
Basing Non-Interative Zero-Knowledge on (Enhaned) TrapdoorPermutations: The State of the artOded Goldreih�Department of Computer SieneWeizmann Institute of SieneRehovot, Israel.oded�wisdom.weizmann.a.ilOtober 6, 2009AbstratThe purpose of this note is to orret the inaurate aount of this subjet that is providedin our two-volume work Foundation of Cryptography. Spei�ally, as pointed out by JonathanKatz, it seems that the onstrution of Non-Interative Zero-Knowledge proofs for NP requiresthe existene of a doubly-enhaned olletion of trapdoor permutations (to be de�ned below).We stress that the popular andidate olletions of trapdoor permutations do satisfy this doubly-enhaned ondition. In fat, any olletion of trapdoor permutations that has dense and easilyreognizable domain satis�es this ondition.1 IntrodutionThe purpose of this note is to orret the inaurate aount of the onstrution of Non-InterativeZero-knowledge proofs (NIZK) for NP that is provided in [G1, Se. 4.10.2℄ and modi�ed in [G2,Apdx. C.4.1℄. We briey reall the relevant fats.In [G1, Rem. 4.10.6℄, a onstrution of NIZK for NP is skethed based on a olletion oftrapdoor permutations in whih eah permutation f� has domain f0; 1gj�j. This desription isorret, but the problem is with the unsupported laim (at the end of [G1, Rem. 4.10.6℄) by whihthe onstrution an be extended to arbitrary olletions of trapdoor permutations (in whih thedomain of the permutation f� may be a sparse subset of f0; 1gj�j and may not be easy to reognize(although it is easy to sample from)).In [G2, Apdx. C.4.1℄ it was laimed that suh a onstrution (of NIZK for NP) an be obtainedbased on any enhaned olletions of trapdoor permutations, where the enhanement is as de�nedin [G2, Apdx. C.1℄. But again, this laim was not fully supported. Furthermore, as pointed out byJonathan Katz, it seems that this onstrution requires an additional enhanement. In this note wede�ne the resulting notion of a doubly-enhaned olletion of trapdoor permutations, and providefull details to the laim that using suh permutations one an onstrut NIZK for NP . We stressthat the popular andidate olletions of trapdoor permutations do satisfy this doubly-enhanedondition. In fat, any olletion of trapdoor permutations that has dense and easily reognizabledomain satis�es this ondition. More generally, if the domain-sampler S0 of an enhaned olletion�Partially supported by the Israel Siene Foundation (grant No. 1041/08).1



of trapdoor permutations has a \reversed sampler" (whih given �; y generates a random r suhthat S0(�; r) = y), then this olletion is doubly-enhaned.On the non-tehnial level, we believe that this unfortunate line of events demonstrates theimportane of not being tempted by hand-waving arguments and working out detailed proofs.Indeed, we believe that the soure of trouble is that the basi idea is presented in [G1, Rem. 4.10.6℄as a path, and further modi�ations are also presented as pathes (see [G2, Apdx. C.4.1℄).2 BakgroundIn this setion we reall the standard de�nition of non-interative zero-knowledge proof systems aswell as the onstrution of suh systems based on proof systems in the hidden-bits model. Sineproof systems for NP in the hidden-bits model are known to exists (unonditionally, see [G1,Se. 4.10.2℄), our fous in this note is on transforming suh systems into standard NIZK systems.We stress that intratability assumptions are used in the latter transformation.The rest of this setion is essentially reprodued from [G1, Se. 4.10.1&4.10.2℄.2.1 The Basi De�nitionReall that the model of non-interative (zero-knowledge) proof systems onsists of three entities:a prover, a veri�er and a uniformly seleted sequene of bits (whih an be thought of as beingseleted by a trusted third party). Both veri�er and prover an read the random sequene, andeah an toss additional oins. The interation onsists of a single message sent from the proverto the veri�er, who is then left with the deision (whether to aept or not). Here we present onlythe basi de�nition that supports the ase of proving a single assertion of a-priori bounded length.Various extensions are presented in [G1, Se. 4.10.3℄ and in [G2, Se. 5.4.4.4℄; we reall that theonstrution of suh stronger NIZKs an be redued to the onstrution of basi NIZKs (as de�nedbelow).The model of non-interative proofs seems loser in spirit to the model of NP-proofs than togeneral interative proofs. In a sense, the NP-proof model is extended by allowing the prover andveri�er to refer to a ommon random string, as well as toss oins by themselves. Otherwise, as inase of NP-proofs, the interation is minimal (i.e., unidiretional: from the prover to the veri�er).Thus, in the de�nition below both the prover and veri�er are ordinary probabilisti mahines that,in addition to the ommon-input, also get a uniformly distributed (ommon) referene-string. Westress that, in addition to the above ommon input and ommon referene-string, both the proverand veri�er may toss oins and get auxiliary inputs. However, for sake of simpliity, we present ade�nition for the ase in whih none of these mahines gets an auxiliary input (yet, they may bothtoss additional oins). The veri�er also gets as input the output produed by the prover.De�nition 1 (non-interative proof system): A pair of probabilisti mahines, (P; V ), is alled anon-interative proof system for a language L if V is polynomial-time and the following two onditionshold� Completeness: For every x 2 L Pr [V (x;R; P (x;R))=1℄ � 23where R is a random variable uniformly distributed in f0; 1gpoly(jxj).2



