
Foundations of Cryptography(Fragments of a Book { Version 2.03)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.February 27, 1998

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

I

c
Copyright 1997 by Oded Goldreich.Permission to make copies of part or all of this work for personal or classroom use is granted withoutfee provided that copies are not made or distributed for pro�t or commercial advantage and that newcopies bear this notice and the full citation on the �rst page. Abstracting with credit is permitted.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

IIExtracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Preface to DanaRevolutionary developments which took place in the previous decade have transformedcryptography from a semi-scienti�c discipline to a respectable �eld in theoretical ComputerScience. In particular, concepts such as computational indistinguishability, pseudorandom-ness and zero-knowledge interactive proofs were introduced and classical notions as secureencryption and unforgeable signatures were placed on sound grounds.This book attempts to present the basic concepts, de�nitions and results in cryptog-raphy. The emphasis is placed on the clari�cation of fundamental concepts and their in-troduction in a way independent of the particularities of some popular number theoreticexamples. These particular examples played a central role in the development of the �eldand still o�er the most practical implementations of all cryptographic primitives, but thisdoes not mean that the presentation has to be linked to them.
III

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

IV Why fragments?Several years ago, Sha� Goldwasser and myself have decided to write togethera book titled \Foundations of Cryptography". In a �rst burst of energy, I'vewritten most of the material appearing in these fragments, but since then verylittle progress has been done. The chances that we will complete our original planwithin a year or two seem quite slim. In fact, we even fail to commit ourselvesto a date on which we will resume work on this project.What is in these fragments?These fragments contain a full draft for three major chapters and an introductionchapter. The three chapters are the chapters on computational di�culty (orone-way functions), pseudorandom generators and zero-knowledge. However,none of these chapters has been carefully proofread and I expect them to be fullof various mistakes ranging from spelling and grammatical mistakes to minortechnical inaccuracies. I hope and believe that they are no fatal mistakes, but Icannot guarantee this either.This edition:This is the second edition of the fragments with the most important modi�cationbeing the addition of a missing section on non-interactive zero-knowledge.A major thing which is missing:An updated list of references is indeed missing. Instead I enclose an old anno-tated list of references (compiled mostly in February 1989).Author's Note: Text appearing in italics within indented paragraphs, such as thisone, is not part of the book, but rather part of the later comments added to itsfragments...OrganizationTolls, Utilities and Beyong the Basics...Using this bookAuthor's Note: Giving a course based on the material which appears in these frag-ments is indeed possible, but kind of strange since the basic tasks of encryptingand signing are not covered.� Chapters, sections, subsections, and subsubsections denoted by an asterisk (*) wereintended for advanced reading.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

V� Historical notes and suggestions for further reading are provided at the end of eachchapter.Author's Note: However, a corresponding list of reference is not provided.Instead, the read may try to trace the paper by using the enclosed annotatedlist of references (dating to 1989).

Author's Note: Written in Tel-Aviv, mainly between June 1991 and November1992.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

VIExtracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Acknowledgements.... very little do we have and inclose which we can call our own in the deepsense of the word. We all have to accept and learn, either from our predecessorsor from our contemporaries. Even the greatest genius would not have achievedmuch if he had wished to extract everything from inside himself. But thereare many good people, who do not understand this, and spend half their liveswondering in darkness with their dreams of originality. I have known artists whowere proud of not having followed any teacher and of owing everything only totheir own genius. Such fools![Goethe, Conversations with Eckermann, 17.2.1832]First of all, I would like to thank three remarkable people who had a tremendous in
u-ence on my professional development. Shimon Even introduced me to theoretical computerscience and closely guided my �rst steps. Silvio Micali and Sha� Goldwasser led my wayin the evolving foundations of cryptography and shared with me their constant e�orts offurther developing these foundations.I have collaborated with many researchers, yet I feel that my collaboration with BennyChor and Avi Wigderson had a fundamental impact on my career and hence my develop-ment. I would like to thank them both for their indispensable contribution to our jointresearch, and for the excitement and pleasure I had when collaborating with them.Leonid Levin does deserve special thanks as well. I had many interesting discussionswith Lenia over the years and sometimes it took me too long to realize how helpful thesediscussions were.Clearly, continuing in this pace will waste too much of the publisher's money. Hence, Icon�ne myself to listing some of the people which had contributed signi�cantly to my un-derstanding of the �eld. These include Len Adleman, Laszlo Babai, Mihir Bellare, MichaelBen-Or, Manuel Blum, Ran Canetti, W. Di�e, Cynthia Dwork, Uri Feige, Mike Fischer,Lance Fortnow, Johan Hastad, M. Hellman, Russel Impagliazzo, Joe Kilian, Hugo Kraw-cyzk, Mike Luby, R. Merkle, Moni Naor, Noam Nisan, Rafail Ostrovsky, Erez Petrank,Michael Rabin, Charlie Racko�, Steven Rudich, Ron Rivest, Claus Schnorr, Mike Sipser,Adi Shamir, Andy Yao, and Moti Yung. VII

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

VIII Author's Note: I've probably forgot a few names and will get myself in deeptrouble for it. Wouldn't it be simpler and safer just to acknowledge that such atask is infeasible?In addition, I would like to acknowledge helpful exchange of ideas with Ishai Ben-Aroya, Richard Chang, Ivan Damgard, Amir Herzberg, Eyal Kushilevitz, Nati Linial, YishayMansour, Yair Oren, Phil Rogaway, Ronen Vainish, R. Venkatesan, Yacob Yacobi, andDavid Zuckerman.
Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Contents1 Introduction 31.1 Cryptography { Main Topics : 31.1.1 Encryption Schemes : 31.1.2 Pseudorandom Generators : 51.1.3 Digital Signatures : 61.1.3.1 Message authentication : 61.1.3.2 Signatures widen the scope of cryptography : : : : : : : : : 71.1.4 Fault-Tolerant Protocols and Zero-Knowledge Proofs : : : : : : : : : 81.1.4.1 Simultaneity problems : 81.1.4.2 Secure implementation of protocols and trusted parties : : 81.1.4.3 Zero-knowledge as a paradigm : : : : : : : : : : : : : : : : 91.2 Some Background from Probability Theory : : : : : : : : : : : : : : : : : : 101.2.1 Notational Conventions : 101.2.2 Three Inequalities : 111.3 The Computational Model : 141.3.1 P, NP, and NP-completeness : 141.3.2 Probabilistic Polynomial-Time : 151.3.3 Non-Uniform Polynomial-Time : 181.3.4 Intractability Assumptions : 201.3.5 Oracle Machines : 211.4 Motivation to the Formal Treatment : 211.4.1 The Need to Formalize Intuition : 221.4.2 The Practical Consequences of the Formal Treatment : : : : : : : : 231.4.3 The Tendency to be Conservative : 24I Basic Tools 252 Computational Di�culty 272.1 One-Way Functions: Motivation : 272.2 One-Way Functions: De�nitions : 28IX

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

X CONTENTS2.2.1 Strong One-Way Functions : 282.2.2 Weak One-Way Functions : 302.2.3 Two Useful Length Conventions : 312.2.3.1 One-way functions de�ned only for some lengths : : : : : : 312.2.3.2 Length-regular and length-preserving one-way functions : : 332.2.4 Candidates for One-Way Functions : : : : : : : : : : : : : : : : : : : 342.2.4.1 Integer factorization : 342.2.4.2 Decoding of random linear codes : : : : : : : : : : : : : : : 352.2.4.3 The subset sum problem : : : : : : : : : : : : : : : : : : : 352.2.5 Non-Uniformly One-Way Functions : : : : : : : : : : : : : : : : : : : 362.3 Weak One-Way Functions Imply Strong Ones : : : : : : : : : : : : : : : : : 372.4 One-Way Functions: Variations : 422.4.1 * Universal One-Way Function : 432.4.2 One-Way Functions as Collections : : : : : : : : : : : : : : : : : : : 442.4.3 Examples of One-way Collections (RSA, Factoring, DLP) : : : : : : 452.4.3.1 The RSA function : 462.4.3.2 The Rabin function : 472.4.3.3 The Factoring Permutations : : : : : : : : : : : : : : : : : 472.4.3.4 Discrete Logarithms : 472.4.4 Trapdoor one-way permutations : 482.4.4.1 The De�nition : 482.4.4.2 The RSA (or factoring) Trapdoor : : : : : : : : : : : : : : 502.4.5 * Clawfree Functions : 502.4.5.1 The De�nition : 502.4.5.2 The DLP Clawfree Collection : : : : : : : : : : : : : : : : : 512.4.5.3 The Factoring Clawfree Collection : : : : : : : : : : : : : : 522.4.6 On Proposing Candidates : 532.5 Hard-Core Predicates : 532.5.1 De�nition : 542.5.2 Hard-Core Predicates for any One-Way Function : : : : : : : : : : : 542.5.3 * Hard-Core Functions : 582.6 * E�cient Ampli�cation of One-way Functions : : : : : : : : : : : : : : : : 622.7 Miscellaneous : 672.7.1 Historical Notes : 672.7.2 Suggestion for Further Reading : 682.7.3 Open Problems : 692.7.4 Exercises : 693 Pseudorandom Generators 753.1 Motivating Discussion : 753.1.1 Computational Approaches to Randomness : : : : : : : : : : : : : : 76

