
Basing Non-Interactive Zero-Knowledge on (Enhanced) TrapdoorPermutations: The State of the artOded Goldreich�Department of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.ilNovember 5, 2008AbstractThe purpose of this note is to correct the inaccurate account of this subject that is providedin our two-volume work Foundation of Cryptography. Speci�cally, as pointed out by JonathanKatz, it seems that the construction of Non-Interactive Zero-Knowledge proofs for NP requiresthe existence of a doubly-enhanced collection of trapdoor permutations (to be de�ned below).We stress that the popular candidate collections of trapdoor permutations do satisfy this doubly-enhanced condition. In fact, any collection of trapdoor permutations that has dense and easilyrecognizable domain satis�es this condition.1 IntroductionThe purpose of this note is to correct the inaccurate account of the construction of Non-InteractiveZero-knowledge proofs (NIZK) for NP that is provided in [G1, Sec. 4.10.2] and modi�ed in [G2,Apdx. C.4.1]. We brie
y recall the relevant facts.In [G1, Rem. 4.10.6], a construction of NIZK for NP is sketched based on a collection oftrapdoor permutations in which each permutation f� has domain f0; 1gj�j. This description iscorrect, but the problem is with the unsupported claim (at the end of [G1, Rem. 4.10.6]) by whichthe construction can be extended to arbitrary collections of trapdoor permutations (in which thedomain of the permutation f� may be a sparse subset of f0; 1gj�j and may not be easy to recognize(although it is easy to sample from)).In [G2, Apdx. C.4.1] it was claimed that such a construction (of NIZK for NP) can be obtainedbased on any enhanced collections of trapdoor permutations, where the enhancement is as de�nedin [G2, Apdx. C.1]. But again, this claim was not fully supported. Furthermore, as pointed out byJonathan Katz, it seems that this construction requires an additional enhancement. In this note wede�ne the resulting notion of a doubly-enhanced collection of trapdoor permutations, and providefull details to the claim that using such permutations one can construct NIZK for NP . We stressthat the popular candidate collections of trapdoor permutations do satisfy this doubly-enhancedcondition. In fact, any collection of trapdoor permutations that has dense and easily recognizabledomain satis�es this condition. More generally, if the domain-sampler S0 of an enhanced collection�Partially supported by the Israel Science Foundation (grant No. 1041/08).1



of trapdoor permutations has a \reversed sampler" (which given �; y generates a random r suchthat S0(�; r) = y), then this collection is doubly-enhanced.On the non-technical level, we believe that this unfortunate line of events demonstrates theimportance of not being tempted by hand-waving arguments and working out detailed proofs.Indeed, we believe that the source of trouble is that the basic idea is presented in [G1, Rem. 4.10.6]as a patch, and further modi�cations are also presented as patches (see [G2, Apdx. C.4.1]).2 BackgroundIn this section we recall the standard de�nition of non-interactive zero-knowledge proof systems aswell as the construction of such systems based on proof systems in the hidden-bits model. Sinceproof systems for NP in the hidden-bits model are known to exists (unconditionally, see [G1,Sec. 4.10.2]), our focus in this note is on transforming such systems into standard NIZK systems.We stress that intractability assumptions are used in the latter transformation.The rest of this section is essentially reproduced from [G1, Sec. 4.10.1&4.10.2].2.1 The Basic De�nitionRecall that the model of non-interactive (zero-knowledge) proof systems consists of three entities:a prover, a veri�er and a uniformly selected sequence of bits (which can be thought of as beingselected by a trusted third party). Both veri�er and prover can read the random sequence, andeach can toss additional coins. The interaction consists of a single message sent from the proverto the veri�er, who is then left with the decision (whether to accept or not). Here we present onlythe basic de�nition that supports the case of proving a single assertion of a-priori bounded length.Various extensions are presented in [G1, Sec. 4.10.3] and in [G2, Sec. 5.4.4.4]; we recall that theconstruction of such stronger NIZKs can be reduced to the construction of basic NIZKs (as de�nedbelow).The model of non-interactive proofs seems closer in spirit to the model of NP-proofs than togeneral interactive proofs. In a sense, the NP-proof model is extended by allowing the prover andveri�er to refer to a common random string, as