Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Foundations ot Cryptography

(Fragments of a Book — Version 2.03)

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

February 27, 1998

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

(©Copyright 1997 by Oded Goldreich.
Permission to make copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that new

copies bear this notice and the full citation on the first page. Abstracting with credit is permitted.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

II

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Preface

to Dana

Revolutionary developments which took place in the previous decade have transformed
cryptography from a semi-scientific discipline to a respectable field in theoretical Computer
Science. In particular, concepts such as computational indistinguishability, pseudorandom-
ness and zero-knowledge interactive proofs were introduced and classical notions as secure
encryption and unforgeable signatures were placed on sound grounds.

This book attempts to present the basic concepts, definitions and results in cryptog-
raphy. The emphasis is placed on the clarification of fundamental concepts and their in-
troduction in a way independent of the particularities of some popular number theoretic
examples. These particular examples played a central role in the development of the field
and still offer the most practical implementations of all cryptographic primitives, but this
does not mean that the presentation has to be linked to them.

111

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

v

Why fragments?

Several years ago, Shafi Goldwasser and myself have decided to write together
a book titled “Foundations of Cryptography”. In a first burst of energy, I've
written most of the material appearing in these fragments, but since then very
little progress has been done. The chances that we will complete our original plan
within a year or two seem quite slim. In fact, we even fail to commit ourselves
to a date on which we will resume work on this project.

What is in these fragments?

These fragments contain a full draft for three major chapters and an introduction
chapter. The three chapters are the chapters on computational difficulty (or
one-way functions), pseudorandom generators and zero-knowledge. However,
none of these chapters has been carefully proofread and I expect them to be full
of various mistakes ranging from spelling and grammatical mistakes to minor
technical inaccuracies. I hope and believe that they are no fatal mistakes, but I
cannot guarantee this either.

This edition:
This is the second edition of the fragments with the most important modification
being the addition of a missing section on non-interactive zero-knowledge.

A major thing which is missing:
An updated list of references is indeed missing. Instead I enclose an old anno-
tated list of references (compiled mostly in February 1989).

Author’s Note: Text appearing in italics within indented paragraphs, such as this
one, is not part of the book, but rather part of the later comments added to its
fragments...

Organization

Tolls, Utilities and Beyong the Basics...

Using this book

Author’s Note: Giving a course based on the material which appears in these frag-
ments is indeed possible, but kind of strange since the basic tasks of encrypting
and signing are not covered.

e Chapters, sections, subsections, and subsubsections denoted by an asterisk (*) were
intended for advanced reading.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

¢ Historical notes and suggestions for further reading are provided at the end of each
chapter.

Author’s Note: However, a corresponding list of reference is not provided.
Instead, the read may try to trace the paper by using the enclosed annotated
list of references (dating to 1989).

Author’s Note: Written in Tel-Aviv, mainly between June 1991 and November
1992.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

VI

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Acknowledgements

. very little do we have and inclose which we can call our own in the deep
sense of the word. We all have to accept and learn, either from our predecessors
or from our contemporaries. Even the greatest genius would not have achieved
much if he had wished to extract everything from inside himself. But there
are many good people, who do not understand this, and spend half their lives
wondering in darkness with their dreams of originality. I have known artists who
were proud of not having followed any teacher and of owing everything only to
their own genius. Such fools!

[Goethe, Conversations with Eckermann, 17.2.1832]

First of all, I would like to thank three remarkable people who had a tremendous influ-
ence on my professional development. Shimon Even introduced me to theoretical computer
science and closely guided my first steps. Silvio Micali and Shafi Goldwasser led my way
in the evolving foundations of cryptography and shared with me their constant efforts of
further developing these foundations.

I have collaborated with many researchers, yet I feel that my collaboration with Benny
Chor and Avi Wigderson had a fundamental impact on my career and hence my develop-
ment. I would like to thank them both for their indispensable contribution to our joint
research, and for the excitement and pleasure I had when collaborating with them.

Leonid Levin does deserve special thanks as well. T had many interesting discussions
with Lenia over the years and sometimes it took me too long to realize how helpful these
discussions were.

Clearly, continuing in this pace will waste too much of the publisher’s money. Hence, 1
confine myself to listing some of the people which had contributed significantly to my un-
derstanding of the field. These include Len Adleman, Laszlo Babai, Mihir Bellare, Michael
Ben-Or, Manuel Blum, Ran Canetti, W. Diffie, Cynthia Dwork, Uri Feige, Mike Fischer,
Lance Fortnow, Johan Hastad, M. Hellman, Russel Impagliazzo, Joe Kilian, Hugo Kraw-
cyzk, Mike Luby, R. Merkle, Moni Naor, Noam Nisan, Rafail Ostrovsky, Erez Petrank,
Michael Rabin, Charlie Rackofl, Steven Rudich, Ron Rivest, Claus Schnorr, Mike Sipser,
Adi Shamir, Andy Yao, and Moti Yung.

VII

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

VIII

Author’s Note: I've probably forgot a few names and will get myself in deep
trouble for it. Wouldn’t it be simpler and safer just to acknowledge that such a
task is infeasible?

In addition, I would like to acknowledge helpful exchange of ideas with Ishai Ben-
Aroya, Richard Chang, [van Damgard, Amir Herzberg, Eval Kushilevitz, Nati Linial, Yishay
Mansour, Yair Oren, Phil Rogaway, Ronen Vainish, R. Venkatesan, Yacob Yacobi, and
David Zuckerman.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Contents

1 Introduction 3
1.1 Cryptography — Main Topics o 3
1.1.1 Encryption Schemes Lo, 3

1.1.2 Pseudorandom Generators Lo, 5

1.1.3 Digital Signatures o 6

1.1.3.1 Message authentication 6

1.1.3.2 Signatures widen the scope of cryptography 7

1.1.4 Fault-Tolerant Protocols and Zero-Knowledge Proofs 8

1.1.4.1 Simultaneity problems 8

1.1.4.2 Secure implementation of protocols and trusted parties . . 8

1.1.4.3 Zero-knowledge as a paradigm 9

1.2 Some Background from Probability Theory 10
1.2.1 Notational Conventions 10

1.2.2 Three Inequalities 11

1.3 The Computational Model 0o oo 14
1.3.1 P, NP, and NP-completeness 14

1.3.2 Probabilistic Polynomial-Time 15

1.3.3 Non-Uniform Polynomial-Time 18

1.3.4 Intractability Assumptions 20

1.3.5 Oracle Machines 21

1.4 Motivation to the Formal Treatment 21
1.4.1 The Need to Formalize Intuition 22

1.4.2 The Practical Consequences of the Formal Treatment 23

1.4.3 The Tendency to be Conservative. 24

I Basic Tools 25
2 Computational Difficulty 27
2.1 One-Way Functions: Motivation 27
2.2 One-Way Functions: Definitions 28

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

X CONTENTS
2.2.1 Strong One-Way Functions 28
2.2.2 Weak One-Way Functions 30
2.2.3 Two Useful Length Conventions 31

2.2.3.1 One-way functions defined only for some lengths 31

2.2.3.2 Length-regular and length-preserving one-way functions . . 33

2.2.4 Candidates for One-Way Functions 34
2.2.4.1 Integer factorization 34

2.2.4.2 Decoding of random linear codes 35

2.2.4.3 The subset sum problem 35

2.2.5 Non-Uniformly One-Way Functions 36

2.3 Weak One-Way Functions Imply Strong Ones 37
2.4 One-Way Functions: Variations, 42
2.4.1 * Universal One-Way Function 43
2.4.2 One-Way Functions as Collections 44
2.4.3 Examples of One-way Collections (RSA, Factoring, DLP) 45
2.4.3.1 The RSA function, 46

2.4.3.2 The Rabin function 47

2.4.3.3 The Factoring Permutations 47

2.4.3.4 Discrete Logarithms oL 47

2.4.4 Trapdoor one-way permutations 48
2.4.4.1 The Definition o oL 48

2.4.4.2 The RSA (or factoring) Trapdoor 50

2.4.5 * Clawfree Functions 50
2.4.5.1 The Definition L. 50

2.4.5.2 The DLP Clawfree Collection 51

2.4.5.3 The Factoring Clawfree Collection 52

2.4.6 On Proposing Candidates 53

2.5 Hard-Core Predicates 53
2.5.1 Definitiono e 54
2.5.2 Hard-Core Predicates for any One-Way Function 54
2.5.3 * Hard-Core Functions 58

2.6 * Efficient Amplification of One-way Functions 62
2.7 Miscellaneous L e 67
2.7.1 Historical Notes 67
2.7.2 Suggestion for Further Reading 68
2.7.3 Open Problems 69
2.7.4 EXerciseso e e e e e e 69