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

CONTENTS XI3.1.2 A Rigorous Approach to Pseudorandom Generators : : : : : : : : : 763.2 Computational Indistinguishability : 773.2.1 De�nition : 773.2.2 Relation to Statistical Closeness : 793.2.3 Indistinguishability by Repeated Experiments : : : : : : : : : : : : : 803.2.4 Pseudorandom Ensembles : 843.3 De�nitions of Pseudorandom Generators : 843.3.1 * A General De�nition of Pseudorandom Generators : : : : : : : : : 843.3.2 Standard De�nition of Pseudorandom Generators : : : : : : : : : : : 853.3.3 Increasing the Expansion Factor of Pseudorandom Generators : : : 863.3.4 The Signi�cance of Pseudorandom Generators : : : : : : : : : : : : 893.3.5 Pseudorandom Generators imply One-Way Functions : : : : : : : : 903.4 Constructions based on One-Way Permutations : : : : : : : : : : : : : : : : 913.4.1 Construction based on a Single Permutation : : : : : : : : : : : : : : 913.4.2 Construction based on Collections of Permutations : : : : : : : : : : 933.4.3 Practical Constructions : 953.5 * Construction based on One-Way Functions : : : : : : : : : : : : : : : : : 953.5.1 Using 1-1 One-Way Functions : 953.5.2 Using Regular One-Way Functions : : : : : : : : : : : : : : : : : : : 1013.5.3 Going beyond Regular One-Way Functions : : : : : : : : : : : : : : 1053.6 Pseudorandom Functions : 1063.6.1 De�nitions : 1063.6.2 Construction : 1083.6.3 A general methodology : 1133.7 * Pseudorandom Permutations : 1143.7.1 De�nitions : 1143.7.2 Construction : 1163.8 Miscellaneous : 1183.8.1 Historical Notes : 1183.8.2 Suggestion for Further Reading : 1193.8.3 Open Problems : 1203.8.4 Exercises : 1204 Zero-Knowledge Proof Systems 1274.1 Zero-Knowledge Proofs: Motivation : 1284.1.1 The Notion of a Proof : 1294.1.1.1 A Proof as a �xed sequence or as an interactive process : : 1294.1.1.2 Prover and Veri�er : 1294.1.1.3 Completeness and Validity : : : : : : : : : : : : : : : : : : 1304.1.2 Gaining Knowledge : 1304.2 Interactive Proof Systems : 132

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

XII CONTENTS4.2.1 De�nition : 1324.2.1.1 Interaction : 1324.2.1.2 Conventions regarding interactive machines : : : : : : : : : 1344.2.1.3 Proof systems : 1344.2.2 An Example (Graph Non-Isomorphism in IP) : : : : : : : : : : : : : 1374.2.3 Augmentation to the Model : 1404.3 Zero-Knowledge Proofs: De�nitions : 1414.3.1 Perfect and Computational Zero-Knowledge : : : : : : : : : : : : : : 1414.3.2 An Example (Graph Isomorphism in PZK) : : : : : : : : : : : : : : 1454.3.3 Zero-Knowledge w.r.t. Auxiliary Inputs : : : : : : : : : : : : : : : : 1514.3.4 Sequential Composition of Zero-Knowledge Proofs : : : : : : : : : : 153What about parallel composition? : : : : : : : : : : : : : : : : : : : 1584.4 Zero-Knowledge Proofs for NP : 1584.4.1 Commitment Schemes : 1584.4.1.1 De�nition : 1594.4.1.2 Construction based on any one-way permutation : : : : : : 1614.4.1.3 Construction based on any one-way function : : : : : : : : 1614.4.1.4 Extensions : 1634.4.2 Zero-Knowledge proof of Graph Coloring : : : : : : : : : : : : : : : 1634.4.2.1 Motivating discussion : 1634.4.2.2 The interactive proof : 1644.4.2.3 Proof of Proposition 4.4.7 : : : : : : : : : : : : : : : : : : : 1664.4.2.4 Concluding remarks : 1734.4.3 The General Result and Some Applications : : : : : : : : : : : : : : 1744.4.4 E�ciency Considerations : 1774.4.4.1 Standard e�ciency measures : : : : : : : : : : : : : : : : : 1774.4.4.2 Knowledge Tightness: a particular e�ciency measure : : : 1784.5 * Negative Results : 1794.5.1 Implausibility of an Unconditional \NP in ZK" Result : : : : : : : : 1794.5.1.1 BPP � CZK implies weak forms of one-wayness : : : : : 1804.5.1.2 Zero-knowledge for \hard" languages yield one-way functions 1804.5.2 Implausibility of Perfect Zero-Knowledge proofs for all of NP : : : : 1814.5.3 Zero-Knowledge and Parallel Composition : : : : : : : : : : : : : : : 1814.5.3.1 Failure of the Parallel Composition Conjecture : : : : : : : 1814.5.3.2 Problems with \natural" candidates : : : : : : : : : : : : : 1824.6 * Witness Indistinguishability and Hiding : : : : : : : : : : : : : : : : : : : 1844.6.1 De�nitions : 1844.6.1.1 Witness indistinguishability : : : : : : : : : : : : : : : : : : 1854.6.1.2 Witness hiding : 1864.6.2 Parallel Composition : 1874.6.3 Constructions : 188

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

CONTENTS XIII4.6.3.1 Constructions of witness indistinguishable proofs : : : : : : 1884.6.3.2 Constructions of witness hiding proofs : : : : : : : : : : : : 1884.6.4 Applications : 1904.7 * Proofs of Knowledge : 1904.7.1 De�nition : 1904.7.1.1 Preliminaries : 1914.7.1.2 Knowledge veri�ers : 1924.7.2 Observations : 1924.7.3 Applications : 1934.7.3.1 Non-oblivious commitment schemes : : : : : : : : : : : : : 1934.7.3.2 Chosen message attacks : 1944.7.3.3 A zero-knowledge proof system for GNI : : : : : : : : : : : 1944.7.4 Proofs of Identity (Identi�cation schemes) : : : : : : : : : : : : : : : 1944.7.4.1 De�nition : 1954.7.4.2 Identi�cation schemes and proofs of knowledge : : : : : : : 1964.7.4.3 Identi�cation schemes and proofs of ability : : : : : : : : : 1984.7.5 Strong Proofs of Knowledge : 1984.8 * Computationally-Sound Proofs (Arguments) : : : : : : : : : : : : : : : : : 2014.8.1 De�nition : 2014.8.2 Perfect Commitment Schemes : 2024.8.2.1 De�nition : 2034.8.2.2 Construction based on one-way permutations : : : : : : : : 2044.8.2.3 Construction based on clawfree collections : : : : : : : : : 2054.8.2.4 Commitment Schemes with a posteriori secrecy : : : : : : : 2064.8.2.5 Nonuniform computational unambiguity : : : : : : : : : : : 2074.8.3 Perfect Zero-Knowledge Arguments for NP : : : : : : : : : : : : : : 2084.8.4 Zero-Knowledge Arguments of Polylogarithmic E�ciency : : : : : : 2094.9 * Constant Round Zero-Knowledge Proofs : : : : : : : : : : : : : : : : : : : 2114.9.1 Using commitment schemes with perfect secrecy : : : : : : : : : : : 2124.9.2 Bounding the power of cheating provers : : : : : : : : : : : : : : : : 2174.9.2.1 Non-oblivious commitment schemes : : : : : : : : : : : : : 2174.9.2.2 Modifying Construction 4.9.1 : : : : : : : : : : : : : : : : : 2184.10 * Non-Interactive Zero-Knowledge Proofs : : : : : : : : : : : : : : : : : : : 2204.10.1 Basic De�nitions : 2204.10.2 Constructions : 2214.10.3 Extensions: many assertions of varying length : : : : : : : : : : : : : 2264.11 * Multi-Prover Zero-Knowledge Proofs : 2294.11.1 De�nitions : 2294.11.1.1 The two-partner model : 2294.11.1.2 Two-prover interactive proofs : : : : : : : : : : : : : : : : : 2304.11.2 Two-Senders Commitment Schemes : : : : : : : : : : : : : : : : : : 231