well as toss coins by themselves. Otherwise, as incase of NP-proofs, the interaction is minimal (i.e., unidirectional: from the prover to the veri�er).Thus, in the de�nition below both the prover and veri�er are ordinary probabilistic machines that,in addition to the common-input, also get a uniformly distributed (common) reference-string. Westress that, in addition to the above common input and common reference-string, both the proverand veri�er may toss coins and get auxiliary inputs. However, for sake of simplicity, we present ade�nition for the case in which none of these machines gets an auxiliary input (yet, they may bothtoss additional coins). The veri�er also gets as input the output produced by the prover.De�nition 1 (non-interactive proof system): A pair of probabilistic machines, (P; V ), is called anon-interactive proof system for a language L if V is polynomial-time and the following two conditionshold� Completeness: For every x 2 L Pr [V (x;R; P (x;R))=1] � 23where R is a random variable uniformly distributed in f0; 1gpoly(jxj).2



� Soundness: For every x 62 L and every algorithm B,Pr [V (x;R;B(x;R))=1] � 13where R is a random variable uniformly distributed in f0; 1gpoly(jxj).The uniformly chosen string R is called the common reference-string.As usual, the error probability in both conditions can be reduced (from 13) up to 2�poly(jxj), byrepeating the process su�ciently many times (using a sequence of many independently chosenreference-strings). In stating the soundness condition, we have deviated from the standard for-mulation that allows x 62 L to be adversarially selected after R is �xed; the latter \adaptive"formulation of soundness is used in [G1, Sec. 4.10.3], and it is easy to transform a system satis-fying the above (\non-adaptive") soundness condition into one satisfying the adaptive soundnesscondition (see [G1, Sec. 4.10.3]).Every language in NP has a non-interactive proof system (in which no randomness is used).However, this NP-proof system is unlikely to be zero-knowledge (as de�ned next). The de�nition ofzero-knowledge for the non-interactive model is simpli�ed by the fact that, since the veri�er cannota�ect the prover's actions, it su�ces to consider the simulatability of the view of a single veri�er(i.e., the prescribed one). Actually, we can avoid considering the veri�er at all (since its view canbe generated from the common reference-string and the message sent by the prover).De�nition 2 (non-interactive zero-knowledge): A non-interactive proof system, (P; V ), for a lan-guage L is zero-knowledge if there exist a polynomial p and a probabilistic polynomial-time algorithmM such that the ensembles f(x;Up(jxj); P (x;Up(jxj)))gx2L and fM(x)gx2L are computationally in-distinguishable, where Um is a random variable uniformly distributed over f0; 1gm.This de�nition too is \non-adaptive" (i.e., the common input may not depend on the commonreference-string). An adaptive formulation of zero-knowledge is presented and discussed in [G1,Sec. 4.10.3].2.2 The Hidden-Bits ModelA �ctitious abstraction, which is nevertheless very helpful for the design of non-interactive zero-knowledge proof systems, is the hidden bits model. In this model the common reference-string isuniformly selected as before, but only the prover can see all of it. The `proof' that the prover sendsto the veri�er consists of two parts; a `certi�cate' and the speci�cation of some bit positions in thecommon reference-string. The veri�er may only inspect the bits of the common reference-stringthat reside in the locations that have been speci�ed by the prover. Needless to say, in addition, theveri�er inspects the common input and the `certi�cate'.De�nition 3 (proof systems in the Hidden Bits Model): A pair of probabilistic machines, (P; V ),is called a hidden-bits proof system for L if V is polynomial-time and the following two conditionshold� Completeness: For every x 2 L Pr [V (x;RI ; I; �)=1] � 233