3 Pseudorandom Generators 75
3.1 Motivating Discussion L Lo 75

3.1.1 Computational Approaches to Randomness 76

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

CONTENTS X1
3.1.2 A Rigorous Approach to Pseudorandom Generators 76

3.2 Computational Indistinguishability 77
3.2.1 Definitiono 77
3.2.2 Relation to Statistical Closeness 79
3.2.3 Indistinguishability by Repeated Experiments 80
3.2.4 Pseudorandom Ensembleso 84

3.3 Definitions of Pseudorandom Generators 84
3.3.1 * A General Definition of Pseudorandom Generators 84
3.3.2 Standard Definition of Pseudorandom Generators. 85
3.3.3 Increasing the Expansion Factor of Pseudorandom Generators . .. 86
3.3.4 The Significance of Pseudorandom Generators 89
3.3.5 Pseudorandom Generators imply One-Way Functions 90

3.4 Constructions based on One-Way Permutations 91
3.4.1 Construction based on a Single Permutation. 91
3.4.2 Construction based on Collections of Permutations 93
3.4.3 Practical Constructions 0. 95

3.5 * Construction based on One-Way Functions 95
3.5.1 Using 1-1 One-Way Functions 95
3.5.2 Using Regular One-Way Functions 101
3.5.3 Going beyond Regular One-Way Functions 105

3.6 Pseudorandom Functions 0 o oo 106
3.6.1 Definitionso L 106
3.6.2 Construction L e 108
3.6.3 A general methodology L. 113

3.7 * Pseudorandom Permutations, 114
3.7.1 Definitionso L 114
3.7.2 Construction L 116

3.8 Miscellaneous L L e 118
3.8.1 Historical Notes 118
3.8.2 Suggestion for Further Reading 119
3.8.3 Open Problems 120
3.8.4 EXercises e e e e e e 120

4 Zero-Knowledge Proof Systems 127
4.1 Zero-Knowledge Proofs: Motivation 128
4.1.1 The Notion of a Proof 129
4.1.1.1 A Proof as a fixed sequence or as an interactive process . . 129

4.1.1.2 Prover and Verifier oo 0oL 129

4.1.1.3 Completeness and Validity 130

4.1.2 Gaining Knowledge Lo o oo 130

4.2 Interactive Proof Systems oo Lo 132

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

XI1 CONTENTS
4.2.1 Definition oL 132
4.2.1.1 Interaction 132

4.2.1.2 Conventions regarding interactive machines 134

4.2.1.3 Proofsystems o o 134

4.2.2 An Example (Graph Non-Isomorphism in IP) 137
4.2.3 Augmentation to the Model 0oL 140

4.3 Zero-Knowledge Proofs: Definitions 141
4.3.1 Perfect and Computational Zero-Knowledge 141
4.3.2 An Example (Graph Isomorphism in PZK) 145
4.3.3 Zero-Knowledge w.r.t. Auxiliary Inputs 151
4.3.4 Sequential Composition of Zero-Knowledge Proofs 153
What about parallel composition? 0oL, 158

4.4 Zero-Knowledge Proofs for NP oL, 158
4.4.1 Commitment Schemes oo 158
4.4.1.1 Definitiono oL 159

4.4.1.2 Construction based on any one-way permutation 161

4.4.1.3 Construction based on any one-way function 161

4.4.1.4 Extensions e 163

4.4.2 Zero-Knowledge proof of Graph Coloring 163
4.4.2.1 Motivating discussiono 163

4.4.2.2 The interactive proof oo oo, 164

4.4.2.3 Proof of Proposition 4.4.7 000, 166

4.4.2.4 Concluding remarks 173

4.4.3 The General Result and Some Applications 174
4.4.4 Efficiency Considerations 0oL, 177
4.4.4.1 Standard efficiency measures 177

4.4.4.2 Knowledge Tightness: a particular efficiency measure . . . 178

4.5 * Negative Results 179
4.5.1 Implausibility of an Unconditional “NP in ZK” Result 179
4.5.1.1 BPP C CZK implies weak forms of one-wayness 180

4.5.1.2 Zero-knowledge for “hard” languages yield one-way functions 180

4.5.2 Implausibility of Perfect Zero-Knowledge proofs for all of NP 181
4.5.3 Zero-Knowledge and Parallel Composition 181
4.5.3.1 Failure of the Parallel Composition Conjecture 181

4.5.3.2 Problems with “natural” candidates 182

4.6 * Witness Indistinguishability and Hiding 184
4.6.1 Definitions oL 184
4.6.1.1 Witness indistinguishability 185

4.6.1.2 Witness hiding 0. 186

4.6.2 Parallel Composition Lo 187

4.6.3 Constructions o e e 188

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

CONTENTS XTI1
4.6.3.1 Constructions of witness indistinguishable proofs 188

4.6.3.2 Constructions of witness hiding proofs 188

4.6.4 Applications oL Lo 190

4.7 * Proofs of Knowledge 190
4.7.1 Definitiono 190
4.7.1.1 Preliminaries o o 191

4.7.1.2 Knowledge verifiers 0oL 192

4.7.2 Observationso o 192
4.7.3 Applications oL Lo 193
4.7.3.1 Non-oblivious commitment schemes 193

4.7.3.2 Chosen message attacks 194

4.7.3.3 A zero-knowledge proof system for GNI 194

4.7.4 Proofs of Identity (Identification schemes) 194
4.7.4.1 Definitiono 195

4.7.4.2 Identification schemes and proofs of knowledge 196

4.7.4.3 Identification schemes and proofs of ability 198

4.7.5 Strong Proofs of Knowledge 198

4.8 * Computationally-Sound Proofs (Arguments). 201
4.8.1 Definitiono e 201
4.8.2 Perfect Commitment Schemes L Lo, 202
4.8.2.1 Definitiono 203

4.8.2.2 Construction based on one-way permutations 204

4.8.2.3 Construction based on clawfree collections 205

4.8.2.4 Commitment Schemes with a posteriori secrecy 206

4.8.2.5 Nonuniform computational unambiguity 207

4.8.3 Perfect Zero-Knowledge Arguments for NP 208
4.8.4 Zero-Knowledge Arguments of Polylogarithmic Efficiency 209

4.9 * Constant Round Zero-Knowledge Proofs 211
4.9.1 Using commitment schemes with perfect secrecy 212
4.9.2 Bounding the power of cheating provers 217
4.9.2.1 Non-oblivious commitment schemes 217

4.9.2.2 Modifying Construction 4.9.1 218

4.10 * Non-Interactive Zero-Knowledge Proofs 220
4.10.1 Basic Definitions Lo oo 220
4.10.2 Constructions« . v v v i e e e e 221
4.10.3 Extensions: many assertions of varying length 226

4.11 * Multi-Prover Zero-Knowledge Proofs 229
4.11.1 Definitions oL oL 229
4.11.1.1 The two-partner model 229

4.11.1.2 Two-prover interactive proofs 230

4.11.2 Two-Senders Commitment Schemes 231

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

X1V CONTENTS
4.11.2.1 A Definitiono o 231

4.11.2.2 A Construction o oo o 233

4.11.3 Perfect Zero-Knowledge for NP 235

4.11.4 Applications oL oL e 237

4.12 Miscellaneouso oL e e 237
4.12.1 Historical Notes 237

4.12.2 Suggestion for Further Reading 239

4.12.3 Open Problems L 240

4.12.4 EXercises v v v it e e e e e e e e e e 241

II Basic Utilities 247
5 Encryption Schemes 249
5.1 The Basic Setting e 249
BT Overviewo e e 250

5.1.2 A Formulation of Encryption Schemes 251

5.2 Security of Encryption Schemes o 0o oo L 252
5.2.1 Semantic Security Lo o e 253

5.2.1.1 * Discussion of some definitional choices 254

5.2.2 Indistinguishability of Encryptions 255

5.2.3 Equivalence of the Security Definitions 256

5.2.4 Multiple Messages e 259

5.3 Constructions of Secure Encryption Schemes 262
5.3.1 Stream-Ciphers o 262

5.3.2 Block-Ciphers 263

5.3.3 Private-key encryption schemes 264

5.3.4 Public-key encryption schemes 265

5.4 Stronger notions of security L oL o oL 266
5.4.1 Chosen plaintext attack 0 oo 267

5.4.2 Chosen ciphertext attack Lo 268

5.4.3 Non-malleable encryption schemes 268

5.5 Miscellaneous L L e 268
5.5.1 Historical Notes L 268

5.5.2 Suggestion for Further Reading 269

5.5.3 Open Problems 270

5.5.4 Exerciseso e e 270

6 Digital Signatures and Message Authentication 273
6.1 Signatures — Brief Summary from my Essay 273
6.1.1 Definitions o 274

6.1.2 Constructions o o o e e e e e 275

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRY PTOGRAPHY .