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

XIV CONTENTS4.11.2.1 A De�nition : 2314.11.2.2 A Construction : 2334.11.3 Perfect Zero-Knowledge for NP : 2354.11.4 Applications : 2374.12 Miscellaneous : 2374.12.1 Historical Notes : 2374.12.2 Suggestion for Further Reading : 2394.12.3 Open Problems : 2404.12.4 Exercises : 241II Basic Utilities 2475 Encryption Schemes 2495.1 The Basic Setting : 2495.1.1 Overview : 2505.1.2 A Formulation of Encryption Schemes : : : : : : : : : : : : : : : : : 2515.2 Security of Encryption Schemes : 2525.2.1 Semantic Security : 2535.2.1.1 * Discussion of some de�nitional choices : : : : : : : : : : : 2545.2.2 Indistinguishability of Encryptions : : : : : : : : : : : : : : : : : : : 2555.2.3 Equivalence of the Security De�nitions : : : : : : : : : : : : : : : : : 2565.2.4 Multiple Messages : 2595.3 Constructions of Secure Encryption Schemes : : : : : : : : : : : : : : : : : 2625.3.1 Stream-Ciphers : 2625.3.2 Block-Ciphers : 2635.3.3 Private-key encryption schemes : 2645.3.4 Public-key encryption schemes : 2655.4 Stronger notions of security : 2665.4.1 Chosen plaintext attack : 2675.4.2 Chosen ciphertext attack : 2685.4.3 Non-malleable encryption schemes : : : : : : : : : : : : : : : : : : : 2685.5 Miscellaneous : 2685.5.1 Historical Notes : 2685.5.2 Suggestion for Further Reading : 2695.5.3 Open Problems : 2705.5.4 Exercises : 2706 Digital Signatures and Message Authentication 2736.1 Signatures { Brief Summary from my Essay : : : : : : : : : : : : : : : : : : 2736.1.1 De�nitions : 2746.1.2 Constructions : 275

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

CONTENTS 16.1.3 Some Suggestions for Further Reading : : : : : : : : : : : : : : : : : 2777 Cryptographic Protocols 2817.1 Cryptographic Protocols { Brief Summary from my Essay : : : : : : : : : : 2817.1.1 De�nitions : 2817.1.2 Constructions : 2837.1.3 Some Suggestions for Further Reading : : : : : : : : : : : : : : : : : 283III Beyond the Basics 2858 * New Frontiers 2879 * The E�ect of Cryptography on Complexity Theory 2899.1 The power of Interactive Proofs : 2899.2 Probabilistically Checkable Proofs : 28910 * Related Topics 291IV Appendices 293A Annotated List of References (compiled Feb. 1989) 295A.0 Main References : 297A.1 General : 301A.2 Hard Computational Problems : 301A.3 Encryption : 303A.4 Pseudorandomness : 304A.5 Signatures and Commitment Schemes : 307A.6 Interactive Proofs, Zero-Knowledge and Protocols : : : : : : : : : : : : : : : 308A.7 Additional Topics : 316A.8 Historical Background : 320

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

2 CONTENTSExtracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 1IntroductionIn this chapter we shortly discuss the goals of cryptography. In particular, we discussthe problems of secure encryption, digital signatures, and fault-tolerant protocols. Theseproblems lead to the notions of pseudorandom generators and zero-knowledge proofs whichare discussed as well.Our approach to cryptography is based on computational complexity. Hence, this intro-ductory chapter contains also a section presenting the computational models used through-out the book. Likewise, the current chapter contains a section presenting some elementarybackgound from probability theory, which is used extensively in the sequal.1.1 Cryptography { Main TopicsTraditionally, cryptography has been associated with the problem of designing and analysingencryption schemes (i.e., schemes which provide secret communication over insecure commu-nication media). However, nowadays, also problems such as constructing unforgeable digitalsignatures and designing fault-tolerant protocols, are considered as falling in the domain ofcryptography. Furthermore, it turns out that notions as \pseudorandom generators" and\zero-knowledge proofs" are very related to the above problems, and hence must be treatedas well in a book on cryptography. In this section we brie
y discuss the above-mentionedterms.1.1.1 Encryption SchemesThe problem of providing secret communication over insecure media is the most basic prob-lem of cryptography. The setting of this problem consists of two parties communicatingthrough a channel which is possibly tapped by an adversary. The parties wish to exchangeinformation with each other, but keep the \wiretapper" as ignorant as possible regradingthe contents of this information. Loosely speaking, an encryption scheme is a protocolallowing these parties to communicate secretly with each other. Typically, the encryption3

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4 CHAPTER 1. INTRODUCTIONscheme consists of a pair of algorithms. One algorithm, called encryption, is applied bythe sender (i.e., the party sending a message), while the other algorithm, called decryp-tion, is applied by the receiver. Hence, in order to send a message, the sender �rst appliesthe encryption algorithm to the message, and sends the result, called the ciphertext, overthe channel. Upon receiving a ciphertext, the other party (i.e., the receiver) applies thedecryption algorithm to it, and retrieves the original message (called the plaintext).In order for the above scheme to provide secret communication, the communicatingparties (at least the receiver) must know something which is not known to the wiretapper.(Otherwise, the wiretapped can decrypt the ciphertext exactly as done by the receiver.) Thisextra knowledge may take the form of the decryption algorithm itself, or some parametersand/or auxiliary inputs used by the decryption algorithm. We call this extra knowledge thedecryption key. Note that, without loss of generality, we may assume that the decryptionalgorithm is known to the wiretapper and that the decryption algorithm needs two inputs:a ciphertext and a decryption key. We stress that the existence of a secret key, not knownto the wiretapper, is merely a necessary condition for secret communication.Evaluating the \security" of an encryption scheme is a very tricky business. A pre-liminary task is to understand what is \security" (i.e., to properly de�ne what is meantby this intuitive term). Two approaches to de�ning security are known. The �rst (\clas-sic") approach is information theoretic. It is concerned with the \information" about theplaintext which is \present" in the ciphertext. Loosely speaking, if the ciphertext containsinformation about the plaintext then the encryption scheme is considered insecure. It hasbeen shown that such high (i.e., \perfect") level of security can be achieved only if thekey in use is at least as long as the total length of the messages sent via the encryptionscheme. The fact, that the key has to be longer than the information exchanged using it, isindeed a drastic limitation on the applicability of such encryption schemes. In particular,it is impractical to use such keys in case huge amounts of information need to be secretlycommunicated (as in computer networks).The second (\modern") approach, followed in the current book, is based on computa-tional complexity. This approach is based on the observation that it does not matterwhether the ciphertext contains information about the plaintext, but rather whether this in-formation can be e�ciently extracted. In other words, instead of asking whether it ispossible for the wiretapper to extract speci�c information, we ask whether it is feasible forthe wiretapper to extract this information. It turns out that the new (i.e., \computationalcomplexity") approach o�ers security even if the key is much shorter than the total lengthof the messages sent via the encryption scheme. For example, one may use \pseudorandomgenerators" (see below) which expand short keys into much longer \pseudo-keys", so thatthe latter are as secure as \real keys" of comparable length.In addition, the computational complexity approach allows the introduction of conceptsand primitives which cannot exist under the information theoretic approach. A typicalexample is the concept of public-key encryption schemes. Note that in the above discus-sion we concentrated on the decryption algorithm and its key. It can be shown that the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.1. CRYPTOGRAPHY { MAIN TOPICS 5encryption algorithm must get, in addition to the message, an auxiliary input which de-pends on the decryption key. This auxiliary input is called the encryption key. Traditionalencryption schemes, and in particular all the encryption schemes used in the millenniumsuntil the 1980's, operate with an encryption key equal to the decryption key. Hence, thewiretapper in this schemes must be ignorant of the encryption key, and consequently thekey distribution problem arises (i.e., how can two parties wishing to communicate over aninsecure channel agree on a secret encryption/decryption key). (The traditional solutionis to exchange the key through an alternative channel which is secure, though \more ex-pensive to use", for example by a convoy.) The computational complexity approach allowsthe introduction of encryption schemes in which the encryption key may be given to thewiretapper without compromising the security of the scheme. Clearly, the decryption keyin such schemes is di�erent and furthermore infeasible to compute from the encryption key.Such encryption scheme, called public-key, have the advantage of trivially resolving the keydistribution problem since the encryption key can be publicized.In the chapter devoted to encryption schemes, we discuss private-key and public-key en-cryption schemes. Much attention is placed on de�ning the security of encryption schemes.Finally, constructions of secure encryption schemes based on various intractability assump-tions are presented. Some of the constructions presented are based on pseudorandom gen-erators, which are discussed in a prior chapter. Other constructions use speci�c one-wayfunctions such as the RSA function and/or squaring modulo a composite number.1.1.2 Pseudorandom GeneratorsIt turns out that pseudorandom generators play a central role in the construction of encryp-tion schemes (and related schemes). In particular, pseudorandom generators are the clueto the construction of private-key encryption schemes, and this observation is often used inpractice (usually implicitly).Although the term \pseudorandom generators" is commonly used in practice, both inthe contents of cryptography and in the much wider contents of probabilistic procedures, it isimportant to realize that this term is seldom associated a precise meaning. We believe thatusing a term without knowing what it means is dangerous in general, and in particular in adelicate business as cryptography. Hence, a precise treatment of pseudorandom generatorsis central to cryptography.Loosely speaking, a pseudorandom generator is a deterministic algorithm expandingshort random seeds into much longer bit sequences which appear to be \random" (althoughthey are not). It other words, although the output of a pseudorandom generator is notreally random, it is infeasible to tell the di�erence. It turns out that pseudorandomness andcomputational di�culty are linked even in a more fundamental manner, as pseudorandomgenerators can be constructed based on various intractability assumptions. Furthermore,the main result in the area asserts that pseudorandom generators exists if and only if one-way functions exists.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6 CHAPTER 1. INTRODUCTIONThe chapter devoted to pseudorandom generators starts with a treatment of the con-cept of computational indistinguishability. Pseudorandom generators are de�ned next, andconstructed using special types of one-way functions (de�ned in a prior chapter). Pseudo-random functions are de�ned and constructed as well.1.1.3 Digital SignaturesA problem which did not exist in the \pre-computerized" world is that of a \digital signa-ture". The need to discuss \digital signatures" has arise with the introduction of computercommunication in business environment in which parties need to commit themselves toproposals and/or declarations they make. Discussions of \unforgeable signatures" did takeplace also in previous centuries, but the objects of discussion were handwritten signatures(and not digital ones), and the discussion was not perceived as related to \cryptography".Relations between encryption and signature methods became possible with the \digital-ization" of both, and the introduction of the computational complexity approach to security.Loosely speaking, a scheme for unforgeable signatures requires that� each user can e�ciently generate his own signature on documents of his choice;� each user can e�ciently verify whether a given string is a signature of another (speci�c)user on a speci�c document; but� nobody can e�ciently produce signatures of other users to documents they did notsign.We stress that the formulation of unforgeable digital signatures provides also a clearstatement of the essential ingredients of handwritten signatures. The ingredients are eachperson's ability to sign for himself, a universally agreed veri�cation procedure, and the belief(or assertion) that it is infeasible (or at least hard) to forge signatures in a manner thatpass the veri�cation procedure. Clearly, it is hard to state to what extent do handwrittensignatures meet these requirements. In contrast, our discussion of digital signatures willsupply precise statements concerning the extend by which digital signatures meet the aboverequirements. Furthermore, unforgeable digital signature schemes can be constructed usingthe same computational assumptions as used in the construction of encryption schemes.In the chapter devoted to signature schemes, much attention is placed on de�ning thesecurity (i.e., unforgeability) of these schemes. Next, constructions of unforgeable signatureschemes based on various intractability assumptions are presented. In addition, we treatthe related problem of message authentication.1.1.3.1 Message authenticationMessage authentication is a task related to the setting considered for encryption schemes,i.e., communication over an insecure channel. This time, we consider an active adversary