� Soundness: For every x 62 L and every algorithm B,Pr [V (x;R;B(x;R))=1℄ � 13where R is a random variable uniformly distributed in f0; 1gpoly(jxj).The uniformly hosen string R is alled the ommon referene-string.As usual, the error probability in both onditions an be redued (from 13) up to 2�poly(jxj), byrepeating the proess suÆiently many times (using a sequene of many independently hosenreferene-strings). In stating the soundness ondition, we have deviated from the standard for-mulation that allows x 62 L to be adversarially seleted after R is �xed; the latter \adaptive"formulation of soundness is used in [G1, Se. 4.10.3℄, and it is easy to transform a system satis-fying the above (\non-adaptive") soundness ondition into one satisfying the adaptive soundnessondition (see [G1, Se. 4.10.3℄).Every language in NP has a non-interative proof system (in whih no randomness is used).However, this NP-proof system is unlikely to be zero-knowledge (as de�ned next). The de�nition ofzero-knowledge for the non-interative model is simpli�ed by the fat that, sine the veri�er annota�et the prover's ations, it suÆes to onsider the simulatability of the view of a single veri�er(i.e., the presribed one). Atually, we an avoid onsidering the veri�er at all (sine its view anbe generated from the ommon referene-string and the message sent by the prover).De�nition 2 (non-interative zero-knowledge): A non-interative proof system, (P; V ), for a lan-guage L is zero-knowledge if there exist a polynomial p and a probabilisti polynomial-time algorithmM suh that the ensembles f(x;Up(jxj); P (x;Up(jxj)))gx2L and fM(x)gx2L are omputationally in-distinguishable, where Um is a random variable uniformly distributed over f0; 1gm.This de�nition too is \non-adaptive" (i.e., the ommon input may not depend on the ommonreferene-string). An adaptive formulation of zero-knowledge is presented and disussed in [G1,Se. 4.10.3℄.2.2 The Hidden-Bits ModelA �titious abstration, whih is nevertheless very helpful for the design of non-interative zero-knowledge proof systems, is the hidden bits model. In this model the ommon referene-string isuniformly seleted as before, but only the prover an see all of it. The `proof' that the prover sendsto the veri�er onsists of two parts; a `erti�ate' and the spei�ation of some bit positions in theommon referene-string. The veri�er may only inspet the bits of the ommon referene-stringthat reside in the loations that have been spei�ed by the prover. Needless to say, in addition, theveri�er inspets the ommon input and the `erti�ate'.De�nition 3 (proof systems in the Hidden Bits Model): A pair of probabilisti mahines, (P; V ),is alled a hidden-bits proof system for L if V is polynomial-time and the following two onditionshold� Completeness: For every x 2 L Pr [V (x;RI ; I; �)=1℄ � 233



where (I; �) def= P (x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj) andRI is the substring of R at positions I � f1; 2; :::;poly(jxj)g. That is, RI = ri1 � � � rit, whereR = r1 � � � rt and I = (i1; :::; it).� Soundness: For every x 62 L and every algorithm B,Pr [V (x;RI ; I; �)=1℄ � 13where (I; �) def= B(x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj) and RIis the substring of R at positions I � f1; 2; :::;poly(jxj)g.In both ases, I is alled the set of revealed bits and � is alled the erti�ate. Zero-knowledge isde�ned as before, with the exeption that we need to simulate (x;RI ; P (x;R)) = (x;RI ; I; �) ratherthan (x;R; P (x;R)).As stated above, we do not suggest the Hidden-Bits Model as a realisti model. The importane ofthe model stems from two fats. Firstly, it is a `lean' model whih failitates the design of proofsystems (in it), and seondly proof systems in the Hidden-Bits Model an be easily transformedinto non-interative proof systems (i.e., the realisti model). The transformation (whih utilizes aone-way permutation f with hard-ore b) follows.Constrution 4 (from Hidden Bits proof systems to non-interative ones): Let (P; V ) be a hidden-bits proof system for L, and suppose that f :f0; 1g�!f0; 1g� and b :f0; 1g�!f0; 1g are polynomial-time omputable. Furthermore, let m = poly(n) denote the length of the ommon referene-stringfor ommon inputs of length n, and suppose that f is 1-1 and length preserving. Following is aspei�ation of a non-interative system, (P 0; V 0):� Common Input: x 2 f0; 1gn.� Common Referene-String: s = (s1; :::; sm), where eah si is in f0; 1gn.