CONTENTS

6.1.3 Some Suggestions for Further Reading

7 Cryptographic Protocols
7.1 Cryptographic Protocols — Brief Summary from my Essay

7.1.1 Definitions oo
7.1.2 Constructions L oo
7.1.3 Some Suggestions for Further Reading

IIT Beyond the Basics
8 * New Frontiers

9 * The Effect of Cryptography on Complexity Theory

9.1 The power of Interactive Proofs
9.2 Probabilistically Checkable Proofs

10 * Related Topics

IV Appendices

A Annotated List of References (compiled Feb. 1989)

A.0 Main References o
Al General . ..o
A.2 Hard Computational Problems
A3 Encryption
A4 Pseudorandommness oL oo
A5 Signatures and Commitment Schemes
A.6 Interactive Proofs, Zero-Knowledge and Protocols
A.7 Additional Topicso o
A.8 Historical Background

See copyright notice.

281

...... 281
...... 281
...... 283
...... 283

285

287

289

...... 289
...... 289

291

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

2 CONTENTS

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

Chapter 1

Introduction

In this chapter we shortly discuss the goals of cryptography. In particular, we discuss
the problems of secure encryption, digital signatures, and fault-tolerant protocols. These
problems lead to the notions of pseudorandom generators and zero-knowledge proofs which
are discussed as well.

Our approach to cryptography is based on computational complexity. Hence, this intro-
ductory chapter contains also a section presenting the computational models used through-
out the book. Likewise, the current chapter contains a section presenting some elementary
backgound from probability theory, which is used extensively in the sequal.

1.1 Cryptography — Main Topics

Traditionally, cryptography has been associated with the problem of designing and analysing
encryption schemes (i.e., schemes which provide secret communication over insecure commu-
nication media). However, nowadays, also problems such as constructing unforgeable digital
signatures and designing fault-tolerant protocols, are considered as falling in the domain of
cryptography. Furthermore, it turns out that notions as “pseudorandom generators” and
“zero-knowledge proofs” are very related to the above problems, and hence must be treated
as well in a book on cryptography. In this section we briefly discuss the above-mentioned
terms.

1.1.1 Encryption Schemes

The problem of providing secret communication over insecure media is the most basic prob-
lem of cryptography. The setting of this problem consists of two parties communicating
through a channel which is possibly tapped by an adversary. The parties wish to exchange
information with each other, but keep the “wiretapper” as ignorant as possible regrading
the contents of this information. Loosely speaking, an encryption scheme is a protocol
allowing these parties to communicate secretly with each other. Typically, the encryption

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

4 CHAPTER 1. INTRODUCTION

scheme consists of a pair of algorithms. One algorithm, called encryption, is applied by
the sender (i.e., the party sending a message), while the other algorithm, called decryp-
tion, is applied by the receiver. Hence, in order to send a message, the sender first applies
the encryption algorithm to the message, and sends the result, called the ciphertext, over
the channel. Upon receiving a ciphertext, the other party (i.e., the receiver) applies the
decryption algorithm to it, and retrieves the original message (called the plaintext).

In order for the above scheme to provide secret communication, the communicating
parties (at least the receiver) must know something which is not known to the wiretapper.
(Otherwise, the wiretapped can decrypt the ciphertext exactly as done by the receiver.) This
extra knowledge may take the form of the decryption algorithm itself, or some parameters
and/or auxiliary inputs used by the decryption algorithm. We call this extra knowledge the
decryption key. Note that, without loss of generality, we may assume that the decryption
algorithm is known to the wiretapper and that the decryption algorithm needs two inputs:
a ciphertext and a decryption key. We stress that the existence of a secret key, not known
to the wiretapper, is merely a necessary condition for secret communication.

Evaluating the “security” of an encryption scheme is a very tricky business. A pre-
liminary task is to understand what is “security” (i.e., to properly define what is meant
by this intuitive term). Two approaches to defining security are known. The first (“clas-
sic”) approach is information theoretic. It is concerned with the “information” about the
plaintext which is “present” in the ciphertext. Loosely speaking, if the ciphertext contains
information about the plaintext then the encryption scheme is considered insecure. It has
been shown that such high (i.e., “perfect”) level of security can be achieved only if the
key in use is at least as long as the total length of the messages sent via the encryption
scheme. The fact, that the key has to be longer than the information exchanged using it, is
indeed a drastic limitation on the applicability of such encryption schemes. In particular,
it is impractical to use such keys in case huge amounts of information need to be secretly
communicated (as in computer networks).

The second (“modern”) approach, followed in the current book, is based on computa-
tional complexity. This approach is based on the observation that it does not matter
whether the ciphertext contains information about the plaintext, but rather whether this in-
formation can be efficiently extracted. In other words, instead of asking whether it is
possible for the wiretapper to extract specific information, we ask whether it is feasible for
the wiretapper to extract this information. It turns out that the new (i.e., “computational
complexity”) approach offers security even if the key is much shorter than the total length
of the messages sent via the encryption scheme. For example, one may use “psendorandom
generators” (see below) which expand short keys into much longer “pseudo-keys”, so that
the latter are as secure as “real keys” of comparable length.

In addition, the computational complexity approach allows the introduction of concepts
and primitives which cannot exist under the information theoretic approach. A typical
example is the concept of public-key encryption schemes. Note that in the above discus-
sion we concentrated on the decryption algorithm and its key. It can be shown that the

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.1. CRYPTOGRAPHY — MAIN TOPICS 5

encryption algorithm must get, in addition to the message, an auxiliary input which de-
pends on the decryption key. This auxiliary input is called the encryption key. Traditional
encryption schemes, and in particular all the encryption schemes used in the millenniums
until the 1980°s, operate with an encryption key equal to the decryption key. Hence, the
wiretapper in this schemes must be ignorant of the encryption key, and consequently the
key distribution problem arises (i.e., how can two parties wishing to communicate over an
insecure channel agree on a secret encryption/decryption key). (The traditional solution
is to exchange the key through an alternative channel which is secure, though “more ex-
pensive to use”, for example by a convoy.) The computational complexity approach allows
the introduction of encryption schemes in which the encryption key may be given to the
wiretapper without compromising the security of the scheme. Clearly, the decryption key
in such schemes is different and furthermore infeasible to compute from the encryption key.
Such encryption scheme, called public-key, have the advantage of trivially resolving the key
distribution problem since the encryption key can be publicized.

In the chapter devoted to encryption schemes, we discuss private-key and public-key en-
cryption schemes. Much attention is placed on defining the security of encryption schemes.
Finally, constructions of secure encryption schemes based on various intractability assump-
tions are presented. Some of the constructions presented are based on pseudorandom gen-
erators, which are discussed in a prior chapter. Other constructions use specific one-way
functions such as the RSA function and/or squaring modulo a composite number.

1.1.2 Pseudorandom Generators

It turns out that pseudorandom generators play a central role in the construction of encryp-
tion schemes (and related schemes). In particular, pseudorandom generators are the clue
to the construction of private-key encryption schemes, and this observation is often used in
practice (usually implicitly).

Although the term “pseudorandom generators” is commonly used in practice, both in
the contents of cryptography and in the much wider contents of probabilistic procedures, it is
important to realize that this term is seldom associated a precise meaning. We believe that
using a term without knowing what it means is dangerous in general, and in particular in a
delicate business as cryptography. Hence, a precise treatment of pseudorandom generators
is central to cryptography.

Loosely speaking, a pseudorandom generator is a deterministic algorithm expanding
short random seeds into much longer bit sequences which appear to be “random” (although
they are not). It other words, although the output of a pseudorandom generator is not
really random, it is infeasible to tell the difference. It turns out that pseudorandomness and
computational difficulty are linked even in a more fundamental manner, as pseudorandom
generators can be constructed based on various intractability assumptions. Furthermore,
the main result in the area asserts that pseudorandom generators exists if and only if one-
way functions exists.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

6 CHAPTER 1. INTRODUCTION

The chapter devoted to pseudorandom generators starts with a treatment of the con-
cept of computational indistinguishability. Pseudorandom generators are defined next, and
constructed using special types of one-way functions (defined in a prior chapter). Pseudo-
random functions are defined and constructed as well.