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.1. CRYPTOGRAPHY { MAIN TOPICS 7which is monitoring the channel and may alter the messages sent on it. The parties com-municating through this insecure channel wish to authenticate the messages they send sotheir counterpart can tell an original message (sent by the sender) from a modi�ed one (i.e.,modi�ed by the adversary). Loosely speaking, a scheme for message authentication requiresthat� each of the communicating parties can e�ciently generate an authentication tag toany message of his choice;� each of the communicating parties can e�ciently verify whether a given string is anauthentication tag of a given message; but� no external adversary (i.e., a party other than the communicating parties) can e�-ciently produce authentication tags to messages not sent by the communicating parties.In some sense \message authentication" is similar to digital signatures. The di�erencebetween the two is that in the setting of message authentication the adversary is not requiredto be able to verify the validity of authentication tags produced by the legitimate users,whereas in the setting of signature schemes the adversary is required to be able to verify thevalidity of signatures produced by other users. Hence, digital signatures provide a solutionto the message authentication problem. On the other hand, message authentication schemesdo not necessarily constitute a digital signature scheme.1.1.3.2 Signatures widen the scope of cryptographyConsidering the problem of digital signatures as belonging to cryptography, widens thescope of this area from the speci�c \secret communication problem" to a variety of problemsconcerned with limiting the \gain" obtained by \dishonest" behaviour of parties (that areeither internal or external to the system). Speci�cally� In the \secret communication problem" (solved by use of encryption schemes) onewishes to reduce as much as possible the information that a potential wiretapper mayextract from the communication between two (legitimate) users. In this case, thelegitimate system consists of the two communicating parties, and the wiretapper isconsidered as an external (\dishonest") party.� In the \message authentication problem" one aims at prohibiting an (external) wire-tapper from modifying the communication between two (legitimate) users.� In the \signature problem" one aims at supplying all users of a system with a wayof making self-binding statements so that other users may not make statements thatbind somebody else. In this case, the legitimate system consists of the set of all usersand a potential forger is considered as an internal yet dishonest user.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

8 CHAPTER 1. INTRODUCTIONHence, in the wide sense, cryptography is concerned with any problem in which one wishesto limit the a�ect of dishonest users. A general treatment of such problems is captured bythe treatment of \fault-tolerant" (or cryptographic) protocols.1.1.4 Fault-Tolerant Protocols and Zero-Knowledge ProofsA discussion of signature schemes naturally leads to a discussion of cryptographic protocols,since it is of natural concern to ask under what circumstances should a party send hissignature to another party. In particular, problems like mutual simultaneous commitment(e.g., contract signing), arise naturally. Another type of problems, which are motivatedby the use of computer communication in the business environment, consists of \secureimplementation" of protocols (e.g., implementing secret and incorruptible voting).1.1.4.1 Simultaneity problemsA typical example of a simultaneity problem is the problem of simultaneous exchange ofsecrets, of which contract signing is a special case. The setting in a simultaneous exchangeof secrets consists of two parties, each holding a \secret". The goal is to execute a protocolso that if both parties follow it correctly then at termination each holds its counterpart'ssecret, and in any case (even if one party \cheats") the �rst party \holds" the secondparty's secret if and only if the second party \holds" the �rst party's secret. Simultaneousexchange of secrets can be achieved only when assuming the existence of third parties whichare trusted to some extend.Simultaneous exchange of secrets can be easily achieved using the active participationof a trusted third party. Each party sends its secret to the trusted party (using a securechannel), who once receiving both secrets send both of them to both parties. There are twoproblems with this solution1. The solution requires active participation of an \external" party in all cases (i.e., alsoin case both parties are honest). We note that other solutions requiring milder formsof participation (of external parties) do exist, yet further discussion is postponed tothe chapter devoted to cryptographic protocols.2. The solution requires the existence of a totally trusted entity. In some applicationssuch an entity does not exist. Nevertheless, in the sequel we discuss the problem ofimplementing a trusted third party by a set of users with an honest majority (even ifthe identity of the honest users is not known).1.1.4.2 Secure implementation of protocols and trusted partiesA di�erent type of protocol problems are the problems concerned with the secure implemen-tation of protocols. To be more speci�c, we discuss the problem of evaluating a functionof local inputs each held by a di�erent user. An illustrative and motivating example is

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.1. CRYPTOGRAPHY { MAIN TOPICS 9voting, in which the function is majority and the local input held by user A is a single bitrepresenting the vote of user A (e.g., \Pro" or \Con"). We say that a protocol implementsa secure evaluation of a speci�c function if it satis�es� privacy: No party \gains information" on the input of other parties, beyond what isdeduced from the value of the function; and� robustness: No party can \in
uence" the value of the function, beyond the in
uenceobtained by selecting its own input.It is sometimes required that the above conditions hold with respect to \small" (e.g., mi-nority) coalitions of parties (instead of single parties).Clearly, if one of the users is known to be totally trusted then there exist a simplesolution to the problem of secure evaluation of any function. Each user just sends its inputto the trusted party (using a secure channel), who once receiving all inputs, computes thefunction, sends te outcome to all users, and erase all intermediate computations (includingthe inputs received) from its memory. Certainly, it is unrealistic to assume that a partycan be trusted to such an extend (e.g. that it erases voluntarily what it has \learnt").Nevertheless, we have seen that the problem of implementing secure function evaluationreduces to the problem of implementing a trusted party. It turns out that a trusted partycan be implemented by a set of users with an honest majority (even if the identity of thehonest users is not known). This is indeed a major result in the area.1.1.4.3 Zero-knowledge as a paradigmA major tool in the construction of cryptographic protocols is the concept of zero-knowledgeproof systems, and the fact that zero-knowledge proof systems exist for all languages in NP(provided that one-way functions exist). Loosely speaking, zero-knowledge proofs yieldnothing but the validity of the assertion. Zero-knowledge proofs provide a tool for \forcing"parties to follow a given protocol properly.To illustrate the role zero-knowledge proofs, consider a setting in which a party uponreceiving an encrypted message should answer with the least signi�cant bit of the message.Clearly, if the party just sends the (least signi�cant) bit (of the message) then there is noway to guarantee that it did not cheat. The party may prove that it did not cheat byrevealing the entire message as well as its decryption key, but this would yield informationbeyond what has been required. A much better idea is to let the party augment the bitit sends by a zero-knowledge proof that this bit is indeed the least signi�cant bit of themessage. We stress that the above statement is of the \NP-type" (since the proof speci�edabove can be e�ciently veri�ed), and therefore the existence of zero-knowledge proofs forNP-statements implies that the above statement can be proven without revealing anythingbeyond its validity.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