� Prover (denoted P 0):1. Computes ri = b(f�1(si)), for i = 1; 2; :::;m.2. Invokes P to obtain (I; �) = P (x; r1 � � � rm).P 0 outputs (I; �; pI), where pI def= (f�1(si1) � � � f�1(sit)) for I = (i1; :::; it).That is, P 0 augments the proof (I; �), obtained from P , with the f -preimages of the bloksof the referene string that are indiated in I. These preimages reveal the values of theorresponding \revealed" bits in the hidden-bits model, while the values of the other bits remainessentially hidden.� Veri�er (denoted V 0) given prover's output (I; �; (p1 � � � pt)):1. Cheks that sij = f(pj), for eah ij 2 I.In ase a mismath is found, V 0 halts and rejets.2. Computes ri = b(pi), for i = 1; :::; t. Let r = r1; :::; rt.3. Invokes V on (x; r; I; �), and aepts if and only if V aepts.4



That is, using the pj's, the veri�er V 0 reonstruts the the values of the orresponding \re-vealed" bits in the hidden-bits model, and invokes V on these values.We omment that P 0 is not perfet (or statistial) zero-knowledge even in ase P is. Furthermore(and more entral to this note), the prover P 0 may not be implemented in polynomial-time even ifP is (and even with the help of auxiliary inputs). See further disussion in next setion.Proposition 5 Let (P; V ), L, f , b and (P 0; V 0) be as in Constrution 4. Then, (P 0; V 0) is a non-interative proof system for L, provided that Pr[b(Un)=1℄ = 12 . Furthermore, if P is zero-knowledgeand b is a hard-ore of f then P 0 is zero-knowledge too.Proof: To see that (P 0; V 0) is a non-interative proof system for L we note that uniformly hosenstrings si 2 f0; 1gn indue uniformly distributed bits ri 2 f0; 1g. This follows by ri = b(f�1(si)),the fat that f is one-to-one, and the fat that b(f�1(Un)) � b(Un) is unbiased. Thus, the ationsof P 0 and V 0 perfetly emulate the ations of P and V , respetively.Note that if b is a hard-ore of f , then b is almost unbiased (i.e., Pr[b(Un) = 1℄ = 12 � �(n),where � is a negligible funtion), and the said emulation is only guaranteed to be almost-perfet(i.e., deviates negligibly from the original). Thus, saying that b is a hard-ore for f essentiallysuÆes for onluding that (P 0; V 0) is a non-interative proof system for L.To see that P 0 is zero-knowledge note that we an onvert an eÆient simulator for P into aneÆient simulator for P 0. Spei�ally, we �rst invoke the P -simulator and obtain the sequene ofrevealed bits, whih orrespond to the set I, as well as the simulated erti�ate, denoted �. Next,for eah revealed bit of value �, we uniformly selet a string r 2 f0; 1gn suh that b(r) = � andput f(r) in the orresponding position in the ommon referene-string. That is, if the said bitorresponds to position i 2 I, then we set the ith blok of the referene string to f(r). For eahunrevealed bit (i.e., bit position i =2 I), we uniformly selet a string s 2 f0; 1gn and put it in theorresponding position in the ommon referene-string (i.e., set the ith blok of the referene stringto s). The output of the P 0-simulator onsists of the ommon referene-string generated as above,the sequene of all r's generated by the P 0-simulator for bits revealed by the P -simulator (i.e., bitin I), and the pair (I; �) as in the output of the P -simulator. Following is a rigorous desription ofthe P 0-simulator, when invoked on input x 2 f0; 1gn and using the P -simulator, denoted M .1. Obtain (x; (�1; :::; �t); (i1; :::; it); �) M(x).2. For every j = 1; ::; t, selet uniformly pj 2 f0; 1gn suh that b(pj) = �j and set sij = f(pj).3. For every i 2 [m℄ n fij : j = 1; ::; tg, selet si uniformly in f0; 1gn.4. Output (x; (s1; :::; sm); ((i1; :::; it); �; (p1; :::; pt))).That is (s1; :::; sm) is the simulated \ommon referene string" whereas ((i1; :::; it); �; (p1; :::; pt))is the simulated proof.Using the hypothesis that b is a hard-ore of f , it follows that the output of the P 0-simulator isomputationally indistinguishable from the veri�er's view (when reeiving a proof from P 0). Notethat the only di�erene between the simulation and the real view is that in the former the valueson the atual referene strings do not neessarily math the values of the orresponding hidden bitsseen by P . However, this di�erene is omputationally indistinguishable (by the hypothesis that bis a hard-ore of f). 5