where (I; �) def= P (x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj) andRI is the substring of R at positions I � f1; 2; :::;poly(jxj)g. That is, RI = ri1 � � � rit, whereR = r1 � � � rt and I = (i1; :::; it).� Soundness: For every x 62 L and every algorithm B,Pr [V (x;RI ; I; �)=1] � 13where (I; �) def= B(x;R), R is a random variable uniformly distributed in f0; 1gpoly(jxj) and RIis the substring of R at positions I � f1; 2; :::;poly(jxj)g.In both cases, I is called the set of revealed bits and � is called the certi�cate. Zero-knowledge isde�ned as before, with the exception that we need to simulate (x;RI ; P (x;R)) = (x;RI ; I; �) ratherthan (x;R; P (x;R)).As stated above, we do not suggest the Hidden-Bits Model as a realistic model. The importance ofthe model stems from two facts. Firstly, it is a `clean' model which facilitates the design of proofsystems (in it), and secondly proof systems in the Hidden-Bits Model can be easily transformedinto non-interactive proof systems (i.e., the realistic model). The transformation (which utilizes aone-way permutation f with hard-core b) follows.Construction 4 (from Hidden Bits proof systems to non-interactive ones): Let (P; V ) be a hidden-bits proof system for L, and suppose that f :f0; 1g�!f0; 1g� and b :f0; 1g�!f0; 1g are polynomial-time computable. Furthermore, let m = poly(n) denote the length of the common reference-stringfor common inputs of length n, and suppose that f is 1-1 and length preserving. Following is aspeci�cation of a non-interactive system, (P 0; V 0):� Common Input: x 2 f0; 1gn.� Common Reference-String: s = (s1; :::; sm), where each si is in f0; 1gn.� Prover (denoted P 0):1. Computes ri = b(f�1(si)), for i = 1; 2; :::;m.2. Invokes P to obtain (I; �) = P (x; r1 � � � rm).P 0 outputs (I; �; pI), where pI def= (f�1(si1) � � � f�1(sit)) for I = (i1; :::; it).� Veri�er (denoted V 0) given prover's output (I; �; (p1 � � � pt)):1. Checks that sij = f(pj), for each ij 2 I.In case a mismatch is found, V 0 halts and rejects.2. Computes ri = b(pi), for i = 1; :::; t. Let r = r1; :::; rt.3. Invokes V on (x; r; I; �), and accepts if and only if V accepts.We comment that P 0 is not perfect (or statistical) zero-knowledge even in case P is. Furthermore(and more central to this note), the prover P 0 may not be implemented in polynomial-time even ifP is (and even with the help of auxiliary inputs). See further discussion in next section.4



Proposition 5 Let (P; V ), L, f , b and (P 0; V 0) be as in Construction 4. Then, (P 0; V 0) is a non-interactive proof system for L, provided that Pr[b(Un)=1] = 12 . Furthermore, if P is zero-knowledgeand b is a hard-core of f then P 0 is zero-knowledge too.Proof: To see that (P 0; V 0) is a non-interactive proof system for L we note that uniformly chosenstrings si 2 f0; 1gn induce uniformly distributed bits ri 2 f0; 1g. This follows by ri = b(f�1(si)),the fact that f is one-to-one, and the fact that b(f�1(Un)) � b(Un) is unbiased. Thus, the actionsof P 0 and V 0 perfectly emulate the actions of P and V , respectively.Note that if b is a hard-core of f , then b is almost unbiased (i.e., Pr[b(Un) = 1] = 12 � �(n),where � is a negligible function), and the said emulation is only guaranteed to be almost-perfect(i.e., deviates negligibly from the original). Thus, saying that b is a hard-core for f essentiallysu�ces for concluding that (P 0; V 0) is a non-interactive proof system for L.To see that P 0 is zero-knowledge note that we can convert an e�cient simulator for P into ane�cient simulator for P 0. Speci�cally, we �rst invoke the P -simulator and obtain the sequence ofrevealed bits, which correspond to the set I, as well as the simulated certi�cate, denoted �. Next,for each revealed bit of value �, we uniformly select a string r 2 f0; 1gn such that b(r) = � andput f(r) in the corresponding position in the common reference-string. That is, if the said bitcorresponds to position i 2 I, then we set the ith block of the reference string to f(r). For eachunrevealed bit (i.e., bit position i =2 I), we uniformly select a string s 2 f0; 1gn and put it in thecorresponding position in the common reference-string (i.e., set the ith block of the reference stringto s). The output of the P 0-simulator consists of the common reference-string generated as above,the sequence of all r's generated by the P 0-simulator for bits revealed by the P -simulator (i.e., bitin I), and the pair (I; �) as in the output of the P -simulator. Following is a rigorous description ofthe P 0-simulator, when invoked on input x 2 f0; 1gn and using the P -simulator, denoted M .1. Obtain (x; (�1; :::; �t); (i1; :::; it); �) M(x).2. For every j = 1; ::; t, select uniformly rj 2 f0; 1gn such that b(rj) = �j and set sij = f(rj).3. For every i 2 [m] n fij : j = 1; ::; tg, select si uniformly in f0; 1gn.4. Output (x; (s1; :::; sm); ((i1; :::; it); �; (r1; :::; rt))).Using the hypothesis that b is a hard-core of f , it follows that the output of the P 0-simulator iscomputationally indistinguishable from the veri�er's view (when receiving a proof from P 0). Notethat the only di�erence between the simulation and the real view is that in the former the valueson the actual reference strings do not necessarily match the values of the corresponding hidden bitsseen by P . However, this