10 CHAPTER 1. INTRODUCTION1.2 Some Background from Probability TheoryProbability plays a central role in cryptography. In particular, probability is essential inorder to allow a discussion of information or lack of information (i.e., secrecy). We assumethat the reader is familiar with the basic notions of probability theory. In this section, wemerely present the probabilistic notations that are used in throughout the book, and threeuseful probabilistic inequalities.1.2.1 Notational ConventionsThroughout the entire book we will refer only to discrete probability distributions. Tradi-tionally, a random variable is de�ned as a function from the sample space into the reals (orintegers). In this book we use the term random variable also when referring to functionsmapping the sample space into the set of binary strings. For example, we may say that Xis a random variable assigned values in the set of all strings so that Pr(X = 00) = 13 andPr(X=111) = 23 . This is indeed a non-standard convention, but a useful one. Also, we willrefer directly to the random variables without specifying the probability space on whichthey are de�ned. In most cases the probability space consists of all strings of a particularlength.How to read probabilistic statements. All our probabilistic statements refer to func-tions of random variables which are de�ned beforehand. Typically, we may write Pr(f(X)=1), where X is a random variable de�ned beforehand (and f is a function). An importantconvention is that all occurrences of the same symbol in a probabilistic statement refer tothe same (unique) random variable. Hence, if E(�; �) is an expression depending on two vari-ables and X is a random variable then Pr(E(X;X)) denotes the probability that E(x; x)holds when x is chosen with probability Pr(X=x). Namely,Pr(E(X;X)) =Xx Pr(X=x) � val(E(x; x))where val(E(x; x)) equals 1 if E(x; x) holds and equals 0 otherwise. For example, for everyrandom variable X , we have Pr(X = X) = 1. We stress that if one wishes to discussthe probability that E(x; y) holds when x and y are chosen independently with identicalprobability distribution the one needs to de�ne two independent random variables each withthe same probability distribution. Hence, if X and Y are two independent random variablesthen Pr(E(X; Y)) denotes the probability that E(x; y) holds when the pair (x; y) is chosenwith probability Pr(X=x) � Pr(Y =y). Namely,Pr(E(X; Y)) =Xx;y Pr(X=x) � Pr(Y =y) � val(E(x; y))For example, for every two independent random variables, X and Y , we have Pr(X=Y) = 1only if both X and Y are trivial (i.e., assign the entire probability mass to a single string).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.2. SOME BACKGROUND FROM PROBABILITY THEORY 11Typical random variables. Throughout the entire book, Un denotes a random variableuniformly distributed over the set of strings of length n. Namely, Pr(Un=�) equals 2�n if� 2 f0; 1gn and equals 0 otherwise. In addition, we will occasionally use random variables(arbitrarily) distributed over f0; 1gn or f0; 1gl(n), for some function l : N 7! N. Suchrandom variables are typically denoted by Xn, Yn, Zn, etc. We stress that in some casesXn is distributed over f0; 1gn whereas in others it is distributed over f0; 1gl(n), for somefunction l(�), typically a polynomial. Another type of random variable, the output of arandomized algorithm on a �xed input, is discussed in the next section.1.2.2 Three InequalitiesThe following probabilistic inequalities will be very useful in course of the book. All inequal-ities refer to random variables which are assigned real values. The most basic inequalityis Markov Inequality which asserts that, for random variables assigned values in some in-terval, some relation must exist between the deviation of a value from the expectation ofthe random variable and the probability that the random variable is assigned this value.Speci�cally,Markov Inequality: Let X be a non-negative random variable and v a real number. ThenPr (X�v) < E(X)vEquivalently, Pr(X � r � E(X)) < 1r .Proof: E(X) = Xx Pr(X=x) � x> Xx<vPr(X=x) � 0 +Xx�vPr(X=x) � v= Pr(X�v) � vThe claim follows.Markov inequality is typically used in cases one knows very little about the distributionof the random variable. It su�ces to know its expectation and at least one bound on therange of its values.Exercise 1:1. Let X be a random variable such that E(X) = � and X � 2�. Give an upper boundon Pr(X < �2).

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

12 CHAPTER 1. INTRODUCTION2. Let 0 < �; � < 1, and Y be a random variable ranging in the interval [0; 1] such thatE(Y) = � + �. Give a lower bound on Pr(Y � � + �2).Using Markov's inequality, one gets a \possibly stronger" bound for the deviation of arandom variable from its expectation. This bound, called Chebyshev's inequality, is usefulprovided one has additional knowledge concerning the random variable (speci�cally a goodupper bound on its variance).Chebyshev's Inequality: Let X be a random variable, and � > 0. ThenPr (jX � E(X)j>�) < V(X)�2Proof: We de�ne a random variable Y def= (X � E(X))2, and apply Markov inequality. Weget Pr (jX � E(X)j>�) = Pr �(X � E(X))2 > �2�< E((X � E(X))2)�2and the claim follows.Chebyshev's inequality is particularly useful in the analysis of the error probability of ap-proximation via repeated sampling. It su�ces to assume that the samples are picked in apairwise independent manner.Corollary (Pairwise Independent Sampling): Let X1; X2; :::; Xn be pairwise independentrandom variables with the identical expectation, denoted �, and identical variance, denoted�2. Then Pr�����Pni=1Xin � ����� > �� < �2�2nThe Xi's are pairwise independent if for every i 6= j and all a; b, it holds that Pr(Xi=a ^Xj=b) equals Pr(Xi=a) � Pr(Xj=b).Proof: De�ne the random variables Xi def= Xi � E(Xi). Note that the Xi's are pairwise in-dependent, and each has zero expectation. Applying Chebyshev's inequality to the randomvariable de�ned by the sum Pni=1 Xin , and using the linearity of the expectation operator,we get Pr j nXi=1 Xin � �j > �! < V �Pni=1 Xin ��2= E��Pni=1Xi�2��2 � n2

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.2. SOME BACKGROUND FROM PROBABILITY THEORY 13Now (again using the linearity of E)E0@ nXi=1 Xi!21A = nXi=1 E �X2i�+ X1�i 6=j�nE �XiXj�By the pairwise independence of the Xi's, we get E(XiXj) = E(Xi) � E(Xj), and usingE(Xi) = 0, we get E0@ nXi=1 Xi!21A = n � �2The corollary follows.Using pairwise independent sampling, the error probability in the approximation isdecreasing linearly with the number of sample points. Using totally independent samplingpoints, the error probability in the approximation can be shown to decrease exponentiallywith the number of sample points. (The random variables X1; X2; :::; Xn are said to betotally independent if for every sequence a1; a2; :::; an it folds that Pr(^ni=1Xi = ai) equalsQni=1 Pr(Xi=ai).)The bounds quote below are (weakenings of) a special case of the Martingale Tail In-equality which su�ces for our purposes. The �rst bound, commonly referred to as Cherno�Bound, concerns 0-1 random variables (i.e., random variables which are assigned as valueseither 0 or 1).Cherno� Bound: Let p � 12 , and X1; X2; :::; Xn be independent 0-1 random variables sothat Pr(Xi = 1) = p, for each i. Then for all �, 0 < � � p(1� p), we havePr�����Pni=1Xin � p���� > �� < 2 � e� �22p(1�p) �nWe will usually apply the bound with a constant p � 12 . In this case, n independent samplesgive an approximation which deviates by � from the expectation with probability � which isexponentially decreasing with �2n. Such an approximation is called an (�; �)-approximation,and can be achieved using n = O(��2 � log(1=�)) sample points. It is important to rememberthat the su�cient number of sample points is polynomially related to ��1 and logarithmicallyrelated to ��1. So using poly(n) many samples the error probability (i.e. �) can be madenegligible (as a function in n), but the accuracy of the estimation can be bounded aboveby any �xed polynomial fraction (but cannot be made negligible).A more general bound, useful in the approximations of the expectation of a generalrandom variable (not necessarily 0-1), is given below.Hoefding Inequality: LetX1; X2; :::; Xn be n independent random variables with identicalprobability distribution, each ranging over the (real) interval [a; b], and let � denote the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