3 EÆient Implementations of the Prover of Constrution 4As hinted above, in general, P 0 may not be eÆiently implemented given blak-box aess to P .What is needed for suh an eÆient implementation is the ability (of P 0) to invert f . On the otherhand, for P 0 to be zero-knowledge f must be one-way. The obvious solution is to use a olletionof trapdoor permutations and let the prover know the trapdoor.The basi onstrution is presented based on a olletion of trapdoor permutations that havesimple domains (i.e., the domain of eah permutation is the set of all strings of some �xed string).Furthermore, the olletion should have the property that its members an be eÆiently reognized(i.e., given a desription of a funtion one an eÆiently deide whether it is in the olletion).3.1 The basi onstrutionUsing suh a olletion of trapdoor permutations, P 0 starts by seleting a permutation f over f0; 1gnsuh that it knows its trapdoor, and proeeds as in Constrution 4, exept that it also appendsthe desription of f to the `proof'. Indeed, the knowledge of the trapdoor allows P 0 to invert f onany element in f 's domain. The veri�er ats as in Constrution 4 with respet to the funtion fspei�ed in the proof. In addition the veri�er also heks that f is indeed in the olletion.Both the ompleteness and the zero-knowledge onditions follow exatly as in the proof ofProposition 5. For the soundness ondition we need to onsider all possible members of the olletion(w.l.o.g., there are at most 2n suh permutations). For eah suh permutation, the argument is asbefore, and our soundness laim thus follows by a ounting argument (as applied in [G1, Se. 4.10.3℄).Atually, we also need to repeat the (P; V ) system for O(n) times, so to �rst redue the soundnesserror to 13 � 2�n.The foregoing text is reprodued from [G1, Rem. 4.10.6℄ and is indeed valid. The only problemis that it refers to a restrited notion of a olletion of trapdoor permutations. Spei�ally, whenompared with the general de�nition of suh olletions (as provided in [G1, Def. 2.4.5℄), theforegoing desription orresponds to the speial ase in whih for every index � the domain of thepermutation f� (i.e., the permutation desribed by �) equals f0; 1gj�j. In ontrast, in general, thedomain of f� may be an arbitrary subset of f0; 1gj�j (as long as this subset is easy to sample from).The fous of this note is on trying to extend the foregoing onstrution by using more general formsof trapdoor permutations.3.2 Extending the basi onstrutionWe start by realling the de�nition of a olletion of trapdoor permutations, and onsidering aouple of enhanements.3.2.1 Enhaned olletions of trapdoor permutationsReall that a olletion of trapdoor permutations, as de�ned in [G1, Def. 2.4.5℄, is a olletion of�nite permutations, denoted ff� : D� ! D�g, aompanied by four probabilisti polynomial-time algorithms, denoted I; S; F and B (for index, sample, forward and bakward), suh that thefollowing (syntati) onditions hold:1. On input 1n, algorithm I selets a random n-bit long index � of a permutation f�, along witha orresponding trapdoor � ; 6



2. On input �, algorithm S samples the domain of f�, returning an almost uniformly distributedelement in it;3. For x in the domain of f�, given � and x, algorithm F returns f�(x) (i.e., F (�; x) = f�(x));4. For y in the range of f� if (�; �) is a possible output of I(1n) then, given � and y, algorithmB returns f�1� (y) (i.e., B(�; y) = f�1� (y)).The hardness ondition in [G1, Def. 2.4.5℄ refers to the diÆulty of inverting f� on a uniformlydistributed element of its range, when given only the range-element and �. That is, letting I1(1n)denote the �rst element in the output of I(1n) (i.e., the index), it is required that for every prob-abilisti polynomial-time algorithm A (resp., every non-uniform family of polynomial-size iruitA = fAngn), every positive polynomial p and all suÆiently large n's it holds thatPr[A(I1(1n); fI1(1n)(S(I1(1n))) = S(I1(1n))℄ < 1p(n) : (1)Namely, A (resp., An) fails to invert f� on f�(x), where � and x are seleted by I and S as above.An equivalent way of writing Eq. (1) isPr[A(I1(1n); S0(I1(1n); Rn)) = f�1I1(1n)(S0(I1(1n); Rn))℄ < 1p(n) : (2)where S0 is the residual two-input (deterministi) algorithm obtained from S when treating theoins of the latter as an auxiliary input, and Rn denote the distribution of the oins of S on n-bitlong inputs. That is, A fails to invert f� on x, where � and x are seleted as above.Enhaned trapdoor permutations. Although the above de�nition suÆes for many applia-tions, in some ases we will need an enhaned hardness ondition. Spei�ally, we will require thatit is hard to invert f� on a random input x (in the domain of f�) even when given the oins usedby S in the generation of x. (Note that given these oins (and the index �), the resulting domainelement x is easily determined.)De�nition 6 (enhaned trapdoor permutations): Let ff� : D� ! D�g be a olletion of trapdoorpermutations as in [G1, Def. 2.4.5℄. We say that this olletion is enhaned (and all it an enhanedolletion of trapdoor permutations) if for every probabilisti polynomial-time algorithm A everypositive polynomial p and all suÆiently large n'sPr[A(I1(1n); Rn) = f�1I1(1n)(S0(I1(1n)); Rn))℄ < 1p(n) (3)where S0 is as above. The non-uniform version is de�ned analogously.Note that the speial ase of [G1, Def. 2.4.5℄ in whih the domain of f� equals f0; 1gj�j satis�esDe�nition 6 (beause, without loss of generality, the sampling algorithm may satisfy S0(�; r) = r).This implies that modi�ed versions of the RSA and Rabin olletions satisfy De�nition 6. Morenatural versions of both olletions an also be shown to satisfy De�nition 6. For further disussionsee the Appendix.