di�erence is computationally indistinguishable (by the hypothesis that bis a hard-core of f).3 E�cient Implementations of the Prover of Construction 4As hinted above, in general, P 0 may not be e�ciently implemented given black-box access to P .What is needed for such an e�cient implementation is the ability (of P 0) to invert f . On the otherhand, for P 0 to be zero-knowledge f must be one-way. The obvious solution is to use a collectionof trapdoor permutations and let the prover know the trapdoor.The basic construction is presented based on a collection of trapdoor permutations that havesimple domains (i.e., the domain of each permutation is the set of all strings of some �xed string).Furthermore, the collection should have the property that its members can be e�ciently recognized(i.e., given a description of a function one can e�ciently decide whether it is in the collection).5



3.1 The basic constructionUsing such a collection of trapdoor permutations, P 0 starts by selecting a permutation f over f0; 1gnsuch that it knows its trapdoor, and proceeds as in Construction 4, except that it also appendsthe description of f to the `proof'. Indeed, the knowledge of the trapdoor allows P 0 to invert f onany element in f 's domain. The veri�er acts as in Construction 4 with respect to the function fspeci�ed in the proof. In addition the veri�er also checks that f is indeed in the collection.Both the completeness and the zero-knowledge conditions follow exactly as in the proof ofProposition 5. For the soundness condition we need to consider all possible members of the collection(w.l.o.g., there are at most 2n such permutations). For each such permutation, the argument is asbefore, and our soundness claim thus follows by a counting argument (as applied in [G1, Sec. 4.10.3]).Actually, we also need to repeat the (P; V ) system for O(n) times, so to �rst reduce the soundnesserror to 13 � 2�n.The foregoing text is reproduced from [G1, Rem. 4.10.6] and is indeed valid. The only problemis that it refers to a restricted notion of a collection of trapdoor permutations. Speci�cally, whencompared with the general de�nition of such collections (as provided in [G1, Def. 2.4.5]), theforegoing description corresponds to the special case in which for every index � the domain of thepermutation f� (i.e., the permutation described by �) equals f0; 1gj�j. In contrast, in general, thedomain of f� may be an arbitrary subset of f0; 1gj�j (as long as this subset is easy to sample from).The focus of this note is on trying to extend the foregoing construction by using more general formsof trapdoor permutations.3.2 Extending the basic constructionWe start by recalling the de�nition of a collection of trapdoor permutations, and considering acouple of enhancements.3.2.1 Enhanced collections of trapdoor permutationsRecall that a collection of trapdoor permutations, as de�ned in [G1, Def. 2.4.5], is a collection of�nite permutations, denoted ff� : D� ! D�g, accompanied by four probabilistic polynomial-time algorithms, denoted I; S; F and B (for index, sample, forward and backward), such that thefollowing (syntactic) conditions hold:1. On input 1n, algorithm I selects a random n-bit long index � of a permutation f�, along witha corresponding trapdoor � ;2. On input �, algorithm S samples the domain of f�, returning an almost uniformly distributedelement in it;3. For x in the domain of f�, given � and x, algorithm F returns f�(x) (i.e., F (�; x) = f�(x));4. For y in the range of f� if (�; �) is a possible output of I(1n) then, given � and y, algorithmB returns f�1� (y) (i.e., B(�; y) = f�1� (y)).The hardness condition in [G1, Def. 2.4.5] refers to the di�culty of inverting f� on a uniformlydistributed element of its range, when given only the range-element and �. That is, letting I1(1n)denote the �rst element in the output of I(1n) (i.e., the index), it is required that for every prob-abilistic polynomial-time algorithm A (resp., every non-uniform family of polynomial-size circuit6