14 CHAPTER 1. INTRODUCTIONexpected value of each of these variables. Then,Pr�����Pni=1Xin � ����� > �� < 2 � e� 2�2(b�a)2 �nHoefding Inequality is useful in estimating the average value of a function de�ned overa large set of values. It can be applied provided we can e�ciently sample the set and havea bound on the possible values (of the function).Exercise 2: Let f : f0; 1g� 7! [0; 1] be a polynomial-time computable function, and letF (n) denote the average value of f over f0; 1gn. Namely,F (n) def= Px2f0;1gn f(x)2nLet p(�) be a polynomial. Present a probabilistic polynomial-time algorithm that on input1n outputs an estimate to F (n), denoted A(n), such thatPr�jF (n)� A(n)j > 1p(n)� < 2�nGuidance: The algorithm selects at random polynomially many (how many?) samplepoints si 2 f0; 1gn. These points are selected independently and with uniform probabilitydistribution (why?). The algorithm outputs the average value taken over this sample.Analyze the performance of the algorithm using Hoefding Inequality (hint: de�ne randomvariables Xi = f(si)).1.3 The Computational ModelOur approach to cryptography is heavily based on computational complexity. Thus, somebackground on computational complexity is required for our discussion of cryptography.In this section, we brie
y recall the de�nitions of the complexity classes P , NP , BPP ,non-uniform P (i.e., P=poly), and the concept of oracle machines. In addition, we discussthe type of intractability assumptions used throughout the rest of the book.1.3.1 P, NP, and NP-completenessA conservative approach to computing devices associates e�cient computations with thecomplexity class P . Jumping ahead, we note that the approach taken in this book is a moreliberal one in that it allows the computing devices to use coin tosses.De�nition 1.3.1 P is the class of languages which can be recognized by a (deterministic)polynomial-time machine (algorithm). Language L is recognizable in polynomial-time ifthere exists a (deterministic) Turing machine M and a polynomial p(�) such that

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.3. THE COMPUTATIONAL MODEL 15� On input a string x, machine M halts after at most p(jxj) steps.� M(x) = 1 if and only if x 2 L.Likewise, the complexity class NP is associated with computational problems having solu-tions that, once given, can be e�ciently tested for validity. It is customary to de�ne NPas the class of languages which can be recognized by a non-deterministic polynomial-timemachine. A more fundamental interpretation of NP is given by the following equivalentde�nition.De�nition 1.3.2 A language L is in NP, if there exists a Boolean relation RL � f0; 1g��f0; 1g� and a polynomial p(�) such that RL can be recognized in (deterministic) polynomial-time and x 2 L if and only if there exists a y such that jyj � p(jxj) and (x; y) 2 RL. Sucha y is called a witness for membership of x 2 L.Thus, NP consists of the set of languages for which there exist short proofs of mem-bership that can be e�ciently veri�ed. It is widely believed that P 6= NP, and settlingthis conjecture is certainly the most intriguing open problem in Theoretical Computer Sci-ence. If indeed P 6= NP then there exists a language L 2 NP so that for every algorithmrecognizing L has super-polynomial running-time in the worst-case. Certainly, all NP-complete languages (see de�nition below) will have super-polynomial time complexity inthe worst-case.De�nition 1.3.3 A language is NP-complete if it is in NP and every language in NPis polynomially-reducible to it. A language L is polynomially-reducible to a language L0 ifthere exist a polynomial-time computable function f so that x 2 L if and only if f(x) 2 L0.Among the languages known to be NP-complete are Satis�ablity (of propositional for-mulae), and Graph Colorability.1.3.2 Probabilistic Polynomial-TimeThe basic thesis underlying our discussion is the association of \e�cient" computationswith probabilistic polynomial-time computations. Namely, we will consider as e�cient onlyrandomized algorithms (i.e., probabilistic Turing machines) whose running time is boundedby a polynomial in the length of the input. Such algorithms (machines) can be viewed intwo equivalent ways.One way of viewing randomized algorithms is to allow the algorithm to make randommoves (\toss coins"). Formally this can be modeled by a Turing machine in which thetransition function maps pairs of the form (hstatei; hsymboli) to two possible triples of theform (hstatei; hsymboli; hdirectioni). The next step of such a machine is determined by arandom choice of one of these triples. Namely, to make a step, the machine chooses atrandom (with probability one half for each possibility) either the �rst triple or the second

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

16 CHAPTER 1. INTRODUCTIONone, and then acts accordingly. These random choices are called the internal coin tossesof the machine. The output of a probabilistic machine, M , on input x is not a stringbut rather a random variable assuming strings as possible values. This random variable,denoted M(x), is induced by the internal coin tosses of M . By Pr(M(x) = y) we meanthe probability that machine M on input x outputs y. The probability space is that of allpossible outcomes for the internal coin taken with uniform probability distribution. Thelast sentence is slightly more problematic than it seems. The simple case is when, on inputx, machine M always makes the same number of internal coin tosses (independent of theiroutcome). Since, we only consider polynomial-time machines, we may assume without lossof generality, that the number of coin tosses made by M on input x is independent of theiroutcome, and is denoted by tM (x). We denote by Mr(x) the output of M on input x whenr is the outcome of its internal coin tosses. Then, Pr(M(x) = y) is merely the fraction ofr 2 f0; 1gtM(x) for which Mr(x) = y. Namely,Pr (M(x)=y) = jfr 2 f0; 1gtM(x) :Mr(x)=ygj2tM(x)The second way of looking at randomized algorithms is to view the outcome of theinternal coin tosses of the machine as an auxiliary input. Namely, we consider deterministicmachines with two inputs. The �rst input plays the role of the \real input" (i.e. x) of the�rst approach, while the second input plays the role of a possible outcome for a sequenceof internal coin tosses. Thus, the notation M(x; r) corresponds to the notation Mr(x) usedabove. In the second approach one considers the probability distribution of M(x; r), forany �xed x and a uniformly chosen r 2 f0; 1gtM(x). Pictorially, here the coin tosses are not\internal" but rather supplied to the machine by an \external" coin tossing device.Before continuing, let me remark that one should not confuse the �ctitious model of\non-deterministic" machines with the model of probabilistic machines. The �rst is anunrealistic model which is useful for talking about search problems the solutions to whichcan be e�ciently veri�ed (e.g., the de�nition of NP), while the second is a realistic modelof computation.In the sequel, unless otherwise stated, a probabilistic polynomial-time Turing machinemeans a probabilistic machine that always (i.e., independently of the outcome of its internalcoin tosses) halts after a polynomial (in the length of the input) number of steps. It followsthat the number of coin tosses of a probabilistic polynomial-time machine M is boundedby a polynomial, denoted TM , in its input length. Finally, without loss of generality, weassume that on input x the machine always makes TM(jxj) coin tosses.Thesis: E�cient computations correspond to computations that can be carried out by prob-abilistic polynomial-time Turing machines.A complexity class capturing these computations is the class, denoted BPP , of languagesrecognizable (with high probability) by probabilistic polynomial-time machines. The prob-ability refers to the event \the machine makes correct verdict on string x".

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.3. THE COMPUTATIONAL MODEL 17De�nition 1.3.4 (Bounded-Probability Polynomial-time | BPP): BPP is the class oflanguages which can be recognized by a probabilistic polynomial-time machine (i.e., random-ized algorithm). We say that L is recognized by the probabilistic polynomial-time machineM if� For every x 2 L it holds that Pr(M(x)=1) � 23.� For every x 62 L it holds that Pr(M(x)=0) � 23.The phrase \bounded-probability" indicates that the success probability is boundedaway from 12 . In fact, substituting in De�nition 1.3.4 the constant 23 by any other constantgreater than 12 does not change the class de�ned. More generally:Exercise 1: Prove that De�nition 1.3.4 is robust under the substitution of 23 by 12 + 1p(jxj) ,for every polynomial p(�). Namely, that L 2 BPP if there exists a polynomial p(�) and aprobabilistic polynomial-time machine, M , such that� For every x 2 L it holds that Pr(M(x)=1) � 12 + 1p(jxj) .� For every x 62 L it holds that Pr(M(x)=0) � 12 + 1p(jxj) .Guidance: Given a probabilistic polynomial-time machine M satisfying the above condi-tion, construct a probabilistic polynomial-time machine M 0 as follows. On input x, machineM 0, runs O(p(jxj)) many copies of M , on the same input x, and rules by majority. UseChebyshev's inequality (see Sec. 1.2) to show that M 0 is correct with probability > 23 .Exercise 2: Prove that De�nition 1.3.4 is robust under the substitution of 23 by 1� 2�jxj.Guidance: Similar to Exercise 1, except that you have to use a stronger probabilisticinequality (namely Cherno� bound | see Sec. 1.2).We conclude that languages in BPP can be recognized by probabilistic polynomial-time machines with a negligible error probability. By negligible we call any function whichdecreases faster than one over any polynomial. Namely,De�nition 1.3.5 (negligible): We call a function � : N 7! R negligible if for every poly-nomial p(�) there exists an N such that for all n > N�(n) < 1p(n)For example, the functions 2�pn and n� log2 n, are negligible (as functions in n). Negligiblefunction stay this way when multiplied by any �xed polynomial. Namely, for every negligiblefunction � and any polynomial p, the function �0(n) def= p(n) � �(n) is negligible. It followsthat an event which occurs with negligible probability is highly unlikely to occur even if werepeat the experiment polynomially many times.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