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Doubly-enhaned trapdoor permutations. Although olletion of enhaned trapdoor per-mutations suÆe for the onstrution of Oblivious Transfer (see [G2, Se. 7.3.2℄), it seems thatthey do not suÆe for our urrent purpose of providing an eÆient implementation of the prover ofConstrution 4.1 Thus, we further enhane De�nition 6 so to provide for suh an implementation.Spei�ally, we will require that, given �, it is feasible to generate a random pair (x; r) suh that ris uniformly distributed in f0; 1gpoly(j�j) and x is a preimage of S0(�; r) under f�; that is, we shouldgenerate a random x 2 D� along with oins that �t the generation of f�(x) (rather than oins that�t the generation of x).De�nition 7 (doubly-enhaned trapdoor permutations): Let ff� : D� ! D�g be an enhanedolletion of trapdoor permutations (as in Def. 6). We say that this olletion is doubly-enhaned(and all it a doubly-enhaned olletion of trapdoor permutations) if there exists a probabilistipolynomial-time algorithm that on input � outputs a pair (x; r) suh that r is distributed identiallyto Rj�j and f�(x) = S0(�; r).We note that De�nition 7 is satis�ed by any olletion of trapdoor permutations that has a reverseddomain-sampler (i.e., a probabilisti polynomial-time algorithm that on input (�; y) outputs a stringthat is uniformly distributed in fr : S0(�; r) = yg).A useful relaxation of De�nition 7 allows r to be distributed almost-identially (rather thanidentially) to Rj�j, where by almost-idential distributions we mean that the orresponding vari-ation distane is negligible (i.e., the distributions are statistially lose). Needless to say, in thisase the de�nition of a reversed domain-sampler should be relaxed aordingly.We stress that adequate implementations of the popular andidate olletions of trapdoor per-mutations (e.g., the RSA and Rabin olletions) do satisfy the foregoing doubly-enhaned ondition.In fat, any olletion of trapdoor permutations that has dense and easily reognizable domain sat-is�es this ondition. For further details see the Appendix.3.2.2 Atually implementing the proverReall that the basi onstrution presented in Setion 3.1 relies on two extra properties of theolletion of trapdoor permutations.1. It was assumed that the set of possible desriptions of the possible permutations, denoted I,is easily reognizable (i.e., the support of I(1n) is reognizable in poly(n)-time).2. It was assumed that the domain of every permutation f� equals f0; 1gj�j.The �rst assumption was waived by Bellare and Yung [BY℄, and we briey sketh their underlyingidea �rst. This relaxation is ruial sine no andidate olletion of trapdoor permutations thatsatis�es this assumption is known (i.e., for all popular andidates, the orresponding index set I isnot known to be eÆiently reognizable).The problem that arises is that the prover may selet (and send) a funtion that is not in theolletion (i.e., an index � that is not in I). In suh a ase, the funtion is not neessarily 1-1, and,onsequently, the soundness property may be violated. This onern an be addressed by usinga (simple) non-interative (zero-knowledge) proof for onvining the veri�er that the funtion is\typially 1-1" (or, equivalently, is \almost onto the designated range"). The proof proeeds by1We note that the enhanement of De�nition 6 was intended to suÆe for both purposes. Furthermore, in [G2,Apdx. C.4℄ it was laimed that enhaned trapdoor permutations do suÆe for providing an eÆient implementationof the prover of Constrution 4. Needless to say, we retrat this laim here.8



presenting preimages (under the funtion) of random elements that are spei�ed in the referenestring. Note that, for any �xed polynomial p, we an only prove that the funtion is 1-1 on atleast a 1 � (1=p(n)) fration of the designated range (i.e., f0; 1gn), yet this suÆes for moderatesoundness of the entire proof system (whih in turn an be ampli�ed by repetitions). For furtherdetails, onsult [BY℄.Note that this solution extends to the ase that the olletion of permutations ff� : D� !D�g�2I does not satisfy D� = f0; 1gj�j, but is rather an arbitrary olletion of doubly-enhanedtrapdoor permutations. In this ase the referene string will ontain a sequene of oin-sequenesto be used by the domain-sampling algorithm (rather than onsisting of elements of the funtion'sdomain). By virtue of the extra ondition in De�nition 7, we an simulate the inverting of eahdomain element by generating a pair (x; r), plaing r on the referene string, and providing x asthe inverse of S0(�; r) under f�. (See an analogous disussion in next paragraph.)We now turn to the seond aforementioned assumption; that is, the assumption that the domainof f� equals f0; 1gj�j (i.e., D� = f0; 1gj�j). We would have liked to waive