A = fAngn), every positive polynomial p and all su�ciently large n's it holds thatPr[A(I1(1n); fI1(1n)(S(I1(1n))) = S(I1(1n))] < 1p(n) : (1)Namely, A (resp., An) fails to invert f� on f�(x), where � and x are selected by I and S as above.An equivalent way of writing Eq. (1) isPr[A(I1(1n); S0(I1(1n); Rn)) = f�1I1(1n)(S0(I1(1n); Rn))] < 1p(n) : (2)where S0 is the residual two-input (deterministic) algorithm obtained from S when treating thecoins of the latter as an auxiliary input, and Rn denote the distribution of the coins of S on n-bitlong inputs. That is, A fails to invert f� on x, where � and x are selected as above.Enhanced trapdoor permutations. Although the above de�nition su�ces for many applica-tions, in some cases we will need an enhanced hardness condition. Speci�cally, we will require thatit is hard to invert f� on a random input x (in the domain of f�) even when given the coins usedby S in the generation of x. (Note that given these coins (and the index �), the resulting domainelement x is easily determined.)De�nition 6 (enhanced trapdoor permutations): Let ff� : D� ! D�g be a collection of trapdoorpermutations as in [G1, Def. 2.4.5]. We say that this collection is enhanced (and call it an enhancedcollection of trapdoor permutations) if for every probabilistic polynomial-time algorithm A everypositive polynomial p and all su�ciently large n'sPr[A(I1(1n); Rn) = f�1I1(1n)(S0(I1(1n)); Rn))] < 1p(n) (3)where S0 is as above. The non-uniform version is de�ned analogously.Note that the special case of [G1, Def. 2.4.5] in which the domain of f� equals f0; 1gj�j satis�esDe�nition 6 (because, without loss of generality, the sampling algorithm may satisfy S0(�; r) = r).This implies that modi�ed versions of the RSA and Rabin collections satisfy De�nition 6. Morenatural versions of both collections can also be shown to satisfy De�nition 6. For further discussionsee the Appendix.Doubly-enhanced trapdoor permutations. Although collection of enhanced trapdoor per-mutations su�ce for the construction of Oblivious Transfer (see [G2, Sec. 7.3.2]), it seems thatthey do not su�ce for our current purpose of providing an e�cient implementation of the prover ofConstruction 4.1 Thus, we further enhance De�nition 6 so to provide for such an implementation.Speci�cally, we will require that, given �, it is feasible to generate a random pair (x; r) such that ris uniformly distributed in f0; 1gpoly(j�j) and x is a preimage of S0(�; r) under f�; that is, we shouldgenerate a random x 2 D� along with coins that �t the generation of f�(x) (rather than coins that�t the generation of x).1We note that the enhancement of De�nition 6 was intended to su�ce for both purposes. Furthermore, in [G2,Apdx. C.4] it was claimed that enhanced trapdoor permutations do su�ce for providing an e�cient implementationof the prover of Construction 4. Needless to say, we retract this claim here.7



De�nition 7 (doubly-enhanced trapdoor permutations): Let ff� : D� ! D�g be a collection oftrapdoor permutations as in Def. 6. We say that this collection is doubly-enhanced (and call it adoubly-enhanced collection of trapdoor permutations) if there exists a probabilistic polynomial-timealgorithm that on input � outputs a pair (x; r) such that r is distributed identically to Rj�j andf�(x) = S0(�; r).We note that De�nition 7 is satis�ed by any collection of trapdoor permutations that has a reverseddomain-sampler (i.e., a probabilistic polynomial-time algorithm that on input (�; y) outputs a stringthat is uniformly distributed in fr : S0(�; r) = yg).A useful relaxation of De�nition 7 allows r to be distributed almost-identically (rather thanidentically) to Rj�j, where by almost-identical distributions we mean that the corresponding vari-ation distance is negligible (i.e., the distributions are statistically close). Needless to say, in thiscase the de�nition of a reversed domain-sampler should be relaxed accordingly.We stress that adequate implementations of the popular candidate collections of trapdoor per-mutations (e.g., the RSA and Rabin collections) do satisfy the foregoing doubly-enhanced condition.In fact, any collection of trapdoor permutations that has dense and easily recognizable domain sat-is�es this condition. For further details see the Appendix.3.2.2 Actually implementing the proverRecall that the basic construction presented in Section 3.1 relies on two extra properties of thecollection of trapdoor permutations.1. It was assumed that the set of possible descriptions of the possible permutations, denoted I,is easily recognizable (i.e., the support of I(1n) is recognizable in poly(n)-time).2. It was assumed that the domain of every permutation f� equals f0; 1gj�j.The �rst assumption was waived by Bellare and Yung [BY], and we brie