18 CHAPTER 1. INTRODUCTIONConvention: In De�nition 1.3.5 we used the phrase \there exists an N such that for alln > N". In the future we will use the shorter and less tedious phrase \for all su�cientlylarge n". This makes one quanti�er (i.e., the 9N) implicit, and is particularly bene�cial instatements that contain several (more essential) quanti�ers.1.3.3 Non-Uniform Polynomial-TimeA stronger model of e�cient computation is that of non-uniform polynomial-time. Thismodel will be used only in the negative way; namely, for saying that even such machinescannot do something.A non-uniform polynomial-time \machine" is a pair (M; a), where M is a two-inputpolynomial-time machine and a = a1; a2; ::: is an in�nite sequence such that janj = poly(n).For every x, we consider the computation of machine M on the input pair (x; ajxj). Intu-itively, an may be thought as an extra \advice" supplied from the \outside" (together withthe input x 2 f0; 1gn). We stress that machine M gets the same advice (i.e., an) on allinputs of the same length (i.e., n). Intuitively, the advice an may be useful in some cases(i.e., for some computations on inputs of length n), but it is unlikely to encode enoughinformation to be useful for all 2n possible inputs.Another way of looking at non-uniform polynomial-time \machines" is to consider anin�nite sequence of machines,M1;M2; ::: so that both the length of the description ofMn andits running time on inputs of length n are bounded by polynomial in n (�xed for the entiresequence). MachineMn is used only on inputs of length n. Note the correspondence betweenthe two ways of looking at non-uniform polynomial-time. The pair (M; (a1; a2; :::)) (of the�rst de�nition) gives rise to an in�nite sequence of machines Ma1 ;Ma2 ; :::, where Majxj(x) def=M(x; ajxj). On the other hand, a sequence M1;M2; ::: (as in the second de�nition) gives riseto the pair (U; (hM1i; hM2i; :::)), where U is the universal Turing machine and hMni is thedescription of machine Mn (i.e., U(x; hMjxji) = Mjxj(x)).In the �rst sentence of the current subsection, non-uniform polynomial-time has beenreferred to as a stronger model than probabilistic polynomial-time. This statement is validin many contexts (e.g., language recognition as in Theorem 1 below). In particular it willbe valid in all contexts we discuss in this book. So we have the following informal \meta-theorem"Meta-Theorem: Whatever can be achieved by probabilistic polynomial-time machinescan be achieved by non-uniform polynomial-time \machines".The meta-theorem is clearly wrong if one thinks of the task of tossing coins... So themeta-theorem should not be understood literally. It is merely an indication of real theoremsthat can be proven in reasonable cases. Let's consider the context of language recognition.De�nition 1.3.6 The complexity class non-uniform polynomial-time (denoted P=poly) isthe class of languages L which can be recognized by a non-uniform (sequence) polynomial-time \machine". Namely, L 2 P=poly if there exists an in�nite sequence of machines

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.3. THE COMPUTATIONAL MODEL 19M1;M2; ::: satisfying1. There exists a polynomial p(�) such that, for every n, the description of machine Mnhas length bounded above by p(n).2. There exists a polynomial q(�) such that, for every n, the running time of machineMn on each input of length n is bounded above by q(n). has length � p(n).3. For every n and every x 2 f0; 1gn, machine Mn accepts x if and only if x 2 L.Note that the non-uniformity is implicit in the lack of a requirement concerning theconstruction of the machines in the sequence. It is only required that these machines exist.In contrast, if one augments De�nition 1.3.6 by requiring the existence of a polynomial-timealgorithm that on input 1n (n presented in unary) outputs the description of Mn then onegets a cumbersome way of de�ning P . On the other hand, it is obvious that P � P=poly(in fact strict containment can be proven by considering non-recursive unary languages).Furthermore,Theorem 1: BPP � P=poly.Proof: Let M be a probabilistic machine recognizing L 2 BPP. Let �L(x) def= 1 if x 2 Land �L(x) = 0 otherwise. Then, for every x 2 f0; 1g�,Pr(M(x)=�L(x)) � 23Assume, without loss of generality, that on each input of length n, machine M uses thesame number, m = poly(n), of coin tosses. Let x 2 f0; 1gn. Clearly, we can �nd foreach x 2 f0; 1gn a sequence of coin tosses r 2 f0; 1gm such that Mr(x) = �L(x) (in factmost sequences r have this property). But can one sequence r 2 f0; 1gm �t all x 2 f0; 1gn?Probably not (provide an example!). Nevertheless, we can �nd a sequence r 2 f0; 1gn which�ts 23 of all the x's of length n. This is done by a counting argument (which asserts that if23 of the r's are good for each x then there is an r which is good for at least 23 of the x's).However, this does not give us an r which is good for all x 2 f0; 1gn. To get such an rwe have to apply the above argument on a machine M 0 with exponentially vanishing errorprobability. Such a machine is guaranteed by Exercise 2. Namely, for every x 2 f0; 1g�,Pr(M 0(x)=�L(x)) > 1� 2�jxjApplying the argument now we conclude that there exists an r 2 f0; 1gm, denoted rn, whichis good for more than a 1 � 2�n fraction of the x 2 f0; 1gn. It follows that rn is good forall the 2n inputs of length n. Machine M 0 (viewed as a deterministic two-input machine)together with the in�nite sequence r1; r2; ::: constructed as above, demonstrates that L isin P=poly.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

20 CHAPTER 1. INTRODUCTIONFinally, let me mention a more convenient way of viewing non-uniform polynomial-time.This is via (non-uniform) families of polynomial-size Boolean circuits. A Boolean circuit isa directed acyclic graph with internal nodes marked by elements in f^;_;:g Nodes withno ingoing edges are called input nodes, and nodes with no outgoing edges are called outputnodes, A node mark : may have only one child. Computation in the circuit begins withplacing input bits on the input nodes (one bit per node) and proceeds as follows. If thechildren of a node (of indegree d) marked ^ have values v1; v2; :::; vd then the node gets thevalue ^di=1vi. Similarly for nodes marked _ and :. The output of the circuit is read fromits output nodes. The size of a circuit is the number of its edges. A polynomial-size circuitfamily is an in�nite sequence of Boolean circuits, C1; C2; ::: such that, for every n, the circuitCn has n input nodes and size p(n), where p(�) is a polynomial (�xed for the entire family).Clearly, the computation of a Turing machine M on inputs of length n can be simulatedby a single circuit (with n input nodes) having size O((jhMij+ n + t(n))2), where t(n) isa bound on the running time of M on inputs of length n. Thus, a non-uniform sequenceof polynomial-time machines can be simulated by a non-uniform family of polynomial-sizecircuits. The converse is also true as machines with polynomial description length canincorporate polynomial-size circuits and simulate their computations in polynomial-time.The thing which is nice about the circuit formulation is that there is no need to repeat thepolynomiality requirement twice (once for size and once for time) as in the �rst formulation.1.3.4 Intractability AssumptionsWe will consider as intractable those tasks which cannot be performed by probabilisticpolynomial-time machines. However, the adverserial tasks in which we will be interested(e.g., \breaking an encryption scheme", \forging signatures", etc.) can be performed bynon-deterministic polynomial-time machines (since the solutions, once found, can be easilytested for validity). Thus, the computational approach to cryptography (and in particularmost of the material in this book) is interesting only if NP is not contained in BPP(which certainly implies P 6= NP). We use the phrase \not interesting" (rather than\not valid") since all our statements will be of the form \if hintractability assumptionithen huseful consequencei". The statement remains valid even if P = NP (or justhintractability assumptioni which is never weaker than P 6= NP is wrong), but in sucha case the implication is of little interest (since everything is implied by a fallacy).In most places where we state that \if hintractability assumptioni then huseful consequencei"it will be the case that huseful consequencei either implies hintractability assumptionior some weaker form of it, which in turn implies NP�BPP 6= ;. Thus, in light of the currentstate of knowledge in complexity theory, one cannot hope for asserting huseful consequenceiwithout any intractability assumption.In few cases an assumption concerning the limitations of probabilistic polynomial-timemachines (e.g., BPP does not contain NP) will not su�ce, and we will use instead anassumption concerning the limitations of non-uniform polynomial-time machines. Such anassumption is of course stronger. But also the consequences in such a case will be stronger as