this assumption ompletely,but are only able to do so in the ase that the olletion of trapdoor permutations is doubly-enhaned.The basi idea is letting the referene string onsist of oin-sequenes to be used by the domain-sampling algorithm (rather than of elements of the funtion's domain). The orresponding domainelements, whih depend on the hoie of the index �, are then obtained by applying the domain-sampling algorithm to these oin-sequenes. The enhaned hardness property (stated in Def. 6)is used in order to note that the orresponding preimages under f� is not revealed by these oin-sequenes, whereas the additional enhanement (stated in Def. 7) is used for arguing that revealingsuh preimages does not reveal additional knowledge. That is, the two additional properties (statedin Def. 6 and Def. 7) are used in the simulation and not in the proof system itself. For sake ofsimpliity, in the following exposition, we again use the (problemati) assumption by whih I iseÆiently reognizable.Constrution 8 (Constrution 4, revised): Let (P; V ) be a zero-knowledge hidden-bits proof sys-tem for L with exponentially vanishing soundness error (i.e., soundness error at most 2�n�2), andlet m = poly(n) denote the length of the ommon referene-string for ommon inputs of lengthn. Suppose that ff� : D� ! D�g�2I is a doubly-enhaned olletion of trapdoor permutations,where I is eÆiently reognizable, and b : f0; 1g� ! f0; 1g is a orresponding hard-ore prediate(i.e., b(f�1� (S(�;U`))) is infeasible to predit when given (�;U`)).2 Following is a spei�ation ofa non-interative system, (P 0; V 0):� Common Input: x 2 f0; 1gn.� Prover's auxiliary input: w.� Common Referene-String: s = (s1; :::; sm), where eah si is in f0; 1g` and ` is the numberof oins used by the domain-sampler when given an n-bit long index of a permutation.� Prover (denoted P 0):1. Selet at random an n-bit long index � and a orresponding trapdoor � ; i.e., (�; �)  I(1n).2. Using the trapdoor � , ompute ri = b(f�1� (S0(�; si))), for i = 1; 2; :::;m.2Suh a hard-ore prediate is obtained by applying the tehniques of [GL℄ (see [G1, Se. 2.5.2℄ or better [G3,Se. 7.1.3℄) to any (doubly-)enhaned olletion of trapdoor permutations.9



3. Invokes P to obtain (I; �) = P (x;w; r1 � � � rm).P 0 outputs (�; I; �; pI ), where pI def= (f�1� (S0(�; si1)) � � � f�1� (S0(�; sit))) for I = (i1; :::; it).� Veri�er (denoted V 0) given prover's output (�; I; �; (p1 � � � pt)):1. Chek if � 2 I, otherwise halts and rejets.2. Chek that S0(�; sij ) = f�(pj), for eah ij 2 I.In ase a mismath is found, V 0 halts and rejets.3. Compute ri = b(pi), for i = 1; :::; t. Let r = r1; :::; rt.4. Invoke V on (x; r; I; �), and aepts if and only if V aepts.Clearly, the foregoing strategy P 0 is eÆient, provided that so is P .Proposition 9 (Proposition 5, revised) Let (P; V ), L, f , b and (P 0; V 0) be as in Constrution 8.Then, (P 0; V 0) is a zero-knowledge non-interative proof system for L.Proof: Following the proof of Proposition 5, we note that for any �xed hoie � 2 I \ f0; 1gnthe soundness error is at most 2�n�2. Taking a union bound over all possible � 2 I \ f0; 1gn anddisarding all � 62 I (by virtue of the expliit hek), we establish that (P 0; V 0) is a non-interativeproof system for L.To show that P 0 is zero-knowledge we onvert any (eÆient) simulator for P into an (eÆient)simulator for P 0. First, the new simulator selets at random an index � (of a permutation) just as P 0does. We stress that although P 0 obtains the orresponding trapdoor (just as P 0 does), we will notuse this fat in the simulation. Next, we proeed as in the proof of Proposition 5, modulo adequateadaptations that address the ruial di�erene between Constrution 4 and Constrution 8. Reallthat the di�erene is that in Constrution 4 the referene string is viewed as a sequene of images ofthe permutation, whereas in Constrution 8 the referene string is viewed as a sequene of `-bit longrandom-sequenes that may be used to generate suh images. Following is a rigorous desriptionof the urrent P 0-simulator, when invoked on input x 2 f0; 1gn and using the P -simulator, denotedM .1. Obtain (�; �) I(1n).2. Obtain ((�1; :::; �t); (i1; :::; it); �) M(x).3. For every j = 1; ::; t, generate a random pair (pj ; sij ) 2 D� � f0; 1g` suh that f�(pj) =S0(�; sij ) and b(pj) = �j.Note that this operation an be eÆiently implemented by either relying on the additionalenhanement introdued in Def. 7 or by merely relying on the fat that the simulator knowsthe trapdoor � and an thus invert f�. (The \fored" use of the additional enhanement ofDef. 7 arises in the proof of indistinguishabilitry provided below.)4. For every i 2 [m℄ n fij : j = 1; ::; tg, selet si uniformly in f0; 1g`.5. Output (x; (s1; :::; sm); (�; (i1; :::; it); �; (p1; :::; pt))).