1.1.3 Digital Signatures

A problem which did not exist in the “pre-computerized” world is that of a “digital signa-
ture”. The need to discuss “digital signatures” has arise with the introduction of computer
communication in business environment in which parties need to commit themselves to
proposals and/or declarations they make. Discussions of “unforgeable signatures” did take
place also in previous centuries, but the objects of discussion were handwritten signatures
(and not digital ones), and the discussion was not perceived as related to “cryptography”.

Relations between encryption and signature methods became possible with the “digital-
ization” of both, and the introduction of the computational complexity approach to security.
Loosely speaking, a scheme for unforgeable signatures requires that

e cach user can efficiently generate his own signature on documents of his choice;

e each user can efficiently verify whether a given string is a signature of another (specific)
user on a specific document; but

e nobody can efficiently produce signatures of other users to documents they did not
sign.

We stress that the formulation of unforgeable digital signatures provides also a clear
statement of the essential ingredients of handwritten signatures. The ingredients are each
person’s ability to sign for himself, a universally agreed verification procedure, and the belief
(or assertion) that it is infeasible (or at least hard) to forge signatures in a manner that
pass the verification procedure. Clearly, it is hard to state to what extent do handwritten
signatures meet these requirements. In contrast, our discussion of digital signatures will
supply precise statements concerning the extend by which digital signatures meet the above
requirements. Furthermore, unforgeable digital signature schemes can be constructed using
the same computational assumptions as used in the construction of encryption schemes.

In the chapter devoted to signature schemes, much attention is placed on defining the
security (i.e., unforgeability) of these schemes. Next, constructions of unforgeable signature
schemes based on various intractability assumptions are presented. In addition, we treat
the related problem of message authentication.

1.1.3.1 Message authentication

Message authentication is a task related to the setting considered for encryption schemes,
i.e., communication over an insecure channel. This time, we consider an active adversary

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.1. CRYPTOGRAPHY — MAIN TOPICS 7

which is monitoring the channel and may alter the messages sent on it. The parties com-
municating through this insecure channel wish to authenticate the messages they send so
their counterpart can tell an original message (sent by the sender) from a modified one (i.e.,
modified by the adversary). Loosely speaking, a scheme for message authentication requires
that

e each of the communicating parties can efficiently generate an authentication tag to
any message of his choice;

e each of the communicating parties can efficiently verify whether a given string is an
authentication tag of a given message; but

e no external adversary (i.e., a party other than the communicating parties) can effi-
ciently produce authentication tags to messages not sent by the communicating parties.

In some sense “message authentication” is similar to digital signatures. The difference
between the twois that in the setting of message authentication the adversary is not required
to be able to verify the validity of authentication tags produced by the legitimate users,
whereas in the setting of signature schemes the adversary is required to be able to verify the
validity of signatures produced by other users. Hence, digital signatures provide a solution
to the message authentication problem. On the other hand, message authentication schemes
do not necessarily constitute a digital signature scheme.

1.1.3.2 Signatures widen the scope of cryptography

Considering the problem of digital signatures as belonging to cryptography, widens the
scope of this area from the specific “secret communication problem” to a variety of problems
concerned with limiting the “gain” obtained by “dishonest” behaviour of parties (that are
either internal or external to the system). Specifically

e In the “secret communication problem” (solved by use of encryption schemes) one
wishes to reduce as much as possible the information that a potential wiretapper may
extract from the communication between two (legitimate) users. In this case, the
legitimate system consists of the two communicating parties, and the wiretapper is
considered as an external (“dishonest”) party.

e In the “message authentication problem” one aims at prohibiting an (external) wire-
tapper from modifying the communication between two (legitimate) users.

e In the “signature problem” one aims at supplying all users of a system with a way
of making self-binding statements so that other users may not make statements that
bind somebody else. In this case, the legitimate system consists of the set of all users
and a potential forger is considered as an internal yet dishonest user.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

8 CHAPTER 1. INTRODUCTION

Hence, in the wide sense, cryptography is concerned with any problem in which one wishes
to limit the affect of dishonest users. A general treatment of such problems is captured by
the treatment of “fault-tolerant” (or cryptographic) protocols.

1.1.4 Fault-Tolerant Protocols and Zero-Knowledge Proofs

A discussion of signature schemes naturally leads to a discussion of cryptographic protocols,
since it is of natural concern to ask under what circumstances should a party send his
signature to another party. In particular, problems like mutual simultaneous commitment
(e.g., contract signing), arise naturally. Another type of problems, which are motivated
by the use of computer communication in the business environment, consists of “secure
implementation” of protocols (e.g., implementing secret and incorruptible voting).

1.1.4.1 Simultaneity problems

A typical example of a simultaneity problem is the problem of simultaneous exchange of
secrets, of which contract signing is a special case. The setting in a simultaneous exchange
of secrets consists of two parties, each holding a “secret”. The goal is to execute a protocol
so that if both parties follow it correctly then at termination each holds its counterpart’s
secret, and in any case (even if one party “cheats”) the first party “holds” the second
party’s secret if and only if the second party “holds” the first party’s secret. Simultaneous
exchange of secrets can be achieved only when assuming the existence of third parties which
are trusted to some extend.

Simultaneous exchange of secrets can be easily achieved using the active participation
of a trusted third party. Each party sends its secret to the trusted party (using a secure
channel), who once receiving both secrets send both of them to both parties. There are two
problems with this solution

1. The solution requires active participation of an “external” party in all cases (i.e., also
in case both parties are honest). We note that other solutions requiring milder forms
of participation (of external parties) do exist, yet further discussion is postponed to
the chapter devoted to cryptographic protocols.

2. The solution requires the existence of a totally trusted entity. In some applications
such an entity does not exist. Nevertheless, in the sequel we discuss the problem of
implementing a trusted third party by a set of users with an honest majority (even if
the identity of the honest users is not known).

1.1.4.2 Secure implementation of protocols and trusted parties

A different type of protocol problems are the problems concerned with the secure implemen-
tation of protocols. To be more specific, we discuss the problem of evaluating a function
of local inputs each held by a different user. An illustrative and motivating example is

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.1. CRYPTOGRAPHY — MAIN TOPICS 9

voting, in which the function is majority and the local input held by user A is a single bit
representing the vote of user A (e.g., “Pro” or “Con”). We say that a protocol implements
a secure evaluation of a specific function if it satisfies

o privacy: No party “gains information” on the input of other parties, beyond what is
deduced from the value of the function; and

e robustness: No party can “influence” the value of the function, beyond the influence
obtained by selecting its own input.

It is sometimes required that the above conditions hold with respect to “small” (e.g., mi-
nority) coalitions of parties (instead of single parties).

Clearly, if one of the users is known to be totally trusted then there exist a simple
solution to the problem of secure evaluation of any function. Each user just sends its input
to the trusted party (using a secure channel), who once receiving all inputs, computes the
function, sends te outcome to all users, and erase all intermediate computations (including
the inputs received) from its memory. Certainly, it is unrealistic to assume that a party
can be trusted to such an extend (e.g. that it erases voluntarily what it has “learnt”).
Nevertheless, we have seen that the problem of implementing secure function evaluation
reduces to the problem of implementing a trusted party. It turns out that a trusted party
can be implemented by a set of users with an honest majority (even if the identity of the
honest users is not known). This is indeed a major result in the area.

1.1.4.3 Zero-knowledge as a paradigm

A major tool in the construction of cryptographic protocols is the concept of zero-knowledge
proof systems, and the fact that zero-knowledge proof systems exist for all languages in NP
(provided that one-way functions exist). Loosely speaking, zero-knowledge proofs yield
nothing but the validity of the assertion. Zero-knowledge proofs provide a tool for “forcing”
parties to follow a given protocol properly.

To illustrate the role zero-knowledge proofs, consider a setting in which a party upon
receiving an encrypted message should answer with the least significant bit of the message.
Clearly, if the party just sends the (least significant) bit (of the message) then there is no
way to guarantee that it did not cheat. The party may prove that it did not cheat by
revealing the entire message as well as its decryption key, but this would yield information
beyond what has been required. A much better idea is to let the party augment the bit
it sends by a zero-knowledge proof that this bit is indeed the least significant bit of the
message. We stress that the above statement is of the “NP-type” (since the proof specified
above can be efficiently verified), and therefore the existence of zero-knowledge proofs for
NP-statements implies that the above statement can be proven without revealing anything
beyond its validity.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

10 CHAPTER 1. INTRODUCTION

1.2 Some Background from Probability Theory

Probability plays a central role in cryptography. In particular, probability is essential in
order to allow a discussion of information or lack of information (i.e., secrecy). We assume
that the reader is familiar with the basic notions of probability theory. In this section, we
merely present the probabilistic notations that are used in throughout the book, and three
useful probabilistic inequalities.