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.4. MOTIVATION TO THE FORMAL TREATMENT 21they will also be phrased in terms of non-uniform complexity. However, since all our proofsare obtained by reductions, an implication stated in terms of probabilistic polynomial-time isstronger (than one stated in terms of non-uniform polynomial-time), and will be preferredunless it is either not known or too complicated. This is the case since a probabilisticpolynomial-time reduction (proving implication in its probabilistic formalization) alwaysimplies a non-uniform polynomial-time reduction (proving the statement in its non-uniformformalization), but the converse is not always true. (The current paragraph may be betterunderstood in the future after seeing some concrete examples.)Finally, we mention that intractability assumptions concerning worst-case complexity(e.g., P 6= NP) will not su�ce, because we will not be satis�ed with their correspondingconsequences. Cryptographic schemes which are guaranteed to be hard to break in theworst-case are useless. A cryptographic scheme must be unbreakable on \most cases" (i.e.,\typical case") which implies that it is hard to break on the average. It follows that, sincewe are not able to prove that \worst-case intractability" imply analogous \intractability foraverage case" (such a result would be considered a breakthrough in complexity theory), ourintractability assumption must concern average-case complexity.1.3.5 Oracle MachinesThe original utility of oracle machines in complexity theory is to capture notions of re-ducibility. In this book we use oracle machines for a di�erent purpose altogether. We usean oracle machine to model an adversary which may use a cryptosystem in course of itsattempt to break it.De�nition 1.3.7 A (deterministic/probabilistic) oracle machine is a (deterministic/probabilistic)Turing machine with an additional tape, called the oracle tape, and two special states, calledoracle invocation and oracle appeared. The computation of the deterministic oracle ma-chine M on input x and access to the oracle f : f0; 1g� 7! f0; 1g� is de�ned by the successivecon�guration relation. For con�gurations with state di�erent from \oracle invocation" thenext con�guration is de�ned as usual. Let
 be a con�guration in which the state is \oracleinvocation" and the contents of the oracle tape is q. Then the con�guration following
is identical to
, except that the state is \oracle appeared" and the contents of the oracletape is f(q). The string q is called M 's query and f(q) is called thee oracle reply. Thecomputation of a probabilistic oracle machine is de�ned analogously.We stress that the running time of an oracle machine is the number of steps made duringits computation, and that the oracle's reply on each query is obtained in a single step.1.4 Motivation to the Formal TreatmentIt is indeed unfortunate that our formal treatment of the �eld of cryptography requiresjusti�cation. Nevertheless, we prefer to address this (unjusti�ed) requirement rather thanignore it. In the rest of this section we address three related issues

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

22 CHAPTER 1. INTRODUCTION1. the mere need for a formal treatment of the �eld;2. the practical meaning and/or consequences of the formal treatment;3. the \conservative" tendencies of the treatment.Parts of this section may become more clear after reading any of the Chapters 3{7.1.4.1 The Need to Formalize IntuitionAn abstract justi�cation. We believe that one of the roles of science is to formulate ourintuition about reality so that this intuition can be carefully examined, and consequentlyeither be justi�ed as sound or be rejected as false. Notably, there are many cases in whichour initial intuition turns out to be correct, as well as many cases in which our initialintuition turns out to be wrong. The more we understand the discipline, the better ourintuition becomes. At this stage in history it would be very presumptuous to claim that wehave good intuition about the nature of e�cient computation. In particular, we even don'tknow the answer to a basis question such as whether P is strictly contained in NP , let alonehaving an understanding of what makes one computation problem hard while a seeminglyrelated computational problem is easy. Consequently, we should be extremely careful whenmaking assertions about what can or cannot be e�ciently computed. Unfortunately, makingassertions about what can or cannot be e�ciently computed is exactly what cryptographyis all about... Not to mention that many of the problems of cryptography have a much morecumbersome and delicate description than what is usually standard in complexity theory.Hence, not only that there is a need to formalize \intuition" in general, but the need toformalize \intuition" is particularly required in a sensitive �eld as cryptography.A concrete justi�cation. Cryptography, as a discipline, is well-motivated. Conse-quently, cryptographic issues are being discussed by many researchers, engineers, and stu-dents. Unfortunately, most of these discussions are carried out without a precise de�nitionof their subject matter. Instead it is implicitly assumed that the basic concepts of cryptog-raphy (e.g., secure encryption) are self-evident (since they are so intuitive), and that thereis no need to present adequate de�nitions. The fallacy of this assumption is demonstratedby the abandon of papers (not to mention private discussion) which derive and/or jumpinto wrong conclusions concerning security. In most cases these wrong conclusions can betraced back into implicit misconceptions regarding security, which could not have escapedthe eyes of the authors if made explicitly. We avoid listing all these cases here for severalobvious reasons. Nevertheless, we mention one well-known example.In around 1979, Ron Rivest claimed that no signature scheme that is \proven secure as-suming the intractability of factoring" can resist a \chosen message attack". His argumentwas based on an implicit (and unjusti�ed) assumption concerning the nature of a \proof ofsecurity (which assumes the intractability of factoring)". Consequently, for several years it

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.4. MOTIVATION TO THE FORMAL TREATMENT 23was believe that one has to choose between having a signature scheme \proven to be un-forgeable under the intractability of factoring" and having a signature scheme which resist a\chosen message attack". However, in 1984 Goldwasser, Micali and Rivest (himself) pointedout the fallacy on which Rivest's argument (of 1979) was based, and furthermore presentedsignature schemes which resist a \chosen message attack", under general assumptions. Inparticular, the intractability of factoring su�ces for proving that there exists a signaturescheme which resist \forgery", even under a \chosen message attack".To summarize, the basic concepts of cryptography are indeed very intuitive, yet theyare not self-evident and/or well-understood. Hence, we do not understand these issues wellenough yet to be able to discuss them correctly without using precise de�nitions.1.4.2 The Practical Consequences of the Formal TreatmentAs customary in complexity theory, our treatment is presented in terms of asymptotic anal-ysis of algorithms. This makes the statement of the results somewhat less cumbersome, butis not essential to the underlying ideas. Hence, the results, although stated in an \abstractmanner", lend themselves to concrete interpolations. To clarify the above statement weconsider a generic example.A typical result presented in this book relates two computational problems. The �rstproblem is a simple computational problem which is assumed to be intractable (e.g., in-tractability of factoring), whereas the second problem consists of \breaking" a speci�c imple-mentation of a useful cryptographic primitive (e.g., a speci�c encryption scheme). The ab-stract statement may assert that if integer factoring cannot be performed in polynomial-timethen the encryption scheme is secure in the sense that it cannot be \broken" in polynomial-time. Typically, the statement is proven by a �xed polynomial-time reduction of integerfactorization to the problem of breaking the encryption scheme. Hence, by working out theconstants one can derive a statement of the following type: if factoring integers of X (say300) decimal digits is infeasible in practice then the encryption scheme is secure in practiceprovided one uses a key of length Y (say 500) decimal digits. Actually, the statement willhave to be more cumbersome so that it includes also the computing power of the real ma-chines. Namely, if factoring integers of 300 decimal digits cannot be done using 1000 yearsof a Cray then the encryption scheme cannot be broken in 10 years by a Cray, providedone uses a key of length 500 decimal digits. We stress that the relation between the fourparameters mentioned above can be derived from the reduction (used to prove the abstractstatement). For most results these reduction yield a reasonable relation between the var-ious parameters. Consequently, all cryptographic primitives considered in this book (i.e.,public and private-key encryption, signatures, zero-knowledge, pseudorandom generators,fault-tolerant protocols) can be implemented in practice based on reasonable intractabilityassumptions (such as the unfeasibility of factoring 500 digit integers).In few cases, the reductions currently known do not yield practical consequences, sincethe \security parameter" (e.g., key length) in the derived cryptographic primitive has to betoo large. In all these cases, the \impracticality" of the result is explicitly stated, and the

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

24 CHAPTER 1. INTRODUCTIONreader is encouraged to try to provide a more e�cient reduction that would have practicalconsequences. Hence, we do not consider these few cases as indicating a de�ciency in ourapproach, but rather as important open problems.1.4.3 The Tendency to be ConservativeWhen reaching the chapters in which cryptographic primitives are de�ned (speci�cally inChapters 3{7), the reader may notice that we are unrealistically \conservative" in ourde�nitions of security. In other words, we are unrealistically liberal in our de�nition ofinsecurity. Technically speaking, this tendency raises no problems since our primitiveswhich are secure in a very strong sense are certainly secure also in the (more restricted)reasonable sense. Furthermore, we are able to implement such (strongly secure) primitivesusing reasonable intractability assumptions, and in most cases one can show that suchassumptions are necessary even for much weaker (and in fact less than minimal) notionsof security. Yet the reader may wonder why we choose to present de�nitions which seemstronger than what is required in practice.The reason to our tendency to be conservative, when de�ning security, is that it isextremely di�cult to capture what is exactly require in practice. Furthermore, a certainlevel in security may be required in one application, whereas another level is requiredin a di�erent application. In seems impossible to cover whatever can be required in allapplications without taking our conservative approach. In the sequel we shall see how onecan de�ne security in a way covering all possible practical applications.
Author's Note: First draft written mainly in Summer of 1991.

Extracted from a working draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