10



Using the hypothesis that b is a hard-ore of the olletion ff�g and the doubly-enhaned hardnessof this olletion, it follows that the output of the P 0-simulator is omputationally indistinguishablefrom the veri�er's view (when reeiving a proof from P 0). Again, the only di�erene between thesimulation and the real view is that in the former the values on the atual referene strings do notneessarily math the values of the orresponding hidden bits seen by P . However, this di�ereneis omputationally indistinguishable by the hypothesis that b(f�1� (S(�;U`))) is infeasible to preditwhen given (�;U`). Spei�ally, we need to show that, for H def= [m℄nfij : j = 1; ::; tg, it is infeasibleto distinguish a sequene of jHj uniformly seleted n-bit strings (representing the sequene (si)i2Hprodued in the simulation) from a orresponding sequene of si's that �ts a (partially) givensequene of b(f�1� (S(�; si))) values (as in the real interation). At this point, we enounter adiÆulty that seems to require the doubly-enhaned hypothesis.The point is that the indistinguishability of the two sequenes is demonstrated by showing that,given a pre�x of the seond sequene, it is infeasible to predit the b(f�1� (S(�; �)))-value of the nextelement. That is, we wish to show that, for every i, given a randomly seleted � and a uniformlyseleted sequene s1; :::; si�1; si along with the values b(f�1� (S(�; s1))); :::; b(f�1� (S(�; si�1))), it isinfeasible to predit the value of b(f�1� (S(�; si))). Reall that the standard approah toward thistask is to use a reduibility argument in order to derive a ontradition to the hard-ore hypothesis(whih refers to a single s = si for whih b(f�1� (S(�; s))) is unpreditable), by generating theauxiliary pre�x s1; :::; si�1 along with b(f�1� (S(�; s1))); :::; b(f�1� (S(�; si�1))). Thus, given only� (and s = si), we need to be able to generate a random sequene s1; :::; si�1 along with theorresponding b(f�1� (S(�; sj)))'s. But this is easy to do given the doubly-enhaned hypothesis.Open Problem: Under what intratability assumptions is it possible to onstrut non-interativezero-knowledge proofs (NIZKs) with eÆient prover strategies for any set in NP? In partiular,does the existene of arbitrary olletions of trapdoor permutations suÆe? We mention that theassumption used in onstruting suh NIZKs e�ets the assumption used in (general) onstrutionsof publi-key enryption shemes that are seure under hosen iphertext attaks (see, e.g., [G2,Thm. 5.4.31℄).AknowledgmentsWe are grateful to Jonathan Katz for pointing out the gap in [G2, Apdx. C.4.1℄. While beingembarrassed about suh aws, we feel deeply indebted to those disovering them and bringingthem to our attention.We thank Ron Rothblum for pointing out that a previous version of this write-up failed todeliver the ruial point, whih is urrently spelled out at the end of the proof of Proposition 9.Appendix: On the RSA and Rabin ColletionsIn this appendix we show that adequate versions of the RSA and Rabin olletions satisfy thetwo aforementioned enhanements (presented in De�nitions 6 and 7, respetively). Establishingthis laim is quite straightforward for the RSA olletion, whereas for the Rabin olletion somemodi�ations (of the straightforward version) seem neessary. In order to establish this laim wewill onsider a variant of the Rabin olletion in whih the orresponding domains are dense andeasy to reognize, and will show that having suh domains suÆes for establishing the laim.11



A.1 The RSA olletion satis�es both enhanementsWe start our treatment by onsidering the RSA olletion (as presented in [G1, Se. 2.4.3.1℄ andfurther disussed in [G1, Se. 2.4.3.2℄). Note that in order to disuss the enhaned hardness on-dition (of Def. 6) it is neessary to speify the domain sampler, whih is not entirely trivial (sinesampling Z�N (or even ZN ) by using a sequene of unbiased oins is not that trivial).A natural sampler for Z�N (or ZN ) generates random elements in the domain by using a regularmapping from a set of suÆiently long strings to Z�N (or to ZN ). Spei�ally, the sampler uses` def= 2blog2N random bits, views them as an integer in i 2 f0; 1; :::; 2` � 1g, and outputs i mod N .This yields an almost uniform sample in ZN , and an almost uniform sample in Z�N an be obtainedby disarding the few elements in ZN n Z�N .The fat that the foregoing implementation of the RSA olletion satis�es De�nition 6 (as wellas De�nition 7) follows from the fat that it has an eÆient reversed-sample (whih eliminates thepotential gap between having a domain element and having a random sequene of oins that makesthe domain-sample output this element). Spei�ally, given an element e 2 ZN , the reversed-sampler outputs an almost uniformly distributed element of