1.2.1 Notational Conventions

Throughout the entire book we will refer only to discrete probability distributions. Tradi-
tionally, a random variable is defined as a function from the sample space into the reals (or
integers). In this book we use the term random variable also when referring to functions
mapping the sample space into the set of binary strings. For example, we may say that X
is a random variable assigned values in the set of all strings so that Pr(X =00) = £ and
Pr(X =111) = 2. This is indeed a non-standard convention, but a useful one. Also, we will
refer directly to the random variables without specifying the probability space on which
they are defined. In most cases the probability space consists of all strings of a particular

length.

How to read probabilistic statements. All our probabilistic statements refer to func-
tions of random variables which are defined beforehand. Typically, we may write Pr(f(X)=
1), where X is a random variable defined beforehand (and f is a function). An important
convention is that all occurrences of the same symbol in a probabilistic statement refer to
the same (unique) random variable. Hence, if F(-,-)is an expression depending on two vari-
ables and X is a random variable then Pr(£(X, X)) denotes the probability that F(z,z)
holds when # is chosen with probability Pr(X =x). Namely,

Pr(E(X,X)) = Z Pr(X=ua) val(E(z,z))

where val(F(xz,z)) equals 1 if F(z,z) holds and equals 0 otherwise. For example, for every
random variable X, we have Pr(X = X) = 1. We stress that if one wishes to discuss
the probability that E(z,y) holds when 2 and y are chosen independently with identical
probability distribution the one needs to define two independent random variables each with
the same probability distribution. Hence, if X and Y are two independent random variables
then Pr(E(X,Y)) denotes the probability that F(z,y) holds when the pair (z,y) is chosen
with probability Pr(X =2) - Pr(Y =y). Namely,

Pr(E(X,Y)) = Z Pr(X=2a) -Pr(Y=y) val(F(z,y))

For example, for every two independent random variables, X and Y, we have Pr(X=Y) =1
only if both X and Y are trivial (i.e., assign the entire probability mass to a single string).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.2. SOME BACKGROUND FROM PROBABILITY THEORY 11

Typical random variables. Throughout the entire book, U, denotes a random variable
uniformly distributed over the set of strings of length n. Namely, Pr(U, =a) equals 27" if
a € {0,1}" and equals 0 otherwise. In addition, we will occasionally use random variables
(arbitrarily) distributed over {0,1}* or {0,1}'®) for some function [: N + N. Such
random variables are typically denoted by X,,, Y,, Z,, etc. We stress that in some cases
X, is distributed over {0,1}" whereas in others it is distributed over {0, 1}'™) for some
function [(-), typically a polynomial. Another type of random variable, the output of a
randomized algorithm on a fixed input, is discussed in the next section.

1.2.2 Three Inequalities

The following probabilistic inequalities will be very useful in course of the book. All inequal-
ities refer to random variables which are assigned real values. The most basic inequality
is Markov Inequality which asserts that, for random variables assigned values in some in-
terval, some relation must exist between the deviation of a value from the expectation of
the random variable and the probability that the random variable is assigned this value.
Specifically,

Markov Inequality: Let X be a non-negative random variable and v a real number. Then

E(X)

Pr(X >
r(X>v)< >

Equivalently, Pr(X > r-E(X)) < 1.
Proof:
E(X) = Z PriX=2) x
> > Pr(X=z)-0+> Pr(X=2z)-v
z<v e>v

= Pr(X>v)-v

The claim follows. [

Markov inequality is typically used in cases one knows very little about the distribution
of the random variable. It suffices to know its expectation and at least one bound on the
range of its values.

Exercise 1:

1. Let X be a random variable such that E(X) = p and X < 2u. Give an upper bound
on Pr(X <).

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

12 CHAPTER 1. INTRODUCTION

2. Let 0 < ¢,6 < 1, and Y be a random variable ranging in the interval [0, 1] such that
E(Y) = 6 4 €. Give a lower bound on Pr(Y > 6 +).

Using Markov’s inequality, one gets a “possibly stronger” bound for the deviation of a
random variable from its expectation. This bound, called Chebyshev’s inequality, is useful
provided one has additional knowledge concerning the random variable (specifically a good
upper bound on its variance).

Chebyshev’s Inequality: Let X be a random variable, and § > 0. Then
V(X)
52

Pr(|X — E(X)|>6) <

rool: We define a random variable = — , and apply Markov inequality. We
Proof: We defi d iable Y ' (X — E(X))2. and apply Markov i lity. W

get
Pr(|X —E(X)|>8) = Pr((X -E(X))>é)

and the claim follows. [}

Chebyshev’s inequality is particularly useful in the analysis of the error probability of ap-
proximation via repeated sampling. It suffices to assume that the samples are picked in a
pairwise independent manner.

Corollary (Pairwise Independent Sampling): Let X, Xs, ..., X,, be pairwise independent
random variables with the identical expectation, denoted p, and identical variance, denoted

2. Then " ,
Pr (‘722:1 : > 6) <2
n 6%n

The X,’s are pairwise independent if for every ¢ # j and all a, b, it holds that Pr(X; =
a N X;=0b)equals Pr(X;=a)-Pr(X;=0).

—p

Proof: Define the random variables X; def X; — E(X;). Note that the X,’s are pairwise in-

dependent, and each has zero expectation. Applying Chebyshev’s inequality to the random
variable defined by the sum Y, %, and using the linearity of the expectation operator,

we get
"X, V(Y X
Pr(|2——,u|>6) < 7@:;;1”)
i=1 n

(127))

6% - n?

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.2. SOME BACKGROUND FROM PROBABILITY THEORY 13

Now (again using the linearity of E)

E ((éf)z) = ZZ:E (x7) +1S§

By the pairwise independence of the X,’s, we get E(X,;X;) = E(X;) - E(X;), and using

E(X;) =0, we get
E ((ZH:YZ)) =n-o’

Using pairwise independent sampling, the error probability in the approximation is
decreasing linearly with the number of sample points. Using totally independent sampling

E(X.X;)

<

The corollary follows. [

points, the error probability in the approximation can be shown to decrease exponentially
with the number of sample points. (The random variables X, X,,..., X,, are said to be
totally independent if for every sequence ay,as, ..., a, it folds that Pr(A_; X; = a;) equals
[Ti=; Pr(Xi=a;).)

The bounds quote below are (weakenings of) a special case of the Martingale Tail In-
equality which suffices for our purposes. The first bound, commonly referred to as Chernoff
Bound, concerns 0-1 random variables (i.e., random variables which are assigned as values
either 0 or 1).

Chernoff Bound: Let p < i, and X, X,,..., X,, be independent 0-1 random variables so

29

that Pr(X; = 1) = p, for each i. Then for all §, 0 < 6 < p(1 — p), we have
i Xz 52
Pr (‘D;—p‘ > 6) < 2-e” ="

n

We will usually apply the bound with a constant p & % In this case, n independent samples
give an approximation which deviates by é from the expectation with probability € which is
exponentially decreasing with §*n. Such an approximation is called an (e, §)-approzimation,
and can be achieved using n = O(6~%-log(1/¢€)) sample points. It is important to remember
that the sufficient number of sample points is polynomially related to §~! and logarithmically
related to €', So using poly(n) many samples the error probability (i.e. €) can be made
negligible (as a function in n), but the accuracy of the estimation can be bounded above
by any fixed polynomial fraction (but cannot be made negligible).

A more general bound, useful in the approximations of the expectation of a general
random variable (not necessarily 0-1), is given below.

Hoefding Inequality: Let X, X,, ..., X,, be n independent random variables with identical
probability distribution, each ranging over the (real) interval [a,b], and let u denote the

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

14 CHAPTER 1. INTRODUCTION

expected value of each of these variables. Then,

¢ 28
Pr (‘ZZ; —,u‘ > 6) <2-e o)

n

Hoefding Inequality is useful in estimating the average value of a function defined over
a large set of values. It can be applied provided we can efficiently sample the set and have
a bound on the possible values (of the function).

Exercise 2: Let f : {0,1}* — [0,1] be a polynomial-time computable function, and let
F(n) denote the average value of f over {0,1}". Namely,

F(n) def er{o;};n f(x)

Let p(-) be a polynomial. Present a probabilistic polynomial-time algorithm that on input
1” outputs an estimate to F'(n), denoted A(n), such that

Pr <|F(n) —A(n)| >]ﬁ) <9

Guidance: The algorithm selects at random polynomially many (how many?) sample
points s; € {0,1}". These points are selected independently and with uniform probability
distribution (why?). The algorithm outputs the average value taken over this sample.
Analyze the performance of the algorithm using Hoefding Inequality (hint: define random
variables X; = f(s;)).

