputs a circuit S, such that
Se(Uy,) is distributed identically to X., where U,,, denotes the uniform
distribution over the set of strings of length m = m(e).

Note that the above formulation is in greater agreement with the moti-
vating discussion preceding Definition 5.4.2. The formulation in Defini-
tion 5.4.2 was preferred because of its greater simplicity.

Guideline: Consider for example, the condition regarding {he}. The
formulation in Definition 5.4.2 is shown to imply the one above by using a

circuit family {A, } such that on input e (in the range of G1(1™)) the circuit

A, outputs the circuit Ce(+) def H,(e,-); that is, A, has H, hard-wired
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and just outputs it while fixing its first input to be e. On the other hand,
given a circuit family {A, } that maps e — C. as above, we obtain a circuit
H,, as required in the formulation of Definition 5.4.2 as follows. The circuit
H, has A, hard-wired, and so on input (e, z), the circuit Hy, first computes
Ce «— Ap(e), and the outputs Ce(z).

Exercise 27: Multiple-message security in context of key-dependent passive at-
tacks: Formulate multiple-message security generalizations of Definitions 5.4.1
and 5.4.2, and prove that both are equivalent to the single-message defini-
tions.

Guideline: Note that admissibility for the multiple-message generaliza-
tion of Definition 5.4.2 means that given an encryption key e, one can com-
pute (via a polynomial-size circuit that depends only on |e|) a corresponding
pair of sequences ((wgl), e zgt(lel))), (ygl), e ygt(‘e‘)))). Thus, ability to dis-
tinguish corresponding sequences of encryptions yields ability to distinguish
encryptions to :cgi) from encryptions to yéi), where the latter distinguisher
generates the corresponding x-y hybrid (using the circuit guaranteed by the
admissibility condition) and invokes the former distinguisher on the result-

ing sequence of encryptions.

Exercise 28: Key-oblivious versus key-dependent passive attacks: Assuming
the existence of secure public-key encryption schemes, show that there ex-
ist one that satisfies the basic definition (i.e., as in Definition 5.2.2) but is
insecure under key-dependent passive attacks (i.e., as in Definition 5.4.1).

Guideline: Given ascheme (G, E, D), define (G, E', D) such that E.(z) =
(1, Ec(2)) if # # e and E.(z) = (0,z) otherwise (i.e., for z = e). Using
Exercise 6 (which establishes that each encryption-key is generated with
negligible probability), show that (G, E', D') satisfies Definition 5.2.2. Al-
ternatively, use G'(1™) = ((r, G1(1™)), G2(1™)), where r is uniformly dis-
tributed in {0, 1}™, which immediately implies that each encryption-key is
generated with negligible probability.

Exercise 29: Passive attacks versus Chosen Plaintert Attacks: Assuming the
existence of secure private-key encryption schemes, show that there exist
one that is secure in the standard (multi-message) sense (i.e., as in Def-
inition 5.2.8) but is insecure under a chosen plaintext attack (i.e., as in
Definition 5.4.8).

Guideline: Given a scheme (G, E, D), define (G', E', D") such that
1. G'(1™) = ((k,r), (k, 7)), where (k,k) <« G(1™) and r is selected uni-
formly in {0,1}™.
2. E‘Ek,r)(a;) = (1,r, Ex(z)) if x # r and Eékﬂ)(a}) = (0, k,z) otherwise
(i-e., for z =r).
Show that (G', E', D") is secure in the standard sense, and present a (simple

but very “harmful”) chosen message attack on it.

Exercise 30: Chosen Plaintext Attacks versus Chosen Ciphertext Attacks: As-
suming the existence of secure private-key (resp., public-key) encryption
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schemes that are secure under a chosen plaintext attack, show that there
exist one that is secure in the former sense but is not secure under a chosen
ciphertext attack (even not in the a-priori sense).
Guideline: Given a scheme (G, E, D), define (G', E’, D') such that G’ =
G and
1. E!(z) = (1, Ec(x)) with probability 1 — 2~I¢l and E!(«) = (0, z) oth-
erwise.
2. Dy(1,y) = Da(y) and Dy(0,y) = (d,y).
Recall that decryption is allowed to fail with negligible probability, and
note that the construction is adequate for both public-key and private-key
schemes. Alternatively, to obtain error-free decryption, define E!(z) =
(1, Ec(x)), Di(1,y) = Dg4(y) and D!(0,y) = (d,y). In case of private-key
schemes, we may define Ej (k) = (0, 1%y and E} (z) = (1, Ex(z)) for z # k.

Exercise 31: The two versions of Chosen Ciphertert Attacks: Assuming the
existence of secure private-key (resp., public-key) encryption schemes that
are secure under an a-priori chosen plaintext attack, show that there exist
one that is secure in the former sense but is not secure under an a-posteriori
chosen ciphertext attack.

Guideline: Given a scheme (G, E, D), define (G', E', D') such that G’ =
G and

1. E!(z) < (b, Ec(x)), where b is uniformly selected in {0, 1}.

2. D)(b,y) = Da(y)-

Exercise 32: Multiple-challenge CCA security implies a-posteriori-CCA secu-
rity: Show that Definition 5.4.16 implies security under a-posteriori CCA,

Guideline: It is tempting to claim that it is immediate that Defini-
tion 5.4.13 is a special case of Definition 5.4.16, obtained when allowing
only one challenge query. However, things are not so simple, because in
Definition 5.4.13 the challenges are required to be identically distributed
whereas in Definition 5.4.16 only computational indistinguishability is re-
quired. Instead, we suggest to show that Definition 5.4.14 (which is equiv-
alent to Definition 5.4.13) is a special case of the (very) restricted case of
Definition 5.4.16 discussed following the definition (i.e., a canonical adver-
sary that makes a single query of the form (S, 0)).