y sketch their underlyingidea �rst. This relaxation is crucial since no candidate collection of trapdoor permutations thatsatis�es this assumption is known (i.e., for all popular candidates, the corresponding index set I isnot known to be e�ciently recognizable).The problem that arises is that the prover may select (and send) a function that is not in thecollection (i.e., an index � that is not in I). In such a case, the function is not necessarily 1-1, and,consequently, the soundness property may be violated. This concern can be addressed by usinga (simple) non-interactive (zero-knowledge) proof for convincing the veri�er that the function is\typically 1-1" (or, equivalently, is \almost onto the designated range"). The proof proceeds bypresenting preimages (under the function) of random elements that are speci�ed in the referencestring. Note that, for any �xed polynomial p, we can only prove that the function is 1-1 on atleast a 1 � (1=p(n)) fraction of the designated range (i.e., f0; 1gn), yet this su�ces for moderatesoundness of the entire proof system (which in turn can be ampli�ed by repetitions). For furtherdetails, consult [BY].Note that this solution extends to the case that the collection of permutations ff� : D� !D�g�2I does not satisfy D� = f0; 1gj�j, but is rather an arbitrary collection of doubly-enhancedtrapdoor permutations. In this case the reference string will contain a sequence of coin-sequencesto be used by the domain-sampling algorithm (rather than consisting of elements of the function'sdomain). By virtue of the extra condition in De�nition 7, we can simulate the inverting of eachdomain element by generating a pair (x; r), placing r on the reference string, and providing x asthe inverse of S0(�; r) under f�. (See an analogous discussion in next paragraph.)8



We now turn to the second aforementioned assumption; that is, the assumption that the domainof f� equals f0; 1gj�j (i.e., D� = f0; 1gj�j). We would have liked to waive this assumption completely,but are only able to do so in the case that the collection of trapdoor permutations is doubly-enhanced.The basic idea is letting the reference string consist of coin-sequences to be used by the domain-sampling algorithm (rather than of elements of the function's domain). The corresponding domainelements, which depend on the choice of the index �, are then obtained by applying the domain-sampling algorithm to these coin-sequences. The enhanced hardness property (stated in Def. 6)is used in order to note that the corresponding preimages under f� is not revealed by these coin-sequences, whereas the additional enhancement (stated in Def. 7) is used for arguing that revealingsuch preimages does not reveal additional knowledge. That is, the two additional properties (statedin Def. 6 and Def. 7) are used in the simulation and not in the proof system itself. For sake ofsimplicity, in the following exposition, we again use the (problematic) assumption by which I ise�ciently recognizable.Construction 8 (Construction 4, revised): Let (P; V ) be a zero-knowledge hidden-bits proof sys-tem for L with exponentially vanishing soundness error (i.e., soundness error at most 2�n�2), andlet m = poly(n) denote the length of the common reference-string for common inputs of lengthn. Suppose that ff� : D� ! D�g�2I is a doubly-enhanced collection of trapdoor permutations,where I is e�ciently recognizable, and b : f0; 1g� ! f0; 1g is a corresponding hard-core predicate(i.e., b(f�1� (S(�;U`))) is infeasible to predict when given (�;U`)).2 Following is a speci�cation ofa non-interactive system, (P 0; V 0):� Common Input: x 2 f0; 1gn.� Prover's auxiliary input: w.� Common Reference-String: s = (s1; :::; sm), where each si is in f0; 1g` and ` is the numberof coins used by the domain-sampler when given an n-bit long index of a permutation.� Prover (denoted P 0):1. Select at random an n-bit long index � and a corresponding trapdoor � ; i.e., (�; �)  I(1n).2. Using the trapdoor � , compute ri = b(f�1� (S0(�; si))), for i = 1; 2; :::;m.3. Invokes P to obtain (I; �) = P (x;w; r1 � � � rm).P 0 outputs (�; I; �; pI ), where pI def= (f�1� (S0(�; si1)) � � � f�1� (S0(�; sit))) for I = (i1; :::; it).� Veri�er (denoted V 0) given prover's output (�; I; �; (p1 � � � pt)):1. Check if � 2 I, otherwise halts and rejects.2. Check that S0(�; sij ) = f�(pj), for each ij 2 I.In case a mismatch is found, V 0 halts and rejects.3. Compute ri = b(pi), for i = 1; :::; t. Let r = r1; :::; rt.4. Invoke V on (x; r; I; �), and accepts if and only if V accepts.Clearly, the foregoing strategy P 0 is e�cient, provided that so is P .2Such a hard-core predicate is obtained by applying the techniques of [GL] (see [G1, Sec. 2.5.2] or better [G3,Sec. 7.1.3]) to any (doubly-)enhanced collection of trapdoor permutations.9