fi2f0; 1; :::; 2` � 1g : i � e (mod N)gby seleting uniformly j 2 f0; 1; :::; b2`=N � 1g and outputting i j �N + e.A.2 Versions of the Rabin olletion that satisfy both enhanementsIn ontrast to the ase of the RSA, the Rabin Colletion (as de�ned in [G1, Se. 2.4.3.3℄), does notsatisfy De�nition 6 (beause the oins of the sampling algorithm give away a modular square root ofthe domain element). Still, the Rabin Colletion an be easily modify to yield an doubly-enhanedolletion of trapdoor permutations, provided that fatoring is hard (in the same sense as assumedin [G1, Se. 2.4.3℄).The modi�ation is based on modifying the domain of these permutations (following [ACGS℄).Spei�ally, rather than onsidering the permutation indued (by the modular squaring funtion)on the set QN of the quadrati residues modulo N , we onsider the permutations indued onthe set MN , where MN ontains all integers in f1; :::; N=2g that have Jaobi symbol modulo Nthat equals 1. Note that, as in ase of QN , eah quadrati residue has a unique square root in MN(beause exatly two square roots have Jaobi symbol that equals 1 and their sum equals N ; indeed,as in ase of QN , we use the fat that �1 has Jaobi symbol 1). However, unlike QN , membershipin MN an be determined in polynomial-time (when given N without its fatorization). Atually,squaring modulo N is a 1-1 mapping of MN to QN . In order to obtain a permutation over MN ,we modify the funtion a little suh that if the result of modular squaring is bigger than N=2 thenwe use its additive inverse (i.e., rather than outputting y > N=2, we output N � y).Using the fat that MN is dense (w.r.t f0; 1gblog2N+1) and easy to reognize, we may proeedin one of two ways, whih are atually generi. Thus, let us assume that we are given an arbitraryolletion of trapdoor permutations, denoted ff� : D� ! D�g�2I , suh that D� � f0; 1gj�j isdense (i.e., jD�j > 2j�j=poly(j�j))3 and easy to reognize (i.e., there exists an eÆient algorithmthat given (�; x) deides whether or not x 2 D�).1. The natural way to proeed is showing that the olletion ff�g itself is doubly-enhaned. Thisis shown by presenting a rather straightforward domain-sampler that satis�es the enhanedhardness ondition (of Def. 6), and noting that this sampler has an eÆient reversed sampler(whih implies that Def. 7 is satis�ed).3Atually, a more general ase, whih is used for the Rabin olletion, is one in whih D� � f0; 1g`(j�j) satis�esjD�j > 2`(j�j)=poly(j�j), where ` : N! N is a �xed funtion.12



The domain-sampler that we have in mind repeatedly selets random (i.e., uniformly dis-tributed) j�j-bit long strings and output the �rst suh string that resides in D� (and a speialfailure symbols if j�j � 2j�j=jD�j attempts have failed). This sampler has an eÆient reversed-sampler that, given x 2 D�, generates a random sequene of j�j-bit long strings and replaesthe �rst string that resides in D� by x.2. An alternative way of obtaining a doubly-enhaned olletion is to �rst de�ne a (ratherarti�ial) olletion of weak trapdoor permutations, ff 0� : f0; 1gj�j ! f0; 1gj�jg�2I , suh thatf 0�(x) = f�(x) if x 2 D� and f 0�(x) = x otherwise. Using the ampli�ation of a weak one-wayproperty to a standard one-way property (as in [G1, Se. 2.3&2.6℄), we are done.(Indeed, in the �rst alternative we ampli�ed the trivial domain-sampler that sueeds with notie-able probability, whereas in the seond alternative we ampli�ed the one-way property of the trivialextension of f� to the domain f0; 1gj�j.) Either way we obtain a doubly-enhaned olletion oftrapdoor permutations, provided that ff�g is an ordinary olletion of trapdoor permutations.We mention that the foregoing modi�ations of the Rabin olletion follows the outline of theseond modi�ation that is presented in [G2, Apdx. C.1℄. In ontrast, as pointed out by JonathanKatz, the �rst implementation (of an enhaned trapdoor permutation based on fatoring) that ispresented in [G2, Apdx. C.1℄ is not doubly-enhaned.Referenes[ACGS℄ W. Alexi, B. Chor, O. Goldreih and C.P. Shnorr. RSA/Rabin Funtions: Certain Partsare As Hard As the Whole. SIAM Jour. on Comput., Vol. 17, April 1988, pages 194{209.[BY℄ M. Bellare and M. Yung. Certifying Permutations: Noninterative Zero-Knowledge Basedon Any Trapdoor Permutation. Journal of Cryptology, Vol. 9, pages 149-166, 1996.[G1℄ O. Goldreih. Foundation of Cryptography: Basi Tools. Cambridge University Press,2001.[G2℄ O. Goldreih. Foundation of Cryptography: Basi Appliations. Cambridge UniversityPress, 2004.[G3℄ O. Goldreih. Computational Complexity: A Coneptual Perspetive. Cambridge Univer-sity Press, 2008.[GL℄ O. Goldreih and L.A. Levin. Hard-ore Prediates for any One-Way Funtion. In 21stSTOC, pages 25{32, 1989.
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