1.3 The Computational Model

Our approach to cryptography is heavily based on computational complexity. Thus, some
background on computational complexity is required for our discussion of cryptography.
In this section, we briefly recall the definitions of the complexity classes P, NP, BPP,
non-uniform P (i.e., P/poly), and the concept of oracle machines. In addition, we discuss
the type of intractability assumptions used throughout the rest of the book.

1.3.1 P, NP, and NP-completeness

A conservative approach to computing devices associates efficient computations with the
complexity class P. Jumping ahead, we note that the approach taken in this book is a more
liberal one in that it allows the computing devices to use coin tosses.

Definition 1.3.1 P is the class of languages which can be recognized by a (deterministic)
polynomial-time machine (algorithm). Language L is recognizable in polynomial-time if
there exists a (deterministic) Turing machine M and a polynomial p(-) such that

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.3. THE COMPUTATIONAL MODEL 15

e On input a string x, machine M halts after at most p(|z|) steps.
o M(z)=1 if and only ifz € L.

Likewise, the complexity class AP is associated with computational problems having solu-
tions that, once given, can be efficiently tested for validity. It is customary to define NP
as the class of languages which can be recognized by a non-deterministic polynomial-time
machine. A more fundamental interpretation of AP is given by the following equivalent
definition.

Definition 1.3.2 A language L is in NP, if there exists a Boolean relation Ry C {0,1}* X
{0,1}* and a polynomial p(-) such that Ry can be recognized in (deterministic) polynomial-
time and x € L if and only if there exists a y such that |y| < p(|z|) and (x,y) € Rr. Such
a y is called a witness for membership of z € L.

Thus, NP consists of the set of languages for which there exist short proofs of mem-
bership that can be efficiently verified. It is widely believed that P # AP, and settling
this conjecture is certainly the most intriguing open problem in Theoretical Computer Sci-
ence. If indeed P # NP then there exists a language L € NP so that for every algorithm
recognizing L has super-polynomial running-time in the worst-case. Certainly, all A/P-
complete languages (see definition below) will have super-polynomial time complexity in
the worst-case.

Definition 1.3.3 A language is N'P-complete if it is in N'P and every language in NP
s polynomially-reducible to it. A language L is polynomially-reducible to a language L’ if
there exist a polynomial-time computable function f so that x € L if and only if f(z) € L.

Among the languages known to be A'P-complete are Satisfiablity (of propositional for-
mulae), and Graph Colorability.

1.3.2 Probabilistic Polynomial-Time

The basic thesis underlying our discussion is the association of “efficient” computations
with probabilistic polynomial-time computations. Namely, we will consider as efficient only
randomized algorithms (i.e., probabilistic Turing machines) whose running time is bounded
by a polynomial in the length of the input. Such algorithms (machines) can be viewed in
two equivalent ways.

One way of viewing randomized algorithms is to allow the algorithm to make random
moves (“toss coins”). Formally this can be modeled by a Turing machine in which the
transition function maps pairs of the form ((state), (symbol)) to two possible triples of the
form ((state), (symbol), (direction)). The next step of such a machine is determined by a
random choice of one of these triples. Namely, to make a step, the machine chooses at
random (with probability one half for each possibility) either the first triple or the second

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

16 CHAPTER 1. INTRODUCTION

one, and then acts accordingly. These random choices are called the internal coin tosses
of the machine. The output of a probabilistic machine, M, on input 2z is not a string
but rather a random variable assuming strings as possible values. This random variable,
denoted M (z), is induced by the internal coin tosses of M. By Pr(M(z)=y) we mean
the probability that machine M on input = outputs y. The probability space is that of all
possible outcomes for the internal coin taken with uniform probability distribution. The
last sentence is slightly more problematic than it seems. The simple case is when, on input
x, machine M always makes the same number of internal coin tosses (independent of their
outcome). Since, we only consider polynomial-time machines, we may assume without loss
of generality, that the number of coin tosses made by M on input z is independent of their
outcome, and is denoted by t(z). We denote by M,(z) the output of M on input 2 when
7 is the outcome of its internal coin tosses. Then, Pr(M(z)=y) is merely the fraction of
r € {0,1}'~) for which M,(z) = y. Namely,

_ H{re{0. 13 - M, (2) =y}

Pr(M(z)=1) e

The second way of looking at randomized algorithms is to view the outcome of the
internal coin tosses of the machine as an auxiliary input. Namely, we consider deterministic
machines with two inputs. The first input plays the role of the “real input” (i.e. x) of the
first approach, while the second input plays the role of a possible outcome for a sequence
of internal coin tosses. Thus, the notation M (z,r) corresponds to the notation M, (z) used
above. In the second approach one considers the probability distribution of M (z,r), for
any fized x and a uniformly chosen r € {0,1}*#(®), Pictorially, here the coin tosses are not
“internal” but rather supplied to the machine by an “external” coin tossing device.

Before continuing, let me remark that one should not confuse the fictitious model of
“non-deterministic” machines with the model of probabilistic machines. The first is an
unrealistic model which is useful for talking about search problems the solutions to which
can be efficiently verified (e.g., the definition of AP), while the second is a realistic model
of computation.

In the sequel, unless otherwise stated, a probabilistic polynomial-time Turing machine
means a probabilistic machine that always (i.e., independently of the outcome of its internal
coin tosses) halts after a polynomial (in the length of the input) number of steps. It follows
that the number of coin tosses of a probabilistic polynomial-time machine M is bounded
by a polynomial, denoted Ty, in its input length. Finally, without loss of generality, we
assume that on input z the machine always makes T (]z|) coin tosses.

Thesis: Efficient computations correspond to computations that can be carried out by prob-
abilistic polynomial-time Turing machines.

A complexity class capturing these computations is the class, denoted BPP, of languages
recognizable (with high probability) by probabilistic polynomial-time machines. The prob-
ability refers to the event “the machine makes correct verdict on string z”.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.3. THE COMPUTATIONAL MODEL 17

Definition 1.3.4 (Bounded-Probability Polynomial-time — BPP): BPP is the class of
languages which can be recognized by a probabilistic polynomial-time machine (i.e., random-
ized algorithm). We say that L is recognized by the probabilistic polynomial-time machine
M if

o For every x € L it holds that Pr(M(x)=1) > 2.
o For every x ¢ L it holds that Pr(M(2)=0) >

2
3

The phrase “bounded-probability” indicates that the success probability is bounded
away from . In fact, substituting in Definition 1.3.4 the constant % by any other constant

2
greater than % does not change the class defined. More generally:

Exercise 1: Prove that Definition 1.3.4 is robust under the substitution of % by % + m,

for every polynomial p(-). Namely, that L € BPP if there exists a polynomial p(-) and a
probabilistic polynomial-time machine, M, such that

e Lor every z € L it holds that Pr(M(z)=1) > % +

r(l=|

=

e For every z ¢ L it holds that Pr(M(z)=0) > 1 + m.

Guidance: Given a probabilistic polynomial-time machine M satisfying the above condi-
tion, construct a probabilistic polynomial-time machine M’ as follows. On input z, machine
M’, runs O(p(|z|)) many copies of M, on the same input z, and rules by majority. Use
Chebyshev’s inequality (see Sec. 1.2) to show that M’ is correct with probability > %

Exercise 2: Prove that Definition 1.3.4 is robust under the substitution of % by 1 — 2-l=1,
Guidance: Similar to Exercise 1, except that you have to use a stronger probabilistic
inequality (namely Chernoff bound — see Sec. 1.2).

We conclude that languages in BPP can be recognized by probabilistic polynomial-
time machines with a negligible error probability. By negligible we call any function which
decreases faster than one over any polynomial. Namely,

Definition 1.3.5 (negligible): We call a function p : N — R negligible if for every poly-
nomial p(-) there exists an N such that for all n > N

1
wln) < p(n)
For example, the functions 2=V” and n~'82", are negligible (as functions in n). Negligible
function stay this way when multiplied by any fixed polynomial. Namely, for every negligible
function & and any polynomial p, the function p/(n) 2 p(n)- u(n) is negligible. It follows
that an event which occurs with negligible probability is highly unlikely to occur even if we
repeat the experiment polynomially many times.

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

18 CHAPTER 1. INTRODUCTION

Convention: In Definition 1.3.5 we used the phrase “there exists an N such that for all
n > N7. In the future we will use the shorter and less tedious phrase “for all sufficiently
large n”. This makes one quantifier (i.e., the 3N) implicit, and is particularly beneficial in
statements that contain several (more essential) quantifiers.