Proposition 9 (Proposition 5, revised) Let (P; V ), L, f , b and (P 0; V 0) be as in Construction 8.Then, (P 0; V 0) is a zero-knowledge non-interactive proof system for L.Proof: Following the proof of Proposition 5, we note that for any �xed choice � 2 I \ f0; 1gnthe soundness error is at most 2�n�2. Taking a union bound over all possible � 2 I \ f0; 1gn anddiscarding all � 62 I (by virtue of the explicit check), we establish that (P 0; V 0) is a non-interactiveproof system for L.To show that P 0 is zero-knowledge we convert any (e�cient) simulator for P into an (e�cient)simulator for P 0. First, the new simulator selects at random an index � (of a permutation) just as P 0does. We stress that although P 0 obtains the corresponding trapdoor (just as P 0 does), we will notuse this fact in the simulation. Next, we proceed as in the proof of Proposition 5, modulo adequateadaptations that address the crucial di�erence between Construction 4 and Construction 8. Recallthat the di�erence is that in Construction 4 the reference string is viewed as a sequence of images ofthe permutation, whereas in Construction 8 the reference string is viewed as a sequence of `-bit longrandom-sequences that may be used to generate such images. Following is a rigorous descriptionof the current P 0-simulator, when invoked on input x 2 f0; 1gn and using the P -simulator, denotedM .1. Obtain (�; �) I(1n).2. Obtain ((�1; :::; �t); (i1; :::; it); �) M(x).3. For every j = 1; ::; t, generate a random pair (rj ; sij ) 2 f0; 1gn � f0; 1g` such that f�(rj) =S0(�; sij ) and b(rj) = �j.Note that this operation is enabled by the additional enhancement introduced in Def. 7.4. For every i 2 [m] n fij : j = 1; ::; tg, select si uniformly in f0; 1g`.5. Output (x; (s1; :::; sm); (�; (i1; :::; it); �; (r1; :::; rt))).Using the hypothesis that b is a hard-core of the collection ff�g and the enhanced hardness ofthis collection, it follows that the output of the P 0-simulator is computationally indistinguishablefrom the veri�er's view (when receiving a proof from P 0). Again, the only di�erence between thesimulation and the real view is that in the former the values on the actual reference strings do notnecessarily match the values of the corresponding hidden bits seen by P . However, this di�erenceis computationally indistinguishable by the hypothesis that b(f�1� (S(�;U`))) is infeasible to predictwhen given (�;U`).Open Problem: Under what intractability assumptions is it possible to construct non-interactivezero-knowledge proofs (NIZKs) with e�cient prover strategies for any set in NP? In particular,does the existence of arbitrary collections of trapdoor permutations su�ce? We mention that theassumption used in constructing such NIZKs e�ects the assumption used in (general) constructionsof public-key encryption schemes that are secure under chosen ciphertext attacks (see, e.g., [G2,Thm. 5.4.31]).AcknowledgmentsWe are grateful to Jonathan Katz for pointing out the gap in [G2, Apdx. C.4.1].10



Appendix: On the RSA and Rabin CollectionsIn this appendix we show that adequate versions of the RSA and Rabin collections satisfy thetwo aforementioned enhancements (presented in De�nitions 6 and 7, respectively). Establishingthis claim is quite straightforward for the RSA collection, whereas for the Rabin collection somemodi�cations (of the straightforward version) seem necessary. In order to establish this claim wewill consider a variant of the Rabin collection in which the corresponding domains are dense andeasy to recognize, and will show that having such domains su�ces for establishing the claim.A.1 The RSA collection satis�es both enhancementsWe start our treatment by considering the RSA collection (as presented in [G1, Sec. 2.4.3.1] andfurther discussed in [G1, Sec. 2.4.3.2]). Note that in order to discuss the enhanced hardness con-dition (of Def. 6) it is necessary to specify the domain sampler, which is not entirely trivial (sincesampling Z�N (or even ZN ) by using a sequence of unbiased coins is not that trivial).A natural sampler for Z�N (or ZN ) generates random elements in the domain by using a regularmapping from a set of su�ciently long strings to Z�N (or to ZN ). Speci�cally, the sampler uses` def= 2blog2Nc random bits, views them as an integer in i 2 f0; 1; :::; 2` � 1g, and outputs i mod N .This yields an almost uniform sample in ZN , and an almost uniform sample in Z�N can be obtainedby discarding the few elements in ZN n Z�N .The fact that the foregoing implementation of the RSA collection satis�es De�nition 6 (as wellas De�nition 7) follows from the fact that it has an e�cient reversed-sample (which eliminates thepotential gap between having a domain element and having a random sequence of coins that makesthe domain-sample output this element). Speci�cally, given an element e 2 ZN , the reversed-sampler outputs an almost uniformly distributed element of fi2f0; 1; :::; 2` � 1g : i � e (mod N)gby