Exercise 33: FEquivalent forms of multiple-challenge CCA security:

1. Consider a modification of Definition 5.4.16 in which challenge queries
of the form (S, h) are answered by (E.(S(r)), h(r)), rather than by
(E.(S(r)),h(S(r))). Prove that the original definition is equivalent
to the modified one.

2. Cousider a modification of Definition 5.4.16 in which the challenge
queries of the form (S, h) are replaced by two type of queries: partial-
information queries of the form (leak, h) that are answered by h(r),
and partial-encryption queries of the form (enc, S) that are answered
by E.(S(r)). Prove that the original definition is equivalent to the
modified one.
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Guideline: Show how the modified model of Part 1 can emulate the
original model (that’s easy), and how the original model can emulate the
modified model of Part 1 (e.g., replace the query (.5, k) by the pair of queries
(S,0) and (id, h)). Next relate the models in Parts 1 and 2.

Exercise 34: Computational restriction on the choice of input in the definition
of adaptive NIZK: Show that if Definition 5.4.22 is strengthened by waiving
the computational bounds on = then only trivial NIZKs (i.e., for languages
in BPP) can satisfy it.

Exercise 35: Weak simulation-soundness can hold only with respect to computationally-

Guideline: Show that allowing a computationally-unbounded = forces
S1 to generate a reference string that is statistically close to the uniform
distribution. Thus, soundness implies weak simulation-soundness in the

sense of Exercise 35.

bounded cheating provers: Show that if Definition 5.4.24 is strengthened
by waiving the computational bounds on II then only trivial NIZKs (i.e.,
for languages in BPP) can satisty it.

Guideline: Show that otherwise the two-stage simulation procedure can
distinguish inputs in the language from inputs outside the language, because
in the first case it produces an valid proof whereas in the second one it
cannot do so. The latter fact is proved by showing that if S (which also
gets an auxiliary input s produced by Si along with the reference string)
generates a valid proof then a computationally-unbounded prover may do
the same by first generating s according to the conditional distribution

induced by the reference string (and then invoking S»).

Exercise 36: Does weak simulation-soundness hold for all adaptive NIZKs?

1.

Detect the flaw in the following argument towards an affirmative an-
swer: If weak simulation-soundness does not hold then we can dis-
tinguish a uniformly selected reference string (for which soundness
holds) from a reference string generated by S; (for which soundness
does not hold).

. Assuming the existence of one-way permutations (and adaptive NIZKs),

show an adaptive NIZK with a suitable simulator such that weak
simulation-soundness does not hold.

. (By Boaz Barak and Yehuda Lindell): For languages of pairs («, )

such that one can generate «’s along with suitable trapdoors t(«)’s
that allow to determine whether or not inputs of the form (c, -) are in
the language, define a weaker notion of simulation-soundness in which
a random « is generated and then one is required to produce valid
proofs for a no-instance of the form («, -) with respect to a reference-
string generated by S;. Provide a clear definition, prove that it is
satisfied by any adaptive NIZK for the corresponding language, and
show that this definition suffices for proving Theorem 5.4.27.

See copyright notice.
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Guideline (Part 1): The existence of an efficient C = (Z,II) that vio-
lates weak simulation-soundness only means that for reference string gener-
ated by S1 the cheating Il generates a valid proof for a no-instance selected
by Z. When C is given a uniformly selected reference string it may either
fail to produce a valid proof or may produce a valid proof for a yes-instance.
However, we cannot necessarily distinguish no-instances from yes-instances
(see, for example, Part 2). This gap is eliminated in Part 3.

Guideline (Part 2): Given a one-way permutation f with a correspond-
ing hard-core b, consider the pseudorandom generator G(s) def b(s)b(f(s)) ---b(f2ls1=1(s))f2lsl(s)
(see proof of Proposition 5.3.14). Let L denote the set of strings that
are not images of (G, and note that L is in NP. Given any adaptive
NIZK for L, denoted (P,V), consider the modification (P’,V’) such that
P'(z,w,(r1,72)) = P(z,w,r1) and V'(z, (r1,r2), ) = Lif either V(z,m,71) =
1 or £ = r3. The modified simulator is derived by S7(1") «— ((r1,72),s),
where (r1,s) — S1(1") and r2 — G(Uyp) (and S)(z,s) = Sa(z.s)). Ver-
ify that the modified algorithms satisfy the definition of an adaptive NIZK,
and note that weak simulation-soundness is easily violated by Z(r1,r2) = r2
(and any II).

Guideline (Part 3): For an encryption scheme (G, E, D), we are inter-
ested in the “consistency language” of pairs (a,z) such that a = (e1,e2)
is a pair of encryption-keys (with corresponding trapdoor being the corre-
sponding pair of decryption-keys) and = (y1,y2) is a pair of corresponding
encryptions of the same plaintext (i.e., Is,s1,s2 such that Fe,(s,s;) = y;
for i =1,2).

Exercise 37: On defining non-malleability: Show that when defining non-malleability
(i.e., in Definitions 5.4.32 and 5.4.33) it is essential to prevent A from out-
putting the ciphertext that is given to it.

Guideline: Consider the identity relation, a constant function h, and let
X» be uniform over {0,1}". Note that A gets (e, Ec(X»),1"), whereas A’
only gets (e,1™).

Author's Note: First draft written mainly in 1997. Major revision
completed and posted in Dec. 1999. Second major revision completed
and posted in June 2001. Third major revision completed and posted
in Feb. 2002.