1.3.3 Non-Uniform Polynomial-Time

A stronger model of efficient computation is that of non-uniform polynomial-time. This
model will be used only in the negative way; namely, for saying that even such machines
cannot do something.

A non-uniform polynomial-time “machine” is a pair (M, @), where M is a two-input
polynomial-time machine and @ = @, as, ... is an infinite sequence such that |a,| = poly(n).
For every z, we consider the computation of machine M on the input pair (z,a),). Intu-
itively, a, may be thought as an extra “advice” supplied from the “outside” (together with
the input € {0,1}"). We stress that machine M gets the same advice (i.e., a,) on all
inputs of the same length (i.e., n). Intuitively, the advice a, may be useful in some cases
(i.e., for some computations on inputs of length n), but it is unlikely to encode enough
information to be useful for all 2" possible inputs.

Another way of looking at non-uniform polynomial-time “machines” is to consider an
infinite sequence of machines, M, M, ... so that both the length of the description of M,, and
its running time on inputs of length n are bounded by polynomial in n (fixed for the entire
sequence). Machine M,, is used only on inputs of length n. Note the correspondence between
the two ways of looking at non-uniform polynomial-time. The pair (M, (ay,as, ...)) (of the
first definition) gives rise to an infinite sequence of machines M,,, M,,, ..., where Ma|z|($) Lt
M(x,a),)). On the other hand, a sequence M, M,, ... (as in the second definition) gives rise
to the pair (U, ((M,),(M>),...)), where U is the universal Turing machine and (M,,) is the
description of machine M, (i.e., U(x, (M) = M5 (2)).

In the first sentence of the current subsection, non-uniform polynomial-time has been
referred to as a stronger model than probabilistic polynomial-time. This statement is valid
in many contexts (e.g., language recognition as in Theorem 1 below). In particular it will
be valid in all contexts we discuss in this book. So we have the following informal “meta-
theorem”

Meta-Theorem: Whatever can be achieved by probabilistic polynomial-time machines
can be achieved by non-uniform polynomial-time “machines”.

The meta-theorem is clearly wrong if one thinks of the task of tossing coins... So the
meta-theorem should not be understood literally. It is merely an indication of real theorems
that can be proven in reasonable cases. Let’s consider the context of language recognition.

Definition 1.3.6 The complezity class non-uniform polynomial-time (denoted P /poly) is
the class of languages L which can be recognized by a non-uniform (sequence) polynomial-
time “machine”. Namely, L € P/poly if there exists an infinite sequence of machines

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.3. THE COMPUTATIONAL MODEL 19

My, M,, ... satisfying

1. There exists a polynomial p(-) such that, for every n, the description of machine M,
has length bounded above by p(n).

2. There exists a polynomial q(-) such that, for every n, the running time of machine
M, on each input of length n is bounded above by q(n). has length < p(n).

3. For every n and every x € {0,1}", machine M, accepts x if and only if v € L.

Note that the non-uniformity is implicit in the lack of a requirement concerning the
construction of the machines in the sequence. It is only required that these machines exist.
In contrast, if one augments Definition 1.3.6 by requiring the existence of a polynomial-time
algorithm that on input 1" (n presented in unary) outputs the description of M, then one
gets a cumbersome way of defining P. On the other hand, it is obvious that P C P/poly
(in fact strict containment can be proven by considering non-recursive unary languages).
Furthermore,

Theorem 1: BPP C P/poly.

Proof: Let M be a probabilistic machine recognizing L € BPP. Let £,(z) & 1ifz € L
and £ (z) = 0 otherwise. Then, for every a € {0,1}*,

2

Pr(M(2)=61(2)) > =

Assume, without loss of generality, that on each input of length n, machine M uses the
same number, m = poly(n), of coin tosses. Let z € {0,1}". Clearly, we can find for
each € {0,1}" a sequence of coin tosses r € {0,1}™ such that M,(z) = & (x) (in fact
most sequences r have this property). But can one sequence r € {0,1}™ fit all z € {0,1}"?
Probably not (provide an example!). Nevertheless, we can find a sequence r € {0, 1}" which
fits 2 of all the 2’s of length n. This is done by a counting argument (which asserts that if
% of the r’s are good for each x then there is an r which is good for at least % of the 27s).
However, this does not give us an r which is good for all z € {0,1}". To get such an r
we have to apply the above argument on a machine M’ with exponentially vanishing error

probability. Such a machine is guaranteed by Exercise 2. Namely, for every x € {0, 1}*,
Pr(M'(z)=¢p(2)) > 1 — 271

Applying the argument now we conclude that there exists an r € {0, 1}, denoted r,, which
is good for more than a 1 — 27" fraction of the z € {0,1}". It follows that r, is good for
all the 2" inputs of length n. Machine M’ (viewed as a deterministic two-input machine)
together with the infinite sequence ry,ry,... constructed as above, demonstrates that L is

in P/poly. W

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

20 CHAPTER 1. INTRODUCTION

Finally, let me mention a more convenient way of viewing non-uniform polynomial-time.
This is via (non-uniform) families of polynomial-size Boolean circuits. A Boolean circuit is
a directed acyclic graph with internal nodes marked by elements in {A,V,—} Nodes with
no ingoing edges are called input nodes, and nodes with no outgoing edges are called output
nodes, A node mark = may have only one child. Computation in the circuit begins with
placing input bits on the input nodes (one bit per node) and proceeds as follows. If the
children of a node (of indegree d) marked A have values vy, vs, ..., v4 then the node gets the
value A’ v;. Similarly for nodes marked V and —. The output of the circuit is read from
its output nodes. The size of a circuit is the number of its edges. A polynomial-size circuit
family is an infinite sequence of Boolean circuits, C';, Cs, ... such that, for every n, the circuit
C,, has n input nodes and size p(n), where p(-) is a polynomial (fixed for the entire family).
Clearly, the computation of a Turing machine M on inputs of length n can be simulated
by a single circuit (with n input nodes) having size O(([{(M)|+ n + t(n))?), where t(n) is
a bound on the running time of M on inputs of length n. Thus, a non-uniform sequence
of polynomial-time machines can be simulated by a non-uniform family of polynomial-size
circuits. The converse is also true as machines with polynomial description length can
incorporate polynomial-size circuits and simulate their computations in polynomial-time.
The thing which is nice about the circuit formulation is that there is no need to repeat the
polynomiality requirement twice (once for size and once for time) as in the first formulation.

1.3.4 Intractability Assumptions

We will consider as intractable those tasks which cannot be performed by probabilistic
polynomial-time machines. However, the adverserial tasks in which we will be interested
(e.g., “breaking an encryption scheme”, “forging signatures”, etc.) can be performed by
non-deterministic polynomial-time machines (since the solutions, once found, can be easily
tested for validity). Thus, the computational approach to cryptography (and in particular
most of the material in this book) is interesting only if NP is not contained in BPP
(which certainly implies P # AP). We use the phrase “not interesting” (rather than
“not valid”) since all our statements will be of the form “if (intractability assumption)
then (useful consequence)”’. The statement remains valid even if P = NP (or just
(intractability assumption) which is never weaker than P # NP is wrong), but in such
a case the implication is of little interest (since everything is implied by a fallacy).

In most places where we state that “if (intractability assumption) then (useful consequence)”
it will be the case that (useful consequence) either implies (intractability assumption)
or some weaker form of it, which in turn implies NP—BPP # (). Thus, in light of the current
state of knowledge in complexity theory, one cannot hope for asserting (useful consequence)
without any intractability assumption.

In few cases an assumption concerning the limitations of probabilistic polynomial-time
machines (e.g., BPP does not contain N'P) will not suffice, and we will use instead an
assumption concerning the limitations of non-uniform polynomial-time machines. Such an
assumption is of course stronger. But also the consequences in such a case will be stronger as

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.4. MOTIVATION TO THE FORMAL TREATMENT 21

they will also be phrased in terms of non-uniform complexity. However, since all our proofs
are obtained by reductions, an implication stated in terms of probabilistic polynomial-time is
stronger (than one stated in terms of non-uniform polynomial-time), and will be preferred
unless it is either not known or too complicated. This is the case since a probabilistic
polynomial-time reduction (proving implication in its probabilistic formalization) always
implies a non-uniform polynomial-time reduction (proving the statement in its non-uniform
formalization), but the converse is not always true. (The current paragraph may be better
understood in the future after seeing some concrete examples.)