selecting uniformly j 2 f0; 1; :::; b2`=Nc � 1g and outputting i j �N + e.A.2 Versions of the Rabin collection that satisfy both enhancementsIn contrast to the case of the RSA, the Rabin Collection (as de�ned in [G1, Sec. 2.4.3.3]), does notsatisfy De�nition 6 (because the coins of the sampling algorithm give away a modular square root ofthe domain element). Still, the Rabin Collection can be easily modify to yield an doubly-enhancedcollection of trapdoor permutations, provided that factoring is hard (in the same sense as assumedin [G1, Sec. 2.4.3]).The modi�cation is based on modifying the domain of these permutations (following [ACGS]).Speci�cally, rather than considering the permutation induced (by the modular squaring function)on the set QN of the quadratic residues modulo N , we consider the permutations induced onthe set MN , where MN contains all integers in f1; :::; N=2g that have Jacobi symbol modulo Nthat equals 1. Note that, as in case of QN , each quadratic residue has a unique square root in MN(because exactly two square roots have Jacobi symbol that equals 1 and their sum equals N ; indeed,as in case of QN , we use the fact that �1 has Jacobi symbol 1). However, unlike QN , membershipin MN can be determined in polynomial-time (when given N without its factorization). Actually,squaring modulo N is a 1-1 mapping of MN to QN . In order to obtain a permutation over MN ,we modify the function a little such that if the result of modular squaring is bigger than N=2 thenwe use its additive inverse (i.e., rather than outputting y > N=2, we output N � y).Using the fact that MN is dense (w.r.t f0; 1gblog2Nc+1) and easy to recognize, we may proceedin one of two ways, which are actually generic. Thus, let us assume that we are given an arbitrarycollection of trapdoor permutations, denoted ff� : D� ! D�g�2I , such that D� � f0; 1gj�j is11



dense (i.e., jD�j > 2j�j=poly(j�j))3 and easy to recognize (i.e., there exists an e�cient algorithmthat given (�; x) decides whether or not x 2 D�).1. The natural way to proceed is showing that the collection ff�g itself is doubly-enhanced. Thisis shown by presenting a rather straightforward domain-sampler that satis�es the enhancedhardness condition (of Def. 6), and noting that this sampler has an e�cient reversed sampler(which implies that Def. 7 is satis�ed).The domain-sampler that we have in mind repeatedly selects random (i.e., uniformly dis-tributed) j�j-bit long strings and output the �rst such string that resides in D� (and a specialfailure symbols if j�j � 2j�j=jD�j attempts have failed). This sampler has an e�cient reversed-sampler that, given x 2 D�, generates a random sequence of j�j-bit long strings and replacesthe �rst string that resides in D� by x.2. An alternative way of obtaining a doubly-enhanced collection is to �rst de�ne a (ratherarti�cial) collection of weak trapdoor permutations, ff 0� : f0; 1gj�j ! f0; 1gj�jg�2I , such thatf 0�(x) = f�(x) if x 2 D� and f 0�(x) = x otherwise. Using the ampli�cation of a weak one-wayproperty to a standard one-way property (as in [G1, Sec. 2.3&2.6]), we are done.(Indeed, in the �rst alternative we ampli�ed the trivial domain-sampler that succeeds with notice-able probability, whereas in the second alternative we ampli�ed the one-way property of the trivialextension of f� to the domain f0; 1gj�j.) Either way we obtain a doubly-enhanced collection oftrapdoor permutations, provided that ff�g is an ordinary collection of trapdoor permutations.We mention that the foregoing modi�cations of the Rabin collection follows the outline of thesecond modi�cation that is presented in [G2, Apdx. C.1]. In contrast, as pointed out by JonathanKatz, the �rst implementation (of an enhanced trapdoor permutation based on factoring) that ispresented in [G2, Apdx. C.1] is not doubly-enhanced.References[ACGS] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Partsare As Hard As the Whole. SIAM Jour. on Comput., Vol. 17, April 1988, pages 194{209.[BY] M. Bellare and M. Yung. Certifying Permutations: Noninteractive Zero-Knowledge Basedon Any Trapdoor Permutation. Journal of Cryptology, Vol. 9, pages 149-166, 1996.[G1] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press,2001.[G2] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge UniversityPress, 2004.[G3] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-sity Press, 2008.[GL] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21stSTOC, pages 25{32, 1989.3Actually, a more general case, which is used for the Rabin collection, is one in which D� � f0; 1g`(j�j) satis�esjD�j > 2`(j�j)=poly(j�j), where ` : N! N is a �xed function.12