Finally, we mention that intractability assumptions concerning worst-case complexity
(e.g., P # N'P) will not suffice, because we will not be satisfied with their corresponding
consequences. Cryptographic schemes which are guaranteed to be hard to break in the
worst-case are useless. A cryptographic scheme must be unbreakable on “most cases” (i.e.,
“typical case”) which implies that it is hard to break on the average. It follows that, since
we are not able to prove that “worst-case intractability” imply analogous “intractability for
average case” (such a result would be considered a breakthrough in complexity theory), our
intractability assumption must concern average-case complexity.

1.3.5 Oracle Machines

The original utility of oracle machines in complexity theory is to capture notions of re-
ducibility. In this book we use oracle machines for a different purpose altogether. We use
an oracle machine to model an adversary which may use a cryptosystem in course of its
attempt to break it.

Definition 1.3.7 A (deterministic/probabilistic) oracle machine is a (deterministic/probabilistic)
Turing machine with an additional tape, called the oracle tape, and two special states, called
oracle invocation and oracle appeared. The computation of the deterministic oracle ma-

chine M on input x and access to the oracle f : {0,1}* — {0, 1}* is defined by the successive
configuration relation. For configurations with state different from “oracle invocation” the

next configuration is defined as usual. Let v be a configuration in which the state is “oracle
mvocation” and the contents of the oracle tape is q. Then the configuration following ~

s identical to v, except that the state is “oracle appeared” and the contents of the oracle

tape is f(q). The string q is called M’s query and f(q) is called thee oracle reply. The
computation of a probabilistic oracle machine is defined analogously.

We stress that the running time of an oracle machine is the number of steps made during
its computation, and that the oracle’s reply on each query is obtained in a single step.

1.4 Motivation to the Formal Treatment

It is indeed unfortunate that our formal treatment of the field of cryptography requires
justification. Nevertheless, we prefer to address this (unjustified) requirement rather than
ignore it. In the rest of this section we address three related issues

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

22 CHAPTER 1. INTRODUCTION

1. the mere need for a formal treatment of the field;
2. the practical meaning and/or consequences of the formal treatment;
3. the “conservative” tendencies of the treatment.

Parts of this section may become more clear after reading any of the Chapters 3-7.

1.4.1 The Need to Formalize Intuition

An abstract justification. We believe that one of the roles of science is to formulate our
intuition about reality so that this intuition can be carefully examined, and consequently
either be justified as sound or be rejected as false. Notably, there are many cases in which
our initial intuition turns out to be correct, as well as many cases in which our initial
intuition turns out to be wrong. The more we understand the discipline, the better our
intuition becomes. At this stage in history it would be very presumptuous to claim that we
have good intuition about the nature of efficient computation. In particular, we even don’t
know the answer to a basis question such as whether P is strictly contained in AP, let alone
having an understanding of what makes one computation problem hard while a seemingly
related computational problem is easy. Consequently, we should be extremely careful when
making assertions about what can or cannot be efficiently computed. Unfortunately, making
assertions about what can or cannot be efficiently computed is exactly what cryptography
is all about... Not to mention that many of the problems of cryptography have a much more
cumbersome and delicate description than what is usually standard in complexity theory.
Hence, not only that there is a need to formalize “intuition” in general, but the need to
formalize “intuition” is particularly required in a sensitive field as cryptography.

A concrete justification. Cryptography, as a discipline, is well-motivated. Conse-
quently, cryptographic issues are being discussed by many researchers, engineers, and stu-
dents. Unfortunately, most of these discussions are carried out without a precise definition
of their subject matter. Instead it is implicitly assumed that the basic concepts of cryptog-
raphy (e.g., secure encryption) are self-evident (since they are so intuitive), and that there
is no need to present adequate definitions. The fallacy of this assumption is demonstrated
by the abandon of papers (not to mention private discussion) which derive and/or jump
into wrong conclusions concerning security. In most cases these wrong conclusions can be
traced back into implicit misconceptions regarding security, which could not have escaped
the eyes of the authors if made explicitly. We avoid listing all these cases here for several
obvious reasons. Nevertheless, we mention one well-known example.

In around 1979, Ron Rivest claimed that no signature scheme that is “proven secure as-
suming the intractability of factoring” can resist a “chosen message attack”. His argument
was based on an implicit (and unjustified) assumption concerning the nature of a “proof of
security (which assumes the intractability of factoring)”. Consequently, for several years it

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

1.4. MOTIVATION TO THE FORMAL TREATMENT 23

was believe that one has to choose between having a signature scheme “proven to be un-
forgeable under the intractability of factoring” and having a signature scheme which resist a
“chosen message attack”. However, in 1984 Goldwasser, Micali and Rivest (himself) pointed
out the fallacy on which Rivest’s argument (of 1979) was based, and furthermore presented
signature schemes which resist a “chosen message attack”, under general assumptions. In
particular, the intractability of factoring suflices for proving that there exists a signature
scheme which resist “forgery”, even under a “chosen message attack”.

To summarize, the basic concepts of cryptography are indeed very intuitive, yet they
are not self-evident and/or well-understood. Hence, we do not understand these issues well
enough yet to be able to discuss them correctly without using precise definitions.

1.4.2 The Practical Consequences of the Formal Treatment

As customary in complexity theory, our treatment is presented in terms of asymptotic anal-
ysis of algorithms. This makes the statement of the results somewhat less cumbersome, but
is not essential to the underlying ideas. Hence, the results, although stated in an “abstract
manner”, lend themselves to concrete interpolations. To clarify the above statement we
consider a generic example.

A typical result presented in this book relates two computational problems. The first
problem is a simple computational problem which is assumed to be intractable (e.g., in-
tractability of factoring), whereas the second problem consists of “breaking” a specific imple-
mentation of a useful cryptographic primitive (e.g., a specific encryption scheme). The ab-
stract statement may assert that if integer factoring cannot be performed in polynomial-time
then the encryption scheme is secure in the sense that it cannot be “broken” in polynomial-
time. Typically, the statement is proven by a fixed polynomial-time reduction of integer
factorization to the problem of breaking the encryption scheme. Hence, by working out the
constants one can derive a statement of the following type: if factoring integers of X (say
300) decimal digits is infeasible in practice then the encryption scheme is secure in practice
provided one uses a key of length Y (say 500) decimal digits. Actually, the statement will
have to be more cumbersome so that it includes also the computing power of the real ma-
chines. Namely, if factoring integers of 300 decimal digits cannot be done using 1000 years
of a Cray then the encryption scheme cannot be broken in 10 years by a Cray, provided
one uses a key of length 500 decimal digits. We stress that the relation between the four
parameters mentioned above can be derived from the reduction (used to prove the abstract
statement). For most results these reduction yield a reasonable relation between the var-
ious parameters. Consequently, all cryptographic primitives considered in this book (i.e.,
public and private-key encryption, signatures, zero-knowledge, pseudorandom generators,
fault-tolerant protocols) can be implemented in practice based on reasonable intractability
assumptions (such as the unfeasibility of factoring 500 digit integers).

In few cases, the reductions currently known do not yield practical consequences, since
the “security parameter” (e.g., key length) in the derived cryptographic primitive has to be
too large. In all these cases, the “impracticality” of the result is explicitly stated, and the

Extracted from aworking draft of Goldreich’s FOUNDATIONS OF CRYPTOGRAPHY. See copyright notice.

24 CHAPTER 1. INTRODUCTION

reader is encouraged to try to provide a more efficient reduction that would have practical
consequences. Hence, we do not consider these few cases as indicating a deficiency in our
approach, but rather as important open problems.

1.4.3 The Tendency to be Conservative

When reaching the chapters in which cryptographic primitives are defined (specifically in
Chapters 3-7), the reader may notice that we are unrealistically “conservative” in our
definitions of security. In other words, we are unrealistically liberal in our definition of
insecurity. Technically speaking, this tendency raises no problems since our primitives
which are secure in a very strong sense are certainly secure also in the (more restricted)
reasonable sense. Furthermore, we are able to implement such (strongly secure) primitives
using reasonable intractability assumptions, and in most cases one can show that such
assumptions are necessary even for much weaker (and in fact less than minimal) notions
of security. Yet the reader may wonder why we choose to present definitions which seem
stronger than what is required in practice.

The reason to our tendency to be conservative, when defining security, is that it is
extremely difficult to capture what is exactly require in practice. Furthermore, a certain
level in security may be required in one application, whereas another level is required
in a different application. In seems impossible to cover whatever can be required in all
applications without taking our conservative approach. In the sequel we shall see how one
can define security in a way covering all possible practical applications.

Author’s Note: First draft written mainly in Summer